]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/e1000e/82571.c
6b03c8553e59710b5cad2cb903f0e4e05d0cae5e
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / e1000e / 82571.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* 82571EB Gigabit Ethernet Controller
23 * 82571EB Gigabit Ethernet Controller (Copper)
24 * 82571EB Gigabit Ethernet Controller (Fiber)
25 * 82571EB Dual Port Gigabit Mezzanine Adapter
26 * 82571EB Quad Port Gigabit Mezzanine Adapter
27 * 82571PT Gigabit PT Quad Port Server ExpressModule
28 * 82572EI Gigabit Ethernet Controller (Copper)
29 * 82572EI Gigabit Ethernet Controller (Fiber)
30 * 82572EI Gigabit Ethernet Controller
31 * 82573V Gigabit Ethernet Controller (Copper)
32 * 82573E Gigabit Ethernet Controller (Copper)
33 * 82573L Gigabit Ethernet Controller
34 * 82574L Gigabit Network Connection
35 * 82583V Gigabit Network Connection
36 */
37
38 #include "e1000.h"
39
40 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
41 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
42 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
43 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
44 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
45 u16 words, u16 *data);
46 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
47 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
48 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
49 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
50 static s32 e1000_led_on_82574(struct e1000_hw *hw);
51 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
52 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
53 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
54 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
55 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
56 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
57 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
58
59 /**
60 * e1000_init_phy_params_82571 - Init PHY func ptrs.
61 * @hw: pointer to the HW structure
62 **/
63 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
64 {
65 struct e1000_phy_info *phy = &hw->phy;
66 s32 ret_val;
67
68 if (hw->phy.media_type != e1000_media_type_copper) {
69 phy->type = e1000_phy_none;
70 return 0;
71 }
72
73 phy->addr = 1;
74 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
75 phy->reset_delay_us = 100;
76
77 phy->ops.power_up = e1000_power_up_phy_copper;
78 phy->ops.power_down = e1000_power_down_phy_copper_82571;
79
80 switch (hw->mac.type) {
81 case e1000_82571:
82 case e1000_82572:
83 phy->type = e1000_phy_igp_2;
84 break;
85 case e1000_82573:
86 phy->type = e1000_phy_m88;
87 break;
88 case e1000_82574:
89 case e1000_82583:
90 phy->type = e1000_phy_bm;
91 phy->ops.acquire = e1000_get_hw_semaphore_82574;
92 phy->ops.release = e1000_put_hw_semaphore_82574;
93 phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
94 phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
95 break;
96 default:
97 return -E1000_ERR_PHY;
98 }
99
100 /* This can only be done after all function pointers are setup. */
101 ret_val = e1000_get_phy_id_82571(hw);
102 if (ret_val) {
103 e_dbg("Error getting PHY ID\n");
104 return ret_val;
105 }
106
107 /* Verify phy id */
108 switch (hw->mac.type) {
109 case e1000_82571:
110 case e1000_82572:
111 if (phy->id != IGP01E1000_I_PHY_ID)
112 ret_val = -E1000_ERR_PHY;
113 break;
114 case e1000_82573:
115 if (phy->id != M88E1111_I_PHY_ID)
116 ret_val = -E1000_ERR_PHY;
117 break;
118 case e1000_82574:
119 case e1000_82583:
120 if (phy->id != BME1000_E_PHY_ID_R2)
121 ret_val = -E1000_ERR_PHY;
122 break;
123 default:
124 ret_val = -E1000_ERR_PHY;
125 break;
126 }
127
128 if (ret_val)
129 e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
130
131 return ret_val;
132 }
133
134 /**
135 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
136 * @hw: pointer to the HW structure
137 **/
138 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
139 {
140 struct e1000_nvm_info *nvm = &hw->nvm;
141 u32 eecd = er32(EECD);
142 u16 size;
143
144 nvm->opcode_bits = 8;
145 nvm->delay_usec = 1;
146 switch (nvm->override) {
147 case e1000_nvm_override_spi_large:
148 nvm->page_size = 32;
149 nvm->address_bits = 16;
150 break;
151 case e1000_nvm_override_spi_small:
152 nvm->page_size = 8;
153 nvm->address_bits = 8;
154 break;
155 default:
156 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
157 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
158 break;
159 }
160
161 switch (hw->mac.type) {
162 case e1000_82573:
163 case e1000_82574:
164 case e1000_82583:
165 if (((eecd >> 15) & 0x3) == 0x3) {
166 nvm->type = e1000_nvm_flash_hw;
167 nvm->word_size = 2048;
168 /* Autonomous Flash update bit must be cleared due
169 * to Flash update issue.
170 */
171 eecd &= ~E1000_EECD_AUPDEN;
172 ew32(EECD, eecd);
173 break;
174 }
175 /* Fall Through */
176 default:
177 nvm->type = e1000_nvm_eeprom_spi;
178 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
179 E1000_EECD_SIZE_EX_SHIFT);
180 /* Added to a constant, "size" becomes the left-shift value
181 * for setting word_size.
182 */
183 size += NVM_WORD_SIZE_BASE_SHIFT;
184
185 /* EEPROM access above 16k is unsupported */
186 if (size > 14)
187 size = 14;
188 nvm->word_size = BIT(size);
189 break;
190 }
191
192 /* Function Pointers */
193 switch (hw->mac.type) {
194 case e1000_82574:
195 case e1000_82583:
196 nvm->ops.acquire = e1000_get_hw_semaphore_82574;
197 nvm->ops.release = e1000_put_hw_semaphore_82574;
198 break;
199 default:
200 break;
201 }
202
203 return 0;
204 }
205
206 /**
207 * e1000_init_mac_params_82571 - Init MAC func ptrs.
208 * @hw: pointer to the HW structure
209 **/
210 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
211 {
212 struct e1000_mac_info *mac = &hw->mac;
213 u32 swsm = 0;
214 u32 swsm2 = 0;
215 bool force_clear_smbi = false;
216
217 /* Set media type and media-dependent function pointers */
218 switch (hw->adapter->pdev->device) {
219 case E1000_DEV_ID_82571EB_FIBER:
220 case E1000_DEV_ID_82572EI_FIBER:
221 case E1000_DEV_ID_82571EB_QUAD_FIBER:
222 hw->phy.media_type = e1000_media_type_fiber;
223 mac->ops.setup_physical_interface =
224 e1000_setup_fiber_serdes_link_82571;
225 mac->ops.check_for_link = e1000e_check_for_fiber_link;
226 mac->ops.get_link_up_info =
227 e1000e_get_speed_and_duplex_fiber_serdes;
228 break;
229 case E1000_DEV_ID_82571EB_SERDES:
230 case E1000_DEV_ID_82571EB_SERDES_DUAL:
231 case E1000_DEV_ID_82571EB_SERDES_QUAD:
232 case E1000_DEV_ID_82572EI_SERDES:
233 hw->phy.media_type = e1000_media_type_internal_serdes;
234 mac->ops.setup_physical_interface =
235 e1000_setup_fiber_serdes_link_82571;
236 mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
237 mac->ops.get_link_up_info =
238 e1000e_get_speed_and_duplex_fiber_serdes;
239 break;
240 default:
241 hw->phy.media_type = e1000_media_type_copper;
242 mac->ops.setup_physical_interface =
243 e1000_setup_copper_link_82571;
244 mac->ops.check_for_link = e1000e_check_for_copper_link;
245 mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
246 break;
247 }
248
249 /* Set mta register count */
250 mac->mta_reg_count = 128;
251 /* Set rar entry count */
252 mac->rar_entry_count = E1000_RAR_ENTRIES;
253 /* Adaptive IFS supported */
254 mac->adaptive_ifs = true;
255
256 /* MAC-specific function pointers */
257 switch (hw->mac.type) {
258 case e1000_82573:
259 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
260 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
261 mac->ops.led_on = e1000e_led_on_generic;
262 mac->ops.blink_led = e1000e_blink_led_generic;
263
264 /* FWSM register */
265 mac->has_fwsm = true;
266 /* ARC supported; valid only if manageability features are
267 * enabled.
268 */
269 mac->arc_subsystem_valid = !!(er32(FWSM) &
270 E1000_FWSM_MODE_MASK);
271 break;
272 case e1000_82574:
273 case e1000_82583:
274 mac->ops.set_lan_id = e1000_set_lan_id_single_port;
275 mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
276 mac->ops.led_on = e1000_led_on_82574;
277 break;
278 default:
279 mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
280 mac->ops.led_on = e1000e_led_on_generic;
281 mac->ops.blink_led = e1000e_blink_led_generic;
282
283 /* FWSM register */
284 mac->has_fwsm = true;
285 break;
286 }
287
288 /* Ensure that the inter-port SWSM.SMBI lock bit is clear before
289 * first NVM or PHY access. This should be done for single-port
290 * devices, and for one port only on dual-port devices so that
291 * for those devices we can still use the SMBI lock to synchronize
292 * inter-port accesses to the PHY & NVM.
293 */
294 switch (hw->mac.type) {
295 case e1000_82571:
296 case e1000_82572:
297 swsm2 = er32(SWSM2);
298
299 if (!(swsm2 & E1000_SWSM2_LOCK)) {
300 /* Only do this for the first interface on this card */
301 ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
302 force_clear_smbi = true;
303 } else {
304 force_clear_smbi = false;
305 }
306 break;
307 default:
308 force_clear_smbi = true;
309 break;
310 }
311
312 if (force_clear_smbi) {
313 /* Make sure SWSM.SMBI is clear */
314 swsm = er32(SWSM);
315 if (swsm & E1000_SWSM_SMBI) {
316 /* This bit should not be set on a first interface, and
317 * indicates that the bootagent or EFI code has
318 * improperly left this bit enabled
319 */
320 e_dbg("Please update your 82571 Bootagent\n");
321 }
322 ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
323 }
324
325 /* Initialize device specific counter of SMBI acquisition timeouts. */
326 hw->dev_spec.e82571.smb_counter = 0;
327
328 return 0;
329 }
330
331 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
332 {
333 struct e1000_hw *hw = &adapter->hw;
334 static int global_quad_port_a; /* global port a indication */
335 struct pci_dev *pdev = adapter->pdev;
336 int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
337 s32 rc;
338
339 rc = e1000_init_mac_params_82571(hw);
340 if (rc)
341 return rc;
342
343 rc = e1000_init_nvm_params_82571(hw);
344 if (rc)
345 return rc;
346
347 rc = e1000_init_phy_params_82571(hw);
348 if (rc)
349 return rc;
350
351 /* tag quad port adapters first, it's used below */
352 switch (pdev->device) {
353 case E1000_DEV_ID_82571EB_QUAD_COPPER:
354 case E1000_DEV_ID_82571EB_QUAD_FIBER:
355 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
356 case E1000_DEV_ID_82571PT_QUAD_COPPER:
357 adapter->flags |= FLAG_IS_QUAD_PORT;
358 /* mark the first port */
359 if (global_quad_port_a == 0)
360 adapter->flags |= FLAG_IS_QUAD_PORT_A;
361 /* Reset for multiple quad port adapters */
362 global_quad_port_a++;
363 if (global_quad_port_a == 4)
364 global_quad_port_a = 0;
365 break;
366 default:
367 break;
368 }
369
370 switch (adapter->hw.mac.type) {
371 case e1000_82571:
372 /* these dual ports don't have WoL on port B at all */
373 if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
374 (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
375 (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
376 (is_port_b))
377 adapter->flags &= ~FLAG_HAS_WOL;
378 /* quad ports only support WoL on port A */
379 if (adapter->flags & FLAG_IS_QUAD_PORT &&
380 (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
381 adapter->flags &= ~FLAG_HAS_WOL;
382 /* Does not support WoL on any port */
383 if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
384 adapter->flags &= ~FLAG_HAS_WOL;
385 break;
386 case e1000_82573:
387 if (pdev->device == E1000_DEV_ID_82573L) {
388 adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
389 adapter->max_hw_frame_size = DEFAULT_JUMBO;
390 }
391 break;
392 default:
393 break;
394 }
395
396 return 0;
397 }
398
399 /**
400 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
401 * @hw: pointer to the HW structure
402 *
403 * Reads the PHY registers and stores the PHY ID and possibly the PHY
404 * revision in the hardware structure.
405 **/
406 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
407 {
408 struct e1000_phy_info *phy = &hw->phy;
409 s32 ret_val;
410 u16 phy_id = 0;
411
412 switch (hw->mac.type) {
413 case e1000_82571:
414 case e1000_82572:
415 /* The 82571 firmware may still be configuring the PHY.
416 * In this case, we cannot access the PHY until the
417 * configuration is done. So we explicitly set the
418 * PHY ID.
419 */
420 phy->id = IGP01E1000_I_PHY_ID;
421 break;
422 case e1000_82573:
423 return e1000e_get_phy_id(hw);
424 case e1000_82574:
425 case e1000_82583:
426 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
427 if (ret_val)
428 return ret_val;
429
430 phy->id = (u32)(phy_id << 16);
431 usleep_range(20, 40);
432 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
433 if (ret_val)
434 return ret_val;
435
436 phy->id |= (u32)(phy_id);
437 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
438 break;
439 default:
440 return -E1000_ERR_PHY;
441 }
442
443 return 0;
444 }
445
446 /**
447 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
448 * @hw: pointer to the HW structure
449 *
450 * Acquire the HW semaphore to access the PHY or NVM
451 **/
452 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
453 {
454 u32 swsm;
455 s32 sw_timeout = hw->nvm.word_size + 1;
456 s32 fw_timeout = hw->nvm.word_size + 1;
457 s32 i = 0;
458
459 /* If we have timedout 3 times on trying to acquire
460 * the inter-port SMBI semaphore, there is old code
461 * operating on the other port, and it is not
462 * releasing SMBI. Modify the number of times that
463 * we try for the semaphore to interwork with this
464 * older code.
465 */
466 if (hw->dev_spec.e82571.smb_counter > 2)
467 sw_timeout = 1;
468
469 /* Get the SW semaphore */
470 while (i < sw_timeout) {
471 swsm = er32(SWSM);
472 if (!(swsm & E1000_SWSM_SMBI))
473 break;
474
475 usleep_range(50, 100);
476 i++;
477 }
478
479 if (i == sw_timeout) {
480 e_dbg("Driver can't access device - SMBI bit is set.\n");
481 hw->dev_spec.e82571.smb_counter++;
482 }
483 /* Get the FW semaphore. */
484 for (i = 0; i < fw_timeout; i++) {
485 swsm = er32(SWSM);
486 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
487
488 /* Semaphore acquired if bit latched */
489 if (er32(SWSM) & E1000_SWSM_SWESMBI)
490 break;
491
492 usleep_range(50, 100);
493 }
494
495 if (i == fw_timeout) {
496 /* Release semaphores */
497 e1000_put_hw_semaphore_82571(hw);
498 e_dbg("Driver can't access the NVM\n");
499 return -E1000_ERR_NVM;
500 }
501
502 return 0;
503 }
504
505 /**
506 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
507 * @hw: pointer to the HW structure
508 *
509 * Release hardware semaphore used to access the PHY or NVM
510 **/
511 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
512 {
513 u32 swsm;
514
515 swsm = er32(SWSM);
516 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
517 ew32(SWSM, swsm);
518 }
519
520 /**
521 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
522 * @hw: pointer to the HW structure
523 *
524 * Acquire the HW semaphore during reset.
525 *
526 **/
527 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
528 {
529 u32 extcnf_ctrl;
530 s32 i = 0;
531
532 extcnf_ctrl = er32(EXTCNF_CTRL);
533 do {
534 extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
535 ew32(EXTCNF_CTRL, extcnf_ctrl);
536 extcnf_ctrl = er32(EXTCNF_CTRL);
537
538 if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
539 break;
540
541 usleep_range(2000, 4000);
542 i++;
543 } while (i < MDIO_OWNERSHIP_TIMEOUT);
544
545 if (i == MDIO_OWNERSHIP_TIMEOUT) {
546 /* Release semaphores */
547 e1000_put_hw_semaphore_82573(hw);
548 e_dbg("Driver can't access the PHY\n");
549 return -E1000_ERR_PHY;
550 }
551
552 return 0;
553 }
554
555 /**
556 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
557 * @hw: pointer to the HW structure
558 *
559 * Release hardware semaphore used during reset.
560 *
561 **/
562 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
563 {
564 u32 extcnf_ctrl;
565
566 extcnf_ctrl = er32(EXTCNF_CTRL);
567 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
568 ew32(EXTCNF_CTRL, extcnf_ctrl);
569 }
570
571 static DEFINE_MUTEX(swflag_mutex);
572
573 /**
574 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
575 * @hw: pointer to the HW structure
576 *
577 * Acquire the HW semaphore to access the PHY or NVM.
578 *
579 **/
580 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
581 {
582 s32 ret_val;
583
584 mutex_lock(&swflag_mutex);
585 ret_val = e1000_get_hw_semaphore_82573(hw);
586 if (ret_val)
587 mutex_unlock(&swflag_mutex);
588 return ret_val;
589 }
590
591 /**
592 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
593 * @hw: pointer to the HW structure
594 *
595 * Release hardware semaphore used to access the PHY or NVM
596 *
597 **/
598 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
599 {
600 e1000_put_hw_semaphore_82573(hw);
601 mutex_unlock(&swflag_mutex);
602 }
603
604 /**
605 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
606 * @hw: pointer to the HW structure
607 * @active: true to enable LPLU, false to disable
608 *
609 * Sets the LPLU D0 state according to the active flag.
610 * LPLU will not be activated unless the
611 * device autonegotiation advertisement meets standards of
612 * either 10 or 10/100 or 10/100/1000 at all duplexes.
613 * This is a function pointer entry point only called by
614 * PHY setup routines.
615 **/
616 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
617 {
618 u32 data = er32(POEMB);
619
620 if (active)
621 data |= E1000_PHY_CTRL_D0A_LPLU;
622 else
623 data &= ~E1000_PHY_CTRL_D0A_LPLU;
624
625 ew32(POEMB, data);
626 return 0;
627 }
628
629 /**
630 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
631 * @hw: pointer to the HW structure
632 * @active: boolean used to enable/disable lplu
633 *
634 * The low power link up (lplu) state is set to the power management level D3
635 * when active is true, else clear lplu for D3. LPLU
636 * is used during Dx states where the power conservation is most important.
637 * During driver activity, SmartSpeed should be enabled so performance is
638 * maintained.
639 **/
640 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
641 {
642 u32 data = er32(POEMB);
643
644 if (!active) {
645 data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
646 } else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
647 (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
648 (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
649 data |= E1000_PHY_CTRL_NOND0A_LPLU;
650 }
651
652 ew32(POEMB, data);
653 return 0;
654 }
655
656 /**
657 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
658 * @hw: pointer to the HW structure
659 *
660 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
661 * Then for non-82573 hardware, set the EEPROM access request bit and wait
662 * for EEPROM access grant bit. If the access grant bit is not set, release
663 * hardware semaphore.
664 **/
665 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
666 {
667 s32 ret_val;
668
669 ret_val = e1000_get_hw_semaphore_82571(hw);
670 if (ret_val)
671 return ret_val;
672
673 switch (hw->mac.type) {
674 case e1000_82573:
675 break;
676 default:
677 ret_val = e1000e_acquire_nvm(hw);
678 break;
679 }
680
681 if (ret_val)
682 e1000_put_hw_semaphore_82571(hw);
683
684 return ret_val;
685 }
686
687 /**
688 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
689 * @hw: pointer to the HW structure
690 *
691 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
692 **/
693 static void e1000_release_nvm_82571(struct e1000_hw *hw)
694 {
695 e1000e_release_nvm(hw);
696 e1000_put_hw_semaphore_82571(hw);
697 }
698
699 /**
700 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
701 * @hw: pointer to the HW structure
702 * @offset: offset within the EEPROM to be written to
703 * @words: number of words to write
704 * @data: 16 bit word(s) to be written to the EEPROM
705 *
706 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
707 *
708 * If e1000e_update_nvm_checksum is not called after this function, the
709 * EEPROM will most likely contain an invalid checksum.
710 **/
711 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
712 u16 *data)
713 {
714 s32 ret_val;
715
716 switch (hw->mac.type) {
717 case e1000_82573:
718 case e1000_82574:
719 case e1000_82583:
720 ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
721 break;
722 case e1000_82571:
723 case e1000_82572:
724 ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
725 break;
726 default:
727 ret_val = -E1000_ERR_NVM;
728 break;
729 }
730
731 return ret_val;
732 }
733
734 /**
735 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
736 * @hw: pointer to the HW structure
737 *
738 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
739 * up to the checksum. Then calculates the EEPROM checksum and writes the
740 * value to the EEPROM.
741 **/
742 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
743 {
744 u32 eecd;
745 s32 ret_val;
746 u16 i;
747
748 ret_val = e1000e_update_nvm_checksum_generic(hw);
749 if (ret_val)
750 return ret_val;
751
752 /* If our nvm is an EEPROM, then we're done
753 * otherwise, commit the checksum to the flash NVM.
754 */
755 if (hw->nvm.type != e1000_nvm_flash_hw)
756 return 0;
757
758 /* Check for pending operations. */
759 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
760 usleep_range(1000, 2000);
761 if (!(er32(EECD) & E1000_EECD_FLUPD))
762 break;
763 }
764
765 if (i == E1000_FLASH_UPDATES)
766 return -E1000_ERR_NVM;
767
768 /* Reset the firmware if using STM opcode. */
769 if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
770 /* The enabling of and the actual reset must be done
771 * in two write cycles.
772 */
773 ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
774 e1e_flush();
775 ew32(HICR, E1000_HICR_FW_RESET);
776 }
777
778 /* Commit the write to flash */
779 eecd = er32(EECD) | E1000_EECD_FLUPD;
780 ew32(EECD, eecd);
781
782 for (i = 0; i < E1000_FLASH_UPDATES; i++) {
783 usleep_range(1000, 2000);
784 if (!(er32(EECD) & E1000_EECD_FLUPD))
785 break;
786 }
787
788 if (i == E1000_FLASH_UPDATES)
789 return -E1000_ERR_NVM;
790
791 return 0;
792 }
793
794 /**
795 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
796 * @hw: pointer to the HW structure
797 *
798 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
799 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
800 **/
801 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
802 {
803 if (hw->nvm.type == e1000_nvm_flash_hw)
804 e1000_fix_nvm_checksum_82571(hw);
805
806 return e1000e_validate_nvm_checksum_generic(hw);
807 }
808
809 /**
810 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
811 * @hw: pointer to the HW structure
812 * @offset: offset within the EEPROM to be written to
813 * @words: number of words to write
814 * @data: 16 bit word(s) to be written to the EEPROM
815 *
816 * After checking for invalid values, poll the EEPROM to ensure the previous
817 * command has completed before trying to write the next word. After write
818 * poll for completion.
819 *
820 * If e1000e_update_nvm_checksum is not called after this function, the
821 * EEPROM will most likely contain an invalid checksum.
822 **/
823 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
824 u16 words, u16 *data)
825 {
826 struct e1000_nvm_info *nvm = &hw->nvm;
827 u32 i, eewr = 0;
828 s32 ret_val = 0;
829
830 /* A check for invalid values: offset too large, too many words,
831 * and not enough words.
832 */
833 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
834 (words == 0)) {
835 e_dbg("nvm parameter(s) out of bounds\n");
836 return -E1000_ERR_NVM;
837 }
838
839 for (i = 0; i < words; i++) {
840 eewr = ((data[i] << E1000_NVM_RW_REG_DATA) |
841 ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) |
842 E1000_NVM_RW_REG_START);
843
844 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
845 if (ret_val)
846 break;
847
848 ew32(EEWR, eewr);
849
850 ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
851 if (ret_val)
852 break;
853 }
854
855 return ret_val;
856 }
857
858 /**
859 * e1000_get_cfg_done_82571 - Poll for configuration done
860 * @hw: pointer to the HW structure
861 *
862 * Reads the management control register for the config done bit to be set.
863 **/
864 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
865 {
866 s32 timeout = PHY_CFG_TIMEOUT;
867
868 while (timeout) {
869 if (er32(EEMNGCTL) & E1000_NVM_CFG_DONE_PORT_0)
870 break;
871 usleep_range(1000, 2000);
872 timeout--;
873 }
874 if (!timeout) {
875 e_dbg("MNG configuration cycle has not completed.\n");
876 return -E1000_ERR_RESET;
877 }
878
879 return 0;
880 }
881
882 /**
883 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
884 * @hw: pointer to the HW structure
885 * @active: true to enable LPLU, false to disable
886 *
887 * Sets the LPLU D0 state according to the active flag. When activating LPLU
888 * this function also disables smart speed and vice versa. LPLU will not be
889 * activated unless the device autonegotiation advertisement meets standards
890 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
891 * pointer entry point only called by PHY setup routines.
892 **/
893 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
894 {
895 struct e1000_phy_info *phy = &hw->phy;
896 s32 ret_val;
897 u16 data;
898
899 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
900 if (ret_val)
901 return ret_val;
902
903 if (active) {
904 data |= IGP02E1000_PM_D0_LPLU;
905 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
906 if (ret_val)
907 return ret_val;
908
909 /* When LPLU is enabled, we should disable SmartSpeed */
910 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
911 if (ret_val)
912 return ret_val;
913 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
914 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
915 if (ret_val)
916 return ret_val;
917 } else {
918 data &= ~IGP02E1000_PM_D0_LPLU;
919 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
920 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
921 * during Dx states where the power conservation is most
922 * important. During driver activity we should enable
923 * SmartSpeed, so performance is maintained.
924 */
925 if (phy->smart_speed == e1000_smart_speed_on) {
926 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
927 &data);
928 if (ret_val)
929 return ret_val;
930
931 data |= IGP01E1000_PSCFR_SMART_SPEED;
932 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
933 data);
934 if (ret_val)
935 return ret_val;
936 } else if (phy->smart_speed == e1000_smart_speed_off) {
937 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
938 &data);
939 if (ret_val)
940 return ret_val;
941
942 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
943 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
944 data);
945 if (ret_val)
946 return ret_val;
947 }
948 }
949
950 return 0;
951 }
952
953 /**
954 * e1000_reset_hw_82571 - Reset hardware
955 * @hw: pointer to the HW structure
956 *
957 * This resets the hardware into a known state.
958 **/
959 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
960 {
961 u32 ctrl, ctrl_ext, eecd, tctl;
962 s32 ret_val;
963
964 /* Prevent the PCI-E bus from sticking if there is no TLP connection
965 * on the last TLP read/write transaction when MAC is reset.
966 */
967 ret_val = e1000e_disable_pcie_master(hw);
968 if (ret_val)
969 e_dbg("PCI-E Master disable polling has failed.\n");
970
971 e_dbg("Masking off all interrupts\n");
972 ew32(IMC, 0xffffffff);
973
974 ew32(RCTL, 0);
975 tctl = er32(TCTL);
976 tctl &= ~E1000_TCTL_EN;
977 ew32(TCTL, tctl);
978 e1e_flush();
979
980 usleep_range(10000, 20000);
981
982 /* Must acquire the MDIO ownership before MAC reset.
983 * Ownership defaults to firmware after a reset.
984 */
985 switch (hw->mac.type) {
986 case e1000_82573:
987 ret_val = e1000_get_hw_semaphore_82573(hw);
988 break;
989 case e1000_82574:
990 case e1000_82583:
991 ret_val = e1000_get_hw_semaphore_82574(hw);
992 break;
993 default:
994 break;
995 }
996
997 ctrl = er32(CTRL);
998
999 e_dbg("Issuing a global reset to MAC\n");
1000 ew32(CTRL, ctrl | E1000_CTRL_RST);
1001
1002 /* Must release MDIO ownership and mutex after MAC reset. */
1003 switch (hw->mac.type) {
1004 case e1000_82573:
1005 /* Release mutex only if the hw semaphore is acquired */
1006 if (!ret_val)
1007 e1000_put_hw_semaphore_82573(hw);
1008 break;
1009 case e1000_82574:
1010 case e1000_82583:
1011 /* Release mutex only if the hw semaphore is acquired */
1012 if (!ret_val)
1013 e1000_put_hw_semaphore_82574(hw);
1014 break;
1015 default:
1016 break;
1017 }
1018
1019 if (hw->nvm.type == e1000_nvm_flash_hw) {
1020 usleep_range(10, 20);
1021 ctrl_ext = er32(CTRL_EXT);
1022 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1023 ew32(CTRL_EXT, ctrl_ext);
1024 e1e_flush();
1025 }
1026
1027 ret_val = e1000e_get_auto_rd_done(hw);
1028 if (ret_val)
1029 /* We don't want to continue accessing MAC registers. */
1030 return ret_val;
1031
1032 /* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1033 * Need to wait for Phy configuration completion before accessing
1034 * NVM and Phy.
1035 */
1036
1037 switch (hw->mac.type) {
1038 case e1000_82571:
1039 case e1000_82572:
1040 /* REQ and GNT bits need to be cleared when using AUTO_RD
1041 * to access the EEPROM.
1042 */
1043 eecd = er32(EECD);
1044 eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1045 ew32(EECD, eecd);
1046 break;
1047 case e1000_82573:
1048 case e1000_82574:
1049 case e1000_82583:
1050 msleep(25);
1051 break;
1052 default:
1053 break;
1054 }
1055
1056 /* Clear any pending interrupt events. */
1057 ew32(IMC, 0xffffffff);
1058 er32(ICR);
1059
1060 if (hw->mac.type == e1000_82571) {
1061 /* Install any alternate MAC address into RAR0 */
1062 ret_val = e1000_check_alt_mac_addr_generic(hw);
1063 if (ret_val)
1064 return ret_val;
1065
1066 e1000e_set_laa_state_82571(hw, true);
1067 }
1068
1069 /* Reinitialize the 82571 serdes link state machine */
1070 if (hw->phy.media_type == e1000_media_type_internal_serdes)
1071 hw->mac.serdes_link_state = e1000_serdes_link_down;
1072
1073 return 0;
1074 }
1075
1076 /**
1077 * e1000_init_hw_82571 - Initialize hardware
1078 * @hw: pointer to the HW structure
1079 *
1080 * This inits the hardware readying it for operation.
1081 **/
1082 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1083 {
1084 struct e1000_mac_info *mac = &hw->mac;
1085 u32 reg_data;
1086 s32 ret_val;
1087 u16 i, rar_count = mac->rar_entry_count;
1088
1089 e1000_initialize_hw_bits_82571(hw);
1090
1091 /* Initialize identification LED */
1092 ret_val = mac->ops.id_led_init(hw);
1093 /* An error is not fatal and we should not stop init due to this */
1094 if (ret_val)
1095 e_dbg("Error initializing identification LED\n");
1096
1097 /* Disabling VLAN filtering */
1098 e_dbg("Initializing the IEEE VLAN\n");
1099 mac->ops.clear_vfta(hw);
1100
1101 /* Setup the receive address.
1102 * If, however, a locally administered address was assigned to the
1103 * 82571, we must reserve a RAR for it to work around an issue where
1104 * resetting one port will reload the MAC on the other port.
1105 */
1106 if (e1000e_get_laa_state_82571(hw))
1107 rar_count--;
1108 e1000e_init_rx_addrs(hw, rar_count);
1109
1110 /* Zero out the Multicast HASH table */
1111 e_dbg("Zeroing the MTA\n");
1112 for (i = 0; i < mac->mta_reg_count; i++)
1113 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1114
1115 /* Setup link and flow control */
1116 ret_val = mac->ops.setup_link(hw);
1117
1118 /* Set the transmit descriptor write-back policy */
1119 reg_data = er32(TXDCTL(0));
1120 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1121 E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
1122 ew32(TXDCTL(0), reg_data);
1123
1124 /* ...for both queues. */
1125 switch (mac->type) {
1126 case e1000_82573:
1127 e1000e_enable_tx_pkt_filtering(hw);
1128 /* fall through */
1129 case e1000_82574:
1130 case e1000_82583:
1131 reg_data = er32(GCR);
1132 reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1133 ew32(GCR, reg_data);
1134 break;
1135 default:
1136 reg_data = er32(TXDCTL(1));
1137 reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
1138 E1000_TXDCTL_FULL_TX_DESC_WB |
1139 E1000_TXDCTL_COUNT_DESC);
1140 ew32(TXDCTL(1), reg_data);
1141 break;
1142 }
1143
1144 /* Clear all of the statistics registers (clear on read). It is
1145 * important that we do this after we have tried to establish link
1146 * because the symbol error count will increment wildly if there
1147 * is no link.
1148 */
1149 e1000_clear_hw_cntrs_82571(hw);
1150
1151 return ret_val;
1152 }
1153
1154 /**
1155 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1156 * @hw: pointer to the HW structure
1157 *
1158 * Initializes required hardware-dependent bits needed for normal operation.
1159 **/
1160 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1161 {
1162 u32 reg;
1163
1164 /* Transmit Descriptor Control 0 */
1165 reg = er32(TXDCTL(0));
1166 reg |= BIT(22);
1167 ew32(TXDCTL(0), reg);
1168
1169 /* Transmit Descriptor Control 1 */
1170 reg = er32(TXDCTL(1));
1171 reg |= BIT(22);
1172 ew32(TXDCTL(1), reg);
1173
1174 /* Transmit Arbitration Control 0 */
1175 reg = er32(TARC(0));
1176 reg &= ~(0xF << 27); /* 30:27 */
1177 switch (hw->mac.type) {
1178 case e1000_82571:
1179 case e1000_82572:
1180 reg |= BIT(23) | BIT(24) | BIT(25) | BIT(26);
1181 break;
1182 case e1000_82574:
1183 case e1000_82583:
1184 reg |= BIT(26);
1185 break;
1186 default:
1187 break;
1188 }
1189 ew32(TARC(0), reg);
1190
1191 /* Transmit Arbitration Control 1 */
1192 reg = er32(TARC(1));
1193 switch (hw->mac.type) {
1194 case e1000_82571:
1195 case e1000_82572:
1196 reg &= ~(BIT(29) | BIT(30));
1197 reg |= BIT(22) | BIT(24) | BIT(25) | BIT(26);
1198 if (er32(TCTL) & E1000_TCTL_MULR)
1199 reg &= ~BIT(28);
1200 else
1201 reg |= BIT(28);
1202 ew32(TARC(1), reg);
1203 break;
1204 default:
1205 break;
1206 }
1207
1208 /* Device Control */
1209 switch (hw->mac.type) {
1210 case e1000_82573:
1211 case e1000_82574:
1212 case e1000_82583:
1213 reg = er32(CTRL);
1214 reg &= ~BIT(29);
1215 ew32(CTRL, reg);
1216 break;
1217 default:
1218 break;
1219 }
1220
1221 /* Extended Device Control */
1222 switch (hw->mac.type) {
1223 case e1000_82573:
1224 case e1000_82574:
1225 case e1000_82583:
1226 reg = er32(CTRL_EXT);
1227 reg &= ~BIT(23);
1228 reg |= BIT(22);
1229 ew32(CTRL_EXT, reg);
1230 break;
1231 default:
1232 break;
1233 }
1234
1235 if (hw->mac.type == e1000_82571) {
1236 reg = er32(PBA_ECC);
1237 reg |= E1000_PBA_ECC_CORR_EN;
1238 ew32(PBA_ECC, reg);
1239 }
1240
1241 /* Workaround for hardware errata.
1242 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1243 */
1244 if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1245 reg = er32(CTRL_EXT);
1246 reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1247 ew32(CTRL_EXT, reg);
1248 }
1249
1250 /* Disable IPv6 extension header parsing because some malformed
1251 * IPv6 headers can hang the Rx.
1252 */
1253 if (hw->mac.type <= e1000_82573) {
1254 reg = er32(RFCTL);
1255 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1256 ew32(RFCTL, reg);
1257 }
1258
1259 /* PCI-Ex Control Registers */
1260 switch (hw->mac.type) {
1261 case e1000_82574:
1262 case e1000_82583:
1263 reg = er32(GCR);
1264 reg |= BIT(22);
1265 ew32(GCR, reg);
1266
1267 /* Workaround for hardware errata.
1268 * apply workaround for hardware errata documented in errata
1269 * docs Fixes issue where some error prone or unreliable PCIe
1270 * completions are occurring, particularly with ASPM enabled.
1271 * Without fix, issue can cause Tx timeouts.
1272 */
1273 reg = er32(GCR2);
1274 reg |= 1;
1275 ew32(GCR2, reg);
1276 break;
1277 default:
1278 break;
1279 }
1280 }
1281
1282 /**
1283 * e1000_clear_vfta_82571 - Clear VLAN filter table
1284 * @hw: pointer to the HW structure
1285 *
1286 * Clears the register array which contains the VLAN filter table by
1287 * setting all the values to 0.
1288 **/
1289 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1290 {
1291 u32 offset;
1292 u32 vfta_value = 0;
1293 u32 vfta_offset = 0;
1294 u32 vfta_bit_in_reg = 0;
1295
1296 switch (hw->mac.type) {
1297 case e1000_82573:
1298 case e1000_82574:
1299 case e1000_82583:
1300 if (hw->mng_cookie.vlan_id != 0) {
1301 /* The VFTA is a 4096b bit-field, each identifying
1302 * a single VLAN ID. The following operations
1303 * determine which 32b entry (i.e. offset) into the
1304 * array we want to set the VLAN ID (i.e. bit) of
1305 * the manageability unit.
1306 */
1307 vfta_offset = (hw->mng_cookie.vlan_id >>
1308 E1000_VFTA_ENTRY_SHIFT) &
1309 E1000_VFTA_ENTRY_MASK;
1310 vfta_bit_in_reg =
1311 BIT(hw->mng_cookie.vlan_id &
1312 E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1313 }
1314 break;
1315 default:
1316 break;
1317 }
1318 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1319 /* If the offset we want to clear is the same offset of the
1320 * manageability VLAN ID, then clear all bits except that of
1321 * the manageability unit.
1322 */
1323 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1324 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1325 e1e_flush();
1326 }
1327 }
1328
1329 /**
1330 * e1000_check_mng_mode_82574 - Check manageability is enabled
1331 * @hw: pointer to the HW structure
1332 *
1333 * Reads the NVM Initialization Control Word 2 and returns true
1334 * (>0) if any manageability is enabled, else false (0).
1335 **/
1336 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1337 {
1338 u16 data;
1339
1340 e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1341 return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1342 }
1343
1344 /**
1345 * e1000_led_on_82574 - Turn LED on
1346 * @hw: pointer to the HW structure
1347 *
1348 * Turn LED on.
1349 **/
1350 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1351 {
1352 u32 ctrl;
1353 u32 i;
1354
1355 ctrl = hw->mac.ledctl_mode2;
1356 if (!(E1000_STATUS_LU & er32(STATUS))) {
1357 /* If no link, then turn LED on by setting the invert bit
1358 * for each LED that's "on" (0x0E) in ledctl_mode2.
1359 */
1360 for (i = 0; i < 4; i++)
1361 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1362 E1000_LEDCTL_MODE_LED_ON)
1363 ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1364 }
1365 ew32(LEDCTL, ctrl);
1366
1367 return 0;
1368 }
1369
1370 /**
1371 * e1000_check_phy_82574 - check 82574 phy hung state
1372 * @hw: pointer to the HW structure
1373 *
1374 * Returns whether phy is hung or not
1375 **/
1376 bool e1000_check_phy_82574(struct e1000_hw *hw)
1377 {
1378 u16 status_1kbt = 0;
1379 u16 receive_errors = 0;
1380 s32 ret_val;
1381
1382 /* Read PHY Receive Error counter first, if its is max - all F's then
1383 * read the Base1000T status register If both are max then PHY is hung.
1384 */
1385 ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1386 if (ret_val)
1387 return false;
1388 if (receive_errors == E1000_RECEIVE_ERROR_MAX) {
1389 ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1390 if (ret_val)
1391 return false;
1392 if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1393 E1000_IDLE_ERROR_COUNT_MASK)
1394 return true;
1395 }
1396
1397 return false;
1398 }
1399
1400 /**
1401 * e1000_setup_link_82571 - Setup flow control and link settings
1402 * @hw: pointer to the HW structure
1403 *
1404 * Determines which flow control settings to use, then configures flow
1405 * control. Calls the appropriate media-specific link configuration
1406 * function. Assuming the adapter has a valid link partner, a valid link
1407 * should be established. Assumes the hardware has previously been reset
1408 * and the transmitter and receiver are not enabled.
1409 **/
1410 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1411 {
1412 /* 82573 does not have a word in the NVM to determine
1413 * the default flow control setting, so we explicitly
1414 * set it to full.
1415 */
1416 switch (hw->mac.type) {
1417 case e1000_82573:
1418 case e1000_82574:
1419 case e1000_82583:
1420 if (hw->fc.requested_mode == e1000_fc_default)
1421 hw->fc.requested_mode = e1000_fc_full;
1422 break;
1423 default:
1424 break;
1425 }
1426
1427 return e1000e_setup_link_generic(hw);
1428 }
1429
1430 /**
1431 * e1000_setup_copper_link_82571 - Configure copper link settings
1432 * @hw: pointer to the HW structure
1433 *
1434 * Configures the link for auto-neg or forced speed and duplex. Then we check
1435 * for link, once link is established calls to configure collision distance
1436 * and flow control are called.
1437 **/
1438 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1439 {
1440 u32 ctrl;
1441 s32 ret_val;
1442
1443 ctrl = er32(CTRL);
1444 ctrl |= E1000_CTRL_SLU;
1445 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1446 ew32(CTRL, ctrl);
1447
1448 switch (hw->phy.type) {
1449 case e1000_phy_m88:
1450 case e1000_phy_bm:
1451 ret_val = e1000e_copper_link_setup_m88(hw);
1452 break;
1453 case e1000_phy_igp_2:
1454 ret_val = e1000e_copper_link_setup_igp(hw);
1455 break;
1456 default:
1457 return -E1000_ERR_PHY;
1458 }
1459
1460 if (ret_val)
1461 return ret_val;
1462
1463 return e1000e_setup_copper_link(hw);
1464 }
1465
1466 /**
1467 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1468 * @hw: pointer to the HW structure
1469 *
1470 * Configures collision distance and flow control for fiber and serdes links.
1471 * Upon successful setup, poll for link.
1472 **/
1473 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1474 {
1475 switch (hw->mac.type) {
1476 case e1000_82571:
1477 case e1000_82572:
1478 /* If SerDes loopback mode is entered, there is no form
1479 * of reset to take the adapter out of that mode. So we
1480 * have to explicitly take the adapter out of loopback
1481 * mode. This prevents drivers from twiddling their thumbs
1482 * if another tool failed to take it out of loopback mode.
1483 */
1484 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1485 break;
1486 default:
1487 break;
1488 }
1489
1490 return e1000e_setup_fiber_serdes_link(hw);
1491 }
1492
1493 /**
1494 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1495 * @hw: pointer to the HW structure
1496 *
1497 * Reports the link state as up or down.
1498 *
1499 * If autonegotiation is supported by the link partner, the link state is
1500 * determined by the result of autonegotiation. This is the most likely case.
1501 * If autonegotiation is not supported by the link partner, and the link
1502 * has a valid signal, force the link up.
1503 *
1504 * The link state is represented internally here by 4 states:
1505 *
1506 * 1) down
1507 * 2) autoneg_progress
1508 * 3) autoneg_complete (the link successfully autonegotiated)
1509 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1510 *
1511 **/
1512 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1513 {
1514 struct e1000_mac_info *mac = &hw->mac;
1515 u32 rxcw;
1516 u32 ctrl;
1517 u32 status;
1518 u32 txcw;
1519 u32 i;
1520 s32 ret_val = 0;
1521
1522 ctrl = er32(CTRL);
1523 status = er32(STATUS);
1524 er32(RXCW);
1525 /* SYNCH bit and IV bit are sticky */
1526 usleep_range(10, 20);
1527 rxcw = er32(RXCW);
1528
1529 if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1530 /* Receiver is synchronized with no invalid bits. */
1531 switch (mac->serdes_link_state) {
1532 case e1000_serdes_link_autoneg_complete:
1533 if (!(status & E1000_STATUS_LU)) {
1534 /* We have lost link, retry autoneg before
1535 * reporting link failure
1536 */
1537 mac->serdes_link_state =
1538 e1000_serdes_link_autoneg_progress;
1539 mac->serdes_has_link = false;
1540 e_dbg("AN_UP -> AN_PROG\n");
1541 } else {
1542 mac->serdes_has_link = true;
1543 }
1544 break;
1545
1546 case e1000_serdes_link_forced_up:
1547 /* If we are receiving /C/ ordered sets, re-enable
1548 * auto-negotiation in the TXCW register and disable
1549 * forced link in the Device Control register in an
1550 * attempt to auto-negotiate with our link partner.
1551 */
1552 if (rxcw & E1000_RXCW_C) {
1553 /* Enable autoneg, and unforce link up */
1554 ew32(TXCW, mac->txcw);
1555 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1556 mac->serdes_link_state =
1557 e1000_serdes_link_autoneg_progress;
1558 mac->serdes_has_link = false;
1559 e_dbg("FORCED_UP -> AN_PROG\n");
1560 } else {
1561 mac->serdes_has_link = true;
1562 }
1563 break;
1564
1565 case e1000_serdes_link_autoneg_progress:
1566 if (rxcw & E1000_RXCW_C) {
1567 /* We received /C/ ordered sets, meaning the
1568 * link partner has autonegotiated, and we can
1569 * trust the Link Up (LU) status bit.
1570 */
1571 if (status & E1000_STATUS_LU) {
1572 mac->serdes_link_state =
1573 e1000_serdes_link_autoneg_complete;
1574 e_dbg("AN_PROG -> AN_UP\n");
1575 mac->serdes_has_link = true;
1576 } else {
1577 /* Autoneg completed, but failed. */
1578 mac->serdes_link_state =
1579 e1000_serdes_link_down;
1580 e_dbg("AN_PROG -> DOWN\n");
1581 }
1582 } else {
1583 /* The link partner did not autoneg.
1584 * Force link up and full duplex, and change
1585 * state to forced.
1586 */
1587 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1588 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1589 ew32(CTRL, ctrl);
1590
1591 /* Configure Flow Control after link up. */
1592 ret_val = e1000e_config_fc_after_link_up(hw);
1593 if (ret_val) {
1594 e_dbg("Error config flow control\n");
1595 break;
1596 }
1597 mac->serdes_link_state =
1598 e1000_serdes_link_forced_up;
1599 mac->serdes_has_link = true;
1600 e_dbg("AN_PROG -> FORCED_UP\n");
1601 }
1602 break;
1603
1604 case e1000_serdes_link_down:
1605 default:
1606 /* The link was down but the receiver has now gained
1607 * valid sync, so lets see if we can bring the link
1608 * up.
1609 */
1610 ew32(TXCW, mac->txcw);
1611 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1612 mac->serdes_link_state =
1613 e1000_serdes_link_autoneg_progress;
1614 mac->serdes_has_link = false;
1615 e_dbg("DOWN -> AN_PROG\n");
1616 break;
1617 }
1618 } else {
1619 if (!(rxcw & E1000_RXCW_SYNCH)) {
1620 mac->serdes_has_link = false;
1621 mac->serdes_link_state = e1000_serdes_link_down;
1622 e_dbg("ANYSTATE -> DOWN\n");
1623 } else {
1624 /* Check several times, if SYNCH bit and CONFIG
1625 * bit both are consistently 1 then simply ignore
1626 * the IV bit and restart Autoneg
1627 */
1628 for (i = 0; i < AN_RETRY_COUNT; i++) {
1629 usleep_range(10, 20);
1630 rxcw = er32(RXCW);
1631 if ((rxcw & E1000_RXCW_SYNCH) &&
1632 (rxcw & E1000_RXCW_C))
1633 continue;
1634
1635 if (rxcw & E1000_RXCW_IV) {
1636 mac->serdes_has_link = false;
1637 mac->serdes_link_state =
1638 e1000_serdes_link_down;
1639 e_dbg("ANYSTATE -> DOWN\n");
1640 break;
1641 }
1642 }
1643
1644 if (i == AN_RETRY_COUNT) {
1645 txcw = er32(TXCW);
1646 txcw |= E1000_TXCW_ANE;
1647 ew32(TXCW, txcw);
1648 mac->serdes_link_state =
1649 e1000_serdes_link_autoneg_progress;
1650 mac->serdes_has_link = false;
1651 e_dbg("ANYSTATE -> AN_PROG\n");
1652 }
1653 }
1654 }
1655
1656 return ret_val;
1657 }
1658
1659 /**
1660 * e1000_valid_led_default_82571 - Verify a valid default LED config
1661 * @hw: pointer to the HW structure
1662 * @data: pointer to the NVM (EEPROM)
1663 *
1664 * Read the EEPROM for the current default LED configuration. If the
1665 * LED configuration is not valid, set to a valid LED configuration.
1666 **/
1667 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1668 {
1669 s32 ret_val;
1670
1671 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1672 if (ret_val) {
1673 e_dbg("NVM Read Error\n");
1674 return ret_val;
1675 }
1676
1677 switch (hw->mac.type) {
1678 case e1000_82573:
1679 case e1000_82574:
1680 case e1000_82583:
1681 if (*data == ID_LED_RESERVED_F746)
1682 *data = ID_LED_DEFAULT_82573;
1683 break;
1684 default:
1685 if (*data == ID_LED_RESERVED_0000 ||
1686 *data == ID_LED_RESERVED_FFFF)
1687 *data = ID_LED_DEFAULT;
1688 break;
1689 }
1690
1691 return 0;
1692 }
1693
1694 /**
1695 * e1000e_get_laa_state_82571 - Get locally administered address state
1696 * @hw: pointer to the HW structure
1697 *
1698 * Retrieve and return the current locally administered address state.
1699 **/
1700 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1701 {
1702 if (hw->mac.type != e1000_82571)
1703 return false;
1704
1705 return hw->dev_spec.e82571.laa_is_present;
1706 }
1707
1708 /**
1709 * e1000e_set_laa_state_82571 - Set locally administered address state
1710 * @hw: pointer to the HW structure
1711 * @state: enable/disable locally administered address
1712 *
1713 * Enable/Disable the current locally administered address state.
1714 **/
1715 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1716 {
1717 if (hw->mac.type != e1000_82571)
1718 return;
1719
1720 hw->dev_spec.e82571.laa_is_present = state;
1721
1722 /* If workaround is activated... */
1723 if (state)
1724 /* Hold a copy of the LAA in RAR[14] This is done so that
1725 * between the time RAR[0] gets clobbered and the time it
1726 * gets fixed, the actual LAA is in one of the RARs and no
1727 * incoming packets directed to this port are dropped.
1728 * Eventually the LAA will be in RAR[0] and RAR[14].
1729 */
1730 hw->mac.ops.rar_set(hw, hw->mac.addr,
1731 hw->mac.rar_entry_count - 1);
1732 }
1733
1734 /**
1735 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1736 * @hw: pointer to the HW structure
1737 *
1738 * Verifies that the EEPROM has completed the update. After updating the
1739 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1740 * the checksum fix is not implemented, we need to set the bit and update
1741 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1742 * we need to return bad checksum.
1743 **/
1744 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1745 {
1746 struct e1000_nvm_info *nvm = &hw->nvm;
1747 s32 ret_val;
1748 u16 data;
1749
1750 if (nvm->type != e1000_nvm_flash_hw)
1751 return 0;
1752
1753 /* Check bit 4 of word 10h. If it is 0, firmware is done updating
1754 * 10h-12h. Checksum may need to be fixed.
1755 */
1756 ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1757 if (ret_val)
1758 return ret_val;
1759
1760 if (!(data & 0x10)) {
1761 /* Read 0x23 and check bit 15. This bit is a 1
1762 * when the checksum has already been fixed. If
1763 * the checksum is still wrong and this bit is a
1764 * 1, we need to return bad checksum. Otherwise,
1765 * we need to set this bit to a 1 and update the
1766 * checksum.
1767 */
1768 ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1769 if (ret_val)
1770 return ret_val;
1771
1772 if (!(data & 0x8000)) {
1773 data |= 0x8000;
1774 ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1775 if (ret_val)
1776 return ret_val;
1777 ret_val = e1000e_update_nvm_checksum(hw);
1778 if (ret_val)
1779 return ret_val;
1780 }
1781 }
1782
1783 return 0;
1784 }
1785
1786 /**
1787 * e1000_read_mac_addr_82571 - Read device MAC address
1788 * @hw: pointer to the HW structure
1789 **/
1790 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1791 {
1792 if (hw->mac.type == e1000_82571) {
1793 s32 ret_val;
1794
1795 /* If there's an alternate MAC address place it in RAR0
1796 * so that it will override the Si installed default perm
1797 * address.
1798 */
1799 ret_val = e1000_check_alt_mac_addr_generic(hw);
1800 if (ret_val)
1801 return ret_val;
1802 }
1803
1804 return e1000_read_mac_addr_generic(hw);
1805 }
1806
1807 /**
1808 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1809 * @hw: pointer to the HW structure
1810 *
1811 * In the case of a PHY power down to save power, or to turn off link during a
1812 * driver unload, or wake on lan is not enabled, remove the link.
1813 **/
1814 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1815 {
1816 struct e1000_phy_info *phy = &hw->phy;
1817 struct e1000_mac_info *mac = &hw->mac;
1818
1819 if (!phy->ops.check_reset_block)
1820 return;
1821
1822 /* If the management interface is not enabled, then power down */
1823 if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1824 e1000_power_down_phy_copper(hw);
1825 }
1826
1827 /**
1828 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1829 * @hw: pointer to the HW structure
1830 *
1831 * Clears the hardware counters by reading the counter registers.
1832 **/
1833 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1834 {
1835 e1000e_clear_hw_cntrs_base(hw);
1836
1837 er32(PRC64);
1838 er32(PRC127);
1839 er32(PRC255);
1840 er32(PRC511);
1841 er32(PRC1023);
1842 er32(PRC1522);
1843 er32(PTC64);
1844 er32(PTC127);
1845 er32(PTC255);
1846 er32(PTC511);
1847 er32(PTC1023);
1848 er32(PTC1522);
1849
1850 er32(ALGNERRC);
1851 er32(RXERRC);
1852 er32(TNCRS);
1853 er32(CEXTERR);
1854 er32(TSCTC);
1855 er32(TSCTFC);
1856
1857 er32(MGTPRC);
1858 er32(MGTPDC);
1859 er32(MGTPTC);
1860
1861 er32(IAC);
1862 er32(ICRXOC);
1863
1864 er32(ICRXPTC);
1865 er32(ICRXATC);
1866 er32(ICTXPTC);
1867 er32(ICTXATC);
1868 er32(ICTXQEC);
1869 er32(ICTXQMTC);
1870 er32(ICRXDMTC);
1871 }
1872
1873 static const struct e1000_mac_operations e82571_mac_ops = {
1874 /* .check_mng_mode: mac type dependent */
1875 /* .check_for_link: media type dependent */
1876 .id_led_init = e1000e_id_led_init_generic,
1877 .cleanup_led = e1000e_cleanup_led_generic,
1878 .clear_hw_cntrs = e1000_clear_hw_cntrs_82571,
1879 .get_bus_info = e1000e_get_bus_info_pcie,
1880 .set_lan_id = e1000_set_lan_id_multi_port_pcie,
1881 /* .get_link_up_info: media type dependent */
1882 /* .led_on: mac type dependent */
1883 .led_off = e1000e_led_off_generic,
1884 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
1885 .write_vfta = e1000_write_vfta_generic,
1886 .clear_vfta = e1000_clear_vfta_82571,
1887 .reset_hw = e1000_reset_hw_82571,
1888 .init_hw = e1000_init_hw_82571,
1889 .setup_link = e1000_setup_link_82571,
1890 /* .setup_physical_interface: media type dependent */
1891 .setup_led = e1000e_setup_led_generic,
1892 .config_collision_dist = e1000e_config_collision_dist_generic,
1893 .read_mac_addr = e1000_read_mac_addr_82571,
1894 .rar_set = e1000e_rar_set_generic,
1895 .rar_get_count = e1000e_rar_get_count_generic,
1896 };
1897
1898 static const struct e1000_phy_operations e82_phy_ops_igp = {
1899 .acquire = e1000_get_hw_semaphore_82571,
1900 .check_polarity = e1000_check_polarity_igp,
1901 .check_reset_block = e1000e_check_reset_block_generic,
1902 .commit = NULL,
1903 .force_speed_duplex = e1000e_phy_force_speed_duplex_igp,
1904 .get_cfg_done = e1000_get_cfg_done_82571,
1905 .get_cable_length = e1000e_get_cable_length_igp_2,
1906 .get_info = e1000e_get_phy_info_igp,
1907 .read_reg = e1000e_read_phy_reg_igp,
1908 .release = e1000_put_hw_semaphore_82571,
1909 .reset = e1000e_phy_hw_reset_generic,
1910 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1911 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1912 .write_reg = e1000e_write_phy_reg_igp,
1913 .cfg_on_link_up = NULL,
1914 };
1915
1916 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1917 .acquire = e1000_get_hw_semaphore_82571,
1918 .check_polarity = e1000_check_polarity_m88,
1919 .check_reset_block = e1000e_check_reset_block_generic,
1920 .commit = e1000e_phy_sw_reset,
1921 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1922 .get_cfg_done = e1000e_get_cfg_done_generic,
1923 .get_cable_length = e1000e_get_cable_length_m88,
1924 .get_info = e1000e_get_phy_info_m88,
1925 .read_reg = e1000e_read_phy_reg_m88,
1926 .release = e1000_put_hw_semaphore_82571,
1927 .reset = e1000e_phy_hw_reset_generic,
1928 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1929 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1930 .write_reg = e1000e_write_phy_reg_m88,
1931 .cfg_on_link_up = NULL,
1932 };
1933
1934 static const struct e1000_phy_operations e82_phy_ops_bm = {
1935 .acquire = e1000_get_hw_semaphore_82571,
1936 .check_polarity = e1000_check_polarity_m88,
1937 .check_reset_block = e1000e_check_reset_block_generic,
1938 .commit = e1000e_phy_sw_reset,
1939 .force_speed_duplex = e1000e_phy_force_speed_duplex_m88,
1940 .get_cfg_done = e1000e_get_cfg_done_generic,
1941 .get_cable_length = e1000e_get_cable_length_m88,
1942 .get_info = e1000e_get_phy_info_m88,
1943 .read_reg = e1000e_read_phy_reg_bm2,
1944 .release = e1000_put_hw_semaphore_82571,
1945 .reset = e1000e_phy_hw_reset_generic,
1946 .set_d0_lplu_state = e1000_set_d0_lplu_state_82571,
1947 .set_d3_lplu_state = e1000e_set_d3_lplu_state,
1948 .write_reg = e1000e_write_phy_reg_bm2,
1949 .cfg_on_link_up = NULL,
1950 };
1951
1952 static const struct e1000_nvm_operations e82571_nvm_ops = {
1953 .acquire = e1000_acquire_nvm_82571,
1954 .read = e1000e_read_nvm_eerd,
1955 .release = e1000_release_nvm_82571,
1956 .reload = e1000e_reload_nvm_generic,
1957 .update = e1000_update_nvm_checksum_82571,
1958 .valid_led_default = e1000_valid_led_default_82571,
1959 .validate = e1000_validate_nvm_checksum_82571,
1960 .write = e1000_write_nvm_82571,
1961 };
1962
1963 const struct e1000_info e1000_82571_info = {
1964 .mac = e1000_82571,
1965 .flags = FLAG_HAS_HW_VLAN_FILTER
1966 | FLAG_HAS_JUMBO_FRAMES
1967 | FLAG_HAS_WOL
1968 | FLAG_APME_IN_CTRL3
1969 | FLAG_HAS_CTRLEXT_ON_LOAD
1970 | FLAG_HAS_SMART_POWER_DOWN
1971 | FLAG_RESET_OVERWRITES_LAA /* errata */
1972 | FLAG_TARC_SPEED_MODE_BIT /* errata */
1973 | FLAG_APME_CHECK_PORT_B,
1974 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1975 | FLAG2_DMA_BURST,
1976 .pba = 38,
1977 .max_hw_frame_size = DEFAULT_JUMBO,
1978 .get_variants = e1000_get_variants_82571,
1979 .mac_ops = &e82571_mac_ops,
1980 .phy_ops = &e82_phy_ops_igp,
1981 .nvm_ops = &e82571_nvm_ops,
1982 };
1983
1984 const struct e1000_info e1000_82572_info = {
1985 .mac = e1000_82572,
1986 .flags = FLAG_HAS_HW_VLAN_FILTER
1987 | FLAG_HAS_JUMBO_FRAMES
1988 | FLAG_HAS_WOL
1989 | FLAG_APME_IN_CTRL3
1990 | FLAG_HAS_CTRLEXT_ON_LOAD
1991 | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1992 .flags2 = FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1993 | FLAG2_DMA_BURST,
1994 .pba = 38,
1995 .max_hw_frame_size = DEFAULT_JUMBO,
1996 .get_variants = e1000_get_variants_82571,
1997 .mac_ops = &e82571_mac_ops,
1998 .phy_ops = &e82_phy_ops_igp,
1999 .nvm_ops = &e82571_nvm_ops,
2000 };
2001
2002 const struct e1000_info e1000_82573_info = {
2003 .mac = e1000_82573,
2004 .flags = FLAG_HAS_HW_VLAN_FILTER
2005 | FLAG_HAS_WOL
2006 | FLAG_APME_IN_CTRL3
2007 | FLAG_HAS_SMART_POWER_DOWN
2008 | FLAG_HAS_AMT
2009 | FLAG_HAS_SWSM_ON_LOAD,
2010 .flags2 = FLAG2_DISABLE_ASPM_L1
2011 | FLAG2_DISABLE_ASPM_L0S,
2012 .pba = 20,
2013 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
2014 .get_variants = e1000_get_variants_82571,
2015 .mac_ops = &e82571_mac_ops,
2016 .phy_ops = &e82_phy_ops_m88,
2017 .nvm_ops = &e82571_nvm_ops,
2018 };
2019
2020 const struct e1000_info e1000_82574_info = {
2021 .mac = e1000_82574,
2022 .flags = FLAG_HAS_HW_VLAN_FILTER
2023 | FLAG_HAS_MSIX
2024 | FLAG_HAS_JUMBO_FRAMES
2025 | FLAG_HAS_WOL
2026 | FLAG_HAS_HW_TIMESTAMP
2027 | FLAG_APME_IN_CTRL3
2028 | FLAG_HAS_SMART_POWER_DOWN
2029 | FLAG_HAS_AMT
2030 | FLAG_HAS_CTRLEXT_ON_LOAD,
2031 .flags2 = FLAG2_CHECK_PHY_HANG
2032 | FLAG2_DISABLE_ASPM_L0S
2033 | FLAG2_DISABLE_ASPM_L1
2034 | FLAG2_NO_DISABLE_RX
2035 | FLAG2_DMA_BURST
2036 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2037 .pba = 32,
2038 .max_hw_frame_size = DEFAULT_JUMBO,
2039 .get_variants = e1000_get_variants_82571,
2040 .mac_ops = &e82571_mac_ops,
2041 .phy_ops = &e82_phy_ops_bm,
2042 .nvm_ops = &e82571_nvm_ops,
2043 };
2044
2045 const struct e1000_info e1000_82583_info = {
2046 .mac = e1000_82583,
2047 .flags = FLAG_HAS_HW_VLAN_FILTER
2048 | FLAG_HAS_WOL
2049 | FLAG_HAS_HW_TIMESTAMP
2050 | FLAG_APME_IN_CTRL3
2051 | FLAG_HAS_SMART_POWER_DOWN
2052 | FLAG_HAS_AMT
2053 | FLAG_HAS_JUMBO_FRAMES
2054 | FLAG_HAS_CTRLEXT_ON_LOAD,
2055 .flags2 = FLAG2_DISABLE_ASPM_L0S
2056 | FLAG2_DISABLE_ASPM_L1
2057 | FLAG2_NO_DISABLE_RX
2058 | FLAG2_CHECK_SYSTIM_OVERFLOW,
2059 .pba = 32,
2060 .max_hw_frame_size = DEFAULT_JUMBO,
2061 .get_variants = e1000_get_variants_82571,
2062 .mac_ops = &e82571_mac_ops,
2063 .phy_ops = &e82_phy_ops_bm,
2064 .nvm_ops = &e82571_nvm_ops,
2065 };