]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/e1000/e1000_ethtool.c
Merge remote-tracking branch 'regulator/topic/palmas' into v3.9-rc8
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /* ethtool support for e1000 */
30
31 #include "e1000.h"
32 #include <asm/uaccess.h>
33
34 enum {NETDEV_STATS, E1000_STATS};
35
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
41 };
42
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
49
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
97 };
98
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
106 };
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
108
109 static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
111 {
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
114
115 if (hw->media_type == e1000_media_type_copper) {
116
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
125
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
130 }
131
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
134
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
139
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
144
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
148
149 ecmd->port = PORT_FIBRE;
150
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
155 }
156
157 if (er32(STATUS) & E1000_STATUS_LU) {
158
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
162
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF
165 */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ethtool_cmd_speed_set(ecmd, -1);
172 ecmd->duplex = -1;
173 }
174
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177
178 /* MDI-X => 1; MDI => 0 */
179 if ((hw->media_type == e1000_media_type_copper) &&
180 netif_carrier_ok(netdev))
181 ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
182 ETH_TP_MDI_X : ETH_TP_MDI);
183 else
184 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
185
186 if (hw->mdix == AUTO_ALL_MODES)
187 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
188 else
189 ecmd->eth_tp_mdix_ctrl = hw->mdix;
190 return 0;
191 }
192
193 static int e1000_set_settings(struct net_device *netdev,
194 struct ethtool_cmd *ecmd)
195 {
196 struct e1000_adapter *adapter = netdev_priv(netdev);
197 struct e1000_hw *hw = &adapter->hw;
198
199 /* MDI setting is only allowed when autoneg enabled because
200 * some hardware doesn't allow MDI setting when speed or
201 * duplex is forced.
202 */
203 if (ecmd->eth_tp_mdix_ctrl) {
204 if (hw->media_type != e1000_media_type_copper)
205 return -EOPNOTSUPP;
206
207 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
208 (ecmd->autoneg != AUTONEG_ENABLE)) {
209 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
210 return -EINVAL;
211 }
212 }
213
214 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
215 msleep(1);
216
217 if (ecmd->autoneg == AUTONEG_ENABLE) {
218 hw->autoneg = 1;
219 if (hw->media_type == e1000_media_type_fiber)
220 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
221 ADVERTISED_FIBRE |
222 ADVERTISED_Autoneg;
223 else
224 hw->autoneg_advertised = ecmd->advertising |
225 ADVERTISED_TP |
226 ADVERTISED_Autoneg;
227 ecmd->advertising = hw->autoneg_advertised;
228 } else {
229 u32 speed = ethtool_cmd_speed(ecmd);
230 /* calling this overrides forced MDI setting */
231 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
232 clear_bit(__E1000_RESETTING, &adapter->flags);
233 return -EINVAL;
234 }
235 }
236
237 /* MDI-X => 2; MDI => 1; Auto => 3 */
238 if (ecmd->eth_tp_mdix_ctrl) {
239 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
240 hw->mdix = AUTO_ALL_MODES;
241 else
242 hw->mdix = ecmd->eth_tp_mdix_ctrl;
243 }
244
245 /* reset the link */
246
247 if (netif_running(adapter->netdev)) {
248 e1000_down(adapter);
249 e1000_up(adapter);
250 } else
251 e1000_reset(adapter);
252
253 clear_bit(__E1000_RESETTING, &adapter->flags);
254 return 0;
255 }
256
257 static u32 e1000_get_link(struct net_device *netdev)
258 {
259 struct e1000_adapter *adapter = netdev_priv(netdev);
260
261 /* If the link is not reported up to netdev, interrupts are disabled,
262 * and so the physical link state may have changed since we last
263 * looked. Set get_link_status to make sure that the true link
264 * state is interrogated, rather than pulling a cached and possibly
265 * stale link state from the driver.
266 */
267 if (!netif_carrier_ok(netdev))
268 adapter->hw.get_link_status = 1;
269
270 return e1000_has_link(adapter);
271 }
272
273 static void e1000_get_pauseparam(struct net_device *netdev,
274 struct ethtool_pauseparam *pause)
275 {
276 struct e1000_adapter *adapter = netdev_priv(netdev);
277 struct e1000_hw *hw = &adapter->hw;
278
279 pause->autoneg =
280 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
281
282 if (hw->fc == E1000_FC_RX_PAUSE)
283 pause->rx_pause = 1;
284 else if (hw->fc == E1000_FC_TX_PAUSE)
285 pause->tx_pause = 1;
286 else if (hw->fc == E1000_FC_FULL) {
287 pause->rx_pause = 1;
288 pause->tx_pause = 1;
289 }
290 }
291
292 static int e1000_set_pauseparam(struct net_device *netdev,
293 struct ethtool_pauseparam *pause)
294 {
295 struct e1000_adapter *adapter = netdev_priv(netdev);
296 struct e1000_hw *hw = &adapter->hw;
297 int retval = 0;
298
299 adapter->fc_autoneg = pause->autoneg;
300
301 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
302 msleep(1);
303
304 if (pause->rx_pause && pause->tx_pause)
305 hw->fc = E1000_FC_FULL;
306 else if (pause->rx_pause && !pause->tx_pause)
307 hw->fc = E1000_FC_RX_PAUSE;
308 else if (!pause->rx_pause && pause->tx_pause)
309 hw->fc = E1000_FC_TX_PAUSE;
310 else if (!pause->rx_pause && !pause->tx_pause)
311 hw->fc = E1000_FC_NONE;
312
313 hw->original_fc = hw->fc;
314
315 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
316 if (netif_running(adapter->netdev)) {
317 e1000_down(adapter);
318 e1000_up(adapter);
319 } else
320 e1000_reset(adapter);
321 } else
322 retval = ((hw->media_type == e1000_media_type_fiber) ?
323 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
324
325 clear_bit(__E1000_RESETTING, &adapter->flags);
326 return retval;
327 }
328
329 static u32 e1000_get_msglevel(struct net_device *netdev)
330 {
331 struct e1000_adapter *adapter = netdev_priv(netdev);
332 return adapter->msg_enable;
333 }
334
335 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
336 {
337 struct e1000_adapter *adapter = netdev_priv(netdev);
338 adapter->msg_enable = data;
339 }
340
341 static int e1000_get_regs_len(struct net_device *netdev)
342 {
343 #define E1000_REGS_LEN 32
344 return E1000_REGS_LEN * sizeof(u32);
345 }
346
347 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
348 void *p)
349 {
350 struct e1000_adapter *adapter = netdev_priv(netdev);
351 struct e1000_hw *hw = &adapter->hw;
352 u32 *regs_buff = p;
353 u16 phy_data;
354
355 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
356
357 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
358
359 regs_buff[0] = er32(CTRL);
360 regs_buff[1] = er32(STATUS);
361
362 regs_buff[2] = er32(RCTL);
363 regs_buff[3] = er32(RDLEN);
364 regs_buff[4] = er32(RDH);
365 regs_buff[5] = er32(RDT);
366 regs_buff[6] = er32(RDTR);
367
368 regs_buff[7] = er32(TCTL);
369 regs_buff[8] = er32(TDLEN);
370 regs_buff[9] = er32(TDH);
371 regs_buff[10] = er32(TDT);
372 regs_buff[11] = er32(TIDV);
373
374 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
375 if (hw->phy_type == e1000_phy_igp) {
376 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
377 IGP01E1000_PHY_AGC_A);
378 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
379 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
380 regs_buff[13] = (u32)phy_data; /* cable length */
381 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
382 IGP01E1000_PHY_AGC_B);
383 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
384 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
385 regs_buff[14] = (u32)phy_data; /* cable length */
386 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
387 IGP01E1000_PHY_AGC_C);
388 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
389 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
390 regs_buff[15] = (u32)phy_data; /* cable length */
391 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
392 IGP01E1000_PHY_AGC_D);
393 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
394 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
395 regs_buff[16] = (u32)phy_data; /* cable length */
396 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
397 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
398 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
399 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
400 regs_buff[18] = (u32)phy_data; /* cable polarity */
401 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
402 IGP01E1000_PHY_PCS_INIT_REG);
403 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
404 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
405 regs_buff[19] = (u32)phy_data; /* cable polarity */
406 regs_buff[20] = 0; /* polarity correction enabled (always) */
407 regs_buff[22] = 0; /* phy receive errors (unavailable) */
408 regs_buff[23] = regs_buff[18]; /* mdix mode */
409 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
410 } else {
411 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
412 regs_buff[13] = (u32)phy_data; /* cable length */
413 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
415 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
416 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
417 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
418 regs_buff[18] = regs_buff[13]; /* cable polarity */
419 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
420 regs_buff[20] = regs_buff[17]; /* polarity correction */
421 /* phy receive errors */
422 regs_buff[22] = adapter->phy_stats.receive_errors;
423 regs_buff[23] = regs_buff[13]; /* mdix mode */
424 }
425 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
426 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
427 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
428 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
429 if (hw->mac_type >= e1000_82540 &&
430 hw->media_type == e1000_media_type_copper) {
431 regs_buff[26] = er32(MANC);
432 }
433 }
434
435 static int e1000_get_eeprom_len(struct net_device *netdev)
436 {
437 struct e1000_adapter *adapter = netdev_priv(netdev);
438 struct e1000_hw *hw = &adapter->hw;
439
440 return hw->eeprom.word_size * 2;
441 }
442
443 static int e1000_get_eeprom(struct net_device *netdev,
444 struct ethtool_eeprom *eeprom, u8 *bytes)
445 {
446 struct e1000_adapter *adapter = netdev_priv(netdev);
447 struct e1000_hw *hw = &adapter->hw;
448 u16 *eeprom_buff;
449 int first_word, last_word;
450 int ret_val = 0;
451 u16 i;
452
453 if (eeprom->len == 0)
454 return -EINVAL;
455
456 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
457
458 first_word = eeprom->offset >> 1;
459 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
460
461 eeprom_buff = kmalloc(sizeof(u16) *
462 (last_word - first_word + 1), GFP_KERNEL);
463 if (!eeprom_buff)
464 return -ENOMEM;
465
466 if (hw->eeprom.type == e1000_eeprom_spi)
467 ret_val = e1000_read_eeprom(hw, first_word,
468 last_word - first_word + 1,
469 eeprom_buff);
470 else {
471 for (i = 0; i < last_word - first_word + 1; i++) {
472 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
473 &eeprom_buff[i]);
474 if (ret_val)
475 break;
476 }
477 }
478
479 /* Device's eeprom is always little-endian, word addressable */
480 for (i = 0; i < last_word - first_word + 1; i++)
481 le16_to_cpus(&eeprom_buff[i]);
482
483 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
484 eeprom->len);
485 kfree(eeprom_buff);
486
487 return ret_val;
488 }
489
490 static int e1000_set_eeprom(struct net_device *netdev,
491 struct ethtool_eeprom *eeprom, u8 *bytes)
492 {
493 struct e1000_adapter *adapter = netdev_priv(netdev);
494 struct e1000_hw *hw = &adapter->hw;
495 u16 *eeprom_buff;
496 void *ptr;
497 int max_len, first_word, last_word, ret_val = 0;
498 u16 i;
499
500 if (eeprom->len == 0)
501 return -EOPNOTSUPP;
502
503 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
504 return -EFAULT;
505
506 max_len = hw->eeprom.word_size * 2;
507
508 first_word = eeprom->offset >> 1;
509 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
510 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
511 if (!eeprom_buff)
512 return -ENOMEM;
513
514 ptr = (void *)eeprom_buff;
515
516 if (eeprom->offset & 1) {
517 /* need read/modify/write of first changed EEPROM word
518 * only the second byte of the word is being modified
519 */
520 ret_val = e1000_read_eeprom(hw, first_word, 1,
521 &eeprom_buff[0]);
522 ptr++;
523 }
524 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
525 /* need read/modify/write of last changed EEPROM word
526 * only the first byte of the word is being modified
527 */
528 ret_val = e1000_read_eeprom(hw, last_word, 1,
529 &eeprom_buff[last_word - first_word]);
530 }
531
532 /* Device's eeprom is always little-endian, word addressable */
533 for (i = 0; i < last_word - first_word + 1; i++)
534 le16_to_cpus(&eeprom_buff[i]);
535
536 memcpy(ptr, bytes, eeprom->len);
537
538 for (i = 0; i < last_word - first_word + 1; i++)
539 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
540
541 ret_val = e1000_write_eeprom(hw, first_word,
542 last_word - first_word + 1, eeprom_buff);
543
544 /* Update the checksum over the first part of the EEPROM if needed */
545 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
546 e1000_update_eeprom_checksum(hw);
547
548 kfree(eeprom_buff);
549 return ret_val;
550 }
551
552 static void e1000_get_drvinfo(struct net_device *netdev,
553 struct ethtool_drvinfo *drvinfo)
554 {
555 struct e1000_adapter *adapter = netdev_priv(netdev);
556
557 strlcpy(drvinfo->driver, e1000_driver_name,
558 sizeof(drvinfo->driver));
559 strlcpy(drvinfo->version, e1000_driver_version,
560 sizeof(drvinfo->version));
561
562 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
563 sizeof(drvinfo->bus_info));
564 drvinfo->regdump_len = e1000_get_regs_len(netdev);
565 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
566 }
567
568 static void e1000_get_ringparam(struct net_device *netdev,
569 struct ethtool_ringparam *ring)
570 {
571 struct e1000_adapter *adapter = netdev_priv(netdev);
572 struct e1000_hw *hw = &adapter->hw;
573 e1000_mac_type mac_type = hw->mac_type;
574 struct e1000_tx_ring *txdr = adapter->tx_ring;
575 struct e1000_rx_ring *rxdr = adapter->rx_ring;
576
577 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
578 E1000_MAX_82544_RXD;
579 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
580 E1000_MAX_82544_TXD;
581 ring->rx_pending = rxdr->count;
582 ring->tx_pending = txdr->count;
583 }
584
585 static int e1000_set_ringparam(struct net_device *netdev,
586 struct ethtool_ringparam *ring)
587 {
588 struct e1000_adapter *adapter = netdev_priv(netdev);
589 struct e1000_hw *hw = &adapter->hw;
590 e1000_mac_type mac_type = hw->mac_type;
591 struct e1000_tx_ring *txdr, *tx_old;
592 struct e1000_rx_ring *rxdr, *rx_old;
593 int i, err;
594
595 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
596 return -EINVAL;
597
598 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
599 msleep(1);
600
601 if (netif_running(adapter->netdev))
602 e1000_down(adapter);
603
604 tx_old = adapter->tx_ring;
605 rx_old = adapter->rx_ring;
606
607 err = -ENOMEM;
608 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
609 GFP_KERNEL);
610 if (!txdr)
611 goto err_alloc_tx;
612
613 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
614 GFP_KERNEL);
615 if (!rxdr)
616 goto err_alloc_rx;
617
618 adapter->tx_ring = txdr;
619 adapter->rx_ring = rxdr;
620
621 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
622 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
623 E1000_MAX_RXD : E1000_MAX_82544_RXD));
624 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
625
626 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
627 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
628 E1000_MAX_TXD : E1000_MAX_82544_TXD));
629 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
630
631 for (i = 0; i < adapter->num_tx_queues; i++)
632 txdr[i].count = txdr->count;
633 for (i = 0; i < adapter->num_rx_queues; i++)
634 rxdr[i].count = rxdr->count;
635
636 if (netif_running(adapter->netdev)) {
637 /* Try to get new resources before deleting old */
638 err = e1000_setup_all_rx_resources(adapter);
639 if (err)
640 goto err_setup_rx;
641 err = e1000_setup_all_tx_resources(adapter);
642 if (err)
643 goto err_setup_tx;
644
645 /* save the new, restore the old in order to free it,
646 * then restore the new back again
647 */
648
649 adapter->rx_ring = rx_old;
650 adapter->tx_ring = tx_old;
651 e1000_free_all_rx_resources(adapter);
652 e1000_free_all_tx_resources(adapter);
653 kfree(tx_old);
654 kfree(rx_old);
655 adapter->rx_ring = rxdr;
656 adapter->tx_ring = txdr;
657 err = e1000_up(adapter);
658 if (err)
659 goto err_setup;
660 }
661
662 clear_bit(__E1000_RESETTING, &adapter->flags);
663 return 0;
664 err_setup_tx:
665 e1000_free_all_rx_resources(adapter);
666 err_setup_rx:
667 adapter->rx_ring = rx_old;
668 adapter->tx_ring = tx_old;
669 kfree(rxdr);
670 err_alloc_rx:
671 kfree(txdr);
672 err_alloc_tx:
673 e1000_up(adapter);
674 err_setup:
675 clear_bit(__E1000_RESETTING, &adapter->flags);
676 return err;
677 }
678
679 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
680 u32 mask, u32 write)
681 {
682 struct e1000_hw *hw = &adapter->hw;
683 static const u32 test[] =
684 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
685 u8 __iomem *address = hw->hw_addr + reg;
686 u32 read;
687 int i;
688
689 for (i = 0; i < ARRAY_SIZE(test); i++) {
690 writel(write & test[i], address);
691 read = readl(address);
692 if (read != (write & test[i] & mask)) {
693 e_err(drv, "pattern test reg %04X failed: "
694 "got 0x%08X expected 0x%08X\n",
695 reg, read, (write & test[i] & mask));
696 *data = reg;
697 return true;
698 }
699 }
700 return false;
701 }
702
703 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
704 u32 mask, u32 write)
705 {
706 struct e1000_hw *hw = &adapter->hw;
707 u8 __iomem *address = hw->hw_addr + reg;
708 u32 read;
709
710 writel(write & mask, address);
711 read = readl(address);
712 if ((read & mask) != (write & mask)) {
713 e_err(drv, "set/check reg %04X test failed: "
714 "got 0x%08X expected 0x%08X\n",
715 reg, (read & mask), (write & mask));
716 *data = reg;
717 return true;
718 }
719 return false;
720 }
721
722 #define REG_PATTERN_TEST(reg, mask, write) \
723 do { \
724 if (reg_pattern_test(adapter, data, \
725 (hw->mac_type >= e1000_82543) \
726 ? E1000_##reg : E1000_82542_##reg, \
727 mask, write)) \
728 return 1; \
729 } while (0)
730
731 #define REG_SET_AND_CHECK(reg, mask, write) \
732 do { \
733 if (reg_set_and_check(adapter, data, \
734 (hw->mac_type >= e1000_82543) \
735 ? E1000_##reg : E1000_82542_##reg, \
736 mask, write)) \
737 return 1; \
738 } while (0)
739
740 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
741 {
742 u32 value, before, after;
743 u32 i, toggle;
744 struct e1000_hw *hw = &adapter->hw;
745
746 /* The status register is Read Only, so a write should fail.
747 * Some bits that get toggled are ignored.
748 */
749
750 /* there are several bits on newer hardware that are r/w */
751 toggle = 0xFFFFF833;
752
753 before = er32(STATUS);
754 value = (er32(STATUS) & toggle);
755 ew32(STATUS, toggle);
756 after = er32(STATUS) & toggle;
757 if (value != after) {
758 e_err(drv, "failed STATUS register test got: "
759 "0x%08X expected: 0x%08X\n", after, value);
760 *data = 1;
761 return 1;
762 }
763 /* restore previous status */
764 ew32(STATUS, before);
765
766 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
767 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
770
771 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
772 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
773 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
774 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
775 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
776 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
777 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
778 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
779 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
780 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
781
782 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
783
784 before = 0x06DFB3FE;
785 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
786 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
787
788 if (hw->mac_type >= e1000_82543) {
789 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
790 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
791 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
792 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
793 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
794 value = E1000_RAR_ENTRIES;
795 for (i = 0; i < value; i++) {
796 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
797 0xFFFFFFFF);
798 }
799 } else {
800 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
801 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
802 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
803 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
804 }
805
806 value = E1000_MC_TBL_SIZE;
807 for (i = 0; i < value; i++)
808 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
809
810 *data = 0;
811 return 0;
812 }
813
814 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
815 {
816 struct e1000_hw *hw = &adapter->hw;
817 u16 temp;
818 u16 checksum = 0;
819 u16 i;
820
821 *data = 0;
822 /* Read and add up the contents of the EEPROM */
823 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
824 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
825 *data = 1;
826 break;
827 }
828 checksum += temp;
829 }
830
831 /* If Checksum is not Correct return error else test passed */
832 if ((checksum != (u16)EEPROM_SUM) && !(*data))
833 *data = 2;
834
835 return *data;
836 }
837
838 static irqreturn_t e1000_test_intr(int irq, void *data)
839 {
840 struct net_device *netdev = (struct net_device *)data;
841 struct e1000_adapter *adapter = netdev_priv(netdev);
842 struct e1000_hw *hw = &adapter->hw;
843
844 adapter->test_icr |= er32(ICR);
845
846 return IRQ_HANDLED;
847 }
848
849 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
850 {
851 struct net_device *netdev = adapter->netdev;
852 u32 mask, i = 0;
853 bool shared_int = true;
854 u32 irq = adapter->pdev->irq;
855 struct e1000_hw *hw = &adapter->hw;
856
857 *data = 0;
858
859 /* NOTE: we don't test MSI interrupts here, yet
860 * Hook up test interrupt handler just for this test
861 */
862 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
863 netdev))
864 shared_int = false;
865 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
866 netdev->name, netdev)) {
867 *data = 1;
868 return -1;
869 }
870 e_info(hw, "testing %s interrupt\n", (shared_int ?
871 "shared" : "unshared"));
872
873 /* Disable all the interrupts */
874 ew32(IMC, 0xFFFFFFFF);
875 E1000_WRITE_FLUSH();
876 msleep(10);
877
878 /* Test each interrupt */
879 for (; i < 10; i++) {
880
881 /* Interrupt to test */
882 mask = 1 << i;
883
884 if (!shared_int) {
885 /* Disable the interrupt to be reported in
886 * the cause register and then force the same
887 * interrupt and see if one gets posted. If
888 * an interrupt was posted to the bus, the
889 * test failed.
890 */
891 adapter->test_icr = 0;
892 ew32(IMC, mask);
893 ew32(ICS, mask);
894 E1000_WRITE_FLUSH();
895 msleep(10);
896
897 if (adapter->test_icr & mask) {
898 *data = 3;
899 break;
900 }
901 }
902
903 /* Enable the interrupt to be reported in
904 * the cause register and then force the same
905 * interrupt and see if one gets posted. If
906 * an interrupt was not posted to the bus, the
907 * test failed.
908 */
909 adapter->test_icr = 0;
910 ew32(IMS, mask);
911 ew32(ICS, mask);
912 E1000_WRITE_FLUSH();
913 msleep(10);
914
915 if (!(adapter->test_icr & mask)) {
916 *data = 4;
917 break;
918 }
919
920 if (!shared_int) {
921 /* Disable the other interrupts to be reported in
922 * the cause register and then force the other
923 * interrupts and see if any get posted. If
924 * an interrupt was posted to the bus, the
925 * test failed.
926 */
927 adapter->test_icr = 0;
928 ew32(IMC, ~mask & 0x00007FFF);
929 ew32(ICS, ~mask & 0x00007FFF);
930 E1000_WRITE_FLUSH();
931 msleep(10);
932
933 if (adapter->test_icr) {
934 *data = 5;
935 break;
936 }
937 }
938 }
939
940 /* Disable all the interrupts */
941 ew32(IMC, 0xFFFFFFFF);
942 E1000_WRITE_FLUSH();
943 msleep(10);
944
945 /* Unhook test interrupt handler */
946 free_irq(irq, netdev);
947
948 return *data;
949 }
950
951 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
952 {
953 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
954 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
955 struct pci_dev *pdev = adapter->pdev;
956 int i;
957
958 if (txdr->desc && txdr->buffer_info) {
959 for (i = 0; i < txdr->count; i++) {
960 if (txdr->buffer_info[i].dma)
961 dma_unmap_single(&pdev->dev,
962 txdr->buffer_info[i].dma,
963 txdr->buffer_info[i].length,
964 DMA_TO_DEVICE);
965 if (txdr->buffer_info[i].skb)
966 dev_kfree_skb(txdr->buffer_info[i].skb);
967 }
968 }
969
970 if (rxdr->desc && rxdr->buffer_info) {
971 for (i = 0; i < rxdr->count; i++) {
972 if (rxdr->buffer_info[i].dma)
973 dma_unmap_single(&pdev->dev,
974 rxdr->buffer_info[i].dma,
975 rxdr->buffer_info[i].length,
976 DMA_FROM_DEVICE);
977 if (rxdr->buffer_info[i].skb)
978 dev_kfree_skb(rxdr->buffer_info[i].skb);
979 }
980 }
981
982 if (txdr->desc) {
983 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
984 txdr->dma);
985 txdr->desc = NULL;
986 }
987 if (rxdr->desc) {
988 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
989 rxdr->dma);
990 rxdr->desc = NULL;
991 }
992
993 kfree(txdr->buffer_info);
994 txdr->buffer_info = NULL;
995 kfree(rxdr->buffer_info);
996 rxdr->buffer_info = NULL;
997 }
998
999 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1000 {
1001 struct e1000_hw *hw = &adapter->hw;
1002 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004 struct pci_dev *pdev = adapter->pdev;
1005 u32 rctl;
1006 int i, ret_val;
1007
1008 /* Setup Tx descriptor ring and Tx buffers */
1009
1010 if (!txdr->count)
1011 txdr->count = E1000_DEFAULT_TXD;
1012
1013 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1014 GFP_KERNEL);
1015 if (!txdr->buffer_info) {
1016 ret_val = 1;
1017 goto err_nomem;
1018 }
1019
1020 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1021 txdr->size = ALIGN(txdr->size, 4096);
1022 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1023 GFP_KERNEL);
1024 if (!txdr->desc) {
1025 ret_val = 2;
1026 goto err_nomem;
1027 }
1028 memset(txdr->desc, 0, txdr->size);
1029 txdr->next_to_use = txdr->next_to_clean = 0;
1030
1031 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1032 ew32(TDBAH, ((u64)txdr->dma >> 32));
1033 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1034 ew32(TDH, 0);
1035 ew32(TDT, 0);
1036 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1037 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1038 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1039
1040 for (i = 0; i < txdr->count; i++) {
1041 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1042 struct sk_buff *skb;
1043 unsigned int size = 1024;
1044
1045 skb = alloc_skb(size, GFP_KERNEL);
1046 if (!skb) {
1047 ret_val = 3;
1048 goto err_nomem;
1049 }
1050 skb_put(skb, size);
1051 txdr->buffer_info[i].skb = skb;
1052 txdr->buffer_info[i].length = skb->len;
1053 txdr->buffer_info[i].dma =
1054 dma_map_single(&pdev->dev, skb->data, skb->len,
1055 DMA_TO_DEVICE);
1056 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1057 ret_val = 4;
1058 goto err_nomem;
1059 }
1060 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1061 tx_desc->lower.data = cpu_to_le32(skb->len);
1062 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1063 E1000_TXD_CMD_IFCS |
1064 E1000_TXD_CMD_RPS);
1065 tx_desc->upper.data = 0;
1066 }
1067
1068 /* Setup Rx descriptor ring and Rx buffers */
1069
1070 if (!rxdr->count)
1071 rxdr->count = E1000_DEFAULT_RXD;
1072
1073 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1074 GFP_KERNEL);
1075 if (!rxdr->buffer_info) {
1076 ret_val = 5;
1077 goto err_nomem;
1078 }
1079
1080 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1081 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1082 GFP_KERNEL);
1083 if (!rxdr->desc) {
1084 ret_val = 6;
1085 goto err_nomem;
1086 }
1087 memset(rxdr->desc, 0, rxdr->size);
1088 rxdr->next_to_use = rxdr->next_to_clean = 0;
1089
1090 rctl = er32(RCTL);
1091 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1092 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1093 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1094 ew32(RDLEN, rxdr->size);
1095 ew32(RDH, 0);
1096 ew32(RDT, 0);
1097 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1098 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1099 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1100 ew32(RCTL, rctl);
1101
1102 for (i = 0; i < rxdr->count; i++) {
1103 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1104 struct sk_buff *skb;
1105
1106 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1107 if (!skb) {
1108 ret_val = 7;
1109 goto err_nomem;
1110 }
1111 skb_reserve(skb, NET_IP_ALIGN);
1112 rxdr->buffer_info[i].skb = skb;
1113 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1114 rxdr->buffer_info[i].dma =
1115 dma_map_single(&pdev->dev, skb->data,
1116 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1117 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1118 ret_val = 8;
1119 goto err_nomem;
1120 }
1121 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1122 memset(skb->data, 0x00, skb->len);
1123 }
1124
1125 return 0;
1126
1127 err_nomem:
1128 e1000_free_desc_rings(adapter);
1129 return ret_val;
1130 }
1131
1132 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1133 {
1134 struct e1000_hw *hw = &adapter->hw;
1135
1136 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1137 e1000_write_phy_reg(hw, 29, 0x001F);
1138 e1000_write_phy_reg(hw, 30, 0x8FFC);
1139 e1000_write_phy_reg(hw, 29, 0x001A);
1140 e1000_write_phy_reg(hw, 30, 0x8FF0);
1141 }
1142
1143 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1144 {
1145 struct e1000_hw *hw = &adapter->hw;
1146 u16 phy_reg;
1147
1148 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1149 * Extended PHY Specific Control Register to 25MHz clock. This
1150 * value defaults back to a 2.5MHz clock when the PHY is reset.
1151 */
1152 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1153 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1154 e1000_write_phy_reg(hw,
1155 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1156
1157 /* In addition, because of the s/w reset above, we need to enable
1158 * CRS on TX. This must be set for both full and half duplex
1159 * operation.
1160 */
1161 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1162 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1163 e1000_write_phy_reg(hw,
1164 M88E1000_PHY_SPEC_CTRL, phy_reg);
1165 }
1166
1167 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1168 {
1169 struct e1000_hw *hw = &adapter->hw;
1170 u32 ctrl_reg;
1171 u16 phy_reg;
1172
1173 /* Setup the Device Control Register for PHY loopback test. */
1174
1175 ctrl_reg = er32(CTRL);
1176 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1177 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1178 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1179 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1180 E1000_CTRL_FD); /* Force Duplex to FULL */
1181
1182 ew32(CTRL, ctrl_reg);
1183
1184 /* Read the PHY Specific Control Register (0x10) */
1185 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1186
1187 /* Clear Auto-Crossover bits in PHY Specific Control Register
1188 * (bits 6:5).
1189 */
1190 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1191 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1192
1193 /* Perform software reset on the PHY */
1194 e1000_phy_reset(hw);
1195
1196 /* Have to setup TX_CLK and TX_CRS after software reset */
1197 e1000_phy_reset_clk_and_crs(adapter);
1198
1199 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1200
1201 /* Wait for reset to complete. */
1202 udelay(500);
1203
1204 /* Have to setup TX_CLK and TX_CRS after software reset */
1205 e1000_phy_reset_clk_and_crs(adapter);
1206
1207 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1208 e1000_phy_disable_receiver(adapter);
1209
1210 /* Set the loopback bit in the PHY control register. */
1211 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1212 phy_reg |= MII_CR_LOOPBACK;
1213 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1214
1215 /* Setup TX_CLK and TX_CRS one more time. */
1216 e1000_phy_reset_clk_and_crs(adapter);
1217
1218 /* Check Phy Configuration */
1219 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1220 if (phy_reg != 0x4100)
1221 return 9;
1222
1223 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1224 if (phy_reg != 0x0070)
1225 return 10;
1226
1227 e1000_read_phy_reg(hw, 29, &phy_reg);
1228 if (phy_reg != 0x001A)
1229 return 11;
1230
1231 return 0;
1232 }
1233
1234 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1235 {
1236 struct e1000_hw *hw = &adapter->hw;
1237 u32 ctrl_reg = 0;
1238 u32 stat_reg = 0;
1239
1240 hw->autoneg = false;
1241
1242 if (hw->phy_type == e1000_phy_m88) {
1243 /* Auto-MDI/MDIX Off */
1244 e1000_write_phy_reg(hw,
1245 M88E1000_PHY_SPEC_CTRL, 0x0808);
1246 /* reset to update Auto-MDI/MDIX */
1247 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1248 /* autoneg off */
1249 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1250 }
1251
1252 ctrl_reg = er32(CTRL);
1253
1254 /* force 1000, set loopback */
1255 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1256
1257 /* Now set up the MAC to the same speed/duplex as the PHY. */
1258 ctrl_reg = er32(CTRL);
1259 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1260 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1261 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1262 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1263 E1000_CTRL_FD); /* Force Duplex to FULL */
1264
1265 if (hw->media_type == e1000_media_type_copper &&
1266 hw->phy_type == e1000_phy_m88)
1267 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1268 else {
1269 /* Set the ILOS bit on the fiber Nic is half
1270 * duplex link is detected.
1271 */
1272 stat_reg = er32(STATUS);
1273 if ((stat_reg & E1000_STATUS_FD) == 0)
1274 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1275 }
1276
1277 ew32(CTRL, ctrl_reg);
1278
1279 /* Disable the receiver on the PHY so when a cable is plugged in, the
1280 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1281 */
1282 if (hw->phy_type == e1000_phy_m88)
1283 e1000_phy_disable_receiver(adapter);
1284
1285 udelay(500);
1286
1287 return 0;
1288 }
1289
1290 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1291 {
1292 struct e1000_hw *hw = &adapter->hw;
1293 u16 phy_reg = 0;
1294 u16 count = 0;
1295
1296 switch (hw->mac_type) {
1297 case e1000_82543:
1298 if (hw->media_type == e1000_media_type_copper) {
1299 /* Attempt to setup Loopback mode on Non-integrated PHY.
1300 * Some PHY registers get corrupted at random, so
1301 * attempt this 10 times.
1302 */
1303 while (e1000_nonintegrated_phy_loopback(adapter) &&
1304 count++ < 10);
1305 if (count < 11)
1306 return 0;
1307 }
1308 break;
1309
1310 case e1000_82544:
1311 case e1000_82540:
1312 case e1000_82545:
1313 case e1000_82545_rev_3:
1314 case e1000_82546:
1315 case e1000_82546_rev_3:
1316 case e1000_82541:
1317 case e1000_82541_rev_2:
1318 case e1000_82547:
1319 case e1000_82547_rev_2:
1320 return e1000_integrated_phy_loopback(adapter);
1321 break;
1322 default:
1323 /* Default PHY loopback work is to read the MII
1324 * control register and assert bit 14 (loopback mode).
1325 */
1326 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1327 phy_reg |= MII_CR_LOOPBACK;
1328 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1329 return 0;
1330 break;
1331 }
1332
1333 return 8;
1334 }
1335
1336 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1337 {
1338 struct e1000_hw *hw = &adapter->hw;
1339 u32 rctl;
1340
1341 if (hw->media_type == e1000_media_type_fiber ||
1342 hw->media_type == e1000_media_type_internal_serdes) {
1343 switch (hw->mac_type) {
1344 case e1000_82545:
1345 case e1000_82546:
1346 case e1000_82545_rev_3:
1347 case e1000_82546_rev_3:
1348 return e1000_set_phy_loopback(adapter);
1349 break;
1350 default:
1351 rctl = er32(RCTL);
1352 rctl |= E1000_RCTL_LBM_TCVR;
1353 ew32(RCTL, rctl);
1354 return 0;
1355 }
1356 } else if (hw->media_type == e1000_media_type_copper)
1357 return e1000_set_phy_loopback(adapter);
1358
1359 return 7;
1360 }
1361
1362 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1363 {
1364 struct e1000_hw *hw = &adapter->hw;
1365 u32 rctl;
1366 u16 phy_reg;
1367
1368 rctl = er32(RCTL);
1369 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1370 ew32(RCTL, rctl);
1371
1372 switch (hw->mac_type) {
1373 case e1000_82545:
1374 case e1000_82546:
1375 case e1000_82545_rev_3:
1376 case e1000_82546_rev_3:
1377 default:
1378 hw->autoneg = true;
1379 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1380 if (phy_reg & MII_CR_LOOPBACK) {
1381 phy_reg &= ~MII_CR_LOOPBACK;
1382 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1383 e1000_phy_reset(hw);
1384 }
1385 break;
1386 }
1387 }
1388
1389 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1390 unsigned int frame_size)
1391 {
1392 memset(skb->data, 0xFF, frame_size);
1393 frame_size &= ~1;
1394 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1395 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1396 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1397 }
1398
1399 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1400 unsigned int frame_size)
1401 {
1402 frame_size &= ~1;
1403 if (*(skb->data + 3) == 0xFF) {
1404 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1405 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1406 return 0;
1407 }
1408 }
1409 return 13;
1410 }
1411
1412 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1413 {
1414 struct e1000_hw *hw = &adapter->hw;
1415 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1416 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1417 struct pci_dev *pdev = adapter->pdev;
1418 int i, j, k, l, lc, good_cnt, ret_val=0;
1419 unsigned long time;
1420
1421 ew32(RDT, rxdr->count - 1);
1422
1423 /* Calculate the loop count based on the largest descriptor ring
1424 * The idea is to wrap the largest ring a number of times using 64
1425 * send/receive pairs during each loop
1426 */
1427
1428 if (rxdr->count <= txdr->count)
1429 lc = ((txdr->count / 64) * 2) + 1;
1430 else
1431 lc = ((rxdr->count / 64) * 2) + 1;
1432
1433 k = l = 0;
1434 for (j = 0; j <= lc; j++) { /* loop count loop */
1435 for (i = 0; i < 64; i++) { /* send the packets */
1436 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1437 1024);
1438 dma_sync_single_for_device(&pdev->dev,
1439 txdr->buffer_info[k].dma,
1440 txdr->buffer_info[k].length,
1441 DMA_TO_DEVICE);
1442 if (unlikely(++k == txdr->count)) k = 0;
1443 }
1444 ew32(TDT, k);
1445 E1000_WRITE_FLUSH();
1446 msleep(200);
1447 time = jiffies; /* set the start time for the receive */
1448 good_cnt = 0;
1449 do { /* receive the sent packets */
1450 dma_sync_single_for_cpu(&pdev->dev,
1451 rxdr->buffer_info[l].dma,
1452 rxdr->buffer_info[l].length,
1453 DMA_FROM_DEVICE);
1454
1455 ret_val = e1000_check_lbtest_frame(
1456 rxdr->buffer_info[l].skb,
1457 1024);
1458 if (!ret_val)
1459 good_cnt++;
1460 if (unlikely(++l == rxdr->count)) l = 0;
1461 /* time + 20 msecs (200 msecs on 2.4) is more than
1462 * enough time to complete the receives, if it's
1463 * exceeded, break and error off
1464 */
1465 } while (good_cnt < 64 && jiffies < (time + 20));
1466 if (good_cnt != 64) {
1467 ret_val = 13; /* ret_val is the same as mis-compare */
1468 break;
1469 }
1470 if (jiffies >= (time + 2)) {
1471 ret_val = 14; /* error code for time out error */
1472 break;
1473 }
1474 } /* end loop count loop */
1475 return ret_val;
1476 }
1477
1478 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1479 {
1480 *data = e1000_setup_desc_rings(adapter);
1481 if (*data)
1482 goto out;
1483 *data = e1000_setup_loopback_test(adapter);
1484 if (*data)
1485 goto err_loopback;
1486 *data = e1000_run_loopback_test(adapter);
1487 e1000_loopback_cleanup(adapter);
1488
1489 err_loopback:
1490 e1000_free_desc_rings(adapter);
1491 out:
1492 return *data;
1493 }
1494
1495 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1496 {
1497 struct e1000_hw *hw = &adapter->hw;
1498 *data = 0;
1499 if (hw->media_type == e1000_media_type_internal_serdes) {
1500 int i = 0;
1501 hw->serdes_has_link = false;
1502
1503 /* On some blade server designs, link establishment
1504 * could take as long as 2-3 minutes
1505 */
1506 do {
1507 e1000_check_for_link(hw);
1508 if (hw->serdes_has_link)
1509 return *data;
1510 msleep(20);
1511 } while (i++ < 3750);
1512
1513 *data = 1;
1514 } else {
1515 e1000_check_for_link(hw);
1516 if (hw->autoneg) /* if auto_neg is set wait for it */
1517 msleep(4000);
1518
1519 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1520 *data = 1;
1521 }
1522 }
1523 return *data;
1524 }
1525
1526 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1527 {
1528 switch (sset) {
1529 case ETH_SS_TEST:
1530 return E1000_TEST_LEN;
1531 case ETH_SS_STATS:
1532 return E1000_STATS_LEN;
1533 default:
1534 return -EOPNOTSUPP;
1535 }
1536 }
1537
1538 static void e1000_diag_test(struct net_device *netdev,
1539 struct ethtool_test *eth_test, u64 *data)
1540 {
1541 struct e1000_adapter *adapter = netdev_priv(netdev);
1542 struct e1000_hw *hw = &adapter->hw;
1543 bool if_running = netif_running(netdev);
1544
1545 set_bit(__E1000_TESTING, &adapter->flags);
1546 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1547 /* Offline tests */
1548
1549 /* save speed, duplex, autoneg settings */
1550 u16 autoneg_advertised = hw->autoneg_advertised;
1551 u8 forced_speed_duplex = hw->forced_speed_duplex;
1552 u8 autoneg = hw->autoneg;
1553
1554 e_info(hw, "offline testing starting\n");
1555
1556 /* Link test performed before hardware reset so autoneg doesn't
1557 * interfere with test result
1558 */
1559 if (e1000_link_test(adapter, &data[4]))
1560 eth_test->flags |= ETH_TEST_FL_FAILED;
1561
1562 if (if_running)
1563 /* indicate we're in test mode */
1564 dev_close(netdev);
1565 else
1566 e1000_reset(adapter);
1567
1568 if (e1000_reg_test(adapter, &data[0]))
1569 eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571 e1000_reset(adapter);
1572 if (e1000_eeprom_test(adapter, &data[1]))
1573 eth_test->flags |= ETH_TEST_FL_FAILED;
1574
1575 e1000_reset(adapter);
1576 if (e1000_intr_test(adapter, &data[2]))
1577 eth_test->flags |= ETH_TEST_FL_FAILED;
1578
1579 e1000_reset(adapter);
1580 /* make sure the phy is powered up */
1581 e1000_power_up_phy(adapter);
1582 if (e1000_loopback_test(adapter, &data[3]))
1583 eth_test->flags |= ETH_TEST_FL_FAILED;
1584
1585 /* restore speed, duplex, autoneg settings */
1586 hw->autoneg_advertised = autoneg_advertised;
1587 hw->forced_speed_duplex = forced_speed_duplex;
1588 hw->autoneg = autoneg;
1589
1590 e1000_reset(adapter);
1591 clear_bit(__E1000_TESTING, &adapter->flags);
1592 if (if_running)
1593 dev_open(netdev);
1594 } else {
1595 e_info(hw, "online testing starting\n");
1596 /* Online tests */
1597 if (e1000_link_test(adapter, &data[4]))
1598 eth_test->flags |= ETH_TEST_FL_FAILED;
1599
1600 /* Online tests aren't run; pass by default */
1601 data[0] = 0;
1602 data[1] = 0;
1603 data[2] = 0;
1604 data[3] = 0;
1605
1606 clear_bit(__E1000_TESTING, &adapter->flags);
1607 }
1608 msleep_interruptible(4 * 1000);
1609 }
1610
1611 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1612 struct ethtool_wolinfo *wol)
1613 {
1614 struct e1000_hw *hw = &adapter->hw;
1615 int retval = 1; /* fail by default */
1616
1617 switch (hw->device_id) {
1618 case E1000_DEV_ID_82542:
1619 case E1000_DEV_ID_82543GC_FIBER:
1620 case E1000_DEV_ID_82543GC_COPPER:
1621 case E1000_DEV_ID_82544EI_FIBER:
1622 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1623 case E1000_DEV_ID_82545EM_FIBER:
1624 case E1000_DEV_ID_82545EM_COPPER:
1625 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1626 case E1000_DEV_ID_82546GB_PCIE:
1627 /* these don't support WoL at all */
1628 wol->supported = 0;
1629 break;
1630 case E1000_DEV_ID_82546EB_FIBER:
1631 case E1000_DEV_ID_82546GB_FIBER:
1632 /* Wake events not supported on port B */
1633 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1634 wol->supported = 0;
1635 break;
1636 }
1637 /* return success for non excluded adapter ports */
1638 retval = 0;
1639 break;
1640 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1641 /* quad port adapters only support WoL on port A */
1642 if (!adapter->quad_port_a) {
1643 wol->supported = 0;
1644 break;
1645 }
1646 /* return success for non excluded adapter ports */
1647 retval = 0;
1648 break;
1649 default:
1650 /* dual port cards only support WoL on port A from now on
1651 * unless it was enabled in the eeprom for port B
1652 * so exclude FUNC_1 ports from having WoL enabled
1653 */
1654 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1655 !adapter->eeprom_wol) {
1656 wol->supported = 0;
1657 break;
1658 }
1659
1660 retval = 0;
1661 }
1662
1663 return retval;
1664 }
1665
1666 static void e1000_get_wol(struct net_device *netdev,
1667 struct ethtool_wolinfo *wol)
1668 {
1669 struct e1000_adapter *adapter = netdev_priv(netdev);
1670 struct e1000_hw *hw = &adapter->hw;
1671
1672 wol->supported = WAKE_UCAST | WAKE_MCAST |
1673 WAKE_BCAST | WAKE_MAGIC;
1674 wol->wolopts = 0;
1675
1676 /* this function will set ->supported = 0 and return 1 if wol is not
1677 * supported by this hardware
1678 */
1679 if (e1000_wol_exclusion(adapter, wol) ||
1680 !device_can_wakeup(&adapter->pdev->dev))
1681 return;
1682
1683 /* apply any specific unsupported masks here */
1684 switch (hw->device_id) {
1685 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1686 /* KSP3 does not support UCAST wake-ups */
1687 wol->supported &= ~WAKE_UCAST;
1688
1689 if (adapter->wol & E1000_WUFC_EX)
1690 e_err(drv, "Interface does not support directed "
1691 "(unicast) frame wake-up packets\n");
1692 break;
1693 default:
1694 break;
1695 }
1696
1697 if (adapter->wol & E1000_WUFC_EX)
1698 wol->wolopts |= WAKE_UCAST;
1699 if (adapter->wol & E1000_WUFC_MC)
1700 wol->wolopts |= WAKE_MCAST;
1701 if (adapter->wol & E1000_WUFC_BC)
1702 wol->wolopts |= WAKE_BCAST;
1703 if (adapter->wol & E1000_WUFC_MAG)
1704 wol->wolopts |= WAKE_MAGIC;
1705 }
1706
1707 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1708 {
1709 struct e1000_adapter *adapter = netdev_priv(netdev);
1710 struct e1000_hw *hw = &adapter->hw;
1711
1712 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1713 return -EOPNOTSUPP;
1714
1715 if (e1000_wol_exclusion(adapter, wol) ||
1716 !device_can_wakeup(&adapter->pdev->dev))
1717 return wol->wolopts ? -EOPNOTSUPP : 0;
1718
1719 switch (hw->device_id) {
1720 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1721 if (wol->wolopts & WAKE_UCAST) {
1722 e_err(drv, "Interface does not support directed "
1723 "(unicast) frame wake-up packets\n");
1724 return -EOPNOTSUPP;
1725 }
1726 break;
1727 default:
1728 break;
1729 }
1730
1731 /* these settings will always override what we currently have */
1732 adapter->wol = 0;
1733
1734 if (wol->wolopts & WAKE_UCAST)
1735 adapter->wol |= E1000_WUFC_EX;
1736 if (wol->wolopts & WAKE_MCAST)
1737 adapter->wol |= E1000_WUFC_MC;
1738 if (wol->wolopts & WAKE_BCAST)
1739 adapter->wol |= E1000_WUFC_BC;
1740 if (wol->wolopts & WAKE_MAGIC)
1741 adapter->wol |= E1000_WUFC_MAG;
1742
1743 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1744
1745 return 0;
1746 }
1747
1748 static int e1000_set_phys_id(struct net_device *netdev,
1749 enum ethtool_phys_id_state state)
1750 {
1751 struct e1000_adapter *adapter = netdev_priv(netdev);
1752 struct e1000_hw *hw = &adapter->hw;
1753
1754 switch (state) {
1755 case ETHTOOL_ID_ACTIVE:
1756 e1000_setup_led(hw);
1757 return 2;
1758
1759 case ETHTOOL_ID_ON:
1760 e1000_led_on(hw);
1761 break;
1762
1763 case ETHTOOL_ID_OFF:
1764 e1000_led_off(hw);
1765 break;
1766
1767 case ETHTOOL_ID_INACTIVE:
1768 e1000_cleanup_led(hw);
1769 }
1770
1771 return 0;
1772 }
1773
1774 static int e1000_get_coalesce(struct net_device *netdev,
1775 struct ethtool_coalesce *ec)
1776 {
1777 struct e1000_adapter *adapter = netdev_priv(netdev);
1778
1779 if (adapter->hw.mac_type < e1000_82545)
1780 return -EOPNOTSUPP;
1781
1782 if (adapter->itr_setting <= 4)
1783 ec->rx_coalesce_usecs = adapter->itr_setting;
1784 else
1785 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1786
1787 return 0;
1788 }
1789
1790 static int e1000_set_coalesce(struct net_device *netdev,
1791 struct ethtool_coalesce *ec)
1792 {
1793 struct e1000_adapter *adapter = netdev_priv(netdev);
1794 struct e1000_hw *hw = &adapter->hw;
1795
1796 if (hw->mac_type < e1000_82545)
1797 return -EOPNOTSUPP;
1798
1799 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1800 ((ec->rx_coalesce_usecs > 4) &&
1801 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1802 (ec->rx_coalesce_usecs == 2))
1803 return -EINVAL;
1804
1805 if (ec->rx_coalesce_usecs == 4) {
1806 adapter->itr = adapter->itr_setting = 4;
1807 } else if (ec->rx_coalesce_usecs <= 3) {
1808 adapter->itr = 20000;
1809 adapter->itr_setting = ec->rx_coalesce_usecs;
1810 } else {
1811 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1812 adapter->itr_setting = adapter->itr & ~3;
1813 }
1814
1815 if (adapter->itr_setting != 0)
1816 ew32(ITR, 1000000000 / (adapter->itr * 256));
1817 else
1818 ew32(ITR, 0);
1819
1820 return 0;
1821 }
1822
1823 static int e1000_nway_reset(struct net_device *netdev)
1824 {
1825 struct e1000_adapter *adapter = netdev_priv(netdev);
1826 if (netif_running(netdev))
1827 e1000_reinit_locked(adapter);
1828 return 0;
1829 }
1830
1831 static void e1000_get_ethtool_stats(struct net_device *netdev,
1832 struct ethtool_stats *stats, u64 *data)
1833 {
1834 struct e1000_adapter *adapter = netdev_priv(netdev);
1835 int i;
1836 char *p = NULL;
1837
1838 e1000_update_stats(adapter);
1839 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1840 switch (e1000_gstrings_stats[i].type) {
1841 case NETDEV_STATS:
1842 p = (char *) netdev +
1843 e1000_gstrings_stats[i].stat_offset;
1844 break;
1845 case E1000_STATS:
1846 p = (char *) adapter +
1847 e1000_gstrings_stats[i].stat_offset;
1848 break;
1849 }
1850
1851 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1852 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1853 }
1854 /* BUG_ON(i != E1000_STATS_LEN); */
1855 }
1856
1857 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1858 u8 *data)
1859 {
1860 u8 *p = data;
1861 int i;
1862
1863 switch (stringset) {
1864 case ETH_SS_TEST:
1865 memcpy(data, *e1000_gstrings_test,
1866 sizeof(e1000_gstrings_test));
1867 break;
1868 case ETH_SS_STATS:
1869 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1870 memcpy(p, e1000_gstrings_stats[i].stat_string,
1871 ETH_GSTRING_LEN);
1872 p += ETH_GSTRING_LEN;
1873 }
1874 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1875 break;
1876 }
1877 }
1878
1879 static const struct ethtool_ops e1000_ethtool_ops = {
1880 .get_settings = e1000_get_settings,
1881 .set_settings = e1000_set_settings,
1882 .get_drvinfo = e1000_get_drvinfo,
1883 .get_regs_len = e1000_get_regs_len,
1884 .get_regs = e1000_get_regs,
1885 .get_wol = e1000_get_wol,
1886 .set_wol = e1000_set_wol,
1887 .get_msglevel = e1000_get_msglevel,
1888 .set_msglevel = e1000_set_msglevel,
1889 .nway_reset = e1000_nway_reset,
1890 .get_link = e1000_get_link,
1891 .get_eeprom_len = e1000_get_eeprom_len,
1892 .get_eeprom = e1000_get_eeprom,
1893 .set_eeprom = e1000_set_eeprom,
1894 .get_ringparam = e1000_get_ringparam,
1895 .set_ringparam = e1000_set_ringparam,
1896 .get_pauseparam = e1000_get_pauseparam,
1897 .set_pauseparam = e1000_set_pauseparam,
1898 .self_test = e1000_diag_test,
1899 .get_strings = e1000_get_strings,
1900 .set_phys_id = e1000_set_phys_id,
1901 .get_ethtool_stats = e1000_get_ethtool_stats,
1902 .get_sset_count = e1000_get_sset_count,
1903 .get_coalesce = e1000_get_coalesce,
1904 .set_coalesce = e1000_set_coalesce,
1905 .get_ts_info = ethtool_op_get_ts_info,
1906 };
1907
1908 void e1000_set_ethtool_ops(struct net_device *netdev)
1909 {
1910 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1911 }