]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c
UBUNTU: SAUCE: {topost} net: hns3: Use roce handle when calling roce callback function
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10
11 #define HCLGEVF_NAME "hclgevf"
12
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 /* required last entry */
21 {0, }
22 };
23
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 struct hnae3_handle *handle)
28 {
29 return container_of(handle, struct hclgevf_dev, nic);
30 }
31
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35 struct hnae3_queue *queue;
36 struct hclgevf_desc desc;
37 struct hclgevf_tqp *tqp;
38 int status;
39 int i;
40
41 for (i = 0; i < hdev->num_tqps; i++) {
42 queue = handle->kinfo.tqp[i];
43 tqp = container_of(queue, struct hclgevf_tqp, q);
44 hclgevf_cmd_setup_basic_desc(&desc,
45 HCLGEVF_OPC_QUERY_RX_STATUS,
46 true);
47
48 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50 if (status) {
51 dev_err(&hdev->pdev->dev,
52 "Query tqp stat fail, status = %d,queue = %d\n",
53 status, i);
54 return status;
55 }
56 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57 le32_to_cpu(desc.data[1]);
58
59 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60 true);
61
62 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64 if (status) {
65 dev_err(&hdev->pdev->dev,
66 "Query tqp stat fail, status = %d,queue = %d\n",
67 status, i);
68 return status;
69 }
70 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71 le32_to_cpu(desc.data[1]);
72 }
73
74 return 0;
75 }
76
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81 struct hclgevf_tqp *tqp;
82 u64 *buff = data;
83 int i;
84
85 for (i = 0; i < hdev->num_tqps; i++) {
86 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88 }
89 for (i = 0; i < kinfo->num_tqps; i++) {
90 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92 }
93
94 return buff;
95 }
96
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100
101 return hdev->num_tqps * 2;
102 }
103
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107 u8 *buff = data;
108 int i = 0;
109
110 for (i = 0; i < hdev->num_tqps; i++) {
111 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112 struct hclgevf_tqp, q);
113 snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114 tqp->index);
115 buff += ETH_GSTRING_LEN;
116 }
117
118 for (i = 0; i < hdev->num_tqps; i++) {
119 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120 struct hclgevf_tqp, q);
121 snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122 tqp->index);
123 buff += ETH_GSTRING_LEN;
124 }
125
126 return buff;
127 }
128
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130 struct net_device_stats *net_stats)
131 {
132 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133 int status;
134
135 status = hclgevf_tqps_update_stats(handle);
136 if (status)
137 dev_err(&hdev->pdev->dev,
138 "VF update of TQPS stats fail, status = %d.\n",
139 status);
140 }
141
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144 if (strset == ETH_SS_TEST)
145 return -EOPNOTSUPP;
146 else if (strset == ETH_SS_STATS)
147 return hclgevf_tqps_get_sset_count(handle, strset);
148
149 return 0;
150 }
151
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153 u8 *data)
154 {
155 u8 *p = (char *)data;
156
157 if (strset == ETH_SS_STATS)
158 p = hclgevf_tqps_get_strings(handle, p);
159 }
160
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163 hclgevf_tqps_get_stats(handle, data);
164 }
165
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168 u8 resp_msg;
169 int status;
170
171 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172 true, &resp_msg, sizeof(u8));
173 if (status) {
174 dev_err(&hdev->pdev->dev,
175 "VF request to get TC info from PF failed %d",
176 status);
177 return status;
178 }
179
180 hdev->hw_tc_map = resp_msg;
181
182 return 0;
183 }
184
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN 8
188 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189 int status;
190
191 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192 true, resp_msg,
193 HCLGEVF_TQPS_RSS_INFO_LEN);
194 if (status) {
195 dev_err(&hdev->pdev->dev,
196 "VF request to get tqp info from PF failed %d",
197 status);
198 return status;
199 }
200
201 memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202 memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203 memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204 memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205
206 return 0;
207 }
208
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211 struct hclgevf_tqp *tqp;
212 int i;
213
214 /* if this is on going reset then we need to re-allocate the TPQs
215 * since we cannot assume we would get same number of TPQs back from PF
216 */
217 if (hclgevf_dev_ongoing_reset(hdev))
218 devm_kfree(&hdev->pdev->dev, hdev->htqp);
219
220 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221 sizeof(struct hclgevf_tqp), GFP_KERNEL);
222 if (!hdev->htqp)
223 return -ENOMEM;
224
225 tqp = hdev->htqp;
226
227 for (i = 0; i < hdev->num_tqps; i++) {
228 tqp->dev = &hdev->pdev->dev;
229 tqp->index = i;
230
231 tqp->q.ae_algo = &ae_algovf;
232 tqp->q.buf_size = hdev->rx_buf_len;
233 tqp->q.desc_num = hdev->num_desc;
234 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235 i * HCLGEVF_TQP_REG_SIZE;
236
237 tqp++;
238 }
239
240 return 0;
241 }
242
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245 struct hnae3_handle *nic = &hdev->nic;
246 struct hnae3_knic_private_info *kinfo;
247 u16 new_tqps = hdev->num_tqps;
248 int i;
249
250 kinfo = &nic->kinfo;
251 kinfo->num_tc = 0;
252 kinfo->num_desc = hdev->num_desc;
253 kinfo->rx_buf_len = hdev->rx_buf_len;
254 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255 if (hdev->hw_tc_map & BIT(i))
256 kinfo->num_tc++;
257
258 kinfo->rss_size
259 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260 new_tqps = kinfo->rss_size * kinfo->num_tc;
261 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262
263 /* if this is on going reset then we need to re-allocate the hnae queues
264 * as well since number of TPQs from PF might have changed.
265 */
266 if (hclgevf_dev_ongoing_reset(hdev))
267 devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268
269 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270 sizeof(struct hnae3_queue *), GFP_KERNEL);
271 if (!kinfo->tqp)
272 return -ENOMEM;
273
274 for (i = 0; i < kinfo->num_tqps; i++) {
275 hdev->htqp[i].q.handle = &hdev->nic;
276 hdev->htqp[i].q.tqp_index = i;
277 kinfo->tqp[i] = &hdev->htqp[i].q;
278 }
279
280 return 0;
281 }
282
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285 int status;
286 u8 resp_msg;
287
288 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289 0, false, &resp_msg, sizeof(u8));
290 if (status)
291 dev_err(&hdev->pdev->dev,
292 "VF failed to fetch link status(%d) from PF", status);
293 }
294
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297 struct hnae3_handle *rhandle = &hdev->roce;
298 struct hnae3_handle *handle = &hdev->nic;
299 struct hnae3_client *rclient;
300 struct hnae3_client *client;
301
302 client = handle->client;
303 rclient = hdev->roce_client;
304
305 if (link_state != hdev->hw.mac.link) {
306 client->ops->link_status_change(handle, !!link_state);
307 if (rclient && rclient->ops->link_status_change)
308 rclient->ops->link_status_change(rhandle, !!link_state);
309 hdev->hw.mac.link = link_state;
310 }
311 }
312
313 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
314 {
315 struct hnae3_handle *nic = &hdev->nic;
316 int ret;
317
318 nic->ae_algo = &ae_algovf;
319 nic->pdev = hdev->pdev;
320 nic->numa_node_mask = hdev->numa_node_mask;
321 nic->flags |= HNAE3_SUPPORT_VF;
322
323 if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
324 dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
325 hdev->ae_dev->dev_type);
326 return -EINVAL;
327 }
328
329 ret = hclgevf_knic_setup(hdev);
330 if (ret)
331 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
332 ret);
333 return ret;
334 }
335
336 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
337 {
338 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
339 dev_warn(&hdev->pdev->dev,
340 "vector(vector_id %d) has been freed.\n", vector_id);
341 return;
342 }
343
344 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
345 hdev->num_msi_left += 1;
346 hdev->num_msi_used -= 1;
347 }
348
349 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
350 struct hnae3_vector_info *vector_info)
351 {
352 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
353 struct hnae3_vector_info *vector = vector_info;
354 int alloc = 0;
355 int i, j;
356
357 vector_num = min(hdev->num_msi_left, vector_num);
358
359 for (j = 0; j < vector_num; j++) {
360 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
361 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
362 vector->vector = pci_irq_vector(hdev->pdev, i);
363 vector->io_addr = hdev->hw.io_base +
364 HCLGEVF_VECTOR_REG_BASE +
365 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
366 hdev->vector_status[i] = 0;
367 hdev->vector_irq[i] = vector->vector;
368
369 vector++;
370 alloc++;
371
372 break;
373 }
374 }
375 }
376 hdev->num_msi_left -= alloc;
377 hdev->num_msi_used += alloc;
378
379 return alloc;
380 }
381
382 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
383 {
384 int i;
385
386 for (i = 0; i < hdev->num_msi; i++)
387 if (vector == hdev->vector_irq[i])
388 return i;
389
390 return -EINVAL;
391 }
392
393 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
394 {
395 return HCLGEVF_RSS_KEY_SIZE;
396 }
397
398 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
399 {
400 return HCLGEVF_RSS_IND_TBL_SIZE;
401 }
402
403 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
404 {
405 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
406 struct hclgevf_rss_indirection_table_cmd *req;
407 struct hclgevf_desc desc;
408 int status;
409 int i, j;
410
411 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
412
413 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
414 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
415 false);
416 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
417 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
418 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
419 req->rss_result[j] =
420 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
421
422 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
423 if (status) {
424 dev_err(&hdev->pdev->dev,
425 "VF failed(=%d) to set RSS indirection table\n",
426 status);
427 return status;
428 }
429 }
430
431 return 0;
432 }
433
434 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
435 {
436 struct hclgevf_rss_tc_mode_cmd *req;
437 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
438 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
439 u16 tc_size[HCLGEVF_MAX_TC_NUM];
440 struct hclgevf_desc desc;
441 u16 roundup_size;
442 int status;
443 int i;
444
445 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
446
447 roundup_size = roundup_pow_of_two(rss_size);
448 roundup_size = ilog2(roundup_size);
449
450 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
451 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
452 tc_size[i] = roundup_size;
453 tc_offset[i] = rss_size * i;
454 }
455
456 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
457 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
458 hnae3_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
459 (tc_valid[i] & 0x1));
460 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
461 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
462 hnae3_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
463 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
464 }
465 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
466 if (status)
467 dev_err(&hdev->pdev->dev,
468 "VF failed(=%d) to set rss tc mode\n", status);
469
470 return status;
471 }
472
473 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
474 u8 *key)
475 {
476 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
477 struct hclgevf_rss_config_cmd *req;
478 int lkup_times = key ? 3 : 1;
479 struct hclgevf_desc desc;
480 int key_offset;
481 int key_size;
482 int status;
483
484 req = (struct hclgevf_rss_config_cmd *)desc.data;
485 lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
486
487 for (key_offset = 0; key_offset < lkup_times; key_offset++) {
488 hclgevf_cmd_setup_basic_desc(&desc,
489 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
490 true);
491 req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
492
493 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
494 if (status) {
495 dev_err(&hdev->pdev->dev,
496 "failed to get hardware RSS cfg, status = %d\n",
497 status);
498 return status;
499 }
500
501 if (key_offset == 2)
502 key_size =
503 HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
504 else
505 key_size = HCLGEVF_RSS_HASH_KEY_NUM;
506
507 if (key)
508 memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
509 req->hash_key,
510 key_size);
511 }
512
513 if (hash) {
514 if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
515 *hash = ETH_RSS_HASH_TOP;
516 else
517 *hash = ETH_RSS_HASH_UNKNOWN;
518 }
519
520 return 0;
521 }
522
523 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
524 u8 *hfunc)
525 {
526 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
527 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
528 int i;
529
530 if (indir)
531 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
532 indir[i] = rss_cfg->rss_indirection_tbl[i];
533
534 return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
535 }
536
537 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
538 const u8 *key, const u8 hfunc)
539 {
540 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
541 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
542 int i;
543
544 /* update the shadow RSS table with user specified qids */
545 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
546 rss_cfg->rss_indirection_tbl[i] = indir[i];
547
548 /* update the hardware */
549 return hclgevf_set_rss_indir_table(hdev);
550 }
551
552 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
553 {
554 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
555 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
556
557 return rss_cfg->rss_size;
558 }
559
560 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
561 int vector_id,
562 struct hnae3_ring_chain_node *ring_chain)
563 {
564 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
565 struct hnae3_ring_chain_node *node;
566 struct hclge_mbx_vf_to_pf_cmd *req;
567 struct hclgevf_desc desc;
568 int i = 0;
569 int status;
570 u8 type;
571
572 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
573
574 for (node = ring_chain; node; node = node->next) {
575 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
576 HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
577
578 if (i == 0) {
579 hclgevf_cmd_setup_basic_desc(&desc,
580 HCLGEVF_OPC_MBX_VF_TO_PF,
581 false);
582 type = en ?
583 HCLGE_MBX_MAP_RING_TO_VECTOR :
584 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
585 req->msg[0] = type;
586 req->msg[1] = vector_id;
587 }
588
589 req->msg[idx_offset] =
590 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
591 req->msg[idx_offset + 1] = node->tqp_index;
592 req->msg[idx_offset + 2] = hnae3_get_field(node->int_gl_idx,
593 HNAE3_RING_GL_IDX_M,
594 HNAE3_RING_GL_IDX_S);
595
596 i++;
597 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
598 HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
599 HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
600 !node->next) {
601 req->msg[2] = i;
602
603 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
604 if (status) {
605 dev_err(&hdev->pdev->dev,
606 "Map TQP fail, status is %d.\n",
607 status);
608 return status;
609 }
610 i = 0;
611 hclgevf_cmd_setup_basic_desc(&desc,
612 HCLGEVF_OPC_MBX_VF_TO_PF,
613 false);
614 req->msg[0] = type;
615 req->msg[1] = vector_id;
616 }
617 }
618
619 return 0;
620 }
621
622 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
623 struct hnae3_ring_chain_node *ring_chain)
624 {
625 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
626 int vector_id;
627
628 vector_id = hclgevf_get_vector_index(hdev, vector);
629 if (vector_id < 0) {
630 dev_err(&handle->pdev->dev,
631 "Get vector index fail. ret =%d\n", vector_id);
632 return vector_id;
633 }
634
635 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
636 }
637
638 static int hclgevf_unmap_ring_from_vector(
639 struct hnae3_handle *handle,
640 int vector,
641 struct hnae3_ring_chain_node *ring_chain)
642 {
643 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
644 int ret, vector_id;
645
646 vector_id = hclgevf_get_vector_index(hdev, vector);
647 if (vector_id < 0) {
648 dev_err(&handle->pdev->dev,
649 "Get vector index fail. ret =%d\n", vector_id);
650 return vector_id;
651 }
652
653 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
654 if (ret)
655 dev_err(&handle->pdev->dev,
656 "Unmap ring from vector fail. vector=%d, ret =%d\n",
657 vector_id,
658 ret);
659
660 return ret;
661 }
662
663 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
664 {
665 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
666 int vector_id;
667
668 vector_id = hclgevf_get_vector_index(hdev, vector);
669 if (vector_id < 0) {
670 dev_err(&handle->pdev->dev,
671 "hclgevf_put_vector get vector index fail. ret =%d\n",
672 vector_id);
673 return vector_id;
674 }
675
676 hclgevf_free_vector(hdev, vector_id);
677
678 return 0;
679 }
680
681 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
682 bool en_uc_pmc, bool en_mc_pmc)
683 {
684 struct hclge_mbx_vf_to_pf_cmd *req;
685 struct hclgevf_desc desc;
686 int status;
687
688 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
689
690 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
691 req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
692 req->msg[1] = en_uc_pmc ? 1 : 0;
693 req->msg[2] = en_mc_pmc ? 1 : 0;
694
695 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
696 if (status)
697 dev_err(&hdev->pdev->dev,
698 "Set promisc mode fail, status is %d.\n", status);
699
700 return status;
701 }
702
703 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
704 bool en_uc_pmc, bool en_mc_pmc)
705 {
706 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
707
708 hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
709 }
710
711 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
712 int stream_id, bool enable)
713 {
714 struct hclgevf_cfg_com_tqp_queue_cmd *req;
715 struct hclgevf_desc desc;
716 int status;
717
718 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
719
720 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
721 false);
722 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
723 req->stream_id = cpu_to_le16(stream_id);
724 req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
725
726 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
727 if (status)
728 dev_err(&hdev->pdev->dev,
729 "TQP enable fail, status =%d.\n", status);
730
731 return status;
732 }
733
734 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
735 {
736 struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
737
738 return tqp->index;
739 }
740
741 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
742 {
743 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
744 struct hnae3_queue *queue;
745 struct hclgevf_tqp *tqp;
746 int i;
747
748 for (i = 0; i < hdev->num_tqps; i++) {
749 queue = handle->kinfo.tqp[i];
750 tqp = container_of(queue, struct hclgevf_tqp, q);
751 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
752 }
753 }
754
755 static int hclgevf_cfg_func_mta_type(struct hclgevf_dev *hdev)
756 {
757 u8 resp_msg = HCLGEVF_MTA_TYPE_SEL_MAX;
758 int ret;
759
760 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
761 HCLGE_MBX_MAC_VLAN_MTA_TYPE_READ,
762 NULL, 0, true, &resp_msg, sizeof(u8));
763
764 if (ret) {
765 dev_err(&hdev->pdev->dev,
766 "Read mta type fail, ret=%d.\n", ret);
767 return ret;
768 }
769
770 if (resp_msg > HCLGEVF_MTA_TYPE_SEL_MAX) {
771 dev_err(&hdev->pdev->dev,
772 "Read mta type invalid, resp=%d.\n", resp_msg);
773 return -EINVAL;
774 }
775
776 hdev->mta_mac_sel_type = resp_msg;
777
778 return 0;
779 }
780
781 static u16 hclgevf_get_mac_addr_to_mta_index(struct hclgevf_dev *hdev,
782 const u8 *addr)
783 {
784 u32 rsh = HCLGEVF_MTA_TYPE_SEL_MAX - hdev->mta_mac_sel_type;
785 u16 high_val = addr[1] | (addr[0] << 8);
786
787 return (high_val >> rsh) & 0xfff;
788 }
789
790 static int hclgevf_do_update_mta_status(struct hclgevf_dev *hdev,
791 unsigned long *status)
792 {
793 #define HCLGEVF_MTA_STATUS_MSG_SIZE 13
794 #define HCLGEVF_MTA_STATUS_MSG_BITS \
795 (HCLGEVF_MTA_STATUS_MSG_SIZE * BITS_PER_BYTE)
796 #define HCLGEVF_MTA_STATUS_MSG_END_BITS \
797 (HCLGEVF_MTA_TBL_SIZE % HCLGEVF_MTA_STATUS_MSG_BITS)
798 u16 tbl_cnt;
799 u16 tbl_idx;
800 u8 msg_cnt;
801 u8 msg_idx;
802 int ret;
803
804 msg_cnt = DIV_ROUND_UP(HCLGEVF_MTA_TBL_SIZE,
805 HCLGEVF_MTA_STATUS_MSG_BITS);
806 tbl_idx = 0;
807 msg_idx = 0;
808 while (msg_cnt--) {
809 u8 msg[HCLGEVF_MTA_STATUS_MSG_SIZE + 1];
810 u8 *p = &msg[1];
811 u8 msg_ofs;
812 u8 msg_bit;
813
814 memset(msg, 0, sizeof(msg));
815
816 /* set index field */
817 msg[0] = 0x7F & msg_idx;
818
819 /* set end flag field */
820 if (msg_cnt == 0) {
821 msg[0] |= 0x80;
822 tbl_cnt = HCLGEVF_MTA_STATUS_MSG_END_BITS;
823 } else {
824 tbl_cnt = HCLGEVF_MTA_STATUS_MSG_BITS;
825 }
826
827 /* set status field */
828 msg_ofs = 0;
829 msg_bit = 0;
830 while (tbl_cnt--) {
831 if (test_bit(tbl_idx, status))
832 p[msg_ofs] |= BIT(msg_bit);
833
834 tbl_idx++;
835
836 msg_bit++;
837 if (msg_bit == BITS_PER_BYTE) {
838 msg_bit = 0;
839 msg_ofs++;
840 }
841 }
842
843 ret = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
844 HCLGE_MBX_MAC_VLAN_MTA_STATUS_UPDATE,
845 msg, sizeof(msg), false, NULL, 0);
846 if (ret)
847 break;
848
849 msg_idx++;
850 }
851
852 return ret;
853 }
854
855 static int hclgevf_update_mta_status(struct hnae3_handle *handle)
856 {
857 unsigned long mta_status[BITS_TO_LONGS(HCLGEVF_MTA_TBL_SIZE)];
858 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
859 struct net_device *netdev = hdev->nic.kinfo.netdev;
860 struct netdev_hw_addr *ha;
861 u16 tbl_idx;
862
863 /* clear status */
864 memset(mta_status, 0, sizeof(mta_status));
865
866 /* update status from mc addr list */
867 netdev_for_each_mc_addr(ha, netdev) {
868 tbl_idx = hclgevf_get_mac_addr_to_mta_index(hdev, ha->addr);
869 set_bit(tbl_idx, mta_status);
870 }
871
872 return hclgevf_do_update_mta_status(hdev, mta_status);
873 }
874
875 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
876 {
877 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
878
879 ether_addr_copy(p, hdev->hw.mac.mac_addr);
880 }
881
882 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
883 bool is_first)
884 {
885 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
886 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
887 u8 *new_mac_addr = (u8 *)p;
888 u8 msg_data[ETH_ALEN * 2];
889 u16 subcode;
890 int status;
891
892 ether_addr_copy(msg_data, new_mac_addr);
893 ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
894
895 subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
896 HCLGE_MBX_MAC_VLAN_UC_MODIFY;
897
898 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
899 subcode, msg_data, ETH_ALEN * 2,
900 true, NULL, 0);
901 if (!status)
902 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
903
904 return status;
905 }
906
907 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
908 const unsigned char *addr)
909 {
910 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
911
912 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
913 HCLGE_MBX_MAC_VLAN_UC_ADD,
914 addr, ETH_ALEN, false, NULL, 0);
915 }
916
917 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
918 const unsigned char *addr)
919 {
920 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
921
922 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
923 HCLGE_MBX_MAC_VLAN_UC_REMOVE,
924 addr, ETH_ALEN, false, NULL, 0);
925 }
926
927 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
928 const unsigned char *addr)
929 {
930 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
931
932 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
933 HCLGE_MBX_MAC_VLAN_MC_ADD,
934 addr, ETH_ALEN, false, NULL, 0);
935 }
936
937 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
938 const unsigned char *addr)
939 {
940 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
941
942 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
943 HCLGE_MBX_MAC_VLAN_MC_REMOVE,
944 addr, ETH_ALEN, false, NULL, 0);
945 }
946
947 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
948 __be16 proto, u16 vlan_id,
949 bool is_kill)
950 {
951 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
952 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
953 u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
954
955 if (vlan_id > 4095)
956 return -EINVAL;
957
958 if (proto != htons(ETH_P_8021Q))
959 return -EPROTONOSUPPORT;
960
961 msg_data[0] = is_kill;
962 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
963 memcpy(&msg_data[3], &proto, sizeof(proto));
964 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
965 HCLGE_MBX_VLAN_FILTER, msg_data,
966 HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
967 }
968
969 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
970 {
971 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
972 u8 msg_data;
973
974 msg_data = enable ? 1 : 0;
975 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
976 HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
977 1, false, NULL, 0);
978 }
979
980 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
981 {
982 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
983 u8 msg_data[2];
984 int ret;
985
986 memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
987
988 /* disable vf queue before send queue reset msg to PF */
989 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
990 if (ret)
991 return;
992
993 hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
994 2, true, NULL, 0);
995 }
996
997 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
998 enum hnae3_reset_notify_type type)
999 {
1000 struct hnae3_client *client = hdev->nic_client;
1001 struct hnae3_handle *handle = &hdev->nic;
1002
1003 if (!client->ops->reset_notify)
1004 return -EOPNOTSUPP;
1005
1006 return client->ops->reset_notify(handle, type);
1007 }
1008
1009 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1010 {
1011 #define HCLGEVF_RESET_WAIT_MS 500
1012 #define HCLGEVF_RESET_WAIT_CNT 20
1013 u32 val, cnt = 0;
1014
1015 /* wait to check the hardware reset completion status */
1016 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1017 while (hnae3_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
1018 (cnt < HCLGEVF_RESET_WAIT_CNT)) {
1019 msleep(HCLGEVF_RESET_WAIT_MS);
1020 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
1021 cnt++;
1022 }
1023
1024 /* hardware completion status should be available by this time */
1025 if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
1026 dev_warn(&hdev->pdev->dev,
1027 "could'nt get reset done status from h/w, timeout!\n");
1028 return -EBUSY;
1029 }
1030
1031 /* we will wait a bit more to let reset of the stack to complete. This
1032 * might happen in case reset assertion was made by PF. Yes, this also
1033 * means we might end up waiting bit more even for VF reset.
1034 */
1035 msleep(5000);
1036
1037 return 0;
1038 }
1039
1040 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1041 {
1042 int ret;
1043
1044 /* uninitialize the nic client */
1045 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1046
1047 /* re-initialize the hclge device */
1048 ret = hclgevf_init_hdev(hdev);
1049 if (ret) {
1050 dev_err(&hdev->pdev->dev,
1051 "hclge device re-init failed, VF is disabled!\n");
1052 return ret;
1053 }
1054
1055 /* bring up the nic client again */
1056 hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1057
1058 return 0;
1059 }
1060
1061 static int hclgevf_reset(struct hclgevf_dev *hdev)
1062 {
1063 int ret;
1064
1065 rtnl_lock();
1066
1067 /* bring down the nic to stop any ongoing TX/RX */
1068 hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1069
1070 /* check if VF could successfully fetch the hardware reset completion
1071 * status from the hardware
1072 */
1073 ret = hclgevf_reset_wait(hdev);
1074 if (ret) {
1075 /* can't do much in this situation, will disable VF */
1076 dev_err(&hdev->pdev->dev,
1077 "VF failed(=%d) to fetch H/W reset completion status\n",
1078 ret);
1079
1080 dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
1081 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1082
1083 rtnl_unlock();
1084 return ret;
1085 }
1086
1087 /* now, re-initialize the nic client and ae device*/
1088 ret = hclgevf_reset_stack(hdev);
1089 if (ret)
1090 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
1091
1092 /* bring up the nic to enable TX/RX again */
1093 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1094
1095 rtnl_unlock();
1096
1097 return ret;
1098 }
1099
1100 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
1101 {
1102 int status;
1103 u8 respmsg;
1104
1105 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
1106 0, false, &respmsg, sizeof(u8));
1107 if (status)
1108 dev_err(&hdev->pdev->dev,
1109 "VF reset request to PF failed(=%d)\n", status);
1110
1111 return status;
1112 }
1113
1114 static void hclgevf_reset_event(struct hnae3_handle *handle)
1115 {
1116 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1117
1118 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
1119
1120 handle->reset_level = HNAE3_VF_RESET;
1121
1122 /* reset of this VF requested */
1123 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
1124 hclgevf_reset_task_schedule(hdev);
1125
1126 handle->last_reset_time = jiffies;
1127 }
1128
1129 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
1130 {
1131 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1132
1133 return hdev->fw_version;
1134 }
1135
1136 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1137 {
1138 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1139
1140 vector->vector_irq = pci_irq_vector(hdev->pdev,
1141 HCLGEVF_MISC_VECTOR_NUM);
1142 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1143 /* vector status always valid for Vector 0 */
1144 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1145 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1146
1147 hdev->num_msi_left -= 1;
1148 hdev->num_msi_used += 1;
1149 }
1150
1151 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1152 {
1153 if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1154 !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1155 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1156 schedule_work(&hdev->rst_service_task);
1157 }
1158 }
1159
1160 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1161 {
1162 if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1163 !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1164 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1165 schedule_work(&hdev->mbx_service_task);
1166 }
1167 }
1168
1169 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1170 {
1171 if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) &&
1172 !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1173 schedule_work(&hdev->service_task);
1174 }
1175
1176 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1177 {
1178 /* if we have any pending mailbox event then schedule the mbx task */
1179 if (hdev->mbx_event_pending)
1180 hclgevf_mbx_task_schedule(hdev);
1181
1182 if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1183 hclgevf_reset_task_schedule(hdev);
1184 }
1185
1186 static void hclgevf_service_timer(struct timer_list *t)
1187 {
1188 struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1189
1190 mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1191
1192 hclgevf_task_schedule(hdev);
1193 }
1194
1195 static void hclgevf_reset_service_task(struct work_struct *work)
1196 {
1197 struct hclgevf_dev *hdev =
1198 container_of(work, struct hclgevf_dev, rst_service_task);
1199 int ret;
1200
1201 if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1202 return;
1203
1204 clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1205
1206 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1207 &hdev->reset_state)) {
1208 /* PF has initmated that it is about to reset the hardware.
1209 * We now have to poll & check if harware has actually completed
1210 * the reset sequence. On hardware reset completion, VF needs to
1211 * reset the client and ae device.
1212 */
1213 hdev->reset_attempts = 0;
1214
1215 ret = hclgevf_reset(hdev);
1216 if (ret)
1217 dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1218 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1219 &hdev->reset_state)) {
1220 /* we could be here when either of below happens:
1221 * 1. reset was initiated due to watchdog timeout due to
1222 * a. IMP was earlier reset and our TX got choked down and
1223 * which resulted in watchdog reacting and inducing VF
1224 * reset. This also means our cmdq would be unreliable.
1225 * b. problem in TX due to other lower layer(example link
1226 * layer not functioning properly etc.)
1227 * 2. VF reset might have been initiated due to some config
1228 * change.
1229 *
1230 * NOTE: Theres no clear way to detect above cases than to react
1231 * to the response of PF for this reset request. PF will ack the
1232 * 1b and 2. cases but we will not get any intimation about 1a
1233 * from PF as cmdq would be in unreliable state i.e. mailbox
1234 * communication between PF and VF would be broken.
1235 */
1236
1237 /* if we are never geting into pending state it means either:
1238 * 1. PF is not receiving our request which could be due to IMP
1239 * reset
1240 * 2. PF is screwed
1241 * We cannot do much for 2. but to check first we can try reset
1242 * our PCIe + stack and see if it alleviates the problem.
1243 */
1244 if (hdev->reset_attempts > 3) {
1245 /* prepare for full reset of stack + pcie interface */
1246 hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1247
1248 /* "defer" schedule the reset task again */
1249 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1250 } else {
1251 hdev->reset_attempts++;
1252
1253 /* request PF for resetting this VF via mailbox */
1254 ret = hclgevf_do_reset(hdev);
1255 if (ret)
1256 dev_warn(&hdev->pdev->dev,
1257 "VF rst fail, stack will call\n");
1258 }
1259 }
1260
1261 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1262 }
1263
1264 static void hclgevf_mailbox_service_task(struct work_struct *work)
1265 {
1266 struct hclgevf_dev *hdev;
1267
1268 hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1269
1270 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1271 return;
1272
1273 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1274
1275 hclgevf_mbx_async_handler(hdev);
1276
1277 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1278 }
1279
1280 static void hclgevf_service_task(struct work_struct *work)
1281 {
1282 struct hclgevf_dev *hdev;
1283
1284 hdev = container_of(work, struct hclgevf_dev, service_task);
1285
1286 /* request the link status from the PF. PF would be able to tell VF
1287 * about such updates in future so we might remove this later
1288 */
1289 hclgevf_request_link_info(hdev);
1290
1291 hclgevf_deferred_task_schedule(hdev);
1292
1293 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1294 }
1295
1296 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1297 {
1298 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1299 }
1300
1301 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1302 {
1303 u32 cmdq_src_reg;
1304
1305 /* fetch the events from their corresponding regs */
1306 cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1307 HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1308
1309 /* check for vector0 mailbox(=CMDQ RX) event source */
1310 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1311 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1312 *clearval = cmdq_src_reg;
1313 return true;
1314 }
1315
1316 dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1317
1318 return false;
1319 }
1320
1321 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1322 {
1323 writel(en ? 1 : 0, vector->addr);
1324 }
1325
1326 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1327 {
1328 struct hclgevf_dev *hdev = data;
1329 u32 clearval;
1330
1331 hclgevf_enable_vector(&hdev->misc_vector, false);
1332 if (!hclgevf_check_event_cause(hdev, &clearval))
1333 goto skip_sched;
1334
1335 hclgevf_mbx_handler(hdev);
1336
1337 hclgevf_clear_event_cause(hdev, clearval);
1338
1339 skip_sched:
1340 hclgevf_enable_vector(&hdev->misc_vector, true);
1341
1342 return IRQ_HANDLED;
1343 }
1344
1345 static int hclgevf_configure(struct hclgevf_dev *hdev)
1346 {
1347 int ret;
1348
1349 /* get queue configuration from PF */
1350 ret = hclge_get_queue_info(hdev);
1351 if (ret)
1352 return ret;
1353 /* get tc configuration from PF */
1354 return hclgevf_get_tc_info(hdev);
1355 }
1356
1357 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1358 {
1359 struct pci_dev *pdev = ae_dev->pdev;
1360 struct hclgevf_dev *hdev = ae_dev->priv;
1361
1362 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1363 if (!hdev)
1364 return -ENOMEM;
1365
1366 hdev->pdev = pdev;
1367 hdev->ae_dev = ae_dev;
1368 ae_dev->priv = hdev;
1369
1370 return 0;
1371 }
1372
1373 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1374 {
1375 struct hnae3_handle *roce = &hdev->roce;
1376 struct hnae3_handle *nic = &hdev->nic;
1377
1378 roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM;
1379
1380 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1381 hdev->num_msi_left == 0)
1382 return -EINVAL;
1383
1384 roce->rinfo.base_vector =
1385 hdev->vector_status[hdev->num_msi_used];
1386
1387 roce->rinfo.netdev = nic->kinfo.netdev;
1388 roce->rinfo.roce_io_base = hdev->hw.io_base;
1389
1390 roce->pdev = nic->pdev;
1391 roce->ae_algo = nic->ae_algo;
1392 roce->numa_node_mask = nic->numa_node_mask;
1393
1394 return 0;
1395 }
1396
1397 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1398 {
1399 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1400 int i, ret;
1401
1402 rss_cfg->rss_size = hdev->rss_size_max;
1403
1404 /* Initialize RSS indirect table for each vport */
1405 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1406 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1407
1408 ret = hclgevf_set_rss_indir_table(hdev);
1409 if (ret)
1410 return ret;
1411
1412 return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1413 }
1414
1415 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1416 {
1417 /* other vlan config(like, VLAN TX/RX offload) would also be added
1418 * here later
1419 */
1420 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1421 false);
1422 }
1423
1424 static int hclgevf_ae_start(struct hnae3_handle *handle)
1425 {
1426 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1427 int i, queue_id;
1428
1429 for (i = 0; i < handle->kinfo.num_tqps; i++) {
1430 /* ring enable */
1431 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1432 if (queue_id < 0) {
1433 dev_warn(&hdev->pdev->dev,
1434 "Get invalid queue id, ignore it\n");
1435 continue;
1436 }
1437
1438 hclgevf_tqp_enable(hdev, queue_id, 0, true);
1439 }
1440
1441 /* reset tqp stats */
1442 hclgevf_reset_tqp_stats(handle);
1443
1444 hclgevf_request_link_info(hdev);
1445
1446 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1447 mod_timer(&hdev->service_timer, jiffies + HZ);
1448
1449 return 0;
1450 }
1451
1452 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1453 {
1454 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1455 int i, queue_id;
1456
1457 for (i = 0; i < hdev->num_tqps; i++) {
1458 /* Ring disable */
1459 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1460 if (queue_id < 0) {
1461 dev_warn(&hdev->pdev->dev,
1462 "Get invalid queue id, ignore it\n");
1463 continue;
1464 }
1465
1466 hclgevf_tqp_enable(hdev, queue_id, 0, false);
1467 }
1468
1469 /* reset tqp stats */
1470 hclgevf_reset_tqp_stats(handle);
1471 del_timer_sync(&hdev->service_timer);
1472 cancel_work_sync(&hdev->service_task);
1473 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1474 hclgevf_update_link_status(hdev, 0);
1475 }
1476
1477 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1478 {
1479 /* if this is on going reset then skip this initialization */
1480 if (hclgevf_dev_ongoing_reset(hdev))
1481 return;
1482
1483 /* setup tasks for the MBX */
1484 INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1485 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1486 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1487
1488 /* setup tasks for service timer */
1489 timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1490
1491 INIT_WORK(&hdev->service_task, hclgevf_service_task);
1492 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1493
1494 INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1495
1496 mutex_init(&hdev->mbx_resp.mbx_mutex);
1497
1498 /* bring the device down */
1499 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1500 }
1501
1502 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1503 {
1504 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1505
1506 if (hdev->service_timer.function)
1507 del_timer_sync(&hdev->service_timer);
1508 if (hdev->service_task.func)
1509 cancel_work_sync(&hdev->service_task);
1510 if (hdev->mbx_service_task.func)
1511 cancel_work_sync(&hdev->mbx_service_task);
1512 if (hdev->rst_service_task.func)
1513 cancel_work_sync(&hdev->rst_service_task);
1514
1515 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1516 }
1517
1518 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1519 {
1520 struct pci_dev *pdev = hdev->pdev;
1521 int vectors;
1522 int i;
1523
1524 /* if this is on going reset then skip this initialization */
1525 if (hclgevf_dev_ongoing_reset(hdev))
1526 return 0;
1527
1528 hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM;
1529
1530 vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1531 PCI_IRQ_MSI | PCI_IRQ_MSIX);
1532 if (vectors < 0) {
1533 dev_err(&pdev->dev,
1534 "failed(%d) to allocate MSI/MSI-X vectors\n",
1535 vectors);
1536 return vectors;
1537 }
1538 if (vectors < hdev->num_msi)
1539 dev_warn(&hdev->pdev->dev,
1540 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1541 hdev->num_msi, vectors);
1542
1543 hdev->num_msi = vectors;
1544 hdev->num_msi_left = vectors;
1545 hdev->base_msi_vector = pdev->irq;
1546
1547 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1548 sizeof(u16), GFP_KERNEL);
1549 if (!hdev->vector_status) {
1550 pci_free_irq_vectors(pdev);
1551 return -ENOMEM;
1552 }
1553
1554 for (i = 0; i < hdev->num_msi; i++)
1555 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1556
1557 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1558 sizeof(int), GFP_KERNEL);
1559 if (!hdev->vector_irq) {
1560 pci_free_irq_vectors(pdev);
1561 return -ENOMEM;
1562 }
1563
1564 return 0;
1565 }
1566
1567 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1568 {
1569 struct pci_dev *pdev = hdev->pdev;
1570
1571 pci_free_irq_vectors(pdev);
1572 }
1573
1574 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1575 {
1576 int ret = 0;
1577
1578 /* if this is on going reset then skip this initialization */
1579 if (hclgevf_dev_ongoing_reset(hdev))
1580 return 0;
1581
1582 hclgevf_get_misc_vector(hdev);
1583
1584 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1585 0, "hclgevf_cmd", hdev);
1586 if (ret) {
1587 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1588 hdev->misc_vector.vector_irq);
1589 return ret;
1590 }
1591
1592 /* enable misc. vector(vector 0) */
1593 hclgevf_enable_vector(&hdev->misc_vector, true);
1594
1595 return ret;
1596 }
1597
1598 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1599 {
1600 /* disable misc vector(vector 0) */
1601 hclgevf_enable_vector(&hdev->misc_vector, false);
1602 free_irq(hdev->misc_vector.vector_irq, hdev);
1603 hclgevf_free_vector(hdev, 0);
1604 }
1605
1606 static int hclgevf_init_client_instance(struct hnae3_client *client,
1607 struct hnae3_ae_dev *ae_dev)
1608 {
1609 struct hclgevf_dev *hdev = ae_dev->priv;
1610 int ret;
1611
1612 switch (client->type) {
1613 case HNAE3_CLIENT_KNIC:
1614 hdev->nic_client = client;
1615 hdev->nic.client = client;
1616
1617 ret = client->ops->init_instance(&hdev->nic);
1618 if (ret)
1619 return ret;
1620
1621 if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1622 struct hnae3_client *rc = hdev->roce_client;
1623
1624 ret = hclgevf_init_roce_base_info(hdev);
1625 if (ret)
1626 return ret;
1627 ret = rc->ops->init_instance(&hdev->roce);
1628 if (ret)
1629 return ret;
1630 }
1631 break;
1632 case HNAE3_CLIENT_UNIC:
1633 hdev->nic_client = client;
1634 hdev->nic.client = client;
1635
1636 ret = client->ops->init_instance(&hdev->nic);
1637 if (ret)
1638 return ret;
1639 break;
1640 case HNAE3_CLIENT_ROCE:
1641 if (hnae3_dev_roce_supported(hdev)) {
1642 hdev->roce_client = client;
1643 hdev->roce.client = client;
1644 }
1645
1646 if (hdev->roce_client && hdev->nic_client) {
1647 ret = hclgevf_init_roce_base_info(hdev);
1648 if (ret)
1649 return ret;
1650
1651 ret = client->ops->init_instance(&hdev->roce);
1652 if (ret)
1653 return ret;
1654 }
1655 }
1656
1657 return 0;
1658 }
1659
1660 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
1661 struct hnae3_ae_dev *ae_dev)
1662 {
1663 struct hclgevf_dev *hdev = ae_dev->priv;
1664
1665 /* un-init roce, if it exists */
1666 if (hdev->roce_client)
1667 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1668
1669 /* un-init nic/unic, if this was not called by roce client */
1670 if ((client->ops->uninit_instance) &&
1671 (client->type != HNAE3_CLIENT_ROCE))
1672 client->ops->uninit_instance(&hdev->nic, 0);
1673 }
1674
1675 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1676 {
1677 struct pci_dev *pdev = hdev->pdev;
1678 struct hclgevf_hw *hw;
1679 int ret;
1680
1681 /* check if we need to skip initialization of pci. This will happen if
1682 * device is undergoing VF reset. Otherwise, we would need to
1683 * re-initialize pci interface again i.e. when device is not going
1684 * through *any* reset or actually undergoing full reset.
1685 */
1686 if (hclgevf_dev_ongoing_reset(hdev))
1687 return 0;
1688
1689 ret = pci_enable_device(pdev);
1690 if (ret) {
1691 dev_err(&pdev->dev, "failed to enable PCI device\n");
1692 return ret;
1693 }
1694
1695 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1696 if (ret) {
1697 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1698 goto err_disable_device;
1699 }
1700
1701 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1702 if (ret) {
1703 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1704 goto err_disable_device;
1705 }
1706
1707 pci_set_master(pdev);
1708 hw = &hdev->hw;
1709 hw->hdev = hdev;
1710 hw->io_base = pci_iomap(pdev, 2, 0);
1711 if (!hw->io_base) {
1712 dev_err(&pdev->dev, "can't map configuration register space\n");
1713 ret = -ENOMEM;
1714 goto err_clr_master;
1715 }
1716
1717 return 0;
1718
1719 err_clr_master:
1720 pci_clear_master(pdev);
1721 pci_release_regions(pdev);
1722 err_disable_device:
1723 pci_disable_device(pdev);
1724
1725 return ret;
1726 }
1727
1728 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1729 {
1730 struct pci_dev *pdev = hdev->pdev;
1731
1732 pci_iounmap(pdev, hdev->hw.io_base);
1733 pci_clear_master(pdev);
1734 pci_release_regions(pdev);
1735 pci_disable_device(pdev);
1736 }
1737
1738 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1739 {
1740 struct pci_dev *pdev = hdev->pdev;
1741 int ret;
1742
1743 /* check if device is on-going full reset(i.e. pcie as well) */
1744 if (hclgevf_dev_ongoing_full_reset(hdev)) {
1745 dev_warn(&pdev->dev, "device is going full reset\n");
1746 hclgevf_uninit_hdev(hdev);
1747 }
1748
1749 ret = hclgevf_pci_init(hdev);
1750 if (ret) {
1751 dev_err(&pdev->dev, "PCI initialization failed\n");
1752 return ret;
1753 }
1754
1755 ret = hclgevf_init_msi(hdev);
1756 if (ret) {
1757 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1758 goto err_irq_init;
1759 }
1760
1761 hclgevf_state_init(hdev);
1762
1763 ret = hclgevf_cmd_init(hdev);
1764 if (ret)
1765 goto err_cmd_init;
1766
1767 ret = hclgevf_misc_irq_init(hdev);
1768 if (ret) {
1769 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1770 ret);
1771 goto err_misc_irq_init;
1772 }
1773
1774 ret = hclgevf_configure(hdev);
1775 if (ret) {
1776 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1777 goto err_config;
1778 }
1779
1780 ret = hclgevf_alloc_tqps(hdev);
1781 if (ret) {
1782 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1783 goto err_config;
1784 }
1785
1786 ret = hclgevf_set_handle_info(hdev);
1787 if (ret) {
1788 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1789 goto err_config;
1790 }
1791
1792 /* Initialize mta type for this VF */
1793 ret = hclgevf_cfg_func_mta_type(hdev);
1794 if (ret) {
1795 dev_err(&hdev->pdev->dev,
1796 "failed(%d) to initialize MTA type\n", ret);
1797 goto err_config;
1798 }
1799
1800 /* Initialize RSS for this VF */
1801 ret = hclgevf_rss_init_hw(hdev);
1802 if (ret) {
1803 dev_err(&hdev->pdev->dev,
1804 "failed(%d) to initialize RSS\n", ret);
1805 goto err_config;
1806 }
1807
1808 ret = hclgevf_init_vlan_config(hdev);
1809 if (ret) {
1810 dev_err(&hdev->pdev->dev,
1811 "failed(%d) to initialize VLAN config\n", ret);
1812 goto err_config;
1813 }
1814
1815 pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1816
1817 return 0;
1818
1819 err_config:
1820 hclgevf_misc_irq_uninit(hdev);
1821 err_misc_irq_init:
1822 hclgevf_cmd_uninit(hdev);
1823 err_cmd_init:
1824 hclgevf_state_uninit(hdev);
1825 hclgevf_uninit_msi(hdev);
1826 err_irq_init:
1827 hclgevf_pci_uninit(hdev);
1828 return ret;
1829 }
1830
1831 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1832 {
1833 hclgevf_state_uninit(hdev);
1834 hclgevf_misc_irq_uninit(hdev);
1835 hclgevf_cmd_uninit(hdev);
1836 hclgevf_uninit_msi(hdev);
1837 hclgevf_pci_uninit(hdev);
1838 }
1839
1840 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1841 {
1842 struct pci_dev *pdev = ae_dev->pdev;
1843 int ret;
1844
1845 ret = hclgevf_alloc_hdev(ae_dev);
1846 if (ret) {
1847 dev_err(&pdev->dev, "hclge device allocation failed\n");
1848 return ret;
1849 }
1850
1851 ret = hclgevf_init_hdev(ae_dev->priv);
1852 if (ret)
1853 dev_err(&pdev->dev, "hclge device initialization failed\n");
1854
1855 return ret;
1856 }
1857
1858 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1859 {
1860 struct hclgevf_dev *hdev = ae_dev->priv;
1861
1862 hclgevf_uninit_hdev(hdev);
1863 ae_dev->priv = NULL;
1864 }
1865
1866 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1867 {
1868 struct hnae3_handle *nic = &hdev->nic;
1869 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1870
1871 return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1872 }
1873
1874 /**
1875 * hclgevf_get_channels - Get the current channels enabled and max supported.
1876 * @handle: hardware information for network interface
1877 * @ch: ethtool channels structure
1878 *
1879 * We don't support separate tx and rx queues as channels. The other count
1880 * represents how many queues are being used for control. max_combined counts
1881 * how many queue pairs we can support. They may not be mapped 1 to 1 with
1882 * q_vectors since we support a lot more queue pairs than q_vectors.
1883 **/
1884 static void hclgevf_get_channels(struct hnae3_handle *handle,
1885 struct ethtool_channels *ch)
1886 {
1887 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1888
1889 ch->max_combined = hclgevf_get_max_channels(hdev);
1890 ch->other_count = 0;
1891 ch->max_other = 0;
1892 ch->combined_count = hdev->num_tqps;
1893 }
1894
1895 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1896 u16 *free_tqps, u16 *max_rss_size)
1897 {
1898 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1899
1900 *free_tqps = 0;
1901 *max_rss_size = hdev->rss_size_max;
1902 }
1903
1904 static int hclgevf_get_status(struct hnae3_handle *handle)
1905 {
1906 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1907
1908 return hdev->hw.mac.link;
1909 }
1910
1911 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1912 u8 *auto_neg, u32 *speed,
1913 u8 *duplex)
1914 {
1915 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1916
1917 if (speed)
1918 *speed = hdev->hw.mac.speed;
1919 if (duplex)
1920 *duplex = hdev->hw.mac.duplex;
1921 if (auto_neg)
1922 *auto_neg = AUTONEG_DISABLE;
1923 }
1924
1925 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1926 u8 duplex)
1927 {
1928 hdev->hw.mac.speed = speed;
1929 hdev->hw.mac.duplex = duplex;
1930 }
1931
1932 static const struct hnae3_ae_ops hclgevf_ops = {
1933 .init_ae_dev = hclgevf_init_ae_dev,
1934 .uninit_ae_dev = hclgevf_uninit_ae_dev,
1935 .init_client_instance = hclgevf_init_client_instance,
1936 .uninit_client_instance = hclgevf_uninit_client_instance,
1937 .start = hclgevf_ae_start,
1938 .stop = hclgevf_ae_stop,
1939 .map_ring_to_vector = hclgevf_map_ring_to_vector,
1940 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1941 .get_vector = hclgevf_get_vector,
1942 .put_vector = hclgevf_put_vector,
1943 .reset_queue = hclgevf_reset_tqp,
1944 .set_promisc_mode = hclgevf_set_promisc_mode,
1945 .get_mac_addr = hclgevf_get_mac_addr,
1946 .set_mac_addr = hclgevf_set_mac_addr,
1947 .add_uc_addr = hclgevf_add_uc_addr,
1948 .rm_uc_addr = hclgevf_rm_uc_addr,
1949 .add_mc_addr = hclgevf_add_mc_addr,
1950 .rm_mc_addr = hclgevf_rm_mc_addr,
1951 .update_mta_status = hclgevf_update_mta_status,
1952 .get_stats = hclgevf_get_stats,
1953 .update_stats = hclgevf_update_stats,
1954 .get_strings = hclgevf_get_strings,
1955 .get_sset_count = hclgevf_get_sset_count,
1956 .get_rss_key_size = hclgevf_get_rss_key_size,
1957 .get_rss_indir_size = hclgevf_get_rss_indir_size,
1958 .get_rss = hclgevf_get_rss,
1959 .set_rss = hclgevf_set_rss,
1960 .get_tc_size = hclgevf_get_tc_size,
1961 .get_fw_version = hclgevf_get_fw_version,
1962 .set_vlan_filter = hclgevf_set_vlan_filter,
1963 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
1964 .reset_event = hclgevf_reset_event,
1965 .get_channels = hclgevf_get_channels,
1966 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
1967 .get_status = hclgevf_get_status,
1968 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
1969 };
1970
1971 static struct hnae3_ae_algo ae_algovf = {
1972 .ops = &hclgevf_ops,
1973 .pdev_id_table = ae_algovf_pci_tbl,
1974 };
1975
1976 static int hclgevf_init(void)
1977 {
1978 pr_info("%s is initializing\n", HCLGEVF_NAME);
1979
1980 hnae3_register_ae_algo(&ae_algovf);
1981
1982 return 0;
1983 }
1984
1985 static void hclgevf_exit(void)
1986 {
1987 hnae3_unregister_ae_algo(&ae_algovf);
1988 }
1989 module_init(hclgevf_init);
1990 module_exit(hclgevf_exit);
1991
1992 MODULE_LICENSE("GPL");
1993 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
1994 MODULE_DESCRIPTION("HCLGEVF Driver");
1995 MODULE_VERSION(HCLGEVF_MOD_VERSION);