]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c
340d89eea2a80805444be8bb1d47b2cbaad6e96b
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static struct hnae3_ae_algo ae_algovf;
18
19 static const struct pci_device_id ae_algovf_pci_tbl[] = {
20 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
21 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
22 /* required last entry */
23 {0, }
24 };
25
26 static const u8 hclgevf_hash_key[] = {
27 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
28 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
29 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
30 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
31 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
32 };
33
34 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
35
36 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
37 HCLGEVF_CMDQ_TX_ADDR_H_REG,
38 HCLGEVF_CMDQ_TX_DEPTH_REG,
39 HCLGEVF_CMDQ_TX_TAIL_REG,
40 HCLGEVF_CMDQ_TX_HEAD_REG,
41 HCLGEVF_CMDQ_RX_ADDR_L_REG,
42 HCLGEVF_CMDQ_RX_ADDR_H_REG,
43 HCLGEVF_CMDQ_RX_DEPTH_REG,
44 HCLGEVF_CMDQ_RX_TAIL_REG,
45 HCLGEVF_CMDQ_RX_HEAD_REG,
46 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
47 HCLGEVF_CMDQ_INTR_STS_REG,
48 HCLGEVF_CMDQ_INTR_EN_REG,
49 HCLGEVF_CMDQ_INTR_GEN_REG};
50
51 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
52 HCLGEVF_RST_ING,
53 HCLGEVF_GRO_EN_REG};
54
55 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
56 HCLGEVF_RING_RX_ADDR_H_REG,
57 HCLGEVF_RING_RX_BD_NUM_REG,
58 HCLGEVF_RING_RX_BD_LENGTH_REG,
59 HCLGEVF_RING_RX_MERGE_EN_REG,
60 HCLGEVF_RING_RX_TAIL_REG,
61 HCLGEVF_RING_RX_HEAD_REG,
62 HCLGEVF_RING_RX_FBD_NUM_REG,
63 HCLGEVF_RING_RX_OFFSET_REG,
64 HCLGEVF_RING_RX_FBD_OFFSET_REG,
65 HCLGEVF_RING_RX_STASH_REG,
66 HCLGEVF_RING_RX_BD_ERR_REG,
67 HCLGEVF_RING_TX_ADDR_L_REG,
68 HCLGEVF_RING_TX_ADDR_H_REG,
69 HCLGEVF_RING_TX_BD_NUM_REG,
70 HCLGEVF_RING_TX_PRIORITY_REG,
71 HCLGEVF_RING_TX_TC_REG,
72 HCLGEVF_RING_TX_MERGE_EN_REG,
73 HCLGEVF_RING_TX_TAIL_REG,
74 HCLGEVF_RING_TX_HEAD_REG,
75 HCLGEVF_RING_TX_FBD_NUM_REG,
76 HCLGEVF_RING_TX_OFFSET_REG,
77 HCLGEVF_RING_TX_EBD_NUM_REG,
78 HCLGEVF_RING_TX_EBD_OFFSET_REG,
79 HCLGEVF_RING_TX_BD_ERR_REG,
80 HCLGEVF_RING_EN_REG};
81
82 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
83 HCLGEVF_TQP_INTR_GL0_REG,
84 HCLGEVF_TQP_INTR_GL1_REG,
85 HCLGEVF_TQP_INTR_GL2_REG,
86 HCLGEVF_TQP_INTR_RL_REG};
87
88 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
89 {
90 if (!handle->client)
91 return container_of(handle, struct hclgevf_dev, nic);
92 else if (handle->client->type == HNAE3_CLIENT_ROCE)
93 return container_of(handle, struct hclgevf_dev, roce);
94 else
95 return container_of(handle, struct hclgevf_dev, nic);
96 }
97
98 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
99 {
100 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
101 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
102 struct hclgevf_desc desc;
103 struct hclgevf_tqp *tqp;
104 int status;
105 int i;
106
107 for (i = 0; i < kinfo->num_tqps; i++) {
108 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
109 hclgevf_cmd_setup_basic_desc(&desc,
110 HCLGEVF_OPC_QUERY_RX_STATUS,
111 true);
112
113 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 if (status) {
116 dev_err(&hdev->pdev->dev,
117 "Query tqp stat fail, status = %d,queue = %d\n",
118 status, i);
119 return status;
120 }
121 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
122 le32_to_cpu(desc.data[1]);
123
124 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
125 true);
126
127 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
128 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
129 if (status) {
130 dev_err(&hdev->pdev->dev,
131 "Query tqp stat fail, status = %d,queue = %d\n",
132 status, i);
133 return status;
134 }
135 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
136 le32_to_cpu(desc.data[1]);
137 }
138
139 return 0;
140 }
141
142 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
143 {
144 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
145 struct hclgevf_tqp *tqp;
146 u64 *buff = data;
147 int i;
148
149 for (i = 0; i < kinfo->num_tqps; i++) {
150 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
151 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
152 }
153 for (i = 0; i < kinfo->num_tqps; i++) {
154 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
155 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
156 }
157
158 return buff;
159 }
160
161 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
162 {
163 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
164
165 return kinfo->num_tqps * 2;
166 }
167
168 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
169 {
170 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
171 u8 *buff = data;
172 int i = 0;
173
174 for (i = 0; i < kinfo->num_tqps; i++) {
175 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
176 struct hclgevf_tqp, q);
177 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
178 tqp->index);
179 buff += ETH_GSTRING_LEN;
180 }
181
182 for (i = 0; i < kinfo->num_tqps; i++) {
183 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
184 struct hclgevf_tqp, q);
185 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
186 tqp->index);
187 buff += ETH_GSTRING_LEN;
188 }
189
190 return buff;
191 }
192
193 static void hclgevf_update_stats(struct hnae3_handle *handle,
194 struct net_device_stats *net_stats)
195 {
196 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
197 int status;
198
199 status = hclgevf_tqps_update_stats(handle);
200 if (status)
201 dev_err(&hdev->pdev->dev,
202 "VF update of TQPS stats fail, status = %d.\n",
203 status);
204 }
205
206 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
207 {
208 if (strset == ETH_SS_TEST)
209 return -EOPNOTSUPP;
210 else if (strset == ETH_SS_STATS)
211 return hclgevf_tqps_get_sset_count(handle, strset);
212
213 return 0;
214 }
215
216 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
217 u8 *data)
218 {
219 u8 *p = (char *)data;
220
221 if (strset == ETH_SS_STATS)
222 p = hclgevf_tqps_get_strings(handle, p);
223 }
224
225 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
226 {
227 hclgevf_tqps_get_stats(handle, data);
228 }
229
230 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
231 {
232 u8 resp_msg;
233 int status;
234
235 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
236 true, &resp_msg, sizeof(resp_msg));
237 if (status) {
238 dev_err(&hdev->pdev->dev,
239 "VF request to get TC info from PF failed %d",
240 status);
241 return status;
242 }
243
244 hdev->hw_tc_map = resp_msg;
245
246 return 0;
247 }
248
249 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
250 {
251 struct hnae3_handle *nic = &hdev->nic;
252 u8 resp_msg;
253 int ret;
254
255 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
256 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE,
257 NULL, 0, true, &resp_msg, sizeof(u8));
258 if (ret) {
259 dev_err(&hdev->pdev->dev,
260 "VF request to get port based vlan state failed %d",
261 ret);
262 return ret;
263 }
264
265 nic->port_base_vlan_state = resp_msg;
266
267 return 0;
268 }
269
270 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
271 {
272 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
273 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
274 int status;
275
276 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
277 true, resp_msg,
278 HCLGEVF_TQPS_RSS_INFO_LEN);
279 if (status) {
280 dev_err(&hdev->pdev->dev,
281 "VF request to get tqp info from PF failed %d",
282 status);
283 return status;
284 }
285
286 memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
287 memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
288 memcpy(&hdev->rx_buf_len, &resp_msg[4], sizeof(u16));
289
290 return 0;
291 }
292
293 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
294 {
295 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
296 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
297 int ret;
298
299 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QDEPTH, 0, NULL, 0,
300 true, resp_msg,
301 HCLGEVF_TQPS_DEPTH_INFO_LEN);
302 if (ret) {
303 dev_err(&hdev->pdev->dev,
304 "VF request to get tqp depth info from PF failed %d",
305 ret);
306 return ret;
307 }
308
309 memcpy(&hdev->num_tx_desc, &resp_msg[0], sizeof(u16));
310 memcpy(&hdev->num_rx_desc, &resp_msg[2], sizeof(u16));
311
312 return 0;
313 }
314
315 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
316 {
317 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
318 u8 msg_data[2], resp_data[2];
319 u16 qid_in_pf = 0;
320 int ret;
321
322 memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
323
324 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QID_IN_PF, 0, msg_data,
325 sizeof(msg_data), true, resp_data,
326 sizeof(resp_data));
327 if (!ret)
328 qid_in_pf = *(u16 *)resp_data;
329
330 return qid_in_pf;
331 }
332
333 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
334 {
335 u8 resp_msg[2];
336 int ret;
337
338 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_MEDIA_TYPE, 0, NULL, 0,
339 true, resp_msg, sizeof(resp_msg));
340 if (ret) {
341 dev_err(&hdev->pdev->dev,
342 "VF request to get the pf port media type failed %d",
343 ret);
344 return ret;
345 }
346
347 hdev->hw.mac.media_type = resp_msg[0];
348 hdev->hw.mac.module_type = resp_msg[1];
349
350 return 0;
351 }
352
353 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
354 {
355 struct hclgevf_tqp *tqp;
356 int i;
357
358 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
359 sizeof(struct hclgevf_tqp), GFP_KERNEL);
360 if (!hdev->htqp)
361 return -ENOMEM;
362
363 tqp = hdev->htqp;
364
365 for (i = 0; i < hdev->num_tqps; i++) {
366 tqp->dev = &hdev->pdev->dev;
367 tqp->index = i;
368
369 tqp->q.ae_algo = &ae_algovf;
370 tqp->q.buf_size = hdev->rx_buf_len;
371 tqp->q.tx_desc_num = hdev->num_tx_desc;
372 tqp->q.rx_desc_num = hdev->num_rx_desc;
373 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
374 i * HCLGEVF_TQP_REG_SIZE;
375
376 tqp++;
377 }
378
379 return 0;
380 }
381
382 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
383 {
384 struct hnae3_handle *nic = &hdev->nic;
385 struct hnae3_knic_private_info *kinfo;
386 u16 new_tqps = hdev->num_tqps;
387 unsigned int i;
388
389 kinfo = &nic->kinfo;
390 kinfo->num_tc = 0;
391 kinfo->num_tx_desc = hdev->num_tx_desc;
392 kinfo->num_rx_desc = hdev->num_rx_desc;
393 kinfo->rx_buf_len = hdev->rx_buf_len;
394 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
395 if (hdev->hw_tc_map & BIT(i))
396 kinfo->num_tc++;
397
398 kinfo->rss_size
399 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
400 new_tqps = kinfo->rss_size * kinfo->num_tc;
401 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
402
403 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
404 sizeof(struct hnae3_queue *), GFP_KERNEL);
405 if (!kinfo->tqp)
406 return -ENOMEM;
407
408 for (i = 0; i < kinfo->num_tqps; i++) {
409 hdev->htqp[i].q.handle = &hdev->nic;
410 hdev->htqp[i].q.tqp_index = i;
411 kinfo->tqp[i] = &hdev->htqp[i].q;
412 }
413
414 return 0;
415 }
416
417 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
418 {
419 int status;
420 u8 resp_msg;
421
422 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
423 0, false, &resp_msg, sizeof(resp_msg));
424 if (status)
425 dev_err(&hdev->pdev->dev,
426 "VF failed to fetch link status(%d) from PF", status);
427 }
428
429 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
430 {
431 struct hnae3_handle *rhandle = &hdev->roce;
432 struct hnae3_handle *handle = &hdev->nic;
433 struct hnae3_client *rclient;
434 struct hnae3_client *client;
435
436 client = handle->client;
437 rclient = hdev->roce_client;
438
439 link_state =
440 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
441
442 if (link_state != hdev->hw.mac.link) {
443 client->ops->link_status_change(handle, !!link_state);
444 if (rclient && rclient->ops->link_status_change)
445 rclient->ops->link_status_change(rhandle, !!link_state);
446 hdev->hw.mac.link = link_state;
447 }
448 }
449
450 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
451 {
452 #define HCLGEVF_ADVERTISING 0
453 #define HCLGEVF_SUPPORTED 1
454 u8 send_msg;
455 u8 resp_msg;
456
457 send_msg = HCLGEVF_ADVERTISING;
458 hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
459 &send_msg, sizeof(send_msg), false,
460 &resp_msg, sizeof(resp_msg));
461 send_msg = HCLGEVF_SUPPORTED;
462 hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_MODE, 0,
463 &send_msg, sizeof(send_msg), false,
464 &resp_msg, sizeof(resp_msg));
465 }
466
467 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
468 {
469 struct hnae3_handle *nic = &hdev->nic;
470 int ret;
471
472 nic->ae_algo = &ae_algovf;
473 nic->pdev = hdev->pdev;
474 nic->numa_node_mask = hdev->numa_node_mask;
475 nic->flags |= HNAE3_SUPPORT_VF;
476
477 ret = hclgevf_knic_setup(hdev);
478 if (ret)
479 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
480 ret);
481 return ret;
482 }
483
484 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
485 {
486 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
487 dev_warn(&hdev->pdev->dev,
488 "vector(vector_id %d) has been freed.\n", vector_id);
489 return;
490 }
491
492 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
493 hdev->num_msi_left += 1;
494 hdev->num_msi_used -= 1;
495 }
496
497 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
498 struct hnae3_vector_info *vector_info)
499 {
500 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
501 struct hnae3_vector_info *vector = vector_info;
502 int alloc = 0;
503 int i, j;
504
505 vector_num = min(hdev->num_msi_left, vector_num);
506
507 for (j = 0; j < vector_num; j++) {
508 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
509 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
510 vector->vector = pci_irq_vector(hdev->pdev, i);
511 vector->io_addr = hdev->hw.io_base +
512 HCLGEVF_VECTOR_REG_BASE +
513 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
514 hdev->vector_status[i] = 0;
515 hdev->vector_irq[i] = vector->vector;
516
517 vector++;
518 alloc++;
519
520 break;
521 }
522 }
523 }
524 hdev->num_msi_left -= alloc;
525 hdev->num_msi_used += alloc;
526
527 return alloc;
528 }
529
530 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
531 {
532 int i;
533
534 for (i = 0; i < hdev->num_msi; i++)
535 if (vector == hdev->vector_irq[i])
536 return i;
537
538 return -EINVAL;
539 }
540
541 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
542 const u8 hfunc, const u8 *key)
543 {
544 struct hclgevf_rss_config_cmd *req;
545 unsigned int key_offset = 0;
546 struct hclgevf_desc desc;
547 int key_counts;
548 int key_size;
549 int ret;
550
551 key_counts = HCLGEVF_RSS_KEY_SIZE;
552 req = (struct hclgevf_rss_config_cmd *)desc.data;
553
554 while (key_counts) {
555 hclgevf_cmd_setup_basic_desc(&desc,
556 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
557 false);
558
559 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
560 req->hash_config |=
561 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
562
563 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
564 memcpy(req->hash_key,
565 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
566
567 key_counts -= key_size;
568 key_offset++;
569 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
570 if (ret) {
571 dev_err(&hdev->pdev->dev,
572 "Configure RSS config fail, status = %d\n",
573 ret);
574 return ret;
575 }
576 }
577
578 return 0;
579 }
580
581 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
582 {
583 return HCLGEVF_RSS_KEY_SIZE;
584 }
585
586 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
587 {
588 return HCLGEVF_RSS_IND_TBL_SIZE;
589 }
590
591 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
592 {
593 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
594 struct hclgevf_rss_indirection_table_cmd *req;
595 struct hclgevf_desc desc;
596 int status;
597 int i, j;
598
599 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
600
601 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
602 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
603 false);
604 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
605 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
606 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
607 req->rss_result[j] =
608 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
609
610 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
611 if (status) {
612 dev_err(&hdev->pdev->dev,
613 "VF failed(=%d) to set RSS indirection table\n",
614 status);
615 return status;
616 }
617 }
618
619 return 0;
620 }
621
622 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
623 {
624 struct hclgevf_rss_tc_mode_cmd *req;
625 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
626 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
627 u16 tc_size[HCLGEVF_MAX_TC_NUM];
628 struct hclgevf_desc desc;
629 u16 roundup_size;
630 int status;
631 unsigned int i;
632
633 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
634
635 roundup_size = roundup_pow_of_two(rss_size);
636 roundup_size = ilog2(roundup_size);
637
638 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
639 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
640 tc_size[i] = roundup_size;
641 tc_offset[i] = rss_size * i;
642 }
643
644 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
645 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
646 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
647 (tc_valid[i] & 0x1));
648 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
649 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
650 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
651 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
652 }
653 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
654 if (status)
655 dev_err(&hdev->pdev->dev,
656 "VF failed(=%d) to set rss tc mode\n", status);
657
658 return status;
659 }
660
661 /* for revision 0x20, vf shared the same rss config with pf */
662 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
663 {
664 #define HCLGEVF_RSS_MBX_RESP_LEN 8
665
666 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
667 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
668 u16 msg_num, hash_key_index;
669 u8 index;
670 int ret;
671
672 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
673 HCLGEVF_RSS_MBX_RESP_LEN;
674 for (index = 0; index < msg_num; index++) {
675 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_RSS_KEY, 0,
676 &index, sizeof(index),
677 true, resp_msg,
678 HCLGEVF_RSS_MBX_RESP_LEN);
679 if (ret) {
680 dev_err(&hdev->pdev->dev,
681 "VF get rss hash key from PF failed, ret=%d",
682 ret);
683 return ret;
684 }
685
686 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
687 if (index == msg_num - 1)
688 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
689 &resp_msg[0],
690 HCLGEVF_RSS_KEY_SIZE - hash_key_index);
691 else
692 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
693 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
694 }
695
696 return 0;
697 }
698
699 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
700 u8 *hfunc)
701 {
702 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
703 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
704 int i, ret;
705
706 if (handle->pdev->revision >= 0x21) {
707 /* Get hash algorithm */
708 if (hfunc) {
709 switch (rss_cfg->hash_algo) {
710 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
711 *hfunc = ETH_RSS_HASH_TOP;
712 break;
713 case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
714 *hfunc = ETH_RSS_HASH_XOR;
715 break;
716 default:
717 *hfunc = ETH_RSS_HASH_UNKNOWN;
718 break;
719 }
720 }
721
722 /* Get the RSS Key required by the user */
723 if (key)
724 memcpy(key, rss_cfg->rss_hash_key,
725 HCLGEVF_RSS_KEY_SIZE);
726 } else {
727 if (hfunc)
728 *hfunc = ETH_RSS_HASH_TOP;
729 if (key) {
730 ret = hclgevf_get_rss_hash_key(hdev);
731 if (ret)
732 return ret;
733 memcpy(key, rss_cfg->rss_hash_key,
734 HCLGEVF_RSS_KEY_SIZE);
735 }
736 }
737
738 if (indir)
739 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
740 indir[i] = rss_cfg->rss_indirection_tbl[i];
741
742 return 0;
743 }
744
745 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
746 const u8 *key, const u8 hfunc)
747 {
748 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
749 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
750 int ret, i;
751
752 if (handle->pdev->revision >= 0x21) {
753 /* Set the RSS Hash Key if specififed by the user */
754 if (key) {
755 switch (hfunc) {
756 case ETH_RSS_HASH_TOP:
757 rss_cfg->hash_algo =
758 HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
759 break;
760 case ETH_RSS_HASH_XOR:
761 rss_cfg->hash_algo =
762 HCLGEVF_RSS_HASH_ALGO_SIMPLE;
763 break;
764 case ETH_RSS_HASH_NO_CHANGE:
765 break;
766 default:
767 return -EINVAL;
768 }
769
770 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
771 key);
772 if (ret)
773 return ret;
774
775 /* Update the shadow RSS key with user specified qids */
776 memcpy(rss_cfg->rss_hash_key, key,
777 HCLGEVF_RSS_KEY_SIZE);
778 }
779 }
780
781 /* update the shadow RSS table with user specified qids */
782 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
783 rss_cfg->rss_indirection_tbl[i] = indir[i];
784
785 /* update the hardware */
786 return hclgevf_set_rss_indir_table(hdev);
787 }
788
789 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
790 {
791 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
792
793 if (nfc->data & RXH_L4_B_2_3)
794 hash_sets |= HCLGEVF_D_PORT_BIT;
795 else
796 hash_sets &= ~HCLGEVF_D_PORT_BIT;
797
798 if (nfc->data & RXH_IP_SRC)
799 hash_sets |= HCLGEVF_S_IP_BIT;
800 else
801 hash_sets &= ~HCLGEVF_S_IP_BIT;
802
803 if (nfc->data & RXH_IP_DST)
804 hash_sets |= HCLGEVF_D_IP_BIT;
805 else
806 hash_sets &= ~HCLGEVF_D_IP_BIT;
807
808 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
809 hash_sets |= HCLGEVF_V_TAG_BIT;
810
811 return hash_sets;
812 }
813
814 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
815 struct ethtool_rxnfc *nfc)
816 {
817 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
818 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
819 struct hclgevf_rss_input_tuple_cmd *req;
820 struct hclgevf_desc desc;
821 u8 tuple_sets;
822 int ret;
823
824 if (handle->pdev->revision == 0x20)
825 return -EOPNOTSUPP;
826
827 if (nfc->data &
828 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
829 return -EINVAL;
830
831 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
832 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
833
834 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
835 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
836 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
837 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
838 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
839 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
840 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
841 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
842
843 tuple_sets = hclgevf_get_rss_hash_bits(nfc);
844 switch (nfc->flow_type) {
845 case TCP_V4_FLOW:
846 req->ipv4_tcp_en = tuple_sets;
847 break;
848 case TCP_V6_FLOW:
849 req->ipv6_tcp_en = tuple_sets;
850 break;
851 case UDP_V4_FLOW:
852 req->ipv4_udp_en = tuple_sets;
853 break;
854 case UDP_V6_FLOW:
855 req->ipv6_udp_en = tuple_sets;
856 break;
857 case SCTP_V4_FLOW:
858 req->ipv4_sctp_en = tuple_sets;
859 break;
860 case SCTP_V6_FLOW:
861 if ((nfc->data & RXH_L4_B_0_1) ||
862 (nfc->data & RXH_L4_B_2_3))
863 return -EINVAL;
864
865 req->ipv6_sctp_en = tuple_sets;
866 break;
867 case IPV4_FLOW:
868 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
869 break;
870 case IPV6_FLOW:
871 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
872 break;
873 default:
874 return -EINVAL;
875 }
876
877 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
878 if (ret) {
879 dev_err(&hdev->pdev->dev,
880 "Set rss tuple fail, status = %d\n", ret);
881 return ret;
882 }
883
884 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
885 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
886 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
887 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
888 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
889 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
890 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
891 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
892 return 0;
893 }
894
895 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
896 struct ethtool_rxnfc *nfc)
897 {
898 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
899 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
900 u8 tuple_sets;
901
902 if (handle->pdev->revision == 0x20)
903 return -EOPNOTSUPP;
904
905 nfc->data = 0;
906
907 switch (nfc->flow_type) {
908 case TCP_V4_FLOW:
909 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
910 break;
911 case UDP_V4_FLOW:
912 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
913 break;
914 case TCP_V6_FLOW:
915 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
916 break;
917 case UDP_V6_FLOW:
918 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
919 break;
920 case SCTP_V4_FLOW:
921 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
922 break;
923 case SCTP_V6_FLOW:
924 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
925 break;
926 case IPV4_FLOW:
927 case IPV6_FLOW:
928 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
929 break;
930 default:
931 return -EINVAL;
932 }
933
934 if (!tuple_sets)
935 return 0;
936
937 if (tuple_sets & HCLGEVF_D_PORT_BIT)
938 nfc->data |= RXH_L4_B_2_3;
939 if (tuple_sets & HCLGEVF_S_PORT_BIT)
940 nfc->data |= RXH_L4_B_0_1;
941 if (tuple_sets & HCLGEVF_D_IP_BIT)
942 nfc->data |= RXH_IP_DST;
943 if (tuple_sets & HCLGEVF_S_IP_BIT)
944 nfc->data |= RXH_IP_SRC;
945
946 return 0;
947 }
948
949 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
950 struct hclgevf_rss_cfg *rss_cfg)
951 {
952 struct hclgevf_rss_input_tuple_cmd *req;
953 struct hclgevf_desc desc;
954 int ret;
955
956 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
957
958 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
959
960 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
961 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
962 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
963 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
964 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
965 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
966 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
967 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
968
969 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
970 if (ret)
971 dev_err(&hdev->pdev->dev,
972 "Configure rss input fail, status = %d\n", ret);
973 return ret;
974 }
975
976 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
977 {
978 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
979 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
980
981 return rss_cfg->rss_size;
982 }
983
984 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
985 int vector_id,
986 struct hnae3_ring_chain_node *ring_chain)
987 {
988 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
989 struct hnae3_ring_chain_node *node;
990 struct hclge_mbx_vf_to_pf_cmd *req;
991 struct hclgevf_desc desc;
992 int i = 0;
993 int status;
994 u8 type;
995
996 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
997 type = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
998 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
999
1000 for (node = ring_chain; node; node = node->next) {
1001 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
1002 HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
1003
1004 if (i == 0) {
1005 hclgevf_cmd_setup_basic_desc(&desc,
1006 HCLGEVF_OPC_MBX_VF_TO_PF,
1007 false);
1008 req->msg[0] = type;
1009 req->msg[1] = vector_id;
1010 }
1011
1012 req->msg[idx_offset] =
1013 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1014 req->msg[idx_offset + 1] = node->tqp_index;
1015 req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
1016 HNAE3_RING_GL_IDX_M,
1017 HNAE3_RING_GL_IDX_S);
1018
1019 i++;
1020 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
1021 HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
1022 HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
1023 !node->next) {
1024 req->msg[2] = i;
1025
1026 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1027 if (status) {
1028 dev_err(&hdev->pdev->dev,
1029 "Map TQP fail, status is %d.\n",
1030 status);
1031 return status;
1032 }
1033 i = 0;
1034 hclgevf_cmd_setup_basic_desc(&desc,
1035 HCLGEVF_OPC_MBX_VF_TO_PF,
1036 false);
1037 req->msg[0] = type;
1038 req->msg[1] = vector_id;
1039 }
1040 }
1041
1042 return 0;
1043 }
1044
1045 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1046 struct hnae3_ring_chain_node *ring_chain)
1047 {
1048 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1049 int vector_id;
1050
1051 vector_id = hclgevf_get_vector_index(hdev, vector);
1052 if (vector_id < 0) {
1053 dev_err(&handle->pdev->dev,
1054 "Get vector index fail. ret =%d\n", vector_id);
1055 return vector_id;
1056 }
1057
1058 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1059 }
1060
1061 static int hclgevf_unmap_ring_from_vector(
1062 struct hnae3_handle *handle,
1063 int vector,
1064 struct hnae3_ring_chain_node *ring_chain)
1065 {
1066 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1067 int ret, vector_id;
1068
1069 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1070 return 0;
1071
1072 vector_id = hclgevf_get_vector_index(hdev, vector);
1073 if (vector_id < 0) {
1074 dev_err(&handle->pdev->dev,
1075 "Get vector index fail. ret =%d\n", vector_id);
1076 return vector_id;
1077 }
1078
1079 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1080 if (ret)
1081 dev_err(&handle->pdev->dev,
1082 "Unmap ring from vector fail. vector=%d, ret =%d\n",
1083 vector_id,
1084 ret);
1085
1086 return ret;
1087 }
1088
1089 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1090 {
1091 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 int vector_id;
1093
1094 vector_id = hclgevf_get_vector_index(hdev, vector);
1095 if (vector_id < 0) {
1096 dev_err(&handle->pdev->dev,
1097 "hclgevf_put_vector get vector index fail. ret =%d\n",
1098 vector_id);
1099 return vector_id;
1100 }
1101
1102 hclgevf_free_vector(hdev, vector_id);
1103
1104 return 0;
1105 }
1106
1107 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1108 bool en_bc_pmc)
1109 {
1110 struct hclge_mbx_vf_to_pf_cmd *req;
1111 struct hclgevf_desc desc;
1112 int ret;
1113
1114 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
1115
1116 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
1117 req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
1118 req->msg[1] = en_bc_pmc ? 1 : 0;
1119
1120 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1121 if (ret)
1122 dev_err(&hdev->pdev->dev,
1123 "Set promisc mode fail, status is %d.\n", ret);
1124
1125 return ret;
1126 }
1127
1128 static int hclgevf_set_promisc_mode(struct hclgevf_dev *hdev, bool en_bc_pmc)
1129 {
1130 return hclgevf_cmd_set_promisc_mode(hdev, en_bc_pmc);
1131 }
1132
1133 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, unsigned int tqp_id,
1134 int stream_id, bool enable)
1135 {
1136 struct hclgevf_cfg_com_tqp_queue_cmd *req;
1137 struct hclgevf_desc desc;
1138 int status;
1139
1140 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1141
1142 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1143 false);
1144 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1145 req->stream_id = cpu_to_le16(stream_id);
1146 if (enable)
1147 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1148
1149 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1150 if (status)
1151 dev_err(&hdev->pdev->dev,
1152 "TQP enable fail, status =%d.\n", status);
1153
1154 return status;
1155 }
1156
1157 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1158 {
1159 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1160 struct hclgevf_tqp *tqp;
1161 int i;
1162
1163 for (i = 0; i < kinfo->num_tqps; i++) {
1164 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1165 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1166 }
1167 }
1168
1169 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1170 {
1171 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1172
1173 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1174 }
1175
1176 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1177 bool is_first)
1178 {
1179 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1180 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1181 u8 *new_mac_addr = (u8 *)p;
1182 u8 msg_data[ETH_ALEN * 2];
1183 u16 subcode;
1184 int status;
1185
1186 ether_addr_copy(msg_data, new_mac_addr);
1187 ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1188
1189 subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1190 HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1191
1192 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1193 subcode, msg_data, sizeof(msg_data),
1194 true, NULL, 0);
1195 if (!status)
1196 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1197
1198 return status;
1199 }
1200
1201 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1202 const unsigned char *addr)
1203 {
1204 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1205
1206 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1207 HCLGE_MBX_MAC_VLAN_UC_ADD,
1208 addr, ETH_ALEN, false, NULL, 0);
1209 }
1210
1211 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1212 const unsigned char *addr)
1213 {
1214 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1215
1216 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1217 HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1218 addr, ETH_ALEN, false, NULL, 0);
1219 }
1220
1221 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1222 const unsigned char *addr)
1223 {
1224 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1225
1226 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1227 HCLGE_MBX_MAC_VLAN_MC_ADD,
1228 addr, ETH_ALEN, false, NULL, 0);
1229 }
1230
1231 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1232 const unsigned char *addr)
1233 {
1234 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1235
1236 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1237 HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1238 addr, ETH_ALEN, false, NULL, 0);
1239 }
1240
1241 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1242 __be16 proto, u16 vlan_id,
1243 bool is_kill)
1244 {
1245 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1246 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1247 u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1248 int ret;
1249
1250 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1251 return -EINVAL;
1252
1253 if (proto != htons(ETH_P_8021Q))
1254 return -EPROTONOSUPPORT;
1255
1256 /* When device is resetting, firmware is unable to handle
1257 * mailbox. Just record the vlan id, and remove it after
1258 * reset finished.
1259 */
1260 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) && is_kill) {
1261 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1262 return -EBUSY;
1263 }
1264
1265 msg_data[0] = is_kill;
1266 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1267 memcpy(&msg_data[3], &proto, sizeof(proto));
1268 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1269 HCLGE_MBX_VLAN_FILTER, msg_data,
1270 HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1271
1272 /* When remove hw vlan filter failed, record the vlan id,
1273 * and try to remove it from hw later, to be consistence
1274 * with stack.
1275 */
1276 if (is_kill && ret)
1277 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1278
1279 return ret;
1280 }
1281
1282 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1283 {
1284 #define HCLGEVF_MAX_SYNC_COUNT 60
1285 struct hnae3_handle *handle = &hdev->nic;
1286 int ret, sync_cnt = 0;
1287 u16 vlan_id;
1288
1289 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1290 while (vlan_id != VLAN_N_VID) {
1291 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1292 vlan_id, true);
1293 if (ret)
1294 return;
1295
1296 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1297 sync_cnt++;
1298 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1299 return;
1300
1301 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1302 }
1303 }
1304
1305 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1306 {
1307 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1308 u8 msg_data;
1309
1310 msg_data = enable ? 1 : 0;
1311 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1312 HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1313 1, false, NULL, 0);
1314 }
1315
1316 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1317 {
1318 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1319 u8 msg_data[2];
1320 int ret;
1321
1322 memcpy(msg_data, &queue_id, sizeof(queue_id));
1323
1324 /* disable vf queue before send queue reset msg to PF */
1325 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1326 if (ret)
1327 return ret;
1328
1329 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1330 sizeof(msg_data), true, NULL, 0);
1331 }
1332
1333 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1334 {
1335 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1336
1337 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1338 sizeof(new_mtu), true, NULL, 0);
1339 }
1340
1341 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1342 enum hnae3_reset_notify_type type)
1343 {
1344 struct hnae3_client *client = hdev->nic_client;
1345 struct hnae3_handle *handle = &hdev->nic;
1346 int ret;
1347
1348 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1349 !client)
1350 return 0;
1351
1352 if (!client->ops->reset_notify)
1353 return -EOPNOTSUPP;
1354
1355 ret = client->ops->reset_notify(handle, type);
1356 if (ret)
1357 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1358 type, ret);
1359
1360 return ret;
1361 }
1362
1363 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1364 {
1365 struct hclgevf_dev *hdev = ae_dev->priv;
1366
1367 set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1368 }
1369
1370 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1371 unsigned long delay_us,
1372 unsigned long wait_cnt)
1373 {
1374 unsigned long cnt = 0;
1375
1376 while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1377 cnt++ < wait_cnt)
1378 usleep_range(delay_us, delay_us * 2);
1379
1380 if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1381 dev_err(&hdev->pdev->dev,
1382 "flr wait timeout\n");
1383 return -ETIMEDOUT;
1384 }
1385
1386 return 0;
1387 }
1388
1389 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1390 {
1391 #define HCLGEVF_RESET_WAIT_US 20000
1392 #define HCLGEVF_RESET_WAIT_CNT 2000
1393 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1394 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1395
1396 u32 val;
1397 int ret;
1398
1399 /* wait to check the hardware reset completion status */
1400 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1401 dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1402
1403 if (hdev->reset_type == HNAE3_FLR_RESET)
1404 return hclgevf_flr_poll_timeout(hdev,
1405 HCLGEVF_RESET_WAIT_US,
1406 HCLGEVF_RESET_WAIT_CNT);
1407
1408 ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1409 !(val & HCLGEVF_RST_ING_BITS),
1410 HCLGEVF_RESET_WAIT_US,
1411 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1412
1413 /* hardware completion status should be available by this time */
1414 if (ret) {
1415 dev_err(&hdev->pdev->dev,
1416 "could'nt get reset done status from h/w, timeout!\n");
1417 return ret;
1418 }
1419
1420 /* we will wait a bit more to let reset of the stack to complete. This
1421 * might happen in case reset assertion was made by PF. Yes, this also
1422 * means we might end up waiting bit more even for VF reset.
1423 */
1424 msleep(5000);
1425
1426 return 0;
1427 }
1428
1429 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1430 {
1431 u32 reg_val;
1432
1433 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1434 if (enable)
1435 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1436 else
1437 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1438
1439 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1440 reg_val);
1441 }
1442
1443 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1444 {
1445 int ret;
1446
1447 /* uninitialize the nic client */
1448 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1449 if (ret)
1450 return ret;
1451
1452 /* re-initialize the hclge device */
1453 ret = hclgevf_reset_hdev(hdev);
1454 if (ret) {
1455 dev_err(&hdev->pdev->dev,
1456 "hclge device re-init failed, VF is disabled!\n");
1457 return ret;
1458 }
1459
1460 /* bring up the nic client again */
1461 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1462 if (ret)
1463 return ret;
1464
1465 ret = hclgevf_notify_client(hdev, HNAE3_RESTORE_CLIENT);
1466 if (ret)
1467 return ret;
1468
1469 /* clear handshake status with IMP */
1470 hclgevf_reset_handshake(hdev, false);
1471
1472 return 0;
1473 }
1474
1475 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1476 {
1477 #define HCLGEVF_RESET_SYNC_TIME 100
1478
1479 int ret = 0;
1480
1481 switch (hdev->reset_type) {
1482 case HNAE3_VF_FUNC_RESET:
1483 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1484 0, true, NULL, sizeof(u8));
1485 hdev->rst_stats.vf_func_rst_cnt++;
1486 break;
1487 case HNAE3_FLR_RESET:
1488 set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1489 hdev->rst_stats.flr_rst_cnt++;
1490 break;
1491 default:
1492 break;
1493 }
1494
1495 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1496 /* inform hardware that preparatory work is done */
1497 msleep(HCLGEVF_RESET_SYNC_TIME);
1498 hclgevf_reset_handshake(hdev, true);
1499 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1500 hdev->reset_type, ret);
1501
1502 return ret;
1503 }
1504
1505 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1506 {
1507 /* recover handshake status with IMP when reset fail */
1508 hclgevf_reset_handshake(hdev, true);
1509 hdev->rst_stats.rst_fail_cnt++;
1510 dev_err(&hdev->pdev->dev, "failed to reset VF(%d)\n",
1511 hdev->rst_stats.rst_fail_cnt);
1512
1513 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1514 set_bit(hdev->reset_type, &hdev->reset_pending);
1515
1516 if (hclgevf_is_reset_pending(hdev)) {
1517 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1518 hclgevf_reset_task_schedule(hdev);
1519 }
1520 }
1521
1522 static int hclgevf_reset(struct hclgevf_dev *hdev)
1523 {
1524 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1525 int ret;
1526
1527 /* Initialize ae_dev reset status as well, in case enet layer wants to
1528 * know if device is undergoing reset
1529 */
1530 ae_dev->reset_type = hdev->reset_type;
1531 hdev->rst_stats.rst_cnt++;
1532 rtnl_lock();
1533
1534 /* bring down the nic to stop any ongoing TX/RX */
1535 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1536 if (ret)
1537 goto err_reset_lock;
1538
1539 rtnl_unlock();
1540
1541 ret = hclgevf_reset_prepare_wait(hdev);
1542 if (ret)
1543 goto err_reset;
1544
1545 /* check if VF could successfully fetch the hardware reset completion
1546 * status from the hardware
1547 */
1548 ret = hclgevf_reset_wait(hdev);
1549 if (ret) {
1550 /* can't do much in this situation, will disable VF */
1551 dev_err(&hdev->pdev->dev,
1552 "VF failed(=%d) to fetch H/W reset completion status\n",
1553 ret);
1554 goto err_reset;
1555 }
1556
1557 hdev->rst_stats.hw_rst_done_cnt++;
1558
1559 rtnl_lock();
1560
1561 /* now, re-initialize the nic client and ae device*/
1562 ret = hclgevf_reset_stack(hdev);
1563 if (ret) {
1564 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1565 goto err_reset_lock;
1566 }
1567
1568 /* bring up the nic to enable TX/RX again */
1569 ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1570 if (ret)
1571 goto err_reset_lock;
1572
1573 rtnl_unlock();
1574
1575 hdev->last_reset_time = jiffies;
1576 ae_dev->reset_type = HNAE3_NONE_RESET;
1577 hdev->rst_stats.rst_done_cnt++;
1578 hdev->rst_stats.rst_fail_cnt = 0;
1579
1580 return ret;
1581 err_reset_lock:
1582 rtnl_unlock();
1583 err_reset:
1584 hclgevf_reset_err_handle(hdev);
1585
1586 return ret;
1587 }
1588
1589 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1590 unsigned long *addr)
1591 {
1592 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1593
1594 /* return the highest priority reset level amongst all */
1595 if (test_bit(HNAE3_VF_RESET, addr)) {
1596 rst_level = HNAE3_VF_RESET;
1597 clear_bit(HNAE3_VF_RESET, addr);
1598 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1599 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1600 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1601 rst_level = HNAE3_VF_FULL_RESET;
1602 clear_bit(HNAE3_VF_FULL_RESET, addr);
1603 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1604 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1605 rst_level = HNAE3_VF_PF_FUNC_RESET;
1606 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1607 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1608 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1609 rst_level = HNAE3_VF_FUNC_RESET;
1610 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1611 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1612 rst_level = HNAE3_FLR_RESET;
1613 clear_bit(HNAE3_FLR_RESET, addr);
1614 }
1615
1616 return rst_level;
1617 }
1618
1619 static void hclgevf_reset_event(struct pci_dev *pdev,
1620 struct hnae3_handle *handle)
1621 {
1622 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1623 struct hclgevf_dev *hdev = ae_dev->priv;
1624
1625 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1626
1627 if (hdev->default_reset_request)
1628 hdev->reset_level =
1629 hclgevf_get_reset_level(hdev,
1630 &hdev->default_reset_request);
1631 else
1632 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1633
1634 /* reset of this VF requested */
1635 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1636 hclgevf_reset_task_schedule(hdev);
1637
1638 hdev->last_reset_time = jiffies;
1639 }
1640
1641 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1642 enum hnae3_reset_type rst_type)
1643 {
1644 struct hclgevf_dev *hdev = ae_dev->priv;
1645
1646 set_bit(rst_type, &hdev->default_reset_request);
1647 }
1648
1649 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1650 {
1651 #define HCLGEVF_FLR_WAIT_MS 100
1652 #define HCLGEVF_FLR_WAIT_CNT 50
1653 struct hclgevf_dev *hdev = ae_dev->priv;
1654 int cnt = 0;
1655
1656 clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1657 clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1658 set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1659 hclgevf_reset_event(hdev->pdev, NULL);
1660
1661 while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1662 cnt++ < HCLGEVF_FLR_WAIT_CNT)
1663 msleep(HCLGEVF_FLR_WAIT_MS);
1664
1665 if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1666 dev_err(&hdev->pdev->dev,
1667 "flr wait down timeout: %d\n", cnt);
1668 }
1669
1670 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1671 {
1672 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1673
1674 return hdev->fw_version;
1675 }
1676
1677 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1678 {
1679 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1680
1681 vector->vector_irq = pci_irq_vector(hdev->pdev,
1682 HCLGEVF_MISC_VECTOR_NUM);
1683 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1684 /* vector status always valid for Vector 0 */
1685 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1686 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1687
1688 hdev->num_msi_left -= 1;
1689 hdev->num_msi_used += 1;
1690 }
1691
1692 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1693 {
1694 if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1695 !test_bit(HCLGEVF_STATE_REMOVING, &hdev->state)) {
1696 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1697 schedule_work(&hdev->rst_service_task);
1698 }
1699 }
1700
1701 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1702 {
1703 if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1704 !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1705 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1706 schedule_work(&hdev->mbx_service_task);
1707 }
1708 }
1709
1710 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1711 {
1712 if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) &&
1713 !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1714 schedule_work(&hdev->service_task);
1715 }
1716
1717 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1718 {
1719 /* if we have any pending mailbox event then schedule the mbx task */
1720 if (hdev->mbx_event_pending)
1721 hclgevf_mbx_task_schedule(hdev);
1722
1723 if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1724 hclgevf_reset_task_schedule(hdev);
1725 }
1726
1727 static void hclgevf_service_timer(struct timer_list *t)
1728 {
1729 struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1730
1731 mod_timer(&hdev->service_timer, jiffies +
1732 HCLGEVF_GENERAL_TASK_INTERVAL * HZ);
1733
1734 hdev->stats_timer++;
1735 hclgevf_task_schedule(hdev);
1736 }
1737
1738 static void hclgevf_reset_service_task(struct work_struct *work)
1739 {
1740 struct hclgevf_dev *hdev =
1741 container_of(work, struct hclgevf_dev, rst_service_task);
1742 int ret;
1743
1744 if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1745 return;
1746
1747 clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1748
1749 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1750 &hdev->reset_state)) {
1751 /* PF has initmated that it is about to reset the hardware.
1752 * We now have to poll & check if hardware has actually
1753 * completed the reset sequence. On hardware reset completion,
1754 * VF needs to reset the client and ae device.
1755 */
1756 hdev->reset_attempts = 0;
1757
1758 hdev->last_reset_time = jiffies;
1759 while ((hdev->reset_type =
1760 hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1761 != HNAE3_NONE_RESET) {
1762 ret = hclgevf_reset(hdev);
1763 if (ret)
1764 dev_err(&hdev->pdev->dev,
1765 "VF stack reset failed %d.\n", ret);
1766 }
1767 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1768 &hdev->reset_state)) {
1769 /* we could be here when either of below happens:
1770 * 1. reset was initiated due to watchdog timeout caused by
1771 * a. IMP was earlier reset and our TX got choked down and
1772 * which resulted in watchdog reacting and inducing VF
1773 * reset. This also means our cmdq would be unreliable.
1774 * b. problem in TX due to other lower layer(example link
1775 * layer not functioning properly etc.)
1776 * 2. VF reset might have been initiated due to some config
1777 * change.
1778 *
1779 * NOTE: Theres no clear way to detect above cases than to react
1780 * to the response of PF for this reset request. PF will ack the
1781 * 1b and 2. cases but we will not get any intimation about 1a
1782 * from PF as cmdq would be in unreliable state i.e. mailbox
1783 * communication between PF and VF would be broken.
1784 */
1785
1786 /* if we are never geting into pending state it means either:
1787 * 1. PF is not receiving our request which could be due to IMP
1788 * reset
1789 * 2. PF is screwed
1790 * We cannot do much for 2. but to check first we can try reset
1791 * our PCIe + stack and see if it alleviates the problem.
1792 */
1793 if (hdev->reset_attempts > 3) {
1794 /* prepare for full reset of stack + pcie interface */
1795 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1796
1797 /* "defer" schedule the reset task again */
1798 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1799 } else {
1800 hdev->reset_attempts++;
1801
1802 set_bit(hdev->reset_level, &hdev->reset_pending);
1803 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1804 }
1805 hclgevf_reset_task_schedule(hdev);
1806 }
1807
1808 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1809 }
1810
1811 static void hclgevf_mailbox_service_task(struct work_struct *work)
1812 {
1813 struct hclgevf_dev *hdev;
1814
1815 hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1816
1817 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1818 return;
1819
1820 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1821
1822 hclgevf_mbx_async_handler(hdev);
1823
1824 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1825 }
1826
1827 static void hclgevf_keep_alive_timer(struct timer_list *t)
1828 {
1829 struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1830
1831 schedule_work(&hdev->keep_alive_task);
1832 mod_timer(&hdev->keep_alive_timer, jiffies +
1833 HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
1834 }
1835
1836 static void hclgevf_keep_alive_task(struct work_struct *work)
1837 {
1838 struct hclgevf_dev *hdev;
1839 u8 respmsg;
1840 int ret;
1841
1842 hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1843
1844 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
1845 return;
1846
1847 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1848 0, false, &respmsg, sizeof(respmsg));
1849 if (ret)
1850 dev_err(&hdev->pdev->dev,
1851 "VF sends keep alive cmd failed(=%d)\n", ret);
1852 }
1853
1854 static void hclgevf_service_task(struct work_struct *work)
1855 {
1856 struct hnae3_handle *handle;
1857 struct hclgevf_dev *hdev;
1858
1859 hdev = container_of(work, struct hclgevf_dev, service_task);
1860 handle = &hdev->nic;
1861
1862 if (hdev->stats_timer >= HCLGEVF_STATS_TIMER_INTERVAL) {
1863 hclgevf_tqps_update_stats(handle);
1864 hdev->stats_timer = 0;
1865 }
1866
1867 /* request the link status from the PF. PF would be able to tell VF
1868 * about such updates in future so we might remove this later
1869 */
1870 hclgevf_request_link_info(hdev);
1871
1872 hclgevf_update_link_mode(hdev);
1873
1874 hclgevf_sync_vlan_filter(hdev);
1875
1876 hclgevf_deferred_task_schedule(hdev);
1877
1878 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1879 }
1880
1881 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1882 {
1883 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1884 }
1885
1886 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1887 u32 *clearval)
1888 {
1889 u32 cmdq_src_reg, rst_ing_reg;
1890
1891 /* fetch the events from their corresponding regs */
1892 cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1893 HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1894
1895 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1896 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1897 dev_info(&hdev->pdev->dev,
1898 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1899 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1900 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1901 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1902 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1903 *clearval = cmdq_src_reg;
1904 hdev->rst_stats.vf_rst_cnt++;
1905 return HCLGEVF_VECTOR0_EVENT_RST;
1906 }
1907
1908 /* check for vector0 mailbox(=CMDQ RX) event source */
1909 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1910 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1911 *clearval = cmdq_src_reg;
1912 return HCLGEVF_VECTOR0_EVENT_MBX;
1913 }
1914
1915 dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1916
1917 return HCLGEVF_VECTOR0_EVENT_OTHER;
1918 }
1919
1920 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1921 {
1922 writel(en ? 1 : 0, vector->addr);
1923 }
1924
1925 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1926 {
1927 enum hclgevf_evt_cause event_cause;
1928 struct hclgevf_dev *hdev = data;
1929 u32 clearval;
1930
1931 hclgevf_enable_vector(&hdev->misc_vector, false);
1932 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1933
1934 switch (event_cause) {
1935 case HCLGEVF_VECTOR0_EVENT_RST:
1936 hclgevf_reset_task_schedule(hdev);
1937 break;
1938 case HCLGEVF_VECTOR0_EVENT_MBX:
1939 hclgevf_mbx_handler(hdev);
1940 break;
1941 default:
1942 break;
1943 }
1944
1945 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1946 hclgevf_clear_event_cause(hdev, clearval);
1947 hclgevf_enable_vector(&hdev->misc_vector, true);
1948 }
1949
1950 return IRQ_HANDLED;
1951 }
1952
1953 static int hclgevf_configure(struct hclgevf_dev *hdev)
1954 {
1955 int ret;
1956
1957 /* get current port based vlan state from PF */
1958 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
1959 if (ret)
1960 return ret;
1961
1962 /* get queue configuration from PF */
1963 ret = hclgevf_get_queue_info(hdev);
1964 if (ret)
1965 return ret;
1966
1967 /* get queue depth info from PF */
1968 ret = hclgevf_get_queue_depth(hdev);
1969 if (ret)
1970 return ret;
1971
1972 ret = hclgevf_get_pf_media_type(hdev);
1973 if (ret)
1974 return ret;
1975
1976 /* get tc configuration from PF */
1977 return hclgevf_get_tc_info(hdev);
1978 }
1979
1980 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1981 {
1982 struct pci_dev *pdev = ae_dev->pdev;
1983 struct hclgevf_dev *hdev;
1984
1985 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1986 if (!hdev)
1987 return -ENOMEM;
1988
1989 hdev->pdev = pdev;
1990 hdev->ae_dev = ae_dev;
1991 ae_dev->priv = hdev;
1992
1993 return 0;
1994 }
1995
1996 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1997 {
1998 struct hnae3_handle *roce = &hdev->roce;
1999 struct hnae3_handle *nic = &hdev->nic;
2000
2001 roce->rinfo.num_vectors = hdev->num_roce_msix;
2002
2003 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2004 hdev->num_msi_left == 0)
2005 return -EINVAL;
2006
2007 roce->rinfo.base_vector = hdev->roce_base_vector;
2008
2009 roce->rinfo.netdev = nic->kinfo.netdev;
2010 roce->rinfo.roce_io_base = hdev->hw.io_base;
2011
2012 roce->pdev = nic->pdev;
2013 roce->ae_algo = nic->ae_algo;
2014 roce->numa_node_mask = nic->numa_node_mask;
2015
2016 return 0;
2017 }
2018
2019 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2020 {
2021 struct hclgevf_cfg_gro_status_cmd *req;
2022 struct hclgevf_desc desc;
2023 int ret;
2024
2025 if (!hnae3_dev_gro_supported(hdev))
2026 return 0;
2027
2028 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2029 false);
2030 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2031
2032 req->gro_en = cpu_to_le16(en ? 1 : 0);
2033
2034 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2035 if (ret)
2036 dev_err(&hdev->pdev->dev,
2037 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2038
2039 return ret;
2040 }
2041
2042 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2043 {
2044 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2045 int i, ret;
2046
2047 rss_cfg->rss_size = hdev->rss_size_max;
2048
2049 if (hdev->pdev->revision >= 0x21) {
2050 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2051 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2052 HCLGEVF_RSS_KEY_SIZE);
2053
2054 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2055 rss_cfg->rss_hash_key);
2056 if (ret)
2057 return ret;
2058
2059 rss_cfg->rss_tuple_sets.ipv4_tcp_en =
2060 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2061 rss_cfg->rss_tuple_sets.ipv4_udp_en =
2062 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2063 rss_cfg->rss_tuple_sets.ipv4_sctp_en =
2064 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2065 rss_cfg->rss_tuple_sets.ipv4_fragment_en =
2066 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2067 rss_cfg->rss_tuple_sets.ipv6_tcp_en =
2068 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2069 rss_cfg->rss_tuple_sets.ipv6_udp_en =
2070 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2071 rss_cfg->rss_tuple_sets.ipv6_sctp_en =
2072 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2073 rss_cfg->rss_tuple_sets.ipv6_fragment_en =
2074 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2075
2076 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2077 if (ret)
2078 return ret;
2079
2080 }
2081
2082 /* Initialize RSS indirect table */
2083 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
2084 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
2085
2086 ret = hclgevf_set_rss_indir_table(hdev);
2087 if (ret)
2088 return ret;
2089
2090 return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
2091 }
2092
2093 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2094 {
2095 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2096 false);
2097 }
2098
2099 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2100 {
2101 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2102
2103 if (enable) {
2104 mod_timer(&hdev->service_timer, jiffies + HZ);
2105 } else {
2106 del_timer_sync(&hdev->service_timer);
2107 cancel_work_sync(&hdev->service_task);
2108 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2109 }
2110 }
2111
2112 static int hclgevf_ae_start(struct hnae3_handle *handle)
2113 {
2114 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2115
2116 hclgevf_reset_tqp_stats(handle);
2117
2118 hclgevf_request_link_info(hdev);
2119
2120 hclgevf_update_link_mode(hdev);
2121
2122 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2123
2124 return 0;
2125 }
2126
2127 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2128 {
2129 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2130 int i;
2131
2132 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2133
2134 if (hdev->reset_type != HNAE3_VF_RESET)
2135 for (i = 0; i < handle->kinfo.num_tqps; i++)
2136 if (hclgevf_reset_tqp(handle, i))
2137 break;
2138
2139 hclgevf_reset_tqp_stats(handle);
2140 hclgevf_update_link_status(hdev, 0);
2141 }
2142
2143 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2144 {
2145 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2146 u8 msg_data;
2147
2148 msg_data = alive ? 1 : 0;
2149 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
2150 0, &msg_data, 1, false, NULL, 0);
2151 }
2152
2153 static int hclgevf_client_start(struct hnae3_handle *handle)
2154 {
2155 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2156 int ret;
2157
2158 ret = hclgevf_set_alive(handle, true);
2159 if (ret)
2160 return ret;
2161
2162 mod_timer(&hdev->keep_alive_timer, jiffies +
2163 HCLGEVF_KEEP_ALIVE_TASK_INTERVAL * HZ);
2164
2165 return 0;
2166 }
2167
2168 static void hclgevf_client_stop(struct hnae3_handle *handle)
2169 {
2170 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2171 int ret;
2172
2173 ret = hclgevf_set_alive(handle, false);
2174 if (ret)
2175 dev_warn(&hdev->pdev->dev,
2176 "%s failed %d\n", __func__, ret);
2177
2178 del_timer_sync(&hdev->keep_alive_timer);
2179 cancel_work_sync(&hdev->keep_alive_task);
2180 }
2181
2182 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2183 {
2184 /* setup tasks for the MBX */
2185 INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
2186 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2187 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2188
2189 /* setup tasks for service timer */
2190 timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
2191
2192 INIT_WORK(&hdev->service_task, hclgevf_service_task);
2193 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
2194
2195 INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
2196
2197 mutex_init(&hdev->mbx_resp.mbx_mutex);
2198
2199 /* bring the device down */
2200 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2201 }
2202
2203 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2204 {
2205 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2206 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2207
2208 if (hdev->keep_alive_timer.function)
2209 del_timer_sync(&hdev->keep_alive_timer);
2210 if (hdev->keep_alive_task.func)
2211 cancel_work_sync(&hdev->keep_alive_task);
2212 if (hdev->service_timer.function)
2213 del_timer_sync(&hdev->service_timer);
2214 if (hdev->service_task.func)
2215 cancel_work_sync(&hdev->service_task);
2216 if (hdev->mbx_service_task.func)
2217 cancel_work_sync(&hdev->mbx_service_task);
2218 if (hdev->rst_service_task.func)
2219 cancel_work_sync(&hdev->rst_service_task);
2220
2221 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2222 }
2223
2224 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2225 {
2226 struct pci_dev *pdev = hdev->pdev;
2227 int vectors;
2228 int i;
2229
2230 if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
2231 vectors = pci_alloc_irq_vectors(pdev,
2232 hdev->roce_base_msix_offset + 1,
2233 hdev->num_msi,
2234 PCI_IRQ_MSIX);
2235 else
2236 vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
2237 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2238
2239 if (vectors < 0) {
2240 dev_err(&pdev->dev,
2241 "failed(%d) to allocate MSI/MSI-X vectors\n",
2242 vectors);
2243 return vectors;
2244 }
2245 if (vectors < hdev->num_msi)
2246 dev_warn(&hdev->pdev->dev,
2247 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2248 hdev->num_msi, vectors);
2249
2250 hdev->num_msi = vectors;
2251 hdev->num_msi_left = vectors;
2252 hdev->base_msi_vector = pdev->irq;
2253 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2254
2255 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2256 sizeof(u16), GFP_KERNEL);
2257 if (!hdev->vector_status) {
2258 pci_free_irq_vectors(pdev);
2259 return -ENOMEM;
2260 }
2261
2262 for (i = 0; i < hdev->num_msi; i++)
2263 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2264
2265 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2266 sizeof(int), GFP_KERNEL);
2267 if (!hdev->vector_irq) {
2268 devm_kfree(&pdev->dev, hdev->vector_status);
2269 pci_free_irq_vectors(pdev);
2270 return -ENOMEM;
2271 }
2272
2273 return 0;
2274 }
2275
2276 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2277 {
2278 struct pci_dev *pdev = hdev->pdev;
2279
2280 devm_kfree(&pdev->dev, hdev->vector_status);
2281 devm_kfree(&pdev->dev, hdev->vector_irq);
2282 pci_free_irq_vectors(pdev);
2283 }
2284
2285 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2286 {
2287 int ret = 0;
2288
2289 hclgevf_get_misc_vector(hdev);
2290
2291 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2292 0, "hclgevf_cmd", hdev);
2293 if (ret) {
2294 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2295 hdev->misc_vector.vector_irq);
2296 return ret;
2297 }
2298
2299 hclgevf_clear_event_cause(hdev, 0);
2300
2301 /* enable misc. vector(vector 0) */
2302 hclgevf_enable_vector(&hdev->misc_vector, true);
2303
2304 return ret;
2305 }
2306
2307 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2308 {
2309 /* disable misc vector(vector 0) */
2310 hclgevf_enable_vector(&hdev->misc_vector, false);
2311 synchronize_irq(hdev->misc_vector.vector_irq);
2312 free_irq(hdev->misc_vector.vector_irq, hdev);
2313 hclgevf_free_vector(hdev, 0);
2314 }
2315
2316 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2317 {
2318 struct device *dev = &hdev->pdev->dev;
2319
2320 dev_info(dev, "VF info begin:\n");
2321
2322 dev_info(dev, "Task queue pairs numbers: %d\n", hdev->num_tqps);
2323 dev_info(dev, "Desc num per TX queue: %d\n", hdev->num_tx_desc);
2324 dev_info(dev, "Desc num per RX queue: %d\n", hdev->num_rx_desc);
2325 dev_info(dev, "Numbers of vports: %d\n", hdev->num_alloc_vport);
2326 dev_info(dev, "HW tc map: %d\n", hdev->hw_tc_map);
2327 dev_info(dev, "PF media type of this VF: %d\n",
2328 hdev->hw.mac.media_type);
2329
2330 dev_info(dev, "VF info end.\n");
2331 }
2332
2333 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2334 struct hnae3_client *client)
2335 {
2336 struct hclgevf_dev *hdev = ae_dev->priv;
2337 int ret;
2338
2339 ret = client->ops->init_instance(&hdev->nic);
2340 if (ret)
2341 return ret;
2342
2343 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2344 hnae3_set_client_init_flag(client, ae_dev, 1);
2345
2346 if (netif_msg_drv(&hdev->nic))
2347 hclgevf_info_show(hdev);
2348
2349 return 0;
2350 }
2351
2352 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2353 struct hnae3_client *client)
2354 {
2355 struct hclgevf_dev *hdev = ae_dev->priv;
2356 int ret;
2357
2358 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2359 !hdev->nic_client)
2360 return 0;
2361
2362 ret = hclgevf_init_roce_base_info(hdev);
2363 if (ret)
2364 return ret;
2365
2366 ret = client->ops->init_instance(&hdev->roce);
2367 if (ret)
2368 return ret;
2369
2370 hnae3_set_client_init_flag(client, ae_dev, 1);
2371
2372 return 0;
2373 }
2374
2375 static int hclgevf_init_client_instance(struct hnae3_client *client,
2376 struct hnae3_ae_dev *ae_dev)
2377 {
2378 struct hclgevf_dev *hdev = ae_dev->priv;
2379 int ret;
2380
2381 switch (client->type) {
2382 case HNAE3_CLIENT_KNIC:
2383 hdev->nic_client = client;
2384 hdev->nic.client = client;
2385
2386 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2387 if (ret)
2388 goto clear_nic;
2389
2390 ret = hclgevf_init_roce_client_instance(ae_dev,
2391 hdev->roce_client);
2392 if (ret)
2393 goto clear_roce;
2394
2395 break;
2396 case HNAE3_CLIENT_ROCE:
2397 if (hnae3_dev_roce_supported(hdev)) {
2398 hdev->roce_client = client;
2399 hdev->roce.client = client;
2400 }
2401
2402 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2403 if (ret)
2404 goto clear_roce;
2405
2406 break;
2407 default:
2408 return -EINVAL;
2409 }
2410
2411 return 0;
2412
2413 clear_nic:
2414 hdev->nic_client = NULL;
2415 hdev->nic.client = NULL;
2416 return ret;
2417 clear_roce:
2418 hdev->roce_client = NULL;
2419 hdev->roce.client = NULL;
2420 return ret;
2421 }
2422
2423 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2424 struct hnae3_ae_dev *ae_dev)
2425 {
2426 struct hclgevf_dev *hdev = ae_dev->priv;
2427
2428 /* un-init roce, if it exists */
2429 if (hdev->roce_client) {
2430 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2431 hdev->roce_client = NULL;
2432 hdev->roce.client = NULL;
2433 }
2434
2435 /* un-init nic/unic, if this was not called by roce client */
2436 if (client->ops->uninit_instance && hdev->nic_client &&
2437 client->type != HNAE3_CLIENT_ROCE) {
2438 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2439
2440 client->ops->uninit_instance(&hdev->nic, 0);
2441 hdev->nic_client = NULL;
2442 hdev->nic.client = NULL;
2443 }
2444 }
2445
2446 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2447 {
2448 struct pci_dev *pdev = hdev->pdev;
2449 struct hclgevf_hw *hw;
2450 int ret;
2451
2452 ret = pci_enable_device(pdev);
2453 if (ret) {
2454 dev_err(&pdev->dev, "failed to enable PCI device\n");
2455 return ret;
2456 }
2457
2458 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2459 if (ret) {
2460 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2461 goto err_disable_device;
2462 }
2463
2464 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2465 if (ret) {
2466 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2467 goto err_disable_device;
2468 }
2469
2470 pci_set_master(pdev);
2471 hw = &hdev->hw;
2472 hw->hdev = hdev;
2473 hw->io_base = pci_iomap(pdev, 2, 0);
2474 if (!hw->io_base) {
2475 dev_err(&pdev->dev, "can't map configuration register space\n");
2476 ret = -ENOMEM;
2477 goto err_clr_master;
2478 }
2479
2480 return 0;
2481
2482 err_clr_master:
2483 pci_clear_master(pdev);
2484 pci_release_regions(pdev);
2485 err_disable_device:
2486 pci_disable_device(pdev);
2487
2488 return ret;
2489 }
2490
2491 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2492 {
2493 struct pci_dev *pdev = hdev->pdev;
2494
2495 pci_iounmap(pdev, hdev->hw.io_base);
2496 pci_clear_master(pdev);
2497 pci_release_regions(pdev);
2498 pci_disable_device(pdev);
2499 }
2500
2501 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2502 {
2503 struct hclgevf_query_res_cmd *req;
2504 struct hclgevf_desc desc;
2505 int ret;
2506
2507 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2508 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2509 if (ret) {
2510 dev_err(&hdev->pdev->dev,
2511 "query vf resource failed, ret = %d.\n", ret);
2512 return ret;
2513 }
2514
2515 req = (struct hclgevf_query_res_cmd *)desc.data;
2516
2517 if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2518 hdev->roce_base_msix_offset =
2519 hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2520 HCLGEVF_MSIX_OFT_ROCEE_M,
2521 HCLGEVF_MSIX_OFT_ROCEE_S);
2522 hdev->num_roce_msix =
2523 hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2524 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2525
2526 /* VF should have NIC vectors and Roce vectors, NIC vectors
2527 * are queued before Roce vectors. The offset is fixed to 64.
2528 */
2529 hdev->num_msi = hdev->num_roce_msix +
2530 hdev->roce_base_msix_offset;
2531 } else {
2532 hdev->num_msi =
2533 hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2534 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2535 }
2536
2537 return 0;
2538 }
2539
2540 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2541 {
2542 struct pci_dev *pdev = hdev->pdev;
2543 int ret = 0;
2544
2545 if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2546 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2547 hclgevf_misc_irq_uninit(hdev);
2548 hclgevf_uninit_msi(hdev);
2549 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2550 }
2551
2552 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2553 pci_set_master(pdev);
2554 ret = hclgevf_init_msi(hdev);
2555 if (ret) {
2556 dev_err(&pdev->dev,
2557 "failed(%d) to init MSI/MSI-X\n", ret);
2558 return ret;
2559 }
2560
2561 ret = hclgevf_misc_irq_init(hdev);
2562 if (ret) {
2563 hclgevf_uninit_msi(hdev);
2564 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2565 ret);
2566 return ret;
2567 }
2568
2569 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2570 }
2571
2572 return ret;
2573 }
2574
2575 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2576 {
2577 struct pci_dev *pdev = hdev->pdev;
2578 int ret;
2579
2580 ret = hclgevf_pci_reset(hdev);
2581 if (ret) {
2582 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2583 return ret;
2584 }
2585
2586 ret = hclgevf_cmd_init(hdev);
2587 if (ret) {
2588 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2589 return ret;
2590 }
2591
2592 ret = hclgevf_rss_init_hw(hdev);
2593 if (ret) {
2594 dev_err(&hdev->pdev->dev,
2595 "failed(%d) to initialize RSS\n", ret);
2596 return ret;
2597 }
2598
2599 ret = hclgevf_config_gro(hdev, true);
2600 if (ret)
2601 return ret;
2602
2603 ret = hclgevf_init_vlan_config(hdev);
2604 if (ret) {
2605 dev_err(&hdev->pdev->dev,
2606 "failed(%d) to initialize VLAN config\n", ret);
2607 return ret;
2608 }
2609
2610 if (pdev->revision >= 0x21) {
2611 ret = hclgevf_set_promisc_mode(hdev, true);
2612 if (ret)
2613 return ret;
2614 }
2615
2616 dev_info(&hdev->pdev->dev, "Reset done\n");
2617
2618 return 0;
2619 }
2620
2621 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2622 {
2623 struct pci_dev *pdev = hdev->pdev;
2624 int ret;
2625
2626 ret = hclgevf_pci_init(hdev);
2627 if (ret) {
2628 dev_err(&pdev->dev, "PCI initialization failed\n");
2629 return ret;
2630 }
2631
2632 ret = hclgevf_cmd_queue_init(hdev);
2633 if (ret) {
2634 dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2635 goto err_cmd_queue_init;
2636 }
2637
2638 ret = hclgevf_cmd_init(hdev);
2639 if (ret)
2640 goto err_cmd_init;
2641
2642 /* Get vf resource */
2643 ret = hclgevf_query_vf_resource(hdev);
2644 if (ret) {
2645 dev_err(&hdev->pdev->dev,
2646 "Query vf status error, ret = %d.\n", ret);
2647 goto err_cmd_init;
2648 }
2649
2650 ret = hclgevf_init_msi(hdev);
2651 if (ret) {
2652 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2653 goto err_cmd_init;
2654 }
2655
2656 hclgevf_state_init(hdev);
2657 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2658
2659 ret = hclgevf_misc_irq_init(hdev);
2660 if (ret) {
2661 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2662 ret);
2663 goto err_misc_irq_init;
2664 }
2665
2666 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2667
2668 ret = hclgevf_configure(hdev);
2669 if (ret) {
2670 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2671 goto err_config;
2672 }
2673
2674 ret = hclgevf_alloc_tqps(hdev);
2675 if (ret) {
2676 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2677 goto err_config;
2678 }
2679
2680 ret = hclgevf_set_handle_info(hdev);
2681 if (ret) {
2682 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2683 goto err_config;
2684 }
2685
2686 ret = hclgevf_config_gro(hdev, true);
2687 if (ret)
2688 goto err_config;
2689
2690 /* vf is not allowed to enable unicast/multicast promisc mode.
2691 * For revision 0x20, default to disable broadcast promisc mode,
2692 * firmware makes sure broadcast packets can be accepted.
2693 * For revision 0x21, default to enable broadcast promisc mode.
2694 */
2695 if (pdev->revision >= 0x21) {
2696 ret = hclgevf_set_promisc_mode(hdev, true);
2697 if (ret)
2698 goto err_config;
2699 }
2700
2701 /* Initialize RSS for this VF */
2702 ret = hclgevf_rss_init_hw(hdev);
2703 if (ret) {
2704 dev_err(&hdev->pdev->dev,
2705 "failed(%d) to initialize RSS\n", ret);
2706 goto err_config;
2707 }
2708
2709 ret = hclgevf_init_vlan_config(hdev);
2710 if (ret) {
2711 dev_err(&hdev->pdev->dev,
2712 "failed(%d) to initialize VLAN config\n", ret);
2713 goto err_config;
2714 }
2715
2716 hdev->last_reset_time = jiffies;
2717 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
2718 HCLGEVF_DRIVER_NAME);
2719
2720 return 0;
2721
2722 err_config:
2723 hclgevf_misc_irq_uninit(hdev);
2724 err_misc_irq_init:
2725 hclgevf_state_uninit(hdev);
2726 hclgevf_uninit_msi(hdev);
2727 err_cmd_init:
2728 hclgevf_cmd_uninit(hdev);
2729 err_cmd_queue_init:
2730 hclgevf_pci_uninit(hdev);
2731 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2732 return ret;
2733 }
2734
2735 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2736 {
2737 hclgevf_state_uninit(hdev);
2738
2739 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2740 hclgevf_misc_irq_uninit(hdev);
2741 hclgevf_uninit_msi(hdev);
2742 }
2743
2744 hclgevf_pci_uninit(hdev);
2745 hclgevf_cmd_uninit(hdev);
2746 }
2747
2748 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2749 {
2750 struct pci_dev *pdev = ae_dev->pdev;
2751 struct hclgevf_dev *hdev;
2752 int ret;
2753
2754 ret = hclgevf_alloc_hdev(ae_dev);
2755 if (ret) {
2756 dev_err(&pdev->dev, "hclge device allocation failed\n");
2757 return ret;
2758 }
2759
2760 ret = hclgevf_init_hdev(ae_dev->priv);
2761 if (ret) {
2762 dev_err(&pdev->dev, "hclge device initialization failed\n");
2763 return ret;
2764 }
2765
2766 hdev = ae_dev->priv;
2767 timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2768 INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2769
2770 return 0;
2771 }
2772
2773 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2774 {
2775 struct hclgevf_dev *hdev = ae_dev->priv;
2776
2777 hclgevf_uninit_hdev(hdev);
2778 ae_dev->priv = NULL;
2779 }
2780
2781 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2782 {
2783 struct hnae3_handle *nic = &hdev->nic;
2784 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2785
2786 return min_t(u32, hdev->rss_size_max,
2787 hdev->num_tqps / kinfo->num_tc);
2788 }
2789
2790 /**
2791 * hclgevf_get_channels - Get the current channels enabled and max supported.
2792 * @handle: hardware information for network interface
2793 * @ch: ethtool channels structure
2794 *
2795 * We don't support separate tx and rx queues as channels. The other count
2796 * represents how many queues are being used for control. max_combined counts
2797 * how many queue pairs we can support. They may not be mapped 1 to 1 with
2798 * q_vectors since we support a lot more queue pairs than q_vectors.
2799 **/
2800 static void hclgevf_get_channels(struct hnae3_handle *handle,
2801 struct ethtool_channels *ch)
2802 {
2803 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2804
2805 ch->max_combined = hclgevf_get_max_channels(hdev);
2806 ch->other_count = 0;
2807 ch->max_other = 0;
2808 ch->combined_count = handle->kinfo.rss_size;
2809 }
2810
2811 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2812 u16 *alloc_tqps, u16 *max_rss_size)
2813 {
2814 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2815
2816 *alloc_tqps = hdev->num_tqps;
2817 *max_rss_size = hdev->rss_size_max;
2818 }
2819
2820 static int hclgevf_get_status(struct hnae3_handle *handle)
2821 {
2822 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2823
2824 return hdev->hw.mac.link;
2825 }
2826
2827 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2828 u8 *auto_neg, u32 *speed,
2829 u8 *duplex)
2830 {
2831 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2832
2833 if (speed)
2834 *speed = hdev->hw.mac.speed;
2835 if (duplex)
2836 *duplex = hdev->hw.mac.duplex;
2837 if (auto_neg)
2838 *auto_neg = AUTONEG_DISABLE;
2839 }
2840
2841 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2842 u8 duplex)
2843 {
2844 hdev->hw.mac.speed = speed;
2845 hdev->hw.mac.duplex = duplex;
2846 }
2847
2848 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
2849 {
2850 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2851
2852 return hclgevf_config_gro(hdev, enable);
2853 }
2854
2855 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
2856 u8 *module_type)
2857 {
2858 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2859
2860 if (media_type)
2861 *media_type = hdev->hw.mac.media_type;
2862
2863 if (module_type)
2864 *module_type = hdev->hw.mac.module_type;
2865 }
2866
2867 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2868 {
2869 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2870
2871 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2872 }
2873
2874 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2875 {
2876 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2877
2878 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2879 }
2880
2881 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2882 {
2883 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2884
2885 return hdev->rst_stats.hw_rst_done_cnt;
2886 }
2887
2888 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
2889 unsigned long *supported,
2890 unsigned long *advertising)
2891 {
2892 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2893
2894 *supported = hdev->hw.mac.supported;
2895 *advertising = hdev->hw.mac.advertising;
2896 }
2897
2898 #define MAX_SEPARATE_NUM 4
2899 #define SEPARATOR_VALUE 0xFFFFFFFF
2900 #define REG_NUM_PER_LINE 4
2901 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
2902
2903 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2904 {
2905 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2906 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2907
2908 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2909 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2910 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2911 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2912
2913 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2914 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2915 }
2916
2917 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2918 void *data)
2919 {
2920 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2921 int i, j, reg_um, separator_num;
2922 u32 *reg = data;
2923
2924 *version = hdev->fw_version;
2925
2926 /* fetching per-VF registers values from VF PCIe register space */
2927 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2928 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2929 for (i = 0; i < reg_um; i++)
2930 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2931 for (i = 0; i < separator_num; i++)
2932 *reg++ = SEPARATOR_VALUE;
2933
2934 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2935 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2936 for (i = 0; i < reg_um; i++)
2937 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2938 for (i = 0; i < separator_num; i++)
2939 *reg++ = SEPARATOR_VALUE;
2940
2941 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2942 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2943 for (j = 0; j < hdev->num_tqps; j++) {
2944 for (i = 0; i < reg_um; i++)
2945 *reg++ = hclgevf_read_dev(&hdev->hw,
2946 ring_reg_addr_list[i] +
2947 0x200 * j);
2948 for (i = 0; i < separator_num; i++)
2949 *reg++ = SEPARATOR_VALUE;
2950 }
2951
2952 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2953 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2954 for (j = 0; j < hdev->num_msi_used - 1; j++) {
2955 for (i = 0; i < reg_um; i++)
2956 *reg++ = hclgevf_read_dev(&hdev->hw,
2957 tqp_intr_reg_addr_list[i] +
2958 4 * j);
2959 for (i = 0; i < separator_num; i++)
2960 *reg++ = SEPARATOR_VALUE;
2961 }
2962 }
2963
2964 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
2965 u8 *port_base_vlan_info, u8 data_size)
2966 {
2967 struct hnae3_handle *nic = &hdev->nic;
2968
2969 rtnl_lock();
2970 hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
2971 rtnl_unlock();
2972
2973 /* send msg to PF and wait update port based vlan info */
2974 hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
2975 HCLGE_MBX_PORT_BASE_VLAN_CFG,
2976 port_base_vlan_info, data_size,
2977 false, NULL, 0);
2978
2979 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
2980 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_DISABLE;
2981 else
2982 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
2983
2984 rtnl_lock();
2985 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
2986 rtnl_unlock();
2987 }
2988
2989 static const struct hnae3_ae_ops hclgevf_ops = {
2990 .init_ae_dev = hclgevf_init_ae_dev,
2991 .uninit_ae_dev = hclgevf_uninit_ae_dev,
2992 .flr_prepare = hclgevf_flr_prepare,
2993 .flr_done = hclgevf_flr_done,
2994 .init_client_instance = hclgevf_init_client_instance,
2995 .uninit_client_instance = hclgevf_uninit_client_instance,
2996 .start = hclgevf_ae_start,
2997 .stop = hclgevf_ae_stop,
2998 .client_start = hclgevf_client_start,
2999 .client_stop = hclgevf_client_stop,
3000 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3001 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3002 .get_vector = hclgevf_get_vector,
3003 .put_vector = hclgevf_put_vector,
3004 .reset_queue = hclgevf_reset_tqp,
3005 .get_mac_addr = hclgevf_get_mac_addr,
3006 .set_mac_addr = hclgevf_set_mac_addr,
3007 .add_uc_addr = hclgevf_add_uc_addr,
3008 .rm_uc_addr = hclgevf_rm_uc_addr,
3009 .add_mc_addr = hclgevf_add_mc_addr,
3010 .rm_mc_addr = hclgevf_rm_mc_addr,
3011 .get_stats = hclgevf_get_stats,
3012 .update_stats = hclgevf_update_stats,
3013 .get_strings = hclgevf_get_strings,
3014 .get_sset_count = hclgevf_get_sset_count,
3015 .get_rss_key_size = hclgevf_get_rss_key_size,
3016 .get_rss_indir_size = hclgevf_get_rss_indir_size,
3017 .get_rss = hclgevf_get_rss,
3018 .set_rss = hclgevf_set_rss,
3019 .get_rss_tuple = hclgevf_get_rss_tuple,
3020 .set_rss_tuple = hclgevf_set_rss_tuple,
3021 .get_tc_size = hclgevf_get_tc_size,
3022 .get_fw_version = hclgevf_get_fw_version,
3023 .set_vlan_filter = hclgevf_set_vlan_filter,
3024 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3025 .reset_event = hclgevf_reset_event,
3026 .set_default_reset_request = hclgevf_set_def_reset_request,
3027 .get_channels = hclgevf_get_channels,
3028 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3029 .get_regs_len = hclgevf_get_regs_len,
3030 .get_regs = hclgevf_get_regs,
3031 .get_status = hclgevf_get_status,
3032 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3033 .get_media_type = hclgevf_get_media_type,
3034 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3035 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3036 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3037 .set_gro_en = hclgevf_gro_en,
3038 .set_mtu = hclgevf_set_mtu,
3039 .get_global_queue_id = hclgevf_get_qid_global,
3040 .set_timer_task = hclgevf_set_timer_task,
3041 .get_link_mode = hclgevf_get_link_mode,
3042 };
3043
3044 static struct hnae3_ae_algo ae_algovf = {
3045 .ops = &hclgevf_ops,
3046 .pdev_id_table = ae_algovf_pci_tbl,
3047 };
3048
3049 static int hclgevf_init(void)
3050 {
3051 pr_info("%s is initializing\n", HCLGEVF_NAME);
3052
3053 hnae3_register_ae_algo(&ae_algovf);
3054
3055 return 0;
3056 }
3057
3058 static void hclgevf_exit(void)
3059 {
3060 hnae3_unregister_ae_algo(&ae_algovf);
3061 }
3062 module_init(hclgevf_init);
3063 module_exit(hclgevf_exit);
3064
3065 MODULE_LICENSE("GPL");
3066 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3067 MODULE_DESCRIPTION("HCLGEVF Driver");
3068 MODULE_VERSION(HCLGEVF_MOD_VERSION);