]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/e1000e/ethtool.c
ethernet/intel: Convert fallthrough code comments
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / e1000e / ethtool.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* ethtool support for e1000 */
5
6 #include <linux/netdevice.h>
7 #include <linux/interrupt.h>
8 #include <linux/ethtool.h>
9 #include <linux/pci.h>
10 #include <linux/slab.h>
11 #include <linux/delay.h>
12 #include <linux/vmalloc.h>
13 #include <linux/pm_runtime.h>
14
15 #include "e1000.h"
16
17 enum { NETDEV_STATS, E1000_STATS };
18
19 struct e1000_stats {
20 char stat_string[ETH_GSTRING_LEN];
21 int type;
22 int sizeof_stat;
23 int stat_offset;
24 };
25
26 #define E1000_STAT(str, m) { \
27 .stat_string = str, \
28 .type = E1000_STATS, \
29 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
30 .stat_offset = offsetof(struct e1000_adapter, m) }
31 #define E1000_NETDEV_STAT(str, m) { \
32 .stat_string = str, \
33 .type = NETDEV_STATS, \
34 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
35 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
36
37 static const struct e1000_stats e1000_gstrings_stats[] = {
38 E1000_STAT("rx_packets", stats.gprc),
39 E1000_STAT("tx_packets", stats.gptc),
40 E1000_STAT("rx_bytes", stats.gorc),
41 E1000_STAT("tx_bytes", stats.gotc),
42 E1000_STAT("rx_broadcast", stats.bprc),
43 E1000_STAT("tx_broadcast", stats.bptc),
44 E1000_STAT("rx_multicast", stats.mprc),
45 E1000_STAT("tx_multicast", stats.mptc),
46 E1000_NETDEV_STAT("rx_errors", rx_errors),
47 E1000_NETDEV_STAT("tx_errors", tx_errors),
48 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
49 E1000_STAT("multicast", stats.mprc),
50 E1000_STAT("collisions", stats.colc),
51 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
52 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
53 E1000_STAT("rx_crc_errors", stats.crcerrs),
54 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
55 E1000_STAT("rx_no_buffer_count", stats.rnbc),
56 E1000_STAT("rx_missed_errors", stats.mpc),
57 E1000_STAT("tx_aborted_errors", stats.ecol),
58 E1000_STAT("tx_carrier_errors", stats.tncrs),
59 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
60 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
61 E1000_STAT("tx_window_errors", stats.latecol),
62 E1000_STAT("tx_abort_late_coll", stats.latecol),
63 E1000_STAT("tx_deferred_ok", stats.dc),
64 E1000_STAT("tx_single_coll_ok", stats.scc),
65 E1000_STAT("tx_multi_coll_ok", stats.mcc),
66 E1000_STAT("tx_timeout_count", tx_timeout_count),
67 E1000_STAT("tx_restart_queue", restart_queue),
68 E1000_STAT("rx_long_length_errors", stats.roc),
69 E1000_STAT("rx_short_length_errors", stats.ruc),
70 E1000_STAT("rx_align_errors", stats.algnerrc),
71 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
72 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
73 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
74 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
75 E1000_STAT("tx_flow_control_xon", stats.xontxc),
76 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
77 E1000_STAT("rx_csum_offload_good", hw_csum_good),
78 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
79 E1000_STAT("rx_header_split", rx_hdr_split),
80 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
81 E1000_STAT("tx_smbus", stats.mgptc),
82 E1000_STAT("rx_smbus", stats.mgprc),
83 E1000_STAT("dropped_smbus", stats.mgpdc),
84 E1000_STAT("rx_dma_failed", rx_dma_failed),
85 E1000_STAT("tx_dma_failed", tx_dma_failed),
86 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
87 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
88 E1000_STAT("corr_ecc_errors", corr_errors),
89 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
90 E1000_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
91 };
92
93 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
94 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
95 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
96 "Register test (offline)", "Eeprom test (offline)",
97 "Interrupt test (offline)", "Loopback test (offline)",
98 "Link test (on/offline)"
99 };
100
101 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
102
103 static int e1000_get_link_ksettings(struct net_device *netdev,
104 struct ethtool_link_ksettings *cmd)
105 {
106 struct e1000_adapter *adapter = netdev_priv(netdev);
107 struct e1000_hw *hw = &adapter->hw;
108 u32 speed, supported, advertising;
109
110 if (hw->phy.media_type == e1000_media_type_copper) {
111 supported = (SUPPORTED_10baseT_Half |
112 SUPPORTED_10baseT_Full |
113 SUPPORTED_100baseT_Half |
114 SUPPORTED_100baseT_Full |
115 SUPPORTED_1000baseT_Full |
116 SUPPORTED_Autoneg |
117 SUPPORTED_TP);
118 if (hw->phy.type == e1000_phy_ife)
119 supported &= ~SUPPORTED_1000baseT_Full;
120 advertising = ADVERTISED_TP;
121
122 if (hw->mac.autoneg == 1) {
123 advertising |= ADVERTISED_Autoneg;
124 /* the e1000 autoneg seems to match ethtool nicely */
125 advertising |= hw->phy.autoneg_advertised;
126 }
127
128 cmd->base.port = PORT_TP;
129 cmd->base.phy_address = hw->phy.addr;
130 } else {
131 supported = (SUPPORTED_1000baseT_Full |
132 SUPPORTED_FIBRE |
133 SUPPORTED_Autoneg);
134
135 advertising = (ADVERTISED_1000baseT_Full |
136 ADVERTISED_FIBRE |
137 ADVERTISED_Autoneg);
138
139 cmd->base.port = PORT_FIBRE;
140 }
141
142 speed = SPEED_UNKNOWN;
143 cmd->base.duplex = DUPLEX_UNKNOWN;
144
145 if (netif_running(netdev)) {
146 if (netif_carrier_ok(netdev)) {
147 speed = adapter->link_speed;
148 cmd->base.duplex = adapter->link_duplex - 1;
149 }
150 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
151 u32 status = er32(STATUS);
152
153 if (status & E1000_STATUS_LU) {
154 if (status & E1000_STATUS_SPEED_1000)
155 speed = SPEED_1000;
156 else if (status & E1000_STATUS_SPEED_100)
157 speed = SPEED_100;
158 else
159 speed = SPEED_10;
160
161 if (status & E1000_STATUS_FD)
162 cmd->base.duplex = DUPLEX_FULL;
163 else
164 cmd->base.duplex = DUPLEX_HALF;
165 }
166 }
167
168 cmd->base.speed = speed;
169 cmd->base.autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
170 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
171
172 /* MDI-X => 2; MDI =>1; Invalid =>0 */
173 if ((hw->phy.media_type == e1000_media_type_copper) &&
174 netif_carrier_ok(netdev))
175 cmd->base.eth_tp_mdix = hw->phy.is_mdix ?
176 ETH_TP_MDI_X : ETH_TP_MDI;
177 else
178 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
179
180 if (hw->phy.mdix == AUTO_ALL_MODES)
181 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
182 else
183 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
184
185 if (hw->phy.media_type != e1000_media_type_copper)
186 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_INVALID;
187
188 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
189 supported);
190 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
191 advertising);
192
193 return 0;
194 }
195
196 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
197 {
198 struct e1000_mac_info *mac = &adapter->hw.mac;
199
200 mac->autoneg = 0;
201
202 /* Make sure dplx is at most 1 bit and lsb of speed is not set
203 * for the switch() below to work
204 */
205 if ((spd & 1) || (dplx & ~1))
206 goto err_inval;
207
208 /* Fiber NICs only allow 1000 gbps Full duplex */
209 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
210 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
211 goto err_inval;
212 }
213
214 switch (spd + dplx) {
215 case SPEED_10 + DUPLEX_HALF:
216 mac->forced_speed_duplex = ADVERTISE_10_HALF;
217 break;
218 case SPEED_10 + DUPLEX_FULL:
219 mac->forced_speed_duplex = ADVERTISE_10_FULL;
220 break;
221 case SPEED_100 + DUPLEX_HALF:
222 mac->forced_speed_duplex = ADVERTISE_100_HALF;
223 break;
224 case SPEED_100 + DUPLEX_FULL:
225 mac->forced_speed_duplex = ADVERTISE_100_FULL;
226 break;
227 case SPEED_1000 + DUPLEX_FULL:
228 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
229 mac->autoneg = 1;
230 adapter->hw.phy.autoneg_advertised =
231 ADVERTISE_1000_FULL;
232 } else {
233 mac->forced_speed_duplex = ADVERTISE_1000_FULL;
234 }
235 break;
236 case SPEED_1000 + DUPLEX_HALF: /* not supported */
237 default:
238 goto err_inval;
239 }
240
241 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
242 adapter->hw.phy.mdix = AUTO_ALL_MODES;
243
244 return 0;
245
246 err_inval:
247 e_err("Unsupported Speed/Duplex configuration\n");
248 return -EINVAL;
249 }
250
251 static int e1000_set_link_ksettings(struct net_device *netdev,
252 const struct ethtool_link_ksettings *cmd)
253 {
254 struct e1000_adapter *adapter = netdev_priv(netdev);
255 struct e1000_hw *hw = &adapter->hw;
256 int ret_val = 0;
257 u32 advertising;
258
259 ethtool_convert_link_mode_to_legacy_u32(&advertising,
260 cmd->link_modes.advertising);
261
262 pm_runtime_get_sync(netdev->dev.parent);
263
264 /* When SoL/IDER sessions are active, autoneg/speed/duplex
265 * cannot be changed
266 */
267 if (hw->phy.ops.check_reset_block &&
268 hw->phy.ops.check_reset_block(hw)) {
269 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
270 ret_val = -EINVAL;
271 goto out;
272 }
273
274 /* MDI setting is only allowed when autoneg enabled because
275 * some hardware doesn't allow MDI setting when speed or
276 * duplex is forced.
277 */
278 if (cmd->base.eth_tp_mdix_ctrl) {
279 if (hw->phy.media_type != e1000_media_type_copper) {
280 ret_val = -EOPNOTSUPP;
281 goto out;
282 }
283
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 ret_val = -EINVAL;
288 goto out;
289 }
290 }
291
292 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
293 usleep_range(1000, 2000);
294
295 if (cmd->base.autoneg == AUTONEG_ENABLE) {
296 hw->mac.autoneg = 1;
297 if (hw->phy.media_type == e1000_media_type_fiber)
298 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
299 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
300 else
301 hw->phy.autoneg_advertised = advertising |
302 ADVERTISED_TP | ADVERTISED_Autoneg;
303 advertising = hw->phy.autoneg_advertised;
304 if (adapter->fc_autoneg)
305 hw->fc.requested_mode = e1000_fc_default;
306 } else {
307 u32 speed = cmd->base.speed;
308 /* calling this overrides forced MDI setting */
309 if (e1000_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
310 ret_val = -EINVAL;
311 goto out;
312 }
313 }
314
315 /* MDI-X => 2; MDI => 1; Auto => 3 */
316 if (cmd->base.eth_tp_mdix_ctrl) {
317 /* fix up the value for auto (3 => 0) as zero is mapped
318 * internally to auto
319 */
320 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
321 hw->phy.mdix = AUTO_ALL_MODES;
322 else
323 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
324 }
325
326 /* reset the link */
327 if (netif_running(adapter->netdev)) {
328 e1000e_down(adapter, true);
329 e1000e_up(adapter);
330 } else {
331 e1000e_reset(adapter);
332 }
333
334 out:
335 pm_runtime_put_sync(netdev->dev.parent);
336 clear_bit(__E1000_RESETTING, &adapter->state);
337 return ret_val;
338 }
339
340 static void e1000_get_pauseparam(struct net_device *netdev,
341 struct ethtool_pauseparam *pause)
342 {
343 struct e1000_adapter *adapter = netdev_priv(netdev);
344 struct e1000_hw *hw = &adapter->hw;
345
346 pause->autoneg =
347 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
348
349 if (hw->fc.current_mode == e1000_fc_rx_pause) {
350 pause->rx_pause = 1;
351 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
352 pause->tx_pause = 1;
353 } else if (hw->fc.current_mode == e1000_fc_full) {
354 pause->rx_pause = 1;
355 pause->tx_pause = 1;
356 }
357 }
358
359 static int e1000_set_pauseparam(struct net_device *netdev,
360 struct ethtool_pauseparam *pause)
361 {
362 struct e1000_adapter *adapter = netdev_priv(netdev);
363 struct e1000_hw *hw = &adapter->hw;
364 int retval = 0;
365
366 adapter->fc_autoneg = pause->autoneg;
367
368 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
369 usleep_range(1000, 2000);
370
371 pm_runtime_get_sync(netdev->dev.parent);
372
373 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
374 hw->fc.requested_mode = e1000_fc_default;
375 if (netif_running(adapter->netdev)) {
376 e1000e_down(adapter, true);
377 e1000e_up(adapter);
378 } else {
379 e1000e_reset(adapter);
380 }
381 } else {
382 if (pause->rx_pause && pause->tx_pause)
383 hw->fc.requested_mode = e1000_fc_full;
384 else if (pause->rx_pause && !pause->tx_pause)
385 hw->fc.requested_mode = e1000_fc_rx_pause;
386 else if (!pause->rx_pause && pause->tx_pause)
387 hw->fc.requested_mode = e1000_fc_tx_pause;
388 else if (!pause->rx_pause && !pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_none;
390
391 hw->fc.current_mode = hw->fc.requested_mode;
392
393 if (hw->phy.media_type == e1000_media_type_fiber) {
394 retval = hw->mac.ops.setup_link(hw);
395 /* implicit goto out */
396 } else {
397 retval = e1000e_force_mac_fc(hw);
398 if (retval)
399 goto out;
400 e1000e_set_fc_watermarks(hw);
401 }
402 }
403
404 out:
405 pm_runtime_put_sync(netdev->dev.parent);
406 clear_bit(__E1000_RESETTING, &adapter->state);
407 return retval;
408 }
409
410 static u32 e1000_get_msglevel(struct net_device *netdev)
411 {
412 struct e1000_adapter *adapter = netdev_priv(netdev);
413 return adapter->msg_enable;
414 }
415
416 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
417 {
418 struct e1000_adapter *adapter = netdev_priv(netdev);
419 adapter->msg_enable = data;
420 }
421
422 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
423 {
424 #define E1000_REGS_LEN 32 /* overestimate */
425 return E1000_REGS_LEN * sizeof(u32);
426 }
427
428 static void e1000_get_regs(struct net_device *netdev,
429 struct ethtool_regs *regs, void *p)
430 {
431 struct e1000_adapter *adapter = netdev_priv(netdev);
432 struct e1000_hw *hw = &adapter->hw;
433 u32 *regs_buff = p;
434 u16 phy_data;
435
436 pm_runtime_get_sync(netdev->dev.parent);
437
438 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
439
440 regs->version = (1u << 24) |
441 (adapter->pdev->revision << 16) |
442 adapter->pdev->device;
443
444 regs_buff[0] = er32(CTRL);
445 regs_buff[1] = er32(STATUS);
446
447 regs_buff[2] = er32(RCTL);
448 regs_buff[3] = er32(RDLEN(0));
449 regs_buff[4] = er32(RDH(0));
450 regs_buff[5] = er32(RDT(0));
451 regs_buff[6] = er32(RDTR);
452
453 regs_buff[7] = er32(TCTL);
454 regs_buff[8] = er32(TDLEN(0));
455 regs_buff[9] = er32(TDH(0));
456 regs_buff[10] = er32(TDT(0));
457 regs_buff[11] = er32(TIDV);
458
459 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
460
461 /* ethtool doesn't use anything past this point, so all this
462 * code is likely legacy junk for apps that may or may not exist
463 */
464 if (hw->phy.type == e1000_phy_m88) {
465 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
466 regs_buff[13] = (u32)phy_data; /* cable length */
467 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
468 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
471 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
472 regs_buff[18] = regs_buff[13]; /* cable polarity */
473 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
474 regs_buff[20] = regs_buff[17]; /* polarity correction */
475 /* phy receive errors */
476 regs_buff[22] = adapter->phy_stats.receive_errors;
477 regs_buff[23] = regs_buff[13]; /* mdix mode */
478 }
479 regs_buff[21] = 0; /* was idle_errors */
480 e1e_rphy(hw, MII_STAT1000, &phy_data);
481 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
482 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
483
484 pm_runtime_put_sync(netdev->dev.parent);
485 }
486
487 static int e1000_get_eeprom_len(struct net_device *netdev)
488 {
489 struct e1000_adapter *adapter = netdev_priv(netdev);
490 return adapter->hw.nvm.word_size * 2;
491 }
492
493 static int e1000_get_eeprom(struct net_device *netdev,
494 struct ethtool_eeprom *eeprom, u8 *bytes)
495 {
496 struct e1000_adapter *adapter = netdev_priv(netdev);
497 struct e1000_hw *hw = &adapter->hw;
498 u16 *eeprom_buff;
499 int first_word;
500 int last_word;
501 int ret_val = 0;
502 u16 i;
503
504 if (eeprom->len == 0)
505 return -EINVAL;
506
507 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
508
509 first_word = eeprom->offset >> 1;
510 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
511
512 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
513 GFP_KERNEL);
514 if (!eeprom_buff)
515 return -ENOMEM;
516
517 pm_runtime_get_sync(netdev->dev.parent);
518
519 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
520 ret_val = e1000_read_nvm(hw, first_word,
521 last_word - first_word + 1,
522 eeprom_buff);
523 } else {
524 for (i = 0; i < last_word - first_word + 1; i++) {
525 ret_val = e1000_read_nvm(hw, first_word + i, 1,
526 &eeprom_buff[i]);
527 if (ret_val)
528 break;
529 }
530 }
531
532 pm_runtime_put_sync(netdev->dev.parent);
533
534 if (ret_val) {
535 /* a read error occurred, throw away the result */
536 memset(eeprom_buff, 0xff, sizeof(u16) *
537 (last_word - first_word + 1));
538 } else {
539 /* Device's eeprom is always little-endian, word addressable */
540 for (i = 0; i < last_word - first_word + 1; i++)
541 le16_to_cpus(&eeprom_buff[i]);
542 }
543
544 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
545 kfree(eeprom_buff);
546
547 return ret_val;
548 }
549
550 static int e1000_set_eeprom(struct net_device *netdev,
551 struct ethtool_eeprom *eeprom, u8 *bytes)
552 {
553 struct e1000_adapter *adapter = netdev_priv(netdev);
554 struct e1000_hw *hw = &adapter->hw;
555 u16 *eeprom_buff;
556 void *ptr;
557 int max_len;
558 int first_word;
559 int last_word;
560 int ret_val = 0;
561 u16 i;
562
563 if (eeprom->len == 0)
564 return -EOPNOTSUPP;
565
566 if (eeprom->magic !=
567 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
568 return -EFAULT;
569
570 if (adapter->flags & FLAG_READ_ONLY_NVM)
571 return -EINVAL;
572
573 max_len = hw->nvm.word_size * 2;
574
575 first_word = eeprom->offset >> 1;
576 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
577 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
578 if (!eeprom_buff)
579 return -ENOMEM;
580
581 ptr = (void *)eeprom_buff;
582
583 pm_runtime_get_sync(netdev->dev.parent);
584
585 if (eeprom->offset & 1) {
586 /* need read/modify/write of first changed EEPROM word */
587 /* only the second byte of the word is being modified */
588 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
589 ptr++;
590 }
591 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
592 /* need read/modify/write of last changed EEPROM word */
593 /* only the first byte of the word is being modified */
594 ret_val = e1000_read_nvm(hw, last_word, 1,
595 &eeprom_buff[last_word - first_word]);
596
597 if (ret_val)
598 goto out;
599
600 /* Device's eeprom is always little-endian, word addressable */
601 for (i = 0; i < last_word - first_word + 1; i++)
602 le16_to_cpus(&eeprom_buff[i]);
603
604 memcpy(ptr, bytes, eeprom->len);
605
606 for (i = 0; i < last_word - first_word + 1; i++)
607 cpu_to_le16s(&eeprom_buff[i]);
608
609 ret_val = e1000_write_nvm(hw, first_word,
610 last_word - first_word + 1, eeprom_buff);
611
612 if (ret_val)
613 goto out;
614
615 /* Update the checksum over the first part of the EEPROM if needed
616 * and flush shadow RAM for applicable controllers
617 */
618 if ((first_word <= NVM_CHECKSUM_REG) ||
619 (hw->mac.type == e1000_82583) ||
620 (hw->mac.type == e1000_82574) ||
621 (hw->mac.type == e1000_82573))
622 ret_val = e1000e_update_nvm_checksum(hw);
623
624 out:
625 pm_runtime_put_sync(netdev->dev.parent);
626 kfree(eeprom_buff);
627 return ret_val;
628 }
629
630 static void e1000_get_drvinfo(struct net_device *netdev,
631 struct ethtool_drvinfo *drvinfo)
632 {
633 struct e1000_adapter *adapter = netdev_priv(netdev);
634
635 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
636
637 /* EEPROM image version # is reported as firmware version # for
638 * PCI-E controllers
639 */
640 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
641 "%d.%d-%d",
642 (adapter->eeprom_vers & 0xF000) >> 12,
643 (adapter->eeprom_vers & 0x0FF0) >> 4,
644 (adapter->eeprom_vers & 0x000F));
645
646 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
647 sizeof(drvinfo->bus_info));
648 }
649
650 static void e1000_get_ringparam(struct net_device *netdev,
651 struct ethtool_ringparam *ring)
652 {
653 struct e1000_adapter *adapter = netdev_priv(netdev);
654
655 ring->rx_max_pending = E1000_MAX_RXD;
656 ring->tx_max_pending = E1000_MAX_TXD;
657 ring->rx_pending = adapter->rx_ring_count;
658 ring->tx_pending = adapter->tx_ring_count;
659 }
660
661 static int e1000_set_ringparam(struct net_device *netdev,
662 struct ethtool_ringparam *ring)
663 {
664 struct e1000_adapter *adapter = netdev_priv(netdev);
665 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
666 int err = 0, size = sizeof(struct e1000_ring);
667 bool set_tx = false, set_rx = false;
668 u16 new_rx_count, new_tx_count;
669
670 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
671 return -EINVAL;
672
673 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
674 E1000_MAX_RXD);
675 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
676
677 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
678 E1000_MAX_TXD);
679 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
680
681 if ((new_tx_count == adapter->tx_ring_count) &&
682 (new_rx_count == adapter->rx_ring_count))
683 /* nothing to do */
684 return 0;
685
686 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
687 usleep_range(1000, 2000);
688
689 if (!netif_running(adapter->netdev)) {
690 /* Set counts now and allocate resources during open() */
691 adapter->tx_ring->count = new_tx_count;
692 adapter->rx_ring->count = new_rx_count;
693 adapter->tx_ring_count = new_tx_count;
694 adapter->rx_ring_count = new_rx_count;
695 goto clear_reset;
696 }
697
698 set_tx = (new_tx_count != adapter->tx_ring_count);
699 set_rx = (new_rx_count != adapter->rx_ring_count);
700
701 /* Allocate temporary storage for ring updates */
702 if (set_tx) {
703 temp_tx = vmalloc(size);
704 if (!temp_tx) {
705 err = -ENOMEM;
706 goto free_temp;
707 }
708 }
709 if (set_rx) {
710 temp_rx = vmalloc(size);
711 if (!temp_rx) {
712 err = -ENOMEM;
713 goto free_temp;
714 }
715 }
716
717 pm_runtime_get_sync(netdev->dev.parent);
718
719 e1000e_down(adapter, true);
720
721 /* We can't just free everything and then setup again, because the
722 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
723 * structs. First, attempt to allocate new resources...
724 */
725 if (set_tx) {
726 memcpy(temp_tx, adapter->tx_ring, size);
727 temp_tx->count = new_tx_count;
728 err = e1000e_setup_tx_resources(temp_tx);
729 if (err)
730 goto err_setup;
731 }
732 if (set_rx) {
733 memcpy(temp_rx, adapter->rx_ring, size);
734 temp_rx->count = new_rx_count;
735 err = e1000e_setup_rx_resources(temp_rx);
736 if (err)
737 goto err_setup_rx;
738 }
739
740 /* ...then free the old resources and copy back any new ring data */
741 if (set_tx) {
742 e1000e_free_tx_resources(adapter->tx_ring);
743 memcpy(adapter->tx_ring, temp_tx, size);
744 adapter->tx_ring_count = new_tx_count;
745 }
746 if (set_rx) {
747 e1000e_free_rx_resources(adapter->rx_ring);
748 memcpy(adapter->rx_ring, temp_rx, size);
749 adapter->rx_ring_count = new_rx_count;
750 }
751
752 err_setup_rx:
753 if (err && set_tx)
754 e1000e_free_tx_resources(temp_tx);
755 err_setup:
756 e1000e_up(adapter);
757 pm_runtime_put_sync(netdev->dev.parent);
758 free_temp:
759 vfree(temp_tx);
760 vfree(temp_rx);
761 clear_reset:
762 clear_bit(__E1000_RESETTING, &adapter->state);
763 return err;
764 }
765
766 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
767 int reg, int offset, u32 mask, u32 write)
768 {
769 u32 pat, val;
770 static const u32 test[] = {
771 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
772 };
773 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
774 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
775 (test[pat] & write));
776 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
777 if (val != (test[pat] & write & mask)) {
778 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
779 reg + (offset << 2), val,
780 (test[pat] & write & mask));
781 *data = reg;
782 return true;
783 }
784 }
785 return false;
786 }
787
788 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
789 int reg, u32 mask, u32 write)
790 {
791 u32 val;
792
793 __ew32(&adapter->hw, reg, write & mask);
794 val = __er32(&adapter->hw, reg);
795 if ((write & mask) != (val & mask)) {
796 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
797 reg, (val & mask), (write & mask));
798 *data = reg;
799 return true;
800 }
801 return false;
802 }
803
804 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
805 do { \
806 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
807 return 1; \
808 } while (0)
809 #define REG_PATTERN_TEST(reg, mask, write) \
810 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
811
812 #define REG_SET_AND_CHECK(reg, mask, write) \
813 do { \
814 if (reg_set_and_check(adapter, data, reg, mask, write)) \
815 return 1; \
816 } while (0)
817
818 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
819 {
820 struct e1000_hw *hw = &adapter->hw;
821 struct e1000_mac_info *mac = &adapter->hw.mac;
822 u32 value;
823 u32 before;
824 u32 after;
825 u32 i;
826 u32 toggle;
827 u32 mask;
828 u32 wlock_mac = 0;
829
830 /* The status register is Read Only, so a write should fail.
831 * Some bits that get toggled are ignored. There are several bits
832 * on newer hardware that are r/w.
833 */
834 switch (mac->type) {
835 case e1000_82571:
836 case e1000_82572:
837 case e1000_80003es2lan:
838 toggle = 0x7FFFF3FF;
839 break;
840 default:
841 toggle = 0x7FFFF033;
842 break;
843 }
844
845 before = er32(STATUS);
846 value = (er32(STATUS) & toggle);
847 ew32(STATUS, toggle);
848 after = er32(STATUS) & toggle;
849 if (value != after) {
850 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
851 after, value);
852 *data = 1;
853 return 1;
854 }
855 /* restore previous status */
856 ew32(STATUS, before);
857
858 if (!(adapter->flags & FLAG_IS_ICH)) {
859 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
860 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
861 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
862 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
863 }
864
865 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
866 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
867 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
868 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
869 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
870 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
871 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
872 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
873 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
874 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
875
876 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
877
878 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
879 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
880 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
881
882 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
883 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
884 if (!(adapter->flags & FLAG_IS_ICH))
885 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
886 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
887 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
888 mask = 0x8003FFFF;
889 switch (mac->type) {
890 case e1000_ich10lan:
891 case e1000_pchlan:
892 case e1000_pch2lan:
893 case e1000_pch_lpt:
894 case e1000_pch_spt:
895 case e1000_pch_cnp:
896 case e1000_pch_tgp:
897 case e1000_pch_adp:
898 mask |= BIT(18);
899 break;
900 default:
901 break;
902 }
903
904 if (mac->type >= e1000_pch_lpt)
905 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
906 E1000_FWSM_WLOCK_MAC_SHIFT;
907
908 for (i = 0; i < mac->rar_entry_count; i++) {
909 if (mac->type >= e1000_pch_lpt) {
910 /* Cannot test write-protected SHRAL[n] registers */
911 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
912 continue;
913
914 /* SHRAH[9] different than the others */
915 if (i == 10)
916 mask |= BIT(30);
917 else
918 mask &= ~BIT(30);
919 }
920 if (mac->type == e1000_pch2lan) {
921 /* SHRAH[0,1,2] different than previous */
922 if (i == 1)
923 mask &= 0xFFF4FFFF;
924 /* SHRAH[3] different than SHRAH[0,1,2] */
925 if (i == 4)
926 mask |= BIT(30);
927 /* RAR[1-6] owned by management engine - skipping */
928 if (i > 0)
929 i += 6;
930 }
931
932 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
933 0xFFFFFFFF);
934 /* reset index to actual value */
935 if ((mac->type == e1000_pch2lan) && (i > 6))
936 i -= 6;
937 }
938
939 for (i = 0; i < mac->mta_reg_count; i++)
940 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
941
942 *data = 0;
943
944 return 0;
945 }
946
947 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
948 {
949 u16 temp;
950 u16 checksum = 0;
951 u16 i;
952
953 *data = 0;
954 /* Read and add up the contents of the EEPROM */
955 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
956 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
957 *data = 1;
958 return *data;
959 }
960 checksum += temp;
961 }
962
963 /* If Checksum is not Correct return error else test passed */
964 if ((checksum != (u16)NVM_SUM) && !(*data))
965 *data = 2;
966
967 return *data;
968 }
969
970 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
971 {
972 struct net_device *netdev = (struct net_device *)data;
973 struct e1000_adapter *adapter = netdev_priv(netdev);
974 struct e1000_hw *hw = &adapter->hw;
975
976 adapter->test_icr |= er32(ICR);
977
978 return IRQ_HANDLED;
979 }
980
981 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
982 {
983 struct net_device *netdev = adapter->netdev;
984 struct e1000_hw *hw = &adapter->hw;
985 u32 mask;
986 u32 shared_int = 1;
987 u32 irq = adapter->pdev->irq;
988 int i;
989 int ret_val = 0;
990 int int_mode = E1000E_INT_MODE_LEGACY;
991
992 *data = 0;
993
994 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
995 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
996 int_mode = adapter->int_mode;
997 e1000e_reset_interrupt_capability(adapter);
998 adapter->int_mode = E1000E_INT_MODE_LEGACY;
999 e1000e_set_interrupt_capability(adapter);
1000 }
1001 /* Hook up test interrupt handler just for this test */
1002 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1003 netdev)) {
1004 shared_int = 0;
1005 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1006 netdev)) {
1007 *data = 1;
1008 ret_val = -1;
1009 goto out;
1010 }
1011 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1012
1013 /* Disable all the interrupts */
1014 ew32(IMC, 0xFFFFFFFF);
1015 e1e_flush();
1016 usleep_range(10000, 11000);
1017
1018 /* Test each interrupt */
1019 for (i = 0; i < 10; i++) {
1020 /* Interrupt to test */
1021 mask = BIT(i);
1022
1023 if (adapter->flags & FLAG_IS_ICH) {
1024 switch (mask) {
1025 case E1000_ICR_RXSEQ:
1026 continue;
1027 case 0x00000100:
1028 if (adapter->hw.mac.type == e1000_ich8lan ||
1029 adapter->hw.mac.type == e1000_ich9lan)
1030 continue;
1031 break;
1032 default:
1033 break;
1034 }
1035 }
1036
1037 if (!shared_int) {
1038 /* Disable the interrupt to be reported in
1039 * the cause register and then force the same
1040 * interrupt and see if one gets posted. If
1041 * an interrupt was posted to the bus, the
1042 * test failed.
1043 */
1044 adapter->test_icr = 0;
1045 ew32(IMC, mask);
1046 ew32(ICS, mask);
1047 e1e_flush();
1048 usleep_range(10000, 11000);
1049
1050 if (adapter->test_icr & mask) {
1051 *data = 3;
1052 break;
1053 }
1054 }
1055
1056 /* Enable the interrupt to be reported in
1057 * the cause register and then force the same
1058 * interrupt and see if one gets posted. If
1059 * an interrupt was not posted to the bus, the
1060 * test failed.
1061 */
1062 adapter->test_icr = 0;
1063 ew32(IMS, mask);
1064 ew32(ICS, mask);
1065 e1e_flush();
1066 usleep_range(10000, 11000);
1067
1068 if (!(adapter->test_icr & mask)) {
1069 *data = 4;
1070 break;
1071 }
1072
1073 if (!shared_int) {
1074 /* Disable the other interrupts to be reported in
1075 * the cause register and then force the other
1076 * interrupts and see if any get posted. If
1077 * an interrupt was posted to the bus, the
1078 * test failed.
1079 */
1080 adapter->test_icr = 0;
1081 ew32(IMC, ~mask & 0x00007FFF);
1082 ew32(ICS, ~mask & 0x00007FFF);
1083 e1e_flush();
1084 usleep_range(10000, 11000);
1085
1086 if (adapter->test_icr) {
1087 *data = 5;
1088 break;
1089 }
1090 }
1091 }
1092
1093 /* Disable all the interrupts */
1094 ew32(IMC, 0xFFFFFFFF);
1095 e1e_flush();
1096 usleep_range(10000, 11000);
1097
1098 /* Unhook test interrupt handler */
1099 free_irq(irq, netdev);
1100
1101 out:
1102 if (int_mode == E1000E_INT_MODE_MSIX) {
1103 e1000e_reset_interrupt_capability(adapter);
1104 adapter->int_mode = int_mode;
1105 e1000e_set_interrupt_capability(adapter);
1106 }
1107
1108 return ret_val;
1109 }
1110
1111 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1112 {
1113 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1114 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1115 struct pci_dev *pdev = adapter->pdev;
1116 struct e1000_buffer *buffer_info;
1117 int i;
1118
1119 if (tx_ring->desc && tx_ring->buffer_info) {
1120 for (i = 0; i < tx_ring->count; i++) {
1121 buffer_info = &tx_ring->buffer_info[i];
1122
1123 if (buffer_info->dma)
1124 dma_unmap_single(&pdev->dev,
1125 buffer_info->dma,
1126 buffer_info->length,
1127 DMA_TO_DEVICE);
1128 dev_kfree_skb(buffer_info->skb);
1129 }
1130 }
1131
1132 if (rx_ring->desc && rx_ring->buffer_info) {
1133 for (i = 0; i < rx_ring->count; i++) {
1134 buffer_info = &rx_ring->buffer_info[i];
1135
1136 if (buffer_info->dma)
1137 dma_unmap_single(&pdev->dev,
1138 buffer_info->dma,
1139 2048, DMA_FROM_DEVICE);
1140 dev_kfree_skb(buffer_info->skb);
1141 }
1142 }
1143
1144 if (tx_ring->desc) {
1145 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1146 tx_ring->dma);
1147 tx_ring->desc = NULL;
1148 }
1149 if (rx_ring->desc) {
1150 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1151 rx_ring->dma);
1152 rx_ring->desc = NULL;
1153 }
1154
1155 kfree(tx_ring->buffer_info);
1156 tx_ring->buffer_info = NULL;
1157 kfree(rx_ring->buffer_info);
1158 rx_ring->buffer_info = NULL;
1159 }
1160
1161 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1162 {
1163 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1164 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1165 struct pci_dev *pdev = adapter->pdev;
1166 struct e1000_hw *hw = &adapter->hw;
1167 u32 rctl;
1168 int i;
1169 int ret_val;
1170
1171 /* Setup Tx descriptor ring and Tx buffers */
1172
1173 if (!tx_ring->count)
1174 tx_ring->count = E1000_DEFAULT_TXD;
1175
1176 tx_ring->buffer_info = kcalloc(tx_ring->count,
1177 sizeof(struct e1000_buffer), GFP_KERNEL);
1178 if (!tx_ring->buffer_info) {
1179 ret_val = 1;
1180 goto err_nomem;
1181 }
1182
1183 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1184 tx_ring->size = ALIGN(tx_ring->size, 4096);
1185 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1186 &tx_ring->dma, GFP_KERNEL);
1187 if (!tx_ring->desc) {
1188 ret_val = 2;
1189 goto err_nomem;
1190 }
1191 tx_ring->next_to_use = 0;
1192 tx_ring->next_to_clean = 0;
1193
1194 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1195 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1196 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1197 ew32(TDH(0), 0);
1198 ew32(TDT(0), 0);
1199 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1200 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1201 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1202
1203 for (i = 0; i < tx_ring->count; i++) {
1204 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1205 struct sk_buff *skb;
1206 unsigned int skb_size = 1024;
1207
1208 skb = alloc_skb(skb_size, GFP_KERNEL);
1209 if (!skb) {
1210 ret_val = 3;
1211 goto err_nomem;
1212 }
1213 skb_put(skb, skb_size);
1214 tx_ring->buffer_info[i].skb = skb;
1215 tx_ring->buffer_info[i].length = skb->len;
1216 tx_ring->buffer_info[i].dma =
1217 dma_map_single(&pdev->dev, skb->data, skb->len,
1218 DMA_TO_DEVICE);
1219 if (dma_mapping_error(&pdev->dev,
1220 tx_ring->buffer_info[i].dma)) {
1221 ret_val = 4;
1222 goto err_nomem;
1223 }
1224 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1225 tx_desc->lower.data = cpu_to_le32(skb->len);
1226 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1227 E1000_TXD_CMD_IFCS |
1228 E1000_TXD_CMD_RS);
1229 tx_desc->upper.data = 0;
1230 }
1231
1232 /* Setup Rx descriptor ring and Rx buffers */
1233
1234 if (!rx_ring->count)
1235 rx_ring->count = E1000_DEFAULT_RXD;
1236
1237 rx_ring->buffer_info = kcalloc(rx_ring->count,
1238 sizeof(struct e1000_buffer), GFP_KERNEL);
1239 if (!rx_ring->buffer_info) {
1240 ret_val = 5;
1241 goto err_nomem;
1242 }
1243
1244 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1245 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1246 &rx_ring->dma, GFP_KERNEL);
1247 if (!rx_ring->desc) {
1248 ret_val = 6;
1249 goto err_nomem;
1250 }
1251 rx_ring->next_to_use = 0;
1252 rx_ring->next_to_clean = 0;
1253
1254 rctl = er32(RCTL);
1255 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1256 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1257 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1258 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1259 ew32(RDLEN(0), rx_ring->size);
1260 ew32(RDH(0), 0);
1261 ew32(RDT(0), 0);
1262 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1263 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1264 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1265 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1266 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1267 ew32(RCTL, rctl);
1268
1269 for (i = 0; i < rx_ring->count; i++) {
1270 union e1000_rx_desc_extended *rx_desc;
1271 struct sk_buff *skb;
1272
1273 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1274 if (!skb) {
1275 ret_val = 7;
1276 goto err_nomem;
1277 }
1278 skb_reserve(skb, NET_IP_ALIGN);
1279 rx_ring->buffer_info[i].skb = skb;
1280 rx_ring->buffer_info[i].dma =
1281 dma_map_single(&pdev->dev, skb->data, 2048,
1282 DMA_FROM_DEVICE);
1283 if (dma_mapping_error(&pdev->dev,
1284 rx_ring->buffer_info[i].dma)) {
1285 ret_val = 8;
1286 goto err_nomem;
1287 }
1288 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1289 rx_desc->read.buffer_addr =
1290 cpu_to_le64(rx_ring->buffer_info[i].dma);
1291 memset(skb->data, 0x00, skb->len);
1292 }
1293
1294 return 0;
1295
1296 err_nomem:
1297 e1000_free_desc_rings(adapter);
1298 return ret_val;
1299 }
1300
1301 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1302 {
1303 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1304 e1e_wphy(&adapter->hw, 29, 0x001F);
1305 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1306 e1e_wphy(&adapter->hw, 29, 0x001A);
1307 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1308 }
1309
1310 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1311 {
1312 struct e1000_hw *hw = &adapter->hw;
1313 u32 ctrl_reg = 0;
1314 u16 phy_reg = 0;
1315 s32 ret_val = 0;
1316
1317 hw->mac.autoneg = 0;
1318
1319 if (hw->phy.type == e1000_phy_ife) {
1320 /* force 100, set loopback */
1321 e1e_wphy(hw, MII_BMCR, 0x6100);
1322
1323 /* Now set up the MAC to the same speed/duplex as the PHY. */
1324 ctrl_reg = er32(CTRL);
1325 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1326 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1327 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1328 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1329 E1000_CTRL_FD); /* Force Duplex to FULL */
1330
1331 ew32(CTRL, ctrl_reg);
1332 e1e_flush();
1333 usleep_range(500, 1000);
1334
1335 return 0;
1336 }
1337
1338 /* Specific PHY configuration for loopback */
1339 switch (hw->phy.type) {
1340 case e1000_phy_m88:
1341 /* Auto-MDI/MDIX Off */
1342 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1343 /* reset to update Auto-MDI/MDIX */
1344 e1e_wphy(hw, MII_BMCR, 0x9140);
1345 /* autoneg off */
1346 e1e_wphy(hw, MII_BMCR, 0x8140);
1347 break;
1348 case e1000_phy_gg82563:
1349 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1350 break;
1351 case e1000_phy_bm:
1352 /* Set Default MAC Interface speed to 1GB */
1353 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1354 phy_reg &= ~0x0007;
1355 phy_reg |= 0x006;
1356 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1357 /* Assert SW reset for above settings to take effect */
1358 hw->phy.ops.commit(hw);
1359 usleep_range(1000, 2000);
1360 /* Force Full Duplex */
1361 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1362 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1363 /* Set Link Up (in force link) */
1364 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1365 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1366 /* Force Link */
1367 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1368 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1369 /* Set Early Link Enable */
1370 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1371 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1372 break;
1373 case e1000_phy_82577:
1374 case e1000_phy_82578:
1375 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1376 ret_val = hw->phy.ops.acquire(hw);
1377 if (ret_val) {
1378 e_err("Cannot setup 1Gbps loopback.\n");
1379 return ret_val;
1380 }
1381 e1000_configure_k1_ich8lan(hw, false);
1382 hw->phy.ops.release(hw);
1383 break;
1384 case e1000_phy_82579:
1385 /* Disable PHY energy detect power down */
1386 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1387 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~BIT(3));
1388 /* Disable full chip energy detect */
1389 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1390 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1391 /* Enable loopback on the PHY */
1392 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1393 break;
1394 default:
1395 break;
1396 }
1397
1398 /* force 1000, set loopback */
1399 e1e_wphy(hw, MII_BMCR, 0x4140);
1400 msleep(250);
1401
1402 /* Now set up the MAC to the same speed/duplex as the PHY. */
1403 ctrl_reg = er32(CTRL);
1404 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1405 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1406 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1407 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1408 E1000_CTRL_FD); /* Force Duplex to FULL */
1409
1410 if (adapter->flags & FLAG_IS_ICH)
1411 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1412
1413 if (hw->phy.media_type == e1000_media_type_copper &&
1414 hw->phy.type == e1000_phy_m88) {
1415 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1416 } else {
1417 /* Set the ILOS bit on the fiber Nic if half duplex link is
1418 * detected.
1419 */
1420 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1421 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1422 }
1423
1424 ew32(CTRL, ctrl_reg);
1425
1426 /* Disable the receiver on the PHY so when a cable is plugged in, the
1427 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1428 */
1429 if (hw->phy.type == e1000_phy_m88)
1430 e1000_phy_disable_receiver(adapter);
1431
1432 usleep_range(500, 1000);
1433
1434 return 0;
1435 }
1436
1437 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1438 {
1439 struct e1000_hw *hw = &adapter->hw;
1440 u32 ctrl = er32(CTRL);
1441 int link;
1442
1443 /* special requirements for 82571/82572 fiber adapters */
1444
1445 /* jump through hoops to make sure link is up because serdes
1446 * link is hardwired up
1447 */
1448 ctrl |= E1000_CTRL_SLU;
1449 ew32(CTRL, ctrl);
1450
1451 /* disable autoneg */
1452 ctrl = er32(TXCW);
1453 ctrl &= ~BIT(31);
1454 ew32(TXCW, ctrl);
1455
1456 link = (er32(STATUS) & E1000_STATUS_LU);
1457
1458 if (!link) {
1459 /* set invert loss of signal */
1460 ctrl = er32(CTRL);
1461 ctrl |= E1000_CTRL_ILOS;
1462 ew32(CTRL, ctrl);
1463 }
1464
1465 /* special write to serdes control register to enable SerDes analog
1466 * loopback
1467 */
1468 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1469 e1e_flush();
1470 usleep_range(10000, 11000);
1471
1472 return 0;
1473 }
1474
1475 /* only call this for fiber/serdes connections to es2lan */
1476 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479 u32 ctrlext = er32(CTRL_EXT);
1480 u32 ctrl = er32(CTRL);
1481
1482 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1483 * on mac_type 80003es2lan)
1484 */
1485 adapter->tx_fifo_head = ctrlext;
1486
1487 /* clear the serdes mode bits, putting the device into mac loopback */
1488 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1489 ew32(CTRL_EXT, ctrlext);
1490
1491 /* force speed to 1000/FD, link up */
1492 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1493 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1494 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1495 ew32(CTRL, ctrl);
1496
1497 /* set mac loopback */
1498 ctrl = er32(RCTL);
1499 ctrl |= E1000_RCTL_LBM_MAC;
1500 ew32(RCTL, ctrl);
1501
1502 /* set testing mode parameters (no need to reset later) */
1503 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1504 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1505 ew32(KMRNCTRLSTA,
1506 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1507
1508 return 0;
1509 }
1510
1511 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1512 {
1513 struct e1000_hw *hw = &adapter->hw;
1514 u32 rctl, fext_nvm11, tarc0;
1515
1516 if (hw->mac.type >= e1000_pch_spt) {
1517 fext_nvm11 = er32(FEXTNVM11);
1518 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
1519 ew32(FEXTNVM11, fext_nvm11);
1520 tarc0 = er32(TARC(0));
1521 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1522 tarc0 &= 0xcfffffff;
1523 /* set bit 29 (value of MULR requests is now 2) */
1524 tarc0 |= 0x20000000;
1525 ew32(TARC(0), tarc0);
1526 }
1527 if (hw->phy.media_type == e1000_media_type_fiber ||
1528 hw->phy.media_type == e1000_media_type_internal_serdes) {
1529 switch (hw->mac.type) {
1530 case e1000_80003es2lan:
1531 return e1000_set_es2lan_mac_loopback(adapter);
1532 case e1000_82571:
1533 case e1000_82572:
1534 return e1000_set_82571_fiber_loopback(adapter);
1535 default:
1536 rctl = er32(RCTL);
1537 rctl |= E1000_RCTL_LBM_TCVR;
1538 ew32(RCTL, rctl);
1539 return 0;
1540 }
1541 } else if (hw->phy.media_type == e1000_media_type_copper) {
1542 return e1000_integrated_phy_loopback(adapter);
1543 }
1544
1545 return 7;
1546 }
1547
1548 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1549 {
1550 struct e1000_hw *hw = &adapter->hw;
1551 u32 rctl, fext_nvm11, tarc0;
1552 u16 phy_reg;
1553
1554 rctl = er32(RCTL);
1555 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1556 ew32(RCTL, rctl);
1557
1558 switch (hw->mac.type) {
1559 case e1000_pch_spt:
1560 case e1000_pch_cnp:
1561 case e1000_pch_tgp:
1562 case e1000_pch_adp:
1563 fext_nvm11 = er32(FEXTNVM11);
1564 fext_nvm11 &= ~E1000_FEXTNVM11_DISABLE_MULR_FIX;
1565 ew32(FEXTNVM11, fext_nvm11);
1566 tarc0 = er32(TARC(0));
1567 /* clear bits 28 & 29 (control of MULR concurrent requests) */
1568 /* set bit 29 (value of MULR requests is now 0) */
1569 tarc0 &= 0xcfffffff;
1570 ew32(TARC(0), tarc0);
1571 fallthrough;
1572 case e1000_80003es2lan:
1573 if (hw->phy.media_type == e1000_media_type_fiber ||
1574 hw->phy.media_type == e1000_media_type_internal_serdes) {
1575 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1576 ew32(CTRL_EXT, adapter->tx_fifo_head);
1577 adapter->tx_fifo_head = 0;
1578 }
1579 fallthrough;
1580 case e1000_82571:
1581 case e1000_82572:
1582 if (hw->phy.media_type == e1000_media_type_fiber ||
1583 hw->phy.media_type == e1000_media_type_internal_serdes) {
1584 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1585 e1e_flush();
1586 usleep_range(10000, 11000);
1587 break;
1588 }
1589 fallthrough;
1590 default:
1591 hw->mac.autoneg = 1;
1592 if (hw->phy.type == e1000_phy_gg82563)
1593 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1594 e1e_rphy(hw, MII_BMCR, &phy_reg);
1595 if (phy_reg & BMCR_LOOPBACK) {
1596 phy_reg &= ~BMCR_LOOPBACK;
1597 e1e_wphy(hw, MII_BMCR, phy_reg);
1598 if (hw->phy.ops.commit)
1599 hw->phy.ops.commit(hw);
1600 }
1601 break;
1602 }
1603 }
1604
1605 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1606 unsigned int frame_size)
1607 {
1608 memset(skb->data, 0xFF, frame_size);
1609 frame_size &= ~1;
1610 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1611 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1612 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1613 }
1614
1615 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1616 unsigned int frame_size)
1617 {
1618 frame_size &= ~1;
1619 if (*(skb->data + 3) == 0xFF)
1620 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1621 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1622 return 0;
1623 return 13;
1624 }
1625
1626 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1627 {
1628 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1629 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1630 struct pci_dev *pdev = adapter->pdev;
1631 struct e1000_hw *hw = &adapter->hw;
1632 struct e1000_buffer *buffer_info;
1633 int i, j, k, l;
1634 int lc;
1635 int good_cnt;
1636 int ret_val = 0;
1637 unsigned long time;
1638
1639 ew32(RDT(0), rx_ring->count - 1);
1640
1641 /* Calculate the loop count based on the largest descriptor ring
1642 * The idea is to wrap the largest ring a number of times using 64
1643 * send/receive pairs during each loop
1644 */
1645
1646 if (rx_ring->count <= tx_ring->count)
1647 lc = ((tx_ring->count / 64) * 2) + 1;
1648 else
1649 lc = ((rx_ring->count / 64) * 2) + 1;
1650
1651 k = 0;
1652 l = 0;
1653 /* loop count loop */
1654 for (j = 0; j <= lc; j++) {
1655 /* send the packets */
1656 for (i = 0; i < 64; i++) {
1657 buffer_info = &tx_ring->buffer_info[k];
1658
1659 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1660 dma_sync_single_for_device(&pdev->dev,
1661 buffer_info->dma,
1662 buffer_info->length,
1663 DMA_TO_DEVICE);
1664 k++;
1665 if (k == tx_ring->count)
1666 k = 0;
1667 }
1668 ew32(TDT(0), k);
1669 e1e_flush();
1670 msleep(200);
1671 time = jiffies; /* set the start time for the receive */
1672 good_cnt = 0;
1673 /* receive the sent packets */
1674 do {
1675 buffer_info = &rx_ring->buffer_info[l];
1676
1677 dma_sync_single_for_cpu(&pdev->dev,
1678 buffer_info->dma, 2048,
1679 DMA_FROM_DEVICE);
1680
1681 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1682 1024);
1683 if (!ret_val)
1684 good_cnt++;
1685 l++;
1686 if (l == rx_ring->count)
1687 l = 0;
1688 /* time + 20 msecs (200 msecs on 2.4) is more than
1689 * enough time to complete the receives, if it's
1690 * exceeded, break and error off
1691 */
1692 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1693 if (good_cnt != 64) {
1694 ret_val = 13; /* ret_val is the same as mis-compare */
1695 break;
1696 }
1697 if (time_after(jiffies, time + 20)) {
1698 ret_val = 14; /* error code for time out error */
1699 break;
1700 }
1701 }
1702 return ret_val;
1703 }
1704
1705 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1706 {
1707 struct e1000_hw *hw = &adapter->hw;
1708
1709 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1710 if (hw->phy.ops.check_reset_block &&
1711 hw->phy.ops.check_reset_block(hw)) {
1712 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1713 *data = 0;
1714 goto out;
1715 }
1716
1717 *data = e1000_setup_desc_rings(adapter);
1718 if (*data)
1719 goto out;
1720
1721 *data = e1000_setup_loopback_test(adapter);
1722 if (*data)
1723 goto err_loopback;
1724
1725 *data = e1000_run_loopback_test(adapter);
1726 e1000_loopback_cleanup(adapter);
1727
1728 err_loopback:
1729 e1000_free_desc_rings(adapter);
1730 out:
1731 return *data;
1732 }
1733
1734 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1735 {
1736 struct e1000_hw *hw = &adapter->hw;
1737
1738 *data = 0;
1739 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1740 int i = 0;
1741
1742 hw->mac.serdes_has_link = false;
1743
1744 /* On some blade server designs, link establishment
1745 * could take as long as 2-3 minutes
1746 */
1747 do {
1748 hw->mac.ops.check_for_link(hw);
1749 if (hw->mac.serdes_has_link)
1750 return *data;
1751 msleep(20);
1752 } while (i++ < 3750);
1753
1754 *data = 1;
1755 } else {
1756 hw->mac.ops.check_for_link(hw);
1757 if (hw->mac.autoneg)
1758 /* On some Phy/switch combinations, link establishment
1759 * can take a few seconds more than expected.
1760 */
1761 msleep_interruptible(5000);
1762
1763 if (!(er32(STATUS) & E1000_STATUS_LU))
1764 *data = 1;
1765 }
1766 return *data;
1767 }
1768
1769 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1770 int sset)
1771 {
1772 switch (sset) {
1773 case ETH_SS_TEST:
1774 return E1000_TEST_LEN;
1775 case ETH_SS_STATS:
1776 return E1000_STATS_LEN;
1777 default:
1778 return -EOPNOTSUPP;
1779 }
1780 }
1781
1782 static void e1000_diag_test(struct net_device *netdev,
1783 struct ethtool_test *eth_test, u64 *data)
1784 {
1785 struct e1000_adapter *adapter = netdev_priv(netdev);
1786 u16 autoneg_advertised;
1787 u8 forced_speed_duplex;
1788 u8 autoneg;
1789 bool if_running = netif_running(netdev);
1790
1791 pm_runtime_get_sync(netdev->dev.parent);
1792
1793 set_bit(__E1000_TESTING, &adapter->state);
1794
1795 if (!if_running) {
1796 /* Get control of and reset hardware */
1797 if (adapter->flags & FLAG_HAS_AMT)
1798 e1000e_get_hw_control(adapter);
1799
1800 e1000e_power_up_phy(adapter);
1801
1802 adapter->hw.phy.autoneg_wait_to_complete = 1;
1803 e1000e_reset(adapter);
1804 adapter->hw.phy.autoneg_wait_to_complete = 0;
1805 }
1806
1807 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1808 /* Offline tests */
1809
1810 /* save speed, duplex, autoneg settings */
1811 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1812 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1813 autoneg = adapter->hw.mac.autoneg;
1814
1815 e_info("offline testing starting\n");
1816
1817 if (if_running)
1818 /* indicate we're in test mode */
1819 e1000e_close(netdev);
1820
1821 if (e1000_reg_test(adapter, &data[0]))
1822 eth_test->flags |= ETH_TEST_FL_FAILED;
1823
1824 e1000e_reset(adapter);
1825 if (e1000_eeprom_test(adapter, &data[1]))
1826 eth_test->flags |= ETH_TEST_FL_FAILED;
1827
1828 e1000e_reset(adapter);
1829 if (e1000_intr_test(adapter, &data[2]))
1830 eth_test->flags |= ETH_TEST_FL_FAILED;
1831
1832 e1000e_reset(adapter);
1833 if (e1000_loopback_test(adapter, &data[3]))
1834 eth_test->flags |= ETH_TEST_FL_FAILED;
1835
1836 /* force this routine to wait until autoneg complete/timeout */
1837 adapter->hw.phy.autoneg_wait_to_complete = 1;
1838 e1000e_reset(adapter);
1839 adapter->hw.phy.autoneg_wait_to_complete = 0;
1840
1841 if (e1000_link_test(adapter, &data[4]))
1842 eth_test->flags |= ETH_TEST_FL_FAILED;
1843
1844 /* restore speed, duplex, autoneg settings */
1845 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1846 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1847 adapter->hw.mac.autoneg = autoneg;
1848 e1000e_reset(adapter);
1849
1850 clear_bit(__E1000_TESTING, &adapter->state);
1851 if (if_running)
1852 e1000e_open(netdev);
1853 } else {
1854 /* Online tests */
1855
1856 e_info("online testing starting\n");
1857
1858 /* register, eeprom, intr and loopback tests not run online */
1859 data[0] = 0;
1860 data[1] = 0;
1861 data[2] = 0;
1862 data[3] = 0;
1863
1864 if (e1000_link_test(adapter, &data[4]))
1865 eth_test->flags |= ETH_TEST_FL_FAILED;
1866
1867 clear_bit(__E1000_TESTING, &adapter->state);
1868 }
1869
1870 if (!if_running) {
1871 e1000e_reset(adapter);
1872
1873 if (adapter->flags & FLAG_HAS_AMT)
1874 e1000e_release_hw_control(adapter);
1875 }
1876
1877 msleep_interruptible(4 * 1000);
1878
1879 pm_runtime_put_sync(netdev->dev.parent);
1880 }
1881
1882 static void e1000_get_wol(struct net_device *netdev,
1883 struct ethtool_wolinfo *wol)
1884 {
1885 struct e1000_adapter *adapter = netdev_priv(netdev);
1886
1887 wol->supported = 0;
1888 wol->wolopts = 0;
1889
1890 if (!(adapter->flags & FLAG_HAS_WOL) ||
1891 !device_can_wakeup(&adapter->pdev->dev))
1892 return;
1893
1894 wol->supported = WAKE_UCAST | WAKE_MCAST |
1895 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1896
1897 /* apply any specific unsupported masks here */
1898 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1899 wol->supported &= ~WAKE_UCAST;
1900
1901 if (adapter->wol & E1000_WUFC_EX)
1902 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1903 }
1904
1905 if (adapter->wol & E1000_WUFC_EX)
1906 wol->wolopts |= WAKE_UCAST;
1907 if (adapter->wol & E1000_WUFC_MC)
1908 wol->wolopts |= WAKE_MCAST;
1909 if (adapter->wol & E1000_WUFC_BC)
1910 wol->wolopts |= WAKE_BCAST;
1911 if (adapter->wol & E1000_WUFC_MAG)
1912 wol->wolopts |= WAKE_MAGIC;
1913 if (adapter->wol & E1000_WUFC_LNKC)
1914 wol->wolopts |= WAKE_PHY;
1915 }
1916
1917 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1918 {
1919 struct e1000_adapter *adapter = netdev_priv(netdev);
1920
1921 if (!(adapter->flags & FLAG_HAS_WOL) ||
1922 !device_can_wakeup(&adapter->pdev->dev) ||
1923 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1924 WAKE_MAGIC | WAKE_PHY)))
1925 return -EOPNOTSUPP;
1926
1927 /* these settings will always override what we currently have */
1928 adapter->wol = 0;
1929
1930 if (wol->wolopts & WAKE_UCAST)
1931 adapter->wol |= E1000_WUFC_EX;
1932 if (wol->wolopts & WAKE_MCAST)
1933 adapter->wol |= E1000_WUFC_MC;
1934 if (wol->wolopts & WAKE_BCAST)
1935 adapter->wol |= E1000_WUFC_BC;
1936 if (wol->wolopts & WAKE_MAGIC)
1937 adapter->wol |= E1000_WUFC_MAG;
1938 if (wol->wolopts & WAKE_PHY)
1939 adapter->wol |= E1000_WUFC_LNKC;
1940
1941 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1942
1943 return 0;
1944 }
1945
1946 static int e1000_set_phys_id(struct net_device *netdev,
1947 enum ethtool_phys_id_state state)
1948 {
1949 struct e1000_adapter *adapter = netdev_priv(netdev);
1950 struct e1000_hw *hw = &adapter->hw;
1951
1952 switch (state) {
1953 case ETHTOOL_ID_ACTIVE:
1954 pm_runtime_get_sync(netdev->dev.parent);
1955
1956 if (!hw->mac.ops.blink_led)
1957 return 2; /* cycle on/off twice per second */
1958
1959 hw->mac.ops.blink_led(hw);
1960 break;
1961
1962 case ETHTOOL_ID_INACTIVE:
1963 if (hw->phy.type == e1000_phy_ife)
1964 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1965 hw->mac.ops.led_off(hw);
1966 hw->mac.ops.cleanup_led(hw);
1967 pm_runtime_put_sync(netdev->dev.parent);
1968 break;
1969
1970 case ETHTOOL_ID_ON:
1971 hw->mac.ops.led_on(hw);
1972 break;
1973
1974 case ETHTOOL_ID_OFF:
1975 hw->mac.ops.led_off(hw);
1976 break;
1977 }
1978
1979 return 0;
1980 }
1981
1982 static int e1000_get_coalesce(struct net_device *netdev,
1983 struct ethtool_coalesce *ec)
1984 {
1985 struct e1000_adapter *adapter = netdev_priv(netdev);
1986
1987 if (adapter->itr_setting <= 4)
1988 ec->rx_coalesce_usecs = adapter->itr_setting;
1989 else
1990 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1991
1992 return 0;
1993 }
1994
1995 static int e1000_set_coalesce(struct net_device *netdev,
1996 struct ethtool_coalesce *ec)
1997 {
1998 struct e1000_adapter *adapter = netdev_priv(netdev);
1999
2000 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
2001 ((ec->rx_coalesce_usecs > 4) &&
2002 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
2003 (ec->rx_coalesce_usecs == 2))
2004 return -EINVAL;
2005
2006 if (ec->rx_coalesce_usecs == 4) {
2007 adapter->itr_setting = 4;
2008 adapter->itr = adapter->itr_setting;
2009 } else if (ec->rx_coalesce_usecs <= 3) {
2010 adapter->itr = 20000;
2011 adapter->itr_setting = ec->rx_coalesce_usecs;
2012 } else {
2013 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
2014 adapter->itr_setting = adapter->itr & ~3;
2015 }
2016
2017 pm_runtime_get_sync(netdev->dev.parent);
2018
2019 if (adapter->itr_setting != 0)
2020 e1000e_write_itr(adapter, adapter->itr);
2021 else
2022 e1000e_write_itr(adapter, 0);
2023
2024 pm_runtime_put_sync(netdev->dev.parent);
2025
2026 return 0;
2027 }
2028
2029 static int e1000_nway_reset(struct net_device *netdev)
2030 {
2031 struct e1000_adapter *adapter = netdev_priv(netdev);
2032
2033 if (!netif_running(netdev))
2034 return -EAGAIN;
2035
2036 if (!adapter->hw.mac.autoneg)
2037 return -EINVAL;
2038
2039 pm_runtime_get_sync(netdev->dev.parent);
2040 e1000e_reinit_locked(adapter);
2041 pm_runtime_put_sync(netdev->dev.parent);
2042
2043 return 0;
2044 }
2045
2046 static void e1000_get_ethtool_stats(struct net_device *netdev,
2047 struct ethtool_stats __always_unused *stats,
2048 u64 *data)
2049 {
2050 struct e1000_adapter *adapter = netdev_priv(netdev);
2051 struct rtnl_link_stats64 net_stats;
2052 int i;
2053 char *p = NULL;
2054
2055 pm_runtime_get_sync(netdev->dev.parent);
2056
2057 dev_get_stats(netdev, &net_stats);
2058
2059 pm_runtime_put_sync(netdev->dev.parent);
2060
2061 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2062 switch (e1000_gstrings_stats[i].type) {
2063 case NETDEV_STATS:
2064 p = (char *)&net_stats +
2065 e1000_gstrings_stats[i].stat_offset;
2066 break;
2067 case E1000_STATS:
2068 p = (char *)adapter +
2069 e1000_gstrings_stats[i].stat_offset;
2070 break;
2071 default:
2072 data[i] = 0;
2073 continue;
2074 }
2075
2076 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2077 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2078 }
2079 }
2080
2081 static void e1000_get_strings(struct net_device __always_unused *netdev,
2082 u32 stringset, u8 *data)
2083 {
2084 u8 *p = data;
2085 int i;
2086
2087 switch (stringset) {
2088 case ETH_SS_TEST:
2089 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2090 break;
2091 case ETH_SS_STATS:
2092 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2093 memcpy(p, e1000_gstrings_stats[i].stat_string,
2094 ETH_GSTRING_LEN);
2095 p += ETH_GSTRING_LEN;
2096 }
2097 break;
2098 }
2099 }
2100
2101 static int e1000_get_rxnfc(struct net_device *netdev,
2102 struct ethtool_rxnfc *info,
2103 u32 __always_unused *rule_locs)
2104 {
2105 info->data = 0;
2106
2107 switch (info->cmd) {
2108 case ETHTOOL_GRXFH: {
2109 struct e1000_adapter *adapter = netdev_priv(netdev);
2110 struct e1000_hw *hw = &adapter->hw;
2111 u32 mrqc;
2112
2113 pm_runtime_get_sync(netdev->dev.parent);
2114 mrqc = er32(MRQC);
2115 pm_runtime_put_sync(netdev->dev.parent);
2116
2117 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2118 return 0;
2119
2120 switch (info->flow_type) {
2121 case TCP_V4_FLOW:
2122 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2123 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2124 fallthrough;
2125 case UDP_V4_FLOW:
2126 case SCTP_V4_FLOW:
2127 case AH_ESP_V4_FLOW:
2128 case IPV4_FLOW:
2129 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2130 info->data |= RXH_IP_SRC | RXH_IP_DST;
2131 break;
2132 case TCP_V6_FLOW:
2133 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2134 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2135 fallthrough;
2136 case UDP_V6_FLOW:
2137 case SCTP_V6_FLOW:
2138 case AH_ESP_V6_FLOW:
2139 case IPV6_FLOW:
2140 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2141 info->data |= RXH_IP_SRC | RXH_IP_DST;
2142 break;
2143 default:
2144 break;
2145 }
2146 return 0;
2147 }
2148 default:
2149 return -EOPNOTSUPP;
2150 }
2151 }
2152
2153 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2154 {
2155 struct e1000_adapter *adapter = netdev_priv(netdev);
2156 struct e1000_hw *hw = &adapter->hw;
2157 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2158 u32 ret_val;
2159
2160 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2161 return -EOPNOTSUPP;
2162
2163 switch (hw->phy.type) {
2164 case e1000_phy_82579:
2165 cap_addr = I82579_EEE_CAPABILITY;
2166 lpa_addr = I82579_EEE_LP_ABILITY;
2167 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2168 break;
2169 case e1000_phy_i217:
2170 cap_addr = I217_EEE_CAPABILITY;
2171 lpa_addr = I217_EEE_LP_ABILITY;
2172 pcs_stat_addr = I217_EEE_PCS_STATUS;
2173 break;
2174 default:
2175 return -EOPNOTSUPP;
2176 }
2177
2178 pm_runtime_get_sync(netdev->dev.parent);
2179
2180 ret_val = hw->phy.ops.acquire(hw);
2181 if (ret_val) {
2182 pm_runtime_put_sync(netdev->dev.parent);
2183 return -EBUSY;
2184 }
2185
2186 /* EEE Capability */
2187 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2188 if (ret_val)
2189 goto release;
2190 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2191
2192 /* EEE Advertised */
2193 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2194
2195 /* EEE Link Partner Advertised */
2196 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2197 if (ret_val)
2198 goto release;
2199 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2200
2201 /* EEE PCS Status */
2202 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2203 if (ret_val)
2204 goto release;
2205 if (hw->phy.type == e1000_phy_82579)
2206 phy_data <<= 8;
2207
2208 /* Result of the EEE auto negotiation - there is no register that
2209 * has the status of the EEE negotiation so do a best-guess based
2210 * on whether Tx or Rx LPI indications have been received.
2211 */
2212 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2213 edata->eee_active = true;
2214
2215 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2216 edata->tx_lpi_enabled = true;
2217 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2218
2219 release:
2220 hw->phy.ops.release(hw);
2221 if (ret_val)
2222 ret_val = -ENODATA;
2223
2224 pm_runtime_put_sync(netdev->dev.parent);
2225
2226 return ret_val;
2227 }
2228
2229 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2230 {
2231 struct e1000_adapter *adapter = netdev_priv(netdev);
2232 struct e1000_hw *hw = &adapter->hw;
2233 struct ethtool_eee eee_curr;
2234 s32 ret_val;
2235
2236 ret_val = e1000e_get_eee(netdev, &eee_curr);
2237 if (ret_val)
2238 return ret_val;
2239
2240 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2241 e_err("Setting EEE tx-lpi is not supported\n");
2242 return -EINVAL;
2243 }
2244
2245 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2246 e_err("Setting EEE Tx LPI timer is not supported\n");
2247 return -EINVAL;
2248 }
2249
2250 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2251 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2252 return -EINVAL;
2253 }
2254
2255 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2256
2257 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2258
2259 pm_runtime_get_sync(netdev->dev.parent);
2260
2261 /* reset the link */
2262 if (netif_running(netdev))
2263 e1000e_reinit_locked(adapter);
2264 else
2265 e1000e_reset(adapter);
2266
2267 pm_runtime_put_sync(netdev->dev.parent);
2268
2269 return 0;
2270 }
2271
2272 static int e1000e_get_ts_info(struct net_device *netdev,
2273 struct ethtool_ts_info *info)
2274 {
2275 struct e1000_adapter *adapter = netdev_priv(netdev);
2276
2277 ethtool_op_get_ts_info(netdev, info);
2278
2279 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2280 return 0;
2281
2282 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2283 SOF_TIMESTAMPING_RX_HARDWARE |
2284 SOF_TIMESTAMPING_RAW_HARDWARE);
2285
2286 info->tx_types = BIT(HWTSTAMP_TX_OFF) | BIT(HWTSTAMP_TX_ON);
2287
2288 info->rx_filters = (BIT(HWTSTAMP_FILTER_NONE) |
2289 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2290 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2291 BIT(HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2292 BIT(HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2293 BIT(HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2294 BIT(HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2295 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT) |
2296 BIT(HWTSTAMP_FILTER_PTP_V2_SYNC) |
2297 BIT(HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2298 BIT(HWTSTAMP_FILTER_ALL));
2299
2300 if (adapter->ptp_clock)
2301 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2302
2303 return 0;
2304 }
2305
2306 static const struct ethtool_ops e1000_ethtool_ops = {
2307 .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS,
2308 .get_drvinfo = e1000_get_drvinfo,
2309 .get_regs_len = e1000_get_regs_len,
2310 .get_regs = e1000_get_regs,
2311 .get_wol = e1000_get_wol,
2312 .set_wol = e1000_set_wol,
2313 .get_msglevel = e1000_get_msglevel,
2314 .set_msglevel = e1000_set_msglevel,
2315 .nway_reset = e1000_nway_reset,
2316 .get_link = ethtool_op_get_link,
2317 .get_eeprom_len = e1000_get_eeprom_len,
2318 .get_eeprom = e1000_get_eeprom,
2319 .set_eeprom = e1000_set_eeprom,
2320 .get_ringparam = e1000_get_ringparam,
2321 .set_ringparam = e1000_set_ringparam,
2322 .get_pauseparam = e1000_get_pauseparam,
2323 .set_pauseparam = e1000_set_pauseparam,
2324 .self_test = e1000_diag_test,
2325 .get_strings = e1000_get_strings,
2326 .set_phys_id = e1000_set_phys_id,
2327 .get_ethtool_stats = e1000_get_ethtool_stats,
2328 .get_sset_count = e1000e_get_sset_count,
2329 .get_coalesce = e1000_get_coalesce,
2330 .set_coalesce = e1000_set_coalesce,
2331 .get_rxnfc = e1000_get_rxnfc,
2332 .get_ts_info = e1000e_get_ts_info,
2333 .get_eee = e1000e_get_eee,
2334 .set_eee = e1000e_set_eee,
2335 .get_link_ksettings = e1000_get_link_ksettings,
2336 .set_link_ksettings = e1000_set_link_ksettings,
2337 };
2338
2339 void e1000e_set_ethtool_ops(struct net_device *netdev)
2340 {
2341 netdev->ethtool_ops = &e1000_ethtool_ops;
2342 }