]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/intel/e1000/e1000_ethtool.c
Merge tag 'mac80211-next-for-davem-2018-03-29' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*******************************************************************************
3 * Intel PRO/1000 Linux driver
4 * Copyright(c) 1999 - 2006 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
17 *
18 * Contact Information:
19 * Linux NICS <linux.nics@intel.com>
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 *
23 ******************************************************************************/
24
25 /* ethtool support for e1000 */
26
27 #include "e1000.h"
28 #include <linux/jiffies.h>
29 #include <linux/uaccess.h>
30
31 enum {NETDEV_STATS, E1000_STATS};
32
33 struct e1000_stats {
34 char stat_string[ETH_GSTRING_LEN];
35 int type;
36 int sizeof_stat;
37 int stat_offset;
38 };
39
40 #define E1000_STAT(m) E1000_STATS, \
41 sizeof(((struct e1000_adapter *)0)->m), \
42 offsetof(struct e1000_adapter, m)
43 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
44 sizeof(((struct net_device *)0)->m), \
45 offsetof(struct net_device, m)
46
47 static const struct e1000_stats e1000_gstrings_stats[] = {
48 { "rx_packets", E1000_STAT(stats.gprc) },
49 { "tx_packets", E1000_STAT(stats.gptc) },
50 { "rx_bytes", E1000_STAT(stats.gorcl) },
51 { "tx_bytes", E1000_STAT(stats.gotcl) },
52 { "rx_broadcast", E1000_STAT(stats.bprc) },
53 { "tx_broadcast", E1000_STAT(stats.bptc) },
54 { "rx_multicast", E1000_STAT(stats.mprc) },
55 { "tx_multicast", E1000_STAT(stats.mptc) },
56 { "rx_errors", E1000_STAT(stats.rxerrc) },
57 { "tx_errors", E1000_STAT(stats.txerrc) },
58 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
59 { "multicast", E1000_STAT(stats.mprc) },
60 { "collisions", E1000_STAT(stats.colc) },
61 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
62 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
63 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
64 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
65 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
66 { "rx_missed_errors", E1000_STAT(stats.mpc) },
67 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
68 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
69 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
70 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
71 { "tx_window_errors", E1000_STAT(stats.latecol) },
72 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
73 { "tx_deferred_ok", E1000_STAT(stats.dc) },
74 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
75 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
76 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
77 { "tx_restart_queue", E1000_STAT(restart_queue) },
78 { "rx_long_length_errors", E1000_STAT(stats.roc) },
79 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
80 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
81 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
82 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
83 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
84 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
85 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
86 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
87 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
88 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
89 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
90 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
91 { "tx_smbus", E1000_STAT(stats.mgptc) },
92 { "rx_smbus", E1000_STAT(stats.mgprc) },
93 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
94 };
95
96 #define E1000_QUEUE_STATS_LEN 0
97 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
98 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
99 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
100 "Register test (offline)", "Eeprom test (offline)",
101 "Interrupt test (offline)", "Loopback test (offline)",
102 "Link test (on/offline)"
103 };
104
105 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
106
107 static int e1000_get_link_ksettings(struct net_device *netdev,
108 struct ethtool_link_ksettings *cmd)
109 {
110 struct e1000_adapter *adapter = netdev_priv(netdev);
111 struct e1000_hw *hw = &adapter->hw;
112 u32 supported, advertising;
113
114 if (hw->media_type == e1000_media_type_copper) {
115 supported = (SUPPORTED_10baseT_Half |
116 SUPPORTED_10baseT_Full |
117 SUPPORTED_100baseT_Half |
118 SUPPORTED_100baseT_Full |
119 SUPPORTED_1000baseT_Full|
120 SUPPORTED_Autoneg |
121 SUPPORTED_TP);
122 advertising = ADVERTISED_TP;
123
124 if (hw->autoneg == 1) {
125 advertising |= ADVERTISED_Autoneg;
126 /* the e1000 autoneg seems to match ethtool nicely */
127 advertising |= hw->autoneg_advertised;
128 }
129
130 cmd->base.port = PORT_TP;
131 cmd->base.phy_address = hw->phy_addr;
132 } else {
133 supported = (SUPPORTED_1000baseT_Full |
134 SUPPORTED_FIBRE |
135 SUPPORTED_Autoneg);
136
137 advertising = (ADVERTISED_1000baseT_Full |
138 ADVERTISED_FIBRE |
139 ADVERTISED_Autoneg);
140
141 cmd->base.port = PORT_FIBRE;
142 }
143
144 if (er32(STATUS) & E1000_STATUS_LU) {
145 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
146 &adapter->link_duplex);
147 cmd->base.speed = adapter->link_speed;
148
149 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
150 * and HALF_DUPLEX != DUPLEX_HALF
151 */
152 if (adapter->link_duplex == FULL_DUPLEX)
153 cmd->base.duplex = DUPLEX_FULL;
154 else
155 cmd->base.duplex = DUPLEX_HALF;
156 } else {
157 cmd->base.speed = SPEED_UNKNOWN;
158 cmd->base.duplex = DUPLEX_UNKNOWN;
159 }
160
161 cmd->base.autoneg = ((hw->media_type == e1000_media_type_fiber) ||
162 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
163
164 /* MDI-X => 1; MDI => 0 */
165 if ((hw->media_type == e1000_media_type_copper) &&
166 netif_carrier_ok(netdev))
167 cmd->base.eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
168 ETH_TP_MDI_X : ETH_TP_MDI);
169 else
170 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
171
172 if (hw->mdix == AUTO_ALL_MODES)
173 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
174 else
175 cmd->base.eth_tp_mdix_ctrl = hw->mdix;
176
177 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
178 supported);
179 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
180 advertising);
181
182 return 0;
183 }
184
185 static int e1000_set_link_ksettings(struct net_device *netdev,
186 const struct ethtool_link_ksettings *cmd)
187 {
188 struct e1000_adapter *adapter = netdev_priv(netdev);
189 struct e1000_hw *hw = &adapter->hw;
190 u32 advertising;
191
192 ethtool_convert_link_mode_to_legacy_u32(&advertising,
193 cmd->link_modes.advertising);
194
195 /* MDI setting is only allowed when autoneg enabled because
196 * some hardware doesn't allow MDI setting when speed or
197 * duplex is forced.
198 */
199 if (cmd->base.eth_tp_mdix_ctrl) {
200 if (hw->media_type != e1000_media_type_copper)
201 return -EOPNOTSUPP;
202
203 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
204 (cmd->base.autoneg != AUTONEG_ENABLE)) {
205 e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
206 return -EINVAL;
207 }
208 }
209
210 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
211 msleep(1);
212
213 if (cmd->base.autoneg == AUTONEG_ENABLE) {
214 hw->autoneg = 1;
215 if (hw->media_type == e1000_media_type_fiber)
216 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
217 ADVERTISED_FIBRE |
218 ADVERTISED_Autoneg;
219 else
220 hw->autoneg_advertised = advertising |
221 ADVERTISED_TP |
222 ADVERTISED_Autoneg;
223 } else {
224 u32 speed = cmd->base.speed;
225 /* calling this overrides forced MDI setting */
226 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
227 clear_bit(__E1000_RESETTING, &adapter->flags);
228 return -EINVAL;
229 }
230 }
231
232 /* MDI-X => 2; MDI => 1; Auto => 3 */
233 if (cmd->base.eth_tp_mdix_ctrl) {
234 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
235 hw->mdix = AUTO_ALL_MODES;
236 else
237 hw->mdix = cmd->base.eth_tp_mdix_ctrl;
238 }
239
240 /* reset the link */
241
242 if (netif_running(adapter->netdev)) {
243 e1000_down(adapter);
244 e1000_up(adapter);
245 } else {
246 e1000_reset(adapter);
247 }
248 clear_bit(__E1000_RESETTING, &adapter->flags);
249 return 0;
250 }
251
252 static u32 e1000_get_link(struct net_device *netdev)
253 {
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255
256 /* If the link is not reported up to netdev, interrupts are disabled,
257 * and so the physical link state may have changed since we last
258 * looked. Set get_link_status to make sure that the true link
259 * state is interrogated, rather than pulling a cached and possibly
260 * stale link state from the driver.
261 */
262 if (!netif_carrier_ok(netdev))
263 adapter->hw.get_link_status = 1;
264
265 return e1000_has_link(adapter);
266 }
267
268 static void e1000_get_pauseparam(struct net_device *netdev,
269 struct ethtool_pauseparam *pause)
270 {
271 struct e1000_adapter *adapter = netdev_priv(netdev);
272 struct e1000_hw *hw = &adapter->hw;
273
274 pause->autoneg =
275 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
276
277 if (hw->fc == E1000_FC_RX_PAUSE) {
278 pause->rx_pause = 1;
279 } else if (hw->fc == E1000_FC_TX_PAUSE) {
280 pause->tx_pause = 1;
281 } else if (hw->fc == E1000_FC_FULL) {
282 pause->rx_pause = 1;
283 pause->tx_pause = 1;
284 }
285 }
286
287 static int e1000_set_pauseparam(struct net_device *netdev,
288 struct ethtool_pauseparam *pause)
289 {
290 struct e1000_adapter *adapter = netdev_priv(netdev);
291 struct e1000_hw *hw = &adapter->hw;
292 int retval = 0;
293
294 adapter->fc_autoneg = pause->autoneg;
295
296 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
297 msleep(1);
298
299 if (pause->rx_pause && pause->tx_pause)
300 hw->fc = E1000_FC_FULL;
301 else if (pause->rx_pause && !pause->tx_pause)
302 hw->fc = E1000_FC_RX_PAUSE;
303 else if (!pause->rx_pause && pause->tx_pause)
304 hw->fc = E1000_FC_TX_PAUSE;
305 else if (!pause->rx_pause && !pause->tx_pause)
306 hw->fc = E1000_FC_NONE;
307
308 hw->original_fc = hw->fc;
309
310 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
311 if (netif_running(adapter->netdev)) {
312 e1000_down(adapter);
313 e1000_up(adapter);
314 } else {
315 e1000_reset(adapter);
316 }
317 } else
318 retval = ((hw->media_type == e1000_media_type_fiber) ?
319 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
320
321 clear_bit(__E1000_RESETTING, &adapter->flags);
322 return retval;
323 }
324
325 static u32 e1000_get_msglevel(struct net_device *netdev)
326 {
327 struct e1000_adapter *adapter = netdev_priv(netdev);
328
329 return adapter->msg_enable;
330 }
331
332 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
333 {
334 struct e1000_adapter *adapter = netdev_priv(netdev);
335
336 adapter->msg_enable = data;
337 }
338
339 static int e1000_get_regs_len(struct net_device *netdev)
340 {
341 #define E1000_REGS_LEN 32
342 return E1000_REGS_LEN * sizeof(u32);
343 }
344
345 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
346 void *p)
347 {
348 struct e1000_adapter *adapter = netdev_priv(netdev);
349 struct e1000_hw *hw = &adapter->hw;
350 u32 *regs_buff = p;
351 u16 phy_data;
352
353 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
354
355 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
356
357 regs_buff[0] = er32(CTRL);
358 regs_buff[1] = er32(STATUS);
359
360 regs_buff[2] = er32(RCTL);
361 regs_buff[3] = er32(RDLEN);
362 regs_buff[4] = er32(RDH);
363 regs_buff[5] = er32(RDT);
364 regs_buff[6] = er32(RDTR);
365
366 regs_buff[7] = er32(TCTL);
367 regs_buff[8] = er32(TDLEN);
368 regs_buff[9] = er32(TDH);
369 regs_buff[10] = er32(TDT);
370 regs_buff[11] = er32(TIDV);
371
372 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
373 if (hw->phy_type == e1000_phy_igp) {
374 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
375 IGP01E1000_PHY_AGC_A);
376 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
377 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
378 regs_buff[13] = (u32)phy_data; /* cable length */
379 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
380 IGP01E1000_PHY_AGC_B);
381 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
382 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
383 regs_buff[14] = (u32)phy_data; /* cable length */
384 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
385 IGP01E1000_PHY_AGC_C);
386 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
387 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
388 regs_buff[15] = (u32)phy_data; /* cable length */
389 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
390 IGP01E1000_PHY_AGC_D);
391 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
392 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
393 regs_buff[16] = (u32)phy_data; /* cable length */
394 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
395 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
396 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
397 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
398 regs_buff[18] = (u32)phy_data; /* cable polarity */
399 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
400 IGP01E1000_PHY_PCS_INIT_REG);
401 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
402 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
403 regs_buff[19] = (u32)phy_data; /* cable polarity */
404 regs_buff[20] = 0; /* polarity correction enabled (always) */
405 regs_buff[22] = 0; /* phy receive errors (unavailable) */
406 regs_buff[23] = regs_buff[18]; /* mdix mode */
407 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
408 } else {
409 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
410 regs_buff[13] = (u32)phy_data; /* cable length */
411 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
412 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
413 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
414 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
415 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
416 regs_buff[18] = regs_buff[13]; /* cable polarity */
417 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
418 regs_buff[20] = regs_buff[17]; /* polarity correction */
419 /* phy receive errors */
420 regs_buff[22] = adapter->phy_stats.receive_errors;
421 regs_buff[23] = regs_buff[13]; /* mdix mode */
422 }
423 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
424 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
425 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
426 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
427 if (hw->mac_type >= e1000_82540 &&
428 hw->media_type == e1000_media_type_copper) {
429 regs_buff[26] = er32(MANC);
430 }
431 }
432
433 static int e1000_get_eeprom_len(struct net_device *netdev)
434 {
435 struct e1000_adapter *adapter = netdev_priv(netdev);
436 struct e1000_hw *hw = &adapter->hw;
437
438 return hw->eeprom.word_size * 2;
439 }
440
441 static int e1000_get_eeprom(struct net_device *netdev,
442 struct ethtool_eeprom *eeprom, u8 *bytes)
443 {
444 struct e1000_adapter *adapter = netdev_priv(netdev);
445 struct e1000_hw *hw = &adapter->hw;
446 u16 *eeprom_buff;
447 int first_word, last_word;
448 int ret_val = 0;
449 u16 i;
450
451 if (eeprom->len == 0)
452 return -EINVAL;
453
454 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
455
456 first_word = eeprom->offset >> 1;
457 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
458
459 eeprom_buff = kmalloc(sizeof(u16) *
460 (last_word - first_word + 1), GFP_KERNEL);
461 if (!eeprom_buff)
462 return -ENOMEM;
463
464 if (hw->eeprom.type == e1000_eeprom_spi)
465 ret_val = e1000_read_eeprom(hw, first_word,
466 last_word - first_word + 1,
467 eeprom_buff);
468 else {
469 for (i = 0; i < last_word - first_word + 1; i++) {
470 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
471 &eeprom_buff[i]);
472 if (ret_val)
473 break;
474 }
475 }
476
477 /* Device's eeprom is always little-endian, word addressable */
478 for (i = 0; i < last_word - first_word + 1; i++)
479 le16_to_cpus(&eeprom_buff[i]);
480
481 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
482 eeprom->len);
483 kfree(eeprom_buff);
484
485 return ret_val;
486 }
487
488 static int e1000_set_eeprom(struct net_device *netdev,
489 struct ethtool_eeprom *eeprom, u8 *bytes)
490 {
491 struct e1000_adapter *adapter = netdev_priv(netdev);
492 struct e1000_hw *hw = &adapter->hw;
493 u16 *eeprom_buff;
494 void *ptr;
495 int max_len, first_word, last_word, ret_val = 0;
496 u16 i;
497
498 if (eeprom->len == 0)
499 return -EOPNOTSUPP;
500
501 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
502 return -EFAULT;
503
504 max_len = hw->eeprom.word_size * 2;
505
506 first_word = eeprom->offset >> 1;
507 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
508 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
509 if (!eeprom_buff)
510 return -ENOMEM;
511
512 ptr = (void *)eeprom_buff;
513
514 if (eeprom->offset & 1) {
515 /* need read/modify/write of first changed EEPROM word
516 * only the second byte of the word is being modified
517 */
518 ret_val = e1000_read_eeprom(hw, first_word, 1,
519 &eeprom_buff[0]);
520 ptr++;
521 }
522 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
523 /* need read/modify/write of last changed EEPROM word
524 * only the first byte of the word is being modified
525 */
526 ret_val = e1000_read_eeprom(hw, last_word, 1,
527 &eeprom_buff[last_word - first_word]);
528 }
529
530 /* Device's eeprom is always little-endian, word addressable */
531 for (i = 0; i < last_word - first_word + 1; i++)
532 le16_to_cpus(&eeprom_buff[i]);
533
534 memcpy(ptr, bytes, eeprom->len);
535
536 for (i = 0; i < last_word - first_word + 1; i++)
537 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
538
539 ret_val = e1000_write_eeprom(hw, first_word,
540 last_word - first_word + 1, eeprom_buff);
541
542 /* Update the checksum over the first part of the EEPROM if needed */
543 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
544 e1000_update_eeprom_checksum(hw);
545
546 kfree(eeprom_buff);
547 return ret_val;
548 }
549
550 static void e1000_get_drvinfo(struct net_device *netdev,
551 struct ethtool_drvinfo *drvinfo)
552 {
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554
555 strlcpy(drvinfo->driver, e1000_driver_name,
556 sizeof(drvinfo->driver));
557 strlcpy(drvinfo->version, e1000_driver_version,
558 sizeof(drvinfo->version));
559
560 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
561 sizeof(drvinfo->bus_info));
562 }
563
564 static void e1000_get_ringparam(struct net_device *netdev,
565 struct ethtool_ringparam *ring)
566 {
567 struct e1000_adapter *adapter = netdev_priv(netdev);
568 struct e1000_hw *hw = &adapter->hw;
569 e1000_mac_type mac_type = hw->mac_type;
570 struct e1000_tx_ring *txdr = adapter->tx_ring;
571 struct e1000_rx_ring *rxdr = adapter->rx_ring;
572
573 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
574 E1000_MAX_82544_RXD;
575 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
576 E1000_MAX_82544_TXD;
577 ring->rx_pending = rxdr->count;
578 ring->tx_pending = txdr->count;
579 }
580
581 static int e1000_set_ringparam(struct net_device *netdev,
582 struct ethtool_ringparam *ring)
583 {
584 struct e1000_adapter *adapter = netdev_priv(netdev);
585 struct e1000_hw *hw = &adapter->hw;
586 e1000_mac_type mac_type = hw->mac_type;
587 struct e1000_tx_ring *txdr, *tx_old;
588 struct e1000_rx_ring *rxdr, *rx_old;
589 int i, err;
590
591 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
592 return -EINVAL;
593
594 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
595 msleep(1);
596
597 if (netif_running(adapter->netdev))
598 e1000_down(adapter);
599
600 tx_old = adapter->tx_ring;
601 rx_old = adapter->rx_ring;
602
603 err = -ENOMEM;
604 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
605 GFP_KERNEL);
606 if (!txdr)
607 goto err_alloc_tx;
608
609 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
610 GFP_KERNEL);
611 if (!rxdr)
612 goto err_alloc_rx;
613
614 adapter->tx_ring = txdr;
615 adapter->rx_ring = rxdr;
616
617 rxdr->count = max(ring->rx_pending, (u32)E1000_MIN_RXD);
618 rxdr->count = min(rxdr->count, (u32)(mac_type < e1000_82544 ?
619 E1000_MAX_RXD : E1000_MAX_82544_RXD));
620 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
621 txdr->count = max(ring->tx_pending, (u32)E1000_MIN_TXD);
622 txdr->count = min(txdr->count, (u32)(mac_type < e1000_82544 ?
623 E1000_MAX_TXD : E1000_MAX_82544_TXD));
624 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
625
626 for (i = 0; i < adapter->num_tx_queues; i++)
627 txdr[i].count = txdr->count;
628 for (i = 0; i < adapter->num_rx_queues; i++)
629 rxdr[i].count = rxdr->count;
630
631 if (netif_running(adapter->netdev)) {
632 /* Try to get new resources before deleting old */
633 err = e1000_setup_all_rx_resources(adapter);
634 if (err)
635 goto err_setup_rx;
636 err = e1000_setup_all_tx_resources(adapter);
637 if (err)
638 goto err_setup_tx;
639
640 /* save the new, restore the old in order to free it,
641 * then restore the new back again
642 */
643
644 adapter->rx_ring = rx_old;
645 adapter->tx_ring = tx_old;
646 e1000_free_all_rx_resources(adapter);
647 e1000_free_all_tx_resources(adapter);
648 kfree(tx_old);
649 kfree(rx_old);
650 adapter->rx_ring = rxdr;
651 adapter->tx_ring = txdr;
652 err = e1000_up(adapter);
653 if (err)
654 goto err_setup;
655 }
656
657 clear_bit(__E1000_RESETTING, &adapter->flags);
658 return 0;
659 err_setup_tx:
660 e1000_free_all_rx_resources(adapter);
661 err_setup_rx:
662 adapter->rx_ring = rx_old;
663 adapter->tx_ring = tx_old;
664 kfree(rxdr);
665 err_alloc_rx:
666 kfree(txdr);
667 err_alloc_tx:
668 e1000_up(adapter);
669 err_setup:
670 clear_bit(__E1000_RESETTING, &adapter->flags);
671 return err;
672 }
673
674 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
675 u32 mask, u32 write)
676 {
677 struct e1000_hw *hw = &adapter->hw;
678 static const u32 test[] = {
679 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
680 };
681 u8 __iomem *address = hw->hw_addr + reg;
682 u32 read;
683 int i;
684
685 for (i = 0; i < ARRAY_SIZE(test); i++) {
686 writel(write & test[i], address);
687 read = readl(address);
688 if (read != (write & test[i] & mask)) {
689 e_err(drv, "pattern test reg %04X failed: "
690 "got 0x%08X expected 0x%08X\n",
691 reg, read, (write & test[i] & mask));
692 *data = reg;
693 return true;
694 }
695 }
696 return false;
697 }
698
699 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
700 u32 mask, u32 write)
701 {
702 struct e1000_hw *hw = &adapter->hw;
703 u8 __iomem *address = hw->hw_addr + reg;
704 u32 read;
705
706 writel(write & mask, address);
707 read = readl(address);
708 if ((read & mask) != (write & mask)) {
709 e_err(drv, "set/check reg %04X test failed: "
710 "got 0x%08X expected 0x%08X\n",
711 reg, (read & mask), (write & mask));
712 *data = reg;
713 return true;
714 }
715 return false;
716 }
717
718 #define REG_PATTERN_TEST(reg, mask, write) \
719 do { \
720 if (reg_pattern_test(adapter, data, \
721 (hw->mac_type >= e1000_82543) \
722 ? E1000_##reg : E1000_82542_##reg, \
723 mask, write)) \
724 return 1; \
725 } while (0)
726
727 #define REG_SET_AND_CHECK(reg, mask, write) \
728 do { \
729 if (reg_set_and_check(adapter, data, \
730 (hw->mac_type >= e1000_82543) \
731 ? E1000_##reg : E1000_82542_##reg, \
732 mask, write)) \
733 return 1; \
734 } while (0)
735
736 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
737 {
738 u32 value, before, after;
739 u32 i, toggle;
740 struct e1000_hw *hw = &adapter->hw;
741
742 /* The status register is Read Only, so a write should fail.
743 * Some bits that get toggled are ignored.
744 */
745
746 /* there are several bits on newer hardware that are r/w */
747 toggle = 0xFFFFF833;
748
749 before = er32(STATUS);
750 value = (er32(STATUS) & toggle);
751 ew32(STATUS, toggle);
752 after = er32(STATUS) & toggle;
753 if (value != after) {
754 e_err(drv, "failed STATUS register test got: "
755 "0x%08X expected: 0x%08X\n", after, value);
756 *data = 1;
757 return 1;
758 }
759 /* restore previous status */
760 ew32(STATUS, before);
761
762 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
763 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
764 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
765 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
766
767 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
768 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
769 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
770 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
771 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
772 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
773 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
774 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
775 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
776 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
777
778 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
779
780 before = 0x06DFB3FE;
781 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
782 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
783
784 if (hw->mac_type >= e1000_82543) {
785 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
786 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
787 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
788 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
789 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
790 value = E1000_RAR_ENTRIES;
791 for (i = 0; i < value; i++) {
792 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2),
793 0x8003FFFF, 0xFFFFFFFF);
794 }
795 } else {
796 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
797 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
798 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
799 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
800 }
801
802 value = E1000_MC_TBL_SIZE;
803 for (i = 0; i < value; i++)
804 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
805
806 *data = 0;
807 return 0;
808 }
809
810 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
811 {
812 struct e1000_hw *hw = &adapter->hw;
813 u16 temp;
814 u16 checksum = 0;
815 u16 i;
816
817 *data = 0;
818 /* Read and add up the contents of the EEPROM */
819 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
820 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
821 *data = 1;
822 break;
823 }
824 checksum += temp;
825 }
826
827 /* If Checksum is not Correct return error else test passed */
828 if ((checksum != (u16)EEPROM_SUM) && !(*data))
829 *data = 2;
830
831 return *data;
832 }
833
834 static irqreturn_t e1000_test_intr(int irq, void *data)
835 {
836 struct net_device *netdev = (struct net_device *)data;
837 struct e1000_adapter *adapter = netdev_priv(netdev);
838 struct e1000_hw *hw = &adapter->hw;
839
840 adapter->test_icr |= er32(ICR);
841
842 return IRQ_HANDLED;
843 }
844
845 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
846 {
847 struct net_device *netdev = adapter->netdev;
848 u32 mask, i = 0;
849 bool shared_int = true;
850 u32 irq = adapter->pdev->irq;
851 struct e1000_hw *hw = &adapter->hw;
852
853 *data = 0;
854
855 /* NOTE: we don't test MSI interrupts here, yet
856 * Hook up test interrupt handler just for this test
857 */
858 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
859 netdev))
860 shared_int = false;
861 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
862 netdev->name, netdev)) {
863 *data = 1;
864 return -1;
865 }
866 e_info(hw, "testing %s interrupt\n", (shared_int ?
867 "shared" : "unshared"));
868
869 /* Disable all the interrupts */
870 ew32(IMC, 0xFFFFFFFF);
871 E1000_WRITE_FLUSH();
872 msleep(10);
873
874 /* Test each interrupt */
875 for (; i < 10; i++) {
876 /* Interrupt to test */
877 mask = 1 << i;
878
879 if (!shared_int) {
880 /* Disable the interrupt to be reported in
881 * the cause register and then force the same
882 * interrupt and see if one gets posted. If
883 * an interrupt was posted to the bus, the
884 * test failed.
885 */
886 adapter->test_icr = 0;
887 ew32(IMC, mask);
888 ew32(ICS, mask);
889 E1000_WRITE_FLUSH();
890 msleep(10);
891
892 if (adapter->test_icr & mask) {
893 *data = 3;
894 break;
895 }
896 }
897
898 /* Enable the interrupt to be reported in
899 * the cause register and then force the same
900 * interrupt and see if one gets posted. If
901 * an interrupt was not posted to the bus, the
902 * test failed.
903 */
904 adapter->test_icr = 0;
905 ew32(IMS, mask);
906 ew32(ICS, mask);
907 E1000_WRITE_FLUSH();
908 msleep(10);
909
910 if (!(adapter->test_icr & mask)) {
911 *data = 4;
912 break;
913 }
914
915 if (!shared_int) {
916 /* Disable the other interrupts to be reported in
917 * the cause register and then force the other
918 * interrupts and see if any get posted. If
919 * an interrupt was posted to the bus, the
920 * test failed.
921 */
922 adapter->test_icr = 0;
923 ew32(IMC, ~mask & 0x00007FFF);
924 ew32(ICS, ~mask & 0x00007FFF);
925 E1000_WRITE_FLUSH();
926 msleep(10);
927
928 if (adapter->test_icr) {
929 *data = 5;
930 break;
931 }
932 }
933 }
934
935 /* Disable all the interrupts */
936 ew32(IMC, 0xFFFFFFFF);
937 E1000_WRITE_FLUSH();
938 msleep(10);
939
940 /* Unhook test interrupt handler */
941 free_irq(irq, netdev);
942
943 return *data;
944 }
945
946 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
947 {
948 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
949 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
950 struct pci_dev *pdev = adapter->pdev;
951 int i;
952
953 if (txdr->desc && txdr->buffer_info) {
954 for (i = 0; i < txdr->count; i++) {
955 if (txdr->buffer_info[i].dma)
956 dma_unmap_single(&pdev->dev,
957 txdr->buffer_info[i].dma,
958 txdr->buffer_info[i].length,
959 DMA_TO_DEVICE);
960 if (txdr->buffer_info[i].skb)
961 dev_kfree_skb(txdr->buffer_info[i].skb);
962 }
963 }
964
965 if (rxdr->desc && rxdr->buffer_info) {
966 for (i = 0; i < rxdr->count; i++) {
967 if (rxdr->buffer_info[i].dma)
968 dma_unmap_single(&pdev->dev,
969 rxdr->buffer_info[i].dma,
970 E1000_RXBUFFER_2048,
971 DMA_FROM_DEVICE);
972 kfree(rxdr->buffer_info[i].rxbuf.data);
973 }
974 }
975
976 if (txdr->desc) {
977 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
978 txdr->dma);
979 txdr->desc = NULL;
980 }
981 if (rxdr->desc) {
982 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
983 rxdr->dma);
984 rxdr->desc = NULL;
985 }
986
987 kfree(txdr->buffer_info);
988 txdr->buffer_info = NULL;
989 kfree(rxdr->buffer_info);
990 rxdr->buffer_info = NULL;
991 }
992
993 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
994 {
995 struct e1000_hw *hw = &adapter->hw;
996 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
997 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
998 struct pci_dev *pdev = adapter->pdev;
999 u32 rctl;
1000 int i, ret_val;
1001
1002 /* Setup Tx descriptor ring and Tx buffers */
1003
1004 if (!txdr->count)
1005 txdr->count = E1000_DEFAULT_TXD;
1006
1007 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_tx_buffer),
1008 GFP_KERNEL);
1009 if (!txdr->buffer_info) {
1010 ret_val = 1;
1011 goto err_nomem;
1012 }
1013
1014 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1015 txdr->size = ALIGN(txdr->size, 4096);
1016 txdr->desc = dma_zalloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1017 GFP_KERNEL);
1018 if (!txdr->desc) {
1019 ret_val = 2;
1020 goto err_nomem;
1021 }
1022 txdr->next_to_use = txdr->next_to_clean = 0;
1023
1024 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1025 ew32(TDBAH, ((u64)txdr->dma >> 32));
1026 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1027 ew32(TDH, 0);
1028 ew32(TDT, 0);
1029 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1030 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1031 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1032
1033 for (i = 0; i < txdr->count; i++) {
1034 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1035 struct sk_buff *skb;
1036 unsigned int size = 1024;
1037
1038 skb = alloc_skb(size, GFP_KERNEL);
1039 if (!skb) {
1040 ret_val = 3;
1041 goto err_nomem;
1042 }
1043 skb_put(skb, size);
1044 txdr->buffer_info[i].skb = skb;
1045 txdr->buffer_info[i].length = skb->len;
1046 txdr->buffer_info[i].dma =
1047 dma_map_single(&pdev->dev, skb->data, skb->len,
1048 DMA_TO_DEVICE);
1049 if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1050 ret_val = 4;
1051 goto err_nomem;
1052 }
1053 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1054 tx_desc->lower.data = cpu_to_le32(skb->len);
1055 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1056 E1000_TXD_CMD_IFCS |
1057 E1000_TXD_CMD_RPS);
1058 tx_desc->upper.data = 0;
1059 }
1060
1061 /* Setup Rx descriptor ring and Rx buffers */
1062
1063 if (!rxdr->count)
1064 rxdr->count = E1000_DEFAULT_RXD;
1065
1066 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_rx_buffer),
1067 GFP_KERNEL);
1068 if (!rxdr->buffer_info) {
1069 ret_val = 5;
1070 goto err_nomem;
1071 }
1072
1073 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1074 rxdr->desc = dma_zalloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1075 GFP_KERNEL);
1076 if (!rxdr->desc) {
1077 ret_val = 6;
1078 goto err_nomem;
1079 }
1080 rxdr->next_to_use = rxdr->next_to_clean = 0;
1081
1082 rctl = er32(RCTL);
1083 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1084 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1085 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1086 ew32(RDLEN, rxdr->size);
1087 ew32(RDH, 0);
1088 ew32(RDT, 0);
1089 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1090 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1091 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1092 ew32(RCTL, rctl);
1093
1094 for (i = 0; i < rxdr->count; i++) {
1095 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1096 u8 *buf;
1097
1098 buf = kzalloc(E1000_RXBUFFER_2048 + NET_SKB_PAD + NET_IP_ALIGN,
1099 GFP_KERNEL);
1100 if (!buf) {
1101 ret_val = 7;
1102 goto err_nomem;
1103 }
1104 rxdr->buffer_info[i].rxbuf.data = buf;
1105
1106 rxdr->buffer_info[i].dma =
1107 dma_map_single(&pdev->dev,
1108 buf + NET_SKB_PAD + NET_IP_ALIGN,
1109 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1110 if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1111 ret_val = 8;
1112 goto err_nomem;
1113 }
1114 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1115 }
1116
1117 return 0;
1118
1119 err_nomem:
1120 e1000_free_desc_rings(adapter);
1121 return ret_val;
1122 }
1123
1124 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1125 {
1126 struct e1000_hw *hw = &adapter->hw;
1127
1128 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1129 e1000_write_phy_reg(hw, 29, 0x001F);
1130 e1000_write_phy_reg(hw, 30, 0x8FFC);
1131 e1000_write_phy_reg(hw, 29, 0x001A);
1132 e1000_write_phy_reg(hw, 30, 0x8FF0);
1133 }
1134
1135 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1136 {
1137 struct e1000_hw *hw = &adapter->hw;
1138 u16 phy_reg;
1139
1140 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1141 * Extended PHY Specific Control Register to 25MHz clock. This
1142 * value defaults back to a 2.5MHz clock when the PHY is reset.
1143 */
1144 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1145 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1146 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1147
1148 /* In addition, because of the s/w reset above, we need to enable
1149 * CRS on TX. This must be set for both full and half duplex
1150 * operation.
1151 */
1152 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1153 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1154 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1155 }
1156
1157 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1158 {
1159 struct e1000_hw *hw = &adapter->hw;
1160 u32 ctrl_reg;
1161 u16 phy_reg;
1162
1163 /* Setup the Device Control Register for PHY loopback test. */
1164
1165 ctrl_reg = er32(CTRL);
1166 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1167 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1168 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1169 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1170 E1000_CTRL_FD); /* Force Duplex to FULL */
1171
1172 ew32(CTRL, ctrl_reg);
1173
1174 /* Read the PHY Specific Control Register (0x10) */
1175 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1176
1177 /* Clear Auto-Crossover bits in PHY Specific Control Register
1178 * (bits 6:5).
1179 */
1180 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1181 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1182
1183 /* Perform software reset on the PHY */
1184 e1000_phy_reset(hw);
1185
1186 /* Have to setup TX_CLK and TX_CRS after software reset */
1187 e1000_phy_reset_clk_and_crs(adapter);
1188
1189 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1190
1191 /* Wait for reset to complete. */
1192 udelay(500);
1193
1194 /* Have to setup TX_CLK and TX_CRS after software reset */
1195 e1000_phy_reset_clk_and_crs(adapter);
1196
1197 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1198 e1000_phy_disable_receiver(adapter);
1199
1200 /* Set the loopback bit in the PHY control register. */
1201 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1202 phy_reg |= MII_CR_LOOPBACK;
1203 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1204
1205 /* Setup TX_CLK and TX_CRS one more time. */
1206 e1000_phy_reset_clk_and_crs(adapter);
1207
1208 /* Check Phy Configuration */
1209 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210 if (phy_reg != 0x4100)
1211 return 9;
1212
1213 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1214 if (phy_reg != 0x0070)
1215 return 10;
1216
1217 e1000_read_phy_reg(hw, 29, &phy_reg);
1218 if (phy_reg != 0x001A)
1219 return 11;
1220
1221 return 0;
1222 }
1223
1224 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1225 {
1226 struct e1000_hw *hw = &adapter->hw;
1227 u32 ctrl_reg = 0;
1228 u32 stat_reg = 0;
1229
1230 hw->autoneg = false;
1231
1232 if (hw->phy_type == e1000_phy_m88) {
1233 /* Auto-MDI/MDIX Off */
1234 e1000_write_phy_reg(hw,
1235 M88E1000_PHY_SPEC_CTRL, 0x0808);
1236 /* reset to update Auto-MDI/MDIX */
1237 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1238 /* autoneg off */
1239 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1240 }
1241
1242 ctrl_reg = er32(CTRL);
1243
1244 /* force 1000, set loopback */
1245 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1246
1247 /* Now set up the MAC to the same speed/duplex as the PHY. */
1248 ctrl_reg = er32(CTRL);
1249 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1250 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1251 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1252 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1253 E1000_CTRL_FD); /* Force Duplex to FULL */
1254
1255 if (hw->media_type == e1000_media_type_copper &&
1256 hw->phy_type == e1000_phy_m88)
1257 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1258 else {
1259 /* Set the ILOS bit on the fiber Nic is half
1260 * duplex link is detected.
1261 */
1262 stat_reg = er32(STATUS);
1263 if ((stat_reg & E1000_STATUS_FD) == 0)
1264 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1265 }
1266
1267 ew32(CTRL, ctrl_reg);
1268
1269 /* Disable the receiver on the PHY so when a cable is plugged in, the
1270 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1271 */
1272 if (hw->phy_type == e1000_phy_m88)
1273 e1000_phy_disable_receiver(adapter);
1274
1275 udelay(500);
1276
1277 return 0;
1278 }
1279
1280 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1281 {
1282 struct e1000_hw *hw = &adapter->hw;
1283 u16 phy_reg = 0;
1284 u16 count = 0;
1285
1286 switch (hw->mac_type) {
1287 case e1000_82543:
1288 if (hw->media_type == e1000_media_type_copper) {
1289 /* Attempt to setup Loopback mode on Non-integrated PHY.
1290 * Some PHY registers get corrupted at random, so
1291 * attempt this 10 times.
1292 */
1293 while (e1000_nonintegrated_phy_loopback(adapter) &&
1294 count++ < 10);
1295 if (count < 11)
1296 return 0;
1297 }
1298 break;
1299
1300 case e1000_82544:
1301 case e1000_82540:
1302 case e1000_82545:
1303 case e1000_82545_rev_3:
1304 case e1000_82546:
1305 case e1000_82546_rev_3:
1306 case e1000_82541:
1307 case e1000_82541_rev_2:
1308 case e1000_82547:
1309 case e1000_82547_rev_2:
1310 return e1000_integrated_phy_loopback(adapter);
1311 default:
1312 /* Default PHY loopback work is to read the MII
1313 * control register and assert bit 14 (loopback mode).
1314 */
1315 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1316 phy_reg |= MII_CR_LOOPBACK;
1317 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1318 return 0;
1319 }
1320
1321 return 8;
1322 }
1323
1324 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1325 {
1326 struct e1000_hw *hw = &adapter->hw;
1327 u32 rctl;
1328
1329 if (hw->media_type == e1000_media_type_fiber ||
1330 hw->media_type == e1000_media_type_internal_serdes) {
1331 switch (hw->mac_type) {
1332 case e1000_82545:
1333 case e1000_82546:
1334 case e1000_82545_rev_3:
1335 case e1000_82546_rev_3:
1336 return e1000_set_phy_loopback(adapter);
1337 default:
1338 rctl = er32(RCTL);
1339 rctl |= E1000_RCTL_LBM_TCVR;
1340 ew32(RCTL, rctl);
1341 return 0;
1342 }
1343 } else if (hw->media_type == e1000_media_type_copper) {
1344 return e1000_set_phy_loopback(adapter);
1345 }
1346
1347 return 7;
1348 }
1349
1350 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1351 {
1352 struct e1000_hw *hw = &adapter->hw;
1353 u32 rctl;
1354 u16 phy_reg;
1355
1356 rctl = er32(RCTL);
1357 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1358 ew32(RCTL, rctl);
1359
1360 switch (hw->mac_type) {
1361 case e1000_82545:
1362 case e1000_82546:
1363 case e1000_82545_rev_3:
1364 case e1000_82546_rev_3:
1365 default:
1366 hw->autoneg = true;
1367 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1368 if (phy_reg & MII_CR_LOOPBACK) {
1369 phy_reg &= ~MII_CR_LOOPBACK;
1370 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1371 e1000_phy_reset(hw);
1372 }
1373 break;
1374 }
1375 }
1376
1377 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1378 unsigned int frame_size)
1379 {
1380 memset(skb->data, 0xFF, frame_size);
1381 frame_size &= ~1;
1382 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1383 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1384 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1385 }
1386
1387 static int e1000_check_lbtest_frame(const unsigned char *data,
1388 unsigned int frame_size)
1389 {
1390 frame_size &= ~1;
1391 if (*(data + 3) == 0xFF) {
1392 if ((*(data + frame_size / 2 + 10) == 0xBE) &&
1393 (*(data + frame_size / 2 + 12) == 0xAF)) {
1394 return 0;
1395 }
1396 }
1397 return 13;
1398 }
1399
1400 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1401 {
1402 struct e1000_hw *hw = &adapter->hw;
1403 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1404 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1405 struct pci_dev *pdev = adapter->pdev;
1406 int i, j, k, l, lc, good_cnt, ret_val = 0;
1407 unsigned long time;
1408
1409 ew32(RDT, rxdr->count - 1);
1410
1411 /* Calculate the loop count based on the largest descriptor ring
1412 * The idea is to wrap the largest ring a number of times using 64
1413 * send/receive pairs during each loop
1414 */
1415
1416 if (rxdr->count <= txdr->count)
1417 lc = ((txdr->count / 64) * 2) + 1;
1418 else
1419 lc = ((rxdr->count / 64) * 2) + 1;
1420
1421 k = l = 0;
1422 for (j = 0; j <= lc; j++) { /* loop count loop */
1423 for (i = 0; i < 64; i++) { /* send the packets */
1424 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1425 1024);
1426 dma_sync_single_for_device(&pdev->dev,
1427 txdr->buffer_info[k].dma,
1428 txdr->buffer_info[k].length,
1429 DMA_TO_DEVICE);
1430 if (unlikely(++k == txdr->count))
1431 k = 0;
1432 }
1433 ew32(TDT, k);
1434 E1000_WRITE_FLUSH();
1435 msleep(200);
1436 time = jiffies; /* set the start time for the receive */
1437 good_cnt = 0;
1438 do { /* receive the sent packets */
1439 dma_sync_single_for_cpu(&pdev->dev,
1440 rxdr->buffer_info[l].dma,
1441 E1000_RXBUFFER_2048,
1442 DMA_FROM_DEVICE);
1443
1444 ret_val = e1000_check_lbtest_frame(
1445 rxdr->buffer_info[l].rxbuf.data +
1446 NET_SKB_PAD + NET_IP_ALIGN,
1447 1024);
1448 if (!ret_val)
1449 good_cnt++;
1450 if (unlikely(++l == rxdr->count))
1451 l = 0;
1452 /* time + 20 msecs (200 msecs on 2.4) is more than
1453 * enough time to complete the receives, if it's
1454 * exceeded, break and error off
1455 */
1456 } while (good_cnt < 64 && time_after(time + 20, jiffies));
1457
1458 if (good_cnt != 64) {
1459 ret_val = 13; /* ret_val is the same as mis-compare */
1460 break;
1461 }
1462 if (time_after_eq(jiffies, time + 2)) {
1463 ret_val = 14; /* error code for time out error */
1464 break;
1465 }
1466 } /* end loop count loop */
1467 return ret_val;
1468 }
1469
1470 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1471 {
1472 *data = e1000_setup_desc_rings(adapter);
1473 if (*data)
1474 goto out;
1475 *data = e1000_setup_loopback_test(adapter);
1476 if (*data)
1477 goto err_loopback;
1478 *data = e1000_run_loopback_test(adapter);
1479 e1000_loopback_cleanup(adapter);
1480
1481 err_loopback:
1482 e1000_free_desc_rings(adapter);
1483 out:
1484 return *data;
1485 }
1486
1487 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1488 {
1489 struct e1000_hw *hw = &adapter->hw;
1490 *data = 0;
1491 if (hw->media_type == e1000_media_type_internal_serdes) {
1492 int i = 0;
1493
1494 hw->serdes_has_link = false;
1495
1496 /* On some blade server designs, link establishment
1497 * could take as long as 2-3 minutes
1498 */
1499 do {
1500 e1000_check_for_link(hw);
1501 if (hw->serdes_has_link)
1502 return *data;
1503 msleep(20);
1504 } while (i++ < 3750);
1505
1506 *data = 1;
1507 } else {
1508 e1000_check_for_link(hw);
1509 if (hw->autoneg) /* if auto_neg is set wait for it */
1510 msleep(4000);
1511
1512 if (!(er32(STATUS) & E1000_STATUS_LU))
1513 *data = 1;
1514 }
1515 return *data;
1516 }
1517
1518 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1519 {
1520 switch (sset) {
1521 case ETH_SS_TEST:
1522 return E1000_TEST_LEN;
1523 case ETH_SS_STATS:
1524 return E1000_STATS_LEN;
1525 default:
1526 return -EOPNOTSUPP;
1527 }
1528 }
1529
1530 static void e1000_diag_test(struct net_device *netdev,
1531 struct ethtool_test *eth_test, u64 *data)
1532 {
1533 struct e1000_adapter *adapter = netdev_priv(netdev);
1534 struct e1000_hw *hw = &adapter->hw;
1535 bool if_running = netif_running(netdev);
1536
1537 set_bit(__E1000_TESTING, &adapter->flags);
1538 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1539 /* Offline tests */
1540
1541 /* save speed, duplex, autoneg settings */
1542 u16 autoneg_advertised = hw->autoneg_advertised;
1543 u8 forced_speed_duplex = hw->forced_speed_duplex;
1544 u8 autoneg = hw->autoneg;
1545
1546 e_info(hw, "offline testing starting\n");
1547
1548 /* Link test performed before hardware reset so autoneg doesn't
1549 * interfere with test result
1550 */
1551 if (e1000_link_test(adapter, &data[4]))
1552 eth_test->flags |= ETH_TEST_FL_FAILED;
1553
1554 if (if_running)
1555 /* indicate we're in test mode */
1556 e1000_close(netdev);
1557 else
1558 e1000_reset(adapter);
1559
1560 if (e1000_reg_test(adapter, &data[0]))
1561 eth_test->flags |= ETH_TEST_FL_FAILED;
1562
1563 e1000_reset(adapter);
1564 if (e1000_eeprom_test(adapter, &data[1]))
1565 eth_test->flags |= ETH_TEST_FL_FAILED;
1566
1567 e1000_reset(adapter);
1568 if (e1000_intr_test(adapter, &data[2]))
1569 eth_test->flags |= ETH_TEST_FL_FAILED;
1570
1571 e1000_reset(adapter);
1572 /* make sure the phy is powered up */
1573 e1000_power_up_phy(adapter);
1574 if (e1000_loopback_test(adapter, &data[3]))
1575 eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577 /* restore speed, duplex, autoneg settings */
1578 hw->autoneg_advertised = autoneg_advertised;
1579 hw->forced_speed_duplex = forced_speed_duplex;
1580 hw->autoneg = autoneg;
1581
1582 e1000_reset(adapter);
1583 clear_bit(__E1000_TESTING, &adapter->flags);
1584 if (if_running)
1585 e1000_open(netdev);
1586 } else {
1587 e_info(hw, "online testing starting\n");
1588 /* Online tests */
1589 if (e1000_link_test(adapter, &data[4]))
1590 eth_test->flags |= ETH_TEST_FL_FAILED;
1591
1592 /* Online tests aren't run; pass by default */
1593 data[0] = 0;
1594 data[1] = 0;
1595 data[2] = 0;
1596 data[3] = 0;
1597
1598 clear_bit(__E1000_TESTING, &adapter->flags);
1599 }
1600 msleep_interruptible(4 * 1000);
1601 }
1602
1603 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1604 struct ethtool_wolinfo *wol)
1605 {
1606 struct e1000_hw *hw = &adapter->hw;
1607 int retval = 1; /* fail by default */
1608
1609 switch (hw->device_id) {
1610 case E1000_DEV_ID_82542:
1611 case E1000_DEV_ID_82543GC_FIBER:
1612 case E1000_DEV_ID_82543GC_COPPER:
1613 case E1000_DEV_ID_82544EI_FIBER:
1614 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1615 case E1000_DEV_ID_82545EM_FIBER:
1616 case E1000_DEV_ID_82545EM_COPPER:
1617 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1618 case E1000_DEV_ID_82546GB_PCIE:
1619 /* these don't support WoL at all */
1620 wol->supported = 0;
1621 break;
1622 case E1000_DEV_ID_82546EB_FIBER:
1623 case E1000_DEV_ID_82546GB_FIBER:
1624 /* Wake events not supported on port B */
1625 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1626 wol->supported = 0;
1627 break;
1628 }
1629 /* return success for non excluded adapter ports */
1630 retval = 0;
1631 break;
1632 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1633 /* quad port adapters only support WoL on port A */
1634 if (!adapter->quad_port_a) {
1635 wol->supported = 0;
1636 break;
1637 }
1638 /* return success for non excluded adapter ports */
1639 retval = 0;
1640 break;
1641 default:
1642 /* dual port cards only support WoL on port A from now on
1643 * unless it was enabled in the eeprom for port B
1644 * so exclude FUNC_1 ports from having WoL enabled
1645 */
1646 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1647 !adapter->eeprom_wol) {
1648 wol->supported = 0;
1649 break;
1650 }
1651
1652 retval = 0;
1653 }
1654
1655 return retval;
1656 }
1657
1658 static void e1000_get_wol(struct net_device *netdev,
1659 struct ethtool_wolinfo *wol)
1660 {
1661 struct e1000_adapter *adapter = netdev_priv(netdev);
1662 struct e1000_hw *hw = &adapter->hw;
1663
1664 wol->supported = WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | WAKE_MAGIC;
1665 wol->wolopts = 0;
1666
1667 /* this function will set ->supported = 0 and return 1 if wol is not
1668 * supported by this hardware
1669 */
1670 if (e1000_wol_exclusion(adapter, wol) ||
1671 !device_can_wakeup(&adapter->pdev->dev))
1672 return;
1673
1674 /* apply any specific unsupported masks here */
1675 switch (hw->device_id) {
1676 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1677 /* KSP3 does not support UCAST wake-ups */
1678 wol->supported &= ~WAKE_UCAST;
1679
1680 if (adapter->wol & E1000_WUFC_EX)
1681 e_err(drv, "Interface does not support directed "
1682 "(unicast) frame wake-up packets\n");
1683 break;
1684 default:
1685 break;
1686 }
1687
1688 if (adapter->wol & E1000_WUFC_EX)
1689 wol->wolopts |= WAKE_UCAST;
1690 if (adapter->wol & E1000_WUFC_MC)
1691 wol->wolopts |= WAKE_MCAST;
1692 if (adapter->wol & E1000_WUFC_BC)
1693 wol->wolopts |= WAKE_BCAST;
1694 if (adapter->wol & E1000_WUFC_MAG)
1695 wol->wolopts |= WAKE_MAGIC;
1696 }
1697
1698 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1699 {
1700 struct e1000_adapter *adapter = netdev_priv(netdev);
1701 struct e1000_hw *hw = &adapter->hw;
1702
1703 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1704 return -EOPNOTSUPP;
1705
1706 if (e1000_wol_exclusion(adapter, wol) ||
1707 !device_can_wakeup(&adapter->pdev->dev))
1708 return wol->wolopts ? -EOPNOTSUPP : 0;
1709
1710 switch (hw->device_id) {
1711 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1712 if (wol->wolopts & WAKE_UCAST) {
1713 e_err(drv, "Interface does not support directed "
1714 "(unicast) frame wake-up packets\n");
1715 return -EOPNOTSUPP;
1716 }
1717 break;
1718 default:
1719 break;
1720 }
1721
1722 /* these settings will always override what we currently have */
1723 adapter->wol = 0;
1724
1725 if (wol->wolopts & WAKE_UCAST)
1726 adapter->wol |= E1000_WUFC_EX;
1727 if (wol->wolopts & WAKE_MCAST)
1728 adapter->wol |= E1000_WUFC_MC;
1729 if (wol->wolopts & WAKE_BCAST)
1730 adapter->wol |= E1000_WUFC_BC;
1731 if (wol->wolopts & WAKE_MAGIC)
1732 adapter->wol |= E1000_WUFC_MAG;
1733
1734 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1735
1736 return 0;
1737 }
1738
1739 static int e1000_set_phys_id(struct net_device *netdev,
1740 enum ethtool_phys_id_state state)
1741 {
1742 struct e1000_adapter *adapter = netdev_priv(netdev);
1743 struct e1000_hw *hw = &adapter->hw;
1744
1745 switch (state) {
1746 case ETHTOOL_ID_ACTIVE:
1747 e1000_setup_led(hw);
1748 return 2;
1749
1750 case ETHTOOL_ID_ON:
1751 e1000_led_on(hw);
1752 break;
1753
1754 case ETHTOOL_ID_OFF:
1755 e1000_led_off(hw);
1756 break;
1757
1758 case ETHTOOL_ID_INACTIVE:
1759 e1000_cleanup_led(hw);
1760 }
1761
1762 return 0;
1763 }
1764
1765 static int e1000_get_coalesce(struct net_device *netdev,
1766 struct ethtool_coalesce *ec)
1767 {
1768 struct e1000_adapter *adapter = netdev_priv(netdev);
1769
1770 if (adapter->hw.mac_type < e1000_82545)
1771 return -EOPNOTSUPP;
1772
1773 if (adapter->itr_setting <= 4)
1774 ec->rx_coalesce_usecs = adapter->itr_setting;
1775 else
1776 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1777
1778 return 0;
1779 }
1780
1781 static int e1000_set_coalesce(struct net_device *netdev,
1782 struct ethtool_coalesce *ec)
1783 {
1784 struct e1000_adapter *adapter = netdev_priv(netdev);
1785 struct e1000_hw *hw = &adapter->hw;
1786
1787 if (hw->mac_type < e1000_82545)
1788 return -EOPNOTSUPP;
1789
1790 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1791 ((ec->rx_coalesce_usecs > 4) &&
1792 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1793 (ec->rx_coalesce_usecs == 2))
1794 return -EINVAL;
1795
1796 if (ec->rx_coalesce_usecs == 4) {
1797 adapter->itr = adapter->itr_setting = 4;
1798 } else if (ec->rx_coalesce_usecs <= 3) {
1799 adapter->itr = 20000;
1800 adapter->itr_setting = ec->rx_coalesce_usecs;
1801 } else {
1802 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1803 adapter->itr_setting = adapter->itr & ~3;
1804 }
1805
1806 if (adapter->itr_setting != 0)
1807 ew32(ITR, 1000000000 / (adapter->itr * 256));
1808 else
1809 ew32(ITR, 0);
1810
1811 return 0;
1812 }
1813
1814 static int e1000_nway_reset(struct net_device *netdev)
1815 {
1816 struct e1000_adapter *adapter = netdev_priv(netdev);
1817
1818 if (netif_running(netdev))
1819 e1000_reinit_locked(adapter);
1820 return 0;
1821 }
1822
1823 static void e1000_get_ethtool_stats(struct net_device *netdev,
1824 struct ethtool_stats *stats, u64 *data)
1825 {
1826 struct e1000_adapter *adapter = netdev_priv(netdev);
1827 int i;
1828 const struct e1000_stats *stat = e1000_gstrings_stats;
1829
1830 e1000_update_stats(adapter);
1831 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++, stat++) {
1832 char *p;
1833
1834 switch (stat->type) {
1835 case NETDEV_STATS:
1836 p = (char *)netdev + stat->stat_offset;
1837 break;
1838 case E1000_STATS:
1839 p = (char *)adapter + stat->stat_offset;
1840 break;
1841 default:
1842 netdev_WARN_ONCE(netdev, "Invalid E1000 stat type: %u index %d\n",
1843 stat->type, i);
1844 continue;
1845 }
1846
1847 if (stat->sizeof_stat == sizeof(u64))
1848 data[i] = *(u64 *)p;
1849 else
1850 data[i] = *(u32 *)p;
1851 }
1852 /* BUG_ON(i != E1000_STATS_LEN); */
1853 }
1854
1855 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856 u8 *data)
1857 {
1858 u8 *p = data;
1859 int i;
1860
1861 switch (stringset) {
1862 case ETH_SS_TEST:
1863 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
1864 break;
1865 case ETH_SS_STATS:
1866 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1867 memcpy(p, e1000_gstrings_stats[i].stat_string,
1868 ETH_GSTRING_LEN);
1869 p += ETH_GSTRING_LEN;
1870 }
1871 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1872 break;
1873 }
1874 }
1875
1876 static const struct ethtool_ops e1000_ethtool_ops = {
1877 .get_drvinfo = e1000_get_drvinfo,
1878 .get_regs_len = e1000_get_regs_len,
1879 .get_regs = e1000_get_regs,
1880 .get_wol = e1000_get_wol,
1881 .set_wol = e1000_set_wol,
1882 .get_msglevel = e1000_get_msglevel,
1883 .set_msglevel = e1000_set_msglevel,
1884 .nway_reset = e1000_nway_reset,
1885 .get_link = e1000_get_link,
1886 .get_eeprom_len = e1000_get_eeprom_len,
1887 .get_eeprom = e1000_get_eeprom,
1888 .set_eeprom = e1000_set_eeprom,
1889 .get_ringparam = e1000_get_ringparam,
1890 .set_ringparam = e1000_set_ringparam,
1891 .get_pauseparam = e1000_get_pauseparam,
1892 .set_pauseparam = e1000_set_pauseparam,
1893 .self_test = e1000_diag_test,
1894 .get_strings = e1000_get_strings,
1895 .set_phys_id = e1000_set_phys_id,
1896 .get_ethtool_stats = e1000_get_ethtool_stats,
1897 .get_sset_count = e1000_get_sset_count,
1898 .get_coalesce = e1000_get_coalesce,
1899 .set_coalesce = e1000_set_coalesce,
1900 .get_ts_info = ethtool_op_get_ts_info,
1901 .get_link_ksettings = e1000_get_link_ksettings,
1902 .set_link_ksettings = e1000_set_link_ksettings,
1903 };
1904
1905 void e1000_set_ethtool_ops(struct net_device *netdev)
1906 {
1907 netdev->ethtool_ops = &e1000_ethtool_ops;
1908 }