]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c
7c101455f1e416888872c504793e748dd94b2415
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <linux/iopoll.h>
6 #include <net/rtnetlink.h>
7 #include "hclgevf_cmd.h"
8 #include "hclgevf_main.h"
9 #include "hclge_mbx.h"
10 #include "hnae3.h"
11
12 #define HCLGEVF_NAME "hclgevf"
13
14 #define HCLGEVF_RESET_MAX_FAIL_CNT 5
15
16 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev);
17 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
18 unsigned long delay);
19
20 static struct hnae3_ae_algo ae_algovf;
21
22 static struct workqueue_struct *hclgevf_wq;
23
24 static const struct pci_device_id ae_algovf_pci_tbl[] = {
25 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_VF), 0},
26 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_RDMA_DCB_PFC_VF),
27 HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
28 /* required last entry */
29 {0, }
30 };
31
32 static const u8 hclgevf_hash_key[] = {
33 0x6D, 0x5A, 0x56, 0xDA, 0x25, 0x5B, 0x0E, 0xC2,
34 0x41, 0x67, 0x25, 0x3D, 0x43, 0xA3, 0x8F, 0xB0,
35 0xD0, 0xCA, 0x2B, 0xCB, 0xAE, 0x7B, 0x30, 0xB4,
36 0x77, 0xCB, 0x2D, 0xA3, 0x80, 0x30, 0xF2, 0x0C,
37 0x6A, 0x42, 0xB7, 0x3B, 0xBE, 0xAC, 0x01, 0xFA
38 };
39
40 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
41
42 static const u32 cmdq_reg_addr_list[] = {HCLGEVF_CMDQ_TX_ADDR_L_REG,
43 HCLGEVF_CMDQ_TX_ADDR_H_REG,
44 HCLGEVF_CMDQ_TX_DEPTH_REG,
45 HCLGEVF_CMDQ_TX_TAIL_REG,
46 HCLGEVF_CMDQ_TX_HEAD_REG,
47 HCLGEVF_CMDQ_RX_ADDR_L_REG,
48 HCLGEVF_CMDQ_RX_ADDR_H_REG,
49 HCLGEVF_CMDQ_RX_DEPTH_REG,
50 HCLGEVF_CMDQ_RX_TAIL_REG,
51 HCLGEVF_CMDQ_RX_HEAD_REG,
52 HCLGEVF_VECTOR0_CMDQ_SRC_REG,
53 HCLGEVF_VECTOR0_CMDQ_STATE_REG,
54 HCLGEVF_CMDQ_INTR_EN_REG,
55 HCLGEVF_CMDQ_INTR_GEN_REG};
56
57 static const u32 common_reg_addr_list[] = {HCLGEVF_MISC_VECTOR_REG_BASE,
58 HCLGEVF_RST_ING,
59 HCLGEVF_GRO_EN_REG};
60
61 static const u32 ring_reg_addr_list[] = {HCLGEVF_RING_RX_ADDR_L_REG,
62 HCLGEVF_RING_RX_ADDR_H_REG,
63 HCLGEVF_RING_RX_BD_NUM_REG,
64 HCLGEVF_RING_RX_BD_LENGTH_REG,
65 HCLGEVF_RING_RX_MERGE_EN_REG,
66 HCLGEVF_RING_RX_TAIL_REG,
67 HCLGEVF_RING_RX_HEAD_REG,
68 HCLGEVF_RING_RX_FBD_NUM_REG,
69 HCLGEVF_RING_RX_OFFSET_REG,
70 HCLGEVF_RING_RX_FBD_OFFSET_REG,
71 HCLGEVF_RING_RX_STASH_REG,
72 HCLGEVF_RING_RX_BD_ERR_REG,
73 HCLGEVF_RING_TX_ADDR_L_REG,
74 HCLGEVF_RING_TX_ADDR_H_REG,
75 HCLGEVF_RING_TX_BD_NUM_REG,
76 HCLGEVF_RING_TX_PRIORITY_REG,
77 HCLGEVF_RING_TX_TC_REG,
78 HCLGEVF_RING_TX_MERGE_EN_REG,
79 HCLGEVF_RING_TX_TAIL_REG,
80 HCLGEVF_RING_TX_HEAD_REG,
81 HCLGEVF_RING_TX_FBD_NUM_REG,
82 HCLGEVF_RING_TX_OFFSET_REG,
83 HCLGEVF_RING_TX_EBD_NUM_REG,
84 HCLGEVF_RING_TX_EBD_OFFSET_REG,
85 HCLGEVF_RING_TX_BD_ERR_REG,
86 HCLGEVF_RING_EN_REG};
87
88 static const u32 tqp_intr_reg_addr_list[] = {HCLGEVF_TQP_INTR_CTRL_REG,
89 HCLGEVF_TQP_INTR_GL0_REG,
90 HCLGEVF_TQP_INTR_GL1_REG,
91 HCLGEVF_TQP_INTR_GL2_REG,
92 HCLGEVF_TQP_INTR_RL_REG};
93
94 static struct hclgevf_dev *hclgevf_ae_get_hdev(struct hnae3_handle *handle)
95 {
96 if (!handle->client)
97 return container_of(handle, struct hclgevf_dev, nic);
98 else if (handle->client->type == HNAE3_CLIENT_ROCE)
99 return container_of(handle, struct hclgevf_dev, roce);
100 else
101 return container_of(handle, struct hclgevf_dev, nic);
102 }
103
104 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
105 {
106 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
107 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
108 struct hclgevf_desc desc;
109 struct hclgevf_tqp *tqp;
110 int status;
111 int i;
112
113 for (i = 0; i < kinfo->num_tqps; i++) {
114 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
115 hclgevf_cmd_setup_basic_desc(&desc,
116 HCLGEVF_OPC_QUERY_RX_STATUS,
117 true);
118
119 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
120 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
121 if (status) {
122 dev_err(&hdev->pdev->dev,
123 "Query tqp stat fail, status = %d,queue = %d\n",
124 status, i);
125 return status;
126 }
127 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
128 le32_to_cpu(desc.data[1]);
129
130 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
131 true);
132
133 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
134 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
135 if (status) {
136 dev_err(&hdev->pdev->dev,
137 "Query tqp stat fail, status = %d,queue = %d\n",
138 status, i);
139 return status;
140 }
141 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
142 le32_to_cpu(desc.data[1]);
143 }
144
145 return 0;
146 }
147
148 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
149 {
150 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
151 struct hclgevf_tqp *tqp;
152 u64 *buff = data;
153 int i;
154
155 for (i = 0; i < kinfo->num_tqps; i++) {
156 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
157 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
158 }
159 for (i = 0; i < kinfo->num_tqps; i++) {
160 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
161 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
162 }
163
164 return buff;
165 }
166
167 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
168 {
169 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
170
171 return kinfo->num_tqps * 2;
172 }
173
174 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
175 {
176 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
177 u8 *buff = data;
178 int i;
179
180 for (i = 0; i < kinfo->num_tqps; i++) {
181 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
182 struct hclgevf_tqp, q);
183 snprintf(buff, ETH_GSTRING_LEN, "txq%u_pktnum_rcd",
184 tqp->index);
185 buff += ETH_GSTRING_LEN;
186 }
187
188 for (i = 0; i < kinfo->num_tqps; i++) {
189 struct hclgevf_tqp *tqp = container_of(kinfo->tqp[i],
190 struct hclgevf_tqp, q);
191 snprintf(buff, ETH_GSTRING_LEN, "rxq%u_pktnum_rcd",
192 tqp->index);
193 buff += ETH_GSTRING_LEN;
194 }
195
196 return buff;
197 }
198
199 static void hclgevf_update_stats(struct hnae3_handle *handle,
200 struct net_device_stats *net_stats)
201 {
202 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
203 int status;
204
205 status = hclgevf_tqps_update_stats(handle);
206 if (status)
207 dev_err(&hdev->pdev->dev,
208 "VF update of TQPS stats fail, status = %d.\n",
209 status);
210 }
211
212 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
213 {
214 if (strset == ETH_SS_TEST)
215 return -EOPNOTSUPP;
216 else if (strset == ETH_SS_STATS)
217 return hclgevf_tqps_get_sset_count(handle, strset);
218
219 return 0;
220 }
221
222 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
223 u8 *data)
224 {
225 u8 *p = (char *)data;
226
227 if (strset == ETH_SS_STATS)
228 p = hclgevf_tqps_get_strings(handle, p);
229 }
230
231 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
232 {
233 hclgevf_tqps_get_stats(handle, data);
234 }
235
236 static void hclgevf_build_send_msg(struct hclge_vf_to_pf_msg *msg, u8 code,
237 u8 subcode)
238 {
239 if (msg) {
240 memset(msg, 0, sizeof(struct hclge_vf_to_pf_msg));
241 msg->code = code;
242 msg->subcode = subcode;
243 }
244 }
245
246 static int hclgevf_get_basic_info(struct hclgevf_dev *hdev)
247 {
248 struct hnae3_ae_dev *ae_dev = hdev->ae_dev;
249 u8 resp_msg[HCLGE_MBX_MAX_RESP_DATA_SIZE];
250 struct hclge_basic_info *basic_info;
251 struct hclge_vf_to_pf_msg send_msg;
252 unsigned long caps;
253 int status;
254
255 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_BASIC_INFO, 0);
256 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
257 sizeof(resp_msg));
258 if (status) {
259 dev_err(&hdev->pdev->dev,
260 "failed to get basic info from pf, ret = %d", status);
261 return status;
262 }
263
264 basic_info = (struct hclge_basic_info *)resp_msg;
265
266 hdev->hw_tc_map = basic_info->hw_tc_map;
267 hdev->mbx_api_version = basic_info->mbx_api_version;
268 caps = basic_info->pf_caps;
269 if (test_bit(HNAE3_PF_SUPPORT_VLAN_FLTR_MDF_B, &caps))
270 set_bit(HNAE3_DEV_SUPPORT_VLAN_FLTR_MDF_B, ae_dev->caps);
271
272 return 0;
273 }
274
275 static int hclgevf_get_port_base_vlan_filter_state(struct hclgevf_dev *hdev)
276 {
277 struct hnae3_handle *nic = &hdev->nic;
278 struct hclge_vf_to_pf_msg send_msg;
279 u8 resp_msg;
280 int ret;
281
282 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
283 HCLGE_MBX_GET_PORT_BASE_VLAN_STATE);
284 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &resp_msg,
285 sizeof(u8));
286 if (ret) {
287 dev_err(&hdev->pdev->dev,
288 "VF request to get port based vlan state failed %d",
289 ret);
290 return ret;
291 }
292
293 nic->port_base_vlan_state = resp_msg;
294
295 return 0;
296 }
297
298 static int hclgevf_get_queue_info(struct hclgevf_dev *hdev)
299 {
300 #define HCLGEVF_TQPS_RSS_INFO_LEN 6
301 #define HCLGEVF_TQPS_ALLOC_OFFSET 0
302 #define HCLGEVF_TQPS_RSS_SIZE_OFFSET 2
303 #define HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET 4
304
305 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
306 struct hclge_vf_to_pf_msg send_msg;
307 int status;
308
309 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QINFO, 0);
310 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
311 HCLGEVF_TQPS_RSS_INFO_LEN);
312 if (status) {
313 dev_err(&hdev->pdev->dev,
314 "VF request to get tqp info from PF failed %d",
315 status);
316 return status;
317 }
318
319 memcpy(&hdev->num_tqps, &resp_msg[HCLGEVF_TQPS_ALLOC_OFFSET],
320 sizeof(u16));
321 memcpy(&hdev->rss_size_max, &resp_msg[HCLGEVF_TQPS_RSS_SIZE_OFFSET],
322 sizeof(u16));
323 memcpy(&hdev->rx_buf_len, &resp_msg[HCLGEVF_TQPS_RX_BUFFER_LEN_OFFSET],
324 sizeof(u16));
325
326 return 0;
327 }
328
329 static int hclgevf_get_queue_depth(struct hclgevf_dev *hdev)
330 {
331 #define HCLGEVF_TQPS_DEPTH_INFO_LEN 4
332 #define HCLGEVF_TQPS_NUM_TX_DESC_OFFSET 0
333 #define HCLGEVF_TQPS_NUM_RX_DESC_OFFSET 2
334
335 u8 resp_msg[HCLGEVF_TQPS_DEPTH_INFO_LEN];
336 struct hclge_vf_to_pf_msg send_msg;
337 int ret;
338
339 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QDEPTH, 0);
340 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
341 HCLGEVF_TQPS_DEPTH_INFO_LEN);
342 if (ret) {
343 dev_err(&hdev->pdev->dev,
344 "VF request to get tqp depth info from PF failed %d",
345 ret);
346 return ret;
347 }
348
349 memcpy(&hdev->num_tx_desc, &resp_msg[HCLGEVF_TQPS_NUM_TX_DESC_OFFSET],
350 sizeof(u16));
351 memcpy(&hdev->num_rx_desc, &resp_msg[HCLGEVF_TQPS_NUM_RX_DESC_OFFSET],
352 sizeof(u16));
353
354 return 0;
355 }
356
357 static u16 hclgevf_get_qid_global(struct hnae3_handle *handle, u16 queue_id)
358 {
359 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
360 struct hclge_vf_to_pf_msg send_msg;
361 u16 qid_in_pf = 0;
362 u8 resp_data[2];
363 int ret;
364
365 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_QID_IN_PF, 0);
366 memcpy(send_msg.data, &queue_id, sizeof(queue_id));
367 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_data,
368 sizeof(resp_data));
369 if (!ret)
370 qid_in_pf = *(u16 *)resp_data;
371
372 return qid_in_pf;
373 }
374
375 static int hclgevf_get_pf_media_type(struct hclgevf_dev *hdev)
376 {
377 struct hclge_vf_to_pf_msg send_msg;
378 u8 resp_msg[2];
379 int ret;
380
381 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MEDIA_TYPE, 0);
382 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
383 sizeof(resp_msg));
384 if (ret) {
385 dev_err(&hdev->pdev->dev,
386 "VF request to get the pf port media type failed %d",
387 ret);
388 return ret;
389 }
390
391 hdev->hw.mac.media_type = resp_msg[0];
392 hdev->hw.mac.module_type = resp_msg[1];
393
394 return 0;
395 }
396
397 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
398 {
399 struct hclgevf_tqp *tqp;
400 int i;
401
402 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
403 sizeof(struct hclgevf_tqp), GFP_KERNEL);
404 if (!hdev->htqp)
405 return -ENOMEM;
406
407 tqp = hdev->htqp;
408
409 for (i = 0; i < hdev->num_tqps; i++) {
410 tqp->dev = &hdev->pdev->dev;
411 tqp->index = i;
412
413 tqp->q.ae_algo = &ae_algovf;
414 tqp->q.buf_size = hdev->rx_buf_len;
415 tqp->q.tx_desc_num = hdev->num_tx_desc;
416 tqp->q.rx_desc_num = hdev->num_rx_desc;
417
418 /* need an extended offset to configure queues >=
419 * HCLGEVF_TQP_MAX_SIZE_DEV_V2.
420 */
421 if (i < HCLGEVF_TQP_MAX_SIZE_DEV_V2)
422 tqp->q.io_base = hdev->hw.io_base +
423 HCLGEVF_TQP_REG_OFFSET +
424 i * HCLGEVF_TQP_REG_SIZE;
425 else
426 tqp->q.io_base = hdev->hw.io_base +
427 HCLGEVF_TQP_REG_OFFSET +
428 HCLGEVF_TQP_EXT_REG_OFFSET +
429 (i - HCLGEVF_TQP_MAX_SIZE_DEV_V2) *
430 HCLGEVF_TQP_REG_SIZE;
431
432 tqp++;
433 }
434
435 return 0;
436 }
437
438 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
439 {
440 struct hnae3_handle *nic = &hdev->nic;
441 struct hnae3_knic_private_info *kinfo;
442 u16 new_tqps = hdev->num_tqps;
443 unsigned int i;
444 u8 num_tc = 0;
445
446 kinfo = &nic->kinfo;
447 kinfo->num_tx_desc = hdev->num_tx_desc;
448 kinfo->num_rx_desc = hdev->num_rx_desc;
449 kinfo->rx_buf_len = hdev->rx_buf_len;
450 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
451 if (hdev->hw_tc_map & BIT(i))
452 num_tc++;
453
454 num_tc = num_tc ? num_tc : 1;
455 kinfo->tc_info.num_tc = num_tc;
456 kinfo->rss_size = min_t(u16, hdev->rss_size_max, new_tqps / num_tc);
457 new_tqps = kinfo->rss_size * num_tc;
458 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
459
460 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
461 sizeof(struct hnae3_queue *), GFP_KERNEL);
462 if (!kinfo->tqp)
463 return -ENOMEM;
464
465 for (i = 0; i < kinfo->num_tqps; i++) {
466 hdev->htqp[i].q.handle = &hdev->nic;
467 hdev->htqp[i].q.tqp_index = i;
468 kinfo->tqp[i] = &hdev->htqp[i].q;
469 }
470
471 /* after init the max rss_size and tqps, adjust the default tqp numbers
472 * and rss size with the actual vector numbers
473 */
474 kinfo->num_tqps = min_t(u16, hdev->num_nic_msix - 1, kinfo->num_tqps);
475 kinfo->rss_size = min_t(u16, kinfo->num_tqps / num_tc,
476 kinfo->rss_size);
477
478 return 0;
479 }
480
481 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
482 {
483 struct hclge_vf_to_pf_msg send_msg;
484 int status;
485
486 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_STATUS, 0);
487 status = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
488 if (status)
489 dev_err(&hdev->pdev->dev,
490 "VF failed to fetch link status(%d) from PF", status);
491 }
492
493 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
494 {
495 struct hnae3_handle *rhandle = &hdev->roce;
496 struct hnae3_handle *handle = &hdev->nic;
497 struct hnae3_client *rclient;
498 struct hnae3_client *client;
499
500 if (test_and_set_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state))
501 return;
502
503 client = handle->client;
504 rclient = hdev->roce_client;
505
506 link_state =
507 test_bit(HCLGEVF_STATE_DOWN, &hdev->state) ? 0 : link_state;
508 if (link_state != hdev->hw.mac.link) {
509 client->ops->link_status_change(handle, !!link_state);
510 if (rclient && rclient->ops->link_status_change)
511 rclient->ops->link_status_change(rhandle, !!link_state);
512 hdev->hw.mac.link = link_state;
513 }
514
515 clear_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state);
516 }
517
518 static void hclgevf_update_link_mode(struct hclgevf_dev *hdev)
519 {
520 #define HCLGEVF_ADVERTISING 0
521 #define HCLGEVF_SUPPORTED 1
522
523 struct hclge_vf_to_pf_msg send_msg;
524
525 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_LINK_MODE, 0);
526 send_msg.data[0] = HCLGEVF_ADVERTISING;
527 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
528 send_msg.data[0] = HCLGEVF_SUPPORTED;
529 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
530 }
531
532 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
533 {
534 struct hnae3_handle *nic = &hdev->nic;
535 int ret;
536
537 nic->ae_algo = &ae_algovf;
538 nic->pdev = hdev->pdev;
539 nic->numa_node_mask = hdev->numa_node_mask;
540 nic->flags |= HNAE3_SUPPORT_VF;
541
542 ret = hclgevf_knic_setup(hdev);
543 if (ret)
544 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
545 ret);
546 return ret;
547 }
548
549 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
550 {
551 if (hdev->vector_status[vector_id] == HCLGEVF_INVALID_VPORT) {
552 dev_warn(&hdev->pdev->dev,
553 "vector(vector_id %d) has been freed.\n", vector_id);
554 return;
555 }
556
557 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
558 hdev->num_msi_left += 1;
559 hdev->num_msi_used -= 1;
560 }
561
562 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
563 struct hnae3_vector_info *vector_info)
564 {
565 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
566 struct hnae3_vector_info *vector = vector_info;
567 int alloc = 0;
568 int i, j;
569
570 vector_num = min_t(u16, hdev->num_nic_msix - 1, vector_num);
571 vector_num = min(hdev->num_msi_left, vector_num);
572
573 for (j = 0; j < vector_num; j++) {
574 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
575 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
576 vector->vector = pci_irq_vector(hdev->pdev, i);
577 vector->io_addr = hdev->hw.io_base +
578 HCLGEVF_VECTOR_REG_BASE +
579 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
580 hdev->vector_status[i] = 0;
581 hdev->vector_irq[i] = vector->vector;
582
583 vector++;
584 alloc++;
585
586 break;
587 }
588 }
589 }
590 hdev->num_msi_left -= alloc;
591 hdev->num_msi_used += alloc;
592
593 return alloc;
594 }
595
596 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
597 {
598 int i;
599
600 for (i = 0; i < hdev->num_msi; i++)
601 if (vector == hdev->vector_irq[i])
602 return i;
603
604 return -EINVAL;
605 }
606
607 static int hclgevf_set_rss_algo_key(struct hclgevf_dev *hdev,
608 const u8 hfunc, const u8 *key)
609 {
610 struct hclgevf_rss_config_cmd *req;
611 unsigned int key_offset = 0;
612 struct hclgevf_desc desc;
613 int key_counts;
614 int key_size;
615 int ret;
616
617 key_counts = HCLGEVF_RSS_KEY_SIZE;
618 req = (struct hclgevf_rss_config_cmd *)desc.data;
619
620 while (key_counts) {
621 hclgevf_cmd_setup_basic_desc(&desc,
622 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
623 false);
624
625 req->hash_config |= (hfunc & HCLGEVF_RSS_HASH_ALGO_MASK);
626 req->hash_config |=
627 (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET_B);
628
629 key_size = min(HCLGEVF_RSS_HASH_KEY_NUM, key_counts);
630 memcpy(req->hash_key,
631 key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM, key_size);
632
633 key_counts -= key_size;
634 key_offset++;
635 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
636 if (ret) {
637 dev_err(&hdev->pdev->dev,
638 "Configure RSS config fail, status = %d\n",
639 ret);
640 return ret;
641 }
642 }
643
644 return 0;
645 }
646
647 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
648 {
649 return HCLGEVF_RSS_KEY_SIZE;
650 }
651
652 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
653 {
654 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
655 struct hclgevf_rss_indirection_table_cmd *req;
656 struct hclgevf_desc desc;
657 int rss_cfg_tbl_num;
658 int status;
659 int i, j;
660
661 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
662 rss_cfg_tbl_num = hdev->ae_dev->dev_specs.rss_ind_tbl_size /
663 HCLGEVF_RSS_CFG_TBL_SIZE;
664
665 for (i = 0; i < rss_cfg_tbl_num; i++) {
666 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
667 false);
668 req->start_table_index =
669 cpu_to_le16(i * HCLGEVF_RSS_CFG_TBL_SIZE);
670 req->rss_set_bitmap = cpu_to_le16(HCLGEVF_RSS_SET_BITMAP_MSK);
671 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
672 req->rss_result[j] =
673 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
674
675 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
676 if (status) {
677 dev_err(&hdev->pdev->dev,
678 "VF failed(=%d) to set RSS indirection table\n",
679 status);
680 return status;
681 }
682 }
683
684 return 0;
685 }
686
687 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
688 {
689 struct hclgevf_rss_tc_mode_cmd *req;
690 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
691 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
692 u16 tc_size[HCLGEVF_MAX_TC_NUM];
693 struct hclgevf_desc desc;
694 u16 roundup_size;
695 unsigned int i;
696 int status;
697
698 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
699
700 roundup_size = roundup_pow_of_two(rss_size);
701 roundup_size = ilog2(roundup_size);
702
703 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
704 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
705 tc_size[i] = roundup_size;
706 tc_offset[i] = rss_size * i;
707 }
708
709 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
710 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
711 u16 mode = 0;
712
713 hnae3_set_bit(mode, HCLGEVF_RSS_TC_VALID_B,
714 (tc_valid[i] & 0x1));
715 hnae3_set_field(mode, HCLGEVF_RSS_TC_SIZE_M,
716 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
717 hnae3_set_bit(mode, HCLGEVF_RSS_TC_SIZE_MSB_B,
718 tc_size[i] >> HCLGEVF_RSS_TC_SIZE_MSB_OFFSET &
719 0x1);
720 hnae3_set_field(mode, HCLGEVF_RSS_TC_OFFSET_M,
721 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
722
723 req->rss_tc_mode[i] = cpu_to_le16(mode);
724 }
725 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
726 if (status)
727 dev_err(&hdev->pdev->dev,
728 "VF failed(=%d) to set rss tc mode\n", status);
729
730 return status;
731 }
732
733 /* for revision 0x20, vf shared the same rss config with pf */
734 static int hclgevf_get_rss_hash_key(struct hclgevf_dev *hdev)
735 {
736 #define HCLGEVF_RSS_MBX_RESP_LEN 8
737 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
738 u8 resp_msg[HCLGEVF_RSS_MBX_RESP_LEN];
739 struct hclge_vf_to_pf_msg send_msg;
740 u16 msg_num, hash_key_index;
741 u8 index;
742 int ret;
743
744 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_RSS_KEY, 0);
745 msg_num = (HCLGEVF_RSS_KEY_SIZE + HCLGEVF_RSS_MBX_RESP_LEN - 1) /
746 HCLGEVF_RSS_MBX_RESP_LEN;
747 for (index = 0; index < msg_num; index++) {
748 send_msg.data[0] = index;
749 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, resp_msg,
750 HCLGEVF_RSS_MBX_RESP_LEN);
751 if (ret) {
752 dev_err(&hdev->pdev->dev,
753 "VF get rss hash key from PF failed, ret=%d",
754 ret);
755 return ret;
756 }
757
758 hash_key_index = HCLGEVF_RSS_MBX_RESP_LEN * index;
759 if (index == msg_num - 1)
760 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
761 &resp_msg[0],
762 HCLGEVF_RSS_KEY_SIZE - hash_key_index);
763 else
764 memcpy(&rss_cfg->rss_hash_key[hash_key_index],
765 &resp_msg[0], HCLGEVF_RSS_MBX_RESP_LEN);
766 }
767
768 return 0;
769 }
770
771 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
772 u8 *hfunc)
773 {
774 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
775 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
776 int i, ret;
777
778 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
779 /* Get hash algorithm */
780 if (hfunc) {
781 switch (rss_cfg->hash_algo) {
782 case HCLGEVF_RSS_HASH_ALGO_TOEPLITZ:
783 *hfunc = ETH_RSS_HASH_TOP;
784 break;
785 case HCLGEVF_RSS_HASH_ALGO_SIMPLE:
786 *hfunc = ETH_RSS_HASH_XOR;
787 break;
788 default:
789 *hfunc = ETH_RSS_HASH_UNKNOWN;
790 break;
791 }
792 }
793
794 /* Get the RSS Key required by the user */
795 if (key)
796 memcpy(key, rss_cfg->rss_hash_key,
797 HCLGEVF_RSS_KEY_SIZE);
798 } else {
799 if (hfunc)
800 *hfunc = ETH_RSS_HASH_TOP;
801 if (key) {
802 ret = hclgevf_get_rss_hash_key(hdev);
803 if (ret)
804 return ret;
805 memcpy(key, rss_cfg->rss_hash_key,
806 HCLGEVF_RSS_KEY_SIZE);
807 }
808 }
809
810 if (indir)
811 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
812 indir[i] = rss_cfg->rss_indirection_tbl[i];
813
814 return 0;
815 }
816
817 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
818 const u8 *key, const u8 hfunc)
819 {
820 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
821 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
822 int ret, i;
823
824 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
825 /* Set the RSS Hash Key if specififed by the user */
826 if (key) {
827 switch (hfunc) {
828 case ETH_RSS_HASH_TOP:
829 rss_cfg->hash_algo =
830 HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
831 break;
832 case ETH_RSS_HASH_XOR:
833 rss_cfg->hash_algo =
834 HCLGEVF_RSS_HASH_ALGO_SIMPLE;
835 break;
836 case ETH_RSS_HASH_NO_CHANGE:
837 break;
838 default:
839 return -EINVAL;
840 }
841
842 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
843 key);
844 if (ret)
845 return ret;
846
847 /* Update the shadow RSS key with user specified qids */
848 memcpy(rss_cfg->rss_hash_key, key,
849 HCLGEVF_RSS_KEY_SIZE);
850 }
851 }
852
853 /* update the shadow RSS table with user specified qids */
854 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
855 rss_cfg->rss_indirection_tbl[i] = indir[i];
856
857 /* update the hardware */
858 return hclgevf_set_rss_indir_table(hdev);
859 }
860
861 static u8 hclgevf_get_rss_hash_bits(struct ethtool_rxnfc *nfc)
862 {
863 u8 hash_sets = nfc->data & RXH_L4_B_0_1 ? HCLGEVF_S_PORT_BIT : 0;
864
865 if (nfc->data & RXH_L4_B_2_3)
866 hash_sets |= HCLGEVF_D_PORT_BIT;
867 else
868 hash_sets &= ~HCLGEVF_D_PORT_BIT;
869
870 if (nfc->data & RXH_IP_SRC)
871 hash_sets |= HCLGEVF_S_IP_BIT;
872 else
873 hash_sets &= ~HCLGEVF_S_IP_BIT;
874
875 if (nfc->data & RXH_IP_DST)
876 hash_sets |= HCLGEVF_D_IP_BIT;
877 else
878 hash_sets &= ~HCLGEVF_D_IP_BIT;
879
880 if (nfc->flow_type == SCTP_V4_FLOW || nfc->flow_type == SCTP_V6_FLOW)
881 hash_sets |= HCLGEVF_V_TAG_BIT;
882
883 return hash_sets;
884 }
885
886 static int hclgevf_init_rss_tuple_cmd(struct hnae3_handle *handle,
887 struct ethtool_rxnfc *nfc,
888 struct hclgevf_rss_input_tuple_cmd *req)
889 {
890 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
891 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
892 u8 tuple_sets;
893
894 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
895 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
896 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
897 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
898 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
899 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
900 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
901 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
902
903 tuple_sets = hclgevf_get_rss_hash_bits(nfc);
904 switch (nfc->flow_type) {
905 case TCP_V4_FLOW:
906 req->ipv4_tcp_en = tuple_sets;
907 break;
908 case TCP_V6_FLOW:
909 req->ipv6_tcp_en = tuple_sets;
910 break;
911 case UDP_V4_FLOW:
912 req->ipv4_udp_en = tuple_sets;
913 break;
914 case UDP_V6_FLOW:
915 req->ipv6_udp_en = tuple_sets;
916 break;
917 case SCTP_V4_FLOW:
918 req->ipv4_sctp_en = tuple_sets;
919 break;
920 case SCTP_V6_FLOW:
921 if (hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 &&
922 (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)))
923 return -EINVAL;
924
925 req->ipv6_sctp_en = tuple_sets;
926 break;
927 case IPV4_FLOW:
928 req->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
929 break;
930 case IPV6_FLOW:
931 req->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
932 break;
933 default:
934 return -EINVAL;
935 }
936
937 return 0;
938 }
939
940 static int hclgevf_set_rss_tuple(struct hnae3_handle *handle,
941 struct ethtool_rxnfc *nfc)
942 {
943 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
944 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
945 struct hclgevf_rss_input_tuple_cmd *req;
946 struct hclgevf_desc desc;
947 int ret;
948
949 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
950 return -EOPNOTSUPP;
951
952 if (nfc->data &
953 ~(RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3))
954 return -EINVAL;
955
956 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
957 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
958
959 ret = hclgevf_init_rss_tuple_cmd(handle, nfc, req);
960 if (ret) {
961 dev_err(&hdev->pdev->dev,
962 "failed to init rss tuple cmd, ret = %d\n", ret);
963 return ret;
964 }
965
966 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
967 if (ret) {
968 dev_err(&hdev->pdev->dev,
969 "Set rss tuple fail, status = %d\n", ret);
970 return ret;
971 }
972
973 rss_cfg->rss_tuple_sets.ipv4_tcp_en = req->ipv4_tcp_en;
974 rss_cfg->rss_tuple_sets.ipv4_udp_en = req->ipv4_udp_en;
975 rss_cfg->rss_tuple_sets.ipv4_sctp_en = req->ipv4_sctp_en;
976 rss_cfg->rss_tuple_sets.ipv4_fragment_en = req->ipv4_fragment_en;
977 rss_cfg->rss_tuple_sets.ipv6_tcp_en = req->ipv6_tcp_en;
978 rss_cfg->rss_tuple_sets.ipv6_udp_en = req->ipv6_udp_en;
979 rss_cfg->rss_tuple_sets.ipv6_sctp_en = req->ipv6_sctp_en;
980 rss_cfg->rss_tuple_sets.ipv6_fragment_en = req->ipv6_fragment_en;
981 return 0;
982 }
983
984 static int hclgevf_get_rss_tuple_by_flow_type(struct hclgevf_dev *hdev,
985 int flow_type, u8 *tuple_sets)
986 {
987 switch (flow_type) {
988 case TCP_V4_FLOW:
989 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_tcp_en;
990 break;
991 case UDP_V4_FLOW:
992 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_udp_en;
993 break;
994 case TCP_V6_FLOW:
995 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_tcp_en;
996 break;
997 case UDP_V6_FLOW:
998 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_udp_en;
999 break;
1000 case SCTP_V4_FLOW:
1001 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv4_sctp_en;
1002 break;
1003 case SCTP_V6_FLOW:
1004 *tuple_sets = hdev->rss_cfg.rss_tuple_sets.ipv6_sctp_en;
1005 break;
1006 case IPV4_FLOW:
1007 case IPV6_FLOW:
1008 *tuple_sets = HCLGEVF_S_IP_BIT | HCLGEVF_D_IP_BIT;
1009 break;
1010 default:
1011 return -EINVAL;
1012 }
1013
1014 return 0;
1015 }
1016
1017 static u64 hclgevf_convert_rss_tuple(u8 tuple_sets)
1018 {
1019 u64 tuple_data = 0;
1020
1021 if (tuple_sets & HCLGEVF_D_PORT_BIT)
1022 tuple_data |= RXH_L4_B_2_3;
1023 if (tuple_sets & HCLGEVF_S_PORT_BIT)
1024 tuple_data |= RXH_L4_B_0_1;
1025 if (tuple_sets & HCLGEVF_D_IP_BIT)
1026 tuple_data |= RXH_IP_DST;
1027 if (tuple_sets & HCLGEVF_S_IP_BIT)
1028 tuple_data |= RXH_IP_SRC;
1029
1030 return tuple_data;
1031 }
1032
1033 static int hclgevf_get_rss_tuple(struct hnae3_handle *handle,
1034 struct ethtool_rxnfc *nfc)
1035 {
1036 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1037 u8 tuple_sets;
1038 int ret;
1039
1040 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V2)
1041 return -EOPNOTSUPP;
1042
1043 nfc->data = 0;
1044
1045 ret = hclgevf_get_rss_tuple_by_flow_type(hdev, nfc->flow_type,
1046 &tuple_sets);
1047 if (ret || !tuple_sets)
1048 return ret;
1049
1050 nfc->data = hclgevf_convert_rss_tuple(tuple_sets);
1051
1052 return 0;
1053 }
1054
1055 static int hclgevf_set_rss_input_tuple(struct hclgevf_dev *hdev,
1056 struct hclgevf_rss_cfg *rss_cfg)
1057 {
1058 struct hclgevf_rss_input_tuple_cmd *req;
1059 struct hclgevf_desc desc;
1060 int ret;
1061
1062 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INPUT_TUPLE, false);
1063
1064 req = (struct hclgevf_rss_input_tuple_cmd *)desc.data;
1065
1066 req->ipv4_tcp_en = rss_cfg->rss_tuple_sets.ipv4_tcp_en;
1067 req->ipv4_udp_en = rss_cfg->rss_tuple_sets.ipv4_udp_en;
1068 req->ipv4_sctp_en = rss_cfg->rss_tuple_sets.ipv4_sctp_en;
1069 req->ipv4_fragment_en = rss_cfg->rss_tuple_sets.ipv4_fragment_en;
1070 req->ipv6_tcp_en = rss_cfg->rss_tuple_sets.ipv6_tcp_en;
1071 req->ipv6_udp_en = rss_cfg->rss_tuple_sets.ipv6_udp_en;
1072 req->ipv6_sctp_en = rss_cfg->rss_tuple_sets.ipv6_sctp_en;
1073 req->ipv6_fragment_en = rss_cfg->rss_tuple_sets.ipv6_fragment_en;
1074
1075 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
1076 if (ret)
1077 dev_err(&hdev->pdev->dev,
1078 "Configure rss input fail, status = %d\n", ret);
1079 return ret;
1080 }
1081
1082 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
1083 {
1084 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1085 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1086
1087 return rss_cfg->rss_size;
1088 }
1089
1090 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
1091 int vector_id,
1092 struct hnae3_ring_chain_node *ring_chain)
1093 {
1094 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1095 struct hclge_vf_to_pf_msg send_msg;
1096 struct hnae3_ring_chain_node *node;
1097 int status;
1098 int i = 0;
1099
1100 memset(&send_msg, 0, sizeof(send_msg));
1101 send_msg.code = en ? HCLGE_MBX_MAP_RING_TO_VECTOR :
1102 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
1103 send_msg.vector_id = vector_id;
1104
1105 for (node = ring_chain; node; node = node->next) {
1106 send_msg.param[i].ring_type =
1107 hnae3_get_bit(node->flag, HNAE3_RING_TYPE_B);
1108
1109 send_msg.param[i].tqp_index = node->tqp_index;
1110 send_msg.param[i].int_gl_index =
1111 hnae3_get_field(node->int_gl_idx,
1112 HNAE3_RING_GL_IDX_M,
1113 HNAE3_RING_GL_IDX_S);
1114
1115 i++;
1116 if (i == HCLGE_MBX_MAX_RING_CHAIN_PARAM_NUM || !node->next) {
1117 send_msg.ring_num = i;
1118
1119 status = hclgevf_send_mbx_msg(hdev, &send_msg, false,
1120 NULL, 0);
1121 if (status) {
1122 dev_err(&hdev->pdev->dev,
1123 "Map TQP fail, status is %d.\n",
1124 status);
1125 return status;
1126 }
1127 i = 0;
1128 }
1129 }
1130
1131 return 0;
1132 }
1133
1134 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
1135 struct hnae3_ring_chain_node *ring_chain)
1136 {
1137 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1138 int vector_id;
1139
1140 vector_id = hclgevf_get_vector_index(hdev, vector);
1141 if (vector_id < 0) {
1142 dev_err(&handle->pdev->dev,
1143 "Get vector index fail. ret =%d\n", vector_id);
1144 return vector_id;
1145 }
1146
1147 return hclgevf_bind_ring_to_vector(handle, true, vector_id, ring_chain);
1148 }
1149
1150 static int hclgevf_unmap_ring_from_vector(
1151 struct hnae3_handle *handle,
1152 int vector,
1153 struct hnae3_ring_chain_node *ring_chain)
1154 {
1155 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1156 int ret, vector_id;
1157
1158 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1159 return 0;
1160
1161 vector_id = hclgevf_get_vector_index(hdev, vector);
1162 if (vector_id < 0) {
1163 dev_err(&handle->pdev->dev,
1164 "Get vector index fail. ret =%d\n", vector_id);
1165 return vector_id;
1166 }
1167
1168 ret = hclgevf_bind_ring_to_vector(handle, false, vector_id, ring_chain);
1169 if (ret)
1170 dev_err(&handle->pdev->dev,
1171 "Unmap ring from vector fail. vector=%d, ret =%d\n",
1172 vector_id,
1173 ret);
1174
1175 return ret;
1176 }
1177
1178 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
1179 {
1180 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1181 int vector_id;
1182
1183 vector_id = hclgevf_get_vector_index(hdev, vector);
1184 if (vector_id < 0) {
1185 dev_err(&handle->pdev->dev,
1186 "hclgevf_put_vector get vector index fail. ret =%d\n",
1187 vector_id);
1188 return vector_id;
1189 }
1190
1191 hclgevf_free_vector(hdev, vector_id);
1192
1193 return 0;
1194 }
1195
1196 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
1197 bool en_uc_pmc, bool en_mc_pmc,
1198 bool en_bc_pmc)
1199 {
1200 struct hnae3_handle *handle = &hdev->nic;
1201 struct hclge_vf_to_pf_msg send_msg;
1202 int ret;
1203
1204 memset(&send_msg, 0, sizeof(send_msg));
1205 send_msg.code = HCLGE_MBX_SET_PROMISC_MODE;
1206 send_msg.en_bc = en_bc_pmc ? 1 : 0;
1207 send_msg.en_uc = en_uc_pmc ? 1 : 0;
1208 send_msg.en_mc = en_mc_pmc ? 1 : 0;
1209 send_msg.en_limit_promisc = test_bit(HNAE3_PFLAG_LIMIT_PROMISC,
1210 &handle->priv_flags) ? 1 : 0;
1211
1212 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1213 if (ret)
1214 dev_err(&hdev->pdev->dev,
1215 "Set promisc mode fail, status is %d.\n", ret);
1216
1217 return ret;
1218 }
1219
1220 static int hclgevf_set_promisc_mode(struct hnae3_handle *handle, bool en_uc_pmc,
1221 bool en_mc_pmc)
1222 {
1223 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1224 bool en_bc_pmc;
1225
1226 en_bc_pmc = hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2;
1227
1228 return hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc,
1229 en_bc_pmc);
1230 }
1231
1232 static void hclgevf_request_update_promisc_mode(struct hnae3_handle *handle)
1233 {
1234 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1235
1236 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1237 hclgevf_task_schedule(hdev, 0);
1238 }
1239
1240 static void hclgevf_sync_promisc_mode(struct hclgevf_dev *hdev)
1241 {
1242 struct hnae3_handle *handle = &hdev->nic;
1243 bool en_uc_pmc = handle->netdev_flags & HNAE3_UPE;
1244 bool en_mc_pmc = handle->netdev_flags & HNAE3_MPE;
1245 int ret;
1246
1247 if (test_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state)) {
1248 ret = hclgevf_set_promisc_mode(handle, en_uc_pmc, en_mc_pmc);
1249 if (!ret)
1250 clear_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
1251 }
1252 }
1253
1254 static int hclgevf_tqp_enable_cmd_send(struct hclgevf_dev *hdev, u16 tqp_id,
1255 u16 stream_id, bool enable)
1256 {
1257 struct hclgevf_cfg_com_tqp_queue_cmd *req;
1258 struct hclgevf_desc desc;
1259
1260 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
1261
1262 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
1263 false);
1264 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
1265 req->stream_id = cpu_to_le16(stream_id);
1266 if (enable)
1267 req->enable |= 1U << HCLGEVF_TQP_ENABLE_B;
1268
1269 return hclgevf_cmd_send(&hdev->hw, &desc, 1);
1270 }
1271
1272 static int hclgevf_tqp_enable(struct hnae3_handle *handle, bool enable)
1273 {
1274 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1275 int ret;
1276 u16 i;
1277
1278 for (i = 0; i < handle->kinfo.num_tqps; i++) {
1279 ret = hclgevf_tqp_enable_cmd_send(hdev, i, 0, enable);
1280 if (ret)
1281 return ret;
1282 }
1283
1284 return 0;
1285 }
1286
1287 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
1288 {
1289 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
1290 struct hclgevf_tqp *tqp;
1291 int i;
1292
1293 for (i = 0; i < kinfo->num_tqps; i++) {
1294 tqp = container_of(kinfo->tqp[i], struct hclgevf_tqp, q);
1295 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
1296 }
1297 }
1298
1299 static int hclgevf_get_host_mac_addr(struct hclgevf_dev *hdev, u8 *p)
1300 {
1301 struct hclge_vf_to_pf_msg send_msg;
1302 u8 host_mac[ETH_ALEN];
1303 int status;
1304
1305 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_GET_MAC_ADDR, 0);
1306 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, host_mac,
1307 ETH_ALEN);
1308 if (status) {
1309 dev_err(&hdev->pdev->dev,
1310 "fail to get VF MAC from host %d", status);
1311 return status;
1312 }
1313
1314 ether_addr_copy(p, host_mac);
1315
1316 return 0;
1317 }
1318
1319 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
1320 {
1321 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1322 u8 host_mac_addr[ETH_ALEN];
1323
1324 if (hclgevf_get_host_mac_addr(hdev, host_mac_addr))
1325 return;
1326
1327 hdev->has_pf_mac = !is_zero_ether_addr(host_mac_addr);
1328 if (hdev->has_pf_mac)
1329 ether_addr_copy(p, host_mac_addr);
1330 else
1331 ether_addr_copy(p, hdev->hw.mac.mac_addr);
1332 }
1333
1334 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
1335 bool is_first)
1336 {
1337 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1338 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
1339 struct hclge_vf_to_pf_msg send_msg;
1340 u8 *new_mac_addr = (u8 *)p;
1341 int status;
1342
1343 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_UNICAST, 0);
1344 send_msg.subcode = HCLGE_MBX_MAC_VLAN_UC_MODIFY;
1345 ether_addr_copy(send_msg.data, new_mac_addr);
1346 if (is_first && !hdev->has_pf_mac)
1347 eth_zero_addr(&send_msg.data[ETH_ALEN]);
1348 else
1349 ether_addr_copy(&send_msg.data[ETH_ALEN], old_mac_addr);
1350 status = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1351 if (!status)
1352 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
1353
1354 return status;
1355 }
1356
1357 static struct hclgevf_mac_addr_node *
1358 hclgevf_find_mac_node(struct list_head *list, const u8 *mac_addr)
1359 {
1360 struct hclgevf_mac_addr_node *mac_node, *tmp;
1361
1362 list_for_each_entry_safe(mac_node, tmp, list, node)
1363 if (ether_addr_equal(mac_addr, mac_node->mac_addr))
1364 return mac_node;
1365
1366 return NULL;
1367 }
1368
1369 static void hclgevf_update_mac_node(struct hclgevf_mac_addr_node *mac_node,
1370 enum HCLGEVF_MAC_NODE_STATE state)
1371 {
1372 switch (state) {
1373 /* from set_rx_mode or tmp_add_list */
1374 case HCLGEVF_MAC_TO_ADD:
1375 if (mac_node->state == HCLGEVF_MAC_TO_DEL)
1376 mac_node->state = HCLGEVF_MAC_ACTIVE;
1377 break;
1378 /* only from set_rx_mode */
1379 case HCLGEVF_MAC_TO_DEL:
1380 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1381 list_del(&mac_node->node);
1382 kfree(mac_node);
1383 } else {
1384 mac_node->state = HCLGEVF_MAC_TO_DEL;
1385 }
1386 break;
1387 /* only from tmp_add_list, the mac_node->state won't be
1388 * HCLGEVF_MAC_ACTIVE
1389 */
1390 case HCLGEVF_MAC_ACTIVE:
1391 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1392 mac_node->state = HCLGEVF_MAC_ACTIVE;
1393 break;
1394 }
1395 }
1396
1397 static int hclgevf_update_mac_list(struct hnae3_handle *handle,
1398 enum HCLGEVF_MAC_NODE_STATE state,
1399 enum HCLGEVF_MAC_ADDR_TYPE mac_type,
1400 const unsigned char *addr)
1401 {
1402 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1403 struct hclgevf_mac_addr_node *mac_node;
1404 struct list_head *list;
1405
1406 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1407 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1408
1409 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1410
1411 /* if the mac addr is already in the mac list, no need to add a new
1412 * one into it, just check the mac addr state, convert it to a new
1413 * new state, or just remove it, or do nothing.
1414 */
1415 mac_node = hclgevf_find_mac_node(list, addr);
1416 if (mac_node) {
1417 hclgevf_update_mac_node(mac_node, state);
1418 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1419 return 0;
1420 }
1421 /* if this address is never added, unnecessary to delete */
1422 if (state == HCLGEVF_MAC_TO_DEL) {
1423 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1424 return -ENOENT;
1425 }
1426
1427 mac_node = kzalloc(sizeof(*mac_node), GFP_ATOMIC);
1428 if (!mac_node) {
1429 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1430 return -ENOMEM;
1431 }
1432
1433 mac_node->state = state;
1434 ether_addr_copy(mac_node->mac_addr, addr);
1435 list_add_tail(&mac_node->node, list);
1436
1437 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1438 return 0;
1439 }
1440
1441 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
1442 const unsigned char *addr)
1443 {
1444 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1445 HCLGEVF_MAC_ADDR_UC, addr);
1446 }
1447
1448 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
1449 const unsigned char *addr)
1450 {
1451 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1452 HCLGEVF_MAC_ADDR_UC, addr);
1453 }
1454
1455 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
1456 const unsigned char *addr)
1457 {
1458 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_ADD,
1459 HCLGEVF_MAC_ADDR_MC, addr);
1460 }
1461
1462 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
1463 const unsigned char *addr)
1464 {
1465 return hclgevf_update_mac_list(handle, HCLGEVF_MAC_TO_DEL,
1466 HCLGEVF_MAC_ADDR_MC, addr);
1467 }
1468
1469 static int hclgevf_add_del_mac_addr(struct hclgevf_dev *hdev,
1470 struct hclgevf_mac_addr_node *mac_node,
1471 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1472 {
1473 struct hclge_vf_to_pf_msg send_msg;
1474 u8 code, subcode;
1475
1476 if (mac_type == HCLGEVF_MAC_ADDR_UC) {
1477 code = HCLGE_MBX_SET_UNICAST;
1478 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1479 subcode = HCLGE_MBX_MAC_VLAN_UC_ADD;
1480 else
1481 subcode = HCLGE_MBX_MAC_VLAN_UC_REMOVE;
1482 } else {
1483 code = HCLGE_MBX_SET_MULTICAST;
1484 if (mac_node->state == HCLGEVF_MAC_TO_ADD)
1485 subcode = HCLGE_MBX_MAC_VLAN_MC_ADD;
1486 else
1487 subcode = HCLGE_MBX_MAC_VLAN_MC_REMOVE;
1488 }
1489
1490 hclgevf_build_send_msg(&send_msg, code, subcode);
1491 ether_addr_copy(send_msg.data, mac_node->mac_addr);
1492 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1493 }
1494
1495 static void hclgevf_config_mac_list(struct hclgevf_dev *hdev,
1496 struct list_head *list,
1497 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1498 {
1499 struct hclgevf_mac_addr_node *mac_node, *tmp;
1500 int ret;
1501
1502 list_for_each_entry_safe(mac_node, tmp, list, node) {
1503 ret = hclgevf_add_del_mac_addr(hdev, mac_node, mac_type);
1504 if (ret) {
1505 dev_err(&hdev->pdev->dev,
1506 "failed to configure mac %pM, state = %d, ret = %d\n",
1507 mac_node->mac_addr, mac_node->state, ret);
1508 return;
1509 }
1510 if (mac_node->state == HCLGEVF_MAC_TO_ADD) {
1511 mac_node->state = HCLGEVF_MAC_ACTIVE;
1512 } else {
1513 list_del(&mac_node->node);
1514 kfree(mac_node);
1515 }
1516 }
1517 }
1518
1519 static void hclgevf_sync_from_add_list(struct list_head *add_list,
1520 struct list_head *mac_list)
1521 {
1522 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1523
1524 list_for_each_entry_safe(mac_node, tmp, add_list, node) {
1525 /* if the mac address from tmp_add_list is not in the
1526 * uc/mc_mac_list, it means have received a TO_DEL request
1527 * during the time window of sending mac config request to PF
1528 * If mac_node state is ACTIVE, then change its state to TO_DEL,
1529 * then it will be removed at next time. If is TO_ADD, it means
1530 * send TO_ADD request failed, so just remove the mac node.
1531 */
1532 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1533 if (new_node) {
1534 hclgevf_update_mac_node(new_node, mac_node->state);
1535 list_del(&mac_node->node);
1536 kfree(mac_node);
1537 } else if (mac_node->state == HCLGEVF_MAC_ACTIVE) {
1538 mac_node->state = HCLGEVF_MAC_TO_DEL;
1539 list_del(&mac_node->node);
1540 list_add_tail(&mac_node->node, mac_list);
1541 } else {
1542 list_del(&mac_node->node);
1543 kfree(mac_node);
1544 }
1545 }
1546 }
1547
1548 static void hclgevf_sync_from_del_list(struct list_head *del_list,
1549 struct list_head *mac_list)
1550 {
1551 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1552
1553 list_for_each_entry_safe(mac_node, tmp, del_list, node) {
1554 new_node = hclgevf_find_mac_node(mac_list, mac_node->mac_addr);
1555 if (new_node) {
1556 /* If the mac addr is exist in the mac list, it means
1557 * received a new request TO_ADD during the time window
1558 * of sending mac addr configurrequest to PF, so just
1559 * change the mac state to ACTIVE.
1560 */
1561 new_node->state = HCLGEVF_MAC_ACTIVE;
1562 list_del(&mac_node->node);
1563 kfree(mac_node);
1564 } else {
1565 list_del(&mac_node->node);
1566 list_add_tail(&mac_node->node, mac_list);
1567 }
1568 }
1569 }
1570
1571 static void hclgevf_clear_list(struct list_head *list)
1572 {
1573 struct hclgevf_mac_addr_node *mac_node, *tmp;
1574
1575 list_for_each_entry_safe(mac_node, tmp, list, node) {
1576 list_del(&mac_node->node);
1577 kfree(mac_node);
1578 }
1579 }
1580
1581 static void hclgevf_sync_mac_list(struct hclgevf_dev *hdev,
1582 enum HCLGEVF_MAC_ADDR_TYPE mac_type)
1583 {
1584 struct hclgevf_mac_addr_node *mac_node, *tmp, *new_node;
1585 struct list_head tmp_add_list, tmp_del_list;
1586 struct list_head *list;
1587
1588 INIT_LIST_HEAD(&tmp_add_list);
1589 INIT_LIST_HEAD(&tmp_del_list);
1590
1591 /* move the mac addr to the tmp_add_list and tmp_del_list, then
1592 * we can add/delete these mac addr outside the spin lock
1593 */
1594 list = (mac_type == HCLGEVF_MAC_ADDR_UC) ?
1595 &hdev->mac_table.uc_mac_list : &hdev->mac_table.mc_mac_list;
1596
1597 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1598
1599 list_for_each_entry_safe(mac_node, tmp, list, node) {
1600 switch (mac_node->state) {
1601 case HCLGEVF_MAC_TO_DEL:
1602 list_del(&mac_node->node);
1603 list_add_tail(&mac_node->node, &tmp_del_list);
1604 break;
1605 case HCLGEVF_MAC_TO_ADD:
1606 new_node = kzalloc(sizeof(*new_node), GFP_ATOMIC);
1607 if (!new_node)
1608 goto stop_traverse;
1609
1610 ether_addr_copy(new_node->mac_addr, mac_node->mac_addr);
1611 new_node->state = mac_node->state;
1612 list_add_tail(&new_node->node, &tmp_add_list);
1613 break;
1614 default:
1615 break;
1616 }
1617 }
1618
1619 stop_traverse:
1620 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1621
1622 /* delete first, in order to get max mac table space for adding */
1623 hclgevf_config_mac_list(hdev, &tmp_del_list, mac_type);
1624 hclgevf_config_mac_list(hdev, &tmp_add_list, mac_type);
1625
1626 /* if some mac addresses were added/deleted fail, move back to the
1627 * mac_list, and retry at next time.
1628 */
1629 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1630
1631 hclgevf_sync_from_del_list(&tmp_del_list, list);
1632 hclgevf_sync_from_add_list(&tmp_add_list, list);
1633
1634 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1635 }
1636
1637 static void hclgevf_sync_mac_table(struct hclgevf_dev *hdev)
1638 {
1639 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_UC);
1640 hclgevf_sync_mac_list(hdev, HCLGEVF_MAC_ADDR_MC);
1641 }
1642
1643 static void hclgevf_uninit_mac_list(struct hclgevf_dev *hdev)
1644 {
1645 spin_lock_bh(&hdev->mac_table.mac_list_lock);
1646
1647 hclgevf_clear_list(&hdev->mac_table.uc_mac_list);
1648 hclgevf_clear_list(&hdev->mac_table.mc_mac_list);
1649
1650 spin_unlock_bh(&hdev->mac_table.mac_list_lock);
1651 }
1652
1653 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
1654 __be16 proto, u16 vlan_id,
1655 bool is_kill)
1656 {
1657 #define HCLGEVF_VLAN_MBX_IS_KILL_OFFSET 0
1658 #define HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET 1
1659 #define HCLGEVF_VLAN_MBX_PROTO_OFFSET 3
1660
1661 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1662 struct hclge_vf_to_pf_msg send_msg;
1663 int ret;
1664
1665 if (vlan_id > HCLGEVF_MAX_VLAN_ID)
1666 return -EINVAL;
1667
1668 if (proto != htons(ETH_P_8021Q))
1669 return -EPROTONOSUPPORT;
1670
1671 /* When device is resetting or reset failed, firmware is unable to
1672 * handle mailbox. Just record the vlan id, and remove it after
1673 * reset finished.
1674 */
1675 if ((test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
1676 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) && is_kill) {
1677 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1678 return -EBUSY;
1679 }
1680
1681 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1682 HCLGE_MBX_VLAN_FILTER);
1683 send_msg.data[HCLGEVF_VLAN_MBX_IS_KILL_OFFSET] = is_kill;
1684 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_VLAN_ID_OFFSET], &vlan_id,
1685 sizeof(vlan_id));
1686 memcpy(&send_msg.data[HCLGEVF_VLAN_MBX_PROTO_OFFSET], &proto,
1687 sizeof(proto));
1688 /* when remove hw vlan filter failed, record the vlan id,
1689 * and try to remove it from hw later, to be consistence
1690 * with stack.
1691 */
1692 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1693 if (is_kill && ret)
1694 set_bit(vlan_id, hdev->vlan_del_fail_bmap);
1695
1696 return ret;
1697 }
1698
1699 static void hclgevf_sync_vlan_filter(struct hclgevf_dev *hdev)
1700 {
1701 #define HCLGEVF_MAX_SYNC_COUNT 60
1702 struct hnae3_handle *handle = &hdev->nic;
1703 int ret, sync_cnt = 0;
1704 u16 vlan_id;
1705
1706 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1707 while (vlan_id != VLAN_N_VID) {
1708 ret = hclgevf_set_vlan_filter(handle, htons(ETH_P_8021Q),
1709 vlan_id, true);
1710 if (ret)
1711 return;
1712
1713 clear_bit(vlan_id, hdev->vlan_del_fail_bmap);
1714 sync_cnt++;
1715 if (sync_cnt >= HCLGEVF_MAX_SYNC_COUNT)
1716 return;
1717
1718 vlan_id = find_first_bit(hdev->vlan_del_fail_bmap, VLAN_N_VID);
1719 }
1720 }
1721
1722 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
1723 {
1724 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1725 struct hclge_vf_to_pf_msg send_msg;
1726
1727 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
1728 HCLGE_MBX_VLAN_RX_OFF_CFG);
1729 send_msg.data[0] = enable ? 1 : 0;
1730 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
1731 }
1732
1733 static int hclgevf_reset_tqp(struct hnae3_handle *handle)
1734 {
1735 #define HCLGEVF_RESET_ALL_QUEUE_DONE 1U
1736 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1737 struct hclge_vf_to_pf_msg send_msg;
1738 u8 return_status = 0;
1739 int ret;
1740 u16 i;
1741
1742 /* disable vf queue before send queue reset msg to PF */
1743 ret = hclgevf_tqp_enable(handle, false);
1744 if (ret) {
1745 dev_err(&hdev->pdev->dev, "failed to disable tqp, ret = %d\n",
1746 ret);
1747 return ret;
1748 }
1749
1750 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1751
1752 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, &return_status,
1753 sizeof(return_status));
1754 if (ret || return_status == HCLGEVF_RESET_ALL_QUEUE_DONE)
1755 return ret;
1756
1757 for (i = 1; i < handle->kinfo.num_tqps; i++) {
1758 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_QUEUE_RESET, 0);
1759 memcpy(send_msg.data, &i, sizeof(i));
1760 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1761 if (ret)
1762 return ret;
1763 }
1764
1765 return 0;
1766 }
1767
1768 static int hclgevf_set_mtu(struct hnae3_handle *handle, int new_mtu)
1769 {
1770 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1771 struct hclge_vf_to_pf_msg send_msg;
1772
1773 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_MTU, 0);
1774 memcpy(send_msg.data, &new_mtu, sizeof(new_mtu));
1775 return hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1776 }
1777
1778 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
1779 enum hnae3_reset_notify_type type)
1780 {
1781 struct hnae3_client *client = hdev->nic_client;
1782 struct hnae3_handle *handle = &hdev->nic;
1783 int ret;
1784
1785 if (!test_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state) ||
1786 !client)
1787 return 0;
1788
1789 if (!client->ops->reset_notify)
1790 return -EOPNOTSUPP;
1791
1792 ret = client->ops->reset_notify(handle, type);
1793 if (ret)
1794 dev_err(&hdev->pdev->dev, "notify nic client failed %d(%d)\n",
1795 type, ret);
1796
1797 return ret;
1798 }
1799
1800 static int hclgevf_notify_roce_client(struct hclgevf_dev *hdev,
1801 enum hnae3_reset_notify_type type)
1802 {
1803 struct hnae3_client *client = hdev->roce_client;
1804 struct hnae3_handle *handle = &hdev->roce;
1805 int ret;
1806
1807 if (!test_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state) || !client)
1808 return 0;
1809
1810 if (!client->ops->reset_notify)
1811 return -EOPNOTSUPP;
1812
1813 ret = client->ops->reset_notify(handle, type);
1814 if (ret)
1815 dev_err(&hdev->pdev->dev, "notify roce client failed %d(%d)",
1816 type, ret);
1817 return ret;
1818 }
1819
1820 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
1821 {
1822 #define HCLGEVF_RESET_WAIT_US 20000
1823 #define HCLGEVF_RESET_WAIT_CNT 2000
1824 #define HCLGEVF_RESET_WAIT_TIMEOUT_US \
1825 (HCLGEVF_RESET_WAIT_US * HCLGEVF_RESET_WAIT_CNT)
1826
1827 u32 val;
1828 int ret;
1829
1830 if (hdev->reset_type == HNAE3_VF_RESET)
1831 ret = readl_poll_timeout(hdev->hw.io_base +
1832 HCLGEVF_VF_RST_ING, val,
1833 !(val & HCLGEVF_VF_RST_ING_BIT),
1834 HCLGEVF_RESET_WAIT_US,
1835 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1836 else
1837 ret = readl_poll_timeout(hdev->hw.io_base +
1838 HCLGEVF_RST_ING, val,
1839 !(val & HCLGEVF_RST_ING_BITS),
1840 HCLGEVF_RESET_WAIT_US,
1841 HCLGEVF_RESET_WAIT_TIMEOUT_US);
1842
1843 /* hardware completion status should be available by this time */
1844 if (ret) {
1845 dev_err(&hdev->pdev->dev,
1846 "couldn't get reset done status from h/w, timeout!\n");
1847 return ret;
1848 }
1849
1850 /* we will wait a bit more to let reset of the stack to complete. This
1851 * might happen in case reset assertion was made by PF. Yes, this also
1852 * means we might end up waiting bit more even for VF reset.
1853 */
1854 msleep(5000);
1855
1856 return 0;
1857 }
1858
1859 static void hclgevf_reset_handshake(struct hclgevf_dev *hdev, bool enable)
1860 {
1861 u32 reg_val;
1862
1863 reg_val = hclgevf_read_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG);
1864 if (enable)
1865 reg_val |= HCLGEVF_NIC_SW_RST_RDY;
1866 else
1867 reg_val &= ~HCLGEVF_NIC_SW_RST_RDY;
1868
1869 hclgevf_write_dev(&hdev->hw, HCLGEVF_NIC_CSQ_DEPTH_REG,
1870 reg_val);
1871 }
1872
1873 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
1874 {
1875 int ret;
1876
1877 /* uninitialize the nic client */
1878 ret = hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
1879 if (ret)
1880 return ret;
1881
1882 /* re-initialize the hclge device */
1883 ret = hclgevf_reset_hdev(hdev);
1884 if (ret) {
1885 dev_err(&hdev->pdev->dev,
1886 "hclge device re-init failed, VF is disabled!\n");
1887 return ret;
1888 }
1889
1890 /* bring up the nic client again */
1891 ret = hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
1892 if (ret)
1893 return ret;
1894
1895 /* clear handshake status with IMP */
1896 hclgevf_reset_handshake(hdev, false);
1897
1898 /* bring up the nic to enable TX/RX again */
1899 return hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
1900 }
1901
1902 static int hclgevf_reset_prepare_wait(struct hclgevf_dev *hdev)
1903 {
1904 #define HCLGEVF_RESET_SYNC_TIME 100
1905
1906 if (hdev->reset_type == HNAE3_VF_FUNC_RESET) {
1907 struct hclge_vf_to_pf_msg send_msg;
1908 int ret;
1909
1910 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_RESET, 0);
1911 ret = hclgevf_send_mbx_msg(hdev, &send_msg, true, NULL, 0);
1912 if (ret) {
1913 dev_err(&hdev->pdev->dev,
1914 "failed to assert VF reset, ret = %d\n", ret);
1915 return ret;
1916 }
1917 hdev->rst_stats.vf_func_rst_cnt++;
1918 }
1919
1920 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
1921 /* inform hardware that preparatory work is done */
1922 msleep(HCLGEVF_RESET_SYNC_TIME);
1923 hclgevf_reset_handshake(hdev, true);
1924 dev_info(&hdev->pdev->dev, "prepare reset(%d) wait done\n",
1925 hdev->reset_type);
1926
1927 return 0;
1928 }
1929
1930 static void hclgevf_dump_rst_info(struct hclgevf_dev *hdev)
1931 {
1932 dev_info(&hdev->pdev->dev, "VF function reset count: %u\n",
1933 hdev->rst_stats.vf_func_rst_cnt);
1934 dev_info(&hdev->pdev->dev, "FLR reset count: %u\n",
1935 hdev->rst_stats.flr_rst_cnt);
1936 dev_info(&hdev->pdev->dev, "VF reset count: %u\n",
1937 hdev->rst_stats.vf_rst_cnt);
1938 dev_info(&hdev->pdev->dev, "reset done count: %u\n",
1939 hdev->rst_stats.rst_done_cnt);
1940 dev_info(&hdev->pdev->dev, "HW reset done count: %u\n",
1941 hdev->rst_stats.hw_rst_done_cnt);
1942 dev_info(&hdev->pdev->dev, "reset count: %u\n",
1943 hdev->rst_stats.rst_cnt);
1944 dev_info(&hdev->pdev->dev, "reset fail count: %u\n",
1945 hdev->rst_stats.rst_fail_cnt);
1946 dev_info(&hdev->pdev->dev, "vector0 interrupt enable status: 0x%x\n",
1947 hclgevf_read_dev(&hdev->hw, HCLGEVF_MISC_VECTOR_REG_BASE));
1948 dev_info(&hdev->pdev->dev, "vector0 interrupt status: 0x%x\n",
1949 hclgevf_read_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_STATE_REG));
1950 dev_info(&hdev->pdev->dev, "handshake status: 0x%x\n",
1951 hclgevf_read_dev(&hdev->hw, HCLGEVF_CMDQ_TX_DEPTH_REG));
1952 dev_info(&hdev->pdev->dev, "function reset status: 0x%x\n",
1953 hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING));
1954 dev_info(&hdev->pdev->dev, "hdev state: 0x%lx\n", hdev->state);
1955 }
1956
1957 static void hclgevf_reset_err_handle(struct hclgevf_dev *hdev)
1958 {
1959 /* recover handshake status with IMP when reset fail */
1960 hclgevf_reset_handshake(hdev, true);
1961 hdev->rst_stats.rst_fail_cnt++;
1962 dev_err(&hdev->pdev->dev, "failed to reset VF(%u)\n",
1963 hdev->rst_stats.rst_fail_cnt);
1964
1965 if (hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT)
1966 set_bit(hdev->reset_type, &hdev->reset_pending);
1967
1968 if (hclgevf_is_reset_pending(hdev)) {
1969 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1970 hclgevf_reset_task_schedule(hdev);
1971 } else {
1972 set_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
1973 hclgevf_dump_rst_info(hdev);
1974 }
1975 }
1976
1977 static int hclgevf_reset_prepare(struct hclgevf_dev *hdev)
1978 {
1979 int ret;
1980
1981 hdev->rst_stats.rst_cnt++;
1982
1983 /* perform reset of the stack & ae device for a client */
1984 ret = hclgevf_notify_roce_client(hdev, HNAE3_DOWN_CLIENT);
1985 if (ret)
1986 return ret;
1987
1988 rtnl_lock();
1989 /* bring down the nic to stop any ongoing TX/RX */
1990 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
1991 rtnl_unlock();
1992 if (ret)
1993 return ret;
1994
1995 return hclgevf_reset_prepare_wait(hdev);
1996 }
1997
1998 static int hclgevf_reset_rebuild(struct hclgevf_dev *hdev)
1999 {
2000 int ret;
2001
2002 hdev->rst_stats.hw_rst_done_cnt++;
2003 ret = hclgevf_notify_roce_client(hdev, HNAE3_UNINIT_CLIENT);
2004 if (ret)
2005 return ret;
2006
2007 rtnl_lock();
2008 /* now, re-initialize the nic client and ae device */
2009 ret = hclgevf_reset_stack(hdev);
2010 rtnl_unlock();
2011 if (ret) {
2012 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
2013 return ret;
2014 }
2015
2016 ret = hclgevf_notify_roce_client(hdev, HNAE3_INIT_CLIENT);
2017 /* ignore RoCE notify error if it fails HCLGEVF_RESET_MAX_FAIL_CNT - 1
2018 * times
2019 */
2020 if (ret &&
2021 hdev->rst_stats.rst_fail_cnt < HCLGEVF_RESET_MAX_FAIL_CNT - 1)
2022 return ret;
2023
2024 ret = hclgevf_notify_roce_client(hdev, HNAE3_UP_CLIENT);
2025 if (ret)
2026 return ret;
2027
2028 hdev->last_reset_time = jiffies;
2029 hdev->rst_stats.rst_done_cnt++;
2030 hdev->rst_stats.rst_fail_cnt = 0;
2031 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2032
2033 return 0;
2034 }
2035
2036 static void hclgevf_reset(struct hclgevf_dev *hdev)
2037 {
2038 if (hclgevf_reset_prepare(hdev))
2039 goto err_reset;
2040
2041 /* check if VF could successfully fetch the hardware reset completion
2042 * status from the hardware
2043 */
2044 if (hclgevf_reset_wait(hdev)) {
2045 /* can't do much in this situation, will disable VF */
2046 dev_err(&hdev->pdev->dev,
2047 "failed to fetch H/W reset completion status\n");
2048 goto err_reset;
2049 }
2050
2051 if (hclgevf_reset_rebuild(hdev))
2052 goto err_reset;
2053
2054 return;
2055
2056 err_reset:
2057 hclgevf_reset_err_handle(hdev);
2058 }
2059
2060 static enum hnae3_reset_type hclgevf_get_reset_level(struct hclgevf_dev *hdev,
2061 unsigned long *addr)
2062 {
2063 enum hnae3_reset_type rst_level = HNAE3_NONE_RESET;
2064
2065 /* return the highest priority reset level amongst all */
2066 if (test_bit(HNAE3_VF_RESET, addr)) {
2067 rst_level = HNAE3_VF_RESET;
2068 clear_bit(HNAE3_VF_RESET, addr);
2069 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2070 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2071 } else if (test_bit(HNAE3_VF_FULL_RESET, addr)) {
2072 rst_level = HNAE3_VF_FULL_RESET;
2073 clear_bit(HNAE3_VF_FULL_RESET, addr);
2074 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2075 } else if (test_bit(HNAE3_VF_PF_FUNC_RESET, addr)) {
2076 rst_level = HNAE3_VF_PF_FUNC_RESET;
2077 clear_bit(HNAE3_VF_PF_FUNC_RESET, addr);
2078 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2079 } else if (test_bit(HNAE3_VF_FUNC_RESET, addr)) {
2080 rst_level = HNAE3_VF_FUNC_RESET;
2081 clear_bit(HNAE3_VF_FUNC_RESET, addr);
2082 } else if (test_bit(HNAE3_FLR_RESET, addr)) {
2083 rst_level = HNAE3_FLR_RESET;
2084 clear_bit(HNAE3_FLR_RESET, addr);
2085 }
2086
2087 return rst_level;
2088 }
2089
2090 static void hclgevf_reset_event(struct pci_dev *pdev,
2091 struct hnae3_handle *handle)
2092 {
2093 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
2094 struct hclgevf_dev *hdev = ae_dev->priv;
2095
2096 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
2097
2098 if (hdev->default_reset_request)
2099 hdev->reset_level =
2100 hclgevf_get_reset_level(hdev,
2101 &hdev->default_reset_request);
2102 else
2103 hdev->reset_level = HNAE3_VF_FUNC_RESET;
2104
2105 /* reset of this VF requested */
2106 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
2107 hclgevf_reset_task_schedule(hdev);
2108
2109 hdev->last_reset_time = jiffies;
2110 }
2111
2112 static void hclgevf_set_def_reset_request(struct hnae3_ae_dev *ae_dev,
2113 enum hnae3_reset_type rst_type)
2114 {
2115 struct hclgevf_dev *hdev = ae_dev->priv;
2116
2117 set_bit(rst_type, &hdev->default_reset_request);
2118 }
2119
2120 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
2121 {
2122 writel(en ? 1 : 0, vector->addr);
2123 }
2124
2125 static void hclgevf_reset_prepare_general(struct hnae3_ae_dev *ae_dev,
2126 enum hnae3_reset_type rst_type)
2127 {
2128 #define HCLGEVF_RESET_RETRY_WAIT_MS 500
2129 #define HCLGEVF_RESET_RETRY_CNT 5
2130
2131 struct hclgevf_dev *hdev = ae_dev->priv;
2132 int retry_cnt = 0;
2133 int ret;
2134
2135 retry:
2136 down(&hdev->reset_sem);
2137 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2138 hdev->reset_type = rst_type;
2139 ret = hclgevf_reset_prepare(hdev);
2140 if (ret) {
2141 dev_err(&hdev->pdev->dev, "fail to prepare to reset, ret=%d\n",
2142 ret);
2143 if (hdev->reset_pending ||
2144 retry_cnt++ < HCLGEVF_RESET_RETRY_CNT) {
2145 dev_err(&hdev->pdev->dev,
2146 "reset_pending:0x%lx, retry_cnt:%d\n",
2147 hdev->reset_pending, retry_cnt);
2148 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2149 up(&hdev->reset_sem);
2150 msleep(HCLGEVF_RESET_RETRY_WAIT_MS);
2151 goto retry;
2152 }
2153 }
2154
2155 /* disable misc vector before reset done */
2156 hclgevf_enable_vector(&hdev->misc_vector, false);
2157
2158 if (hdev->reset_type == HNAE3_FLR_RESET)
2159 hdev->rst_stats.flr_rst_cnt++;
2160 }
2161
2162 static void hclgevf_reset_done(struct hnae3_ae_dev *ae_dev)
2163 {
2164 struct hclgevf_dev *hdev = ae_dev->priv;
2165 int ret;
2166
2167 hclgevf_enable_vector(&hdev->misc_vector, true);
2168
2169 ret = hclgevf_reset_rebuild(hdev);
2170 if (ret)
2171 dev_warn(&hdev->pdev->dev, "fail to rebuild, ret=%d\n",
2172 ret);
2173
2174 hdev->reset_type = HNAE3_NONE_RESET;
2175 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2176 up(&hdev->reset_sem);
2177 }
2178
2179 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
2180 {
2181 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2182
2183 return hdev->fw_version;
2184 }
2185
2186 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
2187 {
2188 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
2189
2190 vector->vector_irq = pci_irq_vector(hdev->pdev,
2191 HCLGEVF_MISC_VECTOR_NUM);
2192 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
2193 /* vector status always valid for Vector 0 */
2194 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
2195 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
2196
2197 hdev->num_msi_left -= 1;
2198 hdev->num_msi_used += 1;
2199 }
2200
2201 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
2202 {
2203 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2204 !test_and_set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED,
2205 &hdev->state))
2206 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2207 }
2208
2209 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
2210 {
2211 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2212 !test_and_set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED,
2213 &hdev->state))
2214 mod_delayed_work(hclgevf_wq, &hdev->service_task, 0);
2215 }
2216
2217 static void hclgevf_task_schedule(struct hclgevf_dev *hdev,
2218 unsigned long delay)
2219 {
2220 if (!test_bit(HCLGEVF_STATE_REMOVING, &hdev->state) &&
2221 !test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2222 mod_delayed_work(hclgevf_wq, &hdev->service_task, delay);
2223 }
2224
2225 static void hclgevf_reset_service_task(struct hclgevf_dev *hdev)
2226 {
2227 #define HCLGEVF_MAX_RESET_ATTEMPTS_CNT 3
2228
2229 if (!test_and_clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state))
2230 return;
2231
2232 down(&hdev->reset_sem);
2233 set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2234
2235 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
2236 &hdev->reset_state)) {
2237 /* PF has intimated that it is about to reset the hardware.
2238 * We now have to poll & check if hardware has actually
2239 * completed the reset sequence. On hardware reset completion,
2240 * VF needs to reset the client and ae device.
2241 */
2242 hdev->reset_attempts = 0;
2243
2244 hdev->last_reset_time = jiffies;
2245 while ((hdev->reset_type =
2246 hclgevf_get_reset_level(hdev, &hdev->reset_pending))
2247 != HNAE3_NONE_RESET)
2248 hclgevf_reset(hdev);
2249 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
2250 &hdev->reset_state)) {
2251 /* we could be here when either of below happens:
2252 * 1. reset was initiated due to watchdog timeout caused by
2253 * a. IMP was earlier reset and our TX got choked down and
2254 * which resulted in watchdog reacting and inducing VF
2255 * reset. This also means our cmdq would be unreliable.
2256 * b. problem in TX due to other lower layer(example link
2257 * layer not functioning properly etc.)
2258 * 2. VF reset might have been initiated due to some config
2259 * change.
2260 *
2261 * NOTE: Theres no clear way to detect above cases than to react
2262 * to the response of PF for this reset request. PF will ack the
2263 * 1b and 2. cases but we will not get any intimation about 1a
2264 * from PF as cmdq would be in unreliable state i.e. mailbox
2265 * communication between PF and VF would be broken.
2266 *
2267 * if we are never geting into pending state it means either:
2268 * 1. PF is not receiving our request which could be due to IMP
2269 * reset
2270 * 2. PF is screwed
2271 * We cannot do much for 2. but to check first we can try reset
2272 * our PCIe + stack and see if it alleviates the problem.
2273 */
2274 if (hdev->reset_attempts > HCLGEVF_MAX_RESET_ATTEMPTS_CNT) {
2275 /* prepare for full reset of stack + pcie interface */
2276 set_bit(HNAE3_VF_FULL_RESET, &hdev->reset_pending);
2277
2278 /* "defer" schedule the reset task again */
2279 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2280 } else {
2281 hdev->reset_attempts++;
2282
2283 set_bit(hdev->reset_level, &hdev->reset_pending);
2284 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2285 }
2286 hclgevf_reset_task_schedule(hdev);
2287 }
2288
2289 hdev->reset_type = HNAE3_NONE_RESET;
2290 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
2291 up(&hdev->reset_sem);
2292 }
2293
2294 static void hclgevf_mailbox_service_task(struct hclgevf_dev *hdev)
2295 {
2296 if (!test_and_clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state))
2297 return;
2298
2299 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
2300 return;
2301
2302 hclgevf_mbx_async_handler(hdev);
2303
2304 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2305 }
2306
2307 static void hclgevf_keep_alive(struct hclgevf_dev *hdev)
2308 {
2309 struct hclge_vf_to_pf_msg send_msg;
2310 int ret;
2311
2312 if (test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state))
2313 return;
2314
2315 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_KEEP_ALIVE, 0);
2316 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2317 if (ret)
2318 dev_err(&hdev->pdev->dev,
2319 "VF sends keep alive cmd failed(=%d)\n", ret);
2320 }
2321
2322 static void hclgevf_periodic_service_task(struct hclgevf_dev *hdev)
2323 {
2324 unsigned long delta = round_jiffies_relative(HZ);
2325 struct hnae3_handle *handle = &hdev->nic;
2326
2327 if (test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state))
2328 return;
2329
2330 if (time_is_after_jiffies(hdev->last_serv_processed + HZ)) {
2331 delta = jiffies - hdev->last_serv_processed;
2332
2333 if (delta < round_jiffies_relative(HZ)) {
2334 delta = round_jiffies_relative(HZ) - delta;
2335 goto out;
2336 }
2337 }
2338
2339 hdev->serv_processed_cnt++;
2340 if (!(hdev->serv_processed_cnt % HCLGEVF_KEEP_ALIVE_TASK_INTERVAL))
2341 hclgevf_keep_alive(hdev);
2342
2343 if (test_bit(HCLGEVF_STATE_DOWN, &hdev->state)) {
2344 hdev->last_serv_processed = jiffies;
2345 goto out;
2346 }
2347
2348 if (!(hdev->serv_processed_cnt % HCLGEVF_STATS_TIMER_INTERVAL))
2349 hclgevf_tqps_update_stats(handle);
2350
2351 /* VF does not need to request link status when this bit is set, because
2352 * PF will push its link status to VFs when link status changed.
2353 */
2354 if (!test_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state))
2355 hclgevf_request_link_info(hdev);
2356
2357 hclgevf_update_link_mode(hdev);
2358
2359 hclgevf_sync_vlan_filter(hdev);
2360
2361 hclgevf_sync_mac_table(hdev);
2362
2363 hclgevf_sync_promisc_mode(hdev);
2364
2365 hdev->last_serv_processed = jiffies;
2366
2367 out:
2368 hclgevf_task_schedule(hdev, delta);
2369 }
2370
2371 static void hclgevf_service_task(struct work_struct *work)
2372 {
2373 struct hclgevf_dev *hdev = container_of(work, struct hclgevf_dev,
2374 service_task.work);
2375
2376 hclgevf_reset_service_task(hdev);
2377 hclgevf_mailbox_service_task(hdev);
2378 hclgevf_periodic_service_task(hdev);
2379
2380 /* Handle reset and mbx again in case periodical task delays the
2381 * handling by calling hclgevf_task_schedule() in
2382 * hclgevf_periodic_service_task()
2383 */
2384 hclgevf_reset_service_task(hdev);
2385 hclgevf_mailbox_service_task(hdev);
2386 }
2387
2388 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
2389 {
2390 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
2391 }
2392
2393 static enum hclgevf_evt_cause hclgevf_check_evt_cause(struct hclgevf_dev *hdev,
2394 u32 *clearval)
2395 {
2396 u32 val, cmdq_stat_reg, rst_ing_reg;
2397
2398 /* fetch the events from their corresponding regs */
2399 cmdq_stat_reg = hclgevf_read_dev(&hdev->hw,
2400 HCLGEVF_VECTOR0_CMDQ_STATE_REG);
2401 if (BIT(HCLGEVF_VECTOR0_RST_INT_B) & cmdq_stat_reg) {
2402 rst_ing_reg = hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
2403 dev_info(&hdev->pdev->dev,
2404 "receive reset interrupt 0x%x!\n", rst_ing_reg);
2405 set_bit(HNAE3_VF_RESET, &hdev->reset_pending);
2406 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
2407 set_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
2408 *clearval = ~(1U << HCLGEVF_VECTOR0_RST_INT_B);
2409 hdev->rst_stats.vf_rst_cnt++;
2410 /* set up VF hardware reset status, its PF will clear
2411 * this status when PF has initialized done.
2412 */
2413 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_VF_RST_ING);
2414 hclgevf_write_dev(&hdev->hw, HCLGEVF_VF_RST_ING,
2415 val | HCLGEVF_VF_RST_ING_BIT);
2416 return HCLGEVF_VECTOR0_EVENT_RST;
2417 }
2418
2419 /* check for vector0 mailbox(=CMDQ RX) event source */
2420 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_stat_reg) {
2421 /* for revision 0x21, clearing interrupt is writing bit 0
2422 * to the clear register, writing bit 1 means to keep the
2423 * old value.
2424 * for revision 0x20, the clear register is a read & write
2425 * register, so we should just write 0 to the bit we are
2426 * handling, and keep other bits as cmdq_stat_reg.
2427 */
2428 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2)
2429 *clearval = ~(1U << HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2430 else
2431 *clearval = cmdq_stat_reg &
2432 ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
2433
2434 return HCLGEVF_VECTOR0_EVENT_MBX;
2435 }
2436
2437 /* print other vector0 event source */
2438 dev_info(&hdev->pdev->dev,
2439 "vector 0 interrupt from unknown source, cmdq_src = %#x\n",
2440 cmdq_stat_reg);
2441
2442 return HCLGEVF_VECTOR0_EVENT_OTHER;
2443 }
2444
2445 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
2446 {
2447 enum hclgevf_evt_cause event_cause;
2448 struct hclgevf_dev *hdev = data;
2449 u32 clearval;
2450
2451 hclgevf_enable_vector(&hdev->misc_vector, false);
2452 event_cause = hclgevf_check_evt_cause(hdev, &clearval);
2453
2454 switch (event_cause) {
2455 case HCLGEVF_VECTOR0_EVENT_RST:
2456 hclgevf_reset_task_schedule(hdev);
2457 break;
2458 case HCLGEVF_VECTOR0_EVENT_MBX:
2459 hclgevf_mbx_handler(hdev);
2460 break;
2461 default:
2462 break;
2463 }
2464
2465 if (event_cause != HCLGEVF_VECTOR0_EVENT_OTHER) {
2466 hclgevf_clear_event_cause(hdev, clearval);
2467 hclgevf_enable_vector(&hdev->misc_vector, true);
2468 }
2469
2470 return IRQ_HANDLED;
2471 }
2472
2473 static int hclgevf_configure(struct hclgevf_dev *hdev)
2474 {
2475 int ret;
2476
2477 ret = hclgevf_get_basic_info(hdev);
2478 if (ret)
2479 return ret;
2480
2481 /* get current port based vlan state from PF */
2482 ret = hclgevf_get_port_base_vlan_filter_state(hdev);
2483 if (ret)
2484 return ret;
2485
2486 /* get queue configuration from PF */
2487 ret = hclgevf_get_queue_info(hdev);
2488 if (ret)
2489 return ret;
2490
2491 /* get queue depth info from PF */
2492 ret = hclgevf_get_queue_depth(hdev);
2493 if (ret)
2494 return ret;
2495
2496 return hclgevf_get_pf_media_type(hdev);
2497 }
2498
2499 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
2500 {
2501 struct pci_dev *pdev = ae_dev->pdev;
2502 struct hclgevf_dev *hdev;
2503
2504 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
2505 if (!hdev)
2506 return -ENOMEM;
2507
2508 hdev->pdev = pdev;
2509 hdev->ae_dev = ae_dev;
2510 ae_dev->priv = hdev;
2511
2512 return 0;
2513 }
2514
2515 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
2516 {
2517 struct hnae3_handle *roce = &hdev->roce;
2518 struct hnae3_handle *nic = &hdev->nic;
2519
2520 roce->rinfo.num_vectors = hdev->num_roce_msix;
2521
2522 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
2523 hdev->num_msi_left == 0)
2524 return -EINVAL;
2525
2526 roce->rinfo.base_vector = hdev->roce_base_vector;
2527
2528 roce->rinfo.netdev = nic->kinfo.netdev;
2529 roce->rinfo.roce_io_base = hdev->hw.io_base;
2530 roce->rinfo.roce_mem_base = hdev->hw.mem_base;
2531
2532 roce->pdev = nic->pdev;
2533 roce->ae_algo = nic->ae_algo;
2534 roce->numa_node_mask = nic->numa_node_mask;
2535
2536 return 0;
2537 }
2538
2539 static int hclgevf_config_gro(struct hclgevf_dev *hdev, bool en)
2540 {
2541 struct hclgevf_cfg_gro_status_cmd *req;
2542 struct hclgevf_desc desc;
2543 int ret;
2544
2545 if (!hnae3_dev_gro_supported(hdev))
2546 return 0;
2547
2548 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_GRO_GENERIC_CONFIG,
2549 false);
2550 req = (struct hclgevf_cfg_gro_status_cmd *)desc.data;
2551
2552 req->gro_en = en ? 1 : 0;
2553
2554 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
2555 if (ret)
2556 dev_err(&hdev->pdev->dev,
2557 "VF GRO hardware config cmd failed, ret = %d.\n", ret);
2558
2559 return ret;
2560 }
2561
2562 static int hclgevf_rss_init_cfg(struct hclgevf_dev *hdev)
2563 {
2564 u16 rss_ind_tbl_size = hdev->ae_dev->dev_specs.rss_ind_tbl_size;
2565 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2566 struct hclgevf_rss_tuple_cfg *tuple_sets;
2567 u32 i;
2568
2569 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_TOEPLITZ;
2570 rss_cfg->rss_size = hdev->nic.kinfo.rss_size;
2571 tuple_sets = &rss_cfg->rss_tuple_sets;
2572 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2573 u8 *rss_ind_tbl;
2574
2575 rss_cfg->hash_algo = HCLGEVF_RSS_HASH_ALGO_SIMPLE;
2576
2577 rss_ind_tbl = devm_kcalloc(&hdev->pdev->dev, rss_ind_tbl_size,
2578 sizeof(*rss_ind_tbl), GFP_KERNEL);
2579 if (!rss_ind_tbl)
2580 return -ENOMEM;
2581
2582 rss_cfg->rss_indirection_tbl = rss_ind_tbl;
2583 memcpy(rss_cfg->rss_hash_key, hclgevf_hash_key,
2584 HCLGEVF_RSS_KEY_SIZE);
2585
2586 tuple_sets->ipv4_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2587 tuple_sets->ipv4_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2588 tuple_sets->ipv4_sctp_en = HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2589 tuple_sets->ipv4_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2590 tuple_sets->ipv6_tcp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2591 tuple_sets->ipv6_udp_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2592 tuple_sets->ipv6_sctp_en =
2593 hdev->ae_dev->dev_version <= HNAE3_DEVICE_VERSION_V2 ?
2594 HCLGEVF_RSS_INPUT_TUPLE_SCTP_NO_PORT :
2595 HCLGEVF_RSS_INPUT_TUPLE_SCTP;
2596 tuple_sets->ipv6_fragment_en = HCLGEVF_RSS_INPUT_TUPLE_OTHER;
2597 }
2598
2599 /* Initialize RSS indirect table */
2600 for (i = 0; i < rss_ind_tbl_size; i++)
2601 rss_cfg->rss_indirection_tbl[i] = i % rss_cfg->rss_size;
2602
2603 return 0;
2604 }
2605
2606 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
2607 {
2608 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
2609 int ret;
2610
2611 if (hdev->ae_dev->dev_version >= HNAE3_DEVICE_VERSION_V2) {
2612 ret = hclgevf_set_rss_algo_key(hdev, rss_cfg->hash_algo,
2613 rss_cfg->rss_hash_key);
2614 if (ret)
2615 return ret;
2616
2617 ret = hclgevf_set_rss_input_tuple(hdev, rss_cfg);
2618 if (ret)
2619 return ret;
2620 }
2621
2622 ret = hclgevf_set_rss_indir_table(hdev);
2623 if (ret)
2624 return ret;
2625
2626 return hclgevf_set_rss_tc_mode(hdev, rss_cfg->rss_size);
2627 }
2628
2629 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
2630 {
2631 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
2632 false);
2633 }
2634
2635 static void hclgevf_flush_link_update(struct hclgevf_dev *hdev)
2636 {
2637 #define HCLGEVF_FLUSH_LINK_TIMEOUT 100000
2638
2639 unsigned long last = hdev->serv_processed_cnt;
2640 int i = 0;
2641
2642 while (test_bit(HCLGEVF_STATE_LINK_UPDATING, &hdev->state) &&
2643 i++ < HCLGEVF_FLUSH_LINK_TIMEOUT &&
2644 last == hdev->serv_processed_cnt)
2645 usleep_range(1, 1);
2646 }
2647
2648 static void hclgevf_set_timer_task(struct hnae3_handle *handle, bool enable)
2649 {
2650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2651
2652 if (enable) {
2653 hclgevf_task_schedule(hdev, 0);
2654 } else {
2655 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2656
2657 /* flush memory to make sure DOWN is seen by service task */
2658 smp_mb__before_atomic();
2659 hclgevf_flush_link_update(hdev);
2660 }
2661 }
2662
2663 static int hclgevf_ae_start(struct hnae3_handle *handle)
2664 {
2665 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2666
2667 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2668 clear_bit(HCLGEVF_STATE_PF_PUSH_LINK_STATUS, &hdev->state);
2669
2670 hclgevf_reset_tqp_stats(handle);
2671
2672 hclgevf_request_link_info(hdev);
2673
2674 hclgevf_update_link_mode(hdev);
2675
2676 return 0;
2677 }
2678
2679 static void hclgevf_ae_stop(struct hnae3_handle *handle)
2680 {
2681 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2682
2683 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2684
2685 if (hdev->reset_type != HNAE3_VF_RESET)
2686 hclgevf_reset_tqp(handle);
2687
2688 hclgevf_reset_tqp_stats(handle);
2689 hclgevf_update_link_status(hdev, 0);
2690 }
2691
2692 static int hclgevf_set_alive(struct hnae3_handle *handle, bool alive)
2693 {
2694 #define HCLGEVF_STATE_ALIVE 1
2695 #define HCLGEVF_STATE_NOT_ALIVE 0
2696
2697 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2698 struct hclge_vf_to_pf_msg send_msg;
2699
2700 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_ALIVE, 0);
2701 send_msg.data[0] = alive ? HCLGEVF_STATE_ALIVE :
2702 HCLGEVF_STATE_NOT_ALIVE;
2703 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
2704 }
2705
2706 static int hclgevf_client_start(struct hnae3_handle *handle)
2707 {
2708 return hclgevf_set_alive(handle, true);
2709 }
2710
2711 static void hclgevf_client_stop(struct hnae3_handle *handle)
2712 {
2713 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
2714 int ret;
2715
2716 ret = hclgevf_set_alive(handle, false);
2717 if (ret)
2718 dev_warn(&hdev->pdev->dev,
2719 "%s failed %d\n", __func__, ret);
2720 }
2721
2722 static void hclgevf_state_init(struct hclgevf_dev *hdev)
2723 {
2724 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
2725 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
2726 clear_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state);
2727
2728 INIT_DELAYED_WORK(&hdev->service_task, hclgevf_service_task);
2729
2730 mutex_init(&hdev->mbx_resp.mbx_mutex);
2731 sema_init(&hdev->reset_sem, 1);
2732
2733 spin_lock_init(&hdev->mac_table.mac_list_lock);
2734 INIT_LIST_HEAD(&hdev->mac_table.uc_mac_list);
2735 INIT_LIST_HEAD(&hdev->mac_table.mc_mac_list);
2736
2737 /* bring the device down */
2738 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2739 }
2740
2741 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
2742 {
2743 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
2744 set_bit(HCLGEVF_STATE_REMOVING, &hdev->state);
2745
2746 if (hdev->service_task.work.func)
2747 cancel_delayed_work_sync(&hdev->service_task);
2748
2749 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
2750 }
2751
2752 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
2753 {
2754 struct pci_dev *pdev = hdev->pdev;
2755 int vectors;
2756 int i;
2757
2758 if (hnae3_dev_roce_supported(hdev))
2759 vectors = pci_alloc_irq_vectors(pdev,
2760 hdev->roce_base_msix_offset + 1,
2761 hdev->num_msi,
2762 PCI_IRQ_MSIX);
2763 else
2764 vectors = pci_alloc_irq_vectors(pdev, HNAE3_MIN_VECTOR_NUM,
2765 hdev->num_msi,
2766 PCI_IRQ_MSI | PCI_IRQ_MSIX);
2767
2768 if (vectors < 0) {
2769 dev_err(&pdev->dev,
2770 "failed(%d) to allocate MSI/MSI-X vectors\n",
2771 vectors);
2772 return vectors;
2773 }
2774 if (vectors < hdev->num_msi)
2775 dev_warn(&hdev->pdev->dev,
2776 "requested %u MSI/MSI-X, but allocated %d MSI/MSI-X\n",
2777 hdev->num_msi, vectors);
2778
2779 hdev->num_msi = vectors;
2780 hdev->num_msi_left = vectors;
2781
2782 hdev->base_msi_vector = pdev->irq;
2783 hdev->roce_base_vector = pdev->irq + hdev->roce_base_msix_offset;
2784
2785 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
2786 sizeof(u16), GFP_KERNEL);
2787 if (!hdev->vector_status) {
2788 pci_free_irq_vectors(pdev);
2789 return -ENOMEM;
2790 }
2791
2792 for (i = 0; i < hdev->num_msi; i++)
2793 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
2794
2795 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
2796 sizeof(int), GFP_KERNEL);
2797 if (!hdev->vector_irq) {
2798 devm_kfree(&pdev->dev, hdev->vector_status);
2799 pci_free_irq_vectors(pdev);
2800 return -ENOMEM;
2801 }
2802
2803 return 0;
2804 }
2805
2806 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
2807 {
2808 struct pci_dev *pdev = hdev->pdev;
2809
2810 devm_kfree(&pdev->dev, hdev->vector_status);
2811 devm_kfree(&pdev->dev, hdev->vector_irq);
2812 pci_free_irq_vectors(pdev);
2813 }
2814
2815 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
2816 {
2817 int ret;
2818
2819 hclgevf_get_misc_vector(hdev);
2820
2821 snprintf(hdev->misc_vector.name, HNAE3_INT_NAME_LEN, "%s-misc-%s",
2822 HCLGEVF_NAME, pci_name(hdev->pdev));
2823 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
2824 0, hdev->misc_vector.name, hdev);
2825 if (ret) {
2826 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
2827 hdev->misc_vector.vector_irq);
2828 return ret;
2829 }
2830
2831 hclgevf_clear_event_cause(hdev, 0);
2832
2833 /* enable misc. vector(vector 0) */
2834 hclgevf_enable_vector(&hdev->misc_vector, true);
2835
2836 return ret;
2837 }
2838
2839 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
2840 {
2841 /* disable misc vector(vector 0) */
2842 hclgevf_enable_vector(&hdev->misc_vector, false);
2843 synchronize_irq(hdev->misc_vector.vector_irq);
2844 free_irq(hdev->misc_vector.vector_irq, hdev);
2845 hclgevf_free_vector(hdev, 0);
2846 }
2847
2848 static void hclgevf_info_show(struct hclgevf_dev *hdev)
2849 {
2850 struct device *dev = &hdev->pdev->dev;
2851
2852 dev_info(dev, "VF info begin:\n");
2853
2854 dev_info(dev, "Task queue pairs numbers: %u\n", hdev->num_tqps);
2855 dev_info(dev, "Desc num per TX queue: %u\n", hdev->num_tx_desc);
2856 dev_info(dev, "Desc num per RX queue: %u\n", hdev->num_rx_desc);
2857 dev_info(dev, "Numbers of vports: %u\n", hdev->num_alloc_vport);
2858 dev_info(dev, "HW tc map: 0x%x\n", hdev->hw_tc_map);
2859 dev_info(dev, "PF media type of this VF: %u\n",
2860 hdev->hw.mac.media_type);
2861
2862 dev_info(dev, "VF info end.\n");
2863 }
2864
2865 static int hclgevf_init_nic_client_instance(struct hnae3_ae_dev *ae_dev,
2866 struct hnae3_client *client)
2867 {
2868 struct hclgevf_dev *hdev = ae_dev->priv;
2869 int rst_cnt = hdev->rst_stats.rst_cnt;
2870 int ret;
2871
2872 ret = client->ops->init_instance(&hdev->nic);
2873 if (ret)
2874 return ret;
2875
2876 set_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2877 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
2878 rst_cnt != hdev->rst_stats.rst_cnt) {
2879 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2880
2881 client->ops->uninit_instance(&hdev->nic, 0);
2882 return -EBUSY;
2883 }
2884
2885 hnae3_set_client_init_flag(client, ae_dev, 1);
2886
2887 if (netif_msg_drv(&hdev->nic))
2888 hclgevf_info_show(hdev);
2889
2890 return 0;
2891 }
2892
2893 static int hclgevf_init_roce_client_instance(struct hnae3_ae_dev *ae_dev,
2894 struct hnae3_client *client)
2895 {
2896 struct hclgevf_dev *hdev = ae_dev->priv;
2897 int ret;
2898
2899 if (!hnae3_dev_roce_supported(hdev) || !hdev->roce_client ||
2900 !hdev->nic_client)
2901 return 0;
2902
2903 ret = hclgevf_init_roce_base_info(hdev);
2904 if (ret)
2905 return ret;
2906
2907 ret = client->ops->init_instance(&hdev->roce);
2908 if (ret)
2909 return ret;
2910
2911 set_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2912 hnae3_set_client_init_flag(client, ae_dev, 1);
2913
2914 return 0;
2915 }
2916
2917 static int hclgevf_init_client_instance(struct hnae3_client *client,
2918 struct hnae3_ae_dev *ae_dev)
2919 {
2920 struct hclgevf_dev *hdev = ae_dev->priv;
2921 int ret;
2922
2923 switch (client->type) {
2924 case HNAE3_CLIENT_KNIC:
2925 hdev->nic_client = client;
2926 hdev->nic.client = client;
2927
2928 ret = hclgevf_init_nic_client_instance(ae_dev, client);
2929 if (ret)
2930 goto clear_nic;
2931
2932 ret = hclgevf_init_roce_client_instance(ae_dev,
2933 hdev->roce_client);
2934 if (ret)
2935 goto clear_roce;
2936
2937 break;
2938 case HNAE3_CLIENT_ROCE:
2939 if (hnae3_dev_roce_supported(hdev)) {
2940 hdev->roce_client = client;
2941 hdev->roce.client = client;
2942 }
2943
2944 ret = hclgevf_init_roce_client_instance(ae_dev, client);
2945 if (ret)
2946 goto clear_roce;
2947
2948 break;
2949 default:
2950 return -EINVAL;
2951 }
2952
2953 return 0;
2954
2955 clear_nic:
2956 hdev->nic_client = NULL;
2957 hdev->nic.client = NULL;
2958 return ret;
2959 clear_roce:
2960 hdev->roce_client = NULL;
2961 hdev->roce.client = NULL;
2962 return ret;
2963 }
2964
2965 static void hclgevf_uninit_client_instance(struct hnae3_client *client,
2966 struct hnae3_ae_dev *ae_dev)
2967 {
2968 struct hclgevf_dev *hdev = ae_dev->priv;
2969
2970 /* un-init roce, if it exists */
2971 if (hdev->roce_client) {
2972 clear_bit(HCLGEVF_STATE_ROCE_REGISTERED, &hdev->state);
2973 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
2974 hdev->roce_client = NULL;
2975 hdev->roce.client = NULL;
2976 }
2977
2978 /* un-init nic/unic, if this was not called by roce client */
2979 if (client->ops->uninit_instance && hdev->nic_client &&
2980 client->type != HNAE3_CLIENT_ROCE) {
2981 clear_bit(HCLGEVF_STATE_NIC_REGISTERED, &hdev->state);
2982
2983 client->ops->uninit_instance(&hdev->nic, 0);
2984 hdev->nic_client = NULL;
2985 hdev->nic.client = NULL;
2986 }
2987 }
2988
2989 static int hclgevf_dev_mem_map(struct hclgevf_dev *hdev)
2990 {
2991 #define HCLGEVF_MEM_BAR 4
2992
2993 struct pci_dev *pdev = hdev->pdev;
2994 struct hclgevf_hw *hw = &hdev->hw;
2995
2996 /* for device does not have device memory, return directly */
2997 if (!(pci_select_bars(pdev, IORESOURCE_MEM) & BIT(HCLGEVF_MEM_BAR)))
2998 return 0;
2999
3000 hw->mem_base = devm_ioremap_wc(&pdev->dev,
3001 pci_resource_start(pdev,
3002 HCLGEVF_MEM_BAR),
3003 pci_resource_len(pdev, HCLGEVF_MEM_BAR));
3004 if (!hw->mem_base) {
3005 dev_err(&pdev->dev, "failed to map device memory\n");
3006 return -EFAULT;
3007 }
3008
3009 return 0;
3010 }
3011
3012 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
3013 {
3014 struct pci_dev *pdev = hdev->pdev;
3015 struct hclgevf_hw *hw;
3016 int ret;
3017
3018 ret = pci_enable_device(pdev);
3019 if (ret) {
3020 dev_err(&pdev->dev, "failed to enable PCI device\n");
3021 return ret;
3022 }
3023
3024 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3025 if (ret) {
3026 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
3027 goto err_disable_device;
3028 }
3029
3030 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
3031 if (ret) {
3032 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
3033 goto err_disable_device;
3034 }
3035
3036 pci_set_master(pdev);
3037 hw = &hdev->hw;
3038 hw->hdev = hdev;
3039 hw->io_base = pci_iomap(pdev, 2, 0);
3040 if (!hw->io_base) {
3041 dev_err(&pdev->dev, "can't map configuration register space\n");
3042 ret = -ENOMEM;
3043 goto err_clr_master;
3044 }
3045
3046 ret = hclgevf_dev_mem_map(hdev);
3047 if (ret)
3048 goto err_unmap_io_base;
3049
3050 return 0;
3051
3052 err_unmap_io_base:
3053 pci_iounmap(pdev, hdev->hw.io_base);
3054 err_clr_master:
3055 pci_clear_master(pdev);
3056 pci_release_regions(pdev);
3057 err_disable_device:
3058 pci_disable_device(pdev);
3059
3060 return ret;
3061 }
3062
3063 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
3064 {
3065 struct pci_dev *pdev = hdev->pdev;
3066
3067 if (hdev->hw.mem_base)
3068 devm_iounmap(&pdev->dev, hdev->hw.mem_base);
3069
3070 pci_iounmap(pdev, hdev->hw.io_base);
3071 pci_clear_master(pdev);
3072 pci_release_regions(pdev);
3073 pci_disable_device(pdev);
3074 }
3075
3076 static int hclgevf_query_vf_resource(struct hclgevf_dev *hdev)
3077 {
3078 struct hclgevf_query_res_cmd *req;
3079 struct hclgevf_desc desc;
3080 int ret;
3081
3082 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_VF_RSRC, true);
3083 ret = hclgevf_cmd_send(&hdev->hw, &desc, 1);
3084 if (ret) {
3085 dev_err(&hdev->pdev->dev,
3086 "query vf resource failed, ret = %d.\n", ret);
3087 return ret;
3088 }
3089
3090 req = (struct hclgevf_query_res_cmd *)desc.data;
3091
3092 if (hnae3_dev_roce_supported(hdev)) {
3093 hdev->roce_base_msix_offset =
3094 hnae3_get_field(le16_to_cpu(req->msixcap_localid_ba_rocee),
3095 HCLGEVF_MSIX_OFT_ROCEE_M,
3096 HCLGEVF_MSIX_OFT_ROCEE_S);
3097 hdev->num_roce_msix =
3098 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3099 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3100
3101 /* nic's msix numbers is always equals to the roce's. */
3102 hdev->num_nic_msix = hdev->num_roce_msix;
3103
3104 /* VF should have NIC vectors and Roce vectors, NIC vectors
3105 * are queued before Roce vectors. The offset is fixed to 64.
3106 */
3107 hdev->num_msi = hdev->num_roce_msix +
3108 hdev->roce_base_msix_offset;
3109 } else {
3110 hdev->num_msi =
3111 hnae3_get_field(le16_to_cpu(req->vf_intr_vector_number),
3112 HCLGEVF_VEC_NUM_M, HCLGEVF_VEC_NUM_S);
3113
3114 hdev->num_nic_msix = hdev->num_msi;
3115 }
3116
3117 if (hdev->num_nic_msix < HNAE3_MIN_VECTOR_NUM) {
3118 dev_err(&hdev->pdev->dev,
3119 "Just %u msi resources, not enough for vf(min:2).\n",
3120 hdev->num_nic_msix);
3121 return -EINVAL;
3122 }
3123
3124 return 0;
3125 }
3126
3127 static void hclgevf_set_default_dev_specs(struct hclgevf_dev *hdev)
3128 {
3129 #define HCLGEVF_MAX_NON_TSO_BD_NUM 8U
3130
3131 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3132
3133 ae_dev->dev_specs.max_non_tso_bd_num =
3134 HCLGEVF_MAX_NON_TSO_BD_NUM;
3135 ae_dev->dev_specs.rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3136 ae_dev->dev_specs.rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3137 ae_dev->dev_specs.max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3138 ae_dev->dev_specs.max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3139 }
3140
3141 static void hclgevf_parse_dev_specs(struct hclgevf_dev *hdev,
3142 struct hclgevf_desc *desc)
3143 {
3144 struct hnae3_ae_dev *ae_dev = pci_get_drvdata(hdev->pdev);
3145 struct hclgevf_dev_specs_0_cmd *req0;
3146 struct hclgevf_dev_specs_1_cmd *req1;
3147
3148 req0 = (struct hclgevf_dev_specs_0_cmd *)desc[0].data;
3149 req1 = (struct hclgevf_dev_specs_1_cmd *)desc[1].data;
3150
3151 ae_dev->dev_specs.max_non_tso_bd_num = req0->max_non_tso_bd_num;
3152 ae_dev->dev_specs.rss_ind_tbl_size =
3153 le16_to_cpu(req0->rss_ind_tbl_size);
3154 ae_dev->dev_specs.int_ql_max = le16_to_cpu(req0->int_ql_max);
3155 ae_dev->dev_specs.rss_key_size = le16_to_cpu(req0->rss_key_size);
3156 ae_dev->dev_specs.max_int_gl = le16_to_cpu(req1->max_int_gl);
3157 ae_dev->dev_specs.max_frm_size = le16_to_cpu(req1->max_frm_size);
3158 }
3159
3160 static void hclgevf_check_dev_specs(struct hclgevf_dev *hdev)
3161 {
3162 struct hnae3_dev_specs *dev_specs = &hdev->ae_dev->dev_specs;
3163
3164 if (!dev_specs->max_non_tso_bd_num)
3165 dev_specs->max_non_tso_bd_num = HCLGEVF_MAX_NON_TSO_BD_NUM;
3166 if (!dev_specs->rss_ind_tbl_size)
3167 dev_specs->rss_ind_tbl_size = HCLGEVF_RSS_IND_TBL_SIZE;
3168 if (!dev_specs->rss_key_size)
3169 dev_specs->rss_key_size = HCLGEVF_RSS_KEY_SIZE;
3170 if (!dev_specs->max_int_gl)
3171 dev_specs->max_int_gl = HCLGEVF_DEF_MAX_INT_GL;
3172 if (!dev_specs->max_frm_size)
3173 dev_specs->max_frm_size = HCLGEVF_MAC_MAX_FRAME;
3174 }
3175
3176 static int hclgevf_query_dev_specs(struct hclgevf_dev *hdev)
3177 {
3178 struct hclgevf_desc desc[HCLGEVF_QUERY_DEV_SPECS_BD_NUM];
3179 int ret;
3180 int i;
3181
3182 /* set default specifications as devices lower than version V3 do not
3183 * support querying specifications from firmware.
3184 */
3185 if (hdev->ae_dev->dev_version < HNAE3_DEVICE_VERSION_V3) {
3186 hclgevf_set_default_dev_specs(hdev);
3187 return 0;
3188 }
3189
3190 for (i = 0; i < HCLGEVF_QUERY_DEV_SPECS_BD_NUM - 1; i++) {
3191 hclgevf_cmd_setup_basic_desc(&desc[i],
3192 HCLGEVF_OPC_QUERY_DEV_SPECS, true);
3193 desc[i].flag |= cpu_to_le16(HCLGEVF_CMD_FLAG_NEXT);
3194 }
3195 hclgevf_cmd_setup_basic_desc(&desc[i], HCLGEVF_OPC_QUERY_DEV_SPECS,
3196 true);
3197
3198 ret = hclgevf_cmd_send(&hdev->hw, desc, HCLGEVF_QUERY_DEV_SPECS_BD_NUM);
3199 if (ret)
3200 return ret;
3201
3202 hclgevf_parse_dev_specs(hdev, desc);
3203 hclgevf_check_dev_specs(hdev);
3204
3205 return 0;
3206 }
3207
3208 static int hclgevf_pci_reset(struct hclgevf_dev *hdev)
3209 {
3210 struct pci_dev *pdev = hdev->pdev;
3211 int ret = 0;
3212
3213 if (hdev->reset_type == HNAE3_VF_FULL_RESET &&
3214 test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3215 hclgevf_misc_irq_uninit(hdev);
3216 hclgevf_uninit_msi(hdev);
3217 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3218 }
3219
3220 if (!test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3221 pci_set_master(pdev);
3222 ret = hclgevf_init_msi(hdev);
3223 if (ret) {
3224 dev_err(&pdev->dev,
3225 "failed(%d) to init MSI/MSI-X\n", ret);
3226 return ret;
3227 }
3228
3229 ret = hclgevf_misc_irq_init(hdev);
3230 if (ret) {
3231 hclgevf_uninit_msi(hdev);
3232 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
3233 ret);
3234 return ret;
3235 }
3236
3237 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3238 }
3239
3240 return ret;
3241 }
3242
3243 static int hclgevf_clear_vport_list(struct hclgevf_dev *hdev)
3244 {
3245 struct hclge_vf_to_pf_msg send_msg;
3246
3247 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_HANDLE_VF_TBL,
3248 HCLGE_MBX_VPORT_LIST_CLEAR);
3249 return hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3250 }
3251
3252 static void hclgevf_init_rxd_adv_layout(struct hclgevf_dev *hdev)
3253 {
3254 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3255 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 1);
3256 }
3257
3258 static void hclgevf_uninit_rxd_adv_layout(struct hclgevf_dev *hdev)
3259 {
3260 if (hnae3_ae_dev_rxd_adv_layout_supported(hdev->ae_dev))
3261 hclgevf_write_dev(&hdev->hw, HCLGEVF_RXD_ADV_LAYOUT_EN_REG, 0);
3262 }
3263
3264 static int hclgevf_reset_hdev(struct hclgevf_dev *hdev)
3265 {
3266 struct pci_dev *pdev = hdev->pdev;
3267 int ret;
3268
3269 ret = hclgevf_pci_reset(hdev);
3270 if (ret) {
3271 dev_err(&pdev->dev, "pci reset failed %d\n", ret);
3272 return ret;
3273 }
3274
3275 ret = hclgevf_cmd_init(hdev);
3276 if (ret) {
3277 dev_err(&pdev->dev, "cmd failed %d\n", ret);
3278 return ret;
3279 }
3280
3281 ret = hclgevf_rss_init_hw(hdev);
3282 if (ret) {
3283 dev_err(&hdev->pdev->dev,
3284 "failed(%d) to initialize RSS\n", ret);
3285 return ret;
3286 }
3287
3288 ret = hclgevf_config_gro(hdev, true);
3289 if (ret)
3290 return ret;
3291
3292 ret = hclgevf_init_vlan_config(hdev);
3293 if (ret) {
3294 dev_err(&hdev->pdev->dev,
3295 "failed(%d) to initialize VLAN config\n", ret);
3296 return ret;
3297 }
3298
3299 set_bit(HCLGEVF_STATE_PROMISC_CHANGED, &hdev->state);
3300
3301 hclgevf_init_rxd_adv_layout(hdev);
3302
3303 dev_info(&hdev->pdev->dev, "Reset done\n");
3304
3305 return 0;
3306 }
3307
3308 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
3309 {
3310 struct pci_dev *pdev = hdev->pdev;
3311 int ret;
3312
3313 ret = hclgevf_pci_init(hdev);
3314 if (ret)
3315 return ret;
3316
3317 ret = hclgevf_cmd_queue_init(hdev);
3318 if (ret)
3319 goto err_cmd_queue_init;
3320
3321 ret = hclgevf_cmd_init(hdev);
3322 if (ret)
3323 goto err_cmd_init;
3324
3325 /* Get vf resource */
3326 ret = hclgevf_query_vf_resource(hdev);
3327 if (ret)
3328 goto err_cmd_init;
3329
3330 ret = hclgevf_query_dev_specs(hdev);
3331 if (ret) {
3332 dev_err(&pdev->dev,
3333 "failed to query dev specifications, ret = %d\n", ret);
3334 goto err_cmd_init;
3335 }
3336
3337 ret = hclgevf_init_msi(hdev);
3338 if (ret) {
3339 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
3340 goto err_cmd_init;
3341 }
3342
3343 hclgevf_state_init(hdev);
3344 hdev->reset_level = HNAE3_VF_FUNC_RESET;
3345 hdev->reset_type = HNAE3_NONE_RESET;
3346
3347 ret = hclgevf_misc_irq_init(hdev);
3348 if (ret)
3349 goto err_misc_irq_init;
3350
3351 set_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3352
3353 ret = hclgevf_configure(hdev);
3354 if (ret) {
3355 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
3356 goto err_config;
3357 }
3358
3359 ret = hclgevf_alloc_tqps(hdev);
3360 if (ret) {
3361 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
3362 goto err_config;
3363 }
3364
3365 ret = hclgevf_set_handle_info(hdev);
3366 if (ret)
3367 goto err_config;
3368
3369 ret = hclgevf_config_gro(hdev, true);
3370 if (ret)
3371 goto err_config;
3372
3373 /* Initialize RSS for this VF */
3374 ret = hclgevf_rss_init_cfg(hdev);
3375 if (ret) {
3376 dev_err(&pdev->dev, "failed to init rss cfg, ret = %d\n", ret);
3377 goto err_config;
3378 }
3379
3380 ret = hclgevf_rss_init_hw(hdev);
3381 if (ret) {
3382 dev_err(&hdev->pdev->dev,
3383 "failed(%d) to initialize RSS\n", ret);
3384 goto err_config;
3385 }
3386
3387 /* ensure vf tbl list as empty before init*/
3388 ret = hclgevf_clear_vport_list(hdev);
3389 if (ret) {
3390 dev_err(&pdev->dev,
3391 "failed to clear tbl list configuration, ret = %d.\n",
3392 ret);
3393 goto err_config;
3394 }
3395
3396 ret = hclgevf_init_vlan_config(hdev);
3397 if (ret) {
3398 dev_err(&hdev->pdev->dev,
3399 "failed(%d) to initialize VLAN config\n", ret);
3400 goto err_config;
3401 }
3402
3403 hclgevf_init_rxd_adv_layout(hdev);
3404
3405 hdev->last_reset_time = jiffies;
3406 dev_info(&hdev->pdev->dev, "finished initializing %s driver\n",
3407 HCLGEVF_DRIVER_NAME);
3408
3409 hclgevf_task_schedule(hdev, round_jiffies_relative(HZ));
3410
3411 return 0;
3412
3413 err_config:
3414 hclgevf_misc_irq_uninit(hdev);
3415 err_misc_irq_init:
3416 hclgevf_state_uninit(hdev);
3417 hclgevf_uninit_msi(hdev);
3418 err_cmd_init:
3419 hclgevf_cmd_uninit(hdev);
3420 err_cmd_queue_init:
3421 hclgevf_pci_uninit(hdev);
3422 clear_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state);
3423 return ret;
3424 }
3425
3426 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
3427 {
3428 struct hclge_vf_to_pf_msg send_msg;
3429
3430 hclgevf_state_uninit(hdev);
3431 hclgevf_uninit_rxd_adv_layout(hdev);
3432
3433 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_VF_UNINIT, 0);
3434 hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3435
3436 if (test_bit(HCLGEVF_STATE_IRQ_INITED, &hdev->state)) {
3437 hclgevf_misc_irq_uninit(hdev);
3438 hclgevf_uninit_msi(hdev);
3439 }
3440
3441 hclgevf_cmd_uninit(hdev);
3442 hclgevf_pci_uninit(hdev);
3443 hclgevf_uninit_mac_list(hdev);
3444 }
3445
3446 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
3447 {
3448 struct pci_dev *pdev = ae_dev->pdev;
3449 int ret;
3450
3451 ret = hclgevf_alloc_hdev(ae_dev);
3452 if (ret) {
3453 dev_err(&pdev->dev, "hclge device allocation failed\n");
3454 return ret;
3455 }
3456
3457 ret = hclgevf_init_hdev(ae_dev->priv);
3458 if (ret) {
3459 dev_err(&pdev->dev, "hclge device initialization failed\n");
3460 return ret;
3461 }
3462
3463 return 0;
3464 }
3465
3466 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
3467 {
3468 struct hclgevf_dev *hdev = ae_dev->priv;
3469
3470 hclgevf_uninit_hdev(hdev);
3471 ae_dev->priv = NULL;
3472 }
3473
3474 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
3475 {
3476 struct hnae3_handle *nic = &hdev->nic;
3477 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
3478
3479 return min_t(u32, hdev->rss_size_max,
3480 hdev->num_tqps / kinfo->tc_info.num_tc);
3481 }
3482
3483 /**
3484 * hclgevf_get_channels - Get the current channels enabled and max supported.
3485 * @handle: hardware information for network interface
3486 * @ch: ethtool channels structure
3487 *
3488 * We don't support separate tx and rx queues as channels. The other count
3489 * represents how many queues are being used for control. max_combined counts
3490 * how many queue pairs we can support. They may not be mapped 1 to 1 with
3491 * q_vectors since we support a lot more queue pairs than q_vectors.
3492 **/
3493 static void hclgevf_get_channels(struct hnae3_handle *handle,
3494 struct ethtool_channels *ch)
3495 {
3496 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3497
3498 ch->max_combined = hclgevf_get_max_channels(hdev);
3499 ch->other_count = 0;
3500 ch->max_other = 0;
3501 ch->combined_count = handle->kinfo.rss_size;
3502 }
3503
3504 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
3505 u16 *alloc_tqps, u16 *max_rss_size)
3506 {
3507 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3508
3509 *alloc_tqps = hdev->num_tqps;
3510 *max_rss_size = hdev->rss_size_max;
3511 }
3512
3513 static void hclgevf_update_rss_size(struct hnae3_handle *handle,
3514 u32 new_tqps_num)
3515 {
3516 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3517 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3518 u16 max_rss_size;
3519
3520 kinfo->req_rss_size = new_tqps_num;
3521
3522 max_rss_size = min_t(u16, hdev->rss_size_max,
3523 hdev->num_tqps / kinfo->tc_info.num_tc);
3524
3525 /* Use the user's configuration when it is not larger than
3526 * max_rss_size, otherwise, use the maximum specification value.
3527 */
3528 if (kinfo->req_rss_size != kinfo->rss_size && kinfo->req_rss_size &&
3529 kinfo->req_rss_size <= max_rss_size)
3530 kinfo->rss_size = kinfo->req_rss_size;
3531 else if (kinfo->rss_size > max_rss_size ||
3532 (!kinfo->req_rss_size && kinfo->rss_size < max_rss_size))
3533 kinfo->rss_size = max_rss_size;
3534
3535 kinfo->num_tqps = kinfo->tc_info.num_tc * kinfo->rss_size;
3536 }
3537
3538 static int hclgevf_set_channels(struct hnae3_handle *handle, u32 new_tqps_num,
3539 bool rxfh_configured)
3540 {
3541 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3542 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
3543 u16 cur_rss_size = kinfo->rss_size;
3544 u16 cur_tqps = kinfo->num_tqps;
3545 u32 *rss_indir;
3546 unsigned int i;
3547 int ret;
3548
3549 hclgevf_update_rss_size(handle, new_tqps_num);
3550
3551 ret = hclgevf_set_rss_tc_mode(hdev, kinfo->rss_size);
3552 if (ret)
3553 return ret;
3554
3555 /* RSS indirection table has been configured by user */
3556 if (rxfh_configured)
3557 goto out;
3558
3559 /* Reinitializes the rss indirect table according to the new RSS size */
3560 rss_indir = kcalloc(hdev->ae_dev->dev_specs.rss_ind_tbl_size,
3561 sizeof(u32), GFP_KERNEL);
3562 if (!rss_indir)
3563 return -ENOMEM;
3564
3565 for (i = 0; i < hdev->ae_dev->dev_specs.rss_ind_tbl_size; i++)
3566 rss_indir[i] = i % kinfo->rss_size;
3567
3568 hdev->rss_cfg.rss_size = kinfo->rss_size;
3569
3570 ret = hclgevf_set_rss(handle, rss_indir, NULL, 0);
3571 if (ret)
3572 dev_err(&hdev->pdev->dev, "set rss indir table fail, ret=%d\n",
3573 ret);
3574
3575 kfree(rss_indir);
3576
3577 out:
3578 if (!ret)
3579 dev_info(&hdev->pdev->dev,
3580 "Channels changed, rss_size from %u to %u, tqps from %u to %u",
3581 cur_rss_size, kinfo->rss_size,
3582 cur_tqps, kinfo->rss_size * kinfo->tc_info.num_tc);
3583
3584 return ret;
3585 }
3586
3587 static int hclgevf_get_status(struct hnae3_handle *handle)
3588 {
3589 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3590
3591 return hdev->hw.mac.link;
3592 }
3593
3594 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
3595 u8 *auto_neg, u32 *speed,
3596 u8 *duplex)
3597 {
3598 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3599
3600 if (speed)
3601 *speed = hdev->hw.mac.speed;
3602 if (duplex)
3603 *duplex = hdev->hw.mac.duplex;
3604 if (auto_neg)
3605 *auto_neg = AUTONEG_DISABLE;
3606 }
3607
3608 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
3609 u8 duplex)
3610 {
3611 hdev->hw.mac.speed = speed;
3612 hdev->hw.mac.duplex = duplex;
3613 }
3614
3615 static int hclgevf_gro_en(struct hnae3_handle *handle, bool enable)
3616 {
3617 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3618
3619 return hclgevf_config_gro(hdev, enable);
3620 }
3621
3622 static void hclgevf_get_media_type(struct hnae3_handle *handle, u8 *media_type,
3623 u8 *module_type)
3624 {
3625 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3626
3627 if (media_type)
3628 *media_type = hdev->hw.mac.media_type;
3629
3630 if (module_type)
3631 *module_type = hdev->hw.mac.module_type;
3632 }
3633
3634 static bool hclgevf_get_hw_reset_stat(struct hnae3_handle *handle)
3635 {
3636 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3637
3638 return !!hclgevf_read_dev(&hdev->hw, HCLGEVF_RST_ING);
3639 }
3640
3641 static bool hclgevf_get_cmdq_stat(struct hnae3_handle *handle)
3642 {
3643 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3644
3645 return test_bit(HCLGEVF_STATE_CMD_DISABLE, &hdev->state);
3646 }
3647
3648 static bool hclgevf_ae_dev_resetting(struct hnae3_handle *handle)
3649 {
3650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3651
3652 return test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
3653 }
3654
3655 static unsigned long hclgevf_ae_dev_reset_cnt(struct hnae3_handle *handle)
3656 {
3657 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3658
3659 return hdev->rst_stats.hw_rst_done_cnt;
3660 }
3661
3662 static void hclgevf_get_link_mode(struct hnae3_handle *handle,
3663 unsigned long *supported,
3664 unsigned long *advertising)
3665 {
3666 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3667
3668 *supported = hdev->hw.mac.supported;
3669 *advertising = hdev->hw.mac.advertising;
3670 }
3671
3672 #define MAX_SEPARATE_NUM 4
3673 #define SEPARATOR_VALUE 0xFDFCFBFA
3674 #define REG_NUM_PER_LINE 4
3675 #define REG_LEN_PER_LINE (REG_NUM_PER_LINE * sizeof(u32))
3676
3677 static int hclgevf_get_regs_len(struct hnae3_handle *handle)
3678 {
3679 int cmdq_lines, common_lines, ring_lines, tqp_intr_lines;
3680 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3681
3682 cmdq_lines = sizeof(cmdq_reg_addr_list) / REG_LEN_PER_LINE + 1;
3683 common_lines = sizeof(common_reg_addr_list) / REG_LEN_PER_LINE + 1;
3684 ring_lines = sizeof(ring_reg_addr_list) / REG_LEN_PER_LINE + 1;
3685 tqp_intr_lines = sizeof(tqp_intr_reg_addr_list) / REG_LEN_PER_LINE + 1;
3686
3687 return (cmdq_lines + common_lines + ring_lines * hdev->num_tqps +
3688 tqp_intr_lines * (hdev->num_msi_used - 1)) * REG_LEN_PER_LINE;
3689 }
3690
3691 static void hclgevf_get_regs(struct hnae3_handle *handle, u32 *version,
3692 void *data)
3693 {
3694 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
3695 int i, j, reg_um, separator_num;
3696 u32 *reg = data;
3697
3698 *version = hdev->fw_version;
3699
3700 /* fetching per-VF registers values from VF PCIe register space */
3701 reg_um = sizeof(cmdq_reg_addr_list) / sizeof(u32);
3702 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3703 for (i = 0; i < reg_um; i++)
3704 *reg++ = hclgevf_read_dev(&hdev->hw, cmdq_reg_addr_list[i]);
3705 for (i = 0; i < separator_num; i++)
3706 *reg++ = SEPARATOR_VALUE;
3707
3708 reg_um = sizeof(common_reg_addr_list) / sizeof(u32);
3709 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3710 for (i = 0; i < reg_um; i++)
3711 *reg++ = hclgevf_read_dev(&hdev->hw, common_reg_addr_list[i]);
3712 for (i = 0; i < separator_num; i++)
3713 *reg++ = SEPARATOR_VALUE;
3714
3715 reg_um = sizeof(ring_reg_addr_list) / sizeof(u32);
3716 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3717 for (j = 0; j < hdev->num_tqps; j++) {
3718 for (i = 0; i < reg_um; i++)
3719 *reg++ = hclgevf_read_dev(&hdev->hw,
3720 ring_reg_addr_list[i] +
3721 0x200 * j);
3722 for (i = 0; i < separator_num; i++)
3723 *reg++ = SEPARATOR_VALUE;
3724 }
3725
3726 reg_um = sizeof(tqp_intr_reg_addr_list) / sizeof(u32);
3727 separator_num = MAX_SEPARATE_NUM - reg_um % REG_NUM_PER_LINE;
3728 for (j = 0; j < hdev->num_msi_used - 1; j++) {
3729 for (i = 0; i < reg_um; i++)
3730 *reg++ = hclgevf_read_dev(&hdev->hw,
3731 tqp_intr_reg_addr_list[i] +
3732 4 * j);
3733 for (i = 0; i < separator_num; i++)
3734 *reg++ = SEPARATOR_VALUE;
3735 }
3736 }
3737
3738 void hclgevf_update_port_base_vlan_info(struct hclgevf_dev *hdev, u16 state,
3739 u8 *port_base_vlan_info, u8 data_size)
3740 {
3741 struct hnae3_handle *nic = &hdev->nic;
3742 struct hclge_vf_to_pf_msg send_msg;
3743 int ret;
3744
3745 rtnl_lock();
3746
3747 if (test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state) ||
3748 test_bit(HCLGEVF_STATE_RST_FAIL, &hdev->state)) {
3749 dev_warn(&hdev->pdev->dev,
3750 "is resetting when updating port based vlan info\n");
3751 rtnl_unlock();
3752 return;
3753 }
3754
3755 ret = hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
3756 if (ret) {
3757 rtnl_unlock();
3758 return;
3759 }
3760
3761 /* send msg to PF and wait update port based vlan info */
3762 hclgevf_build_send_msg(&send_msg, HCLGE_MBX_SET_VLAN,
3763 HCLGE_MBX_PORT_BASE_VLAN_CFG);
3764 memcpy(send_msg.data, port_base_vlan_info, data_size);
3765 ret = hclgevf_send_mbx_msg(hdev, &send_msg, false, NULL, 0);
3766 if (!ret) {
3767 if (state == HNAE3_PORT_BASE_VLAN_DISABLE)
3768 nic->port_base_vlan_state = state;
3769 else
3770 nic->port_base_vlan_state = HNAE3_PORT_BASE_VLAN_ENABLE;
3771 }
3772
3773 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
3774 rtnl_unlock();
3775 }
3776
3777 static const struct hnae3_ae_ops hclgevf_ops = {
3778 .init_ae_dev = hclgevf_init_ae_dev,
3779 .uninit_ae_dev = hclgevf_uninit_ae_dev,
3780 .reset_prepare = hclgevf_reset_prepare_general,
3781 .reset_done = hclgevf_reset_done,
3782 .init_client_instance = hclgevf_init_client_instance,
3783 .uninit_client_instance = hclgevf_uninit_client_instance,
3784 .start = hclgevf_ae_start,
3785 .stop = hclgevf_ae_stop,
3786 .client_start = hclgevf_client_start,
3787 .client_stop = hclgevf_client_stop,
3788 .map_ring_to_vector = hclgevf_map_ring_to_vector,
3789 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
3790 .get_vector = hclgevf_get_vector,
3791 .put_vector = hclgevf_put_vector,
3792 .reset_queue = hclgevf_reset_tqp,
3793 .get_mac_addr = hclgevf_get_mac_addr,
3794 .set_mac_addr = hclgevf_set_mac_addr,
3795 .add_uc_addr = hclgevf_add_uc_addr,
3796 .rm_uc_addr = hclgevf_rm_uc_addr,
3797 .add_mc_addr = hclgevf_add_mc_addr,
3798 .rm_mc_addr = hclgevf_rm_mc_addr,
3799 .get_stats = hclgevf_get_stats,
3800 .update_stats = hclgevf_update_stats,
3801 .get_strings = hclgevf_get_strings,
3802 .get_sset_count = hclgevf_get_sset_count,
3803 .get_rss_key_size = hclgevf_get_rss_key_size,
3804 .get_rss = hclgevf_get_rss,
3805 .set_rss = hclgevf_set_rss,
3806 .get_rss_tuple = hclgevf_get_rss_tuple,
3807 .set_rss_tuple = hclgevf_set_rss_tuple,
3808 .get_tc_size = hclgevf_get_tc_size,
3809 .get_fw_version = hclgevf_get_fw_version,
3810 .set_vlan_filter = hclgevf_set_vlan_filter,
3811 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
3812 .reset_event = hclgevf_reset_event,
3813 .set_default_reset_request = hclgevf_set_def_reset_request,
3814 .set_channels = hclgevf_set_channels,
3815 .get_channels = hclgevf_get_channels,
3816 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
3817 .get_regs_len = hclgevf_get_regs_len,
3818 .get_regs = hclgevf_get_regs,
3819 .get_status = hclgevf_get_status,
3820 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
3821 .get_media_type = hclgevf_get_media_type,
3822 .get_hw_reset_stat = hclgevf_get_hw_reset_stat,
3823 .ae_dev_resetting = hclgevf_ae_dev_resetting,
3824 .ae_dev_reset_cnt = hclgevf_ae_dev_reset_cnt,
3825 .set_gro_en = hclgevf_gro_en,
3826 .set_mtu = hclgevf_set_mtu,
3827 .get_global_queue_id = hclgevf_get_qid_global,
3828 .set_timer_task = hclgevf_set_timer_task,
3829 .get_link_mode = hclgevf_get_link_mode,
3830 .set_promisc_mode = hclgevf_set_promisc_mode,
3831 .request_update_promisc_mode = hclgevf_request_update_promisc_mode,
3832 .get_cmdq_stat = hclgevf_get_cmdq_stat,
3833 };
3834
3835 static struct hnae3_ae_algo ae_algovf = {
3836 .ops = &hclgevf_ops,
3837 .pdev_id_table = ae_algovf_pci_tbl,
3838 };
3839
3840 static int hclgevf_init(void)
3841 {
3842 pr_info("%s is initializing\n", HCLGEVF_NAME);
3843
3844 hclgevf_wq = alloc_workqueue("%s", 0, 0, HCLGEVF_NAME);
3845 if (!hclgevf_wq) {
3846 pr_err("%s: failed to create workqueue\n", HCLGEVF_NAME);
3847 return -ENOMEM;
3848 }
3849
3850 hnae3_register_ae_algo(&ae_algovf);
3851
3852 return 0;
3853 }
3854
3855 static void hclgevf_exit(void)
3856 {
3857 hnae3_unregister_ae_algo(&ae_algovf);
3858 destroy_workqueue(hclgevf_wq);
3859 }
3860 module_init(hclgevf_init);
3861 module_exit(hclgevf_exit);
3862
3863 MODULE_LICENSE("GPL");
3864 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
3865 MODULE_DESCRIPTION("HCLGEVF Driver");
3866 MODULE_VERSION(HCLGEVF_MOD_VERSION);