]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/hisilicon/hns3/hns3vf/hclgevf_main.c
net: hns3: Add support for IFF_ALLMULTI flag
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / hisilicon / hns3 / hns3vf / hclgevf_main.c
1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright (c) 2016-2017 Hisilicon Limited.
3
4 #include <linux/etherdevice.h>
5 #include <net/rtnetlink.h>
6 #include "hclgevf_cmd.h"
7 #include "hclgevf_main.h"
8 #include "hclge_mbx.h"
9 #include "hnae3.h"
10
11 #define HCLGEVF_NAME "hclgevf"
12
13 static int hclgevf_init_hdev(struct hclgevf_dev *hdev);
14 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev);
15 static struct hnae3_ae_algo ae_algovf;
16
17 static const struct pci_device_id ae_algovf_pci_tbl[] = {
18 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
19 {PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF), 0},
20 /* required last entry */
21 {0, }
22 };
23
24 MODULE_DEVICE_TABLE(pci, ae_algovf_pci_tbl);
25
26 static inline struct hclgevf_dev *hclgevf_ae_get_hdev(
27 struct hnae3_handle *handle)
28 {
29 return container_of(handle, struct hclgevf_dev, nic);
30 }
31
32 static int hclgevf_tqps_update_stats(struct hnae3_handle *handle)
33 {
34 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
35 struct hnae3_queue *queue;
36 struct hclgevf_desc desc;
37 struct hclgevf_tqp *tqp;
38 int status;
39 int i;
40
41 for (i = 0; i < hdev->num_tqps; i++) {
42 queue = handle->kinfo.tqp[i];
43 tqp = container_of(queue, struct hclgevf_tqp, q);
44 hclgevf_cmd_setup_basic_desc(&desc,
45 HCLGEVF_OPC_QUERY_RX_STATUS,
46 true);
47
48 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
49 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
50 if (status) {
51 dev_err(&hdev->pdev->dev,
52 "Query tqp stat fail, status = %d,queue = %d\n",
53 status, i);
54 return status;
55 }
56 tqp->tqp_stats.rcb_rx_ring_pktnum_rcd +=
57 le32_to_cpu(desc.data[1]);
58
59 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_QUERY_TX_STATUS,
60 true);
61
62 desc.data[0] = cpu_to_le32(tqp->index & 0x1ff);
63 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
64 if (status) {
65 dev_err(&hdev->pdev->dev,
66 "Query tqp stat fail, status = %d,queue = %d\n",
67 status, i);
68 return status;
69 }
70 tqp->tqp_stats.rcb_tx_ring_pktnum_rcd +=
71 le32_to_cpu(desc.data[1]);
72 }
73
74 return 0;
75 }
76
77 static u64 *hclgevf_tqps_get_stats(struct hnae3_handle *handle, u64 *data)
78 {
79 struct hnae3_knic_private_info *kinfo = &handle->kinfo;
80 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
81 struct hclgevf_tqp *tqp;
82 u64 *buff = data;
83 int i;
84
85 for (i = 0; i < hdev->num_tqps; i++) {
86 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
87 *buff++ = tqp->tqp_stats.rcb_tx_ring_pktnum_rcd;
88 }
89 for (i = 0; i < kinfo->num_tqps; i++) {
90 tqp = container_of(handle->kinfo.tqp[i], struct hclgevf_tqp, q);
91 *buff++ = tqp->tqp_stats.rcb_rx_ring_pktnum_rcd;
92 }
93
94 return buff;
95 }
96
97 static int hclgevf_tqps_get_sset_count(struct hnae3_handle *handle, int strset)
98 {
99 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
100
101 return hdev->num_tqps * 2;
102 }
103
104 static u8 *hclgevf_tqps_get_strings(struct hnae3_handle *handle, u8 *data)
105 {
106 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
107 u8 *buff = data;
108 int i = 0;
109
110 for (i = 0; i < hdev->num_tqps; i++) {
111 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
112 struct hclgevf_tqp, q);
113 snprintf(buff, ETH_GSTRING_LEN, "txq#%d_pktnum_rcd",
114 tqp->index);
115 buff += ETH_GSTRING_LEN;
116 }
117
118 for (i = 0; i < hdev->num_tqps; i++) {
119 struct hclgevf_tqp *tqp = container_of(handle->kinfo.tqp[i],
120 struct hclgevf_tqp, q);
121 snprintf(buff, ETH_GSTRING_LEN, "rxq#%d_pktnum_rcd",
122 tqp->index);
123 buff += ETH_GSTRING_LEN;
124 }
125
126 return buff;
127 }
128
129 static void hclgevf_update_stats(struct hnae3_handle *handle,
130 struct net_device_stats *net_stats)
131 {
132 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
133 int status;
134
135 status = hclgevf_tqps_update_stats(handle);
136 if (status)
137 dev_err(&hdev->pdev->dev,
138 "VF update of TQPS stats fail, status = %d.\n",
139 status);
140 }
141
142 static int hclgevf_get_sset_count(struct hnae3_handle *handle, int strset)
143 {
144 if (strset == ETH_SS_TEST)
145 return -EOPNOTSUPP;
146 else if (strset == ETH_SS_STATS)
147 return hclgevf_tqps_get_sset_count(handle, strset);
148
149 return 0;
150 }
151
152 static void hclgevf_get_strings(struct hnae3_handle *handle, u32 strset,
153 u8 *data)
154 {
155 u8 *p = (char *)data;
156
157 if (strset == ETH_SS_STATS)
158 p = hclgevf_tqps_get_strings(handle, p);
159 }
160
161 static void hclgevf_get_stats(struct hnae3_handle *handle, u64 *data)
162 {
163 hclgevf_tqps_get_stats(handle, data);
164 }
165
166 static int hclgevf_get_tc_info(struct hclgevf_dev *hdev)
167 {
168 u8 resp_msg;
169 int status;
170
171 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_TCINFO, 0, NULL, 0,
172 true, &resp_msg, sizeof(u8));
173 if (status) {
174 dev_err(&hdev->pdev->dev,
175 "VF request to get TC info from PF failed %d",
176 status);
177 return status;
178 }
179
180 hdev->hw_tc_map = resp_msg;
181
182 return 0;
183 }
184
185 static int hclge_get_queue_info(struct hclgevf_dev *hdev)
186 {
187 #define HCLGEVF_TQPS_RSS_INFO_LEN 8
188 u8 resp_msg[HCLGEVF_TQPS_RSS_INFO_LEN];
189 int status;
190
191 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_QINFO, 0, NULL, 0,
192 true, resp_msg,
193 HCLGEVF_TQPS_RSS_INFO_LEN);
194 if (status) {
195 dev_err(&hdev->pdev->dev,
196 "VF request to get tqp info from PF failed %d",
197 status);
198 return status;
199 }
200
201 memcpy(&hdev->num_tqps, &resp_msg[0], sizeof(u16));
202 memcpy(&hdev->rss_size_max, &resp_msg[2], sizeof(u16));
203 memcpy(&hdev->num_desc, &resp_msg[4], sizeof(u16));
204 memcpy(&hdev->rx_buf_len, &resp_msg[6], sizeof(u16));
205
206 return 0;
207 }
208
209 static int hclgevf_alloc_tqps(struct hclgevf_dev *hdev)
210 {
211 struct hclgevf_tqp *tqp;
212 int i;
213
214 /* if this is on going reset then we need to re-allocate the TPQs
215 * since we cannot assume we would get same number of TPQs back from PF
216 */
217 if (hclgevf_dev_ongoing_reset(hdev))
218 devm_kfree(&hdev->pdev->dev, hdev->htqp);
219
220 hdev->htqp = devm_kcalloc(&hdev->pdev->dev, hdev->num_tqps,
221 sizeof(struct hclgevf_tqp), GFP_KERNEL);
222 if (!hdev->htqp)
223 return -ENOMEM;
224
225 tqp = hdev->htqp;
226
227 for (i = 0; i < hdev->num_tqps; i++) {
228 tqp->dev = &hdev->pdev->dev;
229 tqp->index = i;
230
231 tqp->q.ae_algo = &ae_algovf;
232 tqp->q.buf_size = hdev->rx_buf_len;
233 tqp->q.desc_num = hdev->num_desc;
234 tqp->q.io_base = hdev->hw.io_base + HCLGEVF_TQP_REG_OFFSET +
235 i * HCLGEVF_TQP_REG_SIZE;
236
237 tqp++;
238 }
239
240 return 0;
241 }
242
243 static int hclgevf_knic_setup(struct hclgevf_dev *hdev)
244 {
245 struct hnae3_handle *nic = &hdev->nic;
246 struct hnae3_knic_private_info *kinfo;
247 u16 new_tqps = hdev->num_tqps;
248 int i;
249
250 kinfo = &nic->kinfo;
251 kinfo->num_tc = 0;
252 kinfo->num_desc = hdev->num_desc;
253 kinfo->rx_buf_len = hdev->rx_buf_len;
254 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++)
255 if (hdev->hw_tc_map & BIT(i))
256 kinfo->num_tc++;
257
258 kinfo->rss_size
259 = min_t(u16, hdev->rss_size_max, new_tqps / kinfo->num_tc);
260 new_tqps = kinfo->rss_size * kinfo->num_tc;
261 kinfo->num_tqps = min(new_tqps, hdev->num_tqps);
262
263 /* if this is on going reset then we need to re-allocate the hnae queues
264 * as well since number of TPQs from PF might have changed.
265 */
266 if (hclgevf_dev_ongoing_reset(hdev))
267 devm_kfree(&hdev->pdev->dev, kinfo->tqp);
268
269 kinfo->tqp = devm_kcalloc(&hdev->pdev->dev, kinfo->num_tqps,
270 sizeof(struct hnae3_queue *), GFP_KERNEL);
271 if (!kinfo->tqp)
272 return -ENOMEM;
273
274 for (i = 0; i < kinfo->num_tqps; i++) {
275 hdev->htqp[i].q.handle = &hdev->nic;
276 hdev->htqp[i].q.tqp_index = i;
277 kinfo->tqp[i] = &hdev->htqp[i].q;
278 }
279
280 return 0;
281 }
282
283 static void hclgevf_request_link_info(struct hclgevf_dev *hdev)
284 {
285 int status;
286 u8 resp_msg;
287
288 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_GET_LINK_STATUS, 0, NULL,
289 0, false, &resp_msg, sizeof(u8));
290 if (status)
291 dev_err(&hdev->pdev->dev,
292 "VF failed to fetch link status(%d) from PF", status);
293 }
294
295 void hclgevf_update_link_status(struct hclgevf_dev *hdev, int link_state)
296 {
297 struct hnae3_handle *handle = &hdev->nic;
298 struct hnae3_client *client;
299
300 client = handle->client;
301
302 if (link_state != hdev->hw.mac.link) {
303 client->ops->link_status_change(handle, !!link_state);
304 hdev->hw.mac.link = link_state;
305 }
306 }
307
308 static int hclgevf_set_handle_info(struct hclgevf_dev *hdev)
309 {
310 struct hnae3_handle *nic = &hdev->nic;
311 int ret;
312
313 nic->ae_algo = &ae_algovf;
314 nic->pdev = hdev->pdev;
315 nic->numa_node_mask = hdev->numa_node_mask;
316 nic->flags |= HNAE3_SUPPORT_VF;
317
318 if (hdev->ae_dev->dev_type != HNAE3_DEV_KNIC) {
319 dev_err(&hdev->pdev->dev, "unsupported device type %d\n",
320 hdev->ae_dev->dev_type);
321 return -EINVAL;
322 }
323
324 ret = hclgevf_knic_setup(hdev);
325 if (ret)
326 dev_err(&hdev->pdev->dev, "VF knic setup failed %d\n",
327 ret);
328 return ret;
329 }
330
331 static void hclgevf_free_vector(struct hclgevf_dev *hdev, int vector_id)
332 {
333 hdev->vector_status[vector_id] = HCLGEVF_INVALID_VPORT;
334 hdev->num_msi_left += 1;
335 hdev->num_msi_used -= 1;
336 }
337
338 static int hclgevf_get_vector(struct hnae3_handle *handle, u16 vector_num,
339 struct hnae3_vector_info *vector_info)
340 {
341 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
342 struct hnae3_vector_info *vector = vector_info;
343 int alloc = 0;
344 int i, j;
345
346 vector_num = min(hdev->num_msi_left, vector_num);
347
348 for (j = 0; j < vector_num; j++) {
349 for (i = HCLGEVF_MISC_VECTOR_NUM + 1; i < hdev->num_msi; i++) {
350 if (hdev->vector_status[i] == HCLGEVF_INVALID_VPORT) {
351 vector->vector = pci_irq_vector(hdev->pdev, i);
352 vector->io_addr = hdev->hw.io_base +
353 HCLGEVF_VECTOR_REG_BASE +
354 (i - 1) * HCLGEVF_VECTOR_REG_OFFSET;
355 hdev->vector_status[i] = 0;
356 hdev->vector_irq[i] = vector->vector;
357
358 vector++;
359 alloc++;
360
361 break;
362 }
363 }
364 }
365 hdev->num_msi_left -= alloc;
366 hdev->num_msi_used += alloc;
367
368 return alloc;
369 }
370
371 static int hclgevf_get_vector_index(struct hclgevf_dev *hdev, int vector)
372 {
373 int i;
374
375 for (i = 0; i < hdev->num_msi; i++)
376 if (vector == hdev->vector_irq[i])
377 return i;
378
379 return -EINVAL;
380 }
381
382 static u32 hclgevf_get_rss_key_size(struct hnae3_handle *handle)
383 {
384 return HCLGEVF_RSS_KEY_SIZE;
385 }
386
387 static u32 hclgevf_get_rss_indir_size(struct hnae3_handle *handle)
388 {
389 return HCLGEVF_RSS_IND_TBL_SIZE;
390 }
391
392 static int hclgevf_set_rss_indir_table(struct hclgevf_dev *hdev)
393 {
394 const u8 *indir = hdev->rss_cfg.rss_indirection_tbl;
395 struct hclgevf_rss_indirection_table_cmd *req;
396 struct hclgevf_desc desc;
397 int status;
398 int i, j;
399
400 req = (struct hclgevf_rss_indirection_table_cmd *)desc.data;
401
402 for (i = 0; i < HCLGEVF_RSS_CFG_TBL_NUM; i++) {
403 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_INDIR_TABLE,
404 false);
405 req->start_table_index = i * HCLGEVF_RSS_CFG_TBL_SIZE;
406 req->rss_set_bitmap = HCLGEVF_RSS_SET_BITMAP_MSK;
407 for (j = 0; j < HCLGEVF_RSS_CFG_TBL_SIZE; j++)
408 req->rss_result[j] =
409 indir[i * HCLGEVF_RSS_CFG_TBL_SIZE + j];
410
411 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
412 if (status) {
413 dev_err(&hdev->pdev->dev,
414 "VF failed(=%d) to set RSS indirection table\n",
415 status);
416 return status;
417 }
418 }
419
420 return 0;
421 }
422
423 static int hclgevf_set_rss_tc_mode(struct hclgevf_dev *hdev, u16 rss_size)
424 {
425 struct hclgevf_rss_tc_mode_cmd *req;
426 u16 tc_offset[HCLGEVF_MAX_TC_NUM];
427 u16 tc_valid[HCLGEVF_MAX_TC_NUM];
428 u16 tc_size[HCLGEVF_MAX_TC_NUM];
429 struct hclgevf_desc desc;
430 u16 roundup_size;
431 int status;
432 int i;
433
434 req = (struct hclgevf_rss_tc_mode_cmd *)desc.data;
435
436 roundup_size = roundup_pow_of_two(rss_size);
437 roundup_size = ilog2(roundup_size);
438
439 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
440 tc_valid[i] = !!(hdev->hw_tc_map & BIT(i));
441 tc_size[i] = roundup_size;
442 tc_offset[i] = rss_size * i;
443 }
444
445 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_RSS_TC_MODE, false);
446 for (i = 0; i < HCLGEVF_MAX_TC_NUM; i++) {
447 hnae_set_bit(req->rss_tc_mode[i], HCLGEVF_RSS_TC_VALID_B,
448 (tc_valid[i] & 0x1));
449 hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_SIZE_M,
450 HCLGEVF_RSS_TC_SIZE_S, tc_size[i]);
451 hnae_set_field(req->rss_tc_mode[i], HCLGEVF_RSS_TC_OFFSET_M,
452 HCLGEVF_RSS_TC_OFFSET_S, tc_offset[i]);
453 }
454 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
455 if (status)
456 dev_err(&hdev->pdev->dev,
457 "VF failed(=%d) to set rss tc mode\n", status);
458
459 return status;
460 }
461
462 static int hclgevf_get_rss_hw_cfg(struct hnae3_handle *handle, u8 *hash,
463 u8 *key)
464 {
465 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
466 struct hclgevf_rss_config_cmd *req;
467 int lkup_times = key ? 3 : 1;
468 struct hclgevf_desc desc;
469 int key_offset;
470 int key_size;
471 int status;
472
473 req = (struct hclgevf_rss_config_cmd *)desc.data;
474 lkup_times = (lkup_times == 3) ? 3 : ((hash) ? 1 : 0);
475
476 for (key_offset = 0; key_offset < lkup_times; key_offset++) {
477 hclgevf_cmd_setup_basic_desc(&desc,
478 HCLGEVF_OPC_RSS_GENERIC_CONFIG,
479 true);
480 req->hash_config |= (key_offset << HCLGEVF_RSS_HASH_KEY_OFFSET);
481
482 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
483 if (status) {
484 dev_err(&hdev->pdev->dev,
485 "failed to get hardware RSS cfg, status = %d\n",
486 status);
487 return status;
488 }
489
490 if (key_offset == 2)
491 key_size =
492 HCLGEVF_RSS_KEY_SIZE - HCLGEVF_RSS_HASH_KEY_NUM * 2;
493 else
494 key_size = HCLGEVF_RSS_HASH_KEY_NUM;
495
496 if (key)
497 memcpy(key + key_offset * HCLGEVF_RSS_HASH_KEY_NUM,
498 req->hash_key,
499 key_size);
500 }
501
502 if (hash) {
503 if ((req->hash_config & 0xf) == HCLGEVF_RSS_HASH_ALGO_TOEPLITZ)
504 *hash = ETH_RSS_HASH_TOP;
505 else
506 *hash = ETH_RSS_HASH_UNKNOWN;
507 }
508
509 return 0;
510 }
511
512 static int hclgevf_get_rss(struct hnae3_handle *handle, u32 *indir, u8 *key,
513 u8 *hfunc)
514 {
515 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
516 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
517 int i;
518
519 if (indir)
520 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
521 indir[i] = rss_cfg->rss_indirection_tbl[i];
522
523 return hclgevf_get_rss_hw_cfg(handle, hfunc, key);
524 }
525
526 static int hclgevf_set_rss(struct hnae3_handle *handle, const u32 *indir,
527 const u8 *key, const u8 hfunc)
528 {
529 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
530 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
531 int i;
532
533 /* update the shadow RSS table with user specified qids */
534 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
535 rss_cfg->rss_indirection_tbl[i] = indir[i];
536
537 /* update the hardware */
538 return hclgevf_set_rss_indir_table(hdev);
539 }
540
541 static int hclgevf_get_tc_size(struct hnae3_handle *handle)
542 {
543 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
544 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
545
546 return rss_cfg->rss_size;
547 }
548
549 static int hclgevf_bind_ring_to_vector(struct hnae3_handle *handle, bool en,
550 int vector,
551 struct hnae3_ring_chain_node *ring_chain)
552 {
553 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
554 struct hnae3_ring_chain_node *node;
555 struct hclge_mbx_vf_to_pf_cmd *req;
556 struct hclgevf_desc desc;
557 int i = 0, vector_id;
558 int status;
559 u8 type;
560
561 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
562 vector_id = hclgevf_get_vector_index(hdev, vector);
563 if (vector_id < 0) {
564 dev_err(&handle->pdev->dev,
565 "Get vector index fail. ret =%d\n", vector_id);
566 return vector_id;
567 }
568
569 for (node = ring_chain; node; node = node->next) {
570 int idx_offset = HCLGE_MBX_RING_MAP_BASIC_MSG_NUM +
571 HCLGE_MBX_RING_NODE_VARIABLE_NUM * i;
572
573 if (i == 0) {
574 hclgevf_cmd_setup_basic_desc(&desc,
575 HCLGEVF_OPC_MBX_VF_TO_PF,
576 false);
577 type = en ?
578 HCLGE_MBX_MAP_RING_TO_VECTOR :
579 HCLGE_MBX_UNMAP_RING_TO_VECTOR;
580 req->msg[0] = type;
581 req->msg[1] = vector_id;
582 }
583
584 req->msg[idx_offset] =
585 hnae_get_bit(node->flag, HNAE3_RING_TYPE_B);
586 req->msg[idx_offset + 1] = node->tqp_index;
587 req->msg[idx_offset + 2] = hnae_get_field(node->int_gl_idx,
588 HNAE3_RING_GL_IDX_M,
589 HNAE3_RING_GL_IDX_S);
590
591 i++;
592 if ((i == (HCLGE_MBX_VF_MSG_DATA_NUM -
593 HCLGE_MBX_RING_MAP_BASIC_MSG_NUM) /
594 HCLGE_MBX_RING_NODE_VARIABLE_NUM) ||
595 !node->next) {
596 req->msg[2] = i;
597
598 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
599 if (status) {
600 dev_err(&hdev->pdev->dev,
601 "Map TQP fail, status is %d.\n",
602 status);
603 return status;
604 }
605 i = 0;
606 hclgevf_cmd_setup_basic_desc(&desc,
607 HCLGEVF_OPC_MBX_VF_TO_PF,
608 false);
609 req->msg[0] = type;
610 req->msg[1] = vector_id;
611 }
612 }
613
614 return 0;
615 }
616
617 static int hclgevf_map_ring_to_vector(struct hnae3_handle *handle, int vector,
618 struct hnae3_ring_chain_node *ring_chain)
619 {
620 return hclgevf_bind_ring_to_vector(handle, true, vector, ring_chain);
621 }
622
623 static int hclgevf_unmap_ring_from_vector(
624 struct hnae3_handle *handle,
625 int vector,
626 struct hnae3_ring_chain_node *ring_chain)
627 {
628 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
629 int ret, vector_id;
630
631 vector_id = hclgevf_get_vector_index(hdev, vector);
632 if (vector_id < 0) {
633 dev_err(&handle->pdev->dev,
634 "Get vector index fail. ret =%d\n", vector_id);
635 return vector_id;
636 }
637
638 ret = hclgevf_bind_ring_to_vector(handle, false, vector, ring_chain);
639 if (ret)
640 dev_err(&handle->pdev->dev,
641 "Unmap ring from vector fail. vector=%d, ret =%d\n",
642 vector_id,
643 ret);
644
645 return ret;
646 }
647
648 static int hclgevf_put_vector(struct hnae3_handle *handle, int vector)
649 {
650 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
651
652 hclgevf_free_vector(hdev, vector);
653
654 return 0;
655 }
656
657 static int hclgevf_cmd_set_promisc_mode(struct hclgevf_dev *hdev,
658 bool en_uc_pmc, bool en_mc_pmc)
659 {
660 struct hclge_mbx_vf_to_pf_cmd *req;
661 struct hclgevf_desc desc;
662 int status;
663
664 req = (struct hclge_mbx_vf_to_pf_cmd *)desc.data;
665
666 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_MBX_VF_TO_PF, false);
667 req->msg[0] = HCLGE_MBX_SET_PROMISC_MODE;
668 req->msg[1] = en_uc_pmc ? 1 : 0;
669 req->msg[2] = en_mc_pmc ? 1 : 0;
670
671 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
672 if (status)
673 dev_err(&hdev->pdev->dev,
674 "Set promisc mode fail, status is %d.\n", status);
675
676 return status;
677 }
678
679 static void hclgevf_set_promisc_mode(struct hnae3_handle *handle,
680 bool en_uc_pmc, bool en_mc_pmc)
681 {
682 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
683
684 hclgevf_cmd_set_promisc_mode(hdev, en_uc_pmc, en_mc_pmc);
685 }
686
687 static int hclgevf_tqp_enable(struct hclgevf_dev *hdev, int tqp_id,
688 int stream_id, bool enable)
689 {
690 struct hclgevf_cfg_com_tqp_queue_cmd *req;
691 struct hclgevf_desc desc;
692 int status;
693
694 req = (struct hclgevf_cfg_com_tqp_queue_cmd *)desc.data;
695
696 hclgevf_cmd_setup_basic_desc(&desc, HCLGEVF_OPC_CFG_COM_TQP_QUEUE,
697 false);
698 req->tqp_id = cpu_to_le16(tqp_id & HCLGEVF_RING_ID_MASK);
699 req->stream_id = cpu_to_le16(stream_id);
700 req->enable |= enable << HCLGEVF_TQP_ENABLE_B;
701
702 status = hclgevf_cmd_send(&hdev->hw, &desc, 1);
703 if (status)
704 dev_err(&hdev->pdev->dev,
705 "TQP enable fail, status =%d.\n", status);
706
707 return status;
708 }
709
710 static int hclgevf_get_queue_id(struct hnae3_queue *queue)
711 {
712 struct hclgevf_tqp *tqp = container_of(queue, struct hclgevf_tqp, q);
713
714 return tqp->index;
715 }
716
717 static void hclgevf_reset_tqp_stats(struct hnae3_handle *handle)
718 {
719 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
720 struct hnae3_queue *queue;
721 struct hclgevf_tqp *tqp;
722 int i;
723
724 for (i = 0; i < hdev->num_tqps; i++) {
725 queue = handle->kinfo.tqp[i];
726 tqp = container_of(queue, struct hclgevf_tqp, q);
727 memset(&tqp->tqp_stats, 0, sizeof(tqp->tqp_stats));
728 }
729 }
730
731 static int hclgevf_cfg_func_mta_filter(struct hnae3_handle *handle, bool en)
732 {
733 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
734 u8 msg[2] = {0};
735
736 msg[0] = en;
737 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
738 HCLGE_MBX_MAC_VLAN_MC_FUNC_MTA_ENABLE,
739 msg, 1, false, NULL, 0);
740 }
741
742 static void hclgevf_get_mac_addr(struct hnae3_handle *handle, u8 *p)
743 {
744 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
745
746 ether_addr_copy(p, hdev->hw.mac.mac_addr);
747 }
748
749 static int hclgevf_set_mac_addr(struct hnae3_handle *handle, void *p,
750 bool is_first)
751 {
752 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
753 u8 *old_mac_addr = (u8 *)hdev->hw.mac.mac_addr;
754 u8 *new_mac_addr = (u8 *)p;
755 u8 msg_data[ETH_ALEN * 2];
756 u16 subcode;
757 int status;
758
759 ether_addr_copy(msg_data, new_mac_addr);
760 ether_addr_copy(&msg_data[ETH_ALEN], old_mac_addr);
761
762 subcode = is_first ? HCLGE_MBX_MAC_VLAN_UC_ADD :
763 HCLGE_MBX_MAC_VLAN_UC_MODIFY;
764
765 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
766 subcode, msg_data, ETH_ALEN * 2,
767 true, NULL, 0);
768 if (!status)
769 ether_addr_copy(hdev->hw.mac.mac_addr, new_mac_addr);
770
771 return status;
772 }
773
774 static int hclgevf_add_uc_addr(struct hnae3_handle *handle,
775 const unsigned char *addr)
776 {
777 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
778
779 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
780 HCLGE_MBX_MAC_VLAN_UC_ADD,
781 addr, ETH_ALEN, false, NULL, 0);
782 }
783
784 static int hclgevf_rm_uc_addr(struct hnae3_handle *handle,
785 const unsigned char *addr)
786 {
787 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
788
789 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_UNICAST,
790 HCLGE_MBX_MAC_VLAN_UC_REMOVE,
791 addr, ETH_ALEN, false, NULL, 0);
792 }
793
794 static int hclgevf_add_mc_addr(struct hnae3_handle *handle,
795 const unsigned char *addr)
796 {
797 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
798
799 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
800 HCLGE_MBX_MAC_VLAN_MC_ADD,
801 addr, ETH_ALEN, false, NULL, 0);
802 }
803
804 static int hclgevf_rm_mc_addr(struct hnae3_handle *handle,
805 const unsigned char *addr)
806 {
807 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
808
809 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_MULTICAST,
810 HCLGE_MBX_MAC_VLAN_MC_REMOVE,
811 addr, ETH_ALEN, false, NULL, 0);
812 }
813
814 static int hclgevf_set_vlan_filter(struct hnae3_handle *handle,
815 __be16 proto, u16 vlan_id,
816 bool is_kill)
817 {
818 #define HCLGEVF_VLAN_MBX_MSG_LEN 5
819 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
820 u8 msg_data[HCLGEVF_VLAN_MBX_MSG_LEN];
821
822 if (vlan_id > 4095)
823 return -EINVAL;
824
825 if (proto != htons(ETH_P_8021Q))
826 return -EPROTONOSUPPORT;
827
828 msg_data[0] = is_kill;
829 memcpy(&msg_data[1], &vlan_id, sizeof(vlan_id));
830 memcpy(&msg_data[3], &proto, sizeof(proto));
831 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
832 HCLGE_MBX_VLAN_FILTER, msg_data,
833 HCLGEVF_VLAN_MBX_MSG_LEN, false, NULL, 0);
834 }
835
836 static int hclgevf_en_hw_strip_rxvtag(struct hnae3_handle *handle, bool enable)
837 {
838 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
839 u8 msg_data;
840
841 msg_data = enable ? 1 : 0;
842 return hclgevf_send_mbx_msg(hdev, HCLGE_MBX_SET_VLAN,
843 HCLGE_MBX_VLAN_RX_OFF_CFG, &msg_data,
844 1, false, NULL, 0);
845 }
846
847 static void hclgevf_reset_tqp(struct hnae3_handle *handle, u16 queue_id)
848 {
849 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
850 u8 msg_data[2];
851 int ret;
852
853 memcpy(&msg_data[0], &queue_id, sizeof(queue_id));
854
855 /* disable vf queue before send queue reset msg to PF */
856 ret = hclgevf_tqp_enable(hdev, queue_id, 0, false);
857 if (ret)
858 return;
859
860 hclgevf_send_mbx_msg(hdev, HCLGE_MBX_QUEUE_RESET, 0, msg_data,
861 2, true, NULL, 0);
862 }
863
864 static int hclgevf_notify_client(struct hclgevf_dev *hdev,
865 enum hnae3_reset_notify_type type)
866 {
867 struct hnae3_client *client = hdev->nic_client;
868 struct hnae3_handle *handle = &hdev->nic;
869
870 if (!client->ops->reset_notify)
871 return -EOPNOTSUPP;
872
873 return client->ops->reset_notify(handle, type);
874 }
875
876 static int hclgevf_reset_wait(struct hclgevf_dev *hdev)
877 {
878 #define HCLGEVF_RESET_WAIT_MS 500
879 #define HCLGEVF_RESET_WAIT_CNT 20
880 u32 val, cnt = 0;
881
882 /* wait to check the hardware reset completion status */
883 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
884 while (hnae_get_bit(val, HCLGEVF_FUN_RST_ING_B) &&
885 (cnt < HCLGEVF_RESET_WAIT_CNT)) {
886 msleep(HCLGEVF_RESET_WAIT_MS);
887 val = hclgevf_read_dev(&hdev->hw, HCLGEVF_FUN_RST_ING);
888 cnt++;
889 }
890
891 /* hardware completion status should be available by this time */
892 if (cnt >= HCLGEVF_RESET_WAIT_CNT) {
893 dev_warn(&hdev->pdev->dev,
894 "could'nt get reset done status from h/w, timeout!\n");
895 return -EBUSY;
896 }
897
898 /* we will wait a bit more to let reset of the stack to complete. This
899 * might happen in case reset assertion was made by PF. Yes, this also
900 * means we might end up waiting bit more even for VF reset.
901 */
902 msleep(5000);
903
904 return 0;
905 }
906
907 static int hclgevf_reset_stack(struct hclgevf_dev *hdev)
908 {
909 int ret;
910
911 /* uninitialize the nic client */
912 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
913
914 /* re-initialize the hclge device */
915 ret = hclgevf_init_hdev(hdev);
916 if (ret) {
917 dev_err(&hdev->pdev->dev,
918 "hclge device re-init failed, VF is disabled!\n");
919 return ret;
920 }
921
922 /* bring up the nic client again */
923 hclgevf_notify_client(hdev, HNAE3_INIT_CLIENT);
924
925 return 0;
926 }
927
928 static int hclgevf_reset(struct hclgevf_dev *hdev)
929 {
930 int ret;
931
932 rtnl_lock();
933
934 /* bring down the nic to stop any ongoing TX/RX */
935 hclgevf_notify_client(hdev, HNAE3_DOWN_CLIENT);
936
937 /* check if VF could successfully fetch the hardware reset completion
938 * status from the hardware
939 */
940 ret = hclgevf_reset_wait(hdev);
941 if (ret) {
942 /* can't do much in this situation, will disable VF */
943 dev_err(&hdev->pdev->dev,
944 "VF failed(=%d) to fetch H/W reset completion status\n",
945 ret);
946
947 dev_warn(&hdev->pdev->dev, "VF reset failed, disabling VF!\n");
948 hclgevf_notify_client(hdev, HNAE3_UNINIT_CLIENT);
949
950 rtnl_unlock();
951 return ret;
952 }
953
954 /* now, re-initialize the nic client and ae device*/
955 ret = hclgevf_reset_stack(hdev);
956 if (ret)
957 dev_err(&hdev->pdev->dev, "failed to reset VF stack\n");
958
959 /* bring up the nic to enable TX/RX again */
960 hclgevf_notify_client(hdev, HNAE3_UP_CLIENT);
961
962 rtnl_unlock();
963
964 return ret;
965 }
966
967 static int hclgevf_do_reset(struct hclgevf_dev *hdev)
968 {
969 int status;
970 u8 respmsg;
971
972 status = hclgevf_send_mbx_msg(hdev, HCLGE_MBX_RESET, 0, NULL,
973 0, false, &respmsg, sizeof(u8));
974 if (status)
975 dev_err(&hdev->pdev->dev,
976 "VF reset request to PF failed(=%d)\n", status);
977
978 return status;
979 }
980
981 static void hclgevf_reset_event(struct hnae3_handle *handle)
982 {
983 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
984
985 dev_info(&hdev->pdev->dev, "received reset request from VF enet\n");
986
987 handle->reset_level = HNAE3_VF_RESET;
988
989 /* reset of this VF requested */
990 set_bit(HCLGEVF_RESET_REQUESTED, &hdev->reset_state);
991 hclgevf_reset_task_schedule(hdev);
992
993 handle->last_reset_time = jiffies;
994 }
995
996 static u32 hclgevf_get_fw_version(struct hnae3_handle *handle)
997 {
998 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
999
1000 return hdev->fw_version;
1001 }
1002
1003 static void hclgevf_get_misc_vector(struct hclgevf_dev *hdev)
1004 {
1005 struct hclgevf_misc_vector *vector = &hdev->misc_vector;
1006
1007 vector->vector_irq = pci_irq_vector(hdev->pdev,
1008 HCLGEVF_MISC_VECTOR_NUM);
1009 vector->addr = hdev->hw.io_base + HCLGEVF_MISC_VECTOR_REG_BASE;
1010 /* vector status always valid for Vector 0 */
1011 hdev->vector_status[HCLGEVF_MISC_VECTOR_NUM] = 0;
1012 hdev->vector_irq[HCLGEVF_MISC_VECTOR_NUM] = vector->vector_irq;
1013
1014 hdev->num_msi_left -= 1;
1015 hdev->num_msi_used += 1;
1016 }
1017
1018 void hclgevf_reset_task_schedule(struct hclgevf_dev *hdev)
1019 {
1020 if (!test_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state) &&
1021 !test_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state)) {
1022 set_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1023 schedule_work(&hdev->rst_service_task);
1024 }
1025 }
1026
1027 void hclgevf_mbx_task_schedule(struct hclgevf_dev *hdev)
1028 {
1029 if (!test_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state) &&
1030 !test_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state)) {
1031 set_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1032 schedule_work(&hdev->mbx_service_task);
1033 }
1034 }
1035
1036 static void hclgevf_task_schedule(struct hclgevf_dev *hdev)
1037 {
1038 if (!test_bit(HCLGEVF_STATE_DOWN, &hdev->state) &&
1039 !test_and_set_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state))
1040 schedule_work(&hdev->service_task);
1041 }
1042
1043 static void hclgevf_deferred_task_schedule(struct hclgevf_dev *hdev)
1044 {
1045 /* if we have any pending mailbox event then schedule the mbx task */
1046 if (hdev->mbx_event_pending)
1047 hclgevf_mbx_task_schedule(hdev);
1048
1049 if (test_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state))
1050 hclgevf_reset_task_schedule(hdev);
1051 }
1052
1053 static void hclgevf_service_timer(struct timer_list *t)
1054 {
1055 struct hclgevf_dev *hdev = from_timer(hdev, t, service_timer);
1056
1057 mod_timer(&hdev->service_timer, jiffies + 5 * HZ);
1058
1059 hclgevf_task_schedule(hdev);
1060 }
1061
1062 static void hclgevf_reset_service_task(struct work_struct *work)
1063 {
1064 struct hclgevf_dev *hdev =
1065 container_of(work, struct hclgevf_dev, rst_service_task);
1066 int ret;
1067
1068 if (test_and_set_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state))
1069 return;
1070
1071 clear_bit(HCLGEVF_STATE_RST_SERVICE_SCHED, &hdev->state);
1072
1073 if (test_and_clear_bit(HCLGEVF_RESET_PENDING,
1074 &hdev->reset_state)) {
1075 /* PF has initmated that it is about to reset the hardware.
1076 * We now have to poll & check if harware has actually completed
1077 * the reset sequence. On hardware reset completion, VF needs to
1078 * reset the client and ae device.
1079 */
1080 hdev->reset_attempts = 0;
1081
1082 ret = hclgevf_reset(hdev);
1083 if (ret)
1084 dev_err(&hdev->pdev->dev, "VF stack reset failed.\n");
1085 } else if (test_and_clear_bit(HCLGEVF_RESET_REQUESTED,
1086 &hdev->reset_state)) {
1087 /* we could be here when either of below happens:
1088 * 1. reset was initiated due to watchdog timeout due to
1089 * a. IMP was earlier reset and our TX got choked down and
1090 * which resulted in watchdog reacting and inducing VF
1091 * reset. This also means our cmdq would be unreliable.
1092 * b. problem in TX due to other lower layer(example link
1093 * layer not functioning properly etc.)
1094 * 2. VF reset might have been initiated due to some config
1095 * change.
1096 *
1097 * NOTE: Theres no clear way to detect above cases than to react
1098 * to the response of PF for this reset request. PF will ack the
1099 * 1b and 2. cases but we will not get any intimation about 1a
1100 * from PF as cmdq would be in unreliable state i.e. mailbox
1101 * communication between PF and VF would be broken.
1102 */
1103
1104 /* if we are never geting into pending state it means either:
1105 * 1. PF is not receiving our request which could be due to IMP
1106 * reset
1107 * 2. PF is screwed
1108 * We cannot do much for 2. but to check first we can try reset
1109 * our PCIe + stack and see if it alleviates the problem.
1110 */
1111 if (hdev->reset_attempts > 3) {
1112 /* prepare for full reset of stack + pcie interface */
1113 hdev->nic.reset_level = HNAE3_VF_FULL_RESET;
1114
1115 /* "defer" schedule the reset task again */
1116 set_bit(HCLGEVF_RESET_PENDING, &hdev->reset_state);
1117 } else {
1118 hdev->reset_attempts++;
1119
1120 /* request PF for resetting this VF via mailbox */
1121 ret = hclgevf_do_reset(hdev);
1122 if (ret)
1123 dev_warn(&hdev->pdev->dev,
1124 "VF rst fail, stack will call\n");
1125 }
1126 }
1127
1128 clear_bit(HCLGEVF_STATE_RST_HANDLING, &hdev->state);
1129 }
1130
1131 static void hclgevf_mailbox_service_task(struct work_struct *work)
1132 {
1133 struct hclgevf_dev *hdev;
1134
1135 hdev = container_of(work, struct hclgevf_dev, mbx_service_task);
1136
1137 if (test_and_set_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state))
1138 return;
1139
1140 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1141
1142 hclgevf_mbx_async_handler(hdev);
1143
1144 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1145 }
1146
1147 static void hclgevf_service_task(struct work_struct *work)
1148 {
1149 struct hclgevf_dev *hdev;
1150
1151 hdev = container_of(work, struct hclgevf_dev, service_task);
1152
1153 /* request the link status from the PF. PF would be able to tell VF
1154 * about such updates in future so we might remove this later
1155 */
1156 hclgevf_request_link_info(hdev);
1157
1158 hclgevf_deferred_task_schedule(hdev);
1159
1160 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1161 }
1162
1163 static void hclgevf_clear_event_cause(struct hclgevf_dev *hdev, u32 regclr)
1164 {
1165 hclgevf_write_dev(&hdev->hw, HCLGEVF_VECTOR0_CMDQ_SRC_REG, regclr);
1166 }
1167
1168 static bool hclgevf_check_event_cause(struct hclgevf_dev *hdev, u32 *clearval)
1169 {
1170 u32 cmdq_src_reg;
1171
1172 /* fetch the events from their corresponding regs */
1173 cmdq_src_reg = hclgevf_read_dev(&hdev->hw,
1174 HCLGEVF_VECTOR0_CMDQ_SRC_REG);
1175
1176 /* check for vector0 mailbox(=CMDQ RX) event source */
1177 if (BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B) & cmdq_src_reg) {
1178 cmdq_src_reg &= ~BIT(HCLGEVF_VECTOR0_RX_CMDQ_INT_B);
1179 *clearval = cmdq_src_reg;
1180 return true;
1181 }
1182
1183 dev_dbg(&hdev->pdev->dev, "vector 0 interrupt from unknown source\n");
1184
1185 return false;
1186 }
1187
1188 static void hclgevf_enable_vector(struct hclgevf_misc_vector *vector, bool en)
1189 {
1190 writel(en ? 1 : 0, vector->addr);
1191 }
1192
1193 static irqreturn_t hclgevf_misc_irq_handle(int irq, void *data)
1194 {
1195 struct hclgevf_dev *hdev = data;
1196 u32 clearval;
1197
1198 hclgevf_enable_vector(&hdev->misc_vector, false);
1199 if (!hclgevf_check_event_cause(hdev, &clearval))
1200 goto skip_sched;
1201
1202 hclgevf_mbx_handler(hdev);
1203
1204 hclgevf_clear_event_cause(hdev, clearval);
1205
1206 skip_sched:
1207 hclgevf_enable_vector(&hdev->misc_vector, true);
1208
1209 return IRQ_HANDLED;
1210 }
1211
1212 static int hclgevf_configure(struct hclgevf_dev *hdev)
1213 {
1214 int ret;
1215
1216 /* get queue configuration from PF */
1217 ret = hclge_get_queue_info(hdev);
1218 if (ret)
1219 return ret;
1220 /* get tc configuration from PF */
1221 return hclgevf_get_tc_info(hdev);
1222 }
1223
1224 static int hclgevf_alloc_hdev(struct hnae3_ae_dev *ae_dev)
1225 {
1226 struct pci_dev *pdev = ae_dev->pdev;
1227 struct hclgevf_dev *hdev = ae_dev->priv;
1228
1229 hdev = devm_kzalloc(&pdev->dev, sizeof(*hdev), GFP_KERNEL);
1230 if (!hdev)
1231 return -ENOMEM;
1232
1233 hdev->pdev = pdev;
1234 hdev->ae_dev = ae_dev;
1235 ae_dev->priv = hdev;
1236
1237 return 0;
1238 }
1239
1240 static int hclgevf_init_roce_base_info(struct hclgevf_dev *hdev)
1241 {
1242 struct hnae3_handle *roce = &hdev->roce;
1243 struct hnae3_handle *nic = &hdev->nic;
1244
1245 roce->rinfo.num_vectors = HCLGEVF_ROCEE_VECTOR_NUM;
1246
1247 if (hdev->num_msi_left < roce->rinfo.num_vectors ||
1248 hdev->num_msi_left == 0)
1249 return -EINVAL;
1250
1251 roce->rinfo.base_vector =
1252 hdev->vector_status[hdev->num_msi_used];
1253
1254 roce->rinfo.netdev = nic->kinfo.netdev;
1255 roce->rinfo.roce_io_base = hdev->hw.io_base;
1256
1257 roce->pdev = nic->pdev;
1258 roce->ae_algo = nic->ae_algo;
1259 roce->numa_node_mask = nic->numa_node_mask;
1260
1261 return 0;
1262 }
1263
1264 static int hclgevf_rss_init_hw(struct hclgevf_dev *hdev)
1265 {
1266 struct hclgevf_rss_cfg *rss_cfg = &hdev->rss_cfg;
1267 int i, ret;
1268
1269 rss_cfg->rss_size = hdev->rss_size_max;
1270
1271 /* Initialize RSS indirect table for each vport */
1272 for (i = 0; i < HCLGEVF_RSS_IND_TBL_SIZE; i++)
1273 rss_cfg->rss_indirection_tbl[i] = i % hdev->rss_size_max;
1274
1275 ret = hclgevf_set_rss_indir_table(hdev);
1276 if (ret)
1277 return ret;
1278
1279 return hclgevf_set_rss_tc_mode(hdev, hdev->rss_size_max);
1280 }
1281
1282 static int hclgevf_init_vlan_config(struct hclgevf_dev *hdev)
1283 {
1284 /* other vlan config(like, VLAN TX/RX offload) would also be added
1285 * here later
1286 */
1287 return hclgevf_set_vlan_filter(&hdev->nic, htons(ETH_P_8021Q), 0,
1288 false);
1289 }
1290
1291 static int hclgevf_ae_start(struct hnae3_handle *handle)
1292 {
1293 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1294 int i, queue_id;
1295
1296 for (i = 0; i < handle->kinfo.num_tqps; i++) {
1297 /* ring enable */
1298 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1299 if (queue_id < 0) {
1300 dev_warn(&hdev->pdev->dev,
1301 "Get invalid queue id, ignore it\n");
1302 continue;
1303 }
1304
1305 hclgevf_tqp_enable(hdev, queue_id, 0, true);
1306 }
1307
1308 /* reset tqp stats */
1309 hclgevf_reset_tqp_stats(handle);
1310
1311 hclgevf_request_link_info(hdev);
1312
1313 clear_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1314 mod_timer(&hdev->service_timer, jiffies + HZ);
1315
1316 return 0;
1317 }
1318
1319 static void hclgevf_ae_stop(struct hnae3_handle *handle)
1320 {
1321 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1322 int i, queue_id;
1323
1324 for (i = 0; i < hdev->num_tqps; i++) {
1325 /* Ring disable */
1326 queue_id = hclgevf_get_queue_id(handle->kinfo.tqp[i]);
1327 if (queue_id < 0) {
1328 dev_warn(&hdev->pdev->dev,
1329 "Get invalid queue id, ignore it\n");
1330 continue;
1331 }
1332
1333 hclgevf_tqp_enable(hdev, queue_id, 0, false);
1334 }
1335
1336 /* reset tqp stats */
1337 hclgevf_reset_tqp_stats(handle);
1338 del_timer_sync(&hdev->service_timer);
1339 cancel_work_sync(&hdev->service_task);
1340 hclgevf_update_link_status(hdev, 0);
1341 }
1342
1343 static void hclgevf_state_init(struct hclgevf_dev *hdev)
1344 {
1345 /* if this is on going reset then skip this initialization */
1346 if (hclgevf_dev_ongoing_reset(hdev))
1347 return;
1348
1349 /* setup tasks for the MBX */
1350 INIT_WORK(&hdev->mbx_service_task, hclgevf_mailbox_service_task);
1351 clear_bit(HCLGEVF_STATE_MBX_SERVICE_SCHED, &hdev->state);
1352 clear_bit(HCLGEVF_STATE_MBX_HANDLING, &hdev->state);
1353
1354 /* setup tasks for service timer */
1355 timer_setup(&hdev->service_timer, hclgevf_service_timer, 0);
1356
1357 INIT_WORK(&hdev->service_task, hclgevf_service_task);
1358 clear_bit(HCLGEVF_STATE_SERVICE_SCHED, &hdev->state);
1359
1360 INIT_WORK(&hdev->rst_service_task, hclgevf_reset_service_task);
1361
1362 mutex_init(&hdev->mbx_resp.mbx_mutex);
1363
1364 /* bring the device down */
1365 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1366 }
1367
1368 static void hclgevf_state_uninit(struct hclgevf_dev *hdev)
1369 {
1370 set_bit(HCLGEVF_STATE_DOWN, &hdev->state);
1371
1372 if (hdev->service_timer.function)
1373 del_timer_sync(&hdev->service_timer);
1374 if (hdev->service_task.func)
1375 cancel_work_sync(&hdev->service_task);
1376 if (hdev->mbx_service_task.func)
1377 cancel_work_sync(&hdev->mbx_service_task);
1378 if (hdev->rst_service_task.func)
1379 cancel_work_sync(&hdev->rst_service_task);
1380
1381 mutex_destroy(&hdev->mbx_resp.mbx_mutex);
1382 }
1383
1384 static int hclgevf_init_msi(struct hclgevf_dev *hdev)
1385 {
1386 struct pci_dev *pdev = hdev->pdev;
1387 int vectors;
1388 int i;
1389
1390 /* if this is on going reset then skip this initialization */
1391 if (hclgevf_dev_ongoing_reset(hdev))
1392 return 0;
1393
1394 hdev->num_msi = HCLGEVF_MAX_VF_VECTOR_NUM;
1395
1396 vectors = pci_alloc_irq_vectors(pdev, 1, hdev->num_msi,
1397 PCI_IRQ_MSI | PCI_IRQ_MSIX);
1398 if (vectors < 0) {
1399 dev_err(&pdev->dev,
1400 "failed(%d) to allocate MSI/MSI-X vectors\n",
1401 vectors);
1402 return vectors;
1403 }
1404 if (vectors < hdev->num_msi)
1405 dev_warn(&hdev->pdev->dev,
1406 "requested %d MSI/MSI-X, but allocated %d MSI/MSI-X\n",
1407 hdev->num_msi, vectors);
1408
1409 hdev->num_msi = vectors;
1410 hdev->num_msi_left = vectors;
1411 hdev->base_msi_vector = pdev->irq;
1412
1413 hdev->vector_status = devm_kcalloc(&pdev->dev, hdev->num_msi,
1414 sizeof(u16), GFP_KERNEL);
1415 if (!hdev->vector_status) {
1416 pci_free_irq_vectors(pdev);
1417 return -ENOMEM;
1418 }
1419
1420 for (i = 0; i < hdev->num_msi; i++)
1421 hdev->vector_status[i] = HCLGEVF_INVALID_VPORT;
1422
1423 hdev->vector_irq = devm_kcalloc(&pdev->dev, hdev->num_msi,
1424 sizeof(int), GFP_KERNEL);
1425 if (!hdev->vector_irq) {
1426 pci_free_irq_vectors(pdev);
1427 return -ENOMEM;
1428 }
1429
1430 return 0;
1431 }
1432
1433 static void hclgevf_uninit_msi(struct hclgevf_dev *hdev)
1434 {
1435 struct pci_dev *pdev = hdev->pdev;
1436
1437 pci_free_irq_vectors(pdev);
1438 }
1439
1440 static int hclgevf_misc_irq_init(struct hclgevf_dev *hdev)
1441 {
1442 int ret = 0;
1443
1444 /* if this is on going reset then skip this initialization */
1445 if (hclgevf_dev_ongoing_reset(hdev))
1446 return 0;
1447
1448 hclgevf_get_misc_vector(hdev);
1449
1450 ret = request_irq(hdev->misc_vector.vector_irq, hclgevf_misc_irq_handle,
1451 0, "hclgevf_cmd", hdev);
1452 if (ret) {
1453 dev_err(&hdev->pdev->dev, "VF failed to request misc irq(%d)\n",
1454 hdev->misc_vector.vector_irq);
1455 return ret;
1456 }
1457
1458 /* enable misc. vector(vector 0) */
1459 hclgevf_enable_vector(&hdev->misc_vector, true);
1460
1461 return ret;
1462 }
1463
1464 static void hclgevf_misc_irq_uninit(struct hclgevf_dev *hdev)
1465 {
1466 /* disable misc vector(vector 0) */
1467 hclgevf_enable_vector(&hdev->misc_vector, false);
1468 free_irq(hdev->misc_vector.vector_irq, hdev);
1469 hclgevf_free_vector(hdev, 0);
1470 }
1471
1472 static int hclgevf_init_instance(struct hclgevf_dev *hdev,
1473 struct hnae3_client *client)
1474 {
1475 int ret;
1476
1477 switch (client->type) {
1478 case HNAE3_CLIENT_KNIC:
1479 hdev->nic_client = client;
1480 hdev->nic.client = client;
1481
1482 ret = client->ops->init_instance(&hdev->nic);
1483 if (ret)
1484 return ret;
1485
1486 if (hdev->roce_client && hnae3_dev_roce_supported(hdev)) {
1487 struct hnae3_client *rc = hdev->roce_client;
1488
1489 ret = hclgevf_init_roce_base_info(hdev);
1490 if (ret)
1491 return ret;
1492 ret = rc->ops->init_instance(&hdev->roce);
1493 if (ret)
1494 return ret;
1495 }
1496 break;
1497 case HNAE3_CLIENT_UNIC:
1498 hdev->nic_client = client;
1499 hdev->nic.client = client;
1500
1501 ret = client->ops->init_instance(&hdev->nic);
1502 if (ret)
1503 return ret;
1504 break;
1505 case HNAE3_CLIENT_ROCE:
1506 if (hnae3_dev_roce_supported(hdev)) {
1507 hdev->roce_client = client;
1508 hdev->roce.client = client;
1509 }
1510
1511 if (hdev->roce_client && hdev->nic_client) {
1512 ret = hclgevf_init_roce_base_info(hdev);
1513 if (ret)
1514 return ret;
1515
1516 ret = client->ops->init_instance(&hdev->roce);
1517 if (ret)
1518 return ret;
1519 }
1520 }
1521
1522 return 0;
1523 }
1524
1525 static void hclgevf_uninit_instance(struct hclgevf_dev *hdev,
1526 struct hnae3_client *client)
1527 {
1528 /* un-init roce, if it exists */
1529 if (hdev->roce_client)
1530 hdev->roce_client->ops->uninit_instance(&hdev->roce, 0);
1531
1532 /* un-init nic/unic, if this was not called by roce client */
1533 if ((client->ops->uninit_instance) &&
1534 (client->type != HNAE3_CLIENT_ROCE))
1535 client->ops->uninit_instance(&hdev->nic, 0);
1536 }
1537
1538 static int hclgevf_register_client(struct hnae3_client *client,
1539 struct hnae3_ae_dev *ae_dev)
1540 {
1541 struct hclgevf_dev *hdev = ae_dev->priv;
1542
1543 return hclgevf_init_instance(hdev, client);
1544 }
1545
1546 static void hclgevf_unregister_client(struct hnae3_client *client,
1547 struct hnae3_ae_dev *ae_dev)
1548 {
1549 struct hclgevf_dev *hdev = ae_dev->priv;
1550
1551 hclgevf_uninit_instance(hdev, client);
1552 }
1553
1554 static int hclgevf_pci_init(struct hclgevf_dev *hdev)
1555 {
1556 struct pci_dev *pdev = hdev->pdev;
1557 struct hclgevf_hw *hw;
1558 int ret;
1559
1560 /* check if we need to skip initialization of pci. This will happen if
1561 * device is undergoing VF reset. Otherwise, we would need to
1562 * re-initialize pci interface again i.e. when device is not going
1563 * through *any* reset or actually undergoing full reset.
1564 */
1565 if (hclgevf_dev_ongoing_reset(hdev))
1566 return 0;
1567
1568 ret = pci_enable_device(pdev);
1569 if (ret) {
1570 dev_err(&pdev->dev, "failed to enable PCI device\n");
1571 return ret;
1572 }
1573
1574 ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
1575 if (ret) {
1576 dev_err(&pdev->dev, "can't set consistent PCI DMA, exiting");
1577 goto err_disable_device;
1578 }
1579
1580 ret = pci_request_regions(pdev, HCLGEVF_DRIVER_NAME);
1581 if (ret) {
1582 dev_err(&pdev->dev, "PCI request regions failed %d\n", ret);
1583 goto err_disable_device;
1584 }
1585
1586 pci_set_master(pdev);
1587 hw = &hdev->hw;
1588 hw->hdev = hdev;
1589 hw->io_base = pci_iomap(pdev, 2, 0);
1590 if (!hw->io_base) {
1591 dev_err(&pdev->dev, "can't map configuration register space\n");
1592 ret = -ENOMEM;
1593 goto err_clr_master;
1594 }
1595
1596 return 0;
1597
1598 err_clr_master:
1599 pci_clear_master(pdev);
1600 pci_release_regions(pdev);
1601 err_disable_device:
1602 pci_disable_device(pdev);
1603
1604 return ret;
1605 }
1606
1607 static void hclgevf_pci_uninit(struct hclgevf_dev *hdev)
1608 {
1609 struct pci_dev *pdev = hdev->pdev;
1610
1611 pci_iounmap(pdev, hdev->hw.io_base);
1612 pci_clear_master(pdev);
1613 pci_release_regions(pdev);
1614 pci_disable_device(pdev);
1615 }
1616
1617 static int hclgevf_init_hdev(struct hclgevf_dev *hdev)
1618 {
1619 struct pci_dev *pdev = hdev->pdev;
1620 int ret;
1621
1622 /* check if device is on-going full reset(i.e. pcie as well) */
1623 if (hclgevf_dev_ongoing_full_reset(hdev)) {
1624 dev_warn(&pdev->dev, "device is going full reset\n");
1625 hclgevf_uninit_hdev(hdev);
1626 }
1627
1628 ret = hclgevf_pci_init(hdev);
1629 if (ret) {
1630 dev_err(&pdev->dev, "PCI initialization failed\n");
1631 return ret;
1632 }
1633
1634 ret = hclgevf_init_msi(hdev);
1635 if (ret) {
1636 dev_err(&pdev->dev, "failed(%d) to init MSI/MSI-X\n", ret);
1637 goto err_irq_init;
1638 }
1639
1640 hclgevf_state_init(hdev);
1641
1642 ret = hclgevf_cmd_init(hdev);
1643 if (ret)
1644 goto err_cmd_init;
1645
1646 ret = hclgevf_misc_irq_init(hdev);
1647 if (ret) {
1648 dev_err(&pdev->dev, "failed(%d) to init Misc IRQ(vector0)\n",
1649 ret);
1650 goto err_misc_irq_init;
1651 }
1652
1653 ret = hclgevf_configure(hdev);
1654 if (ret) {
1655 dev_err(&pdev->dev, "failed(%d) to fetch configuration\n", ret);
1656 goto err_config;
1657 }
1658
1659 ret = hclgevf_alloc_tqps(hdev);
1660 if (ret) {
1661 dev_err(&pdev->dev, "failed(%d) to allocate TQPs\n", ret);
1662 goto err_config;
1663 }
1664
1665 ret = hclgevf_set_handle_info(hdev);
1666 if (ret) {
1667 dev_err(&pdev->dev, "failed(%d) to set handle info\n", ret);
1668 goto err_config;
1669 }
1670
1671 /* Initialize VF's MTA */
1672 hdev->accept_mta_mc = true;
1673 ret = hclgevf_cfg_func_mta_filter(&hdev->nic, hdev->accept_mta_mc);
1674 if (ret) {
1675 dev_err(&hdev->pdev->dev,
1676 "failed(%d) to set mta filter mode\n", ret);
1677 goto err_config;
1678 }
1679
1680 /* Initialize RSS for this VF */
1681 ret = hclgevf_rss_init_hw(hdev);
1682 if (ret) {
1683 dev_err(&hdev->pdev->dev,
1684 "failed(%d) to initialize RSS\n", ret);
1685 goto err_config;
1686 }
1687
1688 ret = hclgevf_init_vlan_config(hdev);
1689 if (ret) {
1690 dev_err(&hdev->pdev->dev,
1691 "failed(%d) to initialize VLAN config\n", ret);
1692 goto err_config;
1693 }
1694
1695 pr_info("finished initializing %s driver\n", HCLGEVF_DRIVER_NAME);
1696
1697 return 0;
1698
1699 err_config:
1700 hclgevf_misc_irq_uninit(hdev);
1701 err_misc_irq_init:
1702 hclgevf_cmd_uninit(hdev);
1703 err_cmd_init:
1704 hclgevf_state_uninit(hdev);
1705 hclgevf_uninit_msi(hdev);
1706 err_irq_init:
1707 hclgevf_pci_uninit(hdev);
1708 return ret;
1709 }
1710
1711 static void hclgevf_uninit_hdev(struct hclgevf_dev *hdev)
1712 {
1713 hclgevf_state_uninit(hdev);
1714 hclgevf_misc_irq_uninit(hdev);
1715 hclgevf_cmd_uninit(hdev);
1716 hclgevf_uninit_msi(hdev);
1717 hclgevf_pci_uninit(hdev);
1718 }
1719
1720 static int hclgevf_init_ae_dev(struct hnae3_ae_dev *ae_dev)
1721 {
1722 struct pci_dev *pdev = ae_dev->pdev;
1723 int ret;
1724
1725 ret = hclgevf_alloc_hdev(ae_dev);
1726 if (ret) {
1727 dev_err(&pdev->dev, "hclge device allocation failed\n");
1728 return ret;
1729 }
1730
1731 ret = hclgevf_init_hdev(ae_dev->priv);
1732 if (ret)
1733 dev_err(&pdev->dev, "hclge device initialization failed\n");
1734
1735 return ret;
1736 }
1737
1738 static void hclgevf_uninit_ae_dev(struct hnae3_ae_dev *ae_dev)
1739 {
1740 struct hclgevf_dev *hdev = ae_dev->priv;
1741
1742 hclgevf_uninit_hdev(hdev);
1743 ae_dev->priv = NULL;
1744 }
1745
1746 static u32 hclgevf_get_max_channels(struct hclgevf_dev *hdev)
1747 {
1748 struct hnae3_handle *nic = &hdev->nic;
1749 struct hnae3_knic_private_info *kinfo = &nic->kinfo;
1750
1751 return min_t(u32, hdev->rss_size_max * kinfo->num_tc, hdev->num_tqps);
1752 }
1753
1754 /**
1755 * hclgevf_get_channels - Get the current channels enabled and max supported.
1756 * @handle: hardware information for network interface
1757 * @ch: ethtool channels structure
1758 *
1759 * We don't support separate tx and rx queues as channels. The other count
1760 * represents how many queues are being used for control. max_combined counts
1761 * how many queue pairs we can support. They may not be mapped 1 to 1 with
1762 * q_vectors since we support a lot more queue pairs than q_vectors.
1763 **/
1764 static void hclgevf_get_channels(struct hnae3_handle *handle,
1765 struct ethtool_channels *ch)
1766 {
1767 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1768
1769 ch->max_combined = hclgevf_get_max_channels(hdev);
1770 ch->other_count = 0;
1771 ch->max_other = 0;
1772 ch->combined_count = hdev->num_tqps;
1773 }
1774
1775 static void hclgevf_get_tqps_and_rss_info(struct hnae3_handle *handle,
1776 u16 *free_tqps, u16 *max_rss_size)
1777 {
1778 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1779
1780 *free_tqps = 0;
1781 *max_rss_size = hdev->rss_size_max;
1782 }
1783
1784 static int hclgevf_get_status(struct hnae3_handle *handle)
1785 {
1786 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1787
1788 return hdev->hw.mac.link;
1789 }
1790
1791 static void hclgevf_get_ksettings_an_result(struct hnae3_handle *handle,
1792 u8 *auto_neg, u32 *speed,
1793 u8 *duplex)
1794 {
1795 struct hclgevf_dev *hdev = hclgevf_ae_get_hdev(handle);
1796
1797 if (speed)
1798 *speed = hdev->hw.mac.speed;
1799 if (duplex)
1800 *duplex = hdev->hw.mac.duplex;
1801 if (auto_neg)
1802 *auto_neg = AUTONEG_DISABLE;
1803 }
1804
1805 void hclgevf_update_speed_duplex(struct hclgevf_dev *hdev, u32 speed,
1806 u8 duplex)
1807 {
1808 hdev->hw.mac.speed = speed;
1809 hdev->hw.mac.duplex = duplex;
1810 }
1811
1812 static const struct hnae3_ae_ops hclgevf_ops = {
1813 .init_ae_dev = hclgevf_init_ae_dev,
1814 .uninit_ae_dev = hclgevf_uninit_ae_dev,
1815 .init_client_instance = hclgevf_register_client,
1816 .uninit_client_instance = hclgevf_unregister_client,
1817 .start = hclgevf_ae_start,
1818 .stop = hclgevf_ae_stop,
1819 .map_ring_to_vector = hclgevf_map_ring_to_vector,
1820 .unmap_ring_from_vector = hclgevf_unmap_ring_from_vector,
1821 .get_vector = hclgevf_get_vector,
1822 .put_vector = hclgevf_put_vector,
1823 .reset_queue = hclgevf_reset_tqp,
1824 .set_promisc_mode = hclgevf_set_promisc_mode,
1825 .get_mac_addr = hclgevf_get_mac_addr,
1826 .set_mac_addr = hclgevf_set_mac_addr,
1827 .add_uc_addr = hclgevf_add_uc_addr,
1828 .rm_uc_addr = hclgevf_rm_uc_addr,
1829 .add_mc_addr = hclgevf_add_mc_addr,
1830 .rm_mc_addr = hclgevf_rm_mc_addr,
1831 .get_stats = hclgevf_get_stats,
1832 .update_stats = hclgevf_update_stats,
1833 .get_strings = hclgevf_get_strings,
1834 .get_sset_count = hclgevf_get_sset_count,
1835 .get_rss_key_size = hclgevf_get_rss_key_size,
1836 .get_rss_indir_size = hclgevf_get_rss_indir_size,
1837 .get_rss = hclgevf_get_rss,
1838 .set_rss = hclgevf_set_rss,
1839 .get_tc_size = hclgevf_get_tc_size,
1840 .get_fw_version = hclgevf_get_fw_version,
1841 .set_vlan_filter = hclgevf_set_vlan_filter,
1842 .enable_hw_strip_rxvtag = hclgevf_en_hw_strip_rxvtag,
1843 .reset_event = hclgevf_reset_event,
1844 .get_channels = hclgevf_get_channels,
1845 .get_tqps_and_rss_info = hclgevf_get_tqps_and_rss_info,
1846 .get_status = hclgevf_get_status,
1847 .get_ksettings_an_result = hclgevf_get_ksettings_an_result,
1848 };
1849
1850 static struct hnae3_ae_algo ae_algovf = {
1851 .ops = &hclgevf_ops,
1852 .name = HCLGEVF_NAME,
1853 .pdev_id_table = ae_algovf_pci_tbl,
1854 };
1855
1856 static int hclgevf_init(void)
1857 {
1858 pr_info("%s is initializing\n", HCLGEVF_NAME);
1859
1860 hnae3_register_ae_algo(&ae_algovf);
1861
1862 return 0;
1863 }
1864
1865 static void hclgevf_exit(void)
1866 {
1867 hnae3_unregister_ae_algo(&ae_algovf);
1868 }
1869 module_init(hclgevf_init);
1870 module_exit(hclgevf_exit);
1871
1872 MODULE_LICENSE("GPL");
1873 MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
1874 MODULE_DESCRIPTION("HCLGEVF Driver");
1875 MODULE_VERSION(HCLGEVF_MOD_VERSION);