]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c
net: hns3: Support "ethtool -d" for HNS3 VF driver
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME "hclgevf"
13
14 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 /* required last entry */
21 {0, }
22 };
23
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25
26 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
27 HCLGEVF_CMDQ_TX_ADDR_H_REG,
28 HCLGEVF_CMDQ_TX_DEPTH_REG,
29 HCLGEVF_CMDQ_TX_TAIL_REG,
30 HCLGEVF_CMDQ_TX_HEAD_REG,
31 HCLGEVF_CMDQ_RX_ADDR_L_REG,
32 HCLGEVF_CMDQ_RX_ADDR_H_REG,
33 HCLGEVF_CMDQ_RX_DEPTH_REG,
34 HCLGEVF_CMDQ_RX_TAIL_REG,
35 HCLGEVF_CMDQ_RX_HEAD_REG,
36 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
37 HCLGEVF_CMDQ_INTR_STS_REG,
38 HCLGEVF_CMDQ_INTR_EN_REG,
39 HCLGEVF_CMDQ_INTR_GEN_REG};
40
41 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
42 HCLGEVF_RST_ING,
43 HCLGEVF_GRO_EN_REG};
44
45 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
46 HCLGEVF_RING_RX_ADDR_H_REG,
47 HCLGEVF_RING_RX_BD_NUM_REG,
48 HCLGEVF_RING_RX_BD_LENGTH_REG,
49 HCLGEVF_RING_RX_MERGE_EN_REG,
50 HCLGEVF_RING_RX_TAIL_REG,
51 HCLGEVF_RING_RX_HEAD_REG,
52 HCLGEVF_RING_RX_FBD_NUM_REG,
53 HCLGEVF_RING_RX_OFFSET_REG,
54 HCLGEVF_RING_RX_FBD_OFFSET_REG,
55 HCLGEVF_RING_RX_STASH_REG,
56 HCLGEVF_RING_RX_BD_ERR_REG,
57 HCLGEVF_RING_TX_ADDR_L_REG,
58 HCLGEVF_RING_TX_ADDR_H_REG,
59 HCLGEVF_RING_TX_BD_NUM_REG,
60 HCLGEVF_RING_TX_PRIORITY_REG,
61 HCLGEVF_RING_TX_TC_REG,
62 HCLGEVF_RING_TX_MERGE_EN_REG,
63 HCLGEVF_RING_TX_TAIL_REG,
64 HCLGEVF_RING_TX_HEAD_REG,
65 HCLGEVF_RING_TX_FBD_NUM_REG,
66 HCLGEVF_RING_TX_OFFSET_REG,
67 HCLGEVF_RING_TX_EBD_NUM_REG,
68 HCLGEVF_RING_TX_EBD_OFFSET_REG,
69 HCLGEVF_RING_TX_BD_ERR_REG,
70 HCLGEVF_RING_EN_REG};
71
72 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
73 HCLGEVF_TQP_INTR_GL0_REG,
74 HCLGEVF_TQP_INTR_GL1_REG,
75 HCLGEVF_TQP_INTR_GL2_REG,
76 HCLGEVF_TQP_INTR_RL_REG};
77
78 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
79 struct hnae3_handle *handle)
80 {
81 return container_of(handle, struct hclgevf_dev, nic);
82 }
83
84 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
85 {
86 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
87 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
88 struct hclgevf_desc desc;
89 struct hclgevf_tqp *tqp;
90 int status;
91 int i;
92
93 for (i = 0; i < kinfo->num_tqps; i++) {
94 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
95 hclgevf_cmd_setup_basic_desc(&desc,
96 HCLGEVF_OPC_QUERY_RX_STATUS,
97 true);
98
99 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
100 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
101 if (status) {
102 dev_err(&hdev->pdev->dev,
103 "Query tqp stat fail, status = %d,queue = %d\n",
104 status, i);
105 return status;
106 }
107 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
108 le32_to_cpu(desc.data[1]);
109
110 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
111 true);
112
113 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
114 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
115 if (status) {
116 dev_err(&hdev->pdev->dev,
117 "Query tqp stat fail, status = %d,queue = %d\n",
118 status, i);
119 return status;
120 }
121 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
122 le32_to_cpu(desc.data[1]);
123 }
124
125 return 0;
126 }
127
128 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
129 {
130 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
131 struct hclgevf_tqp *tqp;
132 u64 *buff = data;
133 int i;
134
135 for (i = 0; i < kinfo->num_tqps; i++) {
136 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
137 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
138 }
139 for (i = 0; i < kinfo->num_tqps; i++) {
140 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
141 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
142 }
143
144 return buff;
145 }
146
147 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
148 {
149 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
150
151 return kinfo->num_tqps * 2;
152 }
153
154 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
155 {
156 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
157 u8 *buff = data;
158 int i = 0;
159
160 for (i = 0; i < kinfo->num_tqps; i++) {
161 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
162 struct hclgevf_tqp, q);
163 snprintf(buff, ETH_GSTRING_LEN, "txq%d_pktnum_rcd",
164 tqp->index);
165 buff += ETH_GSTRING_LEN;
166 }
167
168 for (i = 0; i < kinfo->num_tqps; i++) {
169 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
170 struct hclgevf_tqp, q);
171 snprintf(buff, ETH_GSTRING_LEN, "rxq%d_pktnum_rcd",
172 tqp->index);
173 buff += ETH_GSTRING_LEN;
174 }
175
176 return buff;
177 }
178
179 static void hclgevf_update_stats(struct hnae3_handle *handle,
180 struct net_device_stats *net_stats)
181 {
182 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
183 int status;
184
185 status = hclgevf_tqps_update_stats(handle);
186 if (status)
187 dev_err(&hdev->pdev->dev,
188 "VF update of TQPS stats fail, status = %d.\n",
189 status);
190 }
191
192 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
193 {
194 if (strset == ETH_SS_TEST)
195 return -EOPNOTSUPP;
196 else if (strset == ETH_SS_STATS)
197 return hclgevf_tqps_get_sset_count(handle, strset);
198
199 return 0;
200 }
201
202 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
203 u8 *data)
204 {
205 u8 *p = (char *)data;
206
207 if (strset == ETH_SS_STATS)
208 p = hclgevf_tqps_get_strings(handle, p);
209 }
210
211 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
212 {
213 hclgevf_tqps_get_stats(handle, data);
214 }
215
216 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
217 {
218 u8 resp_msg;
219 int status;
220
221 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
222 true, &resp_msg, sizeof(u8));
223 if (status) {
224 dev_err(&hdev->pdev->dev,
225 "VF request to get TC info from PF failed %d",
226 status);
227 return status;
228 }
229
230 hdev->hw_tc_map = resp_msg;
231
232 return 0;
233 }
234
235 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
236 {
237 #define HCLGEVF_TQPS_RSS_INFO_LEN 8
238 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
239 int status;
240
241 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
242 true, resp_msg,
243 HCLGEVF_TQPS_RSS_INFO_LEN);
244 if (status) {
245 dev_err(&hdev->pdev->dev,
246 "VF request to get tqp info from PF failed %d",
247 status);
248 return status;
249 }
250
251 memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
252 memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
253 memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
254 memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
255
256 return 0;
257 }
258
259 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
260 {
261 struct hclgevf_tqp *tqp;
262 int i;
263
264 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
265 sizeof(struct hclgevf_tqp), GFP_KERNEL);
266 if (!hdev->htqp)
267 return -ENOMEM;
268
269 tqp = hdev->htqp;
270
271 for (i = 0; i < hdev->num_tqps; i++) {
272 tqp->dev = &hdev->pdev->dev;
273 tqp->index = i;
274
275 tqp->q.ae_algo = &ae_algovf;
276 tqp->q.buf_size = hdev->rx_buf_len;
277 tqp->q.desc_num = hdev->num_desc;
278 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
279 i * HCLGEVF_TQP_REG_SIZE;
280
281 tqp++;
282 }
283
284 return 0;
285 }
286
287 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
288 {
289 struct hnae3_handle *nic = &hdev->nic;
290 struct hnae3_knic_private_info *kinfo;
291 u16 new_tqps = hdev->num_tqps;
292 int i;
293
294 kinfo = &nic->kinfo;
295 kinfo->num_tc = 0;
296 kinfo->num_desc = hdev->num_desc;
297 kinfo->rx_buf_len = hdev->rx_buf_len;
298 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
299 if (hdev->hw_tc_map & BIT(i))
300 kinfo->num_tc++;
301
302 kinfo->rss_size
303 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
304 new_tqps = kinfo->rss_size * kinfo->num_tc;
305 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
306
307 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
308 sizeof(struct hnae3_queue *), GFP_KERNEL);
309 if (!kinfo->tqp)
310 return -ENOMEM;
311
312 for (i = 0; i < kinfo->num_tqps; i++) {
313 hdev->htqp[i].q.handle = &hdev->nic;
314 hdev->htqp[i].q.tqp_index = i;
315 kinfo->tqp[i] = &hdev->htqp[i].q;
316 }
317
318 return 0;
319 }
320
321 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
322 {
323 int status;
324 u8 resp_msg;
325
326 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
327 0, false, &resp_msg, sizeof(u8));
328 if (status)
329 dev_err(&hdev->pdev->dev,
330 "VF failed to fetch link status(%d) from PF", status);
331 }
332
333 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
334 {
335 struct hnae3_handle *handle = &hdev->nic;
336 struct hnae3_client *client;
337
338 client = handle->client;
339
340 link_state =
341 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
342
343 if (link_state != hdev->hw.mac.link) {
344 client->ops->link_status_change(handle, !!link_state);
345 hdev->hw.mac.link = link_state;
346 }
347 }
348
349 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
350 {
351 struct hnae3_handle *nic = &hdev->nic;
352 int ret;
353
354 nic->ae_algo = &ae_algovf;
355 nic->pdev = hdev->pdev;
356 nic->numa_node_mask = hdev->numa_node_mask;
357 nic->flags |= HNAE3_SUPPORT_VF;
358
359 if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
360 dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
361 hdev->ae_dev->dev_type);
362 return -EINVAL;
363 }
364
365 ret = hclgevf_knic_setup(hdev);
366 if (ret)
367 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
368 ret);
369 return ret;
370 }
371
372 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
373 {
374 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
375 dev_warn(&hdev->pdev->dev,
376 "vector(vector_id %d) has been freed.\n", vector_id);
377 return;
378 }
379
380 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
381 hdev->num_msi_left += 1;
382 hdev->num_msi_used -= 1;
383 }
384
385 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
386 struct hnae3_vector_info *vector_info)
387 {
388 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
389 struct hnae3_vector_info *vector = vector_info;
390 int alloc = 0;
391 int i, j;
392
393 vector_num = min(hdev->num_msi_left, vector_num);
394
395 for (j = 0; j < vector_num; j++) {
396 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
397 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
398 vector->vector = pci_irq_vector(hdev->pdev, i);
399 vector->io_addr = hdev->hw.io_base +
400 HCLGEVF_VECTOR_REG_BASE +
401 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
402 hdev->vector_status[i] = 0;
403 hdev->vector_irq[i] = vector->vector;
404
405 vector++;
406 alloc++;
407
408 break;
409 }
410 }
411 }
412 hdev->num_msi_left -= alloc;
413 hdev->num_msi_used += alloc;
414
415 return alloc;
416 }
417
418 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
419 {
420 int i;
421
422 for (i = 0; i < hdev->num_msi; i++)
423 if (vector == hdev->vector_irq[i])
424 return i;
425
426 return -EINVAL;
427 }
428
429 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
430 const u8 hfunc, const u8 *key)
431 {
432 struct hclgevf_rss_config_cmd *req;
433 struct hclgevf_desc desc;
434 int key_offset;
435 int key_size;
436 int ret;
437
438 req = (struct hclgevf_rss_config_cmd *)desc.data;
439
440 for (key_offset = 0; key_offset < 3; key_offset++) {
441 hclgevf_cmd_setup_basic_desc(&desc,
442 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
443 false);
444
445 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
446 req->hash_config |=
447 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
448
449 if (key_offset == 2)
450 key_size =
451 HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
452 else
453 key_size = HCLGEVF_RSS_HASH_KEY_NUM;
454
455 memcpy(req->hash_key,
456 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
457
458 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
459 if (ret) {
460 dev_err(&hdev->pdev->dev,
461 "Configure RSS config fail, status = %d\n",
462 ret);
463 return ret;
464 }
465 }
466
467 return 0;
468 }
469
470 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
471 {
472 return HCLGEVF_RSS_KEY_SIZE;
473 }
474
475 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
476 {
477 return HCLGEVF_RSS_IND_TBL_SIZE;
478 }
479
480 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
481 {
482 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
483 struct hclgevf_rss_indirection_table_cmd *req;
484 struct hclgevf_desc desc;
485 int status;
486 int i, j;
487
488 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
489
490 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
491 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
492 false);
493 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
494 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
495 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
496 req->rss_result[j] =
497 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
498
499 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
500 if (status) {
501 dev_err(&hdev->pdev->dev,
502 "VF failed(=%d) to set RSS indirection table\n",
503 status);
504 return status;
505 }
506 }
507
508 return 0;
509 }
510
511 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
512 {
513 struct hclgevf_rss_tc_mode_cmd *req;
514 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
515 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
516 u16 tc_size[HCLGEVF_MAX_TC_NUM];
517 struct hclgevf_desc desc;
518 u16 roundup_size;
519 int status;
520 int i;
521
522 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
523
524 roundup_size = roundup_pow_of_two(rss_size);
525 roundup_size = ilog2(roundup_size);
526
527 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
528 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
529 tc_size[i] = roundup_size;
530 tc_offset[i] = rss_size * i;
531 }
532
533 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
534 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
535 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
536 (tc_valid[i] & 0x1));
537 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
538 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
539 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
540 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
541 }
542 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
543 if (status)
544 dev_err(&hdev->pdev->dev,
545 "VF failed(=%d) to set rss tc mode\n", status);
546
547 return status;
548 }
549
550 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
551 u8 *hfunc)
552 {
553 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
555 int i;
556
557 if (handle->pdev->revision >= 0x21) {
558 /* Get hash algorithm */
559 if (hfunc) {
560 switch (rss_cfg->hash_algo) {
561 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
562 *hfunc = ETH_RSS_HASH_TOP;
563 break;
564 case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
565 *hfunc = ETH_RSS_HASH_XOR;
566 break;
567 default:
568 *hfunc = ETH_RSS_HASH_UNKNOWN;
569 break;
570 }
571 }
572
573 /* Get the RSS Key required by the user */
574 if (key)
575 memcpy(key, rss_cfg->rss_hash_key,
576 HCLGEVF_RSS_KEY_SIZE);
577 }
578
579 if (indir)
580 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
581 indir[i] = rss_cfg->rss_indirection_tbl[i];
582
583 return 0;
584 }
585
586 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
587 const u8 *key, const u8 hfunc)
588 {
589 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
590 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
591 int ret, i;
592
593 if (handle->pdev->revision >= 0x21) {
594 /* Set the RSS Hash Key if specififed by the user */
595 if (key) {
596 switch (hfunc) {
597 case ETH_RSS_HASH_TOP:
598 rss_cfg->hash_algo =
599 HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
600 break;
601 case ETH_RSS_HASH_XOR:
602 rss_cfg->hash_algo =
603 HCLGEVF_RSS_HASH_ALGO_SIMPLE;
604 break;
605 case ETH_RSS_HASH_NO_CHANGE:
606 break;
607 default:
608 return -EINVAL;
609 }
610
611 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
612 key);
613 if (ret)
614 return ret;
615
616 /* Update the shadow RSS key with user specified qids */
617 memcpy(rss_cfg->rss_hash_key, key,
618 HCLGEVF_RSS_KEY_SIZE);
619 }
620 }
621
622 /* update the shadow RSS table with user specified qids */
623 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
624 rss_cfg->rss_indirection_tbl[i] = indir[i];
625
626 /* update the hardware */
627 return hclgevf_set_rss_indir_table(hdev);
628 }
629
630 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
631 {
632 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
633
634 if (nfc->data & RXH_L4_B_2_3)
635 hash_sets |= HCLGEVF_D_PORT_BIT;
636 else
637 hash_sets &= ~HCLGEVF_D_PORT_BIT;
638
639 if (nfc->data & RXH_IP_SRC)
640 hash_sets |= HCLGEVF_S_IP_BIT;
641 else
642 hash_sets &= ~HCLGEVF_S_IP_BIT;
643
644 if (nfc->data & RXH_IP_DST)
645 hash_sets |= HCLGEVF_D_IP_BIT;
646 else
647 hash_sets &= ~HCLGEVF_D_IP_BIT;
648
649 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
650 hash_sets |= HCLGEVF_V_TAG_BIT;
651
652 return hash_sets;
653 }
654
655 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
656 struct ethtool_rxnfc *nfc)
657 {
658 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
659 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
660 struct hclgevf_rss_input_tuple_cmd *req;
661 struct hclgevf_desc desc;
662 u8 tuple_sets;
663 int ret;
664
665 if (handle->pdev->revision == 0x20)
666 return -EOPNOTSUPP;
667
668 if (nfc->data &
669 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
670 return -EINVAL;
671
672 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
673 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
674
675 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
676 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
677 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
678 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
679 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
680 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
681 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
682 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
683
684 tuple_sets = hclgevf_get_rss_hash_bits(nfc);
685 switch (nfc->flow_type) {
686 case TCP_V4_FLOW:
687 req->ipv4_tcp_en = tuple_sets;
688 break;
689 case TCP_V6_FLOW:
690 req->ipv6_tcp_en = tuple_sets;
691 break;
692 case UDP_V4_FLOW:
693 req->ipv4_udp_en = tuple_sets;
694 break;
695 case UDP_V6_FLOW:
696 req->ipv6_udp_en = tuple_sets;
697 break;
698 case SCTP_V4_FLOW:
699 req->ipv4_sctp_en = tuple_sets;
700 break;
701 case SCTP_V6_FLOW:
702 if ((nfc->data & RXH_L4_B_0_1) ||
703 (nfc->data & RXH_L4_B_2_3))
704 return -EINVAL;
705
706 req->ipv6_sctp_en = tuple_sets;
707 break;
708 case IPV4_FLOW:
709 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
710 break;
711 case IPV6_FLOW:
712 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
713 break;
714 default:
715 return -EINVAL;
716 }
717
718 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
719 if (ret) {
720 dev_err(&hdev->pdev->dev,
721 "Set rss tuple fail, status = %d\n", ret);
722 return ret;
723 }
724
725 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
726 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
727 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
728 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
729 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
730 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
731 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
732 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
733 return 0;
734 }
735
736 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
737 struct ethtool_rxnfc *nfc)
738 {
739 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
740 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
741 u8 tuple_sets;
742
743 if (handle->pdev->revision == 0x20)
744 return -EOPNOTSUPP;
745
746 nfc->data = 0;
747
748 switch (nfc->flow_type) {
749 case TCP_V4_FLOW:
750 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
751 break;
752 case UDP_V4_FLOW:
753 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_udp_en;
754 break;
755 case TCP_V6_FLOW:
756 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
757 break;
758 case UDP_V6_FLOW:
759 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_udp_en;
760 break;
761 case SCTP_V4_FLOW:
762 tuple_sets = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
763 break;
764 case SCTP_V6_FLOW:
765 tuple_sets = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
766 break;
767 case IPV4_FLOW:
768 case IPV6_FLOW:
769 tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
770 break;
771 default:
772 return -EINVAL;
773 }
774
775 if (!tuple_sets)
776 return 0;
777
778 if (tuple_sets & HCLGEVF_D_PORT_BIT)
779 nfc->data |= RXH_L4_B_2_3;
780 if (tuple_sets & HCLGEVF_S_PORT_BIT)
781 nfc->data |= RXH_L4_B_0_1;
782 if (tuple_sets & HCLGEVF_D_IP_BIT)
783 nfc->data |= RXH_IP_DST;
784 if (tuple_sets & HCLGEVF_S_IP_BIT)
785 nfc->data |= RXH_IP_SRC;
786
787 return 0;
788 }
789
790 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
791 struct hclgevf_rss_cfg *rss_cfg)
792 {
793 struct hclgevf_rss_input_tuple_cmd *req;
794 struct hclgevf_desc desc;
795 int ret;
796
797 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
798
799 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
800
801 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
802 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
803 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
804 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
805 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
806 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
807 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
808 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
809
810 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
811 if (ret)
812 dev_err(&hdev->pdev->dev,
813 "Configure rss input fail, status = %d\n", ret);
814 return ret;
815 }
816
817 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
818 {
819 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
820 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
821
822 return rss_cfg->rss_size;
823 }
824
825 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
826 int vector_id,
827 struct hnae3_ring_chain_node *ring_chain)
828 {
829 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
830 struct hnae3_ring_chain_node *node;
831 struct hclge_mbx_vf_to_pf_cmd *req;
832 struct hclgevf_desc desc;
833 int i = 0;
834 int status;
835 u8 type;
836
837 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
838
839 for (node = ring_chain; node; node = node->next) {
840 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
841 HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
842
843 if (i == 0) {
844 hclgevf_cmd_setup_basic_desc(&desc,
845 HCLGEVF_OPC_MBX_VF_TO_PF,
846 false);
847 type = en ?
848 HCLGE_MBX_MAP_RING_TO_VECTOR :
849 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
850 req->msg[0] = type;
851 req->msg[1] = vector_id;
852 }
853
854 req->msg[idx_offset] =
855 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
856 req->msg[idx_offset + 1] = node->tqp_index;
857 req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
858 HNAE3_RING_GL_IDX_M,
859 HNAE3_RING_GL_IDX_S);
860
861 i++;
862 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
863 HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
864 HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
865 !node->next) {
866 req->msg[2] = i;
867
868 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
869 if (status) {
870 dev_err(&hdev->pdev->dev,
871 "Map TQP fail, status is %d.\n",
872 status);
873 return status;
874 }
875 i = 0;
876 hclgevf_cmd_setup_basic_desc(&desc,
877 HCLGEVF_OPC_MBX_VF_TO_PF,
878 false);
879 req->msg[0] = type;
880 req->msg[1] = vector_id;
881 }
882 }
883
884 return 0;
885 }
886
887 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
888 struct hnae3_ring_chain_node *ring_chain)
889 {
890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 int vector_id;
892
893 vector_id = hclgevf_get_vector_index(hdev, vector);
894 if (vector_id < 0) {
895 dev_err(&handle->pdev->dev,
896 "Get vector index fail. ret =%d\n", vector_id);
897 return vector_id;
898 }
899
900 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
901 }
902
903 static int hclgevf_unmap_ring_from_vector(
904 struct hnae3_handle *handle,
905 int vector,
906 struct hnae3_ring_chain_node *ring_chain)
907 {
908 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
909 int ret, vector_id;
910
911 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
912 return 0;
913
914 vector_id = hclgevf_get_vector_index(hdev, vector);
915 if (vector_id < 0) {
916 dev_err(&handle->pdev->dev,
917 "Get vector index fail. ret =%d\n", vector_id);
918 return vector_id;
919 }
920
921 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
922 if (ret)
923 dev_err(&handle->pdev->dev,
924 "Unmap ring from vector fail. vector=%d, ret =%d\n",
925 vector_id,
926 ret);
927
928 return ret;
929 }
930
931 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
932 {
933 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
934 int vector_id;
935
936 vector_id = hclgevf_get_vector_index(hdev, vector);
937 if (vector_id < 0) {
938 dev_err(&handle->pdev->dev,
939 "hclgevf_put_vector get vector index fail. ret =%d\n",
940 vector_id);
941 return vector_id;
942 }
943
944 hclgevf_free_vector(hdev, vector_id);
945
946 return 0;
947 }
948
949 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
950 bool en_uc_pmc, bool en_mc_pmc)
951 {
952 struct hclge_mbx_vf_to_pf_cmd *req;
953 struct hclgevf_desc desc;
954 int status;
955
956 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
957
958 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
959 req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
960 req->msg[1] = en_uc_pmc ? 1 : 0;
961 req->msg[2] = en_mc_pmc ? 1 : 0;
962
963 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
964 if (status)
965 dev_err(&hdev->pdev->dev,
966 "Set promisc mode fail, status is %d.\n", status);
967
968 return status;
969 }
970
971 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle,
972 bool en_uc_pmc, bool en_mc_pmc)
973 {
974 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
975
976 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
977 }
978
979 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
980 int stream_id, bool enable)
981 {
982 struct hclgevf_cfg_com_tqp_queue_cmd *req;
983 struct hclgevf_desc desc;
984 int status;
985
986 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
987
988 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
989 false);
990 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
991 req->stream_id = cpu_to_le16(stream_id);
992 req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
993
994 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
995 if (status)
996 dev_err(&hdev->pdev->dev,
997 "TQP enable fail, status =%d.\n", status);
998
999 return status;
1000 }
1001
1002 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1003 {
1004 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1005 struct hclgevf_tqp *tqp;
1006 int i;
1007
1008 for (i = 0; i < kinfo->num_tqps; i++) {
1009 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1010 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1011 }
1012 }
1013
1014 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1015 {
1016 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1017
1018 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1019 }
1020
1021 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1022 bool is_first)
1023 {
1024 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1025 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1026 u8 *new_mac_addr = (u8 *)p;
1027 u8 msg_data[ETH_ALEN * 2];
1028 u16 subcode;
1029 int status;
1030
1031 ether_addr_copy(msg_data, new_mac_addr);
1032 ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
1033
1034 subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
1035 HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1036
1037 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1038 subcode, msg_data, ETH_ALEN * 2,
1039 true, NULL, 0);
1040 if (!status)
1041 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1042
1043 return status;
1044 }
1045
1046 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1047 const unsigned char *addr)
1048 {
1049 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1050
1051 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1052 HCLGE_MBX_MAC_VLAN_UC_ADD,
1053 addr, ETH_ALEN, false, NULL, 0);
1054 }
1055
1056 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1057 const unsigned char *addr)
1058 {
1059 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1060
1061 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
1062 HCLGE_MBX_MAC_VLAN_UC_REMOVE,
1063 addr, ETH_ALEN, false, NULL, 0);
1064 }
1065
1066 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1067 const unsigned char *addr)
1068 {
1069 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1070
1071 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1072 HCLGE_MBX_MAC_VLAN_MC_ADD,
1073 addr, ETH_ALEN, false, NULL, 0);
1074 }
1075
1076 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1077 const unsigned char *addr)
1078 {
1079 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1080
1081 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
1082 HCLGE_MBX_MAC_VLAN_MC_REMOVE,
1083 addr, ETH_ALEN, false, NULL, 0);
1084 }
1085
1086 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1087 __be16 proto, u16 vlan_id,
1088 bool is_kill)
1089 {
1090 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
1091 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1092 u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
1093
1094 if (vlan_id > 4095)
1095 return -EINVAL;
1096
1097 if (proto != htons(ETH_P_8021Q))
1098 return -EPROTONOSUPPORT;
1099
1100 msg_data[0] = is_kill;
1101 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
1102 memcpy(&msg_data[3], &proto, sizeof(proto));
1103 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1104 HCLGE_MBX_VLAN_FILTER, msg_data,
1105 HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
1106 }
1107
1108 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1109 {
1110 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1111 u8 msg_data;
1112
1113 msg_data = enable ? 1 : 0;
1114 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
1115 HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
1116 1, false, NULL, 0);
1117 }
1118
1119 static int hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
1120 {
1121 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1122 u8 msg_data[2];
1123 int ret;
1124
1125 memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
1126
1127 /* disable vf queue before send queue reset msg to PF */
1128 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
1129 if (ret)
1130 return ret;
1131
1132 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
1133 2, true, NULL, 0);
1134 }
1135
1136 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1137 {
1138 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1139
1140 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MTU, 0, (u8 *)&new_mtu,
1141 sizeof(new_mtu), true, NULL, 0);
1142 }
1143
1144 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1145 enum hnae3_reset_notify_type type)
1146 {
1147 struct hnae3_client *client = hdev->nic_client;
1148 struct hnae3_handle *handle = &hdev->nic;
1149 int ret;
1150
1151 if (!client->ops->reset_notify)
1152 return -EOPNOTSUPP;
1153
1154 ret = client->ops->reset_notify(handle, type);
1155 if (ret)
1156 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1157 type, ret);
1158
1159 return ret;
1160 }
1161
1162 static void hclgevf_flr_done(struct hnae3_ae_dev *ae_dev)
1163 {
1164 struct hclgevf_dev *hdev = ae_dev->priv;
1165
1166 set_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1167 }
1168
1169 static int hclgevf_flr_poll_timeout(struct hclgevf_dev *hdev,
1170 unsigned long delay_us,
1171 unsigned long wait_cnt)
1172 {
1173 unsigned long cnt = 0;
1174
1175 while (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state) &&
1176 cnt++ < wait_cnt)
1177 usleep_range(delay_us, delay_us * 2);
1178
1179 if (!test_bit(HNAE3_FLR_DONE, &hdev->flr_state)) {
1180 dev_err(&hdev->pdev->dev,
1181 "flr wait timeout\n");
1182 return -ETIMEDOUT;
1183 }
1184
1185 return 0;
1186 }
1187
1188 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1189 {
1190 #define HCLGEVF_RESET_WAIT_US 20000
1191 #define HCLGEVF_RESET_WAIT_CNT 2000
1192 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1193 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1194
1195 u32 val;
1196 int ret;
1197
1198 /* wait to check the hardware reset completion status */
1199 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1200 dev_info(&hdev->pdev->dev, "checking vf resetting status: %x\n", val);
1201
1202 if (hdev->reset_type == HNAE3_FLR_RESET)
1203 return hclgevf_flr_poll_timeout(hdev,
1204 HCLGEVF_RESET_WAIT_US,
1205 HCLGEVF_RESET_WAIT_CNT);
1206
1207 ret = readl_poll_timeout(hdev->hw.io_base + HCLGEVF_RST_ING, val,
1208 !(val & HCLGEVF_RST_ING_BITS),
1209 HCLGEVF_RESET_WAIT_US,
1210 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1211
1212 /* hardware completion status should be available by this time */
1213 if (ret) {
1214 dev_err(&hdev->pdev->dev,
1215 "could'nt get reset done status from h/w, timeout!\n");
1216 return ret;
1217 }
1218
1219 /* we will wait a bit more to let reset of the stack to complete. This
1220 * might happen in case reset assertion was made by PF. Yes, this also
1221 * means we might end up waiting bit more even for VF reset.
1222 */
1223 msleep(5000);
1224
1225 return 0;
1226 }
1227
1228 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1229 {
1230 int ret;
1231
1232 /* uninitialize the nic client */
1233 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1234 if (ret)
1235 return ret;
1236
1237 /* re-initialize the hclge device */
1238 ret = hclgevf_reset_hdev(hdev);
1239 if (ret) {
1240 dev_err(&hdev->pdev->dev,
1241 "hclge device re-init failed, VF is disabled!\n");
1242 return ret;
1243 }
1244
1245 /* bring up the nic client again */
1246 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1247 if (ret)
1248 return ret;
1249
1250 return 0;
1251 }
1252
1253 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1254 {
1255 int ret = 0;
1256
1257 switch (hdev->reset_type) {
1258 case HNAE3_VF_FUNC_RESET:
1259 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1260 0, true, NULL, sizeof(u8));
1261 break;
1262 case HNAE3_FLR_RESET:
1263 set_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1264 break;
1265 default:
1266 break;
1267 }
1268
1269 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1270
1271 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done, ret:%d\n",
1272 hdev->reset_type, ret);
1273
1274 return ret;
1275 }
1276
1277 static int hclgevf_reset(struct hclgevf_dev *hdev)
1278 {
1279 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
1280 int ret;
1281
1282 /* Initialize ae_dev reset status as well, in case enet layer wants to
1283 * know if device is undergoing reset
1284 */
1285 ae_dev->reset_type = hdev->reset_type;
1286 hdev->reset_count++;
1287 rtnl_lock();
1288
1289 /* bring down the nic to stop any ongoing TX/RX */
1290 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1291 if (ret)
1292 goto err_reset_lock;
1293
1294 rtnl_unlock();
1295
1296 ret = hclgevf_reset_prepare_wait(hdev);
1297 if (ret)
1298 goto err_reset;
1299
1300 /* check if VF could successfully fetch the hardware reset completion
1301 * status from the hardware
1302 */
1303 ret = hclgevf_reset_wait(hdev);
1304 if (ret) {
1305 /* can't do much in this situation, will disable VF */
1306 dev_err(&hdev->pdev->dev,
1307 "VF failed(=%d) to fetch H/W reset completion status\n",
1308 ret);
1309 goto err_reset;
1310 }
1311
1312 rtnl_lock();
1313
1314 /* now, re-initialize the nic client and ae device*/
1315 ret = hclgevf_reset_stack(hdev);
1316 if (ret) {
1317 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1318 goto err_reset_lock;
1319 }
1320
1321 /* bring up the nic to enable TX/RX again */
1322 ret = hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1323 if (ret)
1324 goto err_reset_lock;
1325
1326 rtnl_unlock();
1327
1328 return ret;
1329 err_reset_lock:
1330 rtnl_unlock();
1331 err_reset:
1332 /* When VF reset failed, only the higher level reset asserted by PF
1333 * can restore it, so re-initialize the command queue to receive
1334 * this higher reset event.
1335 */
1336 hclgevf_cmd_init(hdev);
1337 dev_err(&hdev->pdev->dev, "failed to reset VF\n");
1338
1339 return ret;
1340 }
1341
1342 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
1343 unsigned long *addr)
1344 {
1345 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
1346
1347 /* return the highest priority reset level amongst all */
1348 if (test_bit(HNAE3_VF_RESET, addr)) {
1349 rst_level = HNAE3_VF_RESET;
1350 clear_bit(HNAE3_VF_RESET, addr);
1351 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1352 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1353 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
1354 rst_level = HNAE3_VF_FULL_RESET;
1355 clear_bit(HNAE3_VF_FULL_RESET, addr);
1356 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1357 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
1358 rst_level = HNAE3_VF_PF_FUNC_RESET;
1359 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
1360 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1361 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
1362 rst_level = HNAE3_VF_FUNC_RESET;
1363 clear_bit(HNAE3_VF_FUNC_RESET, addr);
1364 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
1365 rst_level = HNAE3_FLR_RESET;
1366 clear_bit(HNAE3_FLR_RESET, addr);
1367 }
1368
1369 return rst_level;
1370 }
1371
1372 static void hclgevf_reset_event(struct pci_dev *pdev,
1373 struct hnae3_handle *handle)
1374 {
1375 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
1376 struct hclgevf_dev *hdev = ae_dev->priv;
1377
1378 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1379
1380 if (hdev->default_reset_request)
1381 hdev->reset_level =
1382 hclgevf_get_reset_level(hdev,
1383 &hdev->default_reset_request);
1384 else
1385 hdev->reset_level = HNAE3_VF_FUNC_RESET;
1386
1387 /* reset of this VF requested */
1388 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1389 hclgevf_reset_task_schedule(hdev);
1390
1391 hdev->last_reset_time = jiffies;
1392 }
1393
1394 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
1395 enum hnae3_reset_type rst_type)
1396 {
1397 struct hclgevf_dev *hdev = ae_dev->priv;
1398
1399 set_bit(rst_type, &hdev->default_reset_request);
1400 }
1401
1402 static void hclgevf_flr_prepare(struct hnae3_ae_dev *ae_dev)
1403 {
1404 #define HCLGEVF_FLR_WAIT_MS 100
1405 #define HCLGEVF_FLR_WAIT_CNT 50
1406 struct hclgevf_dev *hdev = ae_dev->priv;
1407 int cnt = 0;
1408
1409 clear_bit(HNAE3_FLR_DOWN, &hdev->flr_state);
1410 clear_bit(HNAE3_FLR_DONE, &hdev->flr_state);
1411 set_bit(HNAE3_FLR_RESET, &hdev->default_reset_request);
1412 hclgevf_reset_event(hdev->pdev, NULL);
1413
1414 while (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state) &&
1415 cnt++ < HCLGEVF_FLR_WAIT_CNT)
1416 msleep(HCLGEVF_FLR_WAIT_MS);
1417
1418 if (!test_bit(HNAE3_FLR_DOWN, &hdev->flr_state))
1419 dev_err(&hdev->pdev->dev,
1420 "flr wait down timeout: %d\n", cnt);
1421 }
1422
1423 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1424 {
1425 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1426
1427 return hdev->fw_version;
1428 }
1429
1430 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1431 {
1432 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1433
1434 vector->vector_irq = pci_irq_vector(hdev->pdev,
1435 HCLGEVF_MISC_VECTOR_NUM);
1436 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1437 /* vector status always valid for Vector 0 */
1438 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1439 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1440
1441 hdev->num_msi_left -= 1;
1442 hdev->num_msi_used += 1;
1443 }
1444
1445 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1446 {
1447 if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1448 !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1449 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1450 schedule_work(&hdev->rst_service_task);
1451 }
1452 }
1453
1454 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1455 {
1456 if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1457 !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1458 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1459 schedule_work(&hdev->mbx_service_task);
1460 }
1461 }
1462
1463 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1464 {
1465 if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) &&
1466 !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1467 schedule_work(&hdev->service_task);
1468 }
1469
1470 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1471 {
1472 /* if we have any pending mailbox event then schedule the mbx task */
1473 if (hdev->mbx_event_pending)
1474 hclgevf_mbx_task_schedule(hdev);
1475
1476 if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1477 hclgevf_reset_task_schedule(hdev);
1478 }
1479
1480 static void hclgevf_service_timer(struct timer_list *t)
1481 {
1482 struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1483
1484 mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1485
1486 hclgevf_task_schedule(hdev);
1487 }
1488
1489 static void hclgevf_reset_service_task(struct work_struct *work)
1490 {
1491 struct hclgevf_dev *hdev =
1492 container_of(work, struct hclgevf_dev, rst_service_task);
1493 int ret;
1494
1495 if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1496 return;
1497
1498 clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1499
1500 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1501 &hdev->reset_state)) {
1502 /* PF has initmated that it is about to reset the hardware.
1503 * We now have to poll & check if harware has actually completed
1504 * the reset sequence. On hardware reset completion, VF needs to
1505 * reset the client and ae device.
1506 */
1507 hdev->reset_attempts = 0;
1508
1509 hdev->last_reset_time = jiffies;
1510 while ((hdev->reset_type =
1511 hclgevf_get_reset_level(hdev, &hdev->reset_pending))
1512 != HNAE3_NONE_RESET) {
1513 ret = hclgevf_reset(hdev);
1514 if (ret)
1515 dev_err(&hdev->pdev->dev,
1516 "VF stack reset failed %d.\n", ret);
1517 }
1518 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1519 &hdev->reset_state)) {
1520 /* we could be here when either of below happens:
1521 * 1. reset was initiated due to watchdog timeout due to
1522 * a. IMP was earlier reset and our TX got choked down and
1523 * which resulted in watchdog reacting and inducing VF
1524 * reset. This also means our cmdq would be unreliable.
1525 * b. problem in TX due to other lower layer(example link
1526 * layer not functioning properly etc.)
1527 * 2. VF reset might have been initiated due to some config
1528 * change.
1529 *
1530 * NOTE: Theres no clear way to detect above cases than to react
1531 * to the response of PF for this reset request. PF will ack the
1532 * 1b and 2. cases but we will not get any intimation about 1a
1533 * from PF as cmdq would be in unreliable state i.e. mailbox
1534 * communication between PF and VF would be broken.
1535 */
1536
1537 /* if we are never geting into pending state it means either:
1538 * 1. PF is not receiving our request which could be due to IMP
1539 * reset
1540 * 2. PF is screwed
1541 * We cannot do much for 2. but to check first we can try reset
1542 * our PCIe + stack and see if it alleviates the problem.
1543 */
1544 if (hdev->reset_attempts > 3) {
1545 /* prepare for full reset of stack + pcie interface */
1546 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
1547
1548 /* "defer" schedule the reset task again */
1549 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1550 } else {
1551 hdev->reset_attempts++;
1552
1553 set_bit(hdev->reset_level, &hdev->reset_pending);
1554 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1555 }
1556 hclgevf_reset_task_schedule(hdev);
1557 }
1558
1559 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1560 }
1561
1562 static void hclgevf_mailbox_service_task(struct work_struct *work)
1563 {
1564 struct hclgevf_dev *hdev;
1565
1566 hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1567
1568 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1569 return;
1570
1571 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1572
1573 hclgevf_mbx_async_handler(hdev);
1574
1575 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1576 }
1577
1578 static void hclgevf_keep_alive_timer(struct timer_list *t)
1579 {
1580 struct hclgevf_dev *hdev = from_timer(hdev, t, keep_alive_timer);
1581
1582 schedule_work(&hdev->keep_alive_task);
1583 mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1584 }
1585
1586 static void hclgevf_keep_alive_task(struct work_struct *work)
1587 {
1588 struct hclgevf_dev *hdev;
1589 u8 respmsg;
1590 int ret;
1591
1592 hdev = container_of(work, struct hclgevf_dev, keep_alive_task);
1593 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_KEEP_ALIVE, 0, NULL,
1594 0, false, &respmsg, sizeof(u8));
1595 if (ret)
1596 dev_err(&hdev->pdev->dev,
1597 "VF sends keep alive cmd failed(=%d)\n", ret);
1598 }
1599
1600 static void hclgevf_service_task(struct work_struct *work)
1601 {
1602 struct hclgevf_dev *hdev;
1603
1604 hdev = container_of(work, struct hclgevf_dev, service_task);
1605
1606 /* request the link status from the PF. PF would be able to tell VF
1607 * about such updates in future so we might remove this later
1608 */
1609 hclgevf_request_link_info(hdev);
1610
1611 hclgevf_deferred_task_schedule(hdev);
1612
1613 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1614 }
1615
1616 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1617 {
1618 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1619 }
1620
1621 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
1622 u32 *clearval)
1623 {
1624 u32 cmdq_src_reg, rst_ing_reg;
1625
1626 /* fetch the events from their corresponding regs */
1627 cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1628 HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1629
1630 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_src_reg) {
1631 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
1632 dev_info(&hdev->pdev->dev,
1633 "receive reset interrupt 0x%x!\n", rst_ing_reg);
1634 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
1635 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1636 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1637 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RST_INT_B);
1638 *clearval = cmdq_src_reg;
1639 return HCLGEVF_VECTOR0_EVENT_RST;
1640 }
1641
1642 /* check for vector0 mailbox(=CMDQ RX) event source */
1643 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1644 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1645 *clearval = cmdq_src_reg;
1646 return HCLGEVF_VECTOR0_EVENT_MBX;
1647 }
1648
1649 dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1650
1651 return HCLGEVF_VECTOR0_EVENT_OTHER;
1652 }
1653
1654 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1655 {
1656 writel(en ? 1 : 0, vector->addr);
1657 }
1658
1659 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1660 {
1661 enum hclgevf_evt_cause event_cause;
1662 struct hclgevf_dev *hdev = data;
1663 u32 clearval;
1664
1665 hclgevf_enable_vector(&hdev->misc_vector, false);
1666 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
1667
1668 switch (event_cause) {
1669 case HCLGEVF_VECTOR0_EVENT_RST:
1670 hclgevf_reset_task_schedule(hdev);
1671 break;
1672 case HCLGEVF_VECTOR0_EVENT_MBX:
1673 hclgevf_mbx_handler(hdev);
1674 break;
1675 default:
1676 break;
1677 }
1678
1679 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
1680 hclgevf_clear_event_cause(hdev, clearval);
1681 hclgevf_enable_vector(&hdev->misc_vector, true);
1682 }
1683
1684 return IRQ_HANDLED;
1685 }
1686
1687 static int hclgevf_configure(struct hclgevf_dev *hdev)
1688 {
1689 int ret;
1690
1691 hdev->hw.mac.media_type = HNAE3_MEDIA_TYPE_NONE;
1692
1693 /* get queue configuration from PF */
1694 ret = hclgevf_get_queue_info(hdev);
1695 if (ret)
1696 return ret;
1697 /* get tc configuration from PF */
1698 return hclgevf_get_tc_info(hdev);
1699 }
1700
1701 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1702 {
1703 struct pci_dev *pdev = ae_dev->pdev;
1704 struct hclgevf_dev *hdev = ae_dev->priv;
1705
1706 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1707 if (!hdev)
1708 return -ENOMEM;
1709
1710 hdev->pdev = pdev;
1711 hdev->ae_dev = ae_dev;
1712 ae_dev->priv = hdev;
1713
1714 return 0;
1715 }
1716
1717 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1718 {
1719 struct hnae3_handle *roce = &hdev->roce;
1720 struct hnae3_handle *nic = &hdev->nic;
1721
1722 roce->rinfo.num_vectors = hdev->num_roce_msix;
1723
1724 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1725 hdev->num_msi_left == 0)
1726 return -EINVAL;
1727
1728 roce->rinfo.base_vector = hdev->roce_base_vector;
1729
1730 roce->rinfo.netdev = nic->kinfo.netdev;
1731 roce->rinfo.roce_io_base = hdev->hw.io_base;
1732
1733 roce->pdev = nic->pdev;
1734 roce->ae_algo = nic->ae_algo;
1735 roce->numa_node_mask = nic->numa_node_mask;
1736
1737 return 0;
1738 }
1739
1740 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
1741 {
1742 struct hclgevf_cfg_gro_status_cmd *req;
1743 struct hclgevf_desc desc;
1744 int ret;
1745
1746 if (!hnae3_dev_gro_supported(hdev))
1747 return 0;
1748
1749 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
1750 false);
1751 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
1752
1753 req->gro_en = cpu_to_le16(en ? 1 : 0);
1754
1755 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1756 if (ret)
1757 dev_err(&hdev->pdev->dev,
1758 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
1759
1760 return ret;
1761 }
1762
1763 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1764 {
1765 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1766 int i, ret;
1767
1768 rss_cfg->rss_size = hdev->rss_size_max;
1769
1770 if (hdev->pdev->revision >= 0x21) {
1771 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
1772 netdev_rss_key_fill(rss_cfg->rss_hash_key,
1773 HCLGEVF_RSS_KEY_SIZE);
1774
1775 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
1776 rss_cfg->rss_hash_key);
1777 if (ret)
1778 return ret;
1779
1780 rss_cfg->rss_tuple_sets.ipv4_tcp_en =
1781 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1782 rss_cfg->rss_tuple_sets.ipv4_udp_en =
1783 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1784 rss_cfg->rss_tuple_sets.ipv4_sctp_en =
1785 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1786 rss_cfg->rss_tuple_sets.ipv4_fragment_en =
1787 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1788 rss_cfg->rss_tuple_sets.ipv6_tcp_en =
1789 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1790 rss_cfg->rss_tuple_sets.ipv6_udp_en =
1791 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1792 rss_cfg->rss_tuple_sets.ipv6_sctp_en =
1793 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
1794 rss_cfg->rss_tuple_sets.ipv6_fragment_en =
1795 HCLGEVF_RSS_INPUT_TUPLE_OTHER;
1796
1797 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
1798 if (ret)
1799 return ret;
1800
1801 }
1802
1803 /* Initialize RSS indirect table for each vport */
1804 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1805 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1806
1807 ret = hclgevf_set_rss_indir_table(hdev);
1808 if (ret)
1809 return ret;
1810
1811 return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1812 }
1813
1814 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1815 {
1816 /* other vlan config(like, VLAN TX/RX offload) would also be added
1817 * here later
1818 */
1819 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1820 false);
1821 }
1822
1823 static int hclgevf_ae_start(struct hnae3_handle *handle)
1824 {
1825 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1826
1827 /* reset tqp stats */
1828 hclgevf_reset_tqp_stats(handle);
1829
1830 hclgevf_request_link_info(hdev);
1831
1832 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1833 mod_timer(&hdev->service_timer, jiffies + HZ);
1834
1835 return 0;
1836 }
1837
1838 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1839 {
1840 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1841
1842 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1843
1844 /* reset tqp stats */
1845 hclgevf_reset_tqp_stats(handle);
1846 del_timer_sync(&hdev->service_timer);
1847 cancel_work_sync(&hdev->service_task);
1848 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1849 hclgevf_update_link_status(hdev, 0);
1850 }
1851
1852 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
1853 {
1854 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1855 u8 msg_data;
1856
1857 msg_data = alive ? 1 : 0;
1858 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_ALIVE,
1859 0, &msg_data, 1, false, NULL, 0);
1860 }
1861
1862 static int hclgevf_client_start(struct hnae3_handle *handle)
1863 {
1864 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1865
1866 mod_timer(&hdev->keep_alive_timer, jiffies + 2 * HZ);
1867 return hclgevf_set_alive(handle, true);
1868 }
1869
1870 static void hclgevf_client_stop(struct hnae3_handle *handle)
1871 {
1872 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1873 int ret;
1874
1875 ret = hclgevf_set_alive(handle, false);
1876 if (ret)
1877 dev_warn(&hdev->pdev->dev,
1878 "%s failed %d\n", __func__, ret);
1879
1880 del_timer_sync(&hdev->keep_alive_timer);
1881 cancel_work_sync(&hdev->keep_alive_task);
1882 }
1883
1884 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1885 {
1886 /* setup tasks for the MBX */
1887 INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1888 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1889 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1890
1891 /* setup tasks for service timer */
1892 timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1893
1894 INIT_WORK(&hdev->service_task, hclgevf_service_task);
1895 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1896
1897 INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1898
1899 mutex_init(&hdev->mbx_resp.mbx_mutex);
1900
1901 /* bring the device down */
1902 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1903 }
1904
1905 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1906 {
1907 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1908
1909 if (hdev->service_timer.function)
1910 del_timer_sync(&hdev->service_timer);
1911 if (hdev->service_task.func)
1912 cancel_work_sync(&hdev->service_task);
1913 if (hdev->mbx_service_task.func)
1914 cancel_work_sync(&hdev->mbx_service_task);
1915 if (hdev->rst_service_task.func)
1916 cancel_work_sync(&hdev->rst_service_task);
1917
1918 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1919 }
1920
1921 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1922 {
1923 struct pci_dev *pdev = hdev->pdev;
1924 int vectors;
1925 int i;
1926
1927 if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B))
1928 vectors = pci_alloc_irq_vectors(pdev,
1929 hdev->roce_base_msix_offset + 1,
1930 hdev->num_msi,
1931 PCI_IRQ_MSIX);
1932 else
1933 vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1934 PCI_IRQ_MSI | PCI_IRQ_MSIX);
1935
1936 if (vectors < 0) {
1937 dev_err(&pdev->dev,
1938 "failed(%d) to allocate MSI/MSI-X vectors\n",
1939 vectors);
1940 return vectors;
1941 }
1942 if (vectors < hdev->num_msi)
1943 dev_warn(&hdev->pdev->dev,
1944 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1945 hdev->num_msi, vectors);
1946
1947 hdev->num_msi = vectors;
1948 hdev->num_msi_left = vectors;
1949 hdev->base_msi_vector = pdev->irq;
1950 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
1951
1952 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1953 sizeof(u16), GFP_KERNEL);
1954 if (!hdev->vector_status) {
1955 pci_free_irq_vectors(pdev);
1956 return -ENOMEM;
1957 }
1958
1959 for (i = 0; i < hdev->num_msi; i++)
1960 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1961
1962 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1963 sizeof(int), GFP_KERNEL);
1964 if (!hdev->vector_irq) {
1965 devm_kfree(&pdev->dev, hdev->vector_status);
1966 pci_free_irq_vectors(pdev);
1967 return -ENOMEM;
1968 }
1969
1970 return 0;
1971 }
1972
1973 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1974 {
1975 struct pci_dev *pdev = hdev->pdev;
1976
1977 devm_kfree(&pdev->dev, hdev->vector_status);
1978 devm_kfree(&pdev->dev, hdev->vector_irq);
1979 pci_free_irq_vectors(pdev);
1980 }
1981
1982 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1983 {
1984 int ret = 0;
1985
1986 hclgevf_get_misc_vector(hdev);
1987
1988 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1989 0, "hclgevf_cmd", hdev);
1990 if (ret) {
1991 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1992 hdev->misc_vector.vector_irq);
1993 return ret;
1994 }
1995
1996 hclgevf_clear_event_cause(hdev, 0);
1997
1998 /* enable misc. vector(vector 0) */
1999 hclgevf_enable_vector(&hdev->misc_vector, true);
2000
2001 return ret;
2002 }
2003
2004 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2005 {
2006 /* disable misc vector(vector 0) */
2007 hclgevf_enable_vector(&hdev->misc_vector, false);
2008 synchronize_irq(hdev->misc_vector.vector_irq);
2009 free_irq(hdev->misc_vector.vector_irq, hdev);
2010 hclgevf_free_vector(hdev, 0);
2011 }
2012
2013 static int hclgevf_init_client_instance(struct hnae3_client *client,
2014 struct hnae3_ae_dev *ae_dev)
2015 {
2016 struct hclgevf_dev *hdev = ae_dev->priv;
2017 int ret;
2018
2019 switch (client->type) {
2020 case HNAE3_CLIENT_KNIC:
2021 hdev->nic_client = client;
2022 hdev->nic.client = client;
2023
2024 ret = client->ops->init_instance(&hdev->nic);
2025 if (ret)
2026 goto clear_nic;
2027
2028 hnae3_set_client_init_flag(client, ae_dev, 1);
2029
2030 if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
2031 struct hnae3_client *rc = hdev->roce_client;
2032
2033 ret = hclgevf_init_roce_base_info(hdev);
2034 if (ret)
2035 goto clear_roce;
2036 ret = rc->ops->init_instance(&hdev->roce);
2037 if (ret)
2038 goto clear_roce;
2039
2040 hnae3_set_client_init_flag(hdev->roce_client, ae_dev,
2041 1);
2042 }
2043 break;
2044 case HNAE3_CLIENT_UNIC:
2045 hdev->nic_client = client;
2046 hdev->nic.client = client;
2047
2048 ret = client->ops->init_instance(&hdev->nic);
2049 if (ret)
2050 goto clear_nic;
2051
2052 hnae3_set_client_init_flag(client, ae_dev, 1);
2053 break;
2054 case HNAE3_CLIENT_ROCE:
2055 if (hnae3_dev_roce_supported(hdev)) {
2056 hdev->roce_client = client;
2057 hdev->roce.client = client;
2058 }
2059
2060 if (hdev->roce_client && hdev->nic_client) {
2061 ret = hclgevf_init_roce_base_info(hdev);
2062 if (ret)
2063 goto clear_roce;
2064
2065 ret = client->ops->init_instance(&hdev->roce);
2066 if (ret)
2067 goto clear_roce;
2068 }
2069
2070 hnae3_set_client_init_flag(client, ae_dev, 1);
2071 break;
2072 default:
2073 return -EINVAL;
2074 }
2075
2076 return 0;
2077
2078 clear_nic:
2079 hdev->nic_client = NULL;
2080 hdev->nic.client = NULL;
2081 return ret;
2082 clear_roce:
2083 hdev->roce_client = NULL;
2084 hdev->roce.client = NULL;
2085 return ret;
2086 }
2087
2088 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2089 struct hnae3_ae_dev *ae_dev)
2090 {
2091 struct hclgevf_dev *hdev = ae_dev->priv;
2092
2093 /* un-init roce, if it exists */
2094 if (hdev->roce_client) {
2095 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2096 hdev->roce_client = NULL;
2097 hdev->roce.client = NULL;
2098 }
2099
2100 /* un-init nic/unic, if this was not called by roce client */
2101 if (client->ops->uninit_instance && hdev->nic_client &&
2102 client->type != HNAE3_CLIENT_ROCE) {
2103 client->ops->uninit_instance(&hdev->nic, 0);
2104 hdev->nic_client = NULL;
2105 hdev->nic.client = NULL;
2106 }
2107 }
2108
2109 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
2110 {
2111 struct pci_dev *pdev = hdev->pdev;
2112 struct hclgevf_hw *hw;
2113 int ret;
2114
2115 ret = pci_enable_device(pdev);
2116 if (ret) {
2117 dev_err(&pdev->dev, "failed to enable PCI device\n");
2118 return ret;
2119 }
2120
2121 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2122 if (ret) {
2123 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
2124 goto err_disable_device;
2125 }
2126
2127 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
2128 if (ret) {
2129 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
2130 goto err_disable_device;
2131 }
2132
2133 pci_set_master(pdev);
2134 hw = &hdev->hw;
2135 hw->hdev = hdev;
2136 hw->io_base = pci_iomap(pdev, 2, 0);
2137 if (!hw->io_base) {
2138 dev_err(&pdev->dev, "can't map configuration register space\n");
2139 ret = -ENOMEM;
2140 goto err_clr_master;
2141 }
2142
2143 return 0;
2144
2145 err_clr_master:
2146 pci_clear_master(pdev);
2147 pci_release_regions(pdev);
2148 err_disable_device:
2149 pci_disable_device(pdev);
2150
2151 return ret;
2152 }
2153
2154 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
2155 {
2156 struct pci_dev *pdev = hdev->pdev;
2157
2158 pci_iounmap(pdev, hdev->hw.io_base);
2159 pci_clear_master(pdev);
2160 pci_release_regions(pdev);
2161 pci_disable_device(pdev);
2162 }
2163
2164 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
2165 {
2166 struct hclgevf_query_res_cmd *req;
2167 struct hclgevf_desc desc;
2168 int ret;
2169
2170 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
2171 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2172 if (ret) {
2173 dev_err(&hdev->pdev->dev,
2174 "query vf resource failed, ret = %d.\n", ret);
2175 return ret;
2176 }
2177
2178 req = (struct hclgevf_query_res_cmd *)desc.data;
2179
2180 if (hnae3_get_bit(hdev->ae_dev->flag, HNAE3_DEV_SUPPORT_ROCE_B)) {
2181 hdev->roce_base_msix_offset =
2182 hnae3_get_field(__le16_to_cpu(req->msixcap_localid_ba_rocee),
2183 HCLGEVF_MSIX_OFT_ROCEE_M,
2184 HCLGEVF_MSIX_OFT_ROCEE_S);
2185 hdev->num_roce_msix =
2186 hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2187 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2188
2189 /* VF should have NIC vectors and Roce vectors, NIC vectors
2190 * are queued before Roce vectors. The offset is fixed to 64.
2191 */
2192 hdev->num_msi = hdev->num_roce_msix +
2193 hdev->roce_base_msix_offset;
2194 } else {
2195 hdev->num_msi =
2196 hnae3_get_field(__le16_to_cpu(req->vf_intr_vector_number),
2197 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
2198 }
2199
2200 return 0;
2201 }
2202
2203 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
2204 {
2205 struct pci_dev *pdev = hdev->pdev;
2206 int ret = 0;
2207
2208 if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
2209 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2210 hclgevf_misc_irq_uninit(hdev);
2211 hclgevf_uninit_msi(hdev);
2212 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2213 }
2214
2215 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2216 pci_set_master(pdev);
2217 ret = hclgevf_init_msi(hdev);
2218 if (ret) {
2219 dev_err(&pdev->dev,
2220 "failed(%d) to init MSI/MSI-X\n", ret);
2221 return ret;
2222 }
2223
2224 ret = hclgevf_misc_irq_init(hdev);
2225 if (ret) {
2226 hclgevf_uninit_msi(hdev);
2227 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2228 ret);
2229 return ret;
2230 }
2231
2232 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2233 }
2234
2235 return ret;
2236 }
2237
2238 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
2239 {
2240 struct pci_dev *pdev = hdev->pdev;
2241 int ret;
2242
2243 ret = hclgevf_pci_reset(hdev);
2244 if (ret) {
2245 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
2246 return ret;
2247 }
2248
2249 ret = hclgevf_cmd_init(hdev);
2250 if (ret) {
2251 dev_err(&pdev->dev, "cmd failed %d\n", ret);
2252 return ret;
2253 }
2254
2255 ret = hclgevf_rss_init_hw(hdev);
2256 if (ret) {
2257 dev_err(&hdev->pdev->dev,
2258 "failed(%d) to initialize RSS\n", ret);
2259 return ret;
2260 }
2261
2262 ret = hclgevf_config_gro(hdev, true);
2263 if (ret)
2264 return ret;
2265
2266 ret = hclgevf_init_vlan_config(hdev);
2267 if (ret) {
2268 dev_err(&hdev->pdev->dev,
2269 "failed(%d) to initialize VLAN config\n", ret);
2270 return ret;
2271 }
2272
2273 dev_info(&hdev->pdev->dev, "Reset done\n");
2274
2275 return 0;
2276 }
2277
2278 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
2279 {
2280 struct pci_dev *pdev = hdev->pdev;
2281 int ret;
2282
2283 ret = hclgevf_pci_init(hdev);
2284 if (ret) {
2285 dev_err(&pdev->dev, "PCI initialization failed\n");
2286 return ret;
2287 }
2288
2289 ret = hclgevf_cmd_queue_init(hdev);
2290 if (ret) {
2291 dev_err(&pdev->dev, "Cmd queue init failed: %d\n", ret);
2292 goto err_cmd_queue_init;
2293 }
2294
2295 ret = hclgevf_cmd_init(hdev);
2296 if (ret)
2297 goto err_cmd_init;
2298
2299 /* Get vf resource */
2300 ret = hclgevf_query_vf_resource(hdev);
2301 if (ret) {
2302 dev_err(&hdev->pdev->dev,
2303 "Query vf status error, ret = %d.\n", ret);
2304 goto err_cmd_init;
2305 }
2306
2307 ret = hclgevf_init_msi(hdev);
2308 if (ret) {
2309 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
2310 goto err_cmd_init;
2311 }
2312
2313 hclgevf_state_init(hdev);
2314 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2315
2316 ret = hclgevf_misc_irq_init(hdev);
2317 if (ret) {
2318 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
2319 ret);
2320 goto err_misc_irq_init;
2321 }
2322
2323 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2324
2325 ret = hclgevf_configure(hdev);
2326 if (ret) {
2327 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
2328 goto err_config;
2329 }
2330
2331 ret = hclgevf_alloc_tqps(hdev);
2332 if (ret) {
2333 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
2334 goto err_config;
2335 }
2336
2337 ret = hclgevf_set_handle_info(hdev);
2338 if (ret) {
2339 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
2340 goto err_config;
2341 }
2342
2343 ret = hclgevf_config_gro(hdev, true);
2344 if (ret)
2345 goto err_config;
2346
2347 /* Initialize RSS for this VF */
2348 ret = hclgevf_rss_init_hw(hdev);
2349 if (ret) {
2350 dev_err(&hdev->pdev->dev,
2351 "failed(%d) to initialize RSS\n", ret);
2352 goto err_config;
2353 }
2354
2355 ret = hclgevf_init_vlan_config(hdev);
2356 if (ret) {
2357 dev_err(&hdev->pdev->dev,
2358 "failed(%d) to initialize VLAN config\n", ret);
2359 goto err_config;
2360 }
2361
2362 hdev->last_reset_time = jiffies;
2363 pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
2364
2365 return 0;
2366
2367 err_config:
2368 hclgevf_misc_irq_uninit(hdev);
2369 err_misc_irq_init:
2370 hclgevf_state_uninit(hdev);
2371 hclgevf_uninit_msi(hdev);
2372 err_cmd_init:
2373 hclgevf_cmd_uninit(hdev);
2374 err_cmd_queue_init:
2375 hclgevf_pci_uninit(hdev);
2376 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
2377 return ret;
2378 }
2379
2380 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
2381 {
2382 hclgevf_state_uninit(hdev);
2383
2384 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
2385 hclgevf_misc_irq_uninit(hdev);
2386 hclgevf_uninit_msi(hdev);
2387 hclgevf_pci_uninit(hdev);
2388 }
2389
2390 hclgevf_cmd_uninit(hdev);
2391 }
2392
2393 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
2394 {
2395 struct pci_dev *pdev = ae_dev->pdev;
2396 struct hclgevf_dev *hdev;
2397 int ret;
2398
2399 ret = hclgevf_alloc_hdev(ae_dev);
2400 if (ret) {
2401 dev_err(&pdev->dev, "hclge device allocation failed\n");
2402 return ret;
2403 }
2404
2405 ret = hclgevf_init_hdev(ae_dev->priv);
2406 if (ret) {
2407 dev_err(&pdev->dev, "hclge device initialization failed\n");
2408 return ret;
2409 }
2410
2411 hdev = ae_dev->priv;
2412 timer_setup(&hdev->keep_alive_timer, hclgevf_keep_alive_timer, 0);
2413 INIT_WORK(&hdev->keep_alive_task, hclgevf_keep_alive_task);
2414
2415 return 0;
2416 }
2417
2418 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
2419 {
2420 struct hclgevf_dev *hdev = ae_dev->priv;
2421
2422 hclgevf_uninit_hdev(hdev);
2423 ae_dev->priv = NULL;
2424 }
2425
2426 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
2427 {
2428 struct hnae3_handle *nic = &hdev->nic;
2429 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
2430
2431 return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
2432 }
2433
2434 /**
2435 * hclgevf_get_channels - Get the current channels enabled and max supported.
2436 * @handle: hardware information for network interface
2437 * @ch: ethtool channels structure
2438 *
2439 * We don't support separate tx and rx queues as channels. The other count
2440 * represents how many queues are being used for control. max_combined counts
2441 * how many queue pairs we can support. They may not be mapped 1 to 1 with
2442 * q_vectors since we support a lot more queue pairs than q_vectors.
2443 **/
2444 static void hclgevf_get_channels(struct hnae3_handle *handle,
2445 struct ethtool_channels *ch)
2446 {
2447 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2448
2449 ch->max_combined = hclgevf_get_max_channels(hdev);
2450 ch->other_count = 0;
2451 ch->max_other = 0;
2452 ch->combined_count = hdev->num_tqps;
2453 }
2454
2455 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
2456 u16 *alloc_tqps, u16 *max_rss_size)
2457 {
2458 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2459
2460 *alloc_tqps = hdev->num_tqps;
2461 *max_rss_size = hdev->rss_size_max;
2462 }
2463
2464 static int hclgevf_get_status(struct hnae3_handle *handle)
2465 {
2466 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2467
2468 return hdev->hw.mac.link;
2469 }
2470
2471 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
2472 u8 *auto_neg, u32 *speed,
2473 u8 *duplex)
2474 {
2475 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2476
2477 if (speed)
2478 *speed = hdev->hw.mac.speed;
2479 if (duplex)
2480 *duplex = hdev->hw.mac.duplex;
2481 if (auto_neg)
2482 *auto_neg = AUTONEG_DISABLE;
2483 }
2484
2485 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
2486 u8 duplex)
2487 {
2488 hdev->hw.mac.speed = speed;
2489 hdev->hw.mac.duplex = duplex;
2490 }
2491
2492 static void hclgevf_get_media_type(struct hnae3_handle *handle,
2493 u8 *media_type)
2494 {
2495 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2496 if (media_type)
2497 *media_type = hdev->hw.mac.media_type;
2498 }
2499
2500 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
2501 {
2502 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2503
2504 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2505 }
2506
2507 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
2508 {
2509 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2510
2511 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2512 }
2513
2514 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
2515 {
2516 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2517
2518 return hdev->reset_count;
2519 }
2520
2521 #define MAX_SEPARATE_NUM 4
2522 #define SEPARATOR_VALUE 0xFFFFFFFF
2523 #define REG_NUM_PER_LINE 4
2524 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
2525
2526 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
2527 {
2528 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
2529 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2530
2531 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
2532 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
2533 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
2534 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
2535
2536 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
2537 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
2538 }
2539
2540 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
2541 void *data)
2542 {
2543 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2544 int i, j, reg_um, separator_num;
2545 u32 *reg = data;
2546
2547 *version = hdev->fw_version;
2548
2549 /* fetching per-VF registers values from VF PCIe register space */
2550 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
2551 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2552 for (i = 0; i < reg_um; i++)
2553 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
2554 for (i = 0; i < separator_num; i++)
2555 *reg++ = SEPARATOR_VALUE;
2556
2557 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
2558 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2559 for (i = 0; i < reg_um; i++)
2560 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
2561 for (i = 0; i < separator_num; i++)
2562 *reg++ = SEPARATOR_VALUE;
2563
2564 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
2565 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2566 for (j = 0; j < hdev->num_tqps; j++) {
2567 for (i = 0; i < reg_um; i++)
2568 *reg++ = hclgevf_read_dev(&hdev->hw,
2569 ring_reg_addr_list[i] +
2570 0x200 * j);
2571 for (i = 0; i < separator_num; i++)
2572 *reg++ = SEPARATOR_VALUE;
2573 }
2574
2575 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
2576 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
2577 for (j = 0; j < hdev->num_msi_used - 1; j++) {
2578 for (i = 0; i < reg_um; i++)
2579 *reg++ = hclgevf_read_dev(&hdev->hw,
2580 tqp_intr_reg_addr_list[i] +
2581 4 * j);
2582 for (i = 0; i < separator_num; i++)
2583 *reg++ = SEPARATOR_VALUE;
2584 }
2585 }
2586
2587 static const struct hnae3_ae_ops hclgevf_ops = {
2588 .init_ae_dev = hclgevf_init_ae_dev,
2589 .uninit_ae_dev = hclgevf_uninit_ae_dev,
2590 .flr_prepare = hclgevf_flr_prepare,
2591 .flr_done = hclgevf_flr_done,
2592 .init_client_instance = hclgevf_init_client_instance,
2593 .uninit_client_instance = hclgevf_uninit_client_instance,
2594 .start = hclgevf_ae_start,
2595 .stop = hclgevf_ae_stop,
2596 .client_start = hclgevf_client_start,
2597 .client_stop = hclgevf_client_stop,
2598 .map_ring_to_vector = hclgevf_map_ring_to_vector,
2599 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
2600 .get_vector = hclgevf_get_vector,
2601 .put_vector = hclgevf_put_vector,
2602 .reset_queue = hclgevf_reset_tqp,
2603 .set_promisc_mode = hclgevf_set_promisc_mode,
2604 .get_mac_addr = hclgevf_get_mac_addr,
2605 .set_mac_addr = hclgevf_set_mac_addr,
2606 .add_uc_addr = hclgevf_add_uc_addr,
2607 .rm_uc_addr = hclgevf_rm_uc_addr,
2608 .add_mc_addr = hclgevf_add_mc_addr,
2609 .rm_mc_addr = hclgevf_rm_mc_addr,
2610 .get_stats = hclgevf_get_stats,
2611 .update_stats = hclgevf_update_stats,
2612 .get_strings = hclgevf_get_strings,
2613 .get_sset_count = hclgevf_get_sset_count,
2614 .get_rss_key_size = hclgevf_get_rss_key_size,
2615 .get_rss_indir_size = hclgevf_get_rss_indir_size,
2616 .get_rss = hclgevf_get_rss,
2617 .set_rss = hclgevf_set_rss,
2618 .get_rss_tuple = hclgevf_get_rss_tuple,
2619 .set_rss_tuple = hclgevf_set_rss_tuple,
2620 .get_tc_size = hclgevf_get_tc_size,
2621 .get_fw_version = hclgevf_get_fw_version,
2622 .set_vlan_filter = hclgevf_set_vlan_filter,
2623 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
2624 .reset_event = hclgevf_reset_event,
2625 .set_default_reset_request = hclgevf_set_def_reset_request,
2626 .get_channels = hclgevf_get_channels,
2627 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
2628 .get_regs_len = hclgevf_get_regs_len,
2629 .get_regs = hclgevf_get_regs,
2630 .get_status = hclgevf_get_status,
2631 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
2632 .get_media_type = hclgevf_get_media_type,
2633 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
2634 .ae_dev_resetting = hclgevf_ae_dev_resetting,
2635 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
2636 .set_mtu = hclgevf_set_mtu,
2637 };
2638
2639 static struct hnae3_ae_algo ae_algovf = {
2640 .ops = &hclgevf_ops,
2641 .pdev_id_table = ae_algovf_pci_tbl,
2642 };
2643
2644 static int hclgevf_init(void)
2645 {
2646 pr_info("%s is initializing\n", HCLGEVF_NAME);
2647
2648 hnae3_register_ae_algo(&ae_algovf);
2649
2650 return 0;
2651 }
2652
2653 static void hclgevf_exit(void)
2654 {
2655 hnae3_unregister_ae_algo(&ae_algovf);
2656 }
2657 module_init(hclgevf_init);
2658 module_exit(hclgevf_exit);
2659
2660 MODULE_LICENSE("GPL");
2661 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
2662 MODULE_DESCRIPTION("HCLGEVF Driver");
2663 MODULE_VERSION(HCLGEVF_MOD_VERSION);