]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/e1000/e1000_main.c
max17042_battery: Fix build errors caused by missing REGMAP_I2C config
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190 "Maximum size of packet that is copied to a new buffer on receive");
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193 pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static const struct pci_error_handlers e1000_err_handler = {
198 .error_detected = e1000_io_error_detected,
199 .slot_reset = e1000_io_slot_reset,
200 .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204 .name = e1000_driver_name,
205 .id_table = e1000_pci_tbl,
206 .probe = e1000_probe,
207 .remove = e1000_remove,
208 #ifdef CONFIG_PM
209 /* Power Management Hooks */
210 .suspend = e1000_suspend,
211 .resume = e1000_resume,
212 #endif
213 .shutdown = e1000_shutdown,
214 .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227 /**
228 * e1000_get_hw_dev - return device
229 * used by hardware layer to print debugging information
230 *
231 **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234 struct e1000_adapter *adapter = hw->back;
235 return adapter->netdev;
236 }
237
238 /**
239 * e1000_init_module - Driver Registration Routine
240 *
241 * e1000_init_module is the first routine called when the driver is
242 * loaded. All it does is register with the PCI subsystem.
243 **/
244 static int __init e1000_init_module(void)
245 {
246 int ret;
247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249 pr_info("%s\n", e1000_copyright);
250
251 ret = pci_register_driver(&e1000_driver);
252 if (copybreak != COPYBREAK_DEFAULT) {
253 if (copybreak == 0)
254 pr_info("copybreak disabled\n");
255 else
256 pr_info("copybreak enabled for "
257 "packets <= %u bytes\n", copybreak);
258 }
259 return ret;
260 }
261
262 module_init(e1000_init_module);
263
264 /**
265 * e1000_exit_module - Driver Exit Cleanup Routine
266 *
267 * e1000_exit_module is called just before the driver is removed
268 * from memory.
269 **/
270 static void __exit e1000_exit_module(void)
271 {
272 pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306 struct e1000_hw *hw = &adapter->hw;
307
308 ew32(IMC, ~0);
309 E1000_WRITE_FLUSH();
310 synchronize_irq(adapter->pdev->irq);
311 }
312
313 /**
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
316 **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319 struct e1000_hw *hw = &adapter->hw;
320
321 ew32(IMS, IMS_ENABLE_MASK);
322 E1000_WRITE_FLUSH();
323 }
324
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327 struct e1000_hw *hw = &adapter->hw;
328 struct net_device *netdev = adapter->netdev;
329 u16 vid = hw->mng_cookie.vlan_id;
330 u16 old_vid = adapter->mng_vlan_id;
331
332 if (!e1000_vlan_used(adapter))
333 return;
334
335 if (!test_bit(vid, adapter->active_vlans)) {
336 if (hw->mng_cookie.status &
337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 adapter->mng_vlan_id = vid;
340 } else {
341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 }
343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 (vid != old_vid) &&
345 !test_bit(old_vid, adapter->active_vlans))
346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 old_vid);
348 } else {
349 adapter->mng_vlan_id = vid;
350 }
351 }
352
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355 struct e1000_hw *hw = &adapter->hw;
356
357 if (adapter->en_mng_pt) {
358 u32 manc = er32(MANC);
359
360 /* disable hardware interception of ARP */
361 manc &= ~(E1000_MANC_ARP_EN);
362
363 ew32(MANC, manc);
364 }
365 }
366
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369 struct e1000_hw *hw = &adapter->hw;
370
371 if (adapter->en_mng_pt) {
372 u32 manc = er32(MANC);
373
374 /* re-enable hardware interception of ARP */
375 manc |= E1000_MANC_ARP_EN;
376
377 ew32(MANC, manc);
378 }
379 }
380
381 /**
382 * e1000_configure - configure the hardware for RX and TX
383 * @adapter = private board structure
384 **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387 struct net_device *netdev = adapter->netdev;
388 int i;
389
390 e1000_set_rx_mode(netdev);
391
392 e1000_restore_vlan(adapter);
393 e1000_init_manageability(adapter);
394
395 e1000_configure_tx(adapter);
396 e1000_setup_rctl(adapter);
397 e1000_configure_rx(adapter);
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
400 * next_to_use != next_to_clean
401 */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427 }
428
429 /**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439 struct e1000_hw *hw = &adapter->hw;
440 u16 mii_reg = 0;
441
442 /* Just clear the power down bit to wake the phy back up */
443 if (hw->media_type == e1000_media_type_copper) {
444 /* according to the manual, the phy will retain its
445 * settings across a power-down/up cycle
446 */
447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 mii_reg &= ~MII_CR_POWER_DOWN;
449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 }
451 }
452
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455 struct e1000_hw *hw = &adapter->hw;
456
457 /* Power down the PHY so no link is implied when interface is down *
458 * The PHY cannot be powered down if any of the following is true *
459 * (a) WoL is enabled
460 * (b) AMT is active
461 * (c) SoL/IDER session is active
462 */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489 out:
490 return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 cancel_work_sync(&adapter->reset_task);
500
501 cancel_delayed_work_sync(&adapter->watchdog_task);
502 cancel_delayed_work_sync(&adapter->phy_info_task);
503 cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508 struct e1000_hw *hw = &adapter->hw;
509 struct net_device *netdev = adapter->netdev;
510 u32 rctl, tctl;
511
512
513 /* disable receives in the hardware */
514 rctl = er32(RCTL);
515 ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 /* flush and sleep below */
517
518 netif_tx_disable(netdev);
519
520 /* disable transmits in the hardware */
521 tctl = er32(TCTL);
522 tctl &= ~E1000_TCTL_EN;
523 ew32(TCTL, tctl);
524 /* flush both disables and wait for them to finish */
525 E1000_WRITE_FLUSH();
526 msleep(10);
527
528 napi_disable(&adapter->napi);
529
530 e1000_irq_disable(adapter);
531
532 /* Setting DOWN must be after irq_disable to prevent
533 * a screaming interrupt. Setting DOWN also prevents
534 * tasks from rescheduling.
535 */
536 e1000_down_and_stop(adapter);
537
538 adapter->link_speed = 0;
539 adapter->link_duplex = 0;
540 netif_carrier_off(netdev);
541
542 e1000_reset(adapter);
543 e1000_clean_all_tx_rings(adapter);
544 e1000_clean_all_rx_rings(adapter);
545 }
546
547 static void e1000_reinit_safe(struct e1000_adapter *adapter)
548 {
549 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
550 msleep(1);
551 mutex_lock(&adapter->mutex);
552 e1000_down(adapter);
553 e1000_up(adapter);
554 mutex_unlock(&adapter->mutex);
555 clear_bit(__E1000_RESETTING, &adapter->flags);
556 }
557
558 void e1000_reinit_locked(struct e1000_adapter *adapter)
559 {
560 /* if rtnl_lock is not held the call path is bogus */
561 ASSERT_RTNL();
562 WARN_ON(in_interrupt());
563 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
564 msleep(1);
565 e1000_down(adapter);
566 e1000_up(adapter);
567 clear_bit(__E1000_RESETTING, &adapter->flags);
568 }
569
570 void e1000_reset(struct e1000_adapter *adapter)
571 {
572 struct e1000_hw *hw = &adapter->hw;
573 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
574 bool legacy_pba_adjust = false;
575 u16 hwm;
576
577 /* Repartition Pba for greater than 9k mtu
578 * To take effect CTRL.RST is required.
579 */
580
581 switch (hw->mac_type) {
582 case e1000_82542_rev2_0:
583 case e1000_82542_rev2_1:
584 case e1000_82543:
585 case e1000_82544:
586 case e1000_82540:
587 case e1000_82541:
588 case e1000_82541_rev_2:
589 legacy_pba_adjust = true;
590 pba = E1000_PBA_48K;
591 break;
592 case e1000_82545:
593 case e1000_82545_rev_3:
594 case e1000_82546:
595 case e1000_ce4100:
596 case e1000_82546_rev_3:
597 pba = E1000_PBA_48K;
598 break;
599 case e1000_82547:
600 case e1000_82547_rev_2:
601 legacy_pba_adjust = true;
602 pba = E1000_PBA_30K;
603 break;
604 case e1000_undefined:
605 case e1000_num_macs:
606 break;
607 }
608
609 if (legacy_pba_adjust) {
610 if (hw->max_frame_size > E1000_RXBUFFER_8192)
611 pba -= 8; /* allocate more FIFO for Tx */
612
613 if (hw->mac_type == e1000_82547) {
614 adapter->tx_fifo_head = 0;
615 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
616 adapter->tx_fifo_size =
617 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
618 atomic_set(&adapter->tx_fifo_stall, 0);
619 }
620 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
621 /* adjust PBA for jumbo frames */
622 ew32(PBA, pba);
623
624 /* To maintain wire speed transmits, the Tx FIFO should be
625 * large enough to accommodate two full transmit packets,
626 * rounded up to the next 1KB and expressed in KB. Likewise,
627 * the Rx FIFO should be large enough to accommodate at least
628 * one full receive packet and is similarly rounded up and
629 * expressed in KB.
630 */
631 pba = er32(PBA);
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space = pba >> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 pba &= 0xffff;
636 /* the Tx fifo also stores 16 bytes of information about the Tx
637 * but don't include ethernet FCS because hardware appends it
638 */
639 min_tx_space = (hw->max_frame_size +
640 sizeof(struct e1000_tx_desc) -
641 ETH_FCS_LEN) * 2;
642 min_tx_space = ALIGN(min_tx_space, 1024);
643 min_tx_space >>= 10;
644 /* software strips receive CRC, so leave room for it */
645 min_rx_space = hw->max_frame_size;
646 min_rx_space = ALIGN(min_rx_space, 1024);
647 min_rx_space >>= 10;
648
649 /* If current Tx allocation is less than the min Tx FIFO size,
650 * and the min Tx FIFO size is less than the current Rx FIFO
651 * allocation, take space away from current Rx allocation
652 */
653 if (tx_space < min_tx_space &&
654 ((min_tx_space - tx_space) < pba)) {
655 pba = pba - (min_tx_space - tx_space);
656
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw->mac_type) {
659 case e1000_82545 ... e1000_82546_rev_3:
660 pba &= ~(E1000_PBA_8K - 1);
661 break;
662 default:
663 break;
664 }
665
666 /* if short on Rx space, Rx wins and must trump Tx
667 * adjustment or use Early Receive if available
668 */
669 if (pba < min_rx_space)
670 pba = min_rx_space;
671 }
672 }
673
674 ew32(PBA, pba);
675
676 /* flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
684 */
685 hwm = min(((pba << 10) * 9 / 10),
686 ((pba << 10) - hw->max_frame_size));
687
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
689 hw->fc_low_water = hw->fc_high_water - 8;
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc_send_xon = 1;
692 hw->fc = hw->original_fc;
693
694 /* Allow time for pending master requests to run */
695 e1000_reset_hw(hw);
696 if (hw->mac_type >= e1000_82544)
697 ew32(WUC, 0);
698
699 if (e1000_init_hw(hw))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter);
702
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg == 1 &&
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 u32 ctrl = er32(CTRL);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload
711 */
712 ctrl &= ~E1000_CTRL_SWDPIN3;
713 ew32(CTRL, ctrl);
714 }
715
716 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
717 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
718
719 e1000_reset_adaptive(hw);
720 e1000_phy_get_info(hw, &adapter->phy_info);
721
722 e1000_release_manageability(adapter);
723 }
724
725 /* Dump the eeprom for users having checksum issues */
726 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
727 {
728 struct net_device *netdev = adapter->netdev;
729 struct ethtool_eeprom eeprom;
730 const struct ethtool_ops *ops = netdev->ethtool_ops;
731 u8 *data;
732 int i;
733 u16 csum_old, csum_new = 0;
734
735 eeprom.len = ops->get_eeprom_len(netdev);
736 eeprom.offset = 0;
737
738 data = kmalloc(eeprom.len, GFP_KERNEL);
739 if (!data)
740 return;
741
742 ops->get_eeprom(netdev, &eeprom, data);
743
744 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
745 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
746 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
747 csum_new += data[i] + (data[i + 1] << 8);
748 csum_new = EEPROM_SUM - csum_new;
749
750 pr_err("/*********************/\n");
751 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
752 pr_err("Calculated : 0x%04x\n", csum_new);
753
754 pr_err("Offset Values\n");
755 pr_err("======== ======\n");
756 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
757
758 pr_err("Include this output when contacting your support provider.\n");
759 pr_err("This is not a software error! Something bad happened to\n");
760 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
761 pr_err("result in further problems, possibly loss of data,\n");
762 pr_err("corruption or system hangs!\n");
763 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
764 pr_err("which is invalid and requires you to set the proper MAC\n");
765 pr_err("address manually before continuing to enable this network\n");
766 pr_err("device. Please inspect the EEPROM dump and report the\n");
767 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
768 pr_err("/*********************/\n");
769
770 kfree(data);
771 }
772
773 /**
774 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
775 * @pdev: PCI device information struct
776 *
777 * Return true if an adapter needs ioport resources
778 **/
779 static int e1000_is_need_ioport(struct pci_dev *pdev)
780 {
781 switch (pdev->device) {
782 case E1000_DEV_ID_82540EM:
783 case E1000_DEV_ID_82540EM_LOM:
784 case E1000_DEV_ID_82540EP:
785 case E1000_DEV_ID_82540EP_LOM:
786 case E1000_DEV_ID_82540EP_LP:
787 case E1000_DEV_ID_82541EI:
788 case E1000_DEV_ID_82541EI_MOBILE:
789 case E1000_DEV_ID_82541ER:
790 case E1000_DEV_ID_82541ER_LOM:
791 case E1000_DEV_ID_82541GI:
792 case E1000_DEV_ID_82541GI_LF:
793 case E1000_DEV_ID_82541GI_MOBILE:
794 case E1000_DEV_ID_82544EI_COPPER:
795 case E1000_DEV_ID_82544EI_FIBER:
796 case E1000_DEV_ID_82544GC_COPPER:
797 case E1000_DEV_ID_82544GC_LOM:
798 case E1000_DEV_ID_82545EM_COPPER:
799 case E1000_DEV_ID_82545EM_FIBER:
800 case E1000_DEV_ID_82546EB_COPPER:
801 case E1000_DEV_ID_82546EB_FIBER:
802 case E1000_DEV_ID_82546EB_QUAD_COPPER:
803 return true;
804 default:
805 return false;
806 }
807 }
808
809 static netdev_features_t e1000_fix_features(struct net_device *netdev,
810 netdev_features_t features)
811 {
812 /* Since there is no support for separate Rx/Tx vlan accel
813 * enable/disable make sure Tx flag is always in same state as Rx.
814 */
815 if (features & NETIF_F_HW_VLAN_CTAG_RX)
816 features |= NETIF_F_HW_VLAN_CTAG_TX;
817 else
818 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
819
820 return features;
821 }
822
823 static int e1000_set_features(struct net_device *netdev,
824 netdev_features_t features)
825 {
826 struct e1000_adapter *adapter = netdev_priv(netdev);
827 netdev_features_t changed = features ^ netdev->features;
828
829 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
830 e1000_vlan_mode(netdev, features);
831
832 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
833 return 0;
834
835 netdev->features = features;
836 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837
838 if (netif_running(netdev))
839 e1000_reinit_locked(adapter);
840 else
841 e1000_reset(adapter);
842
843 return 0;
844 }
845
846 static const struct net_device_ops e1000_netdev_ops = {
847 .ndo_open = e1000_open,
848 .ndo_stop = e1000_close,
849 .ndo_start_xmit = e1000_xmit_frame,
850 .ndo_get_stats = e1000_get_stats,
851 .ndo_set_rx_mode = e1000_set_rx_mode,
852 .ndo_set_mac_address = e1000_set_mac,
853 .ndo_tx_timeout = e1000_tx_timeout,
854 .ndo_change_mtu = e1000_change_mtu,
855 .ndo_do_ioctl = e1000_ioctl,
856 .ndo_validate_addr = eth_validate_addr,
857 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
858 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 .ndo_poll_controller = e1000_netpoll,
861 #endif
862 .ndo_fix_features = e1000_fix_features,
863 .ndo_set_features = e1000_set_features,
864 };
865
866 /**
867 * e1000_init_hw_struct - initialize members of hw struct
868 * @adapter: board private struct
869 * @hw: structure used by e1000_hw.c
870 *
871 * Factors out initialization of the e1000_hw struct to its own function
872 * that can be called very early at init (just after struct allocation).
873 * Fields are initialized based on PCI device information and
874 * OS network device settings (MTU size).
875 * Returns negative error codes if MAC type setup fails.
876 */
877 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
878 struct e1000_hw *hw)
879 {
880 struct pci_dev *pdev = adapter->pdev;
881
882 /* PCI config space info */
883 hw->vendor_id = pdev->vendor;
884 hw->device_id = pdev->device;
885 hw->subsystem_vendor_id = pdev->subsystem_vendor;
886 hw->subsystem_id = pdev->subsystem_device;
887 hw->revision_id = pdev->revision;
888
889 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890
891 hw->max_frame_size = adapter->netdev->mtu +
892 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
893 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894
895 /* identify the MAC */
896 if (e1000_set_mac_type(hw)) {
897 e_err(probe, "Unknown MAC Type\n");
898 return -EIO;
899 }
900
901 switch (hw->mac_type) {
902 default:
903 break;
904 case e1000_82541:
905 case e1000_82547:
906 case e1000_82541_rev_2:
907 case e1000_82547_rev_2:
908 hw->phy_init_script = 1;
909 break;
910 }
911
912 e1000_set_media_type(hw);
913 e1000_get_bus_info(hw);
914
915 hw->wait_autoneg_complete = false;
916 hw->tbi_compatibility_en = true;
917 hw->adaptive_ifs = true;
918
919 /* Copper options */
920
921 if (hw->media_type == e1000_media_type_copper) {
922 hw->mdix = AUTO_ALL_MODES;
923 hw->disable_polarity_correction = false;
924 hw->master_slave = E1000_MASTER_SLAVE;
925 }
926
927 return 0;
928 }
929
930 /**
931 * e1000_probe - Device Initialization Routine
932 * @pdev: PCI device information struct
933 * @ent: entry in e1000_pci_tbl
934 *
935 * Returns 0 on success, negative on failure
936 *
937 * e1000_probe initializes an adapter identified by a pci_dev structure.
938 * The OS initialization, configuring of the adapter private structure,
939 * and a hardware reset occur.
940 **/
941 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
942 {
943 struct net_device *netdev;
944 struct e1000_adapter *adapter;
945 struct e1000_hw *hw;
946
947 static int cards_found = 0;
948 static int global_quad_port_a = 0; /* global ksp3 port a indication */
949 int i, err, pci_using_dac;
950 u16 eeprom_data = 0;
951 u16 tmp = 0;
952 u16 eeprom_apme_mask = E1000_EEPROM_APME;
953 int bars, need_ioport;
954
955 /* do not allocate ioport bars when not needed */
956 need_ioport = e1000_is_need_ioport(pdev);
957 if (need_ioport) {
958 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
959 err = pci_enable_device(pdev);
960 } else {
961 bars = pci_select_bars(pdev, IORESOURCE_MEM);
962 err = pci_enable_device_mem(pdev);
963 }
964 if (err)
965 return err;
966
967 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
968 if (err)
969 goto err_pci_reg;
970
971 pci_set_master(pdev);
972 err = pci_save_state(pdev);
973 if (err)
974 goto err_alloc_etherdev;
975
976 err = -ENOMEM;
977 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
978 if (!netdev)
979 goto err_alloc_etherdev;
980
981 SET_NETDEV_DEV(netdev, &pdev->dev);
982
983 pci_set_drvdata(pdev, netdev);
984 adapter = netdev_priv(netdev);
985 adapter->netdev = netdev;
986 adapter->pdev = pdev;
987 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
988 adapter->bars = bars;
989 adapter->need_ioport = need_ioport;
990
991 hw = &adapter->hw;
992 hw->back = adapter;
993
994 err = -EIO;
995 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
996 if (!hw->hw_addr)
997 goto err_ioremap;
998
999 if (adapter->need_ioport) {
1000 for (i = BAR_1; i <= BAR_5; i++) {
1001 if (pci_resource_len(pdev, i) == 0)
1002 continue;
1003 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1004 hw->io_base = pci_resource_start(pdev, i);
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* make ready for any if (hw->...) below */
1011 err = e1000_init_hw_struct(adapter, hw);
1012 if (err)
1013 goto err_sw_init;
1014
1015 /* there is a workaround being applied below that limits
1016 * 64-bit DMA addresses to 64-bit hardware. There are some
1017 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1018 */
1019 pci_using_dac = 0;
1020 if ((hw->bus_type == e1000_bus_type_pcix) &&
1021 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1022 pci_using_dac = 1;
1023 } else {
1024 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1025 if (err) {
1026 pr_err("No usable DMA config, aborting\n");
1027 goto err_dma;
1028 }
1029 }
1030
1031 netdev->netdev_ops = &e1000_netdev_ops;
1032 e1000_set_ethtool_ops(netdev);
1033 netdev->watchdog_timeo = 5 * HZ;
1034 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1035
1036 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1037
1038 adapter->bd_number = cards_found;
1039
1040 /* setup the private structure */
1041
1042 err = e1000_sw_init(adapter);
1043 if (err)
1044 goto err_sw_init;
1045
1046 err = -EIO;
1047 if (hw->mac_type == e1000_ce4100) {
1048 hw->ce4100_gbe_mdio_base_virt =
1049 ioremap(pci_resource_start(pdev, BAR_1),
1050 pci_resource_len(pdev, BAR_1));
1051
1052 if (!hw->ce4100_gbe_mdio_base_virt)
1053 goto err_mdio_ioremap;
1054 }
1055
1056 if (hw->mac_type >= e1000_82543) {
1057 netdev->hw_features = NETIF_F_SG |
1058 NETIF_F_HW_CSUM |
1059 NETIF_F_HW_VLAN_CTAG_RX;
1060 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1061 NETIF_F_HW_VLAN_CTAG_FILTER;
1062 }
1063
1064 if ((hw->mac_type >= e1000_82544) &&
1065 (hw->mac_type != e1000_82547))
1066 netdev->hw_features |= NETIF_F_TSO;
1067
1068 netdev->priv_flags |= IFF_SUPP_NOFCS;
1069
1070 netdev->features |= netdev->hw_features;
1071 netdev->hw_features |= (NETIF_F_RXCSUM |
1072 NETIF_F_RXALL |
1073 NETIF_F_RXFCS);
1074
1075 if (pci_using_dac) {
1076 netdev->features |= NETIF_F_HIGHDMA;
1077 netdev->vlan_features |= NETIF_F_HIGHDMA;
1078 }
1079
1080 netdev->vlan_features |= (NETIF_F_TSO |
1081 NETIF_F_HW_CSUM |
1082 NETIF_F_SG);
1083
1084 netdev->priv_flags |= IFF_UNICAST_FLT;
1085
1086 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1087
1088 /* initialize eeprom parameters */
1089 if (e1000_init_eeprom_params(hw)) {
1090 e_err(probe, "EEPROM initialization failed\n");
1091 goto err_eeprom;
1092 }
1093
1094 /* before reading the EEPROM, reset the controller to
1095 * put the device in a known good starting state
1096 */
1097
1098 e1000_reset_hw(hw);
1099
1100 /* make sure the EEPROM is good */
1101 if (e1000_validate_eeprom_checksum(hw) < 0) {
1102 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1103 e1000_dump_eeprom(adapter);
1104 /* set MAC address to all zeroes to invalidate and temporary
1105 * disable this device for the user. This blocks regular
1106 * traffic while still permitting ethtool ioctls from reaching
1107 * the hardware as well as allowing the user to run the
1108 * interface after manually setting a hw addr using
1109 * `ip set address`
1110 */
1111 memset(hw->mac_addr, 0, netdev->addr_len);
1112 } else {
1113 /* copy the MAC address out of the EEPROM */
1114 if (e1000_read_mac_addr(hw))
1115 e_err(probe, "EEPROM Read Error\n");
1116 }
1117 /* don't block initalization here due to bad MAC address */
1118 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1119
1120 if (!is_valid_ether_addr(netdev->dev_addr))
1121 e_err(probe, "Invalid MAC Address\n");
1122
1123
1124 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1125 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1126 e1000_82547_tx_fifo_stall_task);
1127 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1128 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1129
1130 e1000_check_options(adapter);
1131
1132 /* Initial Wake on LAN setting
1133 * If APM wake is enabled in the EEPROM,
1134 * enable the ACPI Magic Packet filter
1135 */
1136
1137 switch (hw->mac_type) {
1138 case e1000_82542_rev2_0:
1139 case e1000_82542_rev2_1:
1140 case e1000_82543:
1141 break;
1142 case e1000_82544:
1143 e1000_read_eeprom(hw,
1144 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1145 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1146 break;
1147 case e1000_82546:
1148 case e1000_82546_rev_3:
1149 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1150 e1000_read_eeprom(hw,
1151 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1152 break;
1153 }
1154 /* Fall Through */
1155 default:
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1158 break;
1159 }
1160 if (eeprom_data & eeprom_apme_mask)
1161 adapter->eeprom_wol |= E1000_WUFC_MAG;
1162
1163 /* now that we have the eeprom settings, apply the special cases
1164 * where the eeprom may be wrong or the board simply won't support
1165 * wake on lan on a particular port
1166 */
1167 switch (pdev->device) {
1168 case E1000_DEV_ID_82546GB_PCIE:
1169 adapter->eeprom_wol = 0;
1170 break;
1171 case E1000_DEV_ID_82546EB_FIBER:
1172 case E1000_DEV_ID_82546GB_FIBER:
1173 /* Wake events only supported on port A for dual fiber
1174 * regardless of eeprom setting
1175 */
1176 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1177 adapter->eeprom_wol = 0;
1178 break;
1179 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1180 /* if quad port adapter, disable WoL on all but port A */
1181 if (global_quad_port_a != 0)
1182 adapter->eeprom_wol = 0;
1183 else
1184 adapter->quad_port_a = true;
1185 /* Reset for multiple quad port adapters */
1186 if (++global_quad_port_a == 4)
1187 global_quad_port_a = 0;
1188 break;
1189 }
1190
1191 /* initialize the wol settings based on the eeprom settings */
1192 adapter->wol = adapter->eeprom_wol;
1193 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1194
1195 /* Auto detect PHY address */
1196 if (hw->mac_type == e1000_ce4100) {
1197 for (i = 0; i < 32; i++) {
1198 hw->phy_addr = i;
1199 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1200 if (tmp == 0 || tmp == 0xFF) {
1201 if (i == 31)
1202 goto err_eeprom;
1203 continue;
1204 } else
1205 break;
1206 }
1207 }
1208
1209 /* reset the hardware with the new settings */
1210 e1000_reset(adapter);
1211
1212 strcpy(netdev->name, "eth%d");
1213 err = register_netdev(netdev);
1214 if (err)
1215 goto err_register;
1216
1217 e1000_vlan_filter_on_off(adapter, false);
1218
1219 /* print bus type/speed/width info */
1220 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1221 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1222 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1223 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1224 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1225 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1226 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1227 netdev->dev_addr);
1228
1229 /* carrier off reporting is important to ethtool even BEFORE open */
1230 netif_carrier_off(netdev);
1231
1232 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1233
1234 cards_found++;
1235 return 0;
1236
1237 err_register:
1238 err_eeprom:
1239 e1000_phy_hw_reset(hw);
1240
1241 if (hw->flash_address)
1242 iounmap(hw->flash_address);
1243 kfree(adapter->tx_ring);
1244 kfree(adapter->rx_ring);
1245 err_dma:
1246 err_sw_init:
1247 err_mdio_ioremap:
1248 iounmap(hw->ce4100_gbe_mdio_base_virt);
1249 iounmap(hw->hw_addr);
1250 err_ioremap:
1251 free_netdev(netdev);
1252 err_alloc_etherdev:
1253 pci_release_selected_regions(pdev, bars);
1254 err_pci_reg:
1255 pci_disable_device(pdev);
1256 return err;
1257 }
1258
1259 /**
1260 * e1000_remove - Device Removal Routine
1261 * @pdev: PCI device information struct
1262 *
1263 * e1000_remove is called by the PCI subsystem to alert the driver
1264 * that it should release a PCI device. The could be caused by a
1265 * Hot-Plug event, or because the driver is going to be removed from
1266 * memory.
1267 **/
1268 static void e1000_remove(struct pci_dev *pdev)
1269 {
1270 struct net_device *netdev = pci_get_drvdata(pdev);
1271 struct e1000_adapter *adapter = netdev_priv(netdev);
1272 struct e1000_hw *hw = &adapter->hw;
1273
1274 e1000_down_and_stop(adapter);
1275 e1000_release_manageability(adapter);
1276
1277 unregister_netdev(netdev);
1278
1279 e1000_phy_hw_reset(hw);
1280
1281 kfree(adapter->tx_ring);
1282 kfree(adapter->rx_ring);
1283
1284 if (hw->mac_type == e1000_ce4100)
1285 iounmap(hw->ce4100_gbe_mdio_base_virt);
1286 iounmap(hw->hw_addr);
1287 if (hw->flash_address)
1288 iounmap(hw->flash_address);
1289 pci_release_selected_regions(pdev, adapter->bars);
1290
1291 free_netdev(netdev);
1292
1293 pci_disable_device(pdev);
1294 }
1295
1296 /**
1297 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1298 * @adapter: board private structure to initialize
1299 *
1300 * e1000_sw_init initializes the Adapter private data structure.
1301 * e1000_init_hw_struct MUST be called before this function
1302 **/
1303 static int e1000_sw_init(struct e1000_adapter *adapter)
1304 {
1305 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1306
1307 adapter->num_tx_queues = 1;
1308 adapter->num_rx_queues = 1;
1309
1310 if (e1000_alloc_queues(adapter)) {
1311 e_err(probe, "Unable to allocate memory for queues\n");
1312 return -ENOMEM;
1313 }
1314
1315 /* Explicitly disable IRQ since the NIC can be in any state. */
1316 e1000_irq_disable(adapter);
1317
1318 spin_lock_init(&adapter->stats_lock);
1319 mutex_init(&adapter->mutex);
1320
1321 set_bit(__E1000_DOWN, &adapter->flags);
1322
1323 return 0;
1324 }
1325
1326 /**
1327 * e1000_alloc_queues - Allocate memory for all rings
1328 * @adapter: board private structure to initialize
1329 *
1330 * We allocate one ring per queue at run-time since we don't know the
1331 * number of queues at compile-time.
1332 **/
1333 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1334 {
1335 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1336 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1337 if (!adapter->tx_ring)
1338 return -ENOMEM;
1339
1340 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1341 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1342 if (!adapter->rx_ring) {
1343 kfree(adapter->tx_ring);
1344 return -ENOMEM;
1345 }
1346
1347 return E1000_SUCCESS;
1348 }
1349
1350 /**
1351 * e1000_open - Called when a network interface is made active
1352 * @netdev: network interface device structure
1353 *
1354 * Returns 0 on success, negative value on failure
1355 *
1356 * The open entry point is called when a network interface is made
1357 * active by the system (IFF_UP). At this point all resources needed
1358 * for transmit and receive operations are allocated, the interrupt
1359 * handler is registered with the OS, the watchdog task is started,
1360 * and the stack is notified that the interface is ready.
1361 **/
1362 static int e1000_open(struct net_device *netdev)
1363 {
1364 struct e1000_adapter *adapter = netdev_priv(netdev);
1365 struct e1000_hw *hw = &adapter->hw;
1366 int err;
1367
1368 /* disallow open during test */
1369 if (test_bit(__E1000_TESTING, &adapter->flags))
1370 return -EBUSY;
1371
1372 netif_carrier_off(netdev);
1373
1374 /* allocate transmit descriptors */
1375 err = e1000_setup_all_tx_resources(adapter);
1376 if (err)
1377 goto err_setup_tx;
1378
1379 /* allocate receive descriptors */
1380 err = e1000_setup_all_rx_resources(adapter);
1381 if (err)
1382 goto err_setup_rx;
1383
1384 e1000_power_up_phy(adapter);
1385
1386 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1387 if ((hw->mng_cookie.status &
1388 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1389 e1000_update_mng_vlan(adapter);
1390 }
1391
1392 /* before we allocate an interrupt, we must be ready to handle it.
1393 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1394 * as soon as we call pci_request_irq, so we have to setup our
1395 * clean_rx handler before we do so.
1396 */
1397 e1000_configure(adapter);
1398
1399 err = e1000_request_irq(adapter);
1400 if (err)
1401 goto err_req_irq;
1402
1403 /* From here on the code is the same as e1000_up() */
1404 clear_bit(__E1000_DOWN, &adapter->flags);
1405
1406 napi_enable(&adapter->napi);
1407
1408 e1000_irq_enable(adapter);
1409
1410 netif_start_queue(netdev);
1411
1412 /* fire a link status change interrupt to start the watchdog */
1413 ew32(ICS, E1000_ICS_LSC);
1414
1415 return E1000_SUCCESS;
1416
1417 err_req_irq:
1418 e1000_power_down_phy(adapter);
1419 e1000_free_all_rx_resources(adapter);
1420 err_setup_rx:
1421 e1000_free_all_tx_resources(adapter);
1422 err_setup_tx:
1423 e1000_reset(adapter);
1424
1425 return err;
1426 }
1427
1428 /**
1429 * e1000_close - Disables a network interface
1430 * @netdev: network interface device structure
1431 *
1432 * Returns 0, this is not allowed to fail
1433 *
1434 * The close entry point is called when an interface is de-activated
1435 * by the OS. The hardware is still under the drivers control, but
1436 * needs to be disabled. A global MAC reset is issued to stop the
1437 * hardware, and all transmit and receive resources are freed.
1438 **/
1439 static int e1000_close(struct net_device *netdev)
1440 {
1441 struct e1000_adapter *adapter = netdev_priv(netdev);
1442 struct e1000_hw *hw = &adapter->hw;
1443
1444 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1445 e1000_down(adapter);
1446 e1000_power_down_phy(adapter);
1447 e1000_free_irq(adapter);
1448
1449 e1000_free_all_tx_resources(adapter);
1450 e1000_free_all_rx_resources(adapter);
1451
1452 /* kill manageability vlan ID if supported, but not if a vlan with
1453 * the same ID is registered on the host OS (let 8021q kill it)
1454 */
1455 if ((hw->mng_cookie.status &
1456 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1457 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1458 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1459 adapter->mng_vlan_id);
1460 }
1461
1462 return 0;
1463 }
1464
1465 /**
1466 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1467 * @adapter: address of board private structure
1468 * @start: address of beginning of memory
1469 * @len: length of memory
1470 **/
1471 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1472 unsigned long len)
1473 {
1474 struct e1000_hw *hw = &adapter->hw;
1475 unsigned long begin = (unsigned long)start;
1476 unsigned long end = begin + len;
1477
1478 /* First rev 82545 and 82546 need to not allow any memory
1479 * write location to cross 64k boundary due to errata 23
1480 */
1481 if (hw->mac_type == e1000_82545 ||
1482 hw->mac_type == e1000_ce4100 ||
1483 hw->mac_type == e1000_82546) {
1484 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1485 }
1486
1487 return true;
1488 }
1489
1490 /**
1491 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492 * @adapter: board private structure
1493 * @txdr: tx descriptor ring (for a specific queue) to setup
1494 *
1495 * Return 0 on success, negative on failure
1496 **/
1497 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1498 struct e1000_tx_ring *txdr)
1499 {
1500 struct pci_dev *pdev = adapter->pdev;
1501 int size;
1502
1503 size = sizeof(struct e1000_buffer) * txdr->count;
1504 txdr->buffer_info = vzalloc(size);
1505 if (!txdr->buffer_info)
1506 return -ENOMEM;
1507
1508 /* round up to nearest 4K */
1509
1510 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1511 txdr->size = ALIGN(txdr->size, 4096);
1512
1513 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1514 GFP_KERNEL);
1515 if (!txdr->desc) {
1516 setup_tx_desc_die:
1517 vfree(txdr->buffer_info);
1518 return -ENOMEM;
1519 }
1520
1521 /* Fix for errata 23, can't cross 64kB boundary */
1522 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1523 void *olddesc = txdr->desc;
1524 dma_addr_t olddma = txdr->dma;
1525 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1526 txdr->size, txdr->desc);
1527 /* Try again, without freeing the previous */
1528 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1529 &txdr->dma, GFP_KERNEL);
1530 /* Failed allocation, critical failure */
1531 if (!txdr->desc) {
1532 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1533 olddma);
1534 goto setup_tx_desc_die;
1535 }
1536
1537 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1538 /* give up */
1539 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1540 txdr->dma);
1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 olddma);
1543 e_err(probe, "Unable to allocate aligned memory "
1544 "for the transmit descriptor ring\n");
1545 vfree(txdr->buffer_info);
1546 return -ENOMEM;
1547 } else {
1548 /* Free old allocation, new allocation was successful */
1549 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1550 olddma);
1551 }
1552 }
1553 memset(txdr->desc, 0, txdr->size);
1554
1555 txdr->next_to_use = 0;
1556 txdr->next_to_clean = 0;
1557
1558 return 0;
1559 }
1560
1561 /**
1562 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1563 * (Descriptors) for all queues
1564 * @adapter: board private structure
1565 *
1566 * Return 0 on success, negative on failure
1567 **/
1568 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1569 {
1570 int i, err = 0;
1571
1572 for (i = 0; i < adapter->num_tx_queues; i++) {
1573 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1574 if (err) {
1575 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1576 for (i-- ; i >= 0; i--)
1577 e1000_free_tx_resources(adapter,
1578 &adapter->tx_ring[i]);
1579 break;
1580 }
1581 }
1582
1583 return err;
1584 }
1585
1586 /**
1587 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1588 * @adapter: board private structure
1589 *
1590 * Configure the Tx unit of the MAC after a reset.
1591 **/
1592 static void e1000_configure_tx(struct e1000_adapter *adapter)
1593 {
1594 u64 tdba;
1595 struct e1000_hw *hw = &adapter->hw;
1596 u32 tdlen, tctl, tipg;
1597 u32 ipgr1, ipgr2;
1598
1599 /* Setup the HW Tx Head and Tail descriptor pointers */
1600
1601 switch (adapter->num_tx_queues) {
1602 case 1:
1603 default:
1604 tdba = adapter->tx_ring[0].dma;
1605 tdlen = adapter->tx_ring[0].count *
1606 sizeof(struct e1000_tx_desc);
1607 ew32(TDLEN, tdlen);
1608 ew32(TDBAH, (tdba >> 32));
1609 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1610 ew32(TDT, 0);
1611 ew32(TDH, 0);
1612 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1613 E1000_TDH : E1000_82542_TDH);
1614 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1615 E1000_TDT : E1000_82542_TDT);
1616 break;
1617 }
1618
1619 /* Set the default values for the Tx Inter Packet Gap timer */
1620 if ((hw->media_type == e1000_media_type_fiber ||
1621 hw->media_type == e1000_media_type_internal_serdes))
1622 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1623 else
1624 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1625
1626 switch (hw->mac_type) {
1627 case e1000_82542_rev2_0:
1628 case e1000_82542_rev2_1:
1629 tipg = DEFAULT_82542_TIPG_IPGT;
1630 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1631 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1632 break;
1633 default:
1634 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1635 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1636 break;
1637 }
1638 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1639 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1640 ew32(TIPG, tipg);
1641
1642 /* Set the Tx Interrupt Delay register */
1643
1644 ew32(TIDV, adapter->tx_int_delay);
1645 if (hw->mac_type >= e1000_82540)
1646 ew32(TADV, adapter->tx_abs_int_delay);
1647
1648 /* Program the Transmit Control Register */
1649
1650 tctl = er32(TCTL);
1651 tctl &= ~E1000_TCTL_CT;
1652 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1653 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1654
1655 e1000_config_collision_dist(hw);
1656
1657 /* Setup Transmit Descriptor Settings for eop descriptor */
1658 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1659
1660 /* only set IDE if we are delaying interrupts using the timers */
1661 if (adapter->tx_int_delay)
1662 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1663
1664 if (hw->mac_type < e1000_82543)
1665 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1666 else
1667 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1668
1669 /* Cache if we're 82544 running in PCI-X because we'll
1670 * need this to apply a workaround later in the send path.
1671 */
1672 if (hw->mac_type == e1000_82544 &&
1673 hw->bus_type == e1000_bus_type_pcix)
1674 adapter->pcix_82544 = true;
1675
1676 ew32(TCTL, tctl);
1677
1678 }
1679
1680 /**
1681 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1682 * @adapter: board private structure
1683 * @rxdr: rx descriptor ring (for a specific queue) to setup
1684 *
1685 * Returns 0 on success, negative on failure
1686 **/
1687 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1688 struct e1000_rx_ring *rxdr)
1689 {
1690 struct pci_dev *pdev = adapter->pdev;
1691 int size, desc_len;
1692
1693 size = sizeof(struct e1000_buffer) * rxdr->count;
1694 rxdr->buffer_info = vzalloc(size);
1695 if (!rxdr->buffer_info)
1696 return -ENOMEM;
1697
1698 desc_len = sizeof(struct e1000_rx_desc);
1699
1700 /* Round up to nearest 4K */
1701
1702 rxdr->size = rxdr->count * desc_len;
1703 rxdr->size = ALIGN(rxdr->size, 4096);
1704
1705 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1706 GFP_KERNEL);
1707 if (!rxdr->desc) {
1708 setup_rx_desc_die:
1709 vfree(rxdr->buffer_info);
1710 return -ENOMEM;
1711 }
1712
1713 /* Fix for errata 23, can't cross 64kB boundary */
1714 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1715 void *olddesc = rxdr->desc;
1716 dma_addr_t olddma = rxdr->dma;
1717 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1718 rxdr->size, rxdr->desc);
1719 /* Try again, without freeing the previous */
1720 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1721 &rxdr->dma, GFP_KERNEL);
1722 /* Failed allocation, critical failure */
1723 if (!rxdr->desc) {
1724 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1725 olddma);
1726 goto setup_rx_desc_die;
1727 }
1728
1729 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1730 /* give up */
1731 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1732 rxdr->dma);
1733 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1734 olddma);
1735 e_err(probe, "Unable to allocate aligned memory for "
1736 "the Rx descriptor ring\n");
1737 goto setup_rx_desc_die;
1738 } else {
1739 /* Free old allocation, new allocation was successful */
1740 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1741 olddma);
1742 }
1743 }
1744 memset(rxdr->desc, 0, rxdr->size);
1745
1746 rxdr->next_to_clean = 0;
1747 rxdr->next_to_use = 0;
1748 rxdr->rx_skb_top = NULL;
1749
1750 return 0;
1751 }
1752
1753 /**
1754 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1755 * (Descriptors) for all queues
1756 * @adapter: board private structure
1757 *
1758 * Return 0 on success, negative on failure
1759 **/
1760 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1761 {
1762 int i, err = 0;
1763
1764 for (i = 0; i < adapter->num_rx_queues; i++) {
1765 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1766 if (err) {
1767 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1768 for (i-- ; i >= 0; i--)
1769 e1000_free_rx_resources(adapter,
1770 &adapter->rx_ring[i]);
1771 break;
1772 }
1773 }
1774
1775 return err;
1776 }
1777
1778 /**
1779 * e1000_setup_rctl - configure the receive control registers
1780 * @adapter: Board private structure
1781 **/
1782 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1783 {
1784 struct e1000_hw *hw = &adapter->hw;
1785 u32 rctl;
1786
1787 rctl = er32(RCTL);
1788
1789 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1790
1791 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1792 E1000_RCTL_RDMTS_HALF |
1793 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1794
1795 if (hw->tbi_compatibility_on == 1)
1796 rctl |= E1000_RCTL_SBP;
1797 else
1798 rctl &= ~E1000_RCTL_SBP;
1799
1800 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1801 rctl &= ~E1000_RCTL_LPE;
1802 else
1803 rctl |= E1000_RCTL_LPE;
1804
1805 /* Setup buffer sizes */
1806 rctl &= ~E1000_RCTL_SZ_4096;
1807 rctl |= E1000_RCTL_BSEX;
1808 switch (adapter->rx_buffer_len) {
1809 case E1000_RXBUFFER_2048:
1810 default:
1811 rctl |= E1000_RCTL_SZ_2048;
1812 rctl &= ~E1000_RCTL_BSEX;
1813 break;
1814 case E1000_RXBUFFER_4096:
1815 rctl |= E1000_RCTL_SZ_4096;
1816 break;
1817 case E1000_RXBUFFER_8192:
1818 rctl |= E1000_RCTL_SZ_8192;
1819 break;
1820 case E1000_RXBUFFER_16384:
1821 rctl |= E1000_RCTL_SZ_16384;
1822 break;
1823 }
1824
1825 /* This is useful for sniffing bad packets. */
1826 if (adapter->netdev->features & NETIF_F_RXALL) {
1827 /* UPE and MPE will be handled by normal PROMISC logic
1828 * in e1000e_set_rx_mode
1829 */
1830 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1831 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1832 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1833
1834 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1835 E1000_RCTL_DPF | /* Allow filtered pause */
1836 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1837 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1838 * and that breaks VLANs.
1839 */
1840 }
1841
1842 ew32(RCTL, rctl);
1843 }
1844
1845 /**
1846 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1847 * @adapter: board private structure
1848 *
1849 * Configure the Rx unit of the MAC after a reset.
1850 **/
1851 static void e1000_configure_rx(struct e1000_adapter *adapter)
1852 {
1853 u64 rdba;
1854 struct e1000_hw *hw = &adapter->hw;
1855 u32 rdlen, rctl, rxcsum;
1856
1857 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1858 rdlen = adapter->rx_ring[0].count *
1859 sizeof(struct e1000_rx_desc);
1860 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1861 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1862 } else {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1867 }
1868
1869 /* disable receives while setting up the descriptors */
1870 rctl = er32(RCTL);
1871 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1872
1873 /* set the Receive Delay Timer Register */
1874 ew32(RDTR, adapter->rx_int_delay);
1875
1876 if (hw->mac_type >= e1000_82540) {
1877 ew32(RADV, adapter->rx_abs_int_delay);
1878 if (adapter->itr_setting != 0)
1879 ew32(ITR, 1000000000 / (adapter->itr * 256));
1880 }
1881
1882 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1883 * the Base and Length of the Rx Descriptor Ring
1884 */
1885 switch (adapter->num_rx_queues) {
1886 case 1:
1887 default:
1888 rdba = adapter->rx_ring[0].dma;
1889 ew32(RDLEN, rdlen);
1890 ew32(RDBAH, (rdba >> 32));
1891 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1892 ew32(RDT, 0);
1893 ew32(RDH, 0);
1894 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1895 E1000_RDH : E1000_82542_RDH);
1896 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1897 E1000_RDT : E1000_82542_RDT);
1898 break;
1899 }
1900
1901 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1902 if (hw->mac_type >= e1000_82543) {
1903 rxcsum = er32(RXCSUM);
1904 if (adapter->rx_csum)
1905 rxcsum |= E1000_RXCSUM_TUOFL;
1906 else
1907 /* don't need to clear IPPCSE as it defaults to 0 */
1908 rxcsum &= ~E1000_RXCSUM_TUOFL;
1909 ew32(RXCSUM, rxcsum);
1910 }
1911
1912 /* Enable Receives */
1913 ew32(RCTL, rctl | E1000_RCTL_EN);
1914 }
1915
1916 /**
1917 * e1000_free_tx_resources - Free Tx Resources per Queue
1918 * @adapter: board private structure
1919 * @tx_ring: Tx descriptor ring for a specific queue
1920 *
1921 * Free all transmit software resources
1922 **/
1923 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1924 struct e1000_tx_ring *tx_ring)
1925 {
1926 struct pci_dev *pdev = adapter->pdev;
1927
1928 e1000_clean_tx_ring(adapter, tx_ring);
1929
1930 vfree(tx_ring->buffer_info);
1931 tx_ring->buffer_info = NULL;
1932
1933 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1934 tx_ring->dma);
1935
1936 tx_ring->desc = NULL;
1937 }
1938
1939 /**
1940 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1941 * @adapter: board private structure
1942 *
1943 * Free all transmit software resources
1944 **/
1945 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1946 {
1947 int i;
1948
1949 for (i = 0; i < adapter->num_tx_queues; i++)
1950 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1951 }
1952
1953 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1954 struct e1000_buffer *buffer_info)
1955 {
1956 if (buffer_info->dma) {
1957 if (buffer_info->mapped_as_page)
1958 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1959 buffer_info->length, DMA_TO_DEVICE);
1960 else
1961 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1962 buffer_info->length,
1963 DMA_TO_DEVICE);
1964 buffer_info->dma = 0;
1965 }
1966 if (buffer_info->skb) {
1967 dev_kfree_skb_any(buffer_info->skb);
1968 buffer_info->skb = NULL;
1969 }
1970 buffer_info->time_stamp = 0;
1971 /* buffer_info must be completely set up in the transmit path */
1972 }
1973
1974 /**
1975 * e1000_clean_tx_ring - Free Tx Buffers
1976 * @adapter: board private structure
1977 * @tx_ring: ring to be cleaned
1978 **/
1979 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1980 struct e1000_tx_ring *tx_ring)
1981 {
1982 struct e1000_hw *hw = &adapter->hw;
1983 struct e1000_buffer *buffer_info;
1984 unsigned long size;
1985 unsigned int i;
1986
1987 /* Free all the Tx ring sk_buffs */
1988
1989 for (i = 0; i < tx_ring->count; i++) {
1990 buffer_info = &tx_ring->buffer_info[i];
1991 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1992 }
1993
1994 netdev_reset_queue(adapter->netdev);
1995 size = sizeof(struct e1000_buffer) * tx_ring->count;
1996 memset(tx_ring->buffer_info, 0, size);
1997
1998 /* Zero out the descriptor ring */
1999
2000 memset(tx_ring->desc, 0, tx_ring->size);
2001
2002 tx_ring->next_to_use = 0;
2003 tx_ring->next_to_clean = 0;
2004 tx_ring->last_tx_tso = false;
2005
2006 writel(0, hw->hw_addr + tx_ring->tdh);
2007 writel(0, hw->hw_addr + tx_ring->tdt);
2008 }
2009
2010 /**
2011 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2012 * @adapter: board private structure
2013 **/
2014 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2015 {
2016 int i;
2017
2018 for (i = 0; i < adapter->num_tx_queues; i++)
2019 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2020 }
2021
2022 /**
2023 * e1000_free_rx_resources - Free Rx Resources
2024 * @adapter: board private structure
2025 * @rx_ring: ring to clean the resources from
2026 *
2027 * Free all receive software resources
2028 **/
2029 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2030 struct e1000_rx_ring *rx_ring)
2031 {
2032 struct pci_dev *pdev = adapter->pdev;
2033
2034 e1000_clean_rx_ring(adapter, rx_ring);
2035
2036 vfree(rx_ring->buffer_info);
2037 rx_ring->buffer_info = NULL;
2038
2039 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2040 rx_ring->dma);
2041
2042 rx_ring->desc = NULL;
2043 }
2044
2045 /**
2046 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2047 * @adapter: board private structure
2048 *
2049 * Free all receive software resources
2050 **/
2051 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2052 {
2053 int i;
2054
2055 for (i = 0; i < adapter->num_rx_queues; i++)
2056 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2057 }
2058
2059 /**
2060 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2061 * @adapter: board private structure
2062 * @rx_ring: ring to free buffers from
2063 **/
2064 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2065 struct e1000_rx_ring *rx_ring)
2066 {
2067 struct e1000_hw *hw = &adapter->hw;
2068 struct e1000_buffer *buffer_info;
2069 struct pci_dev *pdev = adapter->pdev;
2070 unsigned long size;
2071 unsigned int i;
2072
2073 /* Free all the Rx ring sk_buffs */
2074 for (i = 0; i < rx_ring->count; i++) {
2075 buffer_info = &rx_ring->buffer_info[i];
2076 if (buffer_info->dma &&
2077 adapter->clean_rx == e1000_clean_rx_irq) {
2078 dma_unmap_single(&pdev->dev, buffer_info->dma,
2079 buffer_info->length,
2080 DMA_FROM_DEVICE);
2081 } else if (buffer_info->dma &&
2082 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2083 dma_unmap_page(&pdev->dev, buffer_info->dma,
2084 buffer_info->length,
2085 DMA_FROM_DEVICE);
2086 }
2087
2088 buffer_info->dma = 0;
2089 if (buffer_info->page) {
2090 put_page(buffer_info->page);
2091 buffer_info->page = NULL;
2092 }
2093 if (buffer_info->skb) {
2094 dev_kfree_skb(buffer_info->skb);
2095 buffer_info->skb = NULL;
2096 }
2097 }
2098
2099 /* there also may be some cached data from a chained receive */
2100 if (rx_ring->rx_skb_top) {
2101 dev_kfree_skb(rx_ring->rx_skb_top);
2102 rx_ring->rx_skb_top = NULL;
2103 }
2104
2105 size = sizeof(struct e1000_buffer) * rx_ring->count;
2106 memset(rx_ring->buffer_info, 0, size);
2107
2108 /* Zero out the descriptor ring */
2109 memset(rx_ring->desc, 0, rx_ring->size);
2110
2111 rx_ring->next_to_clean = 0;
2112 rx_ring->next_to_use = 0;
2113
2114 writel(0, hw->hw_addr + rx_ring->rdh);
2115 writel(0, hw->hw_addr + rx_ring->rdt);
2116 }
2117
2118 /**
2119 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2120 * @adapter: board private structure
2121 **/
2122 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2123 {
2124 int i;
2125
2126 for (i = 0; i < adapter->num_rx_queues; i++)
2127 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2128 }
2129
2130 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2131 * and memory write and invalidate disabled for certain operations
2132 */
2133 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2134 {
2135 struct e1000_hw *hw = &adapter->hw;
2136 struct net_device *netdev = adapter->netdev;
2137 u32 rctl;
2138
2139 e1000_pci_clear_mwi(hw);
2140
2141 rctl = er32(RCTL);
2142 rctl |= E1000_RCTL_RST;
2143 ew32(RCTL, rctl);
2144 E1000_WRITE_FLUSH();
2145 mdelay(5);
2146
2147 if (netif_running(netdev))
2148 e1000_clean_all_rx_rings(adapter);
2149 }
2150
2151 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2152 {
2153 struct e1000_hw *hw = &adapter->hw;
2154 struct net_device *netdev = adapter->netdev;
2155 u32 rctl;
2156
2157 rctl = er32(RCTL);
2158 rctl &= ~E1000_RCTL_RST;
2159 ew32(RCTL, rctl);
2160 E1000_WRITE_FLUSH();
2161 mdelay(5);
2162
2163 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2164 e1000_pci_set_mwi(hw);
2165
2166 if (netif_running(netdev)) {
2167 /* No need to loop, because 82542 supports only 1 queue */
2168 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2169 e1000_configure_rx(adapter);
2170 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2171 }
2172 }
2173
2174 /**
2175 * e1000_set_mac - Change the Ethernet Address of the NIC
2176 * @netdev: network interface device structure
2177 * @p: pointer to an address structure
2178 *
2179 * Returns 0 on success, negative on failure
2180 **/
2181 static int e1000_set_mac(struct net_device *netdev, void *p)
2182 {
2183 struct e1000_adapter *adapter = netdev_priv(netdev);
2184 struct e1000_hw *hw = &adapter->hw;
2185 struct sockaddr *addr = p;
2186
2187 if (!is_valid_ether_addr(addr->sa_data))
2188 return -EADDRNOTAVAIL;
2189
2190 /* 82542 2.0 needs to be in reset to write receive address registers */
2191
2192 if (hw->mac_type == e1000_82542_rev2_0)
2193 e1000_enter_82542_rst(adapter);
2194
2195 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2196 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2197
2198 e1000_rar_set(hw, hw->mac_addr, 0);
2199
2200 if (hw->mac_type == e1000_82542_rev2_0)
2201 e1000_leave_82542_rst(adapter);
2202
2203 return 0;
2204 }
2205
2206 /**
2207 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2208 * @netdev: network interface device structure
2209 *
2210 * The set_rx_mode entry point is called whenever the unicast or multicast
2211 * address lists or the network interface flags are updated. This routine is
2212 * responsible for configuring the hardware for proper unicast, multicast,
2213 * promiscuous mode, and all-multi behavior.
2214 **/
2215 static void e1000_set_rx_mode(struct net_device *netdev)
2216 {
2217 struct e1000_adapter *adapter = netdev_priv(netdev);
2218 struct e1000_hw *hw = &adapter->hw;
2219 struct netdev_hw_addr *ha;
2220 bool use_uc = false;
2221 u32 rctl;
2222 u32 hash_value;
2223 int i, rar_entries = E1000_RAR_ENTRIES;
2224 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2225 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2226
2227 if (!mcarray)
2228 return;
2229
2230 /* Check for Promiscuous and All Multicast modes */
2231
2232 rctl = er32(RCTL);
2233
2234 if (netdev->flags & IFF_PROMISC) {
2235 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2236 rctl &= ~E1000_RCTL_VFE;
2237 } else {
2238 if (netdev->flags & IFF_ALLMULTI)
2239 rctl |= E1000_RCTL_MPE;
2240 else
2241 rctl &= ~E1000_RCTL_MPE;
2242 /* Enable VLAN filter if there is a VLAN */
2243 if (e1000_vlan_used(adapter))
2244 rctl |= E1000_RCTL_VFE;
2245 }
2246
2247 if (netdev_uc_count(netdev) > rar_entries - 1) {
2248 rctl |= E1000_RCTL_UPE;
2249 } else if (!(netdev->flags & IFF_PROMISC)) {
2250 rctl &= ~E1000_RCTL_UPE;
2251 use_uc = true;
2252 }
2253
2254 ew32(RCTL, rctl);
2255
2256 /* 82542 2.0 needs to be in reset to write receive address registers */
2257
2258 if (hw->mac_type == e1000_82542_rev2_0)
2259 e1000_enter_82542_rst(adapter);
2260
2261 /* load the first 14 addresses into the exact filters 1-14. Unicast
2262 * addresses take precedence to avoid disabling unicast filtering
2263 * when possible.
2264 *
2265 * RAR 0 is used for the station MAC address
2266 * if there are not 14 addresses, go ahead and clear the filters
2267 */
2268 i = 1;
2269 if (use_uc)
2270 netdev_for_each_uc_addr(ha, netdev) {
2271 if (i == rar_entries)
2272 break;
2273 e1000_rar_set(hw, ha->addr, i++);
2274 }
2275
2276 netdev_for_each_mc_addr(ha, netdev) {
2277 if (i == rar_entries) {
2278 /* load any remaining addresses into the hash table */
2279 u32 hash_reg, hash_bit, mta;
2280 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2281 hash_reg = (hash_value >> 5) & 0x7F;
2282 hash_bit = hash_value & 0x1F;
2283 mta = (1 << hash_bit);
2284 mcarray[hash_reg] |= mta;
2285 } else {
2286 e1000_rar_set(hw, ha->addr, i++);
2287 }
2288 }
2289
2290 for (; i < rar_entries; i++) {
2291 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2292 E1000_WRITE_FLUSH();
2293 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2294 E1000_WRITE_FLUSH();
2295 }
2296
2297 /* write the hash table completely, write from bottom to avoid
2298 * both stupid write combining chipsets, and flushing each write
2299 */
2300 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2301 /* If we are on an 82544 has an errata where writing odd
2302 * offsets overwrites the previous even offset, but writing
2303 * backwards over the range solves the issue by always
2304 * writing the odd offset first
2305 */
2306 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2307 }
2308 E1000_WRITE_FLUSH();
2309
2310 if (hw->mac_type == e1000_82542_rev2_0)
2311 e1000_leave_82542_rst(adapter);
2312
2313 kfree(mcarray);
2314 }
2315
2316 /**
2317 * e1000_update_phy_info_task - get phy info
2318 * @work: work struct contained inside adapter struct
2319 *
2320 * Need to wait a few seconds after link up to get diagnostic information from
2321 * the phy
2322 */
2323 static void e1000_update_phy_info_task(struct work_struct *work)
2324 {
2325 struct e1000_adapter *adapter = container_of(work,
2326 struct e1000_adapter,
2327 phy_info_task.work);
2328 if (test_bit(__E1000_DOWN, &adapter->flags))
2329 return;
2330 mutex_lock(&adapter->mutex);
2331 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2332 mutex_unlock(&adapter->mutex);
2333 }
2334
2335 /**
2336 * e1000_82547_tx_fifo_stall_task - task to complete work
2337 * @work: work struct contained inside adapter struct
2338 **/
2339 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2340 {
2341 struct e1000_adapter *adapter = container_of(work,
2342 struct e1000_adapter,
2343 fifo_stall_task.work);
2344 struct e1000_hw *hw = &adapter->hw;
2345 struct net_device *netdev = adapter->netdev;
2346 u32 tctl;
2347
2348 if (test_bit(__E1000_DOWN, &adapter->flags))
2349 return;
2350 mutex_lock(&adapter->mutex);
2351 if (atomic_read(&adapter->tx_fifo_stall)) {
2352 if ((er32(TDT) == er32(TDH)) &&
2353 (er32(TDFT) == er32(TDFH)) &&
2354 (er32(TDFTS) == er32(TDFHS))) {
2355 tctl = er32(TCTL);
2356 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2357 ew32(TDFT, adapter->tx_head_addr);
2358 ew32(TDFH, adapter->tx_head_addr);
2359 ew32(TDFTS, adapter->tx_head_addr);
2360 ew32(TDFHS, adapter->tx_head_addr);
2361 ew32(TCTL, tctl);
2362 E1000_WRITE_FLUSH();
2363
2364 adapter->tx_fifo_head = 0;
2365 atomic_set(&adapter->tx_fifo_stall, 0);
2366 netif_wake_queue(netdev);
2367 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2368 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2369 }
2370 }
2371 mutex_unlock(&adapter->mutex);
2372 }
2373
2374 bool e1000_has_link(struct e1000_adapter *adapter)
2375 {
2376 struct e1000_hw *hw = &adapter->hw;
2377 bool link_active = false;
2378
2379 /* get_link_status is set on LSC (link status) interrupt or rx
2380 * sequence error interrupt (except on intel ce4100).
2381 * get_link_status will stay false until the
2382 * e1000_check_for_link establishes link for copper adapters
2383 * ONLY
2384 */
2385 switch (hw->media_type) {
2386 case e1000_media_type_copper:
2387 if (hw->mac_type == e1000_ce4100)
2388 hw->get_link_status = 1;
2389 if (hw->get_link_status) {
2390 e1000_check_for_link(hw);
2391 link_active = !hw->get_link_status;
2392 } else {
2393 link_active = true;
2394 }
2395 break;
2396 case e1000_media_type_fiber:
2397 e1000_check_for_link(hw);
2398 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2399 break;
2400 case e1000_media_type_internal_serdes:
2401 e1000_check_for_link(hw);
2402 link_active = hw->serdes_has_link;
2403 break;
2404 default:
2405 break;
2406 }
2407
2408 return link_active;
2409 }
2410
2411 /**
2412 * e1000_watchdog - work function
2413 * @work: work struct contained inside adapter struct
2414 **/
2415 static void e1000_watchdog(struct work_struct *work)
2416 {
2417 struct e1000_adapter *adapter = container_of(work,
2418 struct e1000_adapter,
2419 watchdog_task.work);
2420 struct e1000_hw *hw = &adapter->hw;
2421 struct net_device *netdev = adapter->netdev;
2422 struct e1000_tx_ring *txdr = adapter->tx_ring;
2423 u32 link, tctl;
2424
2425 if (test_bit(__E1000_DOWN, &adapter->flags))
2426 return;
2427
2428 mutex_lock(&adapter->mutex);
2429 link = e1000_has_link(adapter);
2430 if ((netif_carrier_ok(netdev)) && link)
2431 goto link_up;
2432
2433 if (link) {
2434 if (!netif_carrier_ok(netdev)) {
2435 u32 ctrl;
2436 bool txb2b = true;
2437 /* update snapshot of PHY registers on LSC */
2438 e1000_get_speed_and_duplex(hw,
2439 &adapter->link_speed,
2440 &adapter->link_duplex);
2441
2442 ctrl = er32(CTRL);
2443 pr_info("%s NIC Link is Up %d Mbps %s, "
2444 "Flow Control: %s\n",
2445 netdev->name,
2446 adapter->link_speed,
2447 adapter->link_duplex == FULL_DUPLEX ?
2448 "Full Duplex" : "Half Duplex",
2449 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2450 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2451 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2452 E1000_CTRL_TFCE) ? "TX" : "None")));
2453
2454 /* adjust timeout factor according to speed/duplex */
2455 adapter->tx_timeout_factor = 1;
2456 switch (adapter->link_speed) {
2457 case SPEED_10:
2458 txb2b = false;
2459 adapter->tx_timeout_factor = 16;
2460 break;
2461 case SPEED_100:
2462 txb2b = false;
2463 /* maybe add some timeout factor ? */
2464 break;
2465 }
2466
2467 /* enable transmits in the hardware */
2468 tctl = er32(TCTL);
2469 tctl |= E1000_TCTL_EN;
2470 ew32(TCTL, tctl);
2471
2472 netif_carrier_on(netdev);
2473 if (!test_bit(__E1000_DOWN, &adapter->flags))
2474 schedule_delayed_work(&adapter->phy_info_task,
2475 2 * HZ);
2476 adapter->smartspeed = 0;
2477 }
2478 } else {
2479 if (netif_carrier_ok(netdev)) {
2480 adapter->link_speed = 0;
2481 adapter->link_duplex = 0;
2482 pr_info("%s NIC Link is Down\n",
2483 netdev->name);
2484 netif_carrier_off(netdev);
2485
2486 if (!test_bit(__E1000_DOWN, &adapter->flags))
2487 schedule_delayed_work(&adapter->phy_info_task,
2488 2 * HZ);
2489 }
2490
2491 e1000_smartspeed(adapter);
2492 }
2493
2494 link_up:
2495 e1000_update_stats(adapter);
2496
2497 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2498 adapter->tpt_old = adapter->stats.tpt;
2499 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2500 adapter->colc_old = adapter->stats.colc;
2501
2502 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2503 adapter->gorcl_old = adapter->stats.gorcl;
2504 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2505 adapter->gotcl_old = adapter->stats.gotcl;
2506
2507 e1000_update_adaptive(hw);
2508
2509 if (!netif_carrier_ok(netdev)) {
2510 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2511 /* We've lost link, so the controller stops DMA,
2512 * but we've got queued Tx work that's never going
2513 * to get done, so reset controller to flush Tx.
2514 * (Do the reset outside of interrupt context).
2515 */
2516 adapter->tx_timeout_count++;
2517 schedule_work(&adapter->reset_task);
2518 /* exit immediately since reset is imminent */
2519 goto unlock;
2520 }
2521 }
2522
2523 /* Simple mode for Interrupt Throttle Rate (ITR) */
2524 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2525 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2526 * Total asymmetrical Tx or Rx gets ITR=8000;
2527 * everyone else is between 2000-8000.
2528 */
2529 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2530 u32 dif = (adapter->gotcl > adapter->gorcl ?
2531 adapter->gotcl - adapter->gorcl :
2532 adapter->gorcl - adapter->gotcl) / 10000;
2533 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2534
2535 ew32(ITR, 1000000000 / (itr * 256));
2536 }
2537
2538 /* Cause software interrupt to ensure rx ring is cleaned */
2539 ew32(ICS, E1000_ICS_RXDMT0);
2540
2541 /* Force detection of hung controller every watchdog period */
2542 adapter->detect_tx_hung = true;
2543
2544 /* Reschedule the task */
2545 if (!test_bit(__E1000_DOWN, &adapter->flags))
2546 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2547
2548 unlock:
2549 mutex_unlock(&adapter->mutex);
2550 }
2551
2552 enum latency_range {
2553 lowest_latency = 0,
2554 low_latency = 1,
2555 bulk_latency = 2,
2556 latency_invalid = 255
2557 };
2558
2559 /**
2560 * e1000_update_itr - update the dynamic ITR value based on statistics
2561 * @adapter: pointer to adapter
2562 * @itr_setting: current adapter->itr
2563 * @packets: the number of packets during this measurement interval
2564 * @bytes: the number of bytes during this measurement interval
2565 *
2566 * Stores a new ITR value based on packets and byte
2567 * counts during the last interrupt. The advantage of per interrupt
2568 * computation is faster updates and more accurate ITR for the current
2569 * traffic pattern. Constants in this function were computed
2570 * based on theoretical maximum wire speed and thresholds were set based
2571 * on testing data as well as attempting to minimize response time
2572 * while increasing bulk throughput.
2573 * this functionality is controlled by the InterruptThrottleRate module
2574 * parameter (see e1000_param.c)
2575 **/
2576 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2577 u16 itr_setting, int packets, int bytes)
2578 {
2579 unsigned int retval = itr_setting;
2580 struct e1000_hw *hw = &adapter->hw;
2581
2582 if (unlikely(hw->mac_type < e1000_82540))
2583 goto update_itr_done;
2584
2585 if (packets == 0)
2586 goto update_itr_done;
2587
2588 switch (itr_setting) {
2589 case lowest_latency:
2590 /* jumbo frames get bulk treatment*/
2591 if (bytes/packets > 8000)
2592 retval = bulk_latency;
2593 else if ((packets < 5) && (bytes > 512))
2594 retval = low_latency;
2595 break;
2596 case low_latency: /* 50 usec aka 20000 ints/s */
2597 if (bytes > 10000) {
2598 /* jumbo frames need bulk latency setting */
2599 if (bytes/packets > 8000)
2600 retval = bulk_latency;
2601 else if ((packets < 10) || ((bytes/packets) > 1200))
2602 retval = bulk_latency;
2603 else if ((packets > 35))
2604 retval = lowest_latency;
2605 } else if (bytes/packets > 2000)
2606 retval = bulk_latency;
2607 else if (packets <= 2 && bytes < 512)
2608 retval = lowest_latency;
2609 break;
2610 case bulk_latency: /* 250 usec aka 4000 ints/s */
2611 if (bytes > 25000) {
2612 if (packets > 35)
2613 retval = low_latency;
2614 } else if (bytes < 6000) {
2615 retval = low_latency;
2616 }
2617 break;
2618 }
2619
2620 update_itr_done:
2621 return retval;
2622 }
2623
2624 static void e1000_set_itr(struct e1000_adapter *adapter)
2625 {
2626 struct e1000_hw *hw = &adapter->hw;
2627 u16 current_itr;
2628 u32 new_itr = adapter->itr;
2629
2630 if (unlikely(hw->mac_type < e1000_82540))
2631 return;
2632
2633 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2634 if (unlikely(adapter->link_speed != SPEED_1000)) {
2635 current_itr = 0;
2636 new_itr = 4000;
2637 goto set_itr_now;
2638 }
2639
2640 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641 adapter->total_tx_packets,
2642 adapter->total_tx_bytes);
2643 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2644 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645 adapter->tx_itr = low_latency;
2646
2647 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648 adapter->total_rx_packets,
2649 adapter->total_rx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652 adapter->rx_itr = low_latency;
2653
2654 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656 switch (current_itr) {
2657 /* counts and packets in update_itr are dependent on these numbers */
2658 case lowest_latency:
2659 new_itr = 70000;
2660 break;
2661 case low_latency:
2662 new_itr = 20000; /* aka hwitr = ~200 */
2663 break;
2664 case bulk_latency:
2665 new_itr = 4000;
2666 break;
2667 default:
2668 break;
2669 }
2670
2671 set_itr_now:
2672 if (new_itr != adapter->itr) {
2673 /* this attempts to bias the interrupt rate towards Bulk
2674 * by adding intermediate steps when interrupt rate is
2675 * increasing
2676 */
2677 new_itr = new_itr > adapter->itr ?
2678 min(adapter->itr + (new_itr >> 2), new_itr) :
2679 new_itr;
2680 adapter->itr = new_itr;
2681 ew32(ITR, 1000000000 / (new_itr * 256));
2682 }
2683 }
2684
2685 #define E1000_TX_FLAGS_CSUM 0x00000001
2686 #define E1000_TX_FLAGS_VLAN 0x00000002
2687 #define E1000_TX_FLAGS_TSO 0x00000004
2688 #define E1000_TX_FLAGS_IPV4 0x00000008
2689 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2690 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2691 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2692
2693 static int e1000_tso(struct e1000_adapter *adapter,
2694 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2695 {
2696 struct e1000_context_desc *context_desc;
2697 struct e1000_buffer *buffer_info;
2698 unsigned int i;
2699 u32 cmd_length = 0;
2700 u16 ipcse = 0, tucse, mss;
2701 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2702 int err;
2703
2704 if (skb_is_gso(skb)) {
2705 if (skb_header_cloned(skb)) {
2706 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2707 if (err)
2708 return err;
2709 }
2710
2711 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2712 mss = skb_shinfo(skb)->gso_size;
2713 if (skb->protocol == htons(ETH_P_IP)) {
2714 struct iphdr *iph = ip_hdr(skb);
2715 iph->tot_len = 0;
2716 iph->check = 0;
2717 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718 iph->daddr, 0,
2719 IPPROTO_TCP,
2720 0);
2721 cmd_length = E1000_TXD_CMD_IP;
2722 ipcse = skb_transport_offset(skb) - 1;
2723 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2724 ipv6_hdr(skb)->payload_len = 0;
2725 tcp_hdr(skb)->check =
2726 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2727 &ipv6_hdr(skb)->daddr,
2728 0, IPPROTO_TCP, 0);
2729 ipcse = 0;
2730 }
2731 ipcss = skb_network_offset(skb);
2732 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2733 tucss = skb_transport_offset(skb);
2734 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2735 tucse = 0;
2736
2737 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2738 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2739
2740 i = tx_ring->next_to_use;
2741 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2742 buffer_info = &tx_ring->buffer_info[i];
2743
2744 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2745 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2746 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2747 context_desc->upper_setup.tcp_fields.tucss = tucss;
2748 context_desc->upper_setup.tcp_fields.tucso = tucso;
2749 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2750 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2751 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2752 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2753
2754 buffer_info->time_stamp = jiffies;
2755 buffer_info->next_to_watch = i;
2756
2757 if (++i == tx_ring->count) i = 0;
2758 tx_ring->next_to_use = i;
2759
2760 return true;
2761 }
2762 return false;
2763 }
2764
2765 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2766 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2767 {
2768 struct e1000_context_desc *context_desc;
2769 struct e1000_buffer *buffer_info;
2770 unsigned int i;
2771 u8 css;
2772 u32 cmd_len = E1000_TXD_CMD_DEXT;
2773
2774 if (skb->ip_summed != CHECKSUM_PARTIAL)
2775 return false;
2776
2777 switch (skb->protocol) {
2778 case cpu_to_be16(ETH_P_IP):
2779 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2780 cmd_len |= E1000_TXD_CMD_TCP;
2781 break;
2782 case cpu_to_be16(ETH_P_IPV6):
2783 /* XXX not handling all IPV6 headers */
2784 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2785 cmd_len |= E1000_TXD_CMD_TCP;
2786 break;
2787 default:
2788 if (unlikely(net_ratelimit()))
2789 e_warn(drv, "checksum_partial proto=%x!\n",
2790 skb->protocol);
2791 break;
2792 }
2793
2794 css = skb_checksum_start_offset(skb);
2795
2796 i = tx_ring->next_to_use;
2797 buffer_info = &tx_ring->buffer_info[i];
2798 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2799
2800 context_desc->lower_setup.ip_config = 0;
2801 context_desc->upper_setup.tcp_fields.tucss = css;
2802 context_desc->upper_setup.tcp_fields.tucso =
2803 css + skb->csum_offset;
2804 context_desc->upper_setup.tcp_fields.tucse = 0;
2805 context_desc->tcp_seg_setup.data = 0;
2806 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2807
2808 buffer_info->time_stamp = jiffies;
2809 buffer_info->next_to_watch = i;
2810
2811 if (unlikely(++i == tx_ring->count)) i = 0;
2812 tx_ring->next_to_use = i;
2813
2814 return true;
2815 }
2816
2817 #define E1000_MAX_TXD_PWR 12
2818 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2819
2820 static int e1000_tx_map(struct e1000_adapter *adapter,
2821 struct e1000_tx_ring *tx_ring,
2822 struct sk_buff *skb, unsigned int first,
2823 unsigned int max_per_txd, unsigned int nr_frags,
2824 unsigned int mss)
2825 {
2826 struct e1000_hw *hw = &adapter->hw;
2827 struct pci_dev *pdev = adapter->pdev;
2828 struct e1000_buffer *buffer_info;
2829 unsigned int len = skb_headlen(skb);
2830 unsigned int offset = 0, size, count = 0, i;
2831 unsigned int f, bytecount, segs;
2832
2833 i = tx_ring->next_to_use;
2834
2835 while (len) {
2836 buffer_info = &tx_ring->buffer_info[i];
2837 size = min(len, max_per_txd);
2838 /* Workaround for Controller erratum --
2839 * descriptor for non-tso packet in a linear SKB that follows a
2840 * tso gets written back prematurely before the data is fully
2841 * DMA'd to the controller
2842 */
2843 if (!skb->data_len && tx_ring->last_tx_tso &&
2844 !skb_is_gso(skb)) {
2845 tx_ring->last_tx_tso = false;
2846 size -= 4;
2847 }
2848
2849 /* Workaround for premature desc write-backs
2850 * in TSO mode. Append 4-byte sentinel desc
2851 */
2852 if (unlikely(mss && !nr_frags && size == len && size > 8))
2853 size -= 4;
2854 /* work-around for errata 10 and it applies
2855 * to all controllers in PCI-X mode
2856 * The fix is to make sure that the first descriptor of a
2857 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2858 */
2859 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2860 (size > 2015) && count == 0))
2861 size = 2015;
2862
2863 /* Workaround for potential 82544 hang in PCI-X. Avoid
2864 * terminating buffers within evenly-aligned dwords.
2865 */
2866 if (unlikely(adapter->pcix_82544 &&
2867 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2868 size > 4))
2869 size -= 4;
2870
2871 buffer_info->length = size;
2872 /* set time_stamp *before* dma to help avoid a possible race */
2873 buffer_info->time_stamp = jiffies;
2874 buffer_info->mapped_as_page = false;
2875 buffer_info->dma = dma_map_single(&pdev->dev,
2876 skb->data + offset,
2877 size, DMA_TO_DEVICE);
2878 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2879 goto dma_error;
2880 buffer_info->next_to_watch = i;
2881
2882 len -= size;
2883 offset += size;
2884 count++;
2885 if (len) {
2886 i++;
2887 if (unlikely(i == tx_ring->count))
2888 i = 0;
2889 }
2890 }
2891
2892 for (f = 0; f < nr_frags; f++) {
2893 const struct skb_frag_struct *frag;
2894
2895 frag = &skb_shinfo(skb)->frags[f];
2896 len = skb_frag_size(frag);
2897 offset = 0;
2898
2899 while (len) {
2900 unsigned long bufend;
2901 i++;
2902 if (unlikely(i == tx_ring->count))
2903 i = 0;
2904
2905 buffer_info = &tx_ring->buffer_info[i];
2906 size = min(len, max_per_txd);
2907 /* Workaround for premature desc write-backs
2908 * in TSO mode. Append 4-byte sentinel desc
2909 */
2910 if (unlikely(mss && f == (nr_frags-1) &&
2911 size == len && size > 8))
2912 size -= 4;
2913 /* Workaround for potential 82544 hang in PCI-X.
2914 * Avoid terminating buffers within evenly-aligned
2915 * dwords.
2916 */
2917 bufend = (unsigned long)
2918 page_to_phys(skb_frag_page(frag));
2919 bufend += offset + size - 1;
2920 if (unlikely(adapter->pcix_82544 &&
2921 !(bufend & 4) &&
2922 size > 4))
2923 size -= 4;
2924
2925 buffer_info->length = size;
2926 buffer_info->time_stamp = jiffies;
2927 buffer_info->mapped_as_page = true;
2928 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929 offset, size, DMA_TO_DEVICE);
2930 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931 goto dma_error;
2932 buffer_info->next_to_watch = i;
2933
2934 len -= size;
2935 offset += size;
2936 count++;
2937 }
2938 }
2939
2940 segs = skb_shinfo(skb)->gso_segs ?: 1;
2941 /* multiply data chunks by size of headers */
2942 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944 tx_ring->buffer_info[i].skb = skb;
2945 tx_ring->buffer_info[i].segs = segs;
2946 tx_ring->buffer_info[i].bytecount = bytecount;
2947 tx_ring->buffer_info[first].next_to_watch = i;
2948
2949 return count;
2950
2951 dma_error:
2952 dev_err(&pdev->dev, "TX DMA map failed\n");
2953 buffer_info->dma = 0;
2954 if (count)
2955 count--;
2956
2957 while (count--) {
2958 if (i==0)
2959 i += tx_ring->count;
2960 i--;
2961 buffer_info = &tx_ring->buffer_info[i];
2962 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2963 }
2964
2965 return 0;
2966 }
2967
2968 static void e1000_tx_queue(struct e1000_adapter *adapter,
2969 struct e1000_tx_ring *tx_ring, int tx_flags,
2970 int count)
2971 {
2972 struct e1000_hw *hw = &adapter->hw;
2973 struct e1000_tx_desc *tx_desc = NULL;
2974 struct e1000_buffer *buffer_info;
2975 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2976 unsigned int i;
2977
2978 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2979 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2980 E1000_TXD_CMD_TSE;
2981 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2982
2983 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2984 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2985 }
2986
2987 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2988 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2989 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2990 }
2991
2992 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2993 txd_lower |= E1000_TXD_CMD_VLE;
2994 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2995 }
2996
2997 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2998 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2999
3000 i = tx_ring->next_to_use;
3001
3002 while (count--) {
3003 buffer_info = &tx_ring->buffer_info[i];
3004 tx_desc = E1000_TX_DESC(*tx_ring, i);
3005 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3006 tx_desc->lower.data =
3007 cpu_to_le32(txd_lower | buffer_info->length);
3008 tx_desc->upper.data = cpu_to_le32(txd_upper);
3009 if (unlikely(++i == tx_ring->count)) i = 0;
3010 }
3011
3012 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018 /* Force memory writes to complete before letting h/w
3019 * know there are new descriptors to fetch. (Only
3020 * applicable for weak-ordered memory model archs,
3021 * such as IA-64).
3022 */
3023 wmb();
3024
3025 tx_ring->next_to_use = i;
3026 writel(i, hw->hw_addr + tx_ring->tdt);
3027 /* we need this if more than one processor can write to our tail
3028 * at a time, it synchronizes IO on IA64/Altix systems
3029 */
3030 mmiowb();
3031 }
3032
3033 /* 82547 workaround to avoid controller hang in half-duplex environment.
3034 * The workaround is to avoid queuing a large packet that would span
3035 * the internal Tx FIFO ring boundary by notifying the stack to resend
3036 * the packet at a later time. This gives the Tx FIFO an opportunity to
3037 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3038 * to the beginning of the Tx FIFO.
3039 */
3040
3041 #define E1000_FIFO_HDR 0x10
3042 #define E1000_82547_PAD_LEN 0x3E0
3043
3044 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3045 struct sk_buff *skb)
3046 {
3047 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3048 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3049
3050 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3051
3052 if (adapter->link_duplex != HALF_DUPLEX)
3053 goto no_fifo_stall_required;
3054
3055 if (atomic_read(&adapter->tx_fifo_stall))
3056 return 1;
3057
3058 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3059 atomic_set(&adapter->tx_fifo_stall, 1);
3060 return 1;
3061 }
3062
3063 no_fifo_stall_required:
3064 adapter->tx_fifo_head += skb_fifo_len;
3065 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3066 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3067 return 0;
3068 }
3069
3070 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3071 {
3072 struct e1000_adapter *adapter = netdev_priv(netdev);
3073 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3074
3075 netif_stop_queue(netdev);
3076 /* Herbert's original patch had:
3077 * smp_mb__after_netif_stop_queue();
3078 * but since that doesn't exist yet, just open code it.
3079 */
3080 smp_mb();
3081
3082 /* We need to check again in a case another CPU has just
3083 * made room available.
3084 */
3085 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3086 return -EBUSY;
3087
3088 /* A reprieve! */
3089 netif_start_queue(netdev);
3090 ++adapter->restart_queue;
3091 return 0;
3092 }
3093
3094 static int e1000_maybe_stop_tx(struct net_device *netdev,
3095 struct e1000_tx_ring *tx_ring, int size)
3096 {
3097 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3098 return 0;
3099 return __e1000_maybe_stop_tx(netdev, size);
3100 }
3101
3102 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3103 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3104 struct net_device *netdev)
3105 {
3106 struct e1000_adapter *adapter = netdev_priv(netdev);
3107 struct e1000_hw *hw = &adapter->hw;
3108 struct e1000_tx_ring *tx_ring;
3109 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3110 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3111 unsigned int tx_flags = 0;
3112 unsigned int len = skb_headlen(skb);
3113 unsigned int nr_frags;
3114 unsigned int mss;
3115 int count = 0;
3116 int tso;
3117 unsigned int f;
3118
3119 /* This goes back to the question of how to logically map a Tx queue
3120 * to a flow. Right now, performance is impacted slightly negatively
3121 * if using multiple Tx queues. If the stack breaks away from a
3122 * single qdisc implementation, we can look at this again.
3123 */
3124 tx_ring = adapter->tx_ring;
3125
3126 if (unlikely(skb->len <= 0)) {
3127 dev_kfree_skb_any(skb);
3128 return NETDEV_TX_OK;
3129 }
3130
3131 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3132 * packets may get corrupted during padding by HW.
3133 * To WA this issue, pad all small packets manually.
3134 */
3135 if (skb->len < ETH_ZLEN) {
3136 if (skb_pad(skb, ETH_ZLEN - skb->len))
3137 return NETDEV_TX_OK;
3138 skb->len = ETH_ZLEN;
3139 skb_set_tail_pointer(skb, ETH_ZLEN);
3140 }
3141
3142 mss = skb_shinfo(skb)->gso_size;
3143 /* The controller does a simple calculation to
3144 * make sure there is enough room in the FIFO before
3145 * initiating the DMA for each buffer. The calc is:
3146 * 4 = ceil(buffer len/mss). To make sure we don't
3147 * overrun the FIFO, adjust the max buffer len if mss
3148 * drops.
3149 */
3150 if (mss) {
3151 u8 hdr_len;
3152 max_per_txd = min(mss << 2, max_per_txd);
3153 max_txd_pwr = fls(max_per_txd) - 1;
3154
3155 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3156 if (skb->data_len && hdr_len == len) {
3157 switch (hw->mac_type) {
3158 unsigned int pull_size;
3159 case e1000_82544:
3160 /* Make sure we have room to chop off 4 bytes,
3161 * and that the end alignment will work out to
3162 * this hardware's requirements
3163 * NOTE: this is a TSO only workaround
3164 * if end byte alignment not correct move us
3165 * into the next dword
3166 */
3167 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3168 & 4)
3169 break;
3170 /* fall through */
3171 pull_size = min((unsigned int)4, skb->data_len);
3172 if (!__pskb_pull_tail(skb, pull_size)) {
3173 e_err(drv, "__pskb_pull_tail "
3174 "failed.\n");
3175 dev_kfree_skb_any(skb);
3176 return NETDEV_TX_OK;
3177 }
3178 len = skb_headlen(skb);
3179 break;
3180 default:
3181 /* do nothing */
3182 break;
3183 }
3184 }
3185 }
3186
3187 /* reserve a descriptor for the offload context */
3188 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3189 count++;
3190 count++;
3191
3192 /* Controller Erratum workaround */
3193 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3194 count++;
3195
3196 count += TXD_USE_COUNT(len, max_txd_pwr);
3197
3198 if (adapter->pcix_82544)
3199 count++;
3200
3201 /* work-around for errata 10 and it applies to all controllers
3202 * in PCI-X mode, so add one more descriptor to the count
3203 */
3204 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3205 (len > 2015)))
3206 count++;
3207
3208 nr_frags = skb_shinfo(skb)->nr_frags;
3209 for (f = 0; f < nr_frags; f++)
3210 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3211 max_txd_pwr);
3212 if (adapter->pcix_82544)
3213 count += nr_frags;
3214
3215 /* need: count + 2 desc gap to keep tail from touching
3216 * head, otherwise try next time
3217 */
3218 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3219 return NETDEV_TX_BUSY;
3220
3221 if (unlikely((hw->mac_type == e1000_82547) &&
3222 (e1000_82547_fifo_workaround(adapter, skb)))) {
3223 netif_stop_queue(netdev);
3224 if (!test_bit(__E1000_DOWN, &adapter->flags))
3225 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3226 return NETDEV_TX_BUSY;
3227 }
3228
3229 if (vlan_tx_tag_present(skb)) {
3230 tx_flags |= E1000_TX_FLAGS_VLAN;
3231 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3232 }
3233
3234 first = tx_ring->next_to_use;
3235
3236 tso = e1000_tso(adapter, tx_ring, skb);
3237 if (tso < 0) {
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
3242 if (likely(tso)) {
3243 if (likely(hw->mac_type != e1000_82544))
3244 tx_ring->last_tx_tso = true;
3245 tx_flags |= E1000_TX_FLAGS_TSO;
3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249 if (likely(skb->protocol == htons(ETH_P_IP)))
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 nr_frags, mss);
3257
3258 if (count) {
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263 /* Make sure there is space in the ring for the next send. */
3264 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3265
3266 } else {
3267 dev_kfree_skb_any(skb);
3268 tx_ring->buffer_info[first].time_stamp = 0;
3269 tx_ring->next_to_use = first;
3270 }
3271
3272 return NETDEV_TX_OK;
3273 }
3274
3275 #define NUM_REGS 38 /* 1 based count */
3276 static void e1000_regdump(struct e1000_adapter *adapter)
3277 {
3278 struct e1000_hw *hw = &adapter->hw;
3279 u32 regs[NUM_REGS];
3280 u32 *regs_buff = regs;
3281 int i = 0;
3282
3283 static const char * const reg_name[] = {
3284 "CTRL", "STATUS",
3285 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3286 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3287 "TIDV", "TXDCTL", "TADV", "TARC0",
3288 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3289 "TXDCTL1", "TARC1",
3290 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3291 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3292 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3293 };
3294
3295 regs_buff[0] = er32(CTRL);
3296 regs_buff[1] = er32(STATUS);
3297
3298 regs_buff[2] = er32(RCTL);
3299 regs_buff[3] = er32(RDLEN);
3300 regs_buff[4] = er32(RDH);
3301 regs_buff[5] = er32(RDT);
3302 regs_buff[6] = er32(RDTR);
3303
3304 regs_buff[7] = er32(TCTL);
3305 regs_buff[8] = er32(TDBAL);
3306 regs_buff[9] = er32(TDBAH);
3307 regs_buff[10] = er32(TDLEN);
3308 regs_buff[11] = er32(TDH);
3309 regs_buff[12] = er32(TDT);
3310 regs_buff[13] = er32(TIDV);
3311 regs_buff[14] = er32(TXDCTL);
3312 regs_buff[15] = er32(TADV);
3313 regs_buff[16] = er32(TARC0);
3314
3315 regs_buff[17] = er32(TDBAL1);
3316 regs_buff[18] = er32(TDBAH1);
3317 regs_buff[19] = er32(TDLEN1);
3318 regs_buff[20] = er32(TDH1);
3319 regs_buff[21] = er32(TDT1);
3320 regs_buff[22] = er32(TXDCTL1);
3321 regs_buff[23] = er32(TARC1);
3322 regs_buff[24] = er32(CTRL_EXT);
3323 regs_buff[25] = er32(ERT);
3324 regs_buff[26] = er32(RDBAL0);
3325 regs_buff[27] = er32(RDBAH0);
3326 regs_buff[28] = er32(TDFH);
3327 regs_buff[29] = er32(TDFT);
3328 regs_buff[30] = er32(TDFHS);
3329 regs_buff[31] = er32(TDFTS);
3330 regs_buff[32] = er32(TDFPC);
3331 regs_buff[33] = er32(RDFH);
3332 regs_buff[34] = er32(RDFT);
3333 regs_buff[35] = er32(RDFHS);
3334 regs_buff[36] = er32(RDFTS);
3335 regs_buff[37] = er32(RDFPC);
3336
3337 pr_info("Register dump\n");
3338 for (i = 0; i < NUM_REGS; i++)
3339 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3340 }
3341
3342 /*
3343 * e1000_dump: Print registers, tx ring and rx ring
3344 */
3345 static void e1000_dump(struct e1000_adapter *adapter)
3346 {
3347 /* this code doesn't handle multiple rings */
3348 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3349 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3350 int i;
3351
3352 if (!netif_msg_hw(adapter))
3353 return;
3354
3355 /* Print Registers */
3356 e1000_regdump(adapter);
3357
3358 /* transmit dump */
3359 pr_info("TX Desc ring0 dump\n");
3360
3361 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3362 *
3363 * Legacy Transmit Descriptor
3364 * +--------------------------------------------------------------+
3365 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3366 * +--------------------------------------------------------------+
3367 * 8 | Special | CSS | Status | CMD | CSO | Length |
3368 * +--------------------------------------------------------------+
3369 * 63 48 47 36 35 32 31 24 23 16 15 0
3370 *
3371 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3372 * 63 48 47 40 39 32 31 16 15 8 7 0
3373 * +----------------------------------------------------------------+
3374 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3375 * +----------------------------------------------------------------+
3376 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3377 * +----------------------------------------------------------------+
3378 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3379 *
3380 * Extended Data Descriptor (DTYP=0x1)
3381 * +----------------------------------------------------------------+
3382 * 0 | Buffer Address [63:0] |
3383 * +----------------------------------------------------------------+
3384 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3385 * +----------------------------------------------------------------+
3386 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3387 */
3388 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3389 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3390
3391 if (!netif_msg_tx_done(adapter))
3392 goto rx_ring_summary;
3393
3394 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3395 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3396 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3397 struct my_u { __le64 a; __le64 b; };
3398 struct my_u *u = (struct my_u *)tx_desc;
3399 const char *type;
3400
3401 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3402 type = "NTC/U";
3403 else if (i == tx_ring->next_to_use)
3404 type = "NTU";
3405 else if (i == tx_ring->next_to_clean)
3406 type = "NTC";
3407 else
3408 type = "";
3409
3410 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3411 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3412 le64_to_cpu(u->a), le64_to_cpu(u->b),
3413 (u64)buffer_info->dma, buffer_info->length,
3414 buffer_info->next_to_watch,
3415 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3416 }
3417
3418 rx_ring_summary:
3419 /* receive dump */
3420 pr_info("\nRX Desc ring dump\n");
3421
3422 /* Legacy Receive Descriptor Format
3423 *
3424 * +-----------------------------------------------------+
3425 * | Buffer Address [63:0] |
3426 * +-----------------------------------------------------+
3427 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3428 * +-----------------------------------------------------+
3429 * 63 48 47 40 39 32 31 16 15 0
3430 */
3431 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3432
3433 if (!netif_msg_rx_status(adapter))
3434 goto exit;
3435
3436 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3437 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3438 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3439 struct my_u { __le64 a; __le64 b; };
3440 struct my_u *u = (struct my_u *)rx_desc;
3441 const char *type;
3442
3443 if (i == rx_ring->next_to_use)
3444 type = "NTU";
3445 else if (i == rx_ring->next_to_clean)
3446 type = "NTC";
3447 else
3448 type = "";
3449
3450 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3451 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3452 (u64)buffer_info->dma, buffer_info->skb, type);
3453 } /* for */
3454
3455 /* dump the descriptor caches */
3456 /* rx */
3457 pr_info("Rx descriptor cache in 64bit format\n");
3458 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3459 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3460 i,
3461 readl(adapter->hw.hw_addr + i+4),
3462 readl(adapter->hw.hw_addr + i),
3463 readl(adapter->hw.hw_addr + i+12),
3464 readl(adapter->hw.hw_addr + i+8));
3465 }
3466 /* tx */
3467 pr_info("Tx descriptor cache in 64bit format\n");
3468 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3469 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3470 i,
3471 readl(adapter->hw.hw_addr + i+4),
3472 readl(adapter->hw.hw_addr + i),
3473 readl(adapter->hw.hw_addr + i+12),
3474 readl(adapter->hw.hw_addr + i+8));
3475 }
3476 exit:
3477 return;
3478 }
3479
3480 /**
3481 * e1000_tx_timeout - Respond to a Tx Hang
3482 * @netdev: network interface device structure
3483 **/
3484 static void e1000_tx_timeout(struct net_device *netdev)
3485 {
3486 struct e1000_adapter *adapter = netdev_priv(netdev);
3487
3488 /* Do the reset outside of interrupt context */
3489 adapter->tx_timeout_count++;
3490 schedule_work(&adapter->reset_task);
3491 }
3492
3493 static void e1000_reset_task(struct work_struct *work)
3494 {
3495 struct e1000_adapter *adapter =
3496 container_of(work, struct e1000_adapter, reset_task);
3497
3498 if (test_bit(__E1000_DOWN, &adapter->flags))
3499 return;
3500 e_err(drv, "Reset adapter\n");
3501 e1000_reinit_safe(adapter);
3502 }
3503
3504 /**
3505 * e1000_get_stats - Get System Network Statistics
3506 * @netdev: network interface device structure
3507 *
3508 * Returns the address of the device statistics structure.
3509 * The statistics are actually updated from the watchdog.
3510 **/
3511 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3512 {
3513 /* only return the current stats */
3514 return &netdev->stats;
3515 }
3516
3517 /**
3518 * e1000_change_mtu - Change the Maximum Transfer Unit
3519 * @netdev: network interface device structure
3520 * @new_mtu: new value for maximum frame size
3521 *
3522 * Returns 0 on success, negative on failure
3523 **/
3524 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3525 {
3526 struct e1000_adapter *adapter = netdev_priv(netdev);
3527 struct e1000_hw *hw = &adapter->hw;
3528 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3529
3530 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3531 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3532 e_err(probe, "Invalid MTU setting\n");
3533 return -EINVAL;
3534 }
3535
3536 /* Adapter-specific max frame size limits. */
3537 switch (hw->mac_type) {
3538 case e1000_undefined ... e1000_82542_rev2_1:
3539 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3540 e_err(probe, "Jumbo Frames not supported.\n");
3541 return -EINVAL;
3542 }
3543 break;
3544 default:
3545 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3546 break;
3547 }
3548
3549 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3550 msleep(1);
3551 /* e1000_down has a dependency on max_frame_size */
3552 hw->max_frame_size = max_frame;
3553 if (netif_running(netdev))
3554 e1000_down(adapter);
3555
3556 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3557 * means we reserve 2 more, this pushes us to allocate from the next
3558 * larger slab size.
3559 * i.e. RXBUFFER_2048 --> size-4096 slab
3560 * however with the new *_jumbo_rx* routines, jumbo receives will use
3561 * fragmented skbs
3562 */
3563
3564 if (max_frame <= E1000_RXBUFFER_2048)
3565 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3566 else
3567 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3568 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3569 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3570 adapter->rx_buffer_len = PAGE_SIZE;
3571 #endif
3572
3573 /* adjust allocation if LPE protects us, and we aren't using SBP */
3574 if (!hw->tbi_compatibility_on &&
3575 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3576 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3577 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3578
3579 pr_info("%s changing MTU from %d to %d\n",
3580 netdev->name, netdev->mtu, new_mtu);
3581 netdev->mtu = new_mtu;
3582
3583 if (netif_running(netdev))
3584 e1000_up(adapter);
3585 else
3586 e1000_reset(adapter);
3587
3588 clear_bit(__E1000_RESETTING, &adapter->flags);
3589
3590 return 0;
3591 }
3592
3593 /**
3594 * e1000_update_stats - Update the board statistics counters
3595 * @adapter: board private structure
3596 **/
3597 void e1000_update_stats(struct e1000_adapter *adapter)
3598 {
3599 struct net_device *netdev = adapter->netdev;
3600 struct e1000_hw *hw = &adapter->hw;
3601 struct pci_dev *pdev = adapter->pdev;
3602 unsigned long flags;
3603 u16 phy_tmp;
3604
3605 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3606
3607 /* Prevent stats update while adapter is being reset, or if the pci
3608 * connection is down.
3609 */
3610 if (adapter->link_speed == 0)
3611 return;
3612 if (pci_channel_offline(pdev))
3613 return;
3614
3615 spin_lock_irqsave(&adapter->stats_lock, flags);
3616
3617 /* these counters are modified from e1000_tbi_adjust_stats,
3618 * called from the interrupt context, so they must only
3619 * be written while holding adapter->stats_lock
3620 */
3621
3622 adapter->stats.crcerrs += er32(CRCERRS);
3623 adapter->stats.gprc += er32(GPRC);
3624 adapter->stats.gorcl += er32(GORCL);
3625 adapter->stats.gorch += er32(GORCH);
3626 adapter->stats.bprc += er32(BPRC);
3627 adapter->stats.mprc += er32(MPRC);
3628 adapter->stats.roc += er32(ROC);
3629
3630 adapter->stats.prc64 += er32(PRC64);
3631 adapter->stats.prc127 += er32(PRC127);
3632 adapter->stats.prc255 += er32(PRC255);
3633 adapter->stats.prc511 += er32(PRC511);
3634 adapter->stats.prc1023 += er32(PRC1023);
3635 adapter->stats.prc1522 += er32(PRC1522);
3636
3637 adapter->stats.symerrs += er32(SYMERRS);
3638 adapter->stats.mpc += er32(MPC);
3639 adapter->stats.scc += er32(SCC);
3640 adapter->stats.ecol += er32(ECOL);
3641 adapter->stats.mcc += er32(MCC);
3642 adapter->stats.latecol += er32(LATECOL);
3643 adapter->stats.dc += er32(DC);
3644 adapter->stats.sec += er32(SEC);
3645 adapter->stats.rlec += er32(RLEC);
3646 adapter->stats.xonrxc += er32(XONRXC);
3647 adapter->stats.xontxc += er32(XONTXC);
3648 adapter->stats.xoffrxc += er32(XOFFRXC);
3649 adapter->stats.xofftxc += er32(XOFFTXC);
3650 adapter->stats.fcruc += er32(FCRUC);
3651 adapter->stats.gptc += er32(GPTC);
3652 adapter->stats.gotcl += er32(GOTCL);
3653 adapter->stats.gotch += er32(GOTCH);
3654 adapter->stats.rnbc += er32(RNBC);
3655 adapter->stats.ruc += er32(RUC);
3656 adapter->stats.rfc += er32(RFC);
3657 adapter->stats.rjc += er32(RJC);
3658 adapter->stats.torl += er32(TORL);
3659 adapter->stats.torh += er32(TORH);
3660 adapter->stats.totl += er32(TOTL);
3661 adapter->stats.toth += er32(TOTH);
3662 adapter->stats.tpr += er32(TPR);
3663
3664 adapter->stats.ptc64 += er32(PTC64);
3665 adapter->stats.ptc127 += er32(PTC127);
3666 adapter->stats.ptc255 += er32(PTC255);
3667 adapter->stats.ptc511 += er32(PTC511);
3668 adapter->stats.ptc1023 += er32(PTC1023);
3669 adapter->stats.ptc1522 += er32(PTC1522);
3670
3671 adapter->stats.mptc += er32(MPTC);
3672 adapter->stats.bptc += er32(BPTC);
3673
3674 /* used for adaptive IFS */
3675
3676 hw->tx_packet_delta = er32(TPT);
3677 adapter->stats.tpt += hw->tx_packet_delta;
3678 hw->collision_delta = er32(COLC);
3679 adapter->stats.colc += hw->collision_delta;
3680
3681 if (hw->mac_type >= e1000_82543) {
3682 adapter->stats.algnerrc += er32(ALGNERRC);
3683 adapter->stats.rxerrc += er32(RXERRC);
3684 adapter->stats.tncrs += er32(TNCRS);
3685 adapter->stats.cexterr += er32(CEXTERR);
3686 adapter->stats.tsctc += er32(TSCTC);
3687 adapter->stats.tsctfc += er32(TSCTFC);
3688 }
3689
3690 /* Fill out the OS statistics structure */
3691 netdev->stats.multicast = adapter->stats.mprc;
3692 netdev->stats.collisions = adapter->stats.colc;
3693
3694 /* Rx Errors */
3695
3696 /* RLEC on some newer hardware can be incorrect so build
3697 * our own version based on RUC and ROC
3698 */
3699 netdev->stats.rx_errors = adapter->stats.rxerrc +
3700 adapter->stats.crcerrs + adapter->stats.algnerrc +
3701 adapter->stats.ruc + adapter->stats.roc +
3702 adapter->stats.cexterr;
3703 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3704 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3705 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3706 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3707 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3708
3709 /* Tx Errors */
3710 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3711 netdev->stats.tx_errors = adapter->stats.txerrc;
3712 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3713 netdev->stats.tx_window_errors = adapter->stats.latecol;
3714 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3715 if (hw->bad_tx_carr_stats_fd &&
3716 adapter->link_duplex == FULL_DUPLEX) {
3717 netdev->stats.tx_carrier_errors = 0;
3718 adapter->stats.tncrs = 0;
3719 }
3720
3721 /* Tx Dropped needs to be maintained elsewhere */
3722
3723 /* Phy Stats */
3724 if (hw->media_type == e1000_media_type_copper) {
3725 if ((adapter->link_speed == SPEED_1000) &&
3726 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3727 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3728 adapter->phy_stats.idle_errors += phy_tmp;
3729 }
3730
3731 if ((hw->mac_type <= e1000_82546) &&
3732 (hw->phy_type == e1000_phy_m88) &&
3733 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3734 adapter->phy_stats.receive_errors += phy_tmp;
3735 }
3736
3737 /* Management Stats */
3738 if (hw->has_smbus) {
3739 adapter->stats.mgptc += er32(MGTPTC);
3740 adapter->stats.mgprc += er32(MGTPRC);
3741 adapter->stats.mgpdc += er32(MGTPDC);
3742 }
3743
3744 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3745 }
3746
3747 /**
3748 * e1000_intr - Interrupt Handler
3749 * @irq: interrupt number
3750 * @data: pointer to a network interface device structure
3751 **/
3752 static irqreturn_t e1000_intr(int irq, void *data)
3753 {
3754 struct net_device *netdev = data;
3755 struct e1000_adapter *adapter = netdev_priv(netdev);
3756 struct e1000_hw *hw = &adapter->hw;
3757 u32 icr = er32(ICR);
3758
3759 if (unlikely((!icr)))
3760 return IRQ_NONE; /* Not our interrupt */
3761
3762 /* we might have caused the interrupt, but the above
3763 * read cleared it, and just in case the driver is
3764 * down there is nothing to do so return handled
3765 */
3766 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3767 return IRQ_HANDLED;
3768
3769 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3770 hw->get_link_status = 1;
3771 /* guard against interrupt when we're going down */
3772 if (!test_bit(__E1000_DOWN, &adapter->flags))
3773 schedule_delayed_work(&adapter->watchdog_task, 1);
3774 }
3775
3776 /* disable interrupts, without the synchronize_irq bit */
3777 ew32(IMC, ~0);
3778 E1000_WRITE_FLUSH();
3779
3780 if (likely(napi_schedule_prep(&adapter->napi))) {
3781 adapter->total_tx_bytes = 0;
3782 adapter->total_tx_packets = 0;
3783 adapter->total_rx_bytes = 0;
3784 adapter->total_rx_packets = 0;
3785 __napi_schedule(&adapter->napi);
3786 } else {
3787 /* this really should not happen! if it does it is basically a
3788 * bug, but not a hard error, so enable ints and continue
3789 */
3790 if (!test_bit(__E1000_DOWN, &adapter->flags))
3791 e1000_irq_enable(adapter);
3792 }
3793
3794 return IRQ_HANDLED;
3795 }
3796
3797 /**
3798 * e1000_clean - NAPI Rx polling callback
3799 * @adapter: board private structure
3800 **/
3801 static int e1000_clean(struct napi_struct *napi, int budget)
3802 {
3803 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3804 napi);
3805 int tx_clean_complete = 0, work_done = 0;
3806
3807 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3808
3809 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3810
3811 if (!tx_clean_complete)
3812 work_done = budget;
3813
3814 /* If budget not fully consumed, exit the polling mode */
3815 if (work_done < budget) {
3816 if (likely(adapter->itr_setting & 3))
3817 e1000_set_itr(adapter);
3818 napi_complete(napi);
3819 if (!test_bit(__E1000_DOWN, &adapter->flags))
3820 e1000_irq_enable(adapter);
3821 }
3822
3823 return work_done;
3824 }
3825
3826 /**
3827 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3828 * @adapter: board private structure
3829 **/
3830 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3831 struct e1000_tx_ring *tx_ring)
3832 {
3833 struct e1000_hw *hw = &adapter->hw;
3834 struct net_device *netdev = adapter->netdev;
3835 struct e1000_tx_desc *tx_desc, *eop_desc;
3836 struct e1000_buffer *buffer_info;
3837 unsigned int i, eop;
3838 unsigned int count = 0;
3839 unsigned int total_tx_bytes=0, total_tx_packets=0;
3840 unsigned int bytes_compl = 0, pkts_compl = 0;
3841
3842 i = tx_ring->next_to_clean;
3843 eop = tx_ring->buffer_info[i].next_to_watch;
3844 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3845
3846 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3847 (count < tx_ring->count)) {
3848 bool cleaned = false;
3849 rmb(); /* read buffer_info after eop_desc */
3850 for ( ; !cleaned; count++) {
3851 tx_desc = E1000_TX_DESC(*tx_ring, i);
3852 buffer_info = &tx_ring->buffer_info[i];
3853 cleaned = (i == eop);
3854
3855 if (cleaned) {
3856 total_tx_packets += buffer_info->segs;
3857 total_tx_bytes += buffer_info->bytecount;
3858 if (buffer_info->skb) {
3859 bytes_compl += buffer_info->skb->len;
3860 pkts_compl++;
3861 }
3862
3863 }
3864 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3865 tx_desc->upper.data = 0;
3866
3867 if (unlikely(++i == tx_ring->count)) i = 0;
3868 }
3869
3870 eop = tx_ring->buffer_info[i].next_to_watch;
3871 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872 }
3873
3874 tx_ring->next_to_clean = i;
3875
3876 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3877
3878 #define TX_WAKE_THRESHOLD 32
3879 if (unlikely(count && netif_carrier_ok(netdev) &&
3880 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3881 /* Make sure that anybody stopping the queue after this
3882 * sees the new next_to_clean.
3883 */
3884 smp_mb();
3885
3886 if (netif_queue_stopped(netdev) &&
3887 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3888 netif_wake_queue(netdev);
3889 ++adapter->restart_queue;
3890 }
3891 }
3892
3893 if (adapter->detect_tx_hung) {
3894 /* Detect a transmit hang in hardware, this serializes the
3895 * check with the clearing of time_stamp and movement of i
3896 */
3897 adapter->detect_tx_hung = false;
3898 if (tx_ring->buffer_info[eop].time_stamp &&
3899 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3900 (adapter->tx_timeout_factor * HZ)) &&
3901 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3902
3903 /* detected Tx unit hang */
3904 e_err(drv, "Detected Tx Unit Hang\n"
3905 " Tx Queue <%lu>\n"
3906 " TDH <%x>\n"
3907 " TDT <%x>\n"
3908 " next_to_use <%x>\n"
3909 " next_to_clean <%x>\n"
3910 "buffer_info[next_to_clean]\n"
3911 " time_stamp <%lx>\n"
3912 " next_to_watch <%x>\n"
3913 " jiffies <%lx>\n"
3914 " next_to_watch.status <%x>\n",
3915 (unsigned long)(tx_ring - adapter->tx_ring),
3916 readl(hw->hw_addr + tx_ring->tdh),
3917 readl(hw->hw_addr + tx_ring->tdt),
3918 tx_ring->next_to_use,
3919 tx_ring->next_to_clean,
3920 tx_ring->buffer_info[eop].time_stamp,
3921 eop,
3922 jiffies,
3923 eop_desc->upper.fields.status);
3924 e1000_dump(adapter);
3925 netif_stop_queue(netdev);
3926 }
3927 }
3928 adapter->total_tx_bytes += total_tx_bytes;
3929 adapter->total_tx_packets += total_tx_packets;
3930 netdev->stats.tx_bytes += total_tx_bytes;
3931 netdev->stats.tx_packets += total_tx_packets;
3932 return count < tx_ring->count;
3933 }
3934
3935 /**
3936 * e1000_rx_checksum - Receive Checksum Offload for 82543
3937 * @adapter: board private structure
3938 * @status_err: receive descriptor status and error fields
3939 * @csum: receive descriptor csum field
3940 * @sk_buff: socket buffer with received data
3941 **/
3942 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3943 u32 csum, struct sk_buff *skb)
3944 {
3945 struct e1000_hw *hw = &adapter->hw;
3946 u16 status = (u16)status_err;
3947 u8 errors = (u8)(status_err >> 24);
3948
3949 skb_checksum_none_assert(skb);
3950
3951 /* 82543 or newer only */
3952 if (unlikely(hw->mac_type < e1000_82543)) return;
3953 /* Ignore Checksum bit is set */
3954 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3955 /* TCP/UDP checksum error bit is set */
3956 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3957 /* let the stack verify checksum errors */
3958 adapter->hw_csum_err++;
3959 return;
3960 }
3961 /* TCP/UDP Checksum has not been calculated */
3962 if (!(status & E1000_RXD_STAT_TCPCS))
3963 return;
3964
3965 /* It must be a TCP or UDP packet with a valid checksum */
3966 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3967 /* TCP checksum is good */
3968 skb->ip_summed = CHECKSUM_UNNECESSARY;
3969 }
3970 adapter->hw_csum_good++;
3971 }
3972
3973 /**
3974 * e1000_consume_page - helper function
3975 **/
3976 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3977 u16 length)
3978 {
3979 bi->page = NULL;
3980 skb->len += length;
3981 skb->data_len += length;
3982 skb->truesize += PAGE_SIZE;
3983 }
3984
3985 /**
3986 * e1000_receive_skb - helper function to handle rx indications
3987 * @adapter: board private structure
3988 * @status: descriptor status field as written by hardware
3989 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3990 * @skb: pointer to sk_buff to be indicated to stack
3991 */
3992 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3993 __le16 vlan, struct sk_buff *skb)
3994 {
3995 skb->protocol = eth_type_trans(skb, adapter->netdev);
3996
3997 if (status & E1000_RXD_STAT_VP) {
3998 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3999
4000 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4001 }
4002 napi_gro_receive(&adapter->napi, skb);
4003 }
4004
4005 /**
4006 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4007 * @adapter: board private structure
4008 * @rx_ring: ring to clean
4009 * @work_done: amount of napi work completed this call
4010 * @work_to_do: max amount of work allowed for this call to do
4011 *
4012 * the return value indicates whether actual cleaning was done, there
4013 * is no guarantee that everything was cleaned
4014 */
4015 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4016 struct e1000_rx_ring *rx_ring,
4017 int *work_done, int work_to_do)
4018 {
4019 struct e1000_hw *hw = &adapter->hw;
4020 struct net_device *netdev = adapter->netdev;
4021 struct pci_dev *pdev = adapter->pdev;
4022 struct e1000_rx_desc *rx_desc, *next_rxd;
4023 struct e1000_buffer *buffer_info, *next_buffer;
4024 unsigned long irq_flags;
4025 u32 length;
4026 unsigned int i;
4027 int cleaned_count = 0;
4028 bool cleaned = false;
4029 unsigned int total_rx_bytes=0, total_rx_packets=0;
4030
4031 i = rx_ring->next_to_clean;
4032 rx_desc = E1000_RX_DESC(*rx_ring, i);
4033 buffer_info = &rx_ring->buffer_info[i];
4034
4035 while (rx_desc->status & E1000_RXD_STAT_DD) {
4036 struct sk_buff *skb;
4037 u8 status;
4038
4039 if (*work_done >= work_to_do)
4040 break;
4041 (*work_done)++;
4042 rmb(); /* read descriptor and rx_buffer_info after status DD */
4043
4044 status = rx_desc->status;
4045 skb = buffer_info->skb;
4046 buffer_info->skb = NULL;
4047
4048 if (++i == rx_ring->count) i = 0;
4049 next_rxd = E1000_RX_DESC(*rx_ring, i);
4050 prefetch(next_rxd);
4051
4052 next_buffer = &rx_ring->buffer_info[i];
4053
4054 cleaned = true;
4055 cleaned_count++;
4056 dma_unmap_page(&pdev->dev, buffer_info->dma,
4057 buffer_info->length, DMA_FROM_DEVICE);
4058 buffer_info->dma = 0;
4059
4060 length = le16_to_cpu(rx_desc->length);
4061
4062 /* errors is only valid for DD + EOP descriptors */
4063 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4064 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4065 u8 *mapped;
4066 u8 last_byte;
4067
4068 mapped = page_address(buffer_info->page);
4069 last_byte = *(mapped + length - 1);
4070 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4071 last_byte)) {
4072 spin_lock_irqsave(&adapter->stats_lock,
4073 irq_flags);
4074 e1000_tbi_adjust_stats(hw, &adapter->stats,
4075 length, mapped);
4076 spin_unlock_irqrestore(&adapter->stats_lock,
4077 irq_flags);
4078 length--;
4079 } else {
4080 if (netdev->features & NETIF_F_RXALL)
4081 goto process_skb;
4082 /* recycle both page and skb */
4083 buffer_info->skb = skb;
4084 /* an error means any chain goes out the window
4085 * too
4086 */
4087 if (rx_ring->rx_skb_top)
4088 dev_kfree_skb(rx_ring->rx_skb_top);
4089 rx_ring->rx_skb_top = NULL;
4090 goto next_desc;
4091 }
4092 }
4093
4094 #define rxtop rx_ring->rx_skb_top
4095 process_skb:
4096 if (!(status & E1000_RXD_STAT_EOP)) {
4097 /* this descriptor is only the beginning (or middle) */
4098 if (!rxtop) {
4099 /* this is the beginning of a chain */
4100 rxtop = skb;
4101 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4102 0, length);
4103 } else {
4104 /* this is the middle of a chain */
4105 skb_fill_page_desc(rxtop,
4106 skb_shinfo(rxtop)->nr_frags,
4107 buffer_info->page, 0, length);
4108 /* re-use the skb, only consumed the page */
4109 buffer_info->skb = skb;
4110 }
4111 e1000_consume_page(buffer_info, rxtop, length);
4112 goto next_desc;
4113 } else {
4114 if (rxtop) {
4115 /* end of the chain */
4116 skb_fill_page_desc(rxtop,
4117 skb_shinfo(rxtop)->nr_frags,
4118 buffer_info->page, 0, length);
4119 /* re-use the current skb, we only consumed the
4120 * page
4121 */
4122 buffer_info->skb = skb;
4123 skb = rxtop;
4124 rxtop = NULL;
4125 e1000_consume_page(buffer_info, skb, length);
4126 } else {
4127 /* no chain, got EOP, this buf is the packet
4128 * copybreak to save the put_page/alloc_page
4129 */
4130 if (length <= copybreak &&
4131 skb_tailroom(skb) >= length) {
4132 u8 *vaddr;
4133 vaddr = kmap_atomic(buffer_info->page);
4134 memcpy(skb_tail_pointer(skb), vaddr,
4135 length);
4136 kunmap_atomic(vaddr);
4137 /* re-use the page, so don't erase
4138 * buffer_info->page
4139 */
4140 skb_put(skb, length);
4141 } else {
4142 skb_fill_page_desc(skb, 0,
4143 buffer_info->page, 0,
4144 length);
4145 e1000_consume_page(buffer_info, skb,
4146 length);
4147 }
4148 }
4149 }
4150
4151 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4152 e1000_rx_checksum(adapter,
4153 (u32)(status) |
4154 ((u32)(rx_desc->errors) << 24),
4155 le16_to_cpu(rx_desc->csum), skb);
4156
4157 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4158 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4159 pskb_trim(skb, skb->len - 4);
4160 total_rx_packets++;
4161
4162 /* eth type trans needs skb->data to point to something */
4163 if (!pskb_may_pull(skb, ETH_HLEN)) {
4164 e_err(drv, "pskb_may_pull failed.\n");
4165 dev_kfree_skb(skb);
4166 goto next_desc;
4167 }
4168
4169 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4170
4171 next_desc:
4172 rx_desc->status = 0;
4173
4174 /* return some buffers to hardware, one at a time is too slow */
4175 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4176 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4177 cleaned_count = 0;
4178 }
4179
4180 /* use prefetched values */
4181 rx_desc = next_rxd;
4182 buffer_info = next_buffer;
4183 }
4184 rx_ring->next_to_clean = i;
4185
4186 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4187 if (cleaned_count)
4188 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4189
4190 adapter->total_rx_packets += total_rx_packets;
4191 adapter->total_rx_bytes += total_rx_bytes;
4192 netdev->stats.rx_bytes += total_rx_bytes;
4193 netdev->stats.rx_packets += total_rx_packets;
4194 return cleaned;
4195 }
4196
4197 /* this should improve performance for small packets with large amounts
4198 * of reassembly being done in the stack
4199 */
4200 static void e1000_check_copybreak(struct net_device *netdev,
4201 struct e1000_buffer *buffer_info,
4202 u32 length, struct sk_buff **skb)
4203 {
4204 struct sk_buff *new_skb;
4205
4206 if (length > copybreak)
4207 return;
4208
4209 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4210 if (!new_skb)
4211 return;
4212
4213 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4214 (*skb)->data - NET_IP_ALIGN,
4215 length + NET_IP_ALIGN);
4216 /* save the skb in buffer_info as good */
4217 buffer_info->skb = *skb;
4218 *skb = new_skb;
4219 }
4220
4221 /**
4222 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4223 * @adapter: board private structure
4224 * @rx_ring: ring to clean
4225 * @work_done: amount of napi work completed this call
4226 * @work_to_do: max amount of work allowed for this call to do
4227 */
4228 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4229 struct e1000_rx_ring *rx_ring,
4230 int *work_done, int work_to_do)
4231 {
4232 struct e1000_hw *hw = &adapter->hw;
4233 struct net_device *netdev = adapter->netdev;
4234 struct pci_dev *pdev = adapter->pdev;
4235 struct e1000_rx_desc *rx_desc, *next_rxd;
4236 struct e1000_buffer *buffer_info, *next_buffer;
4237 unsigned long flags;
4238 u32 length;
4239 unsigned int i;
4240 int cleaned_count = 0;
4241 bool cleaned = false;
4242 unsigned int total_rx_bytes=0, total_rx_packets=0;
4243
4244 i = rx_ring->next_to_clean;
4245 rx_desc = E1000_RX_DESC(*rx_ring, i);
4246 buffer_info = &rx_ring->buffer_info[i];
4247
4248 while (rx_desc->status & E1000_RXD_STAT_DD) {
4249 struct sk_buff *skb;
4250 u8 status;
4251
4252 if (*work_done >= work_to_do)
4253 break;
4254 (*work_done)++;
4255 rmb(); /* read descriptor and rx_buffer_info after status DD */
4256
4257 status = rx_desc->status;
4258 skb = buffer_info->skb;
4259 buffer_info->skb = NULL;
4260
4261 prefetch(skb->data - NET_IP_ALIGN);
4262
4263 if (++i == rx_ring->count) i = 0;
4264 next_rxd = E1000_RX_DESC(*rx_ring, i);
4265 prefetch(next_rxd);
4266
4267 next_buffer = &rx_ring->buffer_info[i];
4268
4269 cleaned = true;
4270 cleaned_count++;
4271 dma_unmap_single(&pdev->dev, buffer_info->dma,
4272 buffer_info->length, DMA_FROM_DEVICE);
4273 buffer_info->dma = 0;
4274
4275 length = le16_to_cpu(rx_desc->length);
4276 /* !EOP means multiple descriptors were used to store a single
4277 * packet, if thats the case we need to toss it. In fact, we
4278 * to toss every packet with the EOP bit clear and the next
4279 * frame that _does_ have the EOP bit set, as it is by
4280 * definition only a frame fragment
4281 */
4282 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4283 adapter->discarding = true;
4284
4285 if (adapter->discarding) {
4286 /* All receives must fit into a single buffer */
4287 e_dbg("Receive packet consumed multiple buffers\n");
4288 /* recycle */
4289 buffer_info->skb = skb;
4290 if (status & E1000_RXD_STAT_EOP)
4291 adapter->discarding = false;
4292 goto next_desc;
4293 }
4294
4295 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4296 u8 last_byte = *(skb->data + length - 1);
4297 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4298 last_byte)) {
4299 spin_lock_irqsave(&adapter->stats_lock, flags);
4300 e1000_tbi_adjust_stats(hw, &adapter->stats,
4301 length, skb->data);
4302 spin_unlock_irqrestore(&adapter->stats_lock,
4303 flags);
4304 length--;
4305 } else {
4306 if (netdev->features & NETIF_F_RXALL)
4307 goto process_skb;
4308 /* recycle */
4309 buffer_info->skb = skb;
4310 goto next_desc;
4311 }
4312 }
4313
4314 process_skb:
4315 total_rx_bytes += (length - 4); /* don't count FCS */
4316 total_rx_packets++;
4317
4318 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4319 /* adjust length to remove Ethernet CRC, this must be
4320 * done after the TBI_ACCEPT workaround above
4321 */
4322 length -= 4;
4323
4324 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4325
4326 skb_put(skb, length);
4327
4328 /* Receive Checksum Offload */
4329 e1000_rx_checksum(adapter,
4330 (u32)(status) |
4331 ((u32)(rx_desc->errors) << 24),
4332 le16_to_cpu(rx_desc->csum), skb);
4333
4334 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4335
4336 next_desc:
4337 rx_desc->status = 0;
4338
4339 /* return some buffers to hardware, one at a time is too slow */
4340 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4341 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4342 cleaned_count = 0;
4343 }
4344
4345 /* use prefetched values */
4346 rx_desc = next_rxd;
4347 buffer_info = next_buffer;
4348 }
4349 rx_ring->next_to_clean = i;
4350
4351 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4352 if (cleaned_count)
4353 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4354
4355 adapter->total_rx_packets += total_rx_packets;
4356 adapter->total_rx_bytes += total_rx_bytes;
4357 netdev->stats.rx_bytes += total_rx_bytes;
4358 netdev->stats.rx_packets += total_rx_packets;
4359 return cleaned;
4360 }
4361
4362 /**
4363 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4364 * @adapter: address of board private structure
4365 * @rx_ring: pointer to receive ring structure
4366 * @cleaned_count: number of buffers to allocate this pass
4367 **/
4368 static void
4369 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4370 struct e1000_rx_ring *rx_ring, int cleaned_count)
4371 {
4372 struct net_device *netdev = adapter->netdev;
4373 struct pci_dev *pdev = adapter->pdev;
4374 struct e1000_rx_desc *rx_desc;
4375 struct e1000_buffer *buffer_info;
4376 struct sk_buff *skb;
4377 unsigned int i;
4378 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4379
4380 i = rx_ring->next_to_use;
4381 buffer_info = &rx_ring->buffer_info[i];
4382
4383 while (cleaned_count--) {
4384 skb = buffer_info->skb;
4385 if (skb) {
4386 skb_trim(skb, 0);
4387 goto check_page;
4388 }
4389
4390 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4391 if (unlikely(!skb)) {
4392 /* Better luck next round */
4393 adapter->alloc_rx_buff_failed++;
4394 break;
4395 }
4396
4397 buffer_info->skb = skb;
4398 buffer_info->length = adapter->rx_buffer_len;
4399 check_page:
4400 /* allocate a new page if necessary */
4401 if (!buffer_info->page) {
4402 buffer_info->page = alloc_page(GFP_ATOMIC);
4403 if (unlikely(!buffer_info->page)) {
4404 adapter->alloc_rx_buff_failed++;
4405 break;
4406 }
4407 }
4408
4409 if (!buffer_info->dma) {
4410 buffer_info->dma = dma_map_page(&pdev->dev,
4411 buffer_info->page, 0,
4412 buffer_info->length,
4413 DMA_FROM_DEVICE);
4414 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4415 put_page(buffer_info->page);
4416 dev_kfree_skb(skb);
4417 buffer_info->page = NULL;
4418 buffer_info->skb = NULL;
4419 buffer_info->dma = 0;
4420 adapter->alloc_rx_buff_failed++;
4421 break; /* while !buffer_info->skb */
4422 }
4423 }
4424
4425 rx_desc = E1000_RX_DESC(*rx_ring, i);
4426 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4427
4428 if (unlikely(++i == rx_ring->count))
4429 i = 0;
4430 buffer_info = &rx_ring->buffer_info[i];
4431 }
4432
4433 if (likely(rx_ring->next_to_use != i)) {
4434 rx_ring->next_to_use = i;
4435 if (unlikely(i-- == 0))
4436 i = (rx_ring->count - 1);
4437
4438 /* Force memory writes to complete before letting h/w
4439 * know there are new descriptors to fetch. (Only
4440 * applicable for weak-ordered memory model archs,
4441 * such as IA-64).
4442 */
4443 wmb();
4444 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4445 }
4446 }
4447
4448 /**
4449 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4450 * @adapter: address of board private structure
4451 **/
4452 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4453 struct e1000_rx_ring *rx_ring,
4454 int cleaned_count)
4455 {
4456 struct e1000_hw *hw = &adapter->hw;
4457 struct net_device *netdev = adapter->netdev;
4458 struct pci_dev *pdev = adapter->pdev;
4459 struct e1000_rx_desc *rx_desc;
4460 struct e1000_buffer *buffer_info;
4461 struct sk_buff *skb;
4462 unsigned int i;
4463 unsigned int bufsz = adapter->rx_buffer_len;
4464
4465 i = rx_ring->next_to_use;
4466 buffer_info = &rx_ring->buffer_info[i];
4467
4468 while (cleaned_count--) {
4469 skb = buffer_info->skb;
4470 if (skb) {
4471 skb_trim(skb, 0);
4472 goto map_skb;
4473 }
4474
4475 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4476 if (unlikely(!skb)) {
4477 /* Better luck next round */
4478 adapter->alloc_rx_buff_failed++;
4479 break;
4480 }
4481
4482 /* Fix for errata 23, can't cross 64kB boundary */
4483 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4484 struct sk_buff *oldskb = skb;
4485 e_err(rx_err, "skb align check failed: %u bytes at "
4486 "%p\n", bufsz, skb->data);
4487 /* Try again, without freeing the previous */
4488 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4489 /* Failed allocation, critical failure */
4490 if (!skb) {
4491 dev_kfree_skb(oldskb);
4492 adapter->alloc_rx_buff_failed++;
4493 break;
4494 }
4495
4496 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4497 /* give up */
4498 dev_kfree_skb(skb);
4499 dev_kfree_skb(oldskb);
4500 adapter->alloc_rx_buff_failed++;
4501 break; /* while !buffer_info->skb */
4502 }
4503
4504 /* Use new allocation */
4505 dev_kfree_skb(oldskb);
4506 }
4507 buffer_info->skb = skb;
4508 buffer_info->length = adapter->rx_buffer_len;
4509 map_skb:
4510 buffer_info->dma = dma_map_single(&pdev->dev,
4511 skb->data,
4512 buffer_info->length,
4513 DMA_FROM_DEVICE);
4514 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4515 dev_kfree_skb(skb);
4516 buffer_info->skb = NULL;
4517 buffer_info->dma = 0;
4518 adapter->alloc_rx_buff_failed++;
4519 break; /* while !buffer_info->skb */
4520 }
4521
4522 /* XXX if it was allocated cleanly it will never map to a
4523 * boundary crossing
4524 */
4525
4526 /* Fix for errata 23, can't cross 64kB boundary */
4527 if (!e1000_check_64k_bound(adapter,
4528 (void *)(unsigned long)buffer_info->dma,
4529 adapter->rx_buffer_len)) {
4530 e_err(rx_err, "dma align check failed: %u bytes at "
4531 "%p\n", adapter->rx_buffer_len,
4532 (void *)(unsigned long)buffer_info->dma);
4533 dev_kfree_skb(skb);
4534 buffer_info->skb = NULL;
4535
4536 dma_unmap_single(&pdev->dev, buffer_info->dma,
4537 adapter->rx_buffer_len,
4538 DMA_FROM_DEVICE);
4539 buffer_info->dma = 0;
4540
4541 adapter->alloc_rx_buff_failed++;
4542 break; /* while !buffer_info->skb */
4543 }
4544 rx_desc = E1000_RX_DESC(*rx_ring, i);
4545 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4546
4547 if (unlikely(++i == rx_ring->count))
4548 i = 0;
4549 buffer_info = &rx_ring->buffer_info[i];
4550 }
4551
4552 if (likely(rx_ring->next_to_use != i)) {
4553 rx_ring->next_to_use = i;
4554 if (unlikely(i-- == 0))
4555 i = (rx_ring->count - 1);
4556
4557 /* Force memory writes to complete before letting h/w
4558 * know there are new descriptors to fetch. (Only
4559 * applicable for weak-ordered memory model archs,
4560 * such as IA-64).
4561 */
4562 wmb();
4563 writel(i, hw->hw_addr + rx_ring->rdt);
4564 }
4565 }
4566
4567 /**
4568 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4569 * @adapter:
4570 **/
4571 static void e1000_smartspeed(struct e1000_adapter *adapter)
4572 {
4573 struct e1000_hw *hw = &adapter->hw;
4574 u16 phy_status;
4575 u16 phy_ctrl;
4576
4577 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4578 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4579 return;
4580
4581 if (adapter->smartspeed == 0) {
4582 /* If Master/Slave config fault is asserted twice,
4583 * we assume back-to-back
4584 */
4585 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4586 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4587 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4588 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4589 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4590 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4591 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4592 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4593 phy_ctrl);
4594 adapter->smartspeed++;
4595 if (!e1000_phy_setup_autoneg(hw) &&
4596 !e1000_read_phy_reg(hw, PHY_CTRL,
4597 &phy_ctrl)) {
4598 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4599 MII_CR_RESTART_AUTO_NEG);
4600 e1000_write_phy_reg(hw, PHY_CTRL,
4601 phy_ctrl);
4602 }
4603 }
4604 return;
4605 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4606 /* If still no link, perhaps using 2/3 pair cable */
4607 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4608 phy_ctrl |= CR_1000T_MS_ENABLE;
4609 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4610 if (!e1000_phy_setup_autoneg(hw) &&
4611 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4612 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4613 MII_CR_RESTART_AUTO_NEG);
4614 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4615 }
4616 }
4617 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4618 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4619 adapter->smartspeed = 0;
4620 }
4621
4622 /**
4623 * e1000_ioctl -
4624 * @netdev:
4625 * @ifreq:
4626 * @cmd:
4627 **/
4628 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4629 {
4630 switch (cmd) {
4631 case SIOCGMIIPHY:
4632 case SIOCGMIIREG:
4633 case SIOCSMIIREG:
4634 return e1000_mii_ioctl(netdev, ifr, cmd);
4635 default:
4636 return -EOPNOTSUPP;
4637 }
4638 }
4639
4640 /**
4641 * e1000_mii_ioctl -
4642 * @netdev:
4643 * @ifreq:
4644 * @cmd:
4645 **/
4646 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4647 int cmd)
4648 {
4649 struct e1000_adapter *adapter = netdev_priv(netdev);
4650 struct e1000_hw *hw = &adapter->hw;
4651 struct mii_ioctl_data *data = if_mii(ifr);
4652 int retval;
4653 u16 mii_reg;
4654 unsigned long flags;
4655
4656 if (hw->media_type != e1000_media_type_copper)
4657 return -EOPNOTSUPP;
4658
4659 switch (cmd) {
4660 case SIOCGMIIPHY:
4661 data->phy_id = hw->phy_addr;
4662 break;
4663 case SIOCGMIIREG:
4664 spin_lock_irqsave(&adapter->stats_lock, flags);
4665 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4666 &data->val_out)) {
4667 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4668 return -EIO;
4669 }
4670 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4671 break;
4672 case SIOCSMIIREG:
4673 if (data->reg_num & ~(0x1F))
4674 return -EFAULT;
4675 mii_reg = data->val_in;
4676 spin_lock_irqsave(&adapter->stats_lock, flags);
4677 if (e1000_write_phy_reg(hw, data->reg_num,
4678 mii_reg)) {
4679 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4680 return -EIO;
4681 }
4682 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4683 if (hw->media_type == e1000_media_type_copper) {
4684 switch (data->reg_num) {
4685 case PHY_CTRL:
4686 if (mii_reg & MII_CR_POWER_DOWN)
4687 break;
4688 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4689 hw->autoneg = 1;
4690 hw->autoneg_advertised = 0x2F;
4691 } else {
4692 u32 speed;
4693 if (mii_reg & 0x40)
4694 speed = SPEED_1000;
4695 else if (mii_reg & 0x2000)
4696 speed = SPEED_100;
4697 else
4698 speed = SPEED_10;
4699 retval = e1000_set_spd_dplx(
4700 adapter, speed,
4701 ((mii_reg & 0x100)
4702 ? DUPLEX_FULL :
4703 DUPLEX_HALF));
4704 if (retval)
4705 return retval;
4706 }
4707 if (netif_running(adapter->netdev))
4708 e1000_reinit_locked(adapter);
4709 else
4710 e1000_reset(adapter);
4711 break;
4712 case M88E1000_PHY_SPEC_CTRL:
4713 case M88E1000_EXT_PHY_SPEC_CTRL:
4714 if (e1000_phy_reset(hw))
4715 return -EIO;
4716 break;
4717 }
4718 } else {
4719 switch (data->reg_num) {
4720 case PHY_CTRL:
4721 if (mii_reg & MII_CR_POWER_DOWN)
4722 break;
4723 if (netif_running(adapter->netdev))
4724 e1000_reinit_locked(adapter);
4725 else
4726 e1000_reset(adapter);
4727 break;
4728 }
4729 }
4730 break;
4731 default:
4732 return -EOPNOTSUPP;
4733 }
4734 return E1000_SUCCESS;
4735 }
4736
4737 void e1000_pci_set_mwi(struct e1000_hw *hw)
4738 {
4739 struct e1000_adapter *adapter = hw->back;
4740 int ret_val = pci_set_mwi(adapter->pdev);
4741
4742 if (ret_val)
4743 e_err(probe, "Error in setting MWI\n");
4744 }
4745
4746 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4747 {
4748 struct e1000_adapter *adapter = hw->back;
4749
4750 pci_clear_mwi(adapter->pdev);
4751 }
4752
4753 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4754 {
4755 struct e1000_adapter *adapter = hw->back;
4756 return pcix_get_mmrbc(adapter->pdev);
4757 }
4758
4759 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4760 {
4761 struct e1000_adapter *adapter = hw->back;
4762 pcix_set_mmrbc(adapter->pdev, mmrbc);
4763 }
4764
4765 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4766 {
4767 outl(value, port);
4768 }
4769
4770 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4771 {
4772 u16 vid;
4773
4774 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4775 return true;
4776 return false;
4777 }
4778
4779 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4780 netdev_features_t features)
4781 {
4782 struct e1000_hw *hw = &adapter->hw;
4783 u32 ctrl;
4784
4785 ctrl = er32(CTRL);
4786 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4787 /* enable VLAN tag insert/strip */
4788 ctrl |= E1000_CTRL_VME;
4789 } else {
4790 /* disable VLAN tag insert/strip */
4791 ctrl &= ~E1000_CTRL_VME;
4792 }
4793 ew32(CTRL, ctrl);
4794 }
4795 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4796 bool filter_on)
4797 {
4798 struct e1000_hw *hw = &adapter->hw;
4799 u32 rctl;
4800
4801 if (!test_bit(__E1000_DOWN, &adapter->flags))
4802 e1000_irq_disable(adapter);
4803
4804 __e1000_vlan_mode(adapter, adapter->netdev->features);
4805 if (filter_on) {
4806 /* enable VLAN receive filtering */
4807 rctl = er32(RCTL);
4808 rctl &= ~E1000_RCTL_CFIEN;
4809 if (!(adapter->netdev->flags & IFF_PROMISC))
4810 rctl |= E1000_RCTL_VFE;
4811 ew32(RCTL, rctl);
4812 e1000_update_mng_vlan(adapter);
4813 } else {
4814 /* disable VLAN receive filtering */
4815 rctl = er32(RCTL);
4816 rctl &= ~E1000_RCTL_VFE;
4817 ew32(RCTL, rctl);
4818 }
4819
4820 if (!test_bit(__E1000_DOWN, &adapter->flags))
4821 e1000_irq_enable(adapter);
4822 }
4823
4824 static void e1000_vlan_mode(struct net_device *netdev,
4825 netdev_features_t features)
4826 {
4827 struct e1000_adapter *adapter = netdev_priv(netdev);
4828
4829 if (!test_bit(__E1000_DOWN, &adapter->flags))
4830 e1000_irq_disable(adapter);
4831
4832 __e1000_vlan_mode(adapter, features);
4833
4834 if (!test_bit(__E1000_DOWN, &adapter->flags))
4835 e1000_irq_enable(adapter);
4836 }
4837
4838 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4839 __be16 proto, u16 vid)
4840 {
4841 struct e1000_adapter *adapter = netdev_priv(netdev);
4842 struct e1000_hw *hw = &adapter->hw;
4843 u32 vfta, index;
4844
4845 if ((hw->mng_cookie.status &
4846 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4847 (vid == adapter->mng_vlan_id))
4848 return 0;
4849
4850 if (!e1000_vlan_used(adapter))
4851 e1000_vlan_filter_on_off(adapter, true);
4852
4853 /* add VID to filter table */
4854 index = (vid >> 5) & 0x7F;
4855 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4856 vfta |= (1 << (vid & 0x1F));
4857 e1000_write_vfta(hw, index, vfta);
4858
4859 set_bit(vid, adapter->active_vlans);
4860
4861 return 0;
4862 }
4863
4864 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4865 __be16 proto, u16 vid)
4866 {
4867 struct e1000_adapter *adapter = netdev_priv(netdev);
4868 struct e1000_hw *hw = &adapter->hw;
4869 u32 vfta, index;
4870
4871 if (!test_bit(__E1000_DOWN, &adapter->flags))
4872 e1000_irq_disable(adapter);
4873 if (!test_bit(__E1000_DOWN, &adapter->flags))
4874 e1000_irq_enable(adapter);
4875
4876 /* remove VID from filter table */
4877 index = (vid >> 5) & 0x7F;
4878 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4879 vfta &= ~(1 << (vid & 0x1F));
4880 e1000_write_vfta(hw, index, vfta);
4881
4882 clear_bit(vid, adapter->active_vlans);
4883
4884 if (!e1000_vlan_used(adapter))
4885 e1000_vlan_filter_on_off(adapter, false);
4886
4887 return 0;
4888 }
4889
4890 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4891 {
4892 u16 vid;
4893
4894 if (!e1000_vlan_used(adapter))
4895 return;
4896
4897 e1000_vlan_filter_on_off(adapter, true);
4898 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4899 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4900 }
4901
4902 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4903 {
4904 struct e1000_hw *hw = &adapter->hw;
4905
4906 hw->autoneg = 0;
4907
4908 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4909 * for the switch() below to work
4910 */
4911 if ((spd & 1) || (dplx & ~1))
4912 goto err_inval;
4913
4914 /* Fiber NICs only allow 1000 gbps Full duplex */
4915 if ((hw->media_type == e1000_media_type_fiber) &&
4916 spd != SPEED_1000 &&
4917 dplx != DUPLEX_FULL)
4918 goto err_inval;
4919
4920 switch (spd + dplx) {
4921 case SPEED_10 + DUPLEX_HALF:
4922 hw->forced_speed_duplex = e1000_10_half;
4923 break;
4924 case SPEED_10 + DUPLEX_FULL:
4925 hw->forced_speed_duplex = e1000_10_full;
4926 break;
4927 case SPEED_100 + DUPLEX_HALF:
4928 hw->forced_speed_duplex = e1000_100_half;
4929 break;
4930 case SPEED_100 + DUPLEX_FULL:
4931 hw->forced_speed_duplex = e1000_100_full;
4932 break;
4933 case SPEED_1000 + DUPLEX_FULL:
4934 hw->autoneg = 1;
4935 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4936 break;
4937 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4938 default:
4939 goto err_inval;
4940 }
4941
4942 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4943 hw->mdix = AUTO_ALL_MODES;
4944
4945 return 0;
4946
4947 err_inval:
4948 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949 return -EINVAL;
4950 }
4951
4952 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953 {
4954 struct net_device *netdev = pci_get_drvdata(pdev);
4955 struct e1000_adapter *adapter = netdev_priv(netdev);
4956 struct e1000_hw *hw = &adapter->hw;
4957 u32 ctrl, ctrl_ext, rctl, status;
4958 u32 wufc = adapter->wol;
4959 #ifdef CONFIG_PM
4960 int retval = 0;
4961 #endif
4962
4963 netif_device_detach(netdev);
4964
4965 if (netif_running(netdev)) {
4966 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967 e1000_down(adapter);
4968 }
4969
4970 #ifdef CONFIG_PM
4971 retval = pci_save_state(pdev);
4972 if (retval)
4973 return retval;
4974 #endif
4975
4976 status = er32(STATUS);
4977 if (status & E1000_STATUS_LU)
4978 wufc &= ~E1000_WUFC_LNKC;
4979
4980 if (wufc) {
4981 e1000_setup_rctl(adapter);
4982 e1000_set_rx_mode(netdev);
4983
4984 rctl = er32(RCTL);
4985
4986 /* turn on all-multi mode if wake on multicast is enabled */
4987 if (wufc & E1000_WUFC_MC)
4988 rctl |= E1000_RCTL_MPE;
4989
4990 /* enable receives in the hardware */
4991 ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993 if (hw->mac_type >= e1000_82540) {
4994 ctrl = er32(CTRL);
4995 /* advertise wake from D3Cold */
4996 #define E1000_CTRL_ADVD3WUC 0x00100000
4997 /* phy power management enable */
4998 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999 ctrl |= E1000_CTRL_ADVD3WUC |
5000 E1000_CTRL_EN_PHY_PWR_MGMT;
5001 ew32(CTRL, ctrl);
5002 }
5003
5004 if (hw->media_type == e1000_media_type_fiber ||
5005 hw->media_type == e1000_media_type_internal_serdes) {
5006 /* keep the laser running in D3 */
5007 ctrl_ext = er32(CTRL_EXT);
5008 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009 ew32(CTRL_EXT, ctrl_ext);
5010 }
5011
5012 ew32(WUC, E1000_WUC_PME_EN);
5013 ew32(WUFC, wufc);
5014 } else {
5015 ew32(WUC, 0);
5016 ew32(WUFC, 0);
5017 }
5018
5019 e1000_release_manageability(adapter);
5020
5021 *enable_wake = !!wufc;
5022
5023 /* make sure adapter isn't asleep if manageability is enabled */
5024 if (adapter->en_mng_pt)
5025 *enable_wake = true;
5026
5027 if (netif_running(netdev))
5028 e1000_free_irq(adapter);
5029
5030 pci_disable_device(pdev);
5031
5032 return 0;
5033 }
5034
5035 #ifdef CONFIG_PM
5036 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037 {
5038 int retval;
5039 bool wake;
5040
5041 retval = __e1000_shutdown(pdev, &wake);
5042 if (retval)
5043 return retval;
5044
5045 if (wake) {
5046 pci_prepare_to_sleep(pdev);
5047 } else {
5048 pci_wake_from_d3(pdev, false);
5049 pci_set_power_state(pdev, PCI_D3hot);
5050 }
5051
5052 return 0;
5053 }
5054
5055 static int e1000_resume(struct pci_dev *pdev)
5056 {
5057 struct net_device *netdev = pci_get_drvdata(pdev);
5058 struct e1000_adapter *adapter = netdev_priv(netdev);
5059 struct e1000_hw *hw = &adapter->hw;
5060 u32 err;
5061
5062 pci_set_power_state(pdev, PCI_D0);
5063 pci_restore_state(pdev);
5064 pci_save_state(pdev);
5065
5066 if (adapter->need_ioport)
5067 err = pci_enable_device(pdev);
5068 else
5069 err = pci_enable_device_mem(pdev);
5070 if (err) {
5071 pr_err("Cannot enable PCI device from suspend\n");
5072 return err;
5073 }
5074 pci_set_master(pdev);
5075
5076 pci_enable_wake(pdev, PCI_D3hot, 0);
5077 pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079 if (netif_running(netdev)) {
5080 err = e1000_request_irq(adapter);
5081 if (err)
5082 return err;
5083 }
5084
5085 e1000_power_up_phy(adapter);
5086 e1000_reset(adapter);
5087 ew32(WUS, ~0);
5088
5089 e1000_init_manageability(adapter);
5090
5091 if (netif_running(netdev))
5092 e1000_up(adapter);
5093
5094 netif_device_attach(netdev);
5095
5096 return 0;
5097 }
5098 #endif
5099
5100 static void e1000_shutdown(struct pci_dev *pdev)
5101 {
5102 bool wake;
5103
5104 __e1000_shutdown(pdev, &wake);
5105
5106 if (system_state == SYSTEM_POWER_OFF) {
5107 pci_wake_from_d3(pdev, wake);
5108 pci_set_power_state(pdev, PCI_D3hot);
5109 }
5110 }
5111
5112 #ifdef CONFIG_NET_POLL_CONTROLLER
5113 /* Polling 'interrupt' - used by things like netconsole to send skbs
5114 * without having to re-enable interrupts. It's not called while
5115 * the interrupt routine is executing.
5116 */
5117 static void e1000_netpoll(struct net_device *netdev)
5118 {
5119 struct e1000_adapter *adapter = netdev_priv(netdev);
5120
5121 disable_irq(adapter->pdev->irq);
5122 e1000_intr(adapter->pdev->irq, netdev);
5123 enable_irq(adapter->pdev->irq);
5124 }
5125 #endif
5126
5127 /**
5128 * e1000_io_error_detected - called when PCI error is detected
5129 * @pdev: Pointer to PCI device
5130 * @state: The current pci connection state
5131 *
5132 * This function is called after a PCI bus error affecting
5133 * this device has been detected.
5134 */
5135 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5136 pci_channel_state_t state)
5137 {
5138 struct net_device *netdev = pci_get_drvdata(pdev);
5139 struct e1000_adapter *adapter = netdev_priv(netdev);
5140
5141 netif_device_detach(netdev);
5142
5143 if (state == pci_channel_io_perm_failure)
5144 return PCI_ERS_RESULT_DISCONNECT;
5145
5146 if (netif_running(netdev))
5147 e1000_down(adapter);
5148 pci_disable_device(pdev);
5149
5150 /* Request a slot slot reset. */
5151 return PCI_ERS_RESULT_NEED_RESET;
5152 }
5153
5154 /**
5155 * e1000_io_slot_reset - called after the pci bus has been reset.
5156 * @pdev: Pointer to PCI device
5157 *
5158 * Restart the card from scratch, as if from a cold-boot. Implementation
5159 * resembles the first-half of the e1000_resume routine.
5160 */
5161 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5162 {
5163 struct net_device *netdev = pci_get_drvdata(pdev);
5164 struct e1000_adapter *adapter = netdev_priv(netdev);
5165 struct e1000_hw *hw = &adapter->hw;
5166 int err;
5167
5168 if (adapter->need_ioport)
5169 err = pci_enable_device(pdev);
5170 else
5171 err = pci_enable_device_mem(pdev);
5172 if (err) {
5173 pr_err("Cannot re-enable PCI device after reset.\n");
5174 return PCI_ERS_RESULT_DISCONNECT;
5175 }
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 e1000_reset(adapter);
5182 ew32(WUS, ~0);
5183
5184 return PCI_ERS_RESULT_RECOVERED;
5185 }
5186
5187 /**
5188 * e1000_io_resume - called when traffic can start flowing again.
5189 * @pdev: Pointer to PCI device
5190 *
5191 * This callback is called when the error recovery driver tells us that
5192 * its OK to resume normal operation. Implementation resembles the
5193 * second-half of the e1000_resume routine.
5194 */
5195 static void e1000_io_resume(struct pci_dev *pdev)
5196 {
5197 struct net_device *netdev = pci_get_drvdata(pdev);
5198 struct e1000_adapter *adapter = netdev_priv(netdev);
5199
5200 e1000_init_manageability(adapter);
5201
5202 if (netif_running(netdev)) {
5203 if (e1000_up(adapter)) {
5204 pr_info("can't bring device back up after reset\n");
5205 return;
5206 }
5207 }
5208
5209 netif_device_attach(netdev);
5210 }
5211
5212 /* e1000_main.c */