]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - drivers/net/ethernet/intel/e1000e/ich8lan.c
mac80211: don't WARN on bad WMM parameters from buggy APs
[mirror_ubuntu-eoan-kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
57 */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 struct ich8_hsfsts {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
74 } hsf_status;
75 u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 struct ich8_hsflctl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
87 } hsf_ctrl;
88 u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 struct ich8_flracc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
98 } hsf_flregacc;
99 u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 struct ich8_pr {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
111 } range;
112 u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 return readw(hw->flash_address + reg);
162 }
163
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 return readl(hw->flash_address + reg);
167 }
168
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 writew(val, hw->flash_address + reg);
172 }
173
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 writel(val, hw->flash_address + reg);
177 }
178
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
183
184 /**
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
187 *
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
191 *
192 * Assumes the sw/fw/hw semaphore is already acquired.
193 **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 u16 phy_reg = 0;
197 u32 phy_id = 0;
198 s32 ret_val = 0;
199 u16 retry_count;
200 u32 mac_reg = 0;
201
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
205 continue;
206 phy_id = (u32)(phy_reg << 16);
207
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
210 phy_id = 0;
211 continue;
212 }
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 break;
215 }
216
217 if (hw->phy.id) {
218 if (hw->phy.id == phy_id)
219 goto out;
220 } else if (phy_id) {
221 hw->phy.id = phy_id;
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 goto out;
224 }
225
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
228 */
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 if (!ret_val)
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
235 }
236
237 if (ret_val)
238 return false;
239 out:
240 if (hw->mac.type >= e1000_pch_lpt) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247
248 /* Unforce SMBus mode in MAC */
249 mac_reg = er32(CTRL_EXT);
250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 ew32(CTRL_EXT, mac_reg);
252 }
253 }
254
255 return true;
256 }
257
258 /**
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
261 *
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
264 **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 u32 mac_reg;
268
269 /* Set Phy Config Counter to 50msec */
270 mac_reg = er32(FEXTNVM3);
271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 ew32(FEXTNVM3, mac_reg);
274
275 /* Toggle LANPHYPC Value bit */
276 mac_reg = er32(CTRL);
277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 ew32(CTRL, mac_reg);
280 e1e_flush();
281 usleep_range(10, 20);
282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 ew32(CTRL, mac_reg);
284 e1e_flush();
285
286 if (hw->mac.type < e1000_pch_lpt) {
287 msleep(50);
288 } else {
289 u16 count = 20;
290
291 do {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294
295 msleep(30);
296 }
297 }
298
299 /**
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
302 *
303 * Workarounds/flow necessary for PHY initialization during driver load
304 * and resume paths.
305 **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 struct e1000_adapter *adapter = hw->adapter;
309 u32 mac_reg, fwsm = er32(FWSM);
310 s32 ret_val;
311
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
314 */
315 e1000_gate_hw_phy_config_ich8lan(hw, true);
316
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
319 */
320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 e1000_disable_ulp_lpt_lp(hw, true);
322
323 ret_val = hw->phy.ops.acquire(hw);
324 if (ret_val) {
325 e_dbg("Failed to initialize PHY flow\n");
326 goto out;
327 }
328
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 */
333 switch (hw->mac.type) {
334 case e1000_pch_lpt:
335 case e1000_pch_spt:
336 case e1000_pch_cnp:
337 if (e1000_phy_is_accessible_pchlan(hw))
338 break;
339
340 /* Before toggling LANPHYPC, see if PHY is accessible by
341 * forcing MAC to SMBus mode first.
342 */
343 mac_reg = er32(CTRL_EXT);
344 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345 ew32(CTRL_EXT, mac_reg);
346
347 /* Wait 50 milliseconds for MAC to finish any retries
348 * that it might be trying to perform from previous
349 * attempts to acknowledge any phy read requests.
350 */
351 msleep(50);
352
353 /* fall-through */
354 case e1000_pch2lan:
355 if (e1000_phy_is_accessible_pchlan(hw))
356 break;
357
358 /* fall-through */
359 case e1000_pchlan:
360 if ((hw->mac.type == e1000_pchlan) &&
361 (fwsm & E1000_ICH_FWSM_FW_VALID))
362 break;
363
364 if (hw->phy.ops.check_reset_block(hw)) {
365 e_dbg("Required LANPHYPC toggle blocked by ME\n");
366 ret_val = -E1000_ERR_PHY;
367 break;
368 }
369
370 /* Toggle LANPHYPC Value bit */
371 e1000_toggle_lanphypc_pch_lpt(hw);
372 if (hw->mac.type >= e1000_pch_lpt) {
373 if (e1000_phy_is_accessible_pchlan(hw))
374 break;
375
376 /* Toggling LANPHYPC brings the PHY out of SMBus mode
377 * so ensure that the MAC is also out of SMBus mode
378 */
379 mac_reg = er32(CTRL_EXT);
380 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381 ew32(CTRL_EXT, mac_reg);
382
383 if (e1000_phy_is_accessible_pchlan(hw))
384 break;
385
386 ret_val = -E1000_ERR_PHY;
387 }
388 break;
389 default:
390 break;
391 }
392
393 hw->phy.ops.release(hw);
394 if (!ret_val) {
395
396 /* Check to see if able to reset PHY. Print error if not */
397 if (hw->phy.ops.check_reset_block(hw)) {
398 e_err("Reset blocked by ME\n");
399 goto out;
400 }
401
402 /* Reset the PHY before any access to it. Doing so, ensures
403 * that the PHY is in a known good state before we read/write
404 * PHY registers. The generic reset is sufficient here,
405 * because we haven't determined the PHY type yet.
406 */
407 ret_val = e1000e_phy_hw_reset_generic(hw);
408 if (ret_val)
409 goto out;
410
411 /* On a successful reset, possibly need to wait for the PHY
412 * to quiesce to an accessible state before returning control
413 * to the calling function. If the PHY does not quiesce, then
414 * return E1000E_BLK_PHY_RESET, as this is the condition that
415 * the PHY is in.
416 */
417 ret_val = hw->phy.ops.check_reset_block(hw);
418 if (ret_val)
419 e_err("ME blocked access to PHY after reset\n");
420 }
421
422 out:
423 /* Ungate automatic PHY configuration on non-managed 82579 */
424 if ((hw->mac.type == e1000_pch2lan) &&
425 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426 usleep_range(10000, 20000);
427 e1000_gate_hw_phy_config_ich8lan(hw, false);
428 }
429
430 return ret_val;
431 }
432
433 /**
434 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
435 * @hw: pointer to the HW structure
436 *
437 * Initialize family-specific PHY parameters and function pointers.
438 **/
439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441 struct e1000_phy_info *phy = &hw->phy;
442 s32 ret_val;
443
444 phy->addr = 1;
445 phy->reset_delay_us = 100;
446
447 phy->ops.set_page = e1000_set_page_igp;
448 phy->ops.read_reg = e1000_read_phy_reg_hv;
449 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
450 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
451 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
452 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
453 phy->ops.write_reg = e1000_write_phy_reg_hv;
454 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
455 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
456 phy->ops.power_up = e1000_power_up_phy_copper;
457 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
458 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459
460 phy->id = e1000_phy_unknown;
461
462 ret_val = e1000_init_phy_workarounds_pchlan(hw);
463 if (ret_val)
464 return ret_val;
465
466 if (phy->id == e1000_phy_unknown)
467 switch (hw->mac.type) {
468 default:
469 ret_val = e1000e_get_phy_id(hw);
470 if (ret_val)
471 return ret_val;
472 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
473 break;
474 /* fall-through */
475 case e1000_pch2lan:
476 case e1000_pch_lpt:
477 case e1000_pch_spt:
478 case e1000_pch_cnp:
479 /* In case the PHY needs to be in mdio slow mode,
480 * set slow mode and try to get the PHY id again.
481 */
482 ret_val = e1000_set_mdio_slow_mode_hv(hw);
483 if (ret_val)
484 return ret_val;
485 ret_val = e1000e_get_phy_id(hw);
486 if (ret_val)
487 return ret_val;
488 break;
489 }
490 phy->type = e1000e_get_phy_type_from_id(phy->id);
491
492 switch (phy->type) {
493 case e1000_phy_82577:
494 case e1000_phy_82579:
495 case e1000_phy_i217:
496 phy->ops.check_polarity = e1000_check_polarity_82577;
497 phy->ops.force_speed_duplex =
498 e1000_phy_force_speed_duplex_82577;
499 phy->ops.get_cable_length = e1000_get_cable_length_82577;
500 phy->ops.get_info = e1000_get_phy_info_82577;
501 phy->ops.commit = e1000e_phy_sw_reset;
502 break;
503 case e1000_phy_82578:
504 phy->ops.check_polarity = e1000_check_polarity_m88;
505 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
507 phy->ops.get_info = e1000e_get_phy_info_m88;
508 break;
509 default:
510 ret_val = -E1000_ERR_PHY;
511 break;
512 }
513
514 return ret_val;
515 }
516
517 /**
518 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
519 * @hw: pointer to the HW structure
520 *
521 * Initialize family-specific PHY parameters and function pointers.
522 **/
523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
524 {
525 struct e1000_phy_info *phy = &hw->phy;
526 s32 ret_val;
527 u16 i = 0;
528
529 phy->addr = 1;
530 phy->reset_delay_us = 100;
531
532 phy->ops.power_up = e1000_power_up_phy_copper;
533 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
534
535 /* We may need to do this twice - once for IGP and if that fails,
536 * we'll set BM func pointers and try again
537 */
538 ret_val = e1000e_determine_phy_address(hw);
539 if (ret_val) {
540 phy->ops.write_reg = e1000e_write_phy_reg_bm;
541 phy->ops.read_reg = e1000e_read_phy_reg_bm;
542 ret_val = e1000e_determine_phy_address(hw);
543 if (ret_val) {
544 e_dbg("Cannot determine PHY addr. Erroring out\n");
545 return ret_val;
546 }
547 }
548
549 phy->id = 0;
550 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
551 (i++ < 100)) {
552 usleep_range(1000, 2000);
553 ret_val = e1000e_get_phy_id(hw);
554 if (ret_val)
555 return ret_val;
556 }
557
558 /* Verify phy id */
559 switch (phy->id) {
560 case IGP03E1000_E_PHY_ID:
561 phy->type = e1000_phy_igp_3;
562 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
564 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
565 phy->ops.get_info = e1000e_get_phy_info_igp;
566 phy->ops.check_polarity = e1000_check_polarity_igp;
567 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568 break;
569 case IFE_E_PHY_ID:
570 case IFE_PLUS_E_PHY_ID:
571 case IFE_C_E_PHY_ID:
572 phy->type = e1000_phy_ife;
573 phy->autoneg_mask = E1000_ALL_NOT_GIG;
574 phy->ops.get_info = e1000_get_phy_info_ife;
575 phy->ops.check_polarity = e1000_check_polarity_ife;
576 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
577 break;
578 case BME1000_E_PHY_ID:
579 phy->type = e1000_phy_bm;
580 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
581 phy->ops.read_reg = e1000e_read_phy_reg_bm;
582 phy->ops.write_reg = e1000e_write_phy_reg_bm;
583 phy->ops.commit = e1000e_phy_sw_reset;
584 phy->ops.get_info = e1000e_get_phy_info_m88;
585 phy->ops.check_polarity = e1000_check_polarity_m88;
586 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587 break;
588 default:
589 return -E1000_ERR_PHY;
590 }
591
592 return 0;
593 }
594
595 /**
596 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
597 * @hw: pointer to the HW structure
598 *
599 * Initialize family-specific NVM parameters and function
600 * pointers.
601 **/
602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
603 {
604 struct e1000_nvm_info *nvm = &hw->nvm;
605 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
606 u32 gfpreg, sector_base_addr, sector_end_addr;
607 u16 i;
608 u32 nvm_size;
609
610 nvm->type = e1000_nvm_flash_sw;
611
612 if (hw->mac.type >= e1000_pch_spt) {
613 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
614 * STRAP register. This is because in SPT the GbE Flash region
615 * is no longer accessed through the flash registers. Instead,
616 * the mechanism has changed, and the Flash region access
617 * registers are now implemented in GbE memory space.
618 */
619 nvm->flash_base_addr = 0;
620 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
621 * NVM_SIZE_MULTIPLIER;
622 nvm->flash_bank_size = nvm_size / 2;
623 /* Adjust to word count */
624 nvm->flash_bank_size /= sizeof(u16);
625 /* Set the base address for flash register access */
626 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
627 } else {
628 /* Can't read flash registers if register set isn't mapped. */
629 if (!hw->flash_address) {
630 e_dbg("ERROR: Flash registers not mapped\n");
631 return -E1000_ERR_CONFIG;
632 }
633
634 gfpreg = er32flash(ICH_FLASH_GFPREG);
635
636 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
637 * Add 1 to sector_end_addr since this sector is included in
638 * the overall size.
639 */
640 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
641 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
642
643 /* flash_base_addr is byte-aligned */
644 nvm->flash_base_addr = sector_base_addr
645 << FLASH_SECTOR_ADDR_SHIFT;
646
647 /* find total size of the NVM, then cut in half since the total
648 * size represents two separate NVM banks.
649 */
650 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
651 << FLASH_SECTOR_ADDR_SHIFT);
652 nvm->flash_bank_size /= 2;
653 /* Adjust to word count */
654 nvm->flash_bank_size /= sizeof(u16);
655 }
656
657 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
658
659 /* Clear shadow ram */
660 for (i = 0; i < nvm->word_size; i++) {
661 dev_spec->shadow_ram[i].modified = false;
662 dev_spec->shadow_ram[i].value = 0xFFFF;
663 }
664
665 return 0;
666 }
667
668 /**
669 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
670 * @hw: pointer to the HW structure
671 *
672 * Initialize family-specific MAC parameters and function
673 * pointers.
674 **/
675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
676 {
677 struct e1000_mac_info *mac = &hw->mac;
678
679 /* Set media type function pointer */
680 hw->phy.media_type = e1000_media_type_copper;
681
682 /* Set mta register count */
683 mac->mta_reg_count = 32;
684 /* Set rar entry count */
685 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
686 if (mac->type == e1000_ich8lan)
687 mac->rar_entry_count--;
688 /* FWSM register */
689 mac->has_fwsm = true;
690 /* ARC subsystem not supported */
691 mac->arc_subsystem_valid = false;
692 /* Adaptive IFS supported */
693 mac->adaptive_ifs = true;
694
695 /* LED and other operations */
696 switch (mac->type) {
697 case e1000_ich8lan:
698 case e1000_ich9lan:
699 case e1000_ich10lan:
700 /* check management mode */
701 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
702 /* ID LED init */
703 mac->ops.id_led_init = e1000e_id_led_init_generic;
704 /* blink LED */
705 mac->ops.blink_led = e1000e_blink_led_generic;
706 /* setup LED */
707 mac->ops.setup_led = e1000e_setup_led_generic;
708 /* cleanup LED */
709 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
710 /* turn on/off LED */
711 mac->ops.led_on = e1000_led_on_ich8lan;
712 mac->ops.led_off = e1000_led_off_ich8lan;
713 break;
714 case e1000_pch2lan:
715 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
716 mac->ops.rar_set = e1000_rar_set_pch2lan;
717 /* fall-through */
718 case e1000_pch_lpt:
719 case e1000_pch_spt:
720 case e1000_pch_cnp:
721 case e1000_pchlan:
722 /* check management mode */
723 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
724 /* ID LED init */
725 mac->ops.id_led_init = e1000_id_led_init_pchlan;
726 /* setup LED */
727 mac->ops.setup_led = e1000_setup_led_pchlan;
728 /* cleanup LED */
729 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
730 /* turn on/off LED */
731 mac->ops.led_on = e1000_led_on_pchlan;
732 mac->ops.led_off = e1000_led_off_pchlan;
733 break;
734 default:
735 break;
736 }
737
738 if (mac->type >= e1000_pch_lpt) {
739 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
740 mac->ops.rar_set = e1000_rar_set_pch_lpt;
741 mac->ops.setup_physical_interface =
742 e1000_setup_copper_link_pch_lpt;
743 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
744 }
745
746 /* Enable PCS Lock-loss workaround for ICH8 */
747 if (mac->type == e1000_ich8lan)
748 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
749
750 return 0;
751 }
752
753 /**
754 * __e1000_access_emi_reg_locked - Read/write EMI register
755 * @hw: pointer to the HW structure
756 * @addr: EMI address to program
757 * @data: pointer to value to read/write from/to the EMI address
758 * @read: boolean flag to indicate read or write
759 *
760 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
761 **/
762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
763 u16 *data, bool read)
764 {
765 s32 ret_val;
766
767 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
768 if (ret_val)
769 return ret_val;
770
771 if (read)
772 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
773 else
774 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
775
776 return ret_val;
777 }
778
779 /**
780 * e1000_read_emi_reg_locked - Read Extended Management Interface register
781 * @hw: pointer to the HW structure
782 * @addr: EMI address to program
783 * @data: value to be read from the EMI address
784 *
785 * Assumes the SW/FW/HW Semaphore is already acquired.
786 **/
787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
788 {
789 return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 }
791
792 /**
793 * e1000_write_emi_reg_locked - Write Extended Management Interface register
794 * @hw: pointer to the HW structure
795 * @addr: EMI address to program
796 * @data: value to be written to the EMI address
797 *
798 * Assumes the SW/FW/HW Semaphore is already acquired.
799 **/
800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
801 {
802 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 }
804
805 /**
806 * e1000_set_eee_pchlan - Enable/disable EEE support
807 * @hw: pointer to the HW structure
808 *
809 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
810 * the link and the EEE capabilities of the link partner. The LPI Control
811 * register bits will remain set only if/when link is up.
812 *
813 * EEE LPI must not be asserted earlier than one second after link is up.
814 * On 82579, EEE LPI should not be enabled until such time otherwise there
815 * can be link issues with some switches. Other devices can have EEE LPI
816 * enabled immediately upon link up since they have a timer in hardware which
817 * prevents LPI from being asserted too early.
818 **/
819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
820 {
821 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
822 s32 ret_val;
823 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
824
825 switch (hw->phy.type) {
826 case e1000_phy_82579:
827 lpa = I82579_EEE_LP_ABILITY;
828 pcs_status = I82579_EEE_PCS_STATUS;
829 adv_addr = I82579_EEE_ADVERTISEMENT;
830 break;
831 case e1000_phy_i217:
832 lpa = I217_EEE_LP_ABILITY;
833 pcs_status = I217_EEE_PCS_STATUS;
834 adv_addr = I217_EEE_ADVERTISEMENT;
835 break;
836 default:
837 return 0;
838 }
839
840 ret_val = hw->phy.ops.acquire(hw);
841 if (ret_val)
842 return ret_val;
843
844 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845 if (ret_val)
846 goto release;
847
848 /* Clear bits that enable EEE in various speeds */
849 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
850
851 /* Enable EEE if not disabled by user */
852 if (!dev_spec->eee_disable) {
853 /* Save off link partner's EEE ability */
854 ret_val = e1000_read_emi_reg_locked(hw, lpa,
855 &dev_spec->eee_lp_ability);
856 if (ret_val)
857 goto release;
858
859 /* Read EEE advertisement */
860 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861 if (ret_val)
862 goto release;
863
864 /* Enable EEE only for speeds in which the link partner is
865 * EEE capable and for which we advertise EEE.
866 */
867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
868 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
869
870 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
871 e1e_rphy_locked(hw, MII_LPA, &data);
872 if (data & LPA_100FULL)
873 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
874 else
875 /* EEE is not supported in 100Half, so ignore
876 * partner's EEE in 100 ability if full-duplex
877 * is not advertised.
878 */
879 dev_spec->eee_lp_ability &=
880 ~I82579_EEE_100_SUPPORTED;
881 }
882 }
883
884 if (hw->phy.type == e1000_phy_82579) {
885 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
886 &data);
887 if (ret_val)
888 goto release;
889
890 data &= ~I82579_LPI_100_PLL_SHUT;
891 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892 data);
893 }
894
895 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
896 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897 if (ret_val)
898 goto release;
899
900 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
901 release:
902 hw->phy.ops.release(hw);
903
904 return ret_val;
905 }
906
907 /**
908 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
909 * @hw: pointer to the HW structure
910 * @link: link up bool flag
911 *
912 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
913 * preventing further DMA write requests. Workaround the issue by disabling
914 * the de-assertion of the clock request when in 1Gpbs mode.
915 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
916 * speeds in order to avoid Tx hangs.
917 **/
918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
919 {
920 u32 fextnvm6 = er32(FEXTNVM6);
921 u32 status = er32(STATUS);
922 s32 ret_val = 0;
923 u16 reg;
924
925 if (link && (status & E1000_STATUS_SPEED_1000)) {
926 ret_val = hw->phy.ops.acquire(hw);
927 if (ret_val)
928 return ret_val;
929
930 ret_val =
931 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
932 &reg);
933 if (ret_val)
934 goto release;
935
936 ret_val =
937 e1000e_write_kmrn_reg_locked(hw,
938 E1000_KMRNCTRLSTA_K1_CONFIG,
939 reg &
940 ~E1000_KMRNCTRLSTA_K1_ENABLE);
941 if (ret_val)
942 goto release;
943
944 usleep_range(10, 20);
945
946 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
947
948 ret_val =
949 e1000e_write_kmrn_reg_locked(hw,
950 E1000_KMRNCTRLSTA_K1_CONFIG,
951 reg);
952 release:
953 hw->phy.ops.release(hw);
954 } else {
955 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
956 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
957
958 if ((hw->phy.revision > 5) || !link ||
959 ((status & E1000_STATUS_SPEED_100) &&
960 (status & E1000_STATUS_FD)))
961 goto update_fextnvm6;
962
963 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
964 if (ret_val)
965 return ret_val;
966
967 /* Clear link status transmit timeout */
968 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
969
970 if (status & E1000_STATUS_SPEED_100) {
971 /* Set inband Tx timeout to 5x10us for 100Half */
972 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974 /* Do not extend the K1 entry latency for 100Half */
975 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 } else {
977 /* Set inband Tx timeout to 50x10us for 10Full/Half */
978 reg |= 50 <<
979 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
980
981 /* Extend the K1 entry latency for 10 Mbps */
982 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
983 }
984
985 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
986 if (ret_val)
987 return ret_val;
988
989 update_fextnvm6:
990 ew32(FEXTNVM6, fextnvm6);
991 }
992
993 return ret_val;
994 }
995
996 /**
997 * e1000_platform_pm_pch_lpt - Set platform power management values
998 * @hw: pointer to the HW structure
999 * @link: bool indicating link status
1000 *
1001 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1002 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1003 * when link is up (which must not exceed the maximum latency supported
1004 * by the platform), otherwise specify there is no LTR requirement.
1005 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1006 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1007 * Capability register set, on this device LTR is set by writing the
1008 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1009 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1010 * message to the PMC.
1011 **/
1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1013 {
1014 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1015 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1016 u16 lat_enc = 0; /* latency encoded */
1017
1018 if (link) {
1019 u16 speed, duplex, scale = 0;
1020 u16 max_snoop, max_nosnoop;
1021 u16 max_ltr_enc; /* max LTR latency encoded */
1022 u64 value;
1023 u32 rxa;
1024
1025 if (!hw->adapter->max_frame_size) {
1026 e_dbg("max_frame_size not set.\n");
1027 return -E1000_ERR_CONFIG;
1028 }
1029
1030 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031 if (!speed) {
1032 e_dbg("Speed not set.\n");
1033 return -E1000_ERR_CONFIG;
1034 }
1035
1036 /* Rx Packet Buffer Allocation size (KB) */
1037 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038
1039 /* Determine the maximum latency tolerated by the device.
1040 *
1041 * Per the PCIe spec, the tolerated latencies are encoded as
1042 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1043 * a 10-bit value (0-1023) to provide a range from 1 ns to
1044 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1045 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1046 */
1047 rxa *= 512;
1048 value = (rxa > hw->adapter->max_frame_size) ?
1049 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1050 0;
1051
1052 while (value > PCI_LTR_VALUE_MASK) {
1053 scale++;
1054 value = DIV_ROUND_UP(value, BIT(5));
1055 }
1056 if (scale > E1000_LTRV_SCALE_MAX) {
1057 e_dbg("Invalid LTR latency scale %d\n", scale);
1058 return -E1000_ERR_CONFIG;
1059 }
1060 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061
1062 /* Determine the maximum latency tolerated by the platform */
1063 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064 &max_snoop);
1065 pci_read_config_word(hw->adapter->pdev,
1066 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1067 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068
1069 if (lat_enc > max_ltr_enc)
1070 lat_enc = max_ltr_enc;
1071 }
1072
1073 /* Set Snoop and No-Snoop latencies the same */
1074 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1075 ew32(LTRV, reg);
1076
1077 return 0;
1078 }
1079
1080 /**
1081 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1082 * @hw: pointer to the HW structure
1083 * @to_sx: boolean indicating a system power state transition to Sx
1084 *
1085 * When link is down, configure ULP mode to significantly reduce the power
1086 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1087 * ME firmware to start the ULP configuration. If not on an ME enabled
1088 * system, configure the ULP mode by software.
1089 */
1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1091 {
1092 u32 mac_reg;
1093 s32 ret_val = 0;
1094 u16 phy_reg;
1095 u16 oem_reg = 0;
1096
1097 if ((hw->mac.type < e1000_pch_lpt) ||
1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1099 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1100 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1101 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1102 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1103 return 0;
1104
1105 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1106 /* Request ME configure ULP mode in the PHY */
1107 mac_reg = er32(H2ME);
1108 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1109 ew32(H2ME, mac_reg);
1110
1111 goto out;
1112 }
1113
1114 if (!to_sx) {
1115 int i = 0;
1116
1117 /* Poll up to 5 seconds for Cable Disconnected indication */
1118 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1119 /* Bail if link is re-acquired */
1120 if (er32(STATUS) & E1000_STATUS_LU)
1121 return -E1000_ERR_PHY;
1122
1123 if (i++ == 100)
1124 break;
1125
1126 msleep(50);
1127 }
1128 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1129 (er32(FEXT) &
1130 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1131 }
1132
1133 ret_val = hw->phy.ops.acquire(hw);
1134 if (ret_val)
1135 goto out;
1136
1137 /* Force SMBus mode in PHY */
1138 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1139 if (ret_val)
1140 goto release;
1141 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1142 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1143
1144 /* Force SMBus mode in MAC */
1145 mac_reg = er32(CTRL_EXT);
1146 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1147 ew32(CTRL_EXT, mac_reg);
1148
1149 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1150 * LPLU and disable Gig speed when entering ULP
1151 */
1152 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1153 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154 &oem_reg);
1155 if (ret_val)
1156 goto release;
1157
1158 phy_reg = oem_reg;
1159 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1160
1161 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162 phy_reg);
1163
1164 if (ret_val)
1165 goto release;
1166 }
1167
1168 /* Set Inband ULP Exit, Reset to SMBus mode and
1169 * Disable SMBus Release on PERST# in PHY
1170 */
1171 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1172 if (ret_val)
1173 goto release;
1174 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1175 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1176 if (to_sx) {
1177 if (er32(WUFC) & E1000_WUFC_LNKC)
1178 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1179 else
1180 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181
1182 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1183 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1184 } else {
1185 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1186 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1187 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1188 }
1189 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1190
1191 /* Set Disable SMBus Release on PERST# in MAC */
1192 mac_reg = er32(FEXTNVM7);
1193 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1194 ew32(FEXTNVM7, mac_reg);
1195
1196 /* Commit ULP changes in PHY by starting auto ULP configuration */
1197 phy_reg |= I218_ULP_CONFIG1_START;
1198 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199
1200 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1201 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1202 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1203 oem_reg);
1204 if (ret_val)
1205 goto release;
1206 }
1207
1208 release:
1209 hw->phy.ops.release(hw);
1210 out:
1211 if (ret_val)
1212 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1213 else
1214 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1215
1216 return ret_val;
1217 }
1218
1219 /**
1220 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1221 * @hw: pointer to the HW structure
1222 * @force: boolean indicating whether or not to force disabling ULP
1223 *
1224 * Un-configure ULP mode when link is up, the system is transitioned from
1225 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1226 * system, poll for an indication from ME that ULP has been un-configured.
1227 * If not on an ME enabled system, un-configure the ULP mode by software.
1228 *
1229 * During nominal operation, this function is called when link is acquired
1230 * to disable ULP mode (force=false); otherwise, for example when unloading
1231 * the driver or during Sx->S0 transitions, this is called with force=true
1232 * to forcibly disable ULP.
1233 */
1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1235 {
1236 s32 ret_val = 0;
1237 u32 mac_reg;
1238 u16 phy_reg;
1239 int i = 0;
1240
1241 if ((hw->mac.type < e1000_pch_lpt) ||
1242 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1243 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1244 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1245 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1246 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1247 return 0;
1248
1249 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1250 if (force) {
1251 /* Request ME un-configure ULP mode in the PHY */
1252 mac_reg = er32(H2ME);
1253 mac_reg &= ~E1000_H2ME_ULP;
1254 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1255 ew32(H2ME, mac_reg);
1256 }
1257
1258 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1259 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1260 if (i++ == 30) {
1261 ret_val = -E1000_ERR_PHY;
1262 goto out;
1263 }
1264
1265 usleep_range(10000, 20000);
1266 }
1267 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1268
1269 if (force) {
1270 mac_reg = er32(H2ME);
1271 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1272 ew32(H2ME, mac_reg);
1273 } else {
1274 /* Clear H2ME.ULP after ME ULP configuration */
1275 mac_reg = er32(H2ME);
1276 mac_reg &= ~E1000_H2ME_ULP;
1277 ew32(H2ME, mac_reg);
1278 }
1279
1280 goto out;
1281 }
1282
1283 ret_val = hw->phy.ops.acquire(hw);
1284 if (ret_val)
1285 goto out;
1286
1287 if (force)
1288 /* Toggle LANPHYPC Value bit */
1289 e1000_toggle_lanphypc_pch_lpt(hw);
1290
1291 /* Unforce SMBus mode in PHY */
1292 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1293 if (ret_val) {
1294 /* The MAC might be in PCIe mode, so temporarily force to
1295 * SMBus mode in order to access the PHY.
1296 */
1297 mac_reg = er32(CTRL_EXT);
1298 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1299 ew32(CTRL_EXT, mac_reg);
1300
1301 msleep(50);
1302
1303 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1304 &phy_reg);
1305 if (ret_val)
1306 goto release;
1307 }
1308 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1309 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1310
1311 /* Unforce SMBus mode in MAC */
1312 mac_reg = er32(CTRL_EXT);
1313 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1314 ew32(CTRL_EXT, mac_reg);
1315
1316 /* When ULP mode was previously entered, K1 was disabled by the
1317 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1318 */
1319 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1320 if (ret_val)
1321 goto release;
1322 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1323 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1324
1325 /* Clear ULP enabled configuration */
1326 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1327 if (ret_val)
1328 goto release;
1329 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1330 I218_ULP_CONFIG1_STICKY_ULP |
1331 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1332 I218_ULP_CONFIG1_WOL_HOST |
1333 I218_ULP_CONFIG1_INBAND_EXIT |
1334 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1335 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1336 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1337 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1338
1339 /* Commit ULP changes by starting auto ULP configuration */
1340 phy_reg |= I218_ULP_CONFIG1_START;
1341 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342
1343 /* Clear Disable SMBus Release on PERST# in MAC */
1344 mac_reg = er32(FEXTNVM7);
1345 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1346 ew32(FEXTNVM7, mac_reg);
1347
1348 release:
1349 hw->phy.ops.release(hw);
1350 if (force) {
1351 e1000_phy_hw_reset(hw);
1352 msleep(50);
1353 }
1354 out:
1355 if (ret_val)
1356 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1357 else
1358 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1359
1360 return ret_val;
1361 }
1362
1363 /**
1364 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1365 * @hw: pointer to the HW structure
1366 *
1367 * Checks to see of the link status of the hardware has changed. If a
1368 * change in link status has been detected, then we read the PHY registers
1369 * to get the current speed/duplex if link exists.
1370 *
1371 * Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
1372 * up).
1373 **/
1374 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1375 {
1376 struct e1000_mac_info *mac = &hw->mac;
1377 s32 ret_val, tipg_reg = 0;
1378 u16 emi_addr, emi_val = 0;
1379 bool link;
1380 u16 phy_reg;
1381
1382 /* We only want to go out to the PHY registers to see if Auto-Neg
1383 * has completed and/or if our link status has changed. The
1384 * get_link_status flag is set upon receiving a Link Status
1385 * Change or Rx Sequence Error interrupt.
1386 */
1387 if (!mac->get_link_status)
1388 return 1;
1389
1390 /* First we want to see if the MII Status Register reports
1391 * link. If so, then we want to get the current speed/duplex
1392 * of the PHY.
1393 */
1394 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1395 if (ret_val)
1396 return ret_val;
1397
1398 if (hw->mac.type == e1000_pchlan) {
1399 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1400 if (ret_val)
1401 return ret_val;
1402 }
1403
1404 /* When connected at 10Mbps half-duplex, some parts are excessively
1405 * aggressive resulting in many collisions. To avoid this, increase
1406 * the IPG and reduce Rx latency in the PHY.
1407 */
1408 if ((hw->mac.type >= e1000_pch2lan) && link) {
1409 u16 speed, duplex;
1410
1411 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1412 tipg_reg = er32(TIPG);
1413 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1414
1415 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1416 tipg_reg |= 0xFF;
1417 /* Reduce Rx latency in analog PHY */
1418 emi_val = 0;
1419 } else if (hw->mac.type >= e1000_pch_spt &&
1420 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1421 tipg_reg |= 0xC;
1422 emi_val = 1;
1423 } else {
1424
1425 /* Roll back the default values */
1426 tipg_reg |= 0x08;
1427 emi_val = 1;
1428 }
1429
1430 ew32(TIPG, tipg_reg);
1431
1432 ret_val = hw->phy.ops.acquire(hw);
1433 if (ret_val)
1434 return ret_val;
1435
1436 if (hw->mac.type == e1000_pch2lan)
1437 emi_addr = I82579_RX_CONFIG;
1438 else
1439 emi_addr = I217_RX_CONFIG;
1440 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1441
1442 if (hw->mac.type >= e1000_pch_lpt) {
1443 u16 phy_reg;
1444
1445 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1446 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1447 if (speed == SPEED_100 || speed == SPEED_10)
1448 phy_reg |= 0x3E8;
1449 else
1450 phy_reg |= 0xFA;
1451 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1452 }
1453 hw->phy.ops.release(hw);
1454
1455 if (ret_val)
1456 return ret_val;
1457
1458 if (hw->mac.type >= e1000_pch_spt) {
1459 u16 data;
1460 u16 ptr_gap;
1461
1462 if (speed == SPEED_1000) {
1463 ret_val = hw->phy.ops.acquire(hw);
1464 if (ret_val)
1465 return ret_val;
1466
1467 ret_val = e1e_rphy_locked(hw,
1468 PHY_REG(776, 20),
1469 &data);
1470 if (ret_val) {
1471 hw->phy.ops.release(hw);
1472 return ret_val;
1473 }
1474
1475 ptr_gap = (data & (0x3FF << 2)) >> 2;
1476 if (ptr_gap < 0x18) {
1477 data &= ~(0x3FF << 2);
1478 data |= (0x18 << 2);
1479 ret_val =
1480 e1e_wphy_locked(hw,
1481 PHY_REG(776, 20),
1482 data);
1483 }
1484 hw->phy.ops.release(hw);
1485 if (ret_val)
1486 return ret_val;
1487 } else {
1488 ret_val = hw->phy.ops.acquire(hw);
1489 if (ret_val)
1490 return ret_val;
1491
1492 ret_val = e1e_wphy_locked(hw,
1493 PHY_REG(776, 20),
1494 0xC023);
1495 hw->phy.ops.release(hw);
1496 if (ret_val)
1497 return ret_val;
1498
1499 }
1500 }
1501 }
1502
1503 /* I217 Packet Loss issue:
1504 * ensure that FEXTNVM4 Beacon Duration is set correctly
1505 * on power up.
1506 * Set the Beacon Duration for I217 to 8 usec
1507 */
1508 if (hw->mac.type >= e1000_pch_lpt) {
1509 u32 mac_reg;
1510
1511 mac_reg = er32(FEXTNVM4);
1512 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1513 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1514 ew32(FEXTNVM4, mac_reg);
1515 }
1516
1517 /* Work-around I218 hang issue */
1518 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1519 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1520 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1521 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1522 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1523 if (ret_val)
1524 return ret_val;
1525 }
1526 if (hw->mac.type >= e1000_pch_lpt) {
1527 /* Set platform power management values for
1528 * Latency Tolerance Reporting (LTR)
1529 */
1530 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1531 if (ret_val)
1532 return ret_val;
1533 }
1534
1535 /* Clear link partner's EEE ability */
1536 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1537
1538 if (hw->mac.type >= e1000_pch_lpt) {
1539 u32 fextnvm6 = er32(FEXTNVM6);
1540
1541 if (hw->mac.type == e1000_pch_spt) {
1542 /* FEXTNVM6 K1-off workaround - for SPT only */
1543 u32 pcieanacfg = er32(PCIEANACFG);
1544
1545 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1546 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1547 else
1548 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1549 }
1550
1551 ew32(FEXTNVM6, fextnvm6);
1552 }
1553
1554 if (!link)
1555 return 0; /* No link detected */
1556
1557 mac->get_link_status = false;
1558
1559 switch (hw->mac.type) {
1560 case e1000_pch2lan:
1561 ret_val = e1000_k1_workaround_lv(hw);
1562 if (ret_val)
1563 return ret_val;
1564 /* fall-thru */
1565 case e1000_pchlan:
1566 if (hw->phy.type == e1000_phy_82578) {
1567 ret_val = e1000_link_stall_workaround_hv(hw);
1568 if (ret_val)
1569 return ret_val;
1570 }
1571
1572 /* Workaround for PCHx parts in half-duplex:
1573 * Set the number of preambles removed from the packet
1574 * when it is passed from the PHY to the MAC to prevent
1575 * the MAC from misinterpreting the packet type.
1576 */
1577 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579
1580 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1581 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1582
1583 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1584 break;
1585 default:
1586 break;
1587 }
1588
1589 /* Check if there was DownShift, must be checked
1590 * immediately after link-up
1591 */
1592 e1000e_check_downshift(hw);
1593
1594 /* Enable/Disable EEE after link up */
1595 if (hw->phy.type > e1000_phy_82579) {
1596 ret_val = e1000_set_eee_pchlan(hw);
1597 if (ret_val)
1598 return ret_val;
1599 }
1600
1601 /* If we are forcing speed/duplex, then we simply return since
1602 * we have already determined whether we have link or not.
1603 */
1604 if (!mac->autoneg)
1605 return -E1000_ERR_CONFIG;
1606
1607 /* Auto-Neg is enabled. Auto Speed Detection takes care
1608 * of MAC speed/duplex configuration. So we only need to
1609 * configure Collision Distance in the MAC.
1610 */
1611 mac->ops.config_collision_dist(hw);
1612
1613 /* Configure Flow Control now that Auto-Neg has completed.
1614 * First, we need to restore the desired flow control
1615 * settings because we may have had to re-autoneg with a
1616 * different link partner.
1617 */
1618 ret_val = e1000e_config_fc_after_link_up(hw);
1619 if (ret_val) {
1620 e_dbg("Error configuring flow control\n");
1621 return ret_val;
1622 }
1623
1624 return 1;
1625 }
1626
1627 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1628 {
1629 struct e1000_hw *hw = &adapter->hw;
1630 s32 rc;
1631
1632 rc = e1000_init_mac_params_ich8lan(hw);
1633 if (rc)
1634 return rc;
1635
1636 rc = e1000_init_nvm_params_ich8lan(hw);
1637 if (rc)
1638 return rc;
1639
1640 switch (hw->mac.type) {
1641 case e1000_ich8lan:
1642 case e1000_ich9lan:
1643 case e1000_ich10lan:
1644 rc = e1000_init_phy_params_ich8lan(hw);
1645 break;
1646 case e1000_pchlan:
1647 case e1000_pch2lan:
1648 case e1000_pch_lpt:
1649 case e1000_pch_spt:
1650 case e1000_pch_cnp:
1651 rc = e1000_init_phy_params_pchlan(hw);
1652 break;
1653 default:
1654 break;
1655 }
1656 if (rc)
1657 return rc;
1658
1659 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1660 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1661 */
1662 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1663 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1664 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1665 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1666 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1667
1668 hw->mac.ops.blink_led = NULL;
1669 }
1670
1671 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1672 (adapter->hw.phy.type != e1000_phy_ife))
1673 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1674
1675 /* Enable workaround for 82579 w/ ME enabled */
1676 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1677 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1678 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1679
1680 return 0;
1681 }
1682
1683 static DEFINE_MUTEX(nvm_mutex);
1684
1685 /**
1686 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1687 * @hw: pointer to the HW structure
1688 *
1689 * Acquires the mutex for performing NVM operations.
1690 **/
1691 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1692 {
1693 mutex_lock(&nvm_mutex);
1694
1695 return 0;
1696 }
1697
1698 /**
1699 * e1000_release_nvm_ich8lan - Release NVM mutex
1700 * @hw: pointer to the HW structure
1701 *
1702 * Releases the mutex used while performing NVM operations.
1703 **/
1704 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1705 {
1706 mutex_unlock(&nvm_mutex);
1707 }
1708
1709 /**
1710 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1711 * @hw: pointer to the HW structure
1712 *
1713 * Acquires the software control flag for performing PHY and select
1714 * MAC CSR accesses.
1715 **/
1716 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1717 {
1718 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1719 s32 ret_val = 0;
1720
1721 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1722 &hw->adapter->state)) {
1723 e_dbg("contention for Phy access\n");
1724 return -E1000_ERR_PHY;
1725 }
1726
1727 while (timeout) {
1728 extcnf_ctrl = er32(EXTCNF_CTRL);
1729 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1730 break;
1731
1732 mdelay(1);
1733 timeout--;
1734 }
1735
1736 if (!timeout) {
1737 e_dbg("SW has already locked the resource.\n");
1738 ret_val = -E1000_ERR_CONFIG;
1739 goto out;
1740 }
1741
1742 timeout = SW_FLAG_TIMEOUT;
1743
1744 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1745 ew32(EXTCNF_CTRL, extcnf_ctrl);
1746
1747 while (timeout) {
1748 extcnf_ctrl = er32(EXTCNF_CTRL);
1749 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1750 break;
1751
1752 mdelay(1);
1753 timeout--;
1754 }
1755
1756 if (!timeout) {
1757 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1758 er32(FWSM), extcnf_ctrl);
1759 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1760 ew32(EXTCNF_CTRL, extcnf_ctrl);
1761 ret_val = -E1000_ERR_CONFIG;
1762 goto out;
1763 }
1764
1765 out:
1766 if (ret_val)
1767 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1768
1769 return ret_val;
1770 }
1771
1772 /**
1773 * e1000_release_swflag_ich8lan - Release software control flag
1774 * @hw: pointer to the HW structure
1775 *
1776 * Releases the software control flag for performing PHY and select
1777 * MAC CSR accesses.
1778 **/
1779 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1780 {
1781 u32 extcnf_ctrl;
1782
1783 extcnf_ctrl = er32(EXTCNF_CTRL);
1784
1785 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1786 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787 ew32(EXTCNF_CTRL, extcnf_ctrl);
1788 } else {
1789 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1790 }
1791
1792 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1793 }
1794
1795 /**
1796 * e1000_check_mng_mode_ich8lan - Checks management mode
1797 * @hw: pointer to the HW structure
1798 *
1799 * This checks if the adapter has any manageability enabled.
1800 * This is a function pointer entry point only called by read/write
1801 * routines for the PHY and NVM parts.
1802 **/
1803 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1804 {
1805 u32 fwsm;
1806
1807 fwsm = er32(FWSM);
1808 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1809 ((fwsm & E1000_FWSM_MODE_MASK) ==
1810 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812
1813 /**
1814 * e1000_check_mng_mode_pchlan - Checks management mode
1815 * @hw: pointer to the HW structure
1816 *
1817 * This checks if the adapter has iAMT enabled.
1818 * This is a function pointer entry point only called by read/write
1819 * routines for the PHY and NVM parts.
1820 **/
1821 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1822 {
1823 u32 fwsm;
1824
1825 fwsm = er32(FWSM);
1826 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1827 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1828 }
1829
1830 /**
1831 * e1000_rar_set_pch2lan - Set receive address register
1832 * @hw: pointer to the HW structure
1833 * @addr: pointer to the receive address
1834 * @index: receive address array register
1835 *
1836 * Sets the receive address array register at index to the address passed
1837 * in by addr. For 82579, RAR[0] is the base address register that is to
1838 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1839 * Use SHRA[0-3] in place of those reserved for ME.
1840 **/
1841 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1842 {
1843 u32 rar_low, rar_high;
1844
1845 /* HW expects these in little endian so we reverse the byte order
1846 * from network order (big endian) to little endian
1847 */
1848 rar_low = ((u32)addr[0] |
1849 ((u32)addr[1] << 8) |
1850 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1851
1852 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1853
1854 /* If MAC address zero, no need to set the AV bit */
1855 if (rar_low || rar_high)
1856 rar_high |= E1000_RAH_AV;
1857
1858 if (index == 0) {
1859 ew32(RAL(index), rar_low);
1860 e1e_flush();
1861 ew32(RAH(index), rar_high);
1862 e1e_flush();
1863 return 0;
1864 }
1865
1866 /* RAR[1-6] are owned by manageability. Skip those and program the
1867 * next address into the SHRA register array.
1868 */
1869 if (index < (u32)(hw->mac.rar_entry_count)) {
1870 s32 ret_val;
1871
1872 ret_val = e1000_acquire_swflag_ich8lan(hw);
1873 if (ret_val)
1874 goto out;
1875
1876 ew32(SHRAL(index - 1), rar_low);
1877 e1e_flush();
1878 ew32(SHRAH(index - 1), rar_high);
1879 e1e_flush();
1880
1881 e1000_release_swflag_ich8lan(hw);
1882
1883 /* verify the register updates */
1884 if ((er32(SHRAL(index - 1)) == rar_low) &&
1885 (er32(SHRAH(index - 1)) == rar_high))
1886 return 0;
1887
1888 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1889 (index - 1), er32(FWSM));
1890 }
1891
1892 out:
1893 e_dbg("Failed to write receive address at index %d\n", index);
1894 return -E1000_ERR_CONFIG;
1895 }
1896
1897 /**
1898 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1899 * @hw: pointer to the HW structure
1900 *
1901 * Get the number of available receive registers that the Host can
1902 * program. SHRA[0-10] are the shared receive address registers
1903 * that are shared between the Host and manageability engine (ME).
1904 * ME can reserve any number of addresses and the host needs to be
1905 * able to tell how many available registers it has access to.
1906 **/
1907 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1908 {
1909 u32 wlock_mac;
1910 u32 num_entries;
1911
1912 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1913 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1914
1915 switch (wlock_mac) {
1916 case 0:
1917 /* All SHRA[0..10] and RAR[0] available */
1918 num_entries = hw->mac.rar_entry_count;
1919 break;
1920 case 1:
1921 /* Only RAR[0] available */
1922 num_entries = 1;
1923 break;
1924 default:
1925 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1926 num_entries = wlock_mac + 1;
1927 break;
1928 }
1929
1930 return num_entries;
1931 }
1932
1933 /**
1934 * e1000_rar_set_pch_lpt - Set receive address registers
1935 * @hw: pointer to the HW structure
1936 * @addr: pointer to the receive address
1937 * @index: receive address array register
1938 *
1939 * Sets the receive address register array at index to the address passed
1940 * in by addr. For LPT, RAR[0] is the base address register that is to
1941 * contain the MAC address. SHRA[0-10] are the shared receive address
1942 * registers that are shared between the Host and manageability engine (ME).
1943 **/
1944 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1945 {
1946 u32 rar_low, rar_high;
1947 u32 wlock_mac;
1948
1949 /* HW expects these in little endian so we reverse the byte order
1950 * from network order (big endian) to little endian
1951 */
1952 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1953 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1954
1955 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1956
1957 /* If MAC address zero, no need to set the AV bit */
1958 if (rar_low || rar_high)
1959 rar_high |= E1000_RAH_AV;
1960
1961 if (index == 0) {
1962 ew32(RAL(index), rar_low);
1963 e1e_flush();
1964 ew32(RAH(index), rar_high);
1965 e1e_flush();
1966 return 0;
1967 }
1968
1969 /* The manageability engine (ME) can lock certain SHRAR registers that
1970 * it is using - those registers are unavailable for use.
1971 */
1972 if (index < hw->mac.rar_entry_count) {
1973 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1974 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1975
1976 /* Check if all SHRAR registers are locked */
1977 if (wlock_mac == 1)
1978 goto out;
1979
1980 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1981 s32 ret_val;
1982
1983 ret_val = e1000_acquire_swflag_ich8lan(hw);
1984
1985 if (ret_val)
1986 goto out;
1987
1988 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1989 e1e_flush();
1990 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1991 e1e_flush();
1992
1993 e1000_release_swflag_ich8lan(hw);
1994
1995 /* verify the register updates */
1996 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1997 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1998 return 0;
1999 }
2000 }
2001
2002 out:
2003 e_dbg("Failed to write receive address at index %d\n", index);
2004 return -E1000_ERR_CONFIG;
2005 }
2006
2007 /**
2008 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2009 * @hw: pointer to the HW structure
2010 *
2011 * Checks if firmware is blocking the reset of the PHY.
2012 * This is a function pointer entry point only called by
2013 * reset routines.
2014 **/
2015 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2016 {
2017 bool blocked = false;
2018 int i = 0;
2019
2020 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2021 (i++ < 30))
2022 usleep_range(10000, 20000);
2023 return blocked ? E1000_BLK_PHY_RESET : 0;
2024 }
2025
2026 /**
2027 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2028 * @hw: pointer to the HW structure
2029 *
2030 * Assumes semaphore already acquired.
2031 *
2032 **/
2033 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2034 {
2035 u16 phy_data;
2036 u32 strap = er32(STRAP);
2037 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2038 E1000_STRAP_SMT_FREQ_SHIFT;
2039 s32 ret_val;
2040
2041 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2042
2043 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2044 if (ret_val)
2045 return ret_val;
2046
2047 phy_data &= ~HV_SMB_ADDR_MASK;
2048 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2049 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2050
2051 if (hw->phy.type == e1000_phy_i217) {
2052 /* Restore SMBus frequency */
2053 if (freq--) {
2054 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2055 phy_data |= (freq & BIT(0)) <<
2056 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2057 phy_data |= (freq & BIT(1)) <<
2058 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2059 } else {
2060 e_dbg("Unsupported SMB frequency in PHY\n");
2061 }
2062 }
2063
2064 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2065 }
2066
2067 /**
2068 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2069 * @hw: pointer to the HW structure
2070 *
2071 * SW should configure the LCD from the NVM extended configuration region
2072 * as a workaround for certain parts.
2073 **/
2074 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2075 {
2076 struct e1000_phy_info *phy = &hw->phy;
2077 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2078 s32 ret_val = 0;
2079 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2080
2081 /* Initialize the PHY from the NVM on ICH platforms. This
2082 * is needed due to an issue where the NVM configuration is
2083 * not properly autoloaded after power transitions.
2084 * Therefore, after each PHY reset, we will load the
2085 * configuration data out of the NVM manually.
2086 */
2087 switch (hw->mac.type) {
2088 case e1000_ich8lan:
2089 if (phy->type != e1000_phy_igp_3)
2090 return ret_val;
2091
2092 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2093 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2094 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2095 break;
2096 }
2097 /* Fall-thru */
2098 case e1000_pchlan:
2099 case e1000_pch2lan:
2100 case e1000_pch_lpt:
2101 case e1000_pch_spt:
2102 case e1000_pch_cnp:
2103 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2104 break;
2105 default:
2106 return ret_val;
2107 }
2108
2109 ret_val = hw->phy.ops.acquire(hw);
2110 if (ret_val)
2111 return ret_val;
2112
2113 data = er32(FEXTNVM);
2114 if (!(data & sw_cfg_mask))
2115 goto release;
2116
2117 /* Make sure HW does not configure LCD from PHY
2118 * extended configuration before SW configuration
2119 */
2120 data = er32(EXTCNF_CTRL);
2121 if ((hw->mac.type < e1000_pch2lan) &&
2122 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2123 goto release;
2124
2125 cnf_size = er32(EXTCNF_SIZE);
2126 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2127 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2128 if (!cnf_size)
2129 goto release;
2130
2131 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2132 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2133
2134 if (((hw->mac.type == e1000_pchlan) &&
2135 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2136 (hw->mac.type > e1000_pchlan)) {
2137 /* HW configures the SMBus address and LEDs when the
2138 * OEM and LCD Write Enable bits are set in the NVM.
2139 * When both NVM bits are cleared, SW will configure
2140 * them instead.
2141 */
2142 ret_val = e1000_write_smbus_addr(hw);
2143 if (ret_val)
2144 goto release;
2145
2146 data = er32(LEDCTL);
2147 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2148 (u16)data);
2149 if (ret_val)
2150 goto release;
2151 }
2152
2153 /* Configure LCD from extended configuration region. */
2154
2155 /* cnf_base_addr is in DWORD */
2156 word_addr = (u16)(cnf_base_addr << 1);
2157
2158 for (i = 0; i < cnf_size; i++) {
2159 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2160 if (ret_val)
2161 goto release;
2162
2163 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2164 1, &reg_addr);
2165 if (ret_val)
2166 goto release;
2167
2168 /* Save off the PHY page for future writes. */
2169 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2170 phy_page = reg_data;
2171 continue;
2172 }
2173
2174 reg_addr &= PHY_REG_MASK;
2175 reg_addr |= phy_page;
2176
2177 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2178 if (ret_val)
2179 goto release;
2180 }
2181
2182 release:
2183 hw->phy.ops.release(hw);
2184 return ret_val;
2185 }
2186
2187 /**
2188 * e1000_k1_gig_workaround_hv - K1 Si workaround
2189 * @hw: pointer to the HW structure
2190 * @link: link up bool flag
2191 *
2192 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2193 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2194 * If link is down, the function will restore the default K1 setting located
2195 * in the NVM.
2196 **/
2197 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2198 {
2199 s32 ret_val = 0;
2200 u16 status_reg = 0;
2201 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2202
2203 if (hw->mac.type != e1000_pchlan)
2204 return 0;
2205
2206 /* Wrap the whole flow with the sw flag */
2207 ret_val = hw->phy.ops.acquire(hw);
2208 if (ret_val)
2209 return ret_val;
2210
2211 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2212 if (link) {
2213 if (hw->phy.type == e1000_phy_82578) {
2214 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2215 &status_reg);
2216 if (ret_val)
2217 goto release;
2218
2219 status_reg &= (BM_CS_STATUS_LINK_UP |
2220 BM_CS_STATUS_RESOLVED |
2221 BM_CS_STATUS_SPEED_MASK);
2222
2223 if (status_reg == (BM_CS_STATUS_LINK_UP |
2224 BM_CS_STATUS_RESOLVED |
2225 BM_CS_STATUS_SPEED_1000))
2226 k1_enable = false;
2227 }
2228
2229 if (hw->phy.type == e1000_phy_82577) {
2230 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2231 if (ret_val)
2232 goto release;
2233
2234 status_reg &= (HV_M_STATUS_LINK_UP |
2235 HV_M_STATUS_AUTONEG_COMPLETE |
2236 HV_M_STATUS_SPEED_MASK);
2237
2238 if (status_reg == (HV_M_STATUS_LINK_UP |
2239 HV_M_STATUS_AUTONEG_COMPLETE |
2240 HV_M_STATUS_SPEED_1000))
2241 k1_enable = false;
2242 }
2243
2244 /* Link stall fix for link up */
2245 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2246 if (ret_val)
2247 goto release;
2248
2249 } else {
2250 /* Link stall fix for link down */
2251 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2252 if (ret_val)
2253 goto release;
2254 }
2255
2256 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2257
2258 release:
2259 hw->phy.ops.release(hw);
2260
2261 return ret_val;
2262 }
2263
2264 /**
2265 * e1000_configure_k1_ich8lan - Configure K1 power state
2266 * @hw: pointer to the HW structure
2267 * @enable: K1 state to configure
2268 *
2269 * Configure the K1 power state based on the provided parameter.
2270 * Assumes semaphore already acquired.
2271 *
2272 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2273 **/
2274 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2275 {
2276 s32 ret_val;
2277 u32 ctrl_reg = 0;
2278 u32 ctrl_ext = 0;
2279 u32 reg = 0;
2280 u16 kmrn_reg = 0;
2281
2282 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283 &kmrn_reg);
2284 if (ret_val)
2285 return ret_val;
2286
2287 if (k1_enable)
2288 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2289 else
2290 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2291
2292 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2293 kmrn_reg);
2294 if (ret_val)
2295 return ret_val;
2296
2297 usleep_range(20, 40);
2298 ctrl_ext = er32(CTRL_EXT);
2299 ctrl_reg = er32(CTRL);
2300
2301 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2302 reg |= E1000_CTRL_FRCSPD;
2303 ew32(CTRL, reg);
2304
2305 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2306 e1e_flush();
2307 usleep_range(20, 40);
2308 ew32(CTRL, ctrl_reg);
2309 ew32(CTRL_EXT, ctrl_ext);
2310 e1e_flush();
2311 usleep_range(20, 40);
2312
2313 return 0;
2314 }
2315
2316 /**
2317 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2318 * @hw: pointer to the HW structure
2319 * @d0_state: boolean if entering d0 or d3 device state
2320 *
2321 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2322 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2323 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2324 **/
2325 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2326 {
2327 s32 ret_val = 0;
2328 u32 mac_reg;
2329 u16 oem_reg;
2330
2331 if (hw->mac.type < e1000_pchlan)
2332 return ret_val;
2333
2334 ret_val = hw->phy.ops.acquire(hw);
2335 if (ret_val)
2336 return ret_val;
2337
2338 if (hw->mac.type == e1000_pchlan) {
2339 mac_reg = er32(EXTCNF_CTRL);
2340 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2341 goto release;
2342 }
2343
2344 mac_reg = er32(FEXTNVM);
2345 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2346 goto release;
2347
2348 mac_reg = er32(PHY_CTRL);
2349
2350 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2351 if (ret_val)
2352 goto release;
2353
2354 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2355
2356 if (d0_state) {
2357 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2358 oem_reg |= HV_OEM_BITS_GBE_DIS;
2359
2360 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2361 oem_reg |= HV_OEM_BITS_LPLU;
2362 } else {
2363 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2364 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2365 oem_reg |= HV_OEM_BITS_GBE_DIS;
2366
2367 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2368 E1000_PHY_CTRL_NOND0A_LPLU))
2369 oem_reg |= HV_OEM_BITS_LPLU;
2370 }
2371
2372 /* Set Restart auto-neg to activate the bits */
2373 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2374 !hw->phy.ops.check_reset_block(hw))
2375 oem_reg |= HV_OEM_BITS_RESTART_AN;
2376
2377 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2378
2379 release:
2380 hw->phy.ops.release(hw);
2381
2382 return ret_val;
2383 }
2384
2385 /**
2386 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2387 * @hw: pointer to the HW structure
2388 **/
2389 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2390 {
2391 s32 ret_val;
2392 u16 data;
2393
2394 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2395 if (ret_val)
2396 return ret_val;
2397
2398 data |= HV_KMRN_MDIO_SLOW;
2399
2400 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2401
2402 return ret_val;
2403 }
2404
2405 /**
2406 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2407 * done after every PHY reset.
2408 **/
2409 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2410 {
2411 s32 ret_val = 0;
2412 u16 phy_data;
2413
2414 if (hw->mac.type != e1000_pchlan)
2415 return 0;
2416
2417 /* Set MDIO slow mode before any other MDIO access */
2418 if (hw->phy.type == e1000_phy_82577) {
2419 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2420 if (ret_val)
2421 return ret_val;
2422 }
2423
2424 if (((hw->phy.type == e1000_phy_82577) &&
2425 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2426 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2427 /* Disable generation of early preamble */
2428 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2429 if (ret_val)
2430 return ret_val;
2431
2432 /* Preamble tuning for SSC */
2433 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2434 if (ret_val)
2435 return ret_val;
2436 }
2437
2438 if (hw->phy.type == e1000_phy_82578) {
2439 /* Return registers to default by doing a soft reset then
2440 * writing 0x3140 to the control register.
2441 */
2442 if (hw->phy.revision < 2) {
2443 e1000e_phy_sw_reset(hw);
2444 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2445 if (ret_val)
2446 return ret_val;
2447 }
2448 }
2449
2450 /* Select page 0 */
2451 ret_val = hw->phy.ops.acquire(hw);
2452 if (ret_val)
2453 return ret_val;
2454
2455 hw->phy.addr = 1;
2456 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2457 hw->phy.ops.release(hw);
2458 if (ret_val)
2459 return ret_val;
2460
2461 /* Configure the K1 Si workaround during phy reset assuming there is
2462 * link so that it disables K1 if link is in 1Gbps.
2463 */
2464 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2465 if (ret_val)
2466 return ret_val;
2467
2468 /* Workaround for link disconnects on a busy hub in half duplex */
2469 ret_val = hw->phy.ops.acquire(hw);
2470 if (ret_val)
2471 return ret_val;
2472 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2473 if (ret_val)
2474 goto release;
2475 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2476 if (ret_val)
2477 goto release;
2478
2479 /* set MSE higher to enable link to stay up when noise is high */
2480 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2481 release:
2482 hw->phy.ops.release(hw);
2483
2484 return ret_val;
2485 }
2486
2487 /**
2488 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2489 * @hw: pointer to the HW structure
2490 **/
2491 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2492 {
2493 u32 mac_reg;
2494 u16 i, phy_reg = 0;
2495 s32 ret_val;
2496
2497 ret_val = hw->phy.ops.acquire(hw);
2498 if (ret_val)
2499 return;
2500 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2501 if (ret_val)
2502 goto release;
2503
2504 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2505 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2506 mac_reg = er32(RAL(i));
2507 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2508 (u16)(mac_reg & 0xFFFF));
2509 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2510 (u16)((mac_reg >> 16) & 0xFFFF));
2511
2512 mac_reg = er32(RAH(i));
2513 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2514 (u16)(mac_reg & 0xFFFF));
2515 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2516 (u16)((mac_reg & E1000_RAH_AV)
2517 >> 16));
2518 }
2519
2520 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2521
2522 release:
2523 hw->phy.ops.release(hw);
2524 }
2525
2526 /**
2527 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2528 * with 82579 PHY
2529 * @hw: pointer to the HW structure
2530 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2531 **/
2532 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2533 {
2534 s32 ret_val = 0;
2535 u16 phy_reg, data;
2536 u32 mac_reg;
2537 u16 i;
2538
2539 if (hw->mac.type < e1000_pch2lan)
2540 return 0;
2541
2542 /* disable Rx path while enabling/disabling workaround */
2543 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2544 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2545 if (ret_val)
2546 return ret_val;
2547
2548 if (enable) {
2549 /* Write Rx addresses (rar_entry_count for RAL/H, and
2550 * SHRAL/H) and initial CRC values to the MAC
2551 */
2552 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2553 u8 mac_addr[ETH_ALEN] = { 0 };
2554 u32 addr_high, addr_low;
2555
2556 addr_high = er32(RAH(i));
2557 if (!(addr_high & E1000_RAH_AV))
2558 continue;
2559 addr_low = er32(RAL(i));
2560 mac_addr[0] = (addr_low & 0xFF);
2561 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2562 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2563 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2564 mac_addr[4] = (addr_high & 0xFF);
2565 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2566
2567 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2568 }
2569
2570 /* Write Rx addresses to the PHY */
2571 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2572
2573 /* Enable jumbo frame workaround in the MAC */
2574 mac_reg = er32(FFLT_DBG);
2575 mac_reg &= ~BIT(14);
2576 mac_reg |= (7 << 15);
2577 ew32(FFLT_DBG, mac_reg);
2578
2579 mac_reg = er32(RCTL);
2580 mac_reg |= E1000_RCTL_SECRC;
2581 ew32(RCTL, mac_reg);
2582
2583 ret_val = e1000e_read_kmrn_reg(hw,
2584 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2585 &data);
2586 if (ret_val)
2587 return ret_val;
2588 ret_val = e1000e_write_kmrn_reg(hw,
2589 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2590 data | BIT(0));
2591 if (ret_val)
2592 return ret_val;
2593 ret_val = e1000e_read_kmrn_reg(hw,
2594 E1000_KMRNCTRLSTA_HD_CTRL,
2595 &data);
2596 if (ret_val)
2597 return ret_val;
2598 data &= ~(0xF << 8);
2599 data |= (0xB << 8);
2600 ret_val = e1000e_write_kmrn_reg(hw,
2601 E1000_KMRNCTRLSTA_HD_CTRL,
2602 data);
2603 if (ret_val)
2604 return ret_val;
2605
2606 /* Enable jumbo frame workaround in the PHY */
2607 e1e_rphy(hw, PHY_REG(769, 23), &data);
2608 data &= ~(0x7F << 5);
2609 data |= (0x37 << 5);
2610 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2611 if (ret_val)
2612 return ret_val;
2613 e1e_rphy(hw, PHY_REG(769, 16), &data);
2614 data &= ~BIT(13);
2615 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2616 if (ret_val)
2617 return ret_val;
2618 e1e_rphy(hw, PHY_REG(776, 20), &data);
2619 data &= ~(0x3FF << 2);
2620 data |= (E1000_TX_PTR_GAP << 2);
2621 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2622 if (ret_val)
2623 return ret_val;
2624 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2625 if (ret_val)
2626 return ret_val;
2627 e1e_rphy(hw, HV_PM_CTRL, &data);
2628 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2629 if (ret_val)
2630 return ret_val;
2631 } else {
2632 /* Write MAC register values back to h/w defaults */
2633 mac_reg = er32(FFLT_DBG);
2634 mac_reg &= ~(0xF << 14);
2635 ew32(FFLT_DBG, mac_reg);
2636
2637 mac_reg = er32(RCTL);
2638 mac_reg &= ~E1000_RCTL_SECRC;
2639 ew32(RCTL, mac_reg);
2640
2641 ret_val = e1000e_read_kmrn_reg(hw,
2642 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2643 &data);
2644 if (ret_val)
2645 return ret_val;
2646 ret_val = e1000e_write_kmrn_reg(hw,
2647 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2648 data & ~BIT(0));
2649 if (ret_val)
2650 return ret_val;
2651 ret_val = e1000e_read_kmrn_reg(hw,
2652 E1000_KMRNCTRLSTA_HD_CTRL,
2653 &data);
2654 if (ret_val)
2655 return ret_val;
2656 data &= ~(0xF << 8);
2657 data |= (0xB << 8);
2658 ret_val = e1000e_write_kmrn_reg(hw,
2659 E1000_KMRNCTRLSTA_HD_CTRL,
2660 data);
2661 if (ret_val)
2662 return ret_val;
2663
2664 /* Write PHY register values back to h/w defaults */
2665 e1e_rphy(hw, PHY_REG(769, 23), &data);
2666 data &= ~(0x7F << 5);
2667 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2668 if (ret_val)
2669 return ret_val;
2670 e1e_rphy(hw, PHY_REG(769, 16), &data);
2671 data |= BIT(13);
2672 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2673 if (ret_val)
2674 return ret_val;
2675 e1e_rphy(hw, PHY_REG(776, 20), &data);
2676 data &= ~(0x3FF << 2);
2677 data |= (0x8 << 2);
2678 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2679 if (ret_val)
2680 return ret_val;
2681 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2682 if (ret_val)
2683 return ret_val;
2684 e1e_rphy(hw, HV_PM_CTRL, &data);
2685 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2686 if (ret_val)
2687 return ret_val;
2688 }
2689
2690 /* re-enable Rx path after enabling/disabling workaround */
2691 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2692 }
2693
2694 /**
2695 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2696 * done after every PHY reset.
2697 **/
2698 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2699 {
2700 s32 ret_val = 0;
2701
2702 if (hw->mac.type != e1000_pch2lan)
2703 return 0;
2704
2705 /* Set MDIO slow mode before any other MDIO access */
2706 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2707 if (ret_val)
2708 return ret_val;
2709
2710 ret_val = hw->phy.ops.acquire(hw);
2711 if (ret_val)
2712 return ret_val;
2713 /* set MSE higher to enable link to stay up when noise is high */
2714 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2715 if (ret_val)
2716 goto release;
2717 /* drop link after 5 times MSE threshold was reached */
2718 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2719 release:
2720 hw->phy.ops.release(hw);
2721
2722 return ret_val;
2723 }
2724
2725 /**
2726 * e1000_k1_gig_workaround_lv - K1 Si workaround
2727 * @hw: pointer to the HW structure
2728 *
2729 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2730 * Disable K1 in 1000Mbps and 100Mbps
2731 **/
2732 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2733 {
2734 s32 ret_val = 0;
2735 u16 status_reg = 0;
2736
2737 if (hw->mac.type != e1000_pch2lan)
2738 return 0;
2739
2740 /* Set K1 beacon duration based on 10Mbs speed */
2741 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2742 if (ret_val)
2743 return ret_val;
2744
2745 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2746 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2747 if (status_reg &
2748 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2749 u16 pm_phy_reg;
2750
2751 /* LV 1G/100 Packet drop issue wa */
2752 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2753 if (ret_val)
2754 return ret_val;
2755 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2756 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2757 if (ret_val)
2758 return ret_val;
2759 } else {
2760 u32 mac_reg;
2761
2762 mac_reg = er32(FEXTNVM4);
2763 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2764 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2765 ew32(FEXTNVM4, mac_reg);
2766 }
2767 }
2768
2769 return ret_val;
2770 }
2771
2772 /**
2773 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2774 * @hw: pointer to the HW structure
2775 * @gate: boolean set to true to gate, false to ungate
2776 *
2777 * Gate/ungate the automatic PHY configuration via hardware; perform
2778 * the configuration via software instead.
2779 **/
2780 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2781 {
2782 u32 extcnf_ctrl;
2783
2784 if (hw->mac.type < e1000_pch2lan)
2785 return;
2786
2787 extcnf_ctrl = er32(EXTCNF_CTRL);
2788
2789 if (gate)
2790 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2791 else
2792 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2793
2794 ew32(EXTCNF_CTRL, extcnf_ctrl);
2795 }
2796
2797 /**
2798 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2799 * @hw: pointer to the HW structure
2800 *
2801 * Check the appropriate indication the MAC has finished configuring the
2802 * PHY after a software reset.
2803 **/
2804 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2805 {
2806 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2807
2808 /* Wait for basic configuration completes before proceeding */
2809 do {
2810 data = er32(STATUS);
2811 data &= E1000_STATUS_LAN_INIT_DONE;
2812 usleep_range(100, 200);
2813 } while ((!data) && --loop);
2814
2815 /* If basic configuration is incomplete before the above loop
2816 * count reaches 0, loading the configuration from NVM will
2817 * leave the PHY in a bad state possibly resulting in no link.
2818 */
2819 if (loop == 0)
2820 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2821
2822 /* Clear the Init Done bit for the next init event */
2823 data = er32(STATUS);
2824 data &= ~E1000_STATUS_LAN_INIT_DONE;
2825 ew32(STATUS, data);
2826 }
2827
2828 /**
2829 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2830 * @hw: pointer to the HW structure
2831 **/
2832 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2833 {
2834 s32 ret_val = 0;
2835 u16 reg;
2836
2837 if (hw->phy.ops.check_reset_block(hw))
2838 return 0;
2839
2840 /* Allow time for h/w to get to quiescent state after reset */
2841 usleep_range(10000, 20000);
2842
2843 /* Perform any necessary post-reset workarounds */
2844 switch (hw->mac.type) {
2845 case e1000_pchlan:
2846 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2847 if (ret_val)
2848 return ret_val;
2849 break;
2850 case e1000_pch2lan:
2851 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2852 if (ret_val)
2853 return ret_val;
2854 break;
2855 default:
2856 break;
2857 }
2858
2859 /* Clear the host wakeup bit after lcd reset */
2860 if (hw->mac.type >= e1000_pchlan) {
2861 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2862 reg &= ~BM_WUC_HOST_WU_BIT;
2863 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2864 }
2865
2866 /* Configure the LCD with the extended configuration region in NVM */
2867 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2868 if (ret_val)
2869 return ret_val;
2870
2871 /* Configure the LCD with the OEM bits in NVM */
2872 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2873
2874 if (hw->mac.type == e1000_pch2lan) {
2875 /* Ungate automatic PHY configuration on non-managed 82579 */
2876 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2877 usleep_range(10000, 20000);
2878 e1000_gate_hw_phy_config_ich8lan(hw, false);
2879 }
2880
2881 /* Set EEE LPI Update Timer to 200usec */
2882 ret_val = hw->phy.ops.acquire(hw);
2883 if (ret_val)
2884 return ret_val;
2885 ret_val = e1000_write_emi_reg_locked(hw,
2886 I82579_LPI_UPDATE_TIMER,
2887 0x1387);
2888 hw->phy.ops.release(hw);
2889 }
2890
2891 return ret_val;
2892 }
2893
2894 /**
2895 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2896 * @hw: pointer to the HW structure
2897 *
2898 * Resets the PHY
2899 * This is a function pointer entry point called by drivers
2900 * or other shared routines.
2901 **/
2902 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2903 {
2904 s32 ret_val = 0;
2905
2906 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2907 if ((hw->mac.type == e1000_pch2lan) &&
2908 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2909 e1000_gate_hw_phy_config_ich8lan(hw, true);
2910
2911 ret_val = e1000e_phy_hw_reset_generic(hw);
2912 if (ret_val)
2913 return ret_val;
2914
2915 return e1000_post_phy_reset_ich8lan(hw);
2916 }
2917
2918 /**
2919 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2920 * @hw: pointer to the HW structure
2921 * @active: true to enable LPLU, false to disable
2922 *
2923 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2924 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2925 * the phy speed. This function will manually set the LPLU bit and restart
2926 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2927 * since it configures the same bit.
2928 **/
2929 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2930 {
2931 s32 ret_val;
2932 u16 oem_reg;
2933
2934 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2935 if (ret_val)
2936 return ret_val;
2937
2938 if (active)
2939 oem_reg |= HV_OEM_BITS_LPLU;
2940 else
2941 oem_reg &= ~HV_OEM_BITS_LPLU;
2942
2943 if (!hw->phy.ops.check_reset_block(hw))
2944 oem_reg |= HV_OEM_BITS_RESTART_AN;
2945
2946 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2947 }
2948
2949 /**
2950 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2951 * @hw: pointer to the HW structure
2952 * @active: true to enable LPLU, false to disable
2953 *
2954 * Sets the LPLU D0 state according to the active flag. When
2955 * activating LPLU this function also disables smart speed
2956 * and vice versa. LPLU will not be activated unless the
2957 * device autonegotiation advertisement meets standards of
2958 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2959 * This is a function pointer entry point only called by
2960 * PHY setup routines.
2961 **/
2962 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2963 {
2964 struct e1000_phy_info *phy = &hw->phy;
2965 u32 phy_ctrl;
2966 s32 ret_val = 0;
2967 u16 data;
2968
2969 if (phy->type == e1000_phy_ife)
2970 return 0;
2971
2972 phy_ctrl = er32(PHY_CTRL);
2973
2974 if (active) {
2975 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2976 ew32(PHY_CTRL, phy_ctrl);
2977
2978 if (phy->type != e1000_phy_igp_3)
2979 return 0;
2980
2981 /* Call gig speed drop workaround on LPLU before accessing
2982 * any PHY registers
2983 */
2984 if (hw->mac.type == e1000_ich8lan)
2985 e1000e_gig_downshift_workaround_ich8lan(hw);
2986
2987 /* When LPLU is enabled, we should disable SmartSpeed */
2988 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2989 if (ret_val)
2990 return ret_val;
2991 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2992 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2993 if (ret_val)
2994 return ret_val;
2995 } else {
2996 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2997 ew32(PHY_CTRL, phy_ctrl);
2998
2999 if (phy->type != e1000_phy_igp_3)
3000 return 0;
3001
3002 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3003 * during Dx states where the power conservation is most
3004 * important. During driver activity we should enable
3005 * SmartSpeed, so performance is maintained.
3006 */
3007 if (phy->smart_speed == e1000_smart_speed_on) {
3008 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009 &data);
3010 if (ret_val)
3011 return ret_val;
3012
3013 data |= IGP01E1000_PSCFR_SMART_SPEED;
3014 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 data);
3016 if (ret_val)
3017 return ret_val;
3018 } else if (phy->smart_speed == e1000_smart_speed_off) {
3019 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3020 &data);
3021 if (ret_val)
3022 return ret_val;
3023
3024 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3025 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3026 data);
3027 if (ret_val)
3028 return ret_val;
3029 }
3030 }
3031
3032 return 0;
3033 }
3034
3035 /**
3036 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3037 * @hw: pointer to the HW structure
3038 * @active: true to enable LPLU, false to disable
3039 *
3040 * Sets the LPLU D3 state according to the active flag. When
3041 * activating LPLU this function also disables smart speed
3042 * and vice versa. LPLU will not be activated unless the
3043 * device autonegotiation advertisement meets standards of
3044 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3045 * This is a function pointer entry point only called by
3046 * PHY setup routines.
3047 **/
3048 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3049 {
3050 struct e1000_phy_info *phy = &hw->phy;
3051 u32 phy_ctrl;
3052 s32 ret_val = 0;
3053 u16 data;
3054
3055 phy_ctrl = er32(PHY_CTRL);
3056
3057 if (!active) {
3058 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3059 ew32(PHY_CTRL, phy_ctrl);
3060
3061 if (phy->type != e1000_phy_igp_3)
3062 return 0;
3063
3064 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3065 * during Dx states where the power conservation is most
3066 * important. During driver activity we should enable
3067 * SmartSpeed, so performance is maintained.
3068 */
3069 if (phy->smart_speed == e1000_smart_speed_on) {
3070 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 &data);
3072 if (ret_val)
3073 return ret_val;
3074
3075 data |= IGP01E1000_PSCFR_SMART_SPEED;
3076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 data);
3078 if (ret_val)
3079 return ret_val;
3080 } else if (phy->smart_speed == e1000_smart_speed_off) {
3081 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3082 &data);
3083 if (ret_val)
3084 return ret_val;
3085
3086 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3087 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3088 data);
3089 if (ret_val)
3090 return ret_val;
3091 }
3092 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3093 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3094 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3095 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3096 ew32(PHY_CTRL, phy_ctrl);
3097
3098 if (phy->type != e1000_phy_igp_3)
3099 return 0;
3100
3101 /* Call gig speed drop workaround on LPLU before accessing
3102 * any PHY registers
3103 */
3104 if (hw->mac.type == e1000_ich8lan)
3105 e1000e_gig_downshift_workaround_ich8lan(hw);
3106
3107 /* When LPLU is enabled, we should disable SmartSpeed */
3108 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3109 if (ret_val)
3110 return ret_val;
3111
3112 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3113 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3114 }
3115
3116 return ret_val;
3117 }
3118
3119 /**
3120 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3121 * @hw: pointer to the HW structure
3122 * @bank: pointer to the variable that returns the active bank
3123 *
3124 * Reads signature byte from the NVM using the flash access registers.
3125 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3126 **/
3127 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3128 {
3129 u32 eecd;
3130 struct e1000_nvm_info *nvm = &hw->nvm;
3131 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3132 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3133 u32 nvm_dword = 0;
3134 u8 sig_byte = 0;
3135 s32 ret_val;
3136
3137 switch (hw->mac.type) {
3138 case e1000_pch_spt:
3139 case e1000_pch_cnp:
3140 bank1_offset = nvm->flash_bank_size;
3141 act_offset = E1000_ICH_NVM_SIG_WORD;
3142
3143 /* set bank to 0 in case flash read fails */
3144 *bank = 0;
3145
3146 /* Check bank 0 */
3147 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3148 &nvm_dword);
3149 if (ret_val)
3150 return ret_val;
3151 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3152 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3153 E1000_ICH_NVM_SIG_VALUE) {
3154 *bank = 0;
3155 return 0;
3156 }
3157
3158 /* Check bank 1 */
3159 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3160 bank1_offset,
3161 &nvm_dword);
3162 if (ret_val)
3163 return ret_val;
3164 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3165 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3166 E1000_ICH_NVM_SIG_VALUE) {
3167 *bank = 1;
3168 return 0;
3169 }
3170
3171 e_dbg("ERROR: No valid NVM bank present\n");
3172 return -E1000_ERR_NVM;
3173 case e1000_ich8lan:
3174 case e1000_ich9lan:
3175 eecd = er32(EECD);
3176 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3177 E1000_EECD_SEC1VAL_VALID_MASK) {
3178 if (eecd & E1000_EECD_SEC1VAL)
3179 *bank = 1;
3180 else
3181 *bank = 0;
3182
3183 return 0;
3184 }
3185 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3186 /* fall-thru */
3187 default:
3188 /* set bank to 0 in case flash read fails */
3189 *bank = 0;
3190
3191 /* Check bank 0 */
3192 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3193 &sig_byte);
3194 if (ret_val)
3195 return ret_val;
3196 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197 E1000_ICH_NVM_SIG_VALUE) {
3198 *bank = 0;
3199 return 0;
3200 }
3201
3202 /* Check bank 1 */
3203 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3204 bank1_offset,
3205 &sig_byte);
3206 if (ret_val)
3207 return ret_val;
3208 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3209 E1000_ICH_NVM_SIG_VALUE) {
3210 *bank = 1;
3211 return 0;
3212 }
3213
3214 e_dbg("ERROR: No valid NVM bank present\n");
3215 return -E1000_ERR_NVM;
3216 }
3217 }
3218
3219 /**
3220 * e1000_read_nvm_spt - NVM access for SPT
3221 * @hw: pointer to the HW structure
3222 * @offset: The offset (in bytes) of the word(s) to read.
3223 * @words: Size of data to read in words.
3224 * @data: pointer to the word(s) to read at offset.
3225 *
3226 * Reads a word(s) from the NVM
3227 **/
3228 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3229 u16 *data)
3230 {
3231 struct e1000_nvm_info *nvm = &hw->nvm;
3232 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3233 u32 act_offset;
3234 s32 ret_val = 0;
3235 u32 bank = 0;
3236 u32 dword = 0;
3237 u16 offset_to_read;
3238 u16 i;
3239
3240 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3241 (words == 0)) {
3242 e_dbg("nvm parameter(s) out of bounds\n");
3243 ret_val = -E1000_ERR_NVM;
3244 goto out;
3245 }
3246
3247 nvm->ops.acquire(hw);
3248
3249 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3250 if (ret_val) {
3251 e_dbg("Could not detect valid bank, assuming bank 0\n");
3252 bank = 0;
3253 }
3254
3255 act_offset = (bank) ? nvm->flash_bank_size : 0;
3256 act_offset += offset;
3257
3258 ret_val = 0;
3259
3260 for (i = 0; i < words; i += 2) {
3261 if (words - i == 1) {
3262 if (dev_spec->shadow_ram[offset + i].modified) {
3263 data[i] =
3264 dev_spec->shadow_ram[offset + i].value;
3265 } else {
3266 offset_to_read = act_offset + i -
3267 ((act_offset + i) % 2);
3268 ret_val =
3269 e1000_read_flash_dword_ich8lan(hw,
3270 offset_to_read,
3271 &dword);
3272 if (ret_val)
3273 break;
3274 if ((act_offset + i) % 2 == 0)
3275 data[i] = (u16)(dword & 0xFFFF);
3276 else
3277 data[i] = (u16)((dword >> 16) & 0xFFFF);
3278 }
3279 } else {
3280 offset_to_read = act_offset + i;
3281 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3282 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3283 ret_val =
3284 e1000_read_flash_dword_ich8lan(hw,
3285 offset_to_read,
3286 &dword);
3287 if (ret_val)
3288 break;
3289 }
3290 if (dev_spec->shadow_ram[offset + i].modified)
3291 data[i] =
3292 dev_spec->shadow_ram[offset + i].value;
3293 else
3294 data[i] = (u16)(dword & 0xFFFF);
3295 if (dev_spec->shadow_ram[offset + i].modified)
3296 data[i + 1] =
3297 dev_spec->shadow_ram[offset + i + 1].value;
3298 else
3299 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3300 }
3301 }
3302
3303 nvm->ops.release(hw);
3304
3305 out:
3306 if (ret_val)
3307 e_dbg("NVM read error: %d\n", ret_val);
3308
3309 return ret_val;
3310 }
3311
3312 /**
3313 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3314 * @hw: pointer to the HW structure
3315 * @offset: The offset (in bytes) of the word(s) to read.
3316 * @words: Size of data to read in words
3317 * @data: Pointer to the word(s) to read at offset.
3318 *
3319 * Reads a word(s) from the NVM using the flash access registers.
3320 **/
3321 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3322 u16 *data)
3323 {
3324 struct e1000_nvm_info *nvm = &hw->nvm;
3325 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3326 u32 act_offset;
3327 s32 ret_val = 0;
3328 u32 bank = 0;
3329 u16 i, word;
3330
3331 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3332 (words == 0)) {
3333 e_dbg("nvm parameter(s) out of bounds\n");
3334 ret_val = -E1000_ERR_NVM;
3335 goto out;
3336 }
3337
3338 nvm->ops.acquire(hw);
3339
3340 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3341 if (ret_val) {
3342 e_dbg("Could not detect valid bank, assuming bank 0\n");
3343 bank = 0;
3344 }
3345
3346 act_offset = (bank) ? nvm->flash_bank_size : 0;
3347 act_offset += offset;
3348
3349 ret_val = 0;
3350 for (i = 0; i < words; i++) {
3351 if (dev_spec->shadow_ram[offset + i].modified) {
3352 data[i] = dev_spec->shadow_ram[offset + i].value;
3353 } else {
3354 ret_val = e1000_read_flash_word_ich8lan(hw,
3355 act_offset + i,
3356 &word);
3357 if (ret_val)
3358 break;
3359 data[i] = word;
3360 }
3361 }
3362
3363 nvm->ops.release(hw);
3364
3365 out:
3366 if (ret_val)
3367 e_dbg("NVM read error: %d\n", ret_val);
3368
3369 return ret_val;
3370 }
3371
3372 /**
3373 * e1000_flash_cycle_init_ich8lan - Initialize flash
3374 * @hw: pointer to the HW structure
3375 *
3376 * This function does initial flash setup so that a new read/write/erase cycle
3377 * can be started.
3378 **/
3379 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3380 {
3381 union ich8_hws_flash_status hsfsts;
3382 s32 ret_val = -E1000_ERR_NVM;
3383
3384 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3385
3386 /* Check if the flash descriptor is valid */
3387 if (!hsfsts.hsf_status.fldesvalid) {
3388 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3389 return -E1000_ERR_NVM;
3390 }
3391
3392 /* Clear FCERR and DAEL in hw status by writing 1 */
3393 hsfsts.hsf_status.flcerr = 1;
3394 hsfsts.hsf_status.dael = 1;
3395 if (hw->mac.type >= e1000_pch_spt)
3396 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3397 else
3398 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3399
3400 /* Either we should have a hardware SPI cycle in progress
3401 * bit to check against, in order to start a new cycle or
3402 * FDONE bit should be changed in the hardware so that it
3403 * is 1 after hardware reset, which can then be used as an
3404 * indication whether a cycle is in progress or has been
3405 * completed.
3406 */
3407
3408 if (!hsfsts.hsf_status.flcinprog) {
3409 /* There is no cycle running at present,
3410 * so we can start a cycle.
3411 * Begin by setting Flash Cycle Done.
3412 */
3413 hsfsts.hsf_status.flcdone = 1;
3414 if (hw->mac.type >= e1000_pch_spt)
3415 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3416 else
3417 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3418 ret_val = 0;
3419 } else {
3420 s32 i;
3421
3422 /* Otherwise poll for sometime so the current
3423 * cycle has a chance to end before giving up.
3424 */
3425 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3426 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3427 if (!hsfsts.hsf_status.flcinprog) {
3428 ret_val = 0;
3429 break;
3430 }
3431 udelay(1);
3432 }
3433 if (!ret_val) {
3434 /* Successful in waiting for previous cycle to timeout,
3435 * now set the Flash Cycle Done.
3436 */
3437 hsfsts.hsf_status.flcdone = 1;
3438 if (hw->mac.type >= e1000_pch_spt)
3439 ew32flash(ICH_FLASH_HSFSTS,
3440 hsfsts.regval & 0xFFFF);
3441 else
3442 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3443 } else {
3444 e_dbg("Flash controller busy, cannot get access\n");
3445 }
3446 }
3447
3448 return ret_val;
3449 }
3450
3451 /**
3452 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3453 * @hw: pointer to the HW structure
3454 * @timeout: maximum time to wait for completion
3455 *
3456 * This function starts a flash cycle and waits for its completion.
3457 **/
3458 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3459 {
3460 union ich8_hws_flash_ctrl hsflctl;
3461 union ich8_hws_flash_status hsfsts;
3462 u32 i = 0;
3463
3464 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3465 if (hw->mac.type >= e1000_pch_spt)
3466 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3467 else
3468 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3469 hsflctl.hsf_ctrl.flcgo = 1;
3470
3471 if (hw->mac.type >= e1000_pch_spt)
3472 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3473 else
3474 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3475
3476 /* wait till FDONE bit is set to 1 */
3477 do {
3478 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3479 if (hsfsts.hsf_status.flcdone)
3480 break;
3481 udelay(1);
3482 } while (i++ < timeout);
3483
3484 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3485 return 0;
3486
3487 return -E1000_ERR_NVM;
3488 }
3489
3490 /**
3491 * e1000_read_flash_dword_ich8lan - Read dword from flash
3492 * @hw: pointer to the HW structure
3493 * @offset: offset to data location
3494 * @data: pointer to the location for storing the data
3495 *
3496 * Reads the flash dword at offset into data. Offset is converted
3497 * to bytes before read.
3498 **/
3499 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3500 u32 *data)
3501 {
3502 /* Must convert word offset into bytes. */
3503 offset <<= 1;
3504 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3505 }
3506
3507 /**
3508 * e1000_read_flash_word_ich8lan - Read word from flash
3509 * @hw: pointer to the HW structure
3510 * @offset: offset to data location
3511 * @data: pointer to the location for storing the data
3512 *
3513 * Reads the flash word at offset into data. Offset is converted
3514 * to bytes before read.
3515 **/
3516 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3517 u16 *data)
3518 {
3519 /* Must convert offset into bytes. */
3520 offset <<= 1;
3521
3522 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3523 }
3524
3525 /**
3526 * e1000_read_flash_byte_ich8lan - Read byte from flash
3527 * @hw: pointer to the HW structure
3528 * @offset: The offset of the byte to read.
3529 * @data: Pointer to a byte to store the value read.
3530 *
3531 * Reads a single byte from the NVM using the flash access registers.
3532 **/
3533 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3534 u8 *data)
3535 {
3536 s32 ret_val;
3537 u16 word = 0;
3538
3539 /* In SPT, only 32 bits access is supported,
3540 * so this function should not be called.
3541 */
3542 if (hw->mac.type >= e1000_pch_spt)
3543 return -E1000_ERR_NVM;
3544 else
3545 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3546
3547 if (ret_val)
3548 return ret_val;
3549
3550 *data = (u8)word;
3551
3552 return 0;
3553 }
3554
3555 /**
3556 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3557 * @hw: pointer to the HW structure
3558 * @offset: The offset (in bytes) of the byte or word to read.
3559 * @size: Size of data to read, 1=byte 2=word
3560 * @data: Pointer to the word to store the value read.
3561 *
3562 * Reads a byte or word from the NVM using the flash access registers.
3563 **/
3564 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3565 u8 size, u16 *data)
3566 {
3567 union ich8_hws_flash_status hsfsts;
3568 union ich8_hws_flash_ctrl hsflctl;
3569 u32 flash_linear_addr;
3570 u32 flash_data = 0;
3571 s32 ret_val = -E1000_ERR_NVM;
3572 u8 count = 0;
3573
3574 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3575 return -E1000_ERR_NVM;
3576
3577 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3578 hw->nvm.flash_base_addr);
3579
3580 do {
3581 udelay(1);
3582 /* Steps */
3583 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3584 if (ret_val)
3585 break;
3586
3587 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3588 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3589 hsflctl.hsf_ctrl.fldbcount = size - 1;
3590 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3591 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3592
3593 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3594
3595 ret_val =
3596 e1000_flash_cycle_ich8lan(hw,
3597 ICH_FLASH_READ_COMMAND_TIMEOUT);
3598
3599 /* Check if FCERR is set to 1, if set to 1, clear it
3600 * and try the whole sequence a few more times, else
3601 * read in (shift in) the Flash Data0, the order is
3602 * least significant byte first msb to lsb
3603 */
3604 if (!ret_val) {
3605 flash_data = er32flash(ICH_FLASH_FDATA0);
3606 if (size == 1)
3607 *data = (u8)(flash_data & 0x000000FF);
3608 else if (size == 2)
3609 *data = (u16)(flash_data & 0x0000FFFF);
3610 break;
3611 } else {
3612 /* If we've gotten here, then things are probably
3613 * completely hosed, but if the error condition is
3614 * detected, it won't hurt to give it another try...
3615 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3616 */
3617 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3618 if (hsfsts.hsf_status.flcerr) {
3619 /* Repeat for some time before giving up. */
3620 continue;
3621 } else if (!hsfsts.hsf_status.flcdone) {
3622 e_dbg("Timeout error - flash cycle did not complete.\n");
3623 break;
3624 }
3625 }
3626 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3627
3628 return ret_val;
3629 }
3630
3631 /**
3632 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3633 * @hw: pointer to the HW structure
3634 * @offset: The offset (in bytes) of the dword to read.
3635 * @data: Pointer to the dword to store the value read.
3636 *
3637 * Reads a byte or word from the NVM using the flash access registers.
3638 **/
3639
3640 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3641 u32 *data)
3642 {
3643 union ich8_hws_flash_status hsfsts;
3644 union ich8_hws_flash_ctrl hsflctl;
3645 u32 flash_linear_addr;
3646 s32 ret_val = -E1000_ERR_NVM;
3647 u8 count = 0;
3648
3649 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3650 return -E1000_ERR_NVM;
3651 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3652 hw->nvm.flash_base_addr);
3653
3654 do {
3655 udelay(1);
3656 /* Steps */
3657 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3658 if (ret_val)
3659 break;
3660 /* In SPT, This register is in Lan memory space, not flash.
3661 * Therefore, only 32 bit access is supported
3662 */
3663 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3664
3665 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3666 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3667 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3668 /* In SPT, This register is in Lan memory space, not flash.
3669 * Therefore, only 32 bit access is supported
3670 */
3671 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3672 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3673
3674 ret_val =
3675 e1000_flash_cycle_ich8lan(hw,
3676 ICH_FLASH_READ_COMMAND_TIMEOUT);
3677
3678 /* Check if FCERR is set to 1, if set to 1, clear it
3679 * and try the whole sequence a few more times, else
3680 * read in (shift in) the Flash Data0, the order is
3681 * least significant byte first msb to lsb
3682 */
3683 if (!ret_val) {
3684 *data = er32flash(ICH_FLASH_FDATA0);
3685 break;
3686 } else {
3687 /* If we've gotten here, then things are probably
3688 * completely hosed, but if the error condition is
3689 * detected, it won't hurt to give it another try...
3690 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3691 */
3692 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3693 if (hsfsts.hsf_status.flcerr) {
3694 /* Repeat for some time before giving up. */
3695 continue;
3696 } else if (!hsfsts.hsf_status.flcdone) {
3697 e_dbg("Timeout error - flash cycle did not complete.\n");
3698 break;
3699 }
3700 }
3701 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3702
3703 return ret_val;
3704 }
3705
3706 /**
3707 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3708 * @hw: pointer to the HW structure
3709 * @offset: The offset (in bytes) of the word(s) to write.
3710 * @words: Size of data to write in words
3711 * @data: Pointer to the word(s) to write at offset.
3712 *
3713 * Writes a byte or word to the NVM using the flash access registers.
3714 **/
3715 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3716 u16 *data)
3717 {
3718 struct e1000_nvm_info *nvm = &hw->nvm;
3719 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3720 u16 i;
3721
3722 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3723 (words == 0)) {
3724 e_dbg("nvm parameter(s) out of bounds\n");
3725 return -E1000_ERR_NVM;
3726 }
3727
3728 nvm->ops.acquire(hw);
3729
3730 for (i = 0; i < words; i++) {
3731 dev_spec->shadow_ram[offset + i].modified = true;
3732 dev_spec->shadow_ram[offset + i].value = data[i];
3733 }
3734
3735 nvm->ops.release(hw);
3736
3737 return 0;
3738 }
3739
3740 /**
3741 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3742 * @hw: pointer to the HW structure
3743 *
3744 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3745 * which writes the checksum to the shadow ram. The changes in the shadow
3746 * ram are then committed to the EEPROM by processing each bank at a time
3747 * checking for the modified bit and writing only the pending changes.
3748 * After a successful commit, the shadow ram is cleared and is ready for
3749 * future writes.
3750 **/
3751 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3752 {
3753 struct e1000_nvm_info *nvm = &hw->nvm;
3754 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3755 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3756 s32 ret_val;
3757 u32 dword = 0;
3758
3759 ret_val = e1000e_update_nvm_checksum_generic(hw);
3760 if (ret_val)
3761 goto out;
3762
3763 if (nvm->type != e1000_nvm_flash_sw)
3764 goto out;
3765
3766 nvm->ops.acquire(hw);
3767
3768 /* We're writing to the opposite bank so if we're on bank 1,
3769 * write to bank 0 etc. We also need to erase the segment that
3770 * is going to be written
3771 */
3772 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3773 if (ret_val) {
3774 e_dbg("Could not detect valid bank, assuming bank 0\n");
3775 bank = 0;
3776 }
3777
3778 if (bank == 0) {
3779 new_bank_offset = nvm->flash_bank_size;
3780 old_bank_offset = 0;
3781 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3782 if (ret_val)
3783 goto release;
3784 } else {
3785 old_bank_offset = nvm->flash_bank_size;
3786 new_bank_offset = 0;
3787 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3788 if (ret_val)
3789 goto release;
3790 }
3791 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3792 /* Determine whether to write the value stored
3793 * in the other NVM bank or a modified value stored
3794 * in the shadow RAM
3795 */
3796 ret_val = e1000_read_flash_dword_ich8lan(hw,
3797 i + old_bank_offset,
3798 &dword);
3799
3800 if (dev_spec->shadow_ram[i].modified) {
3801 dword &= 0xffff0000;
3802 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3803 }
3804 if (dev_spec->shadow_ram[i + 1].modified) {
3805 dword &= 0x0000ffff;
3806 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3807 << 16);
3808 }
3809 if (ret_val)
3810 break;
3811
3812 /* If the word is 0x13, then make sure the signature bits
3813 * (15:14) are 11b until the commit has completed.
3814 * This will allow us to write 10b which indicates the
3815 * signature is valid. We want to do this after the write
3816 * has completed so that we don't mark the segment valid
3817 * while the write is still in progress
3818 */
3819 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3820 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3821
3822 /* Convert offset to bytes. */
3823 act_offset = (i + new_bank_offset) << 1;
3824
3825 usleep_range(100, 200);
3826
3827 /* Write the data to the new bank. Offset in words */
3828 act_offset = i + new_bank_offset;
3829 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3830 dword);
3831 if (ret_val)
3832 break;
3833 }
3834
3835 /* Don't bother writing the segment valid bits if sector
3836 * programming failed.
3837 */
3838 if (ret_val) {
3839 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3840 e_dbg("Flash commit failed.\n");
3841 goto release;
3842 }
3843
3844 /* Finally validate the new segment by setting bit 15:14
3845 * to 10b in word 0x13 , this can be done without an
3846 * erase as well since these bits are 11 to start with
3847 * and we need to change bit 14 to 0b
3848 */
3849 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3850
3851 /*offset in words but we read dword */
3852 --act_offset;
3853 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3854
3855 if (ret_val)
3856 goto release;
3857
3858 dword &= 0xBFFFFFFF;
3859 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3860
3861 if (ret_val)
3862 goto release;
3863
3864 /* And invalidate the previously valid segment by setting
3865 * its signature word (0x13) high_byte to 0b. This can be
3866 * done without an erase because flash erase sets all bits
3867 * to 1's. We can write 1's to 0's without an erase
3868 */
3869 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3870
3871 /* offset in words but we read dword */
3872 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3873 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3874
3875 if (ret_val)
3876 goto release;
3877
3878 dword &= 0x00FFFFFF;
3879 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3880
3881 if (ret_val)
3882 goto release;
3883
3884 /* Great! Everything worked, we can now clear the cached entries. */
3885 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3886 dev_spec->shadow_ram[i].modified = false;
3887 dev_spec->shadow_ram[i].value = 0xFFFF;
3888 }
3889
3890 release:
3891 nvm->ops.release(hw);
3892
3893 /* Reload the EEPROM, or else modifications will not appear
3894 * until after the next adapter reset.
3895 */
3896 if (!ret_val) {
3897 nvm->ops.reload(hw);
3898 usleep_range(10000, 20000);
3899 }
3900
3901 out:
3902 if (ret_val)
3903 e_dbg("NVM update error: %d\n", ret_val);
3904
3905 return ret_val;
3906 }
3907
3908 /**
3909 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3910 * @hw: pointer to the HW structure
3911 *
3912 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3913 * which writes the checksum to the shadow ram. The changes in the shadow
3914 * ram are then committed to the EEPROM by processing each bank at a time
3915 * checking for the modified bit and writing only the pending changes.
3916 * After a successful commit, the shadow ram is cleared and is ready for
3917 * future writes.
3918 **/
3919 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3920 {
3921 struct e1000_nvm_info *nvm = &hw->nvm;
3922 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3923 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3924 s32 ret_val;
3925 u16 data = 0;
3926
3927 ret_val = e1000e_update_nvm_checksum_generic(hw);
3928 if (ret_val)
3929 goto out;
3930
3931 if (nvm->type != e1000_nvm_flash_sw)
3932 goto out;
3933
3934 nvm->ops.acquire(hw);
3935
3936 /* We're writing to the opposite bank so if we're on bank 1,
3937 * write to bank 0 etc. We also need to erase the segment that
3938 * is going to be written
3939 */
3940 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3941 if (ret_val) {
3942 e_dbg("Could not detect valid bank, assuming bank 0\n");
3943 bank = 0;
3944 }
3945
3946 if (bank == 0) {
3947 new_bank_offset = nvm->flash_bank_size;
3948 old_bank_offset = 0;
3949 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3950 if (ret_val)
3951 goto release;
3952 } else {
3953 old_bank_offset = nvm->flash_bank_size;
3954 new_bank_offset = 0;
3955 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3956 if (ret_val)
3957 goto release;
3958 }
3959 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3960 if (dev_spec->shadow_ram[i].modified) {
3961 data = dev_spec->shadow_ram[i].value;
3962 } else {
3963 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3964 old_bank_offset,
3965 &data);
3966 if (ret_val)
3967 break;
3968 }
3969
3970 /* If the word is 0x13, then make sure the signature bits
3971 * (15:14) are 11b until the commit has completed.
3972 * This will allow us to write 10b which indicates the
3973 * signature is valid. We want to do this after the write
3974 * has completed so that we don't mark the segment valid
3975 * while the write is still in progress
3976 */
3977 if (i == E1000_ICH_NVM_SIG_WORD)
3978 data |= E1000_ICH_NVM_SIG_MASK;
3979
3980 /* Convert offset to bytes. */
3981 act_offset = (i + new_bank_offset) << 1;
3982
3983 usleep_range(100, 200);
3984 /* Write the bytes to the new bank. */
3985 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3986 act_offset,
3987 (u8)data);
3988 if (ret_val)
3989 break;
3990
3991 usleep_range(100, 200);
3992 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3993 act_offset + 1,
3994 (u8)(data >> 8));
3995 if (ret_val)
3996 break;
3997 }
3998
3999 /* Don't bother writing the segment valid bits if sector
4000 * programming failed.
4001 */
4002 if (ret_val) {
4003 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4004 e_dbg("Flash commit failed.\n");
4005 goto release;
4006 }
4007
4008 /* Finally validate the new segment by setting bit 15:14
4009 * to 10b in word 0x13 , this can be done without an
4010 * erase as well since these bits are 11 to start with
4011 * and we need to change bit 14 to 0b
4012 */
4013 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4014 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4015 if (ret_val)
4016 goto release;
4017
4018 data &= 0xBFFF;
4019 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4020 act_offset * 2 + 1,
4021 (u8)(data >> 8));
4022 if (ret_val)
4023 goto release;
4024
4025 /* And invalidate the previously valid segment by setting
4026 * its signature word (0x13) high_byte to 0b. This can be
4027 * done without an erase because flash erase sets all bits
4028 * to 1's. We can write 1's to 0's without an erase
4029 */
4030 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4031 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4032 if (ret_val)
4033 goto release;
4034
4035 /* Great! Everything worked, we can now clear the cached entries. */
4036 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4037 dev_spec->shadow_ram[i].modified = false;
4038 dev_spec->shadow_ram[i].value = 0xFFFF;
4039 }
4040
4041 release:
4042 nvm->ops.release(hw);
4043
4044 /* Reload the EEPROM, or else modifications will not appear
4045 * until after the next adapter reset.
4046 */
4047 if (!ret_val) {
4048 nvm->ops.reload(hw);
4049 usleep_range(10000, 20000);
4050 }
4051
4052 out:
4053 if (ret_val)
4054 e_dbg("NVM update error: %d\n", ret_val);
4055
4056 return ret_val;
4057 }
4058
4059 /**
4060 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4061 * @hw: pointer to the HW structure
4062 *
4063 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4064 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4065 * calculated, in which case we need to calculate the checksum and set bit 6.
4066 **/
4067 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4068 {
4069 s32 ret_val;
4070 u16 data;
4071 u16 word;
4072 u16 valid_csum_mask;
4073
4074 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4075 * the checksum needs to be fixed. This bit is an indication that
4076 * the NVM was prepared by OEM software and did not calculate
4077 * the checksum...a likely scenario.
4078 */
4079 switch (hw->mac.type) {
4080 case e1000_pch_lpt:
4081 case e1000_pch_spt:
4082 case e1000_pch_cnp:
4083 word = NVM_COMPAT;
4084 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4085 break;
4086 default:
4087 word = NVM_FUTURE_INIT_WORD1;
4088 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4089 break;
4090 }
4091
4092 ret_val = e1000_read_nvm(hw, word, 1, &data);
4093 if (ret_val)
4094 return ret_val;
4095
4096 if (!(data & valid_csum_mask)) {
4097 data |= valid_csum_mask;
4098 ret_val = e1000_write_nvm(hw, word, 1, &data);
4099 if (ret_val)
4100 return ret_val;
4101 ret_val = e1000e_update_nvm_checksum(hw);
4102 if (ret_val)
4103 return ret_val;
4104 }
4105
4106 return e1000e_validate_nvm_checksum_generic(hw);
4107 }
4108
4109 /**
4110 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4111 * @hw: pointer to the HW structure
4112 *
4113 * To prevent malicious write/erase of the NVM, set it to be read-only
4114 * so that the hardware ignores all write/erase cycles of the NVM via
4115 * the flash control registers. The shadow-ram copy of the NVM will
4116 * still be updated, however any updates to this copy will not stick
4117 * across driver reloads.
4118 **/
4119 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4120 {
4121 struct e1000_nvm_info *nvm = &hw->nvm;
4122 union ich8_flash_protected_range pr0;
4123 union ich8_hws_flash_status hsfsts;
4124 u32 gfpreg;
4125
4126 nvm->ops.acquire(hw);
4127
4128 gfpreg = er32flash(ICH_FLASH_GFPREG);
4129
4130 /* Write-protect GbE Sector of NVM */
4131 pr0.regval = er32flash(ICH_FLASH_PR0);
4132 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4133 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4134 pr0.range.wpe = true;
4135 ew32flash(ICH_FLASH_PR0, pr0.regval);
4136
4137 /* Lock down a subset of GbE Flash Control Registers, e.g.
4138 * PR0 to prevent the write-protection from being lifted.
4139 * Once FLOCKDN is set, the registers protected by it cannot
4140 * be written until FLOCKDN is cleared by a hardware reset.
4141 */
4142 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4143 hsfsts.hsf_status.flockdn = true;
4144 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4145
4146 nvm->ops.release(hw);
4147 }
4148
4149 /**
4150 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4151 * @hw: pointer to the HW structure
4152 * @offset: The offset (in bytes) of the byte/word to read.
4153 * @size: Size of data to read, 1=byte 2=word
4154 * @data: The byte(s) to write to the NVM.
4155 *
4156 * Writes one/two bytes to the NVM using the flash access registers.
4157 **/
4158 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4159 u8 size, u16 data)
4160 {
4161 union ich8_hws_flash_status hsfsts;
4162 union ich8_hws_flash_ctrl hsflctl;
4163 u32 flash_linear_addr;
4164 u32 flash_data = 0;
4165 s32 ret_val;
4166 u8 count = 0;
4167
4168 if (hw->mac.type >= e1000_pch_spt) {
4169 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4170 return -E1000_ERR_NVM;
4171 } else {
4172 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4173 return -E1000_ERR_NVM;
4174 }
4175
4176 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4177 hw->nvm.flash_base_addr);
4178
4179 do {
4180 udelay(1);
4181 /* Steps */
4182 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4183 if (ret_val)
4184 break;
4185 /* In SPT, This register is in Lan memory space, not
4186 * flash. Therefore, only 32 bit access is supported
4187 */
4188 if (hw->mac.type >= e1000_pch_spt)
4189 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4190 else
4191 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4192
4193 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4194 hsflctl.hsf_ctrl.fldbcount = size - 1;
4195 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4196 /* In SPT, This register is in Lan memory space,
4197 * not flash. Therefore, only 32 bit access is
4198 * supported
4199 */
4200 if (hw->mac.type >= e1000_pch_spt)
4201 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4202 else
4203 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4204
4205 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4206
4207 if (size == 1)
4208 flash_data = (u32)data & 0x00FF;
4209 else
4210 flash_data = (u32)data;
4211
4212 ew32flash(ICH_FLASH_FDATA0, flash_data);
4213
4214 /* check if FCERR is set to 1 , if set to 1, clear it
4215 * and try the whole sequence a few more times else done
4216 */
4217 ret_val =
4218 e1000_flash_cycle_ich8lan(hw,
4219 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4220 if (!ret_val)
4221 break;
4222
4223 /* If we're here, then things are most likely
4224 * completely hosed, but if the error condition
4225 * is detected, it won't hurt to give it another
4226 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4227 */
4228 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4229 if (hsfsts.hsf_status.flcerr)
4230 /* Repeat for some time before giving up. */
4231 continue;
4232 if (!hsfsts.hsf_status.flcdone) {
4233 e_dbg("Timeout error - flash cycle did not complete.\n");
4234 break;
4235 }
4236 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4237
4238 return ret_val;
4239 }
4240
4241 /**
4242 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4243 * @hw: pointer to the HW structure
4244 * @offset: The offset (in bytes) of the dwords to read.
4245 * @data: The 4 bytes to write to the NVM.
4246 *
4247 * Writes one/two/four bytes to the NVM using the flash access registers.
4248 **/
4249 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4250 u32 data)
4251 {
4252 union ich8_hws_flash_status hsfsts;
4253 union ich8_hws_flash_ctrl hsflctl;
4254 u32 flash_linear_addr;
4255 s32 ret_val;
4256 u8 count = 0;
4257
4258 if (hw->mac.type >= e1000_pch_spt) {
4259 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4260 return -E1000_ERR_NVM;
4261 }
4262 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4263 hw->nvm.flash_base_addr);
4264 do {
4265 udelay(1);
4266 /* Steps */
4267 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4268 if (ret_val)
4269 break;
4270
4271 /* In SPT, This register is in Lan memory space, not
4272 * flash. Therefore, only 32 bit access is supported
4273 */
4274 if (hw->mac.type >= e1000_pch_spt)
4275 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4276 >> 16;
4277 else
4278 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4279
4280 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4281 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4282
4283 /* In SPT, This register is in Lan memory space,
4284 * not flash. Therefore, only 32 bit access is
4285 * supported
4286 */
4287 if (hw->mac.type >= e1000_pch_spt)
4288 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4289 else
4290 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4291
4292 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4293
4294 ew32flash(ICH_FLASH_FDATA0, data);
4295
4296 /* check if FCERR is set to 1 , if set to 1, clear it
4297 * and try the whole sequence a few more times else done
4298 */
4299 ret_val =
4300 e1000_flash_cycle_ich8lan(hw,
4301 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4302
4303 if (!ret_val)
4304 break;
4305
4306 /* If we're here, then things are most likely
4307 * completely hosed, but if the error condition
4308 * is detected, it won't hurt to give it another
4309 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4310 */
4311 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4312
4313 if (hsfsts.hsf_status.flcerr)
4314 /* Repeat for some time before giving up. */
4315 continue;
4316 if (!hsfsts.hsf_status.flcdone) {
4317 e_dbg("Timeout error - flash cycle did not complete.\n");
4318 break;
4319 }
4320 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4321
4322 return ret_val;
4323 }
4324
4325 /**
4326 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4327 * @hw: pointer to the HW structure
4328 * @offset: The index of the byte to read.
4329 * @data: The byte to write to the NVM.
4330 *
4331 * Writes a single byte to the NVM using the flash access registers.
4332 **/
4333 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4334 u8 data)
4335 {
4336 u16 word = (u16)data;
4337
4338 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4339 }
4340
4341 /**
4342 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4343 * @hw: pointer to the HW structure
4344 * @offset: The offset of the word to write.
4345 * @dword: The dword to write to the NVM.
4346 *
4347 * Writes a single dword to the NVM using the flash access registers.
4348 * Goes through a retry algorithm before giving up.
4349 **/
4350 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4351 u32 offset, u32 dword)
4352 {
4353 s32 ret_val;
4354 u16 program_retries;
4355
4356 /* Must convert word offset into bytes. */
4357 offset <<= 1;
4358 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4359
4360 if (!ret_val)
4361 return ret_val;
4362 for (program_retries = 0; program_retries < 100; program_retries++) {
4363 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4364 usleep_range(100, 200);
4365 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4366 if (!ret_val)
4367 break;
4368 }
4369 if (program_retries == 100)
4370 return -E1000_ERR_NVM;
4371
4372 return 0;
4373 }
4374
4375 /**
4376 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4377 * @hw: pointer to the HW structure
4378 * @offset: The offset of the byte to write.
4379 * @byte: The byte to write to the NVM.
4380 *
4381 * Writes a single byte to the NVM using the flash access registers.
4382 * Goes through a retry algorithm before giving up.
4383 **/
4384 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4385 u32 offset, u8 byte)
4386 {
4387 s32 ret_val;
4388 u16 program_retries;
4389
4390 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4391 if (!ret_val)
4392 return ret_val;
4393
4394 for (program_retries = 0; program_retries < 100; program_retries++) {
4395 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4396 usleep_range(100, 200);
4397 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4398 if (!ret_val)
4399 break;
4400 }
4401 if (program_retries == 100)
4402 return -E1000_ERR_NVM;
4403
4404 return 0;
4405 }
4406
4407 /**
4408 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4409 * @hw: pointer to the HW structure
4410 * @bank: 0 for first bank, 1 for second bank, etc.
4411 *
4412 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4413 * bank N is 4096 * N + flash_reg_addr.
4414 **/
4415 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4416 {
4417 struct e1000_nvm_info *nvm = &hw->nvm;
4418 union ich8_hws_flash_status hsfsts;
4419 union ich8_hws_flash_ctrl hsflctl;
4420 u32 flash_linear_addr;
4421 /* bank size is in 16bit words - adjust to bytes */
4422 u32 flash_bank_size = nvm->flash_bank_size * 2;
4423 s32 ret_val;
4424 s32 count = 0;
4425 s32 j, iteration, sector_size;
4426
4427 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428
4429 /* Determine HW Sector size: Read BERASE bits of hw flash status
4430 * register
4431 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4432 * consecutive sectors. The start index for the nth Hw sector
4433 * can be calculated as = bank * 4096 + n * 256
4434 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4435 * The start index for the nth Hw sector can be calculated
4436 * as = bank * 4096
4437 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4438 * (ich9 only, otherwise error condition)
4439 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4440 */
4441 switch (hsfsts.hsf_status.berasesz) {
4442 case 0:
4443 /* Hw sector size 256 */
4444 sector_size = ICH_FLASH_SEG_SIZE_256;
4445 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4446 break;
4447 case 1:
4448 sector_size = ICH_FLASH_SEG_SIZE_4K;
4449 iteration = 1;
4450 break;
4451 case 2:
4452 sector_size = ICH_FLASH_SEG_SIZE_8K;
4453 iteration = 1;
4454 break;
4455 case 3:
4456 sector_size = ICH_FLASH_SEG_SIZE_64K;
4457 iteration = 1;
4458 break;
4459 default:
4460 return -E1000_ERR_NVM;
4461 }
4462
4463 /* Start with the base address, then add the sector offset. */
4464 flash_linear_addr = hw->nvm.flash_base_addr;
4465 flash_linear_addr += (bank) ? flash_bank_size : 0;
4466
4467 for (j = 0; j < iteration; j++) {
4468 do {
4469 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4470
4471 /* Steps */
4472 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4473 if (ret_val)
4474 return ret_val;
4475
4476 /* Write a value 11 (block Erase) in Flash
4477 * Cycle field in hw flash control
4478 */
4479 if (hw->mac.type >= e1000_pch_spt)
4480 hsflctl.regval =
4481 er32flash(ICH_FLASH_HSFSTS) >> 16;
4482 else
4483 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4484
4485 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4486 if (hw->mac.type >= e1000_pch_spt)
4487 ew32flash(ICH_FLASH_HSFSTS,
4488 hsflctl.regval << 16);
4489 else
4490 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4491
4492 /* Write the last 24 bits of an index within the
4493 * block into Flash Linear address field in Flash
4494 * Address.
4495 */
4496 flash_linear_addr += (j * sector_size);
4497 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4498
4499 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4500 if (!ret_val)
4501 break;
4502
4503 /* Check if FCERR is set to 1. If 1,
4504 * clear it and try the whole sequence
4505 * a few more times else Done
4506 */
4507 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4508 if (hsfsts.hsf_status.flcerr)
4509 /* repeat for some time before giving up */
4510 continue;
4511 else if (!hsfsts.hsf_status.flcdone)
4512 return ret_val;
4513 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4514 }
4515
4516 return 0;
4517 }
4518
4519 /**
4520 * e1000_valid_led_default_ich8lan - Set the default LED settings
4521 * @hw: pointer to the HW structure
4522 * @data: Pointer to the LED settings
4523 *
4524 * Reads the LED default settings from the NVM to data. If the NVM LED
4525 * settings is all 0's or F's, set the LED default to a valid LED default
4526 * setting.
4527 **/
4528 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4529 {
4530 s32 ret_val;
4531
4532 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4533 if (ret_val) {
4534 e_dbg("NVM Read Error\n");
4535 return ret_val;
4536 }
4537
4538 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4539 *data = ID_LED_DEFAULT_ICH8LAN;
4540
4541 return 0;
4542 }
4543
4544 /**
4545 * e1000_id_led_init_pchlan - store LED configurations
4546 * @hw: pointer to the HW structure
4547 *
4548 * PCH does not control LEDs via the LEDCTL register, rather it uses
4549 * the PHY LED configuration register.
4550 *
4551 * PCH also does not have an "always on" or "always off" mode which
4552 * complicates the ID feature. Instead of using the "on" mode to indicate
4553 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4554 * use "link_up" mode. The LEDs will still ID on request if there is no
4555 * link based on logic in e1000_led_[on|off]_pchlan().
4556 **/
4557 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4558 {
4559 struct e1000_mac_info *mac = &hw->mac;
4560 s32 ret_val;
4561 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4562 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4563 u16 data, i, temp, shift;
4564
4565 /* Get default ID LED modes */
4566 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4567 if (ret_val)
4568 return ret_val;
4569
4570 mac->ledctl_default = er32(LEDCTL);
4571 mac->ledctl_mode1 = mac->ledctl_default;
4572 mac->ledctl_mode2 = mac->ledctl_default;
4573
4574 for (i = 0; i < 4; i++) {
4575 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4576 shift = (i * 5);
4577 switch (temp) {
4578 case ID_LED_ON1_DEF2:
4579 case ID_LED_ON1_ON2:
4580 case ID_LED_ON1_OFF2:
4581 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4582 mac->ledctl_mode1 |= (ledctl_on << shift);
4583 break;
4584 case ID_LED_OFF1_DEF2:
4585 case ID_LED_OFF1_ON2:
4586 case ID_LED_OFF1_OFF2:
4587 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4588 mac->ledctl_mode1 |= (ledctl_off << shift);
4589 break;
4590 default:
4591 /* Do nothing */
4592 break;
4593 }
4594 switch (temp) {
4595 case ID_LED_DEF1_ON2:
4596 case ID_LED_ON1_ON2:
4597 case ID_LED_OFF1_ON2:
4598 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4599 mac->ledctl_mode2 |= (ledctl_on << shift);
4600 break;
4601 case ID_LED_DEF1_OFF2:
4602 case ID_LED_ON1_OFF2:
4603 case ID_LED_OFF1_OFF2:
4604 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4605 mac->ledctl_mode2 |= (ledctl_off << shift);
4606 break;
4607 default:
4608 /* Do nothing */
4609 break;
4610 }
4611 }
4612
4613 return 0;
4614 }
4615
4616 /**
4617 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4618 * @hw: pointer to the HW structure
4619 *
4620 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4621 * register, so the the bus width is hard coded.
4622 **/
4623 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4624 {
4625 struct e1000_bus_info *bus = &hw->bus;
4626 s32 ret_val;
4627
4628 ret_val = e1000e_get_bus_info_pcie(hw);
4629
4630 /* ICH devices are "PCI Express"-ish. They have
4631 * a configuration space, but do not contain
4632 * PCI Express Capability registers, so bus width
4633 * must be hardcoded.
4634 */
4635 if (bus->width == e1000_bus_width_unknown)
4636 bus->width = e1000_bus_width_pcie_x1;
4637
4638 return ret_val;
4639 }
4640
4641 /**
4642 * e1000_reset_hw_ich8lan - Reset the hardware
4643 * @hw: pointer to the HW structure
4644 *
4645 * Does a full reset of the hardware which includes a reset of the PHY and
4646 * MAC.
4647 **/
4648 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4649 {
4650 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4651 u16 kum_cfg;
4652 u32 ctrl, reg;
4653 s32 ret_val;
4654
4655 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4656 * on the last TLP read/write transaction when MAC is reset.
4657 */
4658 ret_val = e1000e_disable_pcie_master(hw);
4659 if (ret_val)
4660 e_dbg("PCI-E Master disable polling has failed.\n");
4661
4662 e_dbg("Masking off all interrupts\n");
4663 ew32(IMC, 0xffffffff);
4664
4665 /* Disable the Transmit and Receive units. Then delay to allow
4666 * any pending transactions to complete before we hit the MAC
4667 * with the global reset.
4668 */
4669 ew32(RCTL, 0);
4670 ew32(TCTL, E1000_TCTL_PSP);
4671 e1e_flush();
4672
4673 usleep_range(10000, 20000);
4674
4675 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4676 if (hw->mac.type == e1000_ich8lan) {
4677 /* Set Tx and Rx buffer allocation to 8k apiece. */
4678 ew32(PBA, E1000_PBA_8K);
4679 /* Set Packet Buffer Size to 16k. */
4680 ew32(PBS, E1000_PBS_16K);
4681 }
4682
4683 if (hw->mac.type == e1000_pchlan) {
4684 /* Save the NVM K1 bit setting */
4685 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4686 if (ret_val)
4687 return ret_val;
4688
4689 if (kum_cfg & E1000_NVM_K1_ENABLE)
4690 dev_spec->nvm_k1_enabled = true;
4691 else
4692 dev_spec->nvm_k1_enabled = false;
4693 }
4694
4695 ctrl = er32(CTRL);
4696
4697 if (!hw->phy.ops.check_reset_block(hw)) {
4698 /* Full-chip reset requires MAC and PHY reset at the same
4699 * time to make sure the interface between MAC and the
4700 * external PHY is reset.
4701 */
4702 ctrl |= E1000_CTRL_PHY_RST;
4703
4704 /* Gate automatic PHY configuration by hardware on
4705 * non-managed 82579
4706 */
4707 if ((hw->mac.type == e1000_pch2lan) &&
4708 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4709 e1000_gate_hw_phy_config_ich8lan(hw, true);
4710 }
4711 ret_val = e1000_acquire_swflag_ich8lan(hw);
4712 e_dbg("Issuing a global reset to ich8lan\n");
4713 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4714 /* cannot issue a flush here because it hangs the hardware */
4715 msleep(20);
4716
4717 /* Set Phy Config Counter to 50msec */
4718 if (hw->mac.type == e1000_pch2lan) {
4719 reg = er32(FEXTNVM3);
4720 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4721 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4722 ew32(FEXTNVM3, reg);
4723 }
4724
4725 if (!ret_val)
4726 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4727
4728 if (ctrl & E1000_CTRL_PHY_RST) {
4729 ret_val = hw->phy.ops.get_cfg_done(hw);
4730 if (ret_val)
4731 return ret_val;
4732
4733 ret_val = e1000_post_phy_reset_ich8lan(hw);
4734 if (ret_val)
4735 return ret_val;
4736 }
4737
4738 /* For PCH, this write will make sure that any noise
4739 * will be detected as a CRC error and be dropped rather than show up
4740 * as a bad packet to the DMA engine.
4741 */
4742 if (hw->mac.type == e1000_pchlan)
4743 ew32(CRC_OFFSET, 0x65656565);
4744
4745 ew32(IMC, 0xffffffff);
4746 er32(ICR);
4747
4748 reg = er32(KABGTXD);
4749 reg |= E1000_KABGTXD_BGSQLBIAS;
4750 ew32(KABGTXD, reg);
4751
4752 return 0;
4753 }
4754
4755 /**
4756 * e1000_init_hw_ich8lan - Initialize the hardware
4757 * @hw: pointer to the HW structure
4758 *
4759 * Prepares the hardware for transmit and receive by doing the following:
4760 * - initialize hardware bits
4761 * - initialize LED identification
4762 * - setup receive address registers
4763 * - setup flow control
4764 * - setup transmit descriptors
4765 * - clear statistics
4766 **/
4767 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4768 {
4769 struct e1000_mac_info *mac = &hw->mac;
4770 u32 ctrl_ext, txdctl, snoop;
4771 s32 ret_val;
4772 u16 i;
4773
4774 e1000_initialize_hw_bits_ich8lan(hw);
4775
4776 /* Initialize identification LED */
4777 ret_val = mac->ops.id_led_init(hw);
4778 /* An error is not fatal and we should not stop init due to this */
4779 if (ret_val)
4780 e_dbg("Error initializing identification LED\n");
4781
4782 /* Setup the receive address. */
4783 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4784
4785 /* Zero out the Multicast HASH table */
4786 e_dbg("Zeroing the MTA\n");
4787 for (i = 0; i < mac->mta_reg_count; i++)
4788 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4789
4790 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4791 * the ME. Disable wakeup by clearing the host wakeup bit.
4792 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4793 */
4794 if (hw->phy.type == e1000_phy_82578) {
4795 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4796 i &= ~BM_WUC_HOST_WU_BIT;
4797 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4798 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4799 if (ret_val)
4800 return ret_val;
4801 }
4802
4803 /* Setup link and flow control */
4804 ret_val = mac->ops.setup_link(hw);
4805
4806 /* Set the transmit descriptor write-back policy for both queues */
4807 txdctl = er32(TXDCTL(0));
4808 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4809 E1000_TXDCTL_FULL_TX_DESC_WB);
4810 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4811 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4812 ew32(TXDCTL(0), txdctl);
4813 txdctl = er32(TXDCTL(1));
4814 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4815 E1000_TXDCTL_FULL_TX_DESC_WB);
4816 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4817 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4818 ew32(TXDCTL(1), txdctl);
4819
4820 /* ICH8 has opposite polarity of no_snoop bits.
4821 * By default, we should use snoop behavior.
4822 */
4823 if (mac->type == e1000_ich8lan)
4824 snoop = PCIE_ICH8_SNOOP_ALL;
4825 else
4826 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4827 e1000e_set_pcie_no_snoop(hw, snoop);
4828
4829 ctrl_ext = er32(CTRL_EXT);
4830 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4831 ew32(CTRL_EXT, ctrl_ext);
4832
4833 /* Clear all of the statistics registers (clear on read). It is
4834 * important that we do this after we have tried to establish link
4835 * because the symbol error count will increment wildly if there
4836 * is no link.
4837 */
4838 e1000_clear_hw_cntrs_ich8lan(hw);
4839
4840 return ret_val;
4841 }
4842
4843 /**
4844 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4845 * @hw: pointer to the HW structure
4846 *
4847 * Sets/Clears required hardware bits necessary for correctly setting up the
4848 * hardware for transmit and receive.
4849 **/
4850 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4851 {
4852 u32 reg;
4853
4854 /* Extended Device Control */
4855 reg = er32(CTRL_EXT);
4856 reg |= BIT(22);
4857 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4858 if (hw->mac.type >= e1000_pchlan)
4859 reg |= E1000_CTRL_EXT_PHYPDEN;
4860 ew32(CTRL_EXT, reg);
4861
4862 /* Transmit Descriptor Control 0 */
4863 reg = er32(TXDCTL(0));
4864 reg |= BIT(22);
4865 ew32(TXDCTL(0), reg);
4866
4867 /* Transmit Descriptor Control 1 */
4868 reg = er32(TXDCTL(1));
4869 reg |= BIT(22);
4870 ew32(TXDCTL(1), reg);
4871
4872 /* Transmit Arbitration Control 0 */
4873 reg = er32(TARC(0));
4874 if (hw->mac.type == e1000_ich8lan)
4875 reg |= BIT(28) | BIT(29);
4876 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4877 ew32(TARC(0), reg);
4878
4879 /* Transmit Arbitration Control 1 */
4880 reg = er32(TARC(1));
4881 if (er32(TCTL) & E1000_TCTL_MULR)
4882 reg &= ~BIT(28);
4883 else
4884 reg |= BIT(28);
4885 reg |= BIT(24) | BIT(26) | BIT(30);
4886 ew32(TARC(1), reg);
4887
4888 /* Device Status */
4889 if (hw->mac.type == e1000_ich8lan) {
4890 reg = er32(STATUS);
4891 reg &= ~BIT(31);
4892 ew32(STATUS, reg);
4893 }
4894
4895 /* work-around descriptor data corruption issue during nfs v2 udp
4896 * traffic, just disable the nfs filtering capability
4897 */
4898 reg = er32(RFCTL);
4899 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4900
4901 /* Disable IPv6 extension header parsing because some malformed
4902 * IPv6 headers can hang the Rx.
4903 */
4904 if (hw->mac.type == e1000_ich8lan)
4905 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4906 ew32(RFCTL, reg);
4907
4908 /* Enable ECC on Lynxpoint */
4909 if (hw->mac.type >= e1000_pch_lpt) {
4910 reg = er32(PBECCSTS);
4911 reg |= E1000_PBECCSTS_ECC_ENABLE;
4912 ew32(PBECCSTS, reg);
4913
4914 reg = er32(CTRL);
4915 reg |= E1000_CTRL_MEHE;
4916 ew32(CTRL, reg);
4917 }
4918 }
4919
4920 /**
4921 * e1000_setup_link_ich8lan - Setup flow control and link settings
4922 * @hw: pointer to the HW structure
4923 *
4924 * Determines which flow control settings to use, then configures flow
4925 * control. Calls the appropriate media-specific link configuration
4926 * function. Assuming the adapter has a valid link partner, a valid link
4927 * should be established. Assumes the hardware has previously been reset
4928 * and the transmitter and receiver are not enabled.
4929 **/
4930 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4931 {
4932 s32 ret_val;
4933
4934 if (hw->phy.ops.check_reset_block(hw))
4935 return 0;
4936
4937 /* ICH parts do not have a word in the NVM to determine
4938 * the default flow control setting, so we explicitly
4939 * set it to full.
4940 */
4941 if (hw->fc.requested_mode == e1000_fc_default) {
4942 /* Workaround h/w hang when Tx flow control enabled */
4943 if (hw->mac.type == e1000_pchlan)
4944 hw->fc.requested_mode = e1000_fc_rx_pause;
4945 else
4946 hw->fc.requested_mode = e1000_fc_full;
4947 }
4948
4949 /* Save off the requested flow control mode for use later. Depending
4950 * on the link partner's capabilities, we may or may not use this mode.
4951 */
4952 hw->fc.current_mode = hw->fc.requested_mode;
4953
4954 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4955
4956 /* Continue to configure the copper link. */
4957 ret_val = hw->mac.ops.setup_physical_interface(hw);
4958 if (ret_val)
4959 return ret_val;
4960
4961 ew32(FCTTV, hw->fc.pause_time);
4962 if ((hw->phy.type == e1000_phy_82578) ||
4963 (hw->phy.type == e1000_phy_82579) ||
4964 (hw->phy.type == e1000_phy_i217) ||
4965 (hw->phy.type == e1000_phy_82577)) {
4966 ew32(FCRTV_PCH, hw->fc.refresh_time);
4967
4968 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4969 hw->fc.pause_time);
4970 if (ret_val)
4971 return ret_val;
4972 }
4973
4974 return e1000e_set_fc_watermarks(hw);
4975 }
4976
4977 /**
4978 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4979 * @hw: pointer to the HW structure
4980 *
4981 * Configures the kumeran interface to the PHY to wait the appropriate time
4982 * when polling the PHY, then call the generic setup_copper_link to finish
4983 * configuring the copper link.
4984 **/
4985 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4986 {
4987 u32 ctrl;
4988 s32 ret_val;
4989 u16 reg_data;
4990
4991 ctrl = er32(CTRL);
4992 ctrl |= E1000_CTRL_SLU;
4993 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4994 ew32(CTRL, ctrl);
4995
4996 /* Set the mac to wait the maximum time between each iteration
4997 * and increase the max iterations when polling the phy;
4998 * this fixes erroneous timeouts at 10Mbps.
4999 */
5000 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5001 if (ret_val)
5002 return ret_val;
5003 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5004 &reg_data);
5005 if (ret_val)
5006 return ret_val;
5007 reg_data |= 0x3F;
5008 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5009 reg_data);
5010 if (ret_val)
5011 return ret_val;
5012
5013 switch (hw->phy.type) {
5014 case e1000_phy_igp_3:
5015 ret_val = e1000e_copper_link_setup_igp(hw);
5016 if (ret_val)
5017 return ret_val;
5018 break;
5019 case e1000_phy_bm:
5020 case e1000_phy_82578:
5021 ret_val = e1000e_copper_link_setup_m88(hw);
5022 if (ret_val)
5023 return ret_val;
5024 break;
5025 case e1000_phy_82577:
5026 case e1000_phy_82579:
5027 ret_val = e1000_copper_link_setup_82577(hw);
5028 if (ret_val)
5029 return ret_val;
5030 break;
5031 case e1000_phy_ife:
5032 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5033 if (ret_val)
5034 return ret_val;
5035
5036 reg_data &= ~IFE_PMC_AUTO_MDIX;
5037
5038 switch (hw->phy.mdix) {
5039 case 1:
5040 reg_data &= ~IFE_PMC_FORCE_MDIX;
5041 break;
5042 case 2:
5043 reg_data |= IFE_PMC_FORCE_MDIX;
5044 break;
5045 case 0:
5046 default:
5047 reg_data |= IFE_PMC_AUTO_MDIX;
5048 break;
5049 }
5050 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5051 if (ret_val)
5052 return ret_val;
5053 break;
5054 default:
5055 break;
5056 }
5057
5058 return e1000e_setup_copper_link(hw);
5059 }
5060
5061 /**
5062 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5063 * @hw: pointer to the HW structure
5064 *
5065 * Calls the PHY specific link setup function and then calls the
5066 * generic setup_copper_link to finish configuring the link for
5067 * Lynxpoint PCH devices
5068 **/
5069 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5070 {
5071 u32 ctrl;
5072 s32 ret_val;
5073
5074 ctrl = er32(CTRL);
5075 ctrl |= E1000_CTRL_SLU;
5076 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5077 ew32(CTRL, ctrl);
5078
5079 ret_val = e1000_copper_link_setup_82577(hw);
5080 if (ret_val)
5081 return ret_val;
5082
5083 return e1000e_setup_copper_link(hw);
5084 }
5085
5086 /**
5087 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5088 * @hw: pointer to the HW structure
5089 * @speed: pointer to store current link speed
5090 * @duplex: pointer to store the current link duplex
5091 *
5092 * Calls the generic get_speed_and_duplex to retrieve the current link
5093 * information and then calls the Kumeran lock loss workaround for links at
5094 * gigabit speeds.
5095 **/
5096 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5097 u16 *duplex)
5098 {
5099 s32 ret_val;
5100
5101 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5102 if (ret_val)
5103 return ret_val;
5104
5105 if ((hw->mac.type == e1000_ich8lan) &&
5106 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5107 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5108 }
5109
5110 return ret_val;
5111 }
5112
5113 /**
5114 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5115 * @hw: pointer to the HW structure
5116 *
5117 * Work-around for 82566 Kumeran PCS lock loss:
5118 * On link status change (i.e. PCI reset, speed change) and link is up and
5119 * speed is gigabit-
5120 * 0) if workaround is optionally disabled do nothing
5121 * 1) wait 1ms for Kumeran link to come up
5122 * 2) check Kumeran Diagnostic register PCS lock loss bit
5123 * 3) if not set the link is locked (all is good), otherwise...
5124 * 4) reset the PHY
5125 * 5) repeat up to 10 times
5126 * Note: this is only called for IGP3 copper when speed is 1gb.
5127 **/
5128 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5129 {
5130 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5131 u32 phy_ctrl;
5132 s32 ret_val;
5133 u16 i, data;
5134 bool link;
5135
5136 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5137 return 0;
5138
5139 /* Make sure link is up before proceeding. If not just return.
5140 * Attempting this while link is negotiating fouled up link
5141 * stability
5142 */
5143 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5144 if (!link)
5145 return 0;
5146
5147 for (i = 0; i < 10; i++) {
5148 /* read once to clear */
5149 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5150 if (ret_val)
5151 return ret_val;
5152 /* and again to get new status */
5153 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5154 if (ret_val)
5155 return ret_val;
5156
5157 /* check for PCS lock */
5158 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5159 return 0;
5160
5161 /* Issue PHY reset */
5162 e1000_phy_hw_reset(hw);
5163 mdelay(5);
5164 }
5165 /* Disable GigE link negotiation */
5166 phy_ctrl = er32(PHY_CTRL);
5167 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5168 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5169 ew32(PHY_CTRL, phy_ctrl);
5170
5171 /* Call gig speed drop workaround on Gig disable before accessing
5172 * any PHY registers
5173 */
5174 e1000e_gig_downshift_workaround_ich8lan(hw);
5175
5176 /* unable to acquire PCS lock */
5177 return -E1000_ERR_PHY;
5178 }
5179
5180 /**
5181 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5182 * @hw: pointer to the HW structure
5183 * @state: boolean value used to set the current Kumeran workaround state
5184 *
5185 * If ICH8, set the current Kumeran workaround state (enabled - true
5186 * /disabled - false).
5187 **/
5188 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5189 bool state)
5190 {
5191 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5192
5193 if (hw->mac.type != e1000_ich8lan) {
5194 e_dbg("Workaround applies to ICH8 only.\n");
5195 return;
5196 }
5197
5198 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5199 }
5200
5201 /**
5202 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5203 * @hw: pointer to the HW structure
5204 *
5205 * Workaround for 82566 power-down on D3 entry:
5206 * 1) disable gigabit link
5207 * 2) write VR power-down enable
5208 * 3) read it back
5209 * Continue if successful, else issue LCD reset and repeat
5210 **/
5211 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5212 {
5213 u32 reg;
5214 u16 data;
5215 u8 retry = 0;
5216
5217 if (hw->phy.type != e1000_phy_igp_3)
5218 return;
5219
5220 /* Try the workaround twice (if needed) */
5221 do {
5222 /* Disable link */
5223 reg = er32(PHY_CTRL);
5224 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5225 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5226 ew32(PHY_CTRL, reg);
5227
5228 /* Call gig speed drop workaround on Gig disable before
5229 * accessing any PHY registers
5230 */
5231 if (hw->mac.type == e1000_ich8lan)
5232 e1000e_gig_downshift_workaround_ich8lan(hw);
5233
5234 /* Write VR power-down enable */
5235 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5236 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5237 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5238
5239 /* Read it back and test */
5240 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5241 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5242 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5243 break;
5244
5245 /* Issue PHY reset and repeat at most one more time */
5246 reg = er32(CTRL);
5247 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5248 retry++;
5249 } while (retry);
5250 }
5251
5252 /**
5253 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5254 * @hw: pointer to the HW structure
5255 *
5256 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5257 * LPLU, Gig disable, MDIC PHY reset):
5258 * 1) Set Kumeran Near-end loopback
5259 * 2) Clear Kumeran Near-end loopback
5260 * Should only be called for ICH8[m] devices with any 1G Phy.
5261 **/
5262 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5263 {
5264 s32 ret_val;
5265 u16 reg_data;
5266
5267 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5268 return;
5269
5270 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5271 &reg_data);
5272 if (ret_val)
5273 return;
5274 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5275 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5276 reg_data);
5277 if (ret_val)
5278 return;
5279 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5280 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5281 }
5282
5283 /**
5284 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5285 * @hw: pointer to the HW structure
5286 *
5287 * During S0 to Sx transition, it is possible the link remains at gig
5288 * instead of negotiating to a lower speed. Before going to Sx, set
5289 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5290 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5291 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5292 * needs to be written.
5293 * Parts that support (and are linked to a partner which support) EEE in
5294 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5295 * than 10Mbps w/o EEE.
5296 **/
5297 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5298 {
5299 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5300 u32 phy_ctrl;
5301 s32 ret_val;
5302
5303 phy_ctrl = er32(PHY_CTRL);
5304 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5305
5306 if (hw->phy.type == e1000_phy_i217) {
5307 u16 phy_reg, device_id = hw->adapter->pdev->device;
5308
5309 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5310 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5311 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5312 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5313 (hw->mac.type >= e1000_pch_spt)) {
5314 u32 fextnvm6 = er32(FEXTNVM6);
5315
5316 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5317 }
5318
5319 ret_val = hw->phy.ops.acquire(hw);
5320 if (ret_val)
5321 goto out;
5322
5323 if (!dev_spec->eee_disable) {
5324 u16 eee_advert;
5325
5326 ret_val =
5327 e1000_read_emi_reg_locked(hw,
5328 I217_EEE_ADVERTISEMENT,
5329 &eee_advert);
5330 if (ret_val)
5331 goto release;
5332
5333 /* Disable LPLU if both link partners support 100BaseT
5334 * EEE and 100Full is advertised on both ends of the
5335 * link, and enable Auto Enable LPI since there will
5336 * be no driver to enable LPI while in Sx.
5337 */
5338 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5339 (dev_spec->eee_lp_ability &
5340 I82579_EEE_100_SUPPORTED) &&
5341 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5342 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5343 E1000_PHY_CTRL_NOND0A_LPLU);
5344
5345 /* Set Auto Enable LPI after link up */
5346 e1e_rphy_locked(hw,
5347 I217_LPI_GPIO_CTRL, &phy_reg);
5348 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5349 e1e_wphy_locked(hw,
5350 I217_LPI_GPIO_CTRL, phy_reg);
5351 }
5352 }
5353
5354 /* For i217 Intel Rapid Start Technology support,
5355 * when the system is going into Sx and no manageability engine
5356 * is present, the driver must configure proxy to reset only on
5357 * power good. LPI (Low Power Idle) state must also reset only
5358 * on power good, as well as the MTA (Multicast table array).
5359 * The SMBus release must also be disabled on LCD reset.
5360 */
5361 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5362 /* Enable proxy to reset only on power good. */
5363 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5364 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5365 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5366
5367 /* Set bit enable LPI (EEE) to reset only on
5368 * power good.
5369 */
5370 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5371 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5372 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5373
5374 /* Disable the SMB release on LCD reset. */
5375 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5376 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5377 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5378 }
5379
5380 /* Enable MTA to reset for Intel Rapid Start Technology
5381 * Support
5382 */
5383 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5384 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5385 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5386
5387 release:
5388 hw->phy.ops.release(hw);
5389 }
5390 out:
5391 ew32(PHY_CTRL, phy_ctrl);
5392
5393 if (hw->mac.type == e1000_ich8lan)
5394 e1000e_gig_downshift_workaround_ich8lan(hw);
5395
5396 if (hw->mac.type >= e1000_pchlan) {
5397 e1000_oem_bits_config_ich8lan(hw, false);
5398
5399 /* Reset PHY to activate OEM bits on 82577/8 */
5400 if (hw->mac.type == e1000_pchlan)
5401 e1000e_phy_hw_reset_generic(hw);
5402
5403 ret_val = hw->phy.ops.acquire(hw);
5404 if (ret_val)
5405 return;
5406 e1000_write_smbus_addr(hw);
5407 hw->phy.ops.release(hw);
5408 }
5409 }
5410
5411 /**
5412 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5413 * @hw: pointer to the HW structure
5414 *
5415 * During Sx to S0 transitions on non-managed devices or managed devices
5416 * on which PHY resets are not blocked, if the PHY registers cannot be
5417 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5418 * the PHY.
5419 * On i217, setup Intel Rapid Start Technology.
5420 **/
5421 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5422 {
5423 s32 ret_val;
5424
5425 if (hw->mac.type < e1000_pch2lan)
5426 return;
5427
5428 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5429 if (ret_val) {
5430 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5431 return;
5432 }
5433
5434 /* For i217 Intel Rapid Start Technology support when the system
5435 * is transitioning from Sx and no manageability engine is present
5436 * configure SMBus to restore on reset, disable proxy, and enable
5437 * the reset on MTA (Multicast table array).
5438 */
5439 if (hw->phy.type == e1000_phy_i217) {
5440 u16 phy_reg;
5441
5442 ret_val = hw->phy.ops.acquire(hw);
5443 if (ret_val) {
5444 e_dbg("Failed to setup iRST\n");
5445 return;
5446 }
5447
5448 /* Clear Auto Enable LPI after link up */
5449 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5450 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5451 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5452
5453 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5454 /* Restore clear on SMB if no manageability engine
5455 * is present
5456 */
5457 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5458 if (ret_val)
5459 goto release;
5460 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5461 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5462
5463 /* Disable Proxy */
5464 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5465 }
5466 /* Enable reset on MTA */
5467 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5468 if (ret_val)
5469 goto release;
5470 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5471 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5472 release:
5473 if (ret_val)
5474 e_dbg("Error %d in resume workarounds\n", ret_val);
5475 hw->phy.ops.release(hw);
5476 }
5477 }
5478
5479 /**
5480 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5481 * @hw: pointer to the HW structure
5482 *
5483 * Return the LED back to the default configuration.
5484 **/
5485 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5486 {
5487 if (hw->phy.type == e1000_phy_ife)
5488 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5489
5490 ew32(LEDCTL, hw->mac.ledctl_default);
5491 return 0;
5492 }
5493
5494 /**
5495 * e1000_led_on_ich8lan - Turn LEDs on
5496 * @hw: pointer to the HW structure
5497 *
5498 * Turn on the LEDs.
5499 **/
5500 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5501 {
5502 if (hw->phy.type == e1000_phy_ife)
5503 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5504 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5505
5506 ew32(LEDCTL, hw->mac.ledctl_mode2);
5507 return 0;
5508 }
5509
5510 /**
5511 * e1000_led_off_ich8lan - Turn LEDs off
5512 * @hw: pointer to the HW structure
5513 *
5514 * Turn off the LEDs.
5515 **/
5516 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5517 {
5518 if (hw->phy.type == e1000_phy_ife)
5519 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5520 (IFE_PSCL_PROBE_MODE |
5521 IFE_PSCL_PROBE_LEDS_OFF));
5522
5523 ew32(LEDCTL, hw->mac.ledctl_mode1);
5524 return 0;
5525 }
5526
5527 /**
5528 * e1000_setup_led_pchlan - Configures SW controllable LED
5529 * @hw: pointer to the HW structure
5530 *
5531 * This prepares the SW controllable LED for use.
5532 **/
5533 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5534 {
5535 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5536 }
5537
5538 /**
5539 * e1000_cleanup_led_pchlan - Restore the default LED operation
5540 * @hw: pointer to the HW structure
5541 *
5542 * Return the LED back to the default configuration.
5543 **/
5544 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5545 {
5546 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5547 }
5548
5549 /**
5550 * e1000_led_on_pchlan - Turn LEDs on
5551 * @hw: pointer to the HW structure
5552 *
5553 * Turn on the LEDs.
5554 **/
5555 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5556 {
5557 u16 data = (u16)hw->mac.ledctl_mode2;
5558 u32 i, led;
5559
5560 /* If no link, then turn LED on by setting the invert bit
5561 * for each LED that's mode is "link_up" in ledctl_mode2.
5562 */
5563 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5564 for (i = 0; i < 3; i++) {
5565 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5566 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5567 E1000_LEDCTL_MODE_LINK_UP)
5568 continue;
5569 if (led & E1000_PHY_LED0_IVRT)
5570 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5571 else
5572 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5573 }
5574 }
5575
5576 return e1e_wphy(hw, HV_LED_CONFIG, data);
5577 }
5578
5579 /**
5580 * e1000_led_off_pchlan - Turn LEDs off
5581 * @hw: pointer to the HW structure
5582 *
5583 * Turn off the LEDs.
5584 **/
5585 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5586 {
5587 u16 data = (u16)hw->mac.ledctl_mode1;
5588 u32 i, led;
5589
5590 /* If no link, then turn LED off by clearing the invert bit
5591 * for each LED that's mode is "link_up" in ledctl_mode1.
5592 */
5593 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5594 for (i = 0; i < 3; i++) {
5595 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5596 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5597 E1000_LEDCTL_MODE_LINK_UP)
5598 continue;
5599 if (led & E1000_PHY_LED0_IVRT)
5600 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5601 else
5602 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5603 }
5604 }
5605
5606 return e1e_wphy(hw, HV_LED_CONFIG, data);
5607 }
5608
5609 /**
5610 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5611 * @hw: pointer to the HW structure
5612 *
5613 * Read appropriate register for the config done bit for completion status
5614 * and configure the PHY through s/w for EEPROM-less parts.
5615 *
5616 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5617 * config done bit, so only an error is logged and continues. If we were
5618 * to return with error, EEPROM-less silicon would not be able to be reset
5619 * or change link.
5620 **/
5621 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5622 {
5623 s32 ret_val = 0;
5624 u32 bank = 0;
5625 u32 status;
5626
5627 e1000e_get_cfg_done_generic(hw);
5628
5629 /* Wait for indication from h/w that it has completed basic config */
5630 if (hw->mac.type >= e1000_ich10lan) {
5631 e1000_lan_init_done_ich8lan(hw);
5632 } else {
5633 ret_val = e1000e_get_auto_rd_done(hw);
5634 if (ret_val) {
5635 /* When auto config read does not complete, do not
5636 * return with an error. This can happen in situations
5637 * where there is no eeprom and prevents getting link.
5638 */
5639 e_dbg("Auto Read Done did not complete\n");
5640 ret_val = 0;
5641 }
5642 }
5643
5644 /* Clear PHY Reset Asserted bit */
5645 status = er32(STATUS);
5646 if (status & E1000_STATUS_PHYRA)
5647 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5648 else
5649 e_dbg("PHY Reset Asserted not set - needs delay\n");
5650
5651 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5652 if (hw->mac.type <= e1000_ich9lan) {
5653 if (!(er32(EECD) & E1000_EECD_PRES) &&
5654 (hw->phy.type == e1000_phy_igp_3)) {
5655 e1000e_phy_init_script_igp3(hw);
5656 }
5657 } else {
5658 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5659 /* Maybe we should do a basic PHY config */
5660 e_dbg("EEPROM not present\n");
5661 ret_val = -E1000_ERR_CONFIG;
5662 }
5663 }
5664
5665 return ret_val;
5666 }
5667
5668 /**
5669 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5670 * @hw: pointer to the HW structure
5671 *
5672 * In the case of a PHY power down to save power, or to turn off link during a
5673 * driver unload, or wake on lan is not enabled, remove the link.
5674 **/
5675 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5676 {
5677 /* If the management interface is not enabled, then power down */
5678 if (!(hw->mac.ops.check_mng_mode(hw) ||
5679 hw->phy.ops.check_reset_block(hw)))
5680 e1000_power_down_phy_copper(hw);
5681 }
5682
5683 /**
5684 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5685 * @hw: pointer to the HW structure
5686 *
5687 * Clears hardware counters specific to the silicon family and calls
5688 * clear_hw_cntrs_generic to clear all general purpose counters.
5689 **/
5690 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5691 {
5692 u16 phy_data;
5693 s32 ret_val;
5694
5695 e1000e_clear_hw_cntrs_base(hw);
5696
5697 er32(ALGNERRC);
5698 er32(RXERRC);
5699 er32(TNCRS);
5700 er32(CEXTERR);
5701 er32(TSCTC);
5702 er32(TSCTFC);
5703
5704 er32(MGTPRC);
5705 er32(MGTPDC);
5706 er32(MGTPTC);
5707
5708 er32(IAC);
5709 er32(ICRXOC);
5710
5711 /* Clear PHY statistics registers */
5712 if ((hw->phy.type == e1000_phy_82578) ||
5713 (hw->phy.type == e1000_phy_82579) ||
5714 (hw->phy.type == e1000_phy_i217) ||
5715 (hw->phy.type == e1000_phy_82577)) {
5716 ret_val = hw->phy.ops.acquire(hw);
5717 if (ret_val)
5718 return;
5719 ret_val = hw->phy.ops.set_page(hw,
5720 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5721 if (ret_val)
5722 goto release;
5723 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5724 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5725 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5726 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5727 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5728 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5729 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5730 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5731 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5732 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5733 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5734 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5735 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5736 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5737 release:
5738 hw->phy.ops.release(hw);
5739 }
5740 }
5741
5742 static const struct e1000_mac_operations ich8_mac_ops = {
5743 /* check_mng_mode dependent on mac type */
5744 .check_for_link = e1000_check_for_copper_link_ich8lan,
5745 /* cleanup_led dependent on mac type */
5746 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5747 .get_bus_info = e1000_get_bus_info_ich8lan,
5748 .set_lan_id = e1000_set_lan_id_single_port,
5749 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5750 /* led_on dependent on mac type */
5751 /* led_off dependent on mac type */
5752 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5753 .reset_hw = e1000_reset_hw_ich8lan,
5754 .init_hw = e1000_init_hw_ich8lan,
5755 .setup_link = e1000_setup_link_ich8lan,
5756 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5757 /* id_led_init dependent on mac type */
5758 .config_collision_dist = e1000e_config_collision_dist_generic,
5759 .rar_set = e1000e_rar_set_generic,
5760 .rar_get_count = e1000e_rar_get_count_generic,
5761 };
5762
5763 static const struct e1000_phy_operations ich8_phy_ops = {
5764 .acquire = e1000_acquire_swflag_ich8lan,
5765 .check_reset_block = e1000_check_reset_block_ich8lan,
5766 .commit = NULL,
5767 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5768 .get_cable_length = e1000e_get_cable_length_igp_2,
5769 .read_reg = e1000e_read_phy_reg_igp,
5770 .release = e1000_release_swflag_ich8lan,
5771 .reset = e1000_phy_hw_reset_ich8lan,
5772 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5773 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5774 .write_reg = e1000e_write_phy_reg_igp,
5775 };
5776
5777 static const struct e1000_nvm_operations ich8_nvm_ops = {
5778 .acquire = e1000_acquire_nvm_ich8lan,
5779 .read = e1000_read_nvm_ich8lan,
5780 .release = e1000_release_nvm_ich8lan,
5781 .reload = e1000e_reload_nvm_generic,
5782 .update = e1000_update_nvm_checksum_ich8lan,
5783 .valid_led_default = e1000_valid_led_default_ich8lan,
5784 .validate = e1000_validate_nvm_checksum_ich8lan,
5785 .write = e1000_write_nvm_ich8lan,
5786 };
5787
5788 static const struct e1000_nvm_operations spt_nvm_ops = {
5789 .acquire = e1000_acquire_nvm_ich8lan,
5790 .release = e1000_release_nvm_ich8lan,
5791 .read = e1000_read_nvm_spt,
5792 .update = e1000_update_nvm_checksum_spt,
5793 .reload = e1000e_reload_nvm_generic,
5794 .valid_led_default = e1000_valid_led_default_ich8lan,
5795 .validate = e1000_validate_nvm_checksum_ich8lan,
5796 .write = e1000_write_nvm_ich8lan,
5797 };
5798
5799 const struct e1000_info e1000_ich8_info = {
5800 .mac = e1000_ich8lan,
5801 .flags = FLAG_HAS_WOL
5802 | FLAG_IS_ICH
5803 | FLAG_HAS_CTRLEXT_ON_LOAD
5804 | FLAG_HAS_AMT
5805 | FLAG_HAS_FLASH
5806 | FLAG_APME_IN_WUC,
5807 .pba = 8,
5808 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5809 .get_variants = e1000_get_variants_ich8lan,
5810 .mac_ops = &ich8_mac_ops,
5811 .phy_ops = &ich8_phy_ops,
5812 .nvm_ops = &ich8_nvm_ops,
5813 };
5814
5815 const struct e1000_info e1000_ich9_info = {
5816 .mac = e1000_ich9lan,
5817 .flags = FLAG_HAS_JUMBO_FRAMES
5818 | FLAG_IS_ICH
5819 | FLAG_HAS_WOL
5820 | FLAG_HAS_CTRLEXT_ON_LOAD
5821 | FLAG_HAS_AMT
5822 | FLAG_HAS_FLASH
5823 | FLAG_APME_IN_WUC,
5824 .pba = 18,
5825 .max_hw_frame_size = DEFAULT_JUMBO,
5826 .get_variants = e1000_get_variants_ich8lan,
5827 .mac_ops = &ich8_mac_ops,
5828 .phy_ops = &ich8_phy_ops,
5829 .nvm_ops = &ich8_nvm_ops,
5830 };
5831
5832 const struct e1000_info e1000_ich10_info = {
5833 .mac = e1000_ich10lan,
5834 .flags = FLAG_HAS_JUMBO_FRAMES
5835 | FLAG_IS_ICH
5836 | FLAG_HAS_WOL
5837 | FLAG_HAS_CTRLEXT_ON_LOAD
5838 | FLAG_HAS_AMT
5839 | FLAG_HAS_FLASH
5840 | FLAG_APME_IN_WUC,
5841 .pba = 18,
5842 .max_hw_frame_size = DEFAULT_JUMBO,
5843 .get_variants = e1000_get_variants_ich8lan,
5844 .mac_ops = &ich8_mac_ops,
5845 .phy_ops = &ich8_phy_ops,
5846 .nvm_ops = &ich8_nvm_ops,
5847 };
5848
5849 const struct e1000_info e1000_pch_info = {
5850 .mac = e1000_pchlan,
5851 .flags = FLAG_IS_ICH
5852 | FLAG_HAS_WOL
5853 | FLAG_HAS_CTRLEXT_ON_LOAD
5854 | FLAG_HAS_AMT
5855 | FLAG_HAS_FLASH
5856 | FLAG_HAS_JUMBO_FRAMES
5857 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5858 | FLAG_APME_IN_WUC,
5859 .flags2 = FLAG2_HAS_PHY_STATS,
5860 .pba = 26,
5861 .max_hw_frame_size = 4096,
5862 .get_variants = e1000_get_variants_ich8lan,
5863 .mac_ops = &ich8_mac_ops,
5864 .phy_ops = &ich8_phy_ops,
5865 .nvm_ops = &ich8_nvm_ops,
5866 };
5867
5868 const struct e1000_info e1000_pch2_info = {
5869 .mac = e1000_pch2lan,
5870 .flags = FLAG_IS_ICH
5871 | FLAG_HAS_WOL
5872 | FLAG_HAS_HW_TIMESTAMP
5873 | FLAG_HAS_CTRLEXT_ON_LOAD
5874 | FLAG_HAS_AMT
5875 | FLAG_HAS_FLASH
5876 | FLAG_HAS_JUMBO_FRAMES
5877 | FLAG_APME_IN_WUC,
5878 .flags2 = FLAG2_HAS_PHY_STATS
5879 | FLAG2_HAS_EEE
5880 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5881 .pba = 26,
5882 .max_hw_frame_size = 9022,
5883 .get_variants = e1000_get_variants_ich8lan,
5884 .mac_ops = &ich8_mac_ops,
5885 .phy_ops = &ich8_phy_ops,
5886 .nvm_ops = &ich8_nvm_ops,
5887 };
5888
5889 const struct e1000_info e1000_pch_lpt_info = {
5890 .mac = e1000_pch_lpt,
5891 .flags = FLAG_IS_ICH
5892 | FLAG_HAS_WOL
5893 | FLAG_HAS_HW_TIMESTAMP
5894 | FLAG_HAS_CTRLEXT_ON_LOAD
5895 | FLAG_HAS_AMT
5896 | FLAG_HAS_FLASH
5897 | FLAG_HAS_JUMBO_FRAMES
5898 | FLAG_APME_IN_WUC,
5899 .flags2 = FLAG2_HAS_PHY_STATS
5900 | FLAG2_HAS_EEE
5901 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5902 .pba = 26,
5903 .max_hw_frame_size = 9022,
5904 .get_variants = e1000_get_variants_ich8lan,
5905 .mac_ops = &ich8_mac_ops,
5906 .phy_ops = &ich8_phy_ops,
5907 .nvm_ops = &ich8_nvm_ops,
5908 };
5909
5910 const struct e1000_info e1000_pch_spt_info = {
5911 .mac = e1000_pch_spt,
5912 .flags = FLAG_IS_ICH
5913 | FLAG_HAS_WOL
5914 | FLAG_HAS_HW_TIMESTAMP
5915 | FLAG_HAS_CTRLEXT_ON_LOAD
5916 | FLAG_HAS_AMT
5917 | FLAG_HAS_FLASH
5918 | FLAG_HAS_JUMBO_FRAMES
5919 | FLAG_APME_IN_WUC,
5920 .flags2 = FLAG2_HAS_PHY_STATS
5921 | FLAG2_HAS_EEE,
5922 .pba = 26,
5923 .max_hw_frame_size = 9022,
5924 .get_variants = e1000_get_variants_ich8lan,
5925 .mac_ops = &ich8_mac_ops,
5926 .phy_ops = &ich8_phy_ops,
5927 .nvm_ops = &spt_nvm_ops,
5928 };
5929
5930 const struct e1000_info e1000_pch_cnp_info = {
5931 .mac = e1000_pch_cnp,
5932 .flags = FLAG_IS_ICH
5933 | FLAG_HAS_WOL
5934 | FLAG_HAS_HW_TIMESTAMP
5935 | FLAG_HAS_CTRLEXT_ON_LOAD
5936 | FLAG_HAS_AMT
5937 | FLAG_HAS_FLASH
5938 | FLAG_HAS_JUMBO_FRAMES
5939 | FLAG_APME_IN_WUC,
5940 .flags2 = FLAG2_HAS_PHY_STATS
5941 | FLAG2_HAS_EEE,
5942 .pba = 26,
5943 .max_hw_frame_size = 9022,
5944 .get_variants = e1000_get_variants_ich8lan,
5945 .mac_ops = &ich8_mac_ops,
5946 .phy_ops = &ich8_phy_ops,
5947 .nvm_ops = &spt_nvm_ops,
5948 };