]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/intel/e1000/e1000_ethtool.c
d44d3643677dce6779c44d9b85b510008af3ff30
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2 * Intel PRO/1000 Linux driver
3 * Copyright(c) 1999 - 2006 Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in
15 * the file called "COPYING".
16 *
17 * Contact Information:
18 * Linux NICS <linux.nics@intel.com>
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 *
22 ******************************************************************************/
23
24 /* ethtool support for e1000 */
25
26 #include "e1000.h"
27 #include <linux/jiffies.h>
28 #include <linux/uaccess.h>
29
30 enum {NETDEV_STATS, E1000_STATS};
31
32 struct e1000_stats {
33 char stat_string[ETH_GSTRING_LEN];
34 int type;
35 int sizeof_stat;
36 int stat_offset;
37 };
38
39 #define E1000_STAT(m) E1000_STATS, \
40 sizeof(((struct e1000_adapter *)0)->m), \
41 offsetof(struct e1000_adapter, m)
42 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
43 sizeof(((struct net_device *)0)->m), \
44 offsetof(struct net_device, m)
45
46 static const struct e1000_stats e1000_gstrings_stats[] = {
47 { "rx_packets", E1000_STAT(stats.gprc) },
48 { "tx_packets", E1000_STAT(stats.gptc) },
49 { "rx_bytes", E1000_STAT(stats.gorcl) },
50 { "tx_bytes", E1000_STAT(stats.gotcl) },
51 { "rx_broadcast", E1000_STAT(stats.bprc) },
52 { "tx_broadcast", E1000_STAT(stats.bptc) },
53 { "rx_multicast", E1000_STAT(stats.mprc) },
54 { "tx_multicast", E1000_STAT(stats.mptc) },
55 { "rx_errors", E1000_STAT(stats.rxerrc) },
56 { "tx_errors", E1000_STAT(stats.txerrc) },
57 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
58 { "multicast", E1000_STAT(stats.mprc) },
59 { "collisions", E1000_STAT(stats.colc) },
60 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
61 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
62 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
63 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
64 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
65 { "rx_missed_errors", E1000_STAT(stats.mpc) },
66 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
67 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
68 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
69 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
70 { "tx_window_errors", E1000_STAT(stats.latecol) },
71 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
72 { "tx_deferred_ok", E1000_STAT(stats.dc) },
73 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
74 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
75 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
76 { "tx_restart_queue", E1000_STAT(restart_queue) },
77 { "rx_long_length_errors", E1000_STAT(stats.roc) },
78 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
79 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
80 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
81 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
82 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
83 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
84 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
85 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
86 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
87 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
88 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
89 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
90 { "tx_smbus", E1000_STAT(stats.mgptc) },
91 { "rx_smbus", E1000_STAT(stats.mgprc) },
92 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
93 };
94
95 #define E1000_QUEUE_STATS_LEN 0
96 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
97 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
98 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
99 "Register test (offline)", "Eeprom test (offline)",
100 "Interrupt test (offline)", "Loopback test (offline)",
101 "Link test (on/offline)"
102 };
103
104 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
105
106 static int e1000_get_link_ksettings(struct net_device *netdev,
107 struct ethtool_link_ksettings *cmd)
108 {
109 struct e1000_adapter *adapter = netdev_priv(netdev);
110 struct e1000_hw *hw = &adapter->hw;
111 u32 supported, advertising;
112
113 if (hw->media_type == e1000_media_type_copper) {
114 supported = (SUPPORTED_10baseT_Half |
115 SUPPORTED_10baseT_Full |
116 SUPPORTED_100baseT_Half |
117 SUPPORTED_100baseT_Full |
118 SUPPORTED_1000baseT_Full|
119 SUPPORTED_Autoneg |
120 SUPPORTED_TP);
121 advertising = ADVERTISED_TP;
122
123 if (hw->autoneg == 1) {
124 advertising |= ADVERTISED_Autoneg;
125 /* the e1000 autoneg seems to match ethtool nicely */
126 advertising |= hw->autoneg_advertised;
127 }
128
129 cmd->base.port = PORT_TP;
130 cmd->base.phy_address = hw->phy_addr;
131 } else {
132 supported = (SUPPORTED_1000baseT_Full |
133 SUPPORTED_FIBRE |
134 SUPPORTED_Autoneg);
135
136 advertising = (ADVERTISED_1000baseT_Full |
137 ADVERTISED_FIBRE |
138 ADVERTISED_Autoneg);
139
140 cmd->base.port = PORT_FIBRE;
141 }
142
143 if (er32(STATUS) & E1000_STATUS_LU) {
144 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
145 &adapter->link_duplex);
146 cmd->base.speed = adapter->link_speed;
147
148 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
149 * and HALF_DUPLEX != DUPLEX_HALF
150 */
151 if (adapter->link_duplex == FULL_DUPLEX)
152 cmd->base.duplex = DUPLEX_FULL;
153 else
154 cmd->base.duplex = DUPLEX_HALF;
155 } else {
156 cmd->base.speed = SPEED_UNKNOWN;
157 cmd->base.duplex = DUPLEX_UNKNOWN;
158 }
159
160 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
161 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
162
163 /* MDI-X => 1; MDI => 0 */
164 if ((hw->media_type == e1000_media_type_copper) &&
165 netif_carrier_ok(netdev))
166 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
167 ETH_TP_MDI_X : ETH_TP_MDI);
168 else
169 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
170
171 if (hw->mdix == AUTO_ALL_MODES)
172 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
173 else
174 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
175
176 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
177 supported);
178 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
179 advertising);
180
181 return 0;
182 }
183
184 static int e1000_set_link_ksettings(struct net_device *netdev,
185 const struct ethtool_link_ksettings *cmd)
186 {
187 struct e1000_adapter *adapter = netdev_priv(netdev);
188 struct e1000_hw *hw = &adapter->hw;
189 u32 advertising;
190
191 ethtool_convert_link_mode_to_legacy_u32(&advertising,
192 cmd->link_modes.advertising);
193
194 /* MDI setting is only allowed when autoneg enabled because
195 * some hardware doesn't allow MDI setting when speed or
196 * duplex is forced.
197 */
198 if (cmd->base.eth_tp_mdix_ctrl) {
199 if (hw->media_type != e1000_media_type_copper)
200 return -EOPNOTSUPP;
201
202 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
203 (cmd->base.autoneg != AUTONEG_ENABLE)) {
204 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
205 return -EINVAL;
206 }
207 }
208
209 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
210 msleep(1);
211
212 if (cmd->base.autoneg == AUTONEG_ENABLE) {
213 hw->autoneg = 1;
214 if (hw->media_type == e1000_media_type_fiber)
215 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
216 ADVERTISED_FIBRE |
217 ADVERTISED_Autoneg;
218 else
219 hw->autoneg_advertised = advertising |
220 ADVERTISED_TP |
221 ADVERTISED_Autoneg;
222 } else {
223 u32 speed = cmd->base.speed;
224 /* calling this overrides forced MDI setting */
225 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
226 clear_bit(__E1000_RESETTING, &adapter->flags);
227 return -EINVAL;
228 }
229 }
230
231 /* MDI-X => 2; MDI => 1; Auto => 3 */
232 if (cmd->base.eth_tp_mdix_ctrl) {
233 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
234 hw->mdix = AUTO_ALL_MODES;
235 else
236 hw->mdix = cmd->base.eth_tp_mdix_ctrl;
237 }
238
239 /* reset the link */
240
241 if (netif_running(adapter->netdev)) {
242 e1000_down(adapter);
243 e1000_up(adapter);
244 } else {
245 e1000_reset(adapter);
246 }
247 clear_bit(__E1000_RESETTING, &adapter->flags);
248 return 0;
249 }
250
251 static u32 e1000_get_link(struct net_device *netdev)
252 {
253 struct e1000_adapter *adapter = netdev_priv(netdev);
254
255 /* If the link is not reported up to netdev, interrupts are disabled,
256 * and so the physical link state may have changed since we last
257 * looked. Set get_link_status to make sure that the true link
258 * state is interrogated, rather than pulling a cached and possibly
259 * stale link state from the driver.
260 */
261 if (!netif_carrier_ok(netdev))
262 adapter->hw.get_link_status = 1;
263
264 return e1000_has_link(adapter);
265 }
266
267 static void e1000_get_pauseparam(struct net_device *netdev,
268 struct ethtool_pauseparam *pause)
269 {
270 struct e1000_adapter *adapter = netdev_priv(netdev);
271 struct e1000_hw *hw = &adapter->hw;
272
273 pause->autoneg =
274 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
275
276 if (hw->fc == E1000_FC_RX_PAUSE) {
277 pause->rx_pause = 1;
278 } else if (hw->fc == E1000_FC_TX_PAUSE) {
279 pause->tx_pause = 1;
280 } else if (hw->fc == E1000_FC_FULL) {
281 pause->rx_pause = 1;
282 pause->tx_pause = 1;
283 }
284 }
285
286 static int e1000_set_pauseparam(struct net_device *netdev,
287 struct ethtool_pauseparam *pause)
288 {
289 struct e1000_adapter *adapter = netdev_priv(netdev);
290 struct e1000_hw *hw = &adapter->hw;
291 int retval = 0;
292
293 adapter->fc_autoneg = pause->autoneg;
294
295 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
296 msleep(1);
297
298 if (pause->rx_pause && pause->tx_pause)
299 hw->fc = E1000_FC_FULL;
300 else if (pause->rx_pause && !pause->tx_pause)
301 hw->fc = E1000_FC_RX_PAUSE;
302 else if (!pause->rx_pause && pause->tx_pause)
303 hw->fc = E1000_FC_TX_PAUSE;
304 else if (!pause->rx_pause && !pause->tx_pause)
305 hw->fc = E1000_FC_NONE;
306
307 hw->original_fc = hw->fc;
308
309 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
310 if (netif_running(adapter->netdev)) {
311 e1000_down(adapter);
312 e1000_up(adapter);
313 } else {
314 e1000_reset(adapter);
315 }
316 } else
317 retval = ((hw->media_type == e1000_media_type_fiber) ?
318 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
319
320 clear_bit(__E1000_RESETTING, &adapter->flags);
321 return retval;
322 }
323
324 static u32 e1000_get_msglevel(struct net_device *netdev)
325 {
326 struct e1000_adapter *adapter = netdev_priv(netdev);
327
328 return adapter->msg_enable;
329 }
330
331 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
332 {
333 struct e1000_adapter *adapter = netdev_priv(netdev);
334
335 adapter->msg_enable = data;
336 }
337
338 static int e1000_get_regs_len(struct net_device *netdev)
339 {
340 #define E1000_REGS_LEN 32
341 return E1000_REGS_LEN * sizeof(u32);
342 }
343
344 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
345 void *p)
346 {
347 struct e1000_adapter *adapter = netdev_priv(netdev);
348 struct e1000_hw *hw = &adapter->hw;
349 u32 *regs_buff = p;
350 u16 phy_data;
351
352 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
353
354 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
355
356 regs_buff[0] = er32(CTRL);
357 regs_buff[1] = er32(STATUS);
358
359 regs_buff[2] = er32(RCTL);
360 regs_buff[3] = er32(RDLEN);
361 regs_buff[4] = er32(RDH);
362 regs_buff[5] = er32(RDT);
363 regs_buff[6] = er32(RDTR);
364
365 regs_buff[7] = er32(TCTL);
366 regs_buff[8] = er32(TDLEN);
367 regs_buff[9] = er32(TDH);
368 regs_buff[10] = er32(TDT);
369 regs_buff[11] = er32(TIDV);
370
371 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
372 if (hw->phy_type == e1000_phy_igp) {
373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
374 IGP01E1000_PHY_AGC_A);
375 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
376 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
377 regs_buff[13] = (u32)phy_data; /* cable length */
378 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
379 IGP01E1000_PHY_AGC_B);
380 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
381 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
382 regs_buff[14] = (u32)phy_data; /* cable length */
383 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
384 IGP01E1000_PHY_AGC_C);
385 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
386 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
387 regs_buff[15] = (u32)phy_data; /* cable length */
388 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
389 IGP01E1000_PHY_AGC_D);
390 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
391 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
392 regs_buff[16] = (u32)phy_data; /* cable length */
393 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
394 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
395 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
396 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
397 regs_buff[18] = (u32)phy_data; /* cable polarity */
398 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
399 IGP01E1000_PHY_PCS_INIT_REG);
400 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
401 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
402 regs_buff[19] = (u32)phy_data; /* cable polarity */
403 regs_buff[20] = 0; /* polarity correction enabled (always) */
404 regs_buff[22] = 0; /* phy receive errors (unavailable) */
405 regs_buff[23] = regs_buff[18]; /* mdix mode */
406 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
407 } else {
408 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
409 regs_buff[13] = (u32)phy_data; /* cable length */
410 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
411 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
413 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
414 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
415 regs_buff[18] = regs_buff[13]; /* cable polarity */
416 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
417 regs_buff[20] = regs_buff[17]; /* polarity correction */
418 /* phy receive errors */
419 regs_buff[22] = adapter->phy_stats.receive_errors;
420 regs_buff[23] = regs_buff[13]; /* mdix mode */
421 }
422 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
423 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
424 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
425 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
426 if (hw->mac_type >= e1000_82540 &&
427 hw->media_type == e1000_media_type_copper) {
428 regs_buff[26] = er32(MANC);
429 }
430 }
431
432 static int e1000_get_eeprom_len(struct net_device *netdev)
433 {
434 struct e1000_adapter *adapter = netdev_priv(netdev);
435 struct e1000_hw *hw = &adapter->hw;
436
437 return hw->eeprom.word_size * 2;
438 }
439
440 static int e1000_get_eeprom(struct net_device *netdev,
441 struct ethtool_eeprom *eeprom, u8 *bytes)
442 {
443 struct e1000_adapter *adapter = netdev_priv(netdev);
444 struct e1000_hw *hw = &adapter->hw;
445 u16 *eeprom_buff;
446 int first_word, last_word;
447 int ret_val = 0;
448 u16 i;
449
450 if (eeprom->len == 0)
451 return -EINVAL;
452
453 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
454
455 first_word = eeprom->offset >> 1;
456 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
457
458 eeprom_buff = kmalloc(sizeof(u16) *
459 (last_word - first_word + 1), GFP_KERNEL);
460 if (!eeprom_buff)
461 return -ENOMEM;
462
463 if (hw->eeprom.type == e1000_eeprom_spi)
464 ret_val = e1000_read_eeprom(hw, first_word,
465 last_word - first_word + 1,
466 eeprom_buff);
467 else {
468 for (i = 0; i < last_word - first_word + 1; i++) {
469 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
470 &eeprom_buff[i]);
471 if (ret_val)
472 break;
473 }
474 }
475
476 /* Device's eeprom is always little-endian, word addressable */
477 for (i = 0; i < last_word - first_word + 1; i++)
478 le16_to_cpus(&eeprom_buff[i]);
479
480 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
481 eeprom->len);
482 kfree(eeprom_buff);
483
484 return ret_val;
485 }
486
487 static int e1000_set_eeprom(struct net_device *netdev,
488 struct ethtool_eeprom *eeprom, u8 *bytes)
489 {
490 struct e1000_adapter *adapter = netdev_priv(netdev);
491 struct e1000_hw *hw = &adapter->hw;
492 u16 *eeprom_buff;
493 void *ptr;
494 int max_len, first_word, last_word, ret_val = 0;
495 u16 i;
496
497 if (eeprom->len == 0)
498 return -EOPNOTSUPP;
499
500 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
501 return -EFAULT;
502
503 max_len = hw->eeprom.word_size * 2;
504
505 first_word = eeprom->offset >> 1;
506 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
507 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
508 if (!eeprom_buff)
509 return -ENOMEM;
510
511 ptr = (void *)eeprom_buff;
512
513 if (eeprom->offset & 1) {
514 /* need read/modify/write of first changed EEPROM word
515 * only the second byte of the word is being modified
516 */
517 ret_val = e1000_read_eeprom(hw, first_word, 1,
518 &eeprom_buff[0]);
519 ptr++;
520 }
521 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
522 /* need read/modify/write of last changed EEPROM word
523 * only the first byte of the word is being modified
524 */
525 ret_val = e1000_read_eeprom(hw, last_word, 1,
526 &eeprom_buff[last_word - first_word]);
527 }
528
529 /* Device's eeprom is always little-endian, word addressable */
530 for (i = 0; i < last_word - first_word + 1; i++)
531 le16_to_cpus(&eeprom_buff[i]);
532
533 memcpy(ptr, bytes, eeprom->len);
534
535 for (i = 0; i < last_word - first_word + 1; i++)
536 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
537
538 ret_val = e1000_write_eeprom(hw, first_word,
539 last_word - first_word + 1, eeprom_buff);
540
541 /* Update the checksum over the first part of the EEPROM if needed */
542 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
543 e1000_update_eeprom_checksum(hw);
544
545 kfree(eeprom_buff);
546 return ret_val;
547 }
548
549 static void e1000_get_drvinfo(struct net_device *netdev,
550 struct ethtool_drvinfo *drvinfo)
551 {
552 struct e1000_adapter *adapter = netdev_priv(netdev);
553
554 strlcpy(drvinfo->driver, e1000_driver_name,
555 sizeof(drvinfo->driver));
556 strlcpy(drvinfo->version, e1000_driver_version,
557 sizeof(drvinfo->version));
558
559 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
560 sizeof(drvinfo->bus_info));
561 }
562
563 static void e1000_get_ringparam(struct net_device *netdev,
564 struct ethtool_ringparam *ring)
565 {
566 struct e1000_adapter *adapter = netdev_priv(netdev);
567 struct e1000_hw *hw = &adapter->hw;
568 e1000_mac_type mac_type = hw->mac_type;
569 struct e1000_tx_ring *txdr = adapter->tx_ring;
570 struct e1000_rx_ring *rxdr = adapter->rx_ring;
571
572 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
573 E1000_MAX_82544_RXD;
574 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
575 E1000_MAX_82544_TXD;
576 ring->rx_pending = rxdr->count;
577 ring->tx_pending = txdr->count;
578 }
579
580 static int e1000_set_ringparam(struct net_device *netdev,
581 struct ethtool_ringparam *ring)
582 {
583 struct e1000_adapter *adapter = netdev_priv(netdev);
584 struct e1000_hw *hw = &adapter->hw;
585 e1000_mac_type mac_type = hw->mac_type;
586 struct e1000_tx_ring *txdr, *tx_old;
587 struct e1000_rx_ring *rxdr, *rx_old;
588 int i, err;
589
590 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
591 return -EINVAL;
592
593 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
594 msleep(1);
595
596 if (netif_running(adapter->netdev))
597 e1000_down(adapter);
598
599 tx_old = adapter->tx_ring;
600 rx_old = adapter->rx_ring;
601
602 err = -ENOMEM;
603 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
604 GFP_KERNEL);
605 if (!txdr)
606 goto err_alloc_tx;
607
608 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
609 GFP_KERNEL);
610 if (!rxdr)
611 goto err_alloc_rx;
612
613 adapter->tx_ring = txdr;
614 adapter->rx_ring = rxdr;
615
616 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
617 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
618 E1000_MAX_RXD : E1000_MAX_82544_RXD));
619 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
620 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
621 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
622 E1000_MAX_TXD : E1000_MAX_82544_TXD));
623 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
624
625 for (i = 0; i < adapter->num_tx_queues; i++)
626 txdr[i].count = txdr->count;
627 for (i = 0; i < adapter->num_rx_queues; i++)
628 rxdr[i].count = rxdr->count;
629
630 if (netif_running(adapter->netdev)) {
631 /* Try to get new resources before deleting old */
632 err = e1000_setup_all_rx_resources(adapter);
633 if (err)
634 goto err_setup_rx;
635 err = e1000_setup_all_tx_resources(adapter);
636 if (err)
637 goto err_setup_tx;
638
639 /* save the new, restore the old in order to free it,
640 * then restore the new back again
641 */
642
643 adapter->rx_ring = rx_old;
644 adapter->tx_ring = tx_old;
645 e1000_free_all_rx_resources(adapter);
646 e1000_free_all_tx_resources(adapter);
647 kfree(tx_old);
648 kfree(rx_old);
649 adapter->rx_ring = rxdr;
650 adapter->tx_ring = txdr;
651 err = e1000_up(adapter);
652 if (err)
653 goto err_setup;
654 }
655
656 clear_bit(__E1000_RESETTING, &adapter->flags);
657 return 0;
658 err_setup_tx:
659 e1000_free_all_rx_resources(adapter);
660 err_setup_rx:
661 adapter->rx_ring = rx_old;
662 adapter->tx_ring = tx_old;
663 kfree(rxdr);
664 err_alloc_rx:
665 kfree(txdr);
666 err_alloc_tx:
667 if (netif_running(adapter->netdev))
668 e1000_up(adapter);
669 err_setup:
670 clear_bit(__E1000_RESETTING, &adapter->flags);
671 return err;
672 }
673
674 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
675 u32 mask, u32 write)
676 {
677 struct e1000_hw *hw = &adapter->hw;
678 static const u32 test[] = {
679 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
680 };
681 u8 __iomem *address = hw->hw_addr + reg;
682 u32 read;
683 int i;
684
685 for (i = 0; i < ARRAY_SIZE(test); i++) {
686 writel(write & test[i], address);
687 read = readl(address);
688 if (read != (write & test[i] & mask)) {
689 e_err(drv, "pattern test reg %04X failed: "
690 "got 0x%08X expected 0x%08X\n",
691 reg, read, (write & test[i] & mask));
692 *data = reg;
693 return true;
694 }
695 }
696 return false;
697 }
698
699 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
700 u32 mask, u32 write)
701 {
702 struct e1000_hw *hw = &adapter->hw;
703 u8 __iomem *address = hw->hw_addr + reg;
704 u32 read;
705
706 writel(write & mask, address);
707 read = readl(address);
708 if ((read & mask) != (write & mask)) {
709 e_err(drv, "set/check reg %04X test failed: "
710 "got 0x%08X expected 0x%08X\n",
711 reg, (read & mask), (write & mask));
712 *data = reg;
713 return true;
714 }
715 return false;
716 }
717
718 #define REG_PATTERN_TEST(reg, mask, write) \
719 do { \
720 if (reg_pattern_test(adapter, data, \
721 (hw->mac_type >= e1000_82543) \
722 ? E1000_##reg : E1000_82542_##reg, \
723 mask, write)) \
724 return 1; \
725 } while (0)
726
727 #define REG_SET_AND_CHECK(reg, mask, write) \
728 do { \
729 if (reg_set_and_check(adapter, data, \
730 (hw->mac_type >= e1000_82543) \
731 ? E1000_##reg : E1000_82542_##reg, \
732 mask, write)) \
733 return 1; \
734 } while (0)
735
736 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
737 {
738 u32 value, before, after;
739 u32 i, toggle;
740 struct e1000_hw *hw = &adapter->hw;
741
742 /* The status register is Read Only, so a write should fail.
743 * Some bits that get toggled are ignored.
744 */
745
746 /* there are several bits on newer hardware that are r/w */
747 toggle = 0xFFFFF833;
748
749 before = er32(STATUS);
750 value = (er32(STATUS) & toggle);
751 ew32(STATUS, toggle);
752 after = er32(STATUS) & toggle;
753 if (value != after) {
754 e_err(drv, "failed STATUS register test got: "
755 "0x%08X expected: 0x%08X\n", after, value);
756 *data = 1;
757 return 1;
758 }
759 /* restore previous status */
760 ew32(STATUS, before);
761
762 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
763 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
764 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
765 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
766
767 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
770 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
771 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
772 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
773 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
775 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
777
778 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
779
780 before = 0x06DFB3FE;
781 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
782 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
783
784 if (hw->mac_type >= e1000_82543) {
785 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
786 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
787 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
788 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
790 value = E1000_RAR_ENTRIES;
791 for (i = 0; i < value; i++) {
792 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
793 0x8003FFFF, 0xFFFFFFFF);
794 }
795 } else {
796 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
797 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
798 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
800 }
801
802 value = E1000_MC_TBL_SIZE;
803 for (i = 0; i < value; i++)
804 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
805
806 *data = 0;
807 return 0;
808 }
809
810 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
811 {
812 struct e1000_hw *hw = &adapter->hw;
813 u16 temp;
814 u16 checksum = 0;
815 u16 i;
816
817 *data = 0;
818 /* Read and add up the contents of the EEPROM */
819 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
820 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
821 *data = 1;
822 break;
823 }
824 checksum += temp;
825 }
826
827 /* If Checksum is not Correct return error else test passed */
828 if ((checksum != (u16)EEPROM_SUM) && !(*data))
829 *data = 2;
830
831 return *data;
832 }
833
834 static irqreturn_t e1000_test_intr(int irq, void *data)
835 {
836 struct net_device *netdev = (struct net_device *)data;
837 struct e1000_adapter *adapter = netdev_priv(netdev);
838 struct e1000_hw *hw = &adapter->hw;
839
840 adapter->test_icr |= er32(ICR);
841
842 return IRQ_HANDLED;
843 }
844
845 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
846 {
847 struct net_device *netdev = adapter->netdev;
848 u32 mask, i = 0;
849 bool shared_int = true;
850 u32 irq = adapter->pdev->irq;
851 struct e1000_hw *hw = &adapter->hw;
852
853 *data = 0;
854
855 /* NOTE: we don't test MSI interrupts here, yet
856 * Hook up test interrupt handler just for this test
857 */
858 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
859 netdev))
860 shared_int = false;
861 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
862 netdev->name, netdev)) {
863 *data = 1;
864 return -1;
865 }
866 e_info(hw, "testing %s interrupt\n", (shared_int ?
867 "shared" : "unshared"));
868
869 /* Disable all the interrupts */
870 ew32(IMC, 0xFFFFFFFF);
871 E1000_WRITE_FLUSH();
872 msleep(10);
873
874 /* Test each interrupt */
875 for (; i < 10; i++) {
876 /* Interrupt to test */
877 mask = 1 << i;
878
879 if (!shared_int) {
880 /* Disable the interrupt to be reported in
881 * the cause register and then force the same
882 * interrupt and see if one gets posted. If
883 * an interrupt was posted to the bus, the
884 * test failed.
885 */
886 adapter->test_icr = 0;
887 ew32(IMC, mask);
888 ew32(ICS, mask);
889 E1000_WRITE_FLUSH();
890 msleep(10);
891
892 if (adapter->test_icr & mask) {
893 *data = 3;
894 break;
895 }
896 }
897
898 /* Enable the interrupt to be reported in
899 * the cause register and then force the same
900 * interrupt and see if one gets posted. If
901 * an interrupt was not posted to the bus, the
902 * test failed.
903 */
904 adapter->test_icr = 0;
905 ew32(IMS, mask);
906 ew32(ICS, mask);
907 E1000_WRITE_FLUSH();
908 msleep(10);
909
910 if (!(adapter->test_icr & mask)) {
911 *data = 4;
912 break;
913 }
914
915 if (!shared_int) {
916 /* Disable the other interrupts to be reported in
917 * the cause register and then force the other
918 * interrupts and see if any get posted. If
919 * an interrupt was posted to the bus, the
920 * test failed.
921 */
922 adapter->test_icr = 0;
923 ew32(IMC, ~mask & 0x00007FFF);
924 ew32(ICS, ~mask & 0x00007FFF);
925 E1000_WRITE_FLUSH();
926 msleep(10);
927
928 if (adapter->test_icr) {
929 *data = 5;
930 break;
931 }
932 }
933 }
934
935 /* Disable all the interrupts */
936 ew32(IMC, 0xFFFFFFFF);
937 E1000_WRITE_FLUSH();
938 msleep(10);
939
940 /* Unhook test interrupt handler */
941 free_irq(irq, netdev);
942
943 return *data;
944 }
945
946 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
947 {
948 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
949 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
950 struct pci_dev *pdev = adapter->pdev;
951 int i;
952
953 if (txdr->desc && txdr->buffer_info) {
954 for (i = 0; i < txdr->count; i++) {
955 if (txdr->buffer_info[i].dma)
956 dma_unmap_single(&pdev->dev,
957 txdr->buffer_info[i].dma,
958 txdr->buffer_info[i].length,
959 DMA_TO_DEVICE);
960 if (txdr->buffer_info[i].skb)
961 dev_kfree_skb(txdr->buffer_info[i].skb);
962 }
963 }
964
965 if (rxdr->desc && rxdr->buffer_info) {
966 for (i = 0; i < rxdr->count; i++) {
967 if (rxdr->buffer_info[i].dma)
968 dma_unmap_single(&pdev->dev,
969 rxdr->buffer_info[i].dma,
970 E1000_RXBUFFER_2048,
971 DMA_FROM_DEVICE);
972 kfree(rxdr->buffer_info[i].rxbuf.data);
973 }
974 }
975
976 if (txdr->desc) {
977 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
978 txdr->dma);
979 txdr->desc = NULL;
980 }
981 if (rxdr->desc) {
982 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
983 rxdr->dma);
984 rxdr->desc = NULL;
985 }
986
987 kfree(txdr->buffer_info);
988 txdr->buffer_info = NULL;
989 kfree(rxdr->buffer_info);
990 rxdr->buffer_info = NULL;
991 }
992
993 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
994 {
995 struct e1000_hw *hw = &adapter->hw;
996 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
997 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
998 struct pci_dev *pdev = adapter->pdev;
999 u32 rctl;
1000 int i, ret_val;
1001
1002 /* Setup Tx descriptor ring and Tx buffers */
1003
1004 if (!txdr->count)
1005 txdr->count = E1000_DEFAULT_TXD;
1006
1007 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1008 GFP_KERNEL);
1009 if (!txdr->buffer_info) {
1010 ret_val = 1;
1011 goto err_nomem;
1012 }
1013
1014 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1015 txdr->size = ALIGN(txdr->size, 4096);
1016 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1017 GFP_KERNEL);
1018 if (!txdr->desc) {
1019 ret_val = 2;
1020 goto err_nomem;
1021 }
1022 txdr->next_to_use = txdr->next_to_clean = 0;
1023
1024 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1025 ew32(TDBAH, ((u64)txdr->dma >> 32));
1026 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1027 ew32(TDH, 0);
1028 ew32(TDT, 0);
1029 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1030 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1031 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1032
1033 for (i = 0; i < txdr->count; i++) {
1034 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1035 struct sk_buff *skb;
1036 unsigned int size = 1024;
1037
1038 skb = alloc_skb(size, GFP_KERNEL);
1039 if (!skb) {
1040 ret_val = 3;
1041 goto err_nomem;
1042 }
1043 skb_put(skb, size);
1044 txdr->buffer_info[i].skb = skb;
1045 txdr->buffer_info[i].length = skb->len;
1046 txdr->buffer_info[i].dma =
1047 dma_map_single(&pdev->dev, skb->data, skb->len,
1048 DMA_TO_DEVICE);
1049 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1050 ret_val = 4;
1051 goto err_nomem;
1052 }
1053 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1054 tx_desc->lower.data = cpu_to_le32(skb->len);
1055 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1056 E1000_TXD_CMD_IFCS |
1057 E1000_TXD_CMD_RPS);
1058 tx_desc->upper.data = 0;
1059 }
1060
1061 /* Setup Rx descriptor ring and Rx buffers */
1062
1063 if (!rxdr->count)
1064 rxdr->count = E1000_DEFAULT_RXD;
1065
1066 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1067 GFP_KERNEL);
1068 if (!rxdr->buffer_info) {
1069 ret_val = 5;
1070 goto err_nomem;
1071 }
1072
1073 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1074 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1075 GFP_KERNEL);
1076 if (!rxdr->desc) {
1077 ret_val = 6;
1078 goto err_nomem;
1079 }
1080 rxdr->next_to_use = rxdr->next_to_clean = 0;
1081
1082 rctl = er32(RCTL);
1083 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1084 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1085 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1086 ew32(RDLEN, rxdr->size);
1087 ew32(RDH, 0);
1088 ew32(RDT, 0);
1089 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1090 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1091 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1092 ew32(RCTL, rctl);
1093
1094 for (i = 0; i < rxdr->count; i++) {
1095 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1096 u8 *buf;
1097
1098 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1099 GFP_KERNEL);
1100 if (!buf) {
1101 ret_val = 7;
1102 goto err_nomem;
1103 }
1104 rxdr->buffer_info[i].rxbuf.data = buf;
1105
1106 rxdr->buffer_info[i].dma =
1107 dma_map_single(&pdev->dev,
1108 buf + NET_SKB_PAD + NET_IP_ALIGN,
1109 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1110 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1111 ret_val = 8;
1112 goto err_nomem;
1113 }
1114 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115 }
1116
1117 return 0;
1118
1119 err_nomem:
1120 e1000_free_desc_rings(adapter);
1121 return ret_val;
1122 }
1123
1124 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125 {
1126 struct e1000_hw *hw = &adapter->hw;
1127
1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129 e1000_write_phy_reg(hw, 29, 0x001F);
1130 e1000_write_phy_reg(hw, 30, 0x8FFC);
1131 e1000_write_phy_reg(hw, 29, 0x001A);
1132 e1000_write_phy_reg(hw, 30, 0x8FF0);
1133 }
1134
1135 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136 {
1137 struct e1000_hw *hw = &adapter->hw;
1138 u16 phy_reg;
1139
1140 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141 * Extended PHY Specific Control Register to 25MHz clock. This
1142 * value defaults back to a 2.5MHz clock when the PHY is reset.
1143 */
1144 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1146 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1147
1148 /* In addition, because of the s/w reset above, we need to enable
1149 * CRS on TX. This must be set for both full and half duplex
1150 * operation.
1151 */
1152 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1155 }
1156
1157 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1158 {
1159 struct e1000_hw *hw = &adapter->hw;
1160 u32 ctrl_reg;
1161 u16 phy_reg;
1162
1163 /* Setup the Device Control Register for PHY loopback test. */
1164
1165 ctrl_reg = er32(CTRL);
1166 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1167 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1168 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1169 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1170 E1000_CTRL_FD); /* Force Duplex to FULL */
1171
1172 ew32(CTRL, ctrl_reg);
1173
1174 /* Read the PHY Specific Control Register (0x10) */
1175 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176
1177 /* Clear Auto-Crossover bits in PHY Specific Control Register
1178 * (bits 6:5).
1179 */
1180 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1181 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1182
1183 /* Perform software reset on the PHY */
1184 e1000_phy_reset(hw);
1185
1186 /* Have to setup TX_CLK and TX_CRS after software reset */
1187 e1000_phy_reset_clk_and_crs(adapter);
1188
1189 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1190
1191 /* Wait for reset to complete. */
1192 udelay(500);
1193
1194 /* Have to setup TX_CLK and TX_CRS after software reset */
1195 e1000_phy_reset_clk_and_crs(adapter);
1196
1197 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198 e1000_phy_disable_receiver(adapter);
1199
1200 /* Set the loopback bit in the PHY control register. */
1201 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1202 phy_reg |= MII_CR_LOOPBACK;
1203 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1204
1205 /* Setup TX_CLK and TX_CRS one more time. */
1206 e1000_phy_reset_clk_and_crs(adapter);
1207
1208 /* Check Phy Configuration */
1209 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210 if (phy_reg != 0x4100)
1211 return 9;
1212
1213 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1214 if (phy_reg != 0x0070)
1215 return 10;
1216
1217 e1000_read_phy_reg(hw, 29, &phy_reg);
1218 if (phy_reg != 0x001A)
1219 return 11;
1220
1221 return 0;
1222 }
1223
1224 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225 {
1226 struct e1000_hw *hw = &adapter->hw;
1227 u32 ctrl_reg = 0;
1228 u32 stat_reg = 0;
1229
1230 hw->autoneg = false;
1231
1232 if (hw->phy_type == e1000_phy_m88) {
1233 /* Auto-MDI/MDIX Off */
1234 e1000_write_phy_reg(hw,
1235 M88E1000_PHY_SPEC_CTRL, 0x0808);
1236 /* reset to update Auto-MDI/MDIX */
1237 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1238 /* autoneg off */
1239 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1240 }
1241
1242 ctrl_reg = er32(CTRL);
1243
1244 /* force 1000, set loopback */
1245 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1246
1247 /* Now set up the MAC to the same speed/duplex as the PHY. */
1248 ctrl_reg = er32(CTRL);
1249 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1250 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1251 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1252 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1253 E1000_CTRL_FD); /* Force Duplex to FULL */
1254
1255 if (hw->media_type == e1000_media_type_copper &&
1256 hw->phy_type == e1000_phy_m88)
1257 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1258 else {
1259 /* Set the ILOS bit on the fiber Nic is half
1260 * duplex link is detected.
1261 */
1262 stat_reg = er32(STATUS);
1263 if ((stat_reg & E1000_STATUS_FD) == 0)
1264 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1265 }
1266
1267 ew32(CTRL, ctrl_reg);
1268
1269 /* Disable the receiver on the PHY so when a cable is plugged in, the
1270 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271 */
1272 if (hw->phy_type == e1000_phy_m88)
1273 e1000_phy_disable_receiver(adapter);
1274
1275 udelay(500);
1276
1277 return 0;
1278 }
1279
1280 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1281 {
1282 struct e1000_hw *hw = &adapter->hw;
1283 u16 phy_reg = 0;
1284 u16 count = 0;
1285
1286 switch (hw->mac_type) {
1287 case e1000_82543:
1288 if (hw->media_type == e1000_media_type_copper) {
1289 /* Attempt to setup Loopback mode on Non-integrated PHY.
1290 * Some PHY registers get corrupted at random, so
1291 * attempt this 10 times.
1292 */
1293 while (e1000_nonintegrated_phy_loopback(adapter) &&
1294 count++ < 10);
1295 if (count < 11)
1296 return 0;
1297 }
1298 break;
1299
1300 case e1000_82544:
1301 case e1000_82540:
1302 case e1000_82545:
1303 case e1000_82545_rev_3:
1304 case e1000_82546:
1305 case e1000_82546_rev_3:
1306 case e1000_82541:
1307 case e1000_82541_rev_2:
1308 case e1000_82547:
1309 case e1000_82547_rev_2:
1310 return e1000_integrated_phy_loopback(adapter);
1311 default:
1312 /* Default PHY loopback work is to read the MII
1313 * control register and assert bit 14 (loopback mode).
1314 */
1315 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1316 phy_reg |= MII_CR_LOOPBACK;
1317 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1318 return 0;
1319 }
1320
1321 return 8;
1322 }
1323
1324 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1325 {
1326 struct e1000_hw *hw = &adapter->hw;
1327 u32 rctl;
1328
1329 if (hw->media_type == e1000_media_type_fiber ||
1330 hw->media_type == e1000_media_type_internal_serdes) {
1331 switch (hw->mac_type) {
1332 case e1000_82545:
1333 case e1000_82546:
1334 case e1000_82545_rev_3:
1335 case e1000_82546_rev_3:
1336 return e1000_set_phy_loopback(adapter);
1337 default:
1338 rctl = er32(RCTL);
1339 rctl |= E1000_RCTL_LBM_TCVR;
1340 ew32(RCTL, rctl);
1341 return 0;
1342 }
1343 } else if (hw->media_type == e1000_media_type_copper) {
1344 return e1000_set_phy_loopback(adapter);
1345 }
1346
1347 return 7;
1348 }
1349
1350 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1351 {
1352 struct e1000_hw *hw = &adapter->hw;
1353 u32 rctl;
1354 u16 phy_reg;
1355
1356 rctl = er32(RCTL);
1357 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1358 ew32(RCTL, rctl);
1359
1360 switch (hw->mac_type) {
1361 case e1000_82545:
1362 case e1000_82546:
1363 case e1000_82545_rev_3:
1364 case e1000_82546_rev_3:
1365 default:
1366 hw->autoneg = true;
1367 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1368 if (phy_reg & MII_CR_LOOPBACK) {
1369 phy_reg &= ~MII_CR_LOOPBACK;
1370 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1371 e1000_phy_reset(hw);
1372 }
1373 break;
1374 }
1375 }
1376
1377 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1378 unsigned int frame_size)
1379 {
1380 memset(skb->data, 0xFF, frame_size);
1381 frame_size &= ~1;
1382 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1383 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1384 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1385 }
1386
1387 static int e1000_check_lbtest_frame(const unsigned char *data,
1388 unsigned int frame_size)
1389 {
1390 frame_size &= ~1;
1391 if (*(data + 3) == 0xFF) {
1392 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1393 (*(data + frame_size / 2 + 12) == 0xAF)) {
1394 return 0;
1395 }
1396 }
1397 return 13;
1398 }
1399
1400 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1401 {
1402 struct e1000_hw *hw = &adapter->hw;
1403 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1404 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1405 struct pci_dev *pdev = adapter->pdev;
1406 int i, j, k, l, lc, good_cnt, ret_val = 0;
1407 unsigned long time;
1408
1409 ew32(RDT, rxdr->count - 1);
1410
1411 /* Calculate the loop count based on the largest descriptor ring
1412 * The idea is to wrap the largest ring a number of times using 64
1413 * send/receive pairs during each loop
1414 */
1415
1416 if (rxdr->count <= txdr->count)
1417 lc = ((txdr->count / 64) * 2) + 1;
1418 else
1419 lc = ((rxdr->count / 64) * 2) + 1;
1420
1421 k = l = 0;
1422 for (j = 0; j <= lc; j++) { /* loop count loop */
1423 for (i = 0; i < 64; i++) { /* send the packets */
1424 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1425 1024);
1426 dma_sync_single_for_device(&pdev->dev,
1427 txdr->buffer_info[k].dma,
1428 txdr->buffer_info[k].length,
1429 DMA_TO_DEVICE);
1430 if (unlikely(++k == txdr->count))
1431 k = 0;
1432 }
1433 ew32(TDT, k);
1434 E1000_WRITE_FLUSH();
1435 msleep(200);
1436 time = jiffies; /* set the start time for the receive */
1437 good_cnt = 0;
1438 do { /* receive the sent packets */
1439 dma_sync_single_for_cpu(&pdev->dev,
1440 rxdr->buffer_info[l].dma,
1441 E1000_RXBUFFER_2048,
1442 DMA_FROM_DEVICE);
1443
1444 ret_val = e1000_check_lbtest_frame(
1445 rxdr->buffer_info[l].rxbuf.data +
1446 NET_SKB_PAD + NET_IP_ALIGN,
1447 1024);
1448 if (!ret_val)
1449 good_cnt++;
1450 if (unlikely(++l == rxdr->count))
1451 l = 0;
1452 /* time + 20 msecs (200 msecs on 2.4) is more than
1453 * enough time to complete the receives, if it's
1454 * exceeded, break and error off
1455 */
1456 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1457
1458 if (good_cnt != 64) {
1459 ret_val = 13; /* ret_val is the same as mis-compare */
1460 break;
1461 }
1462 if (time_after_eq(jiffies, time + 2)) {
1463 ret_val = 14; /* error code for time out error */
1464 break;
1465 }
1466 } /* end loop count loop */
1467 return ret_val;
1468 }
1469
1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471 {
1472 *data = e1000_setup_desc_rings(adapter);
1473 if (*data)
1474 goto out;
1475 *data = e1000_setup_loopback_test(adapter);
1476 if (*data)
1477 goto err_loopback;
1478 *data = e1000_run_loopback_test(adapter);
1479 e1000_loopback_cleanup(adapter);
1480
1481 err_loopback:
1482 e1000_free_desc_rings(adapter);
1483 out:
1484 return *data;
1485 }
1486
1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488 {
1489 struct e1000_hw *hw = &adapter->hw;
1490 *data = 0;
1491 if (hw->media_type == e1000_media_type_internal_serdes) {
1492 int i = 0;
1493
1494 hw->serdes_has_link = false;
1495
1496 /* On some blade server designs, link establishment
1497 * could take as long as 2-3 minutes
1498 */
1499 do {
1500 e1000_check_for_link(hw);
1501 if (hw->serdes_has_link)
1502 return *data;
1503 msleep(20);
1504 } while (i++ < 3750);
1505
1506 *data = 1;
1507 } else {
1508 e1000_check_for_link(hw);
1509 if (hw->autoneg) /* if auto_neg is set wait for it */
1510 msleep(4000);
1511
1512 if (!(er32(STATUS) & E1000_STATUS_LU))
1513 *data = 1;
1514 }
1515 return *data;
1516 }
1517
1518 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1519 {
1520 switch (sset) {
1521 case ETH_SS_TEST:
1522 return E1000_TEST_LEN;
1523 case ETH_SS_STATS:
1524 return E1000_STATS_LEN;
1525 default:
1526 return -EOPNOTSUPP;
1527 }
1528 }
1529
1530 static void e1000_diag_test(struct net_device *netdev,
1531 struct ethtool_test *eth_test, u64 *data)
1532 {
1533 struct e1000_adapter *adapter = netdev_priv(netdev);
1534 struct e1000_hw *hw = &adapter->hw;
1535 bool if_running = netif_running(netdev);
1536
1537 set_bit(__E1000_TESTING, &adapter->flags);
1538 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1539 /* Offline tests */
1540
1541 /* save speed, duplex, autoneg settings */
1542 u16 autoneg_advertised = hw->autoneg_advertised;
1543 u8 forced_speed_duplex = hw->forced_speed_duplex;
1544 u8 autoneg = hw->autoneg;
1545
1546 e_info(hw, "offline testing starting\n");
1547
1548 /* Link test performed before hardware reset so autoneg doesn't
1549 * interfere with test result
1550 */
1551 if (e1000_link_test(adapter, &data[4]))
1552 eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554 if (if_running)
1555 /* indicate we're in test mode */
1556 e1000_close(netdev);
1557 else
1558 e1000_reset(adapter);
1559
1560 if (e1000_reg_test(adapter, &data[0]))
1561 eth_test->flags |= ETH_TEST_FL_FAILED;
1562
1563 e1000_reset(adapter);
1564 if (e1000_eeprom_test(adapter, &data[1]))
1565 eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567 e1000_reset(adapter);
1568 if (e1000_intr_test(adapter, &data[2]))
1569 eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571 e1000_reset(adapter);
1572 /* make sure the phy is powered up */
1573 e1000_power_up_phy(adapter);
1574 if (e1000_loopback_test(adapter, &data[3]))
1575 eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577 /* restore speed, duplex, autoneg settings */
1578 hw->autoneg_advertised = autoneg_advertised;
1579 hw->forced_speed_duplex = forced_speed_duplex;
1580 hw->autoneg = autoneg;
1581
1582 e1000_reset(adapter);
1583 clear_bit(__E1000_TESTING, &adapter->flags);
1584 if (if_running)
1585 e1000_open(netdev);
1586 } else {
1587 e_info(hw, "online testing starting\n");
1588 /* Online tests */
1589 if (e1000_link_test(adapter, &data[4]))
1590 eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592 /* Online tests aren't run; pass by default */
1593 data[0] = 0;
1594 data[1] = 0;
1595 data[2] = 0;
1596 data[3] = 0;
1597
1598 clear_bit(__E1000_TESTING, &adapter->flags);
1599 }
1600 msleep_interruptible(4 * 1000);
1601 }
1602
1603 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1604 struct ethtool_wolinfo *wol)
1605 {
1606 struct e1000_hw *hw = &adapter->hw;
1607 int retval = 1; /* fail by default */
1608
1609 switch (hw->device_id) {
1610 case E1000_DEV_ID_82542:
1611 case E1000_DEV_ID_82543GC_FIBER:
1612 case E1000_DEV_ID_82543GC_COPPER:
1613 case E1000_DEV_ID_82544EI_FIBER:
1614 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1615 case E1000_DEV_ID_82545EM_FIBER:
1616 case E1000_DEV_ID_82545EM_COPPER:
1617 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1618 case E1000_DEV_ID_82546GB_PCIE:
1619 /* these don't support WoL at all */
1620 wol->supported = 0;
1621 break;
1622 case E1000_DEV_ID_82546EB_FIBER:
1623 case E1000_DEV_ID_82546GB_FIBER:
1624 /* Wake events not supported on port B */
1625 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1626 wol->supported = 0;
1627 break;
1628 }
1629 /* return success for non excluded adapter ports */
1630 retval = 0;
1631 break;
1632 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633 /* quad port adapters only support WoL on port A */
1634 if (!adapter->quad_port_a) {
1635 wol->supported = 0;
1636 break;
1637 }
1638 /* return success for non excluded adapter ports */
1639 retval = 0;
1640 break;
1641 default:
1642 /* dual port cards only support WoL on port A from now on
1643 * unless it was enabled in the eeprom for port B
1644 * so exclude FUNC_1 ports from having WoL enabled
1645 */
1646 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1647 !adapter->eeprom_wol) {
1648 wol->supported = 0;
1649 break;
1650 }
1651
1652 retval = 0;
1653 }
1654
1655 return retval;
1656 }
1657
1658 static void e1000_get_wol(struct net_device *netdev,
1659 struct ethtool_wolinfo *wol)
1660 {
1661 struct e1000_adapter *adapter = netdev_priv(netdev);
1662 struct e1000_hw *hw = &adapter->hw;
1663
1664 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1665 wol->wolopts = 0;
1666
1667 /* this function will set ->supported = 0 and return 1 if wol is not
1668 * supported by this hardware
1669 */
1670 if (e1000_wol_exclusion(adapter, wol) ||
1671 !device_can_wakeup(&adapter->pdev->dev))
1672 return;
1673
1674 /* apply any specific unsupported masks here */
1675 switch (hw->device_id) {
1676 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1677 /* KSP3 does not support UCAST wake-ups */
1678 wol->supported &= ~WAKE_UCAST;
1679
1680 if (adapter->wol & E1000_WUFC_EX)
1681 e_err(drv, "Interface does not support directed "
1682 "(unicast) frame wake-up packets\n");
1683 break;
1684 default:
1685 break;
1686 }
1687
1688 if (adapter->wol & E1000_WUFC_EX)
1689 wol->wolopts |= WAKE_UCAST;
1690 if (adapter->wol & E1000_WUFC_MC)
1691 wol->wolopts |= WAKE_MCAST;
1692 if (adapter->wol & E1000_WUFC_BC)
1693 wol->wolopts |= WAKE_BCAST;
1694 if (adapter->wol & E1000_WUFC_MAG)
1695 wol->wolopts |= WAKE_MAGIC;
1696 }
1697
1698 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1699 {
1700 struct e1000_adapter *adapter = netdev_priv(netdev);
1701 struct e1000_hw *hw = &adapter->hw;
1702
1703 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1704 return -EOPNOTSUPP;
1705
1706 if (e1000_wol_exclusion(adapter, wol) ||
1707 !device_can_wakeup(&adapter->pdev->dev))
1708 return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710 switch (hw->device_id) {
1711 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1712 if (wol->wolopts & WAKE_UCAST) {
1713 e_err(drv, "Interface does not support directed "
1714 "(unicast) frame wake-up packets\n");
1715 return -EOPNOTSUPP;
1716 }
1717 break;
1718 default:
1719 break;
1720 }
1721
1722 /* these settings will always override what we currently have */
1723 adapter->wol = 0;
1724
1725 if (wol->wolopts & WAKE_UCAST)
1726 adapter->wol |= E1000_WUFC_EX;
1727 if (wol->wolopts & WAKE_MCAST)
1728 adapter->wol |= E1000_WUFC_MC;
1729 if (wol->wolopts & WAKE_BCAST)
1730 adapter->wol |= E1000_WUFC_BC;
1731 if (wol->wolopts & WAKE_MAGIC)
1732 adapter->wol |= E1000_WUFC_MAG;
1733
1734 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1735
1736 return 0;
1737 }
1738
1739 static int e1000_set_phys_id(struct net_device *netdev,
1740 enum ethtool_phys_id_state state)
1741 {
1742 struct e1000_adapter *adapter = netdev_priv(netdev);
1743 struct e1000_hw *hw = &adapter->hw;
1744
1745 switch (state) {
1746 case ETHTOOL_ID_ACTIVE:
1747 e1000_setup_led(hw);
1748 return 2;
1749
1750 case ETHTOOL_ID_ON:
1751 e1000_led_on(hw);
1752 break;
1753
1754 case ETHTOOL_ID_OFF:
1755 e1000_led_off(hw);
1756 break;
1757
1758 case ETHTOOL_ID_INACTIVE:
1759 e1000_cleanup_led(hw);
1760 }
1761
1762 return 0;
1763 }
1764
1765 static int e1000_get_coalesce(struct net_device *netdev,
1766 struct ethtool_coalesce *ec)
1767 {
1768 struct e1000_adapter *adapter = netdev_priv(netdev);
1769
1770 if (adapter->hw.mac_type < e1000_82545)
1771 return -EOPNOTSUPP;
1772
1773 if (adapter->itr_setting <= 4)
1774 ec->rx_coalesce_usecs = adapter->itr_setting;
1775 else
1776 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1777
1778 return 0;
1779 }
1780
1781 static int e1000_set_coalesce(struct net_device *netdev,
1782 struct ethtool_coalesce *ec)
1783 {
1784 struct e1000_adapter *adapter = netdev_priv(netdev);
1785 struct e1000_hw *hw = &adapter->hw;
1786
1787 if (hw->mac_type < e1000_82545)
1788 return -EOPNOTSUPP;
1789
1790 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1791 ((ec->rx_coalesce_usecs > 4) &&
1792 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1793 (ec->rx_coalesce_usecs == 2))
1794 return -EINVAL;
1795
1796 if (ec->rx_coalesce_usecs == 4) {
1797 adapter->itr = adapter->itr_setting = 4;
1798 } else if (ec->rx_coalesce_usecs <= 3) {
1799 adapter->itr = 20000;
1800 adapter->itr_setting = ec->rx_coalesce_usecs;
1801 } else {
1802 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1803 adapter->itr_setting = adapter->itr & ~3;
1804 }
1805
1806 if (adapter->itr_setting != 0)
1807 ew32(ITR, 1000000000 / (adapter->itr * 256));
1808 else
1809 ew32(ITR, 0);
1810
1811 return 0;
1812 }
1813
1814 static int e1000_nway_reset(struct net_device *netdev)
1815 {
1816 struct e1000_adapter *adapter = netdev_priv(netdev);
1817
1818 if (netif_running(netdev))
1819 e1000_reinit_locked(adapter);
1820 return 0;
1821 }
1822
1823 static void e1000_get_ethtool_stats(struct net_device *netdev,
1824 struct ethtool_stats *stats, u64 *data)
1825 {
1826 struct e1000_adapter *adapter = netdev_priv(netdev);
1827 int i;
1828 const struct e1000_stats *stat = e1000_gstrings_stats;
1829
1830 e1000_update_stats(adapter);
1831 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1832 char *p;
1833
1834 switch (stat->type) {
1835 case NETDEV_STATS:
1836 p = (char *)netdev + stat->stat_offset;
1837 break;
1838 case E1000_STATS:
1839 p = (char *)adapter + stat->stat_offset;
1840 break;
1841 default:
1842 WARN_ONCE(1, "Invalid E1000 stat type: %u index %d\n",
1843 stat->type, i);
1844 continue;
1845 }
1846
1847 if (stat->sizeof_stat == sizeof(u64))
1848 data[i] = *(u64 *)p;
1849 else
1850 data[i] = *(u32 *)p;
1851 }
1852 /* BUG_ON(i != E1000_STATS_LEN); */
1853 }
1854
1855 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856 u8 *data)
1857 {
1858 u8 *p = data;
1859 int i;
1860
1861 switch (stringset) {
1862 case ETH_SS_TEST:
1863 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1864 break;
1865 case ETH_SS_STATS:
1866 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1867 memcpy(p, e1000_gstrings_stats[i].stat_string,
1868 ETH_GSTRING_LEN);
1869 p += ETH_GSTRING_LEN;
1870 }
1871 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1872 break;
1873 }
1874 }
1875
1876 static const struct ethtool_ops e1000_ethtool_ops = {
1877 .get_drvinfo = e1000_get_drvinfo,
1878 .get_regs_len = e1000_get_regs_len,
1879 .get_regs = e1000_get_regs,
1880 .get_wol = e1000_get_wol,
1881 .set_wol = e1000_set_wol,
1882 .get_msglevel = e1000_get_msglevel,
1883 .set_msglevel = e1000_set_msglevel,
1884 .nway_reset = e1000_nway_reset,
1885 .get_link = e1000_get_link,
1886 .get_eeprom_len = e1000_get_eeprom_len,
1887 .get_eeprom = e1000_get_eeprom,
1888 .set_eeprom = e1000_set_eeprom,
1889 .get_ringparam = e1000_get_ringparam,
1890 .set_ringparam = e1000_set_ringparam,
1891 .get_pauseparam = e1000_get_pauseparam,
1892 .set_pauseparam = e1000_set_pauseparam,
1893 .self_test = e1000_diag_test,
1894 .get_strings = e1000_get_strings,
1895 .set_phys_id = e1000_set_phys_id,
1896 .get_ethtool_stats = e1000_get_ethtool_stats,
1897 .get_sset_count = e1000_get_sset_count,
1898 .get_coalesce = e1000_get_coalesce,
1899 .set_coalesce = e1000_set_coalesce,
1900 .get_ts_info = ethtool_op_get_ts_info,
1901 .get_link_ksettings = e1000_get_link_ksettings,
1902 .set_link_ksettings = e1000_set_link_ksettings,
1903 };
1904
1905 void e1000_set_ethtool_ops(struct net_device *netdev)
1906 {
1907 netdev->ethtool_ops = &e1000_ethtool_ops;
1908 }