]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/e1000e/ich8lan.c
e1000e: Increase timeout of polling bit RSPCIPHY
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
57 */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 struct ich8_hsfsts {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
74 } hsf_status;
75 u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 struct ich8_hsflctl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
87 } hsf_ctrl;
88 u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 struct ich8_flracc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
98 } hsf_flregacc;
99 u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 struct ich8_pr {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
111 } range;
112 u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 return readw(hw->flash_address + reg);
162 }
163
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 return readl(hw->flash_address + reg);
167 }
168
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 writew(val, hw->flash_address + reg);
172 }
173
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 writel(val, hw->flash_address + reg);
177 }
178
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
183
184 /**
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
187 *
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
191 *
192 * Assumes the sw/fw/hw semaphore is already acquired.
193 **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 u16 phy_reg = 0;
197 u32 phy_id = 0;
198 s32 ret_val = 0;
199 u16 retry_count;
200 u32 mac_reg = 0;
201
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
205 continue;
206 phy_id = (u32)(phy_reg << 16);
207
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
210 phy_id = 0;
211 continue;
212 }
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 break;
215 }
216
217 if (hw->phy.id) {
218 if (hw->phy.id == phy_id)
219 goto out;
220 } else if (phy_id) {
221 hw->phy.id = phy_id;
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 goto out;
224 }
225
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
228 */
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 if (!ret_val)
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
235 }
236
237 if (ret_val)
238 return false;
239 out:
240 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247
248 /* Unforce SMBus mode in MAC */
249 mac_reg = er32(CTRL_EXT);
250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 ew32(CTRL_EXT, mac_reg);
252 }
253 }
254
255 return true;
256 }
257
258 /**
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
261 *
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
264 **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 u32 mac_reg;
268
269 /* Set Phy Config Counter to 50msec */
270 mac_reg = er32(FEXTNVM3);
271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 ew32(FEXTNVM3, mac_reg);
274
275 /* Toggle LANPHYPC Value bit */
276 mac_reg = er32(CTRL);
277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 ew32(CTRL, mac_reg);
280 e1e_flush();
281 usleep_range(10, 20);
282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 ew32(CTRL, mac_reg);
284 e1e_flush();
285
286 if (hw->mac.type < e1000_pch_lpt) {
287 msleep(50);
288 } else {
289 u16 count = 20;
290
291 do {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294
295 msleep(30);
296 }
297 }
298
299 /**
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
302 *
303 * Workarounds/flow necessary for PHY initialization during driver load
304 * and resume paths.
305 **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 struct e1000_adapter *adapter = hw->adapter;
309 u32 mac_reg, fwsm = er32(FWSM);
310 s32 ret_val;
311
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
314 */
315 e1000_gate_hw_phy_config_ich8lan(hw, true);
316
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
319 */
320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 e1000_disable_ulp_lpt_lp(hw, true);
322
323 ret_val = hw->phy.ops.acquire(hw);
324 if (ret_val) {
325 e_dbg("Failed to initialize PHY flow\n");
326 goto out;
327 }
328
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 */
333 switch (hw->mac.type) {
334 case e1000_pch_lpt:
335 case e1000_pch_spt:
336 if (e1000_phy_is_accessible_pchlan(hw))
337 break;
338
339 /* Before toggling LANPHYPC, see if PHY is accessible by
340 * forcing MAC to SMBus mode first.
341 */
342 mac_reg = er32(CTRL_EXT);
343 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 ew32(CTRL_EXT, mac_reg);
345
346 /* Wait 50 milliseconds for MAC to finish any retries
347 * that it might be trying to perform from previous
348 * attempts to acknowledge any phy read requests.
349 */
350 msleep(50);
351
352 /* fall-through */
353 case e1000_pch2lan:
354 if (e1000_phy_is_accessible_pchlan(hw))
355 break;
356
357 /* fall-through */
358 case e1000_pchlan:
359 if ((hw->mac.type == e1000_pchlan) &&
360 (fwsm & E1000_ICH_FWSM_FW_VALID))
361 break;
362
363 if (hw->phy.ops.check_reset_block(hw)) {
364 e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 ret_val = -E1000_ERR_PHY;
366 break;
367 }
368
369 /* Toggle LANPHYPC Value bit */
370 e1000_toggle_lanphypc_pch_lpt(hw);
371 if (hw->mac.type >= e1000_pch_lpt) {
372 if (e1000_phy_is_accessible_pchlan(hw))
373 break;
374
375 /* Toggling LANPHYPC brings the PHY out of SMBus mode
376 * so ensure that the MAC is also out of SMBus mode
377 */
378 mac_reg = er32(CTRL_EXT);
379 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 ew32(CTRL_EXT, mac_reg);
381
382 if (e1000_phy_is_accessible_pchlan(hw))
383 break;
384
385 ret_val = -E1000_ERR_PHY;
386 }
387 break;
388 default:
389 break;
390 }
391
392 hw->phy.ops.release(hw);
393 if (!ret_val) {
394
395 /* Check to see if able to reset PHY. Print error if not */
396 if (hw->phy.ops.check_reset_block(hw)) {
397 e_err("Reset blocked by ME\n");
398 goto out;
399 }
400
401 /* Reset the PHY before any access to it. Doing so, ensures
402 * that the PHY is in a known good state before we read/write
403 * PHY registers. The generic reset is sufficient here,
404 * because we haven't determined the PHY type yet.
405 */
406 ret_val = e1000e_phy_hw_reset_generic(hw);
407 if (ret_val)
408 goto out;
409
410 /* On a successful reset, possibly need to wait for the PHY
411 * to quiesce to an accessible state before returning control
412 * to the calling function. If the PHY does not quiesce, then
413 * return E1000E_BLK_PHY_RESET, as this is the condition that
414 * the PHY is in.
415 */
416 ret_val = hw->phy.ops.check_reset_block(hw);
417 if (ret_val)
418 e_err("ME blocked access to PHY after reset\n");
419 }
420
421 out:
422 /* Ungate automatic PHY configuration on non-managed 82579 */
423 if ((hw->mac.type == e1000_pch2lan) &&
424 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 usleep_range(10000, 20000);
426 e1000_gate_hw_phy_config_ich8lan(hw, false);
427 }
428
429 return ret_val;
430 }
431
432 /**
433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
434 * @hw: pointer to the HW structure
435 *
436 * Initialize family-specific PHY parameters and function pointers.
437 **/
438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
439 {
440 struct e1000_phy_info *phy = &hw->phy;
441 s32 ret_val;
442
443 phy->addr = 1;
444 phy->reset_delay_us = 100;
445
446 phy->ops.set_page = e1000_set_page_igp;
447 phy->ops.read_reg = e1000_read_phy_reg_hv;
448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 phy->ops.write_reg = e1000_write_phy_reg_hv;
453 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 phy->ops.power_up = e1000_power_up_phy_copper;
456 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458
459 phy->id = e1000_phy_unknown;
460
461 ret_val = e1000_init_phy_workarounds_pchlan(hw);
462 if (ret_val)
463 return ret_val;
464
465 if (phy->id == e1000_phy_unknown)
466 switch (hw->mac.type) {
467 default:
468 ret_val = e1000e_get_phy_id(hw);
469 if (ret_val)
470 return ret_val;
471 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
472 break;
473 /* fall-through */
474 case e1000_pch2lan:
475 case e1000_pch_lpt:
476 case e1000_pch_spt:
477 /* In case the PHY needs to be in mdio slow mode,
478 * set slow mode and try to get the PHY id again.
479 */
480 ret_val = e1000_set_mdio_slow_mode_hv(hw);
481 if (ret_val)
482 return ret_val;
483 ret_val = e1000e_get_phy_id(hw);
484 if (ret_val)
485 return ret_val;
486 break;
487 }
488 phy->type = e1000e_get_phy_type_from_id(phy->id);
489
490 switch (phy->type) {
491 case e1000_phy_82577:
492 case e1000_phy_82579:
493 case e1000_phy_i217:
494 phy->ops.check_polarity = e1000_check_polarity_82577;
495 phy->ops.force_speed_duplex =
496 e1000_phy_force_speed_duplex_82577;
497 phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 phy->ops.get_info = e1000_get_phy_info_82577;
499 phy->ops.commit = e1000e_phy_sw_reset;
500 break;
501 case e1000_phy_82578:
502 phy->ops.check_polarity = e1000_check_polarity_m88;
503 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 phy->ops.get_info = e1000e_get_phy_info_m88;
506 break;
507 default:
508 ret_val = -E1000_ERR_PHY;
509 break;
510 }
511
512 return ret_val;
513 }
514
515 /**
516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517 * @hw: pointer to the HW structure
518 *
519 * Initialize family-specific PHY parameters and function pointers.
520 **/
521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
522 {
523 struct e1000_phy_info *phy = &hw->phy;
524 s32 ret_val;
525 u16 i = 0;
526
527 phy->addr = 1;
528 phy->reset_delay_us = 100;
529
530 phy->ops.power_up = e1000_power_up_phy_copper;
531 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
532
533 /* We may need to do this twice - once for IGP and if that fails,
534 * we'll set BM func pointers and try again
535 */
536 ret_val = e1000e_determine_phy_address(hw);
537 if (ret_val) {
538 phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 ret_val = e1000e_determine_phy_address(hw);
541 if (ret_val) {
542 e_dbg("Cannot determine PHY addr. Erroring out\n");
543 return ret_val;
544 }
545 }
546
547 phy->id = 0;
548 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
549 (i++ < 100)) {
550 usleep_range(1000, 2000);
551 ret_val = e1000e_get_phy_id(hw);
552 if (ret_val)
553 return ret_val;
554 }
555
556 /* Verify phy id */
557 switch (phy->id) {
558 case IGP03E1000_E_PHY_ID:
559 phy->type = e1000_phy_igp_3;
560 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 phy->ops.get_info = e1000e_get_phy_info_igp;
564 phy->ops.check_polarity = e1000_check_polarity_igp;
565 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
566 break;
567 case IFE_E_PHY_ID:
568 case IFE_PLUS_E_PHY_ID:
569 case IFE_C_E_PHY_ID:
570 phy->type = e1000_phy_ife;
571 phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 phy->ops.get_info = e1000_get_phy_info_ife;
573 phy->ops.check_polarity = e1000_check_polarity_ife;
574 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
575 break;
576 case BME1000_E_PHY_ID:
577 phy->type = e1000_phy_bm;
578 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 phy->ops.commit = e1000e_phy_sw_reset;
582 phy->ops.get_info = e1000e_get_phy_info_m88;
583 phy->ops.check_polarity = e1000_check_polarity_m88;
584 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
585 break;
586 default:
587 return -E1000_ERR_PHY;
588 }
589
590 return 0;
591 }
592
593 /**
594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595 * @hw: pointer to the HW structure
596 *
597 * Initialize family-specific NVM parameters and function
598 * pointers.
599 **/
600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
601 {
602 struct e1000_nvm_info *nvm = &hw->nvm;
603 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 u32 gfpreg, sector_base_addr, sector_end_addr;
605 u16 i;
606 u32 nvm_size;
607
608 nvm->type = e1000_nvm_flash_sw;
609
610 if (hw->mac.type == e1000_pch_spt) {
611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 * STRAP register. This is because in SPT the GbE Flash region
613 * is no longer accessed through the flash registers. Instead,
614 * the mechanism has changed, and the Flash region access
615 * registers are now implemented in GbE memory space.
616 */
617 nvm->flash_base_addr = 0;
618 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 * NVM_SIZE_MULTIPLIER;
620 nvm->flash_bank_size = nvm_size / 2;
621 /* Adjust to word count */
622 nvm->flash_bank_size /= sizeof(u16);
623 /* Set the base address for flash register access */
624 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
625 } else {
626 /* Can't read flash registers if register set isn't mapped. */
627 if (!hw->flash_address) {
628 e_dbg("ERROR: Flash registers not mapped\n");
629 return -E1000_ERR_CONFIG;
630 }
631
632 gfpreg = er32flash(ICH_FLASH_GFPREG);
633
634 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 * Add 1 to sector_end_addr since this sector is included in
636 * the overall size.
637 */
638 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
640
641 /* flash_base_addr is byte-aligned */
642 nvm->flash_base_addr = sector_base_addr
643 << FLASH_SECTOR_ADDR_SHIFT;
644
645 /* find total size of the NVM, then cut in half since the total
646 * size represents two separate NVM banks.
647 */
648 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 << FLASH_SECTOR_ADDR_SHIFT);
650 nvm->flash_bank_size /= 2;
651 /* Adjust to word count */
652 nvm->flash_bank_size /= sizeof(u16);
653 }
654
655 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
656
657 /* Clear shadow ram */
658 for (i = 0; i < nvm->word_size; i++) {
659 dev_spec->shadow_ram[i].modified = false;
660 dev_spec->shadow_ram[i].value = 0xFFFF;
661 }
662
663 return 0;
664 }
665
666 /**
667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668 * @hw: pointer to the HW structure
669 *
670 * Initialize family-specific MAC parameters and function
671 * pointers.
672 **/
673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
674 {
675 struct e1000_mac_info *mac = &hw->mac;
676
677 /* Set media type function pointer */
678 hw->phy.media_type = e1000_media_type_copper;
679
680 /* Set mta register count */
681 mac->mta_reg_count = 32;
682 /* Set rar entry count */
683 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 if (mac->type == e1000_ich8lan)
685 mac->rar_entry_count--;
686 /* FWSM register */
687 mac->has_fwsm = true;
688 /* ARC subsystem not supported */
689 mac->arc_subsystem_valid = false;
690 /* Adaptive IFS supported */
691 mac->adaptive_ifs = true;
692
693 /* LED and other operations */
694 switch (mac->type) {
695 case e1000_ich8lan:
696 case e1000_ich9lan:
697 case e1000_ich10lan:
698 /* check management mode */
699 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
700 /* ID LED init */
701 mac->ops.id_led_init = e1000e_id_led_init_generic;
702 /* blink LED */
703 mac->ops.blink_led = e1000e_blink_led_generic;
704 /* setup LED */
705 mac->ops.setup_led = e1000e_setup_led_generic;
706 /* cleanup LED */
707 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 /* turn on/off LED */
709 mac->ops.led_on = e1000_led_on_ich8lan;
710 mac->ops.led_off = e1000_led_off_ich8lan;
711 break;
712 case e1000_pch2lan:
713 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 mac->ops.rar_set = e1000_rar_set_pch2lan;
715 /* fall-through */
716 case e1000_pch_lpt:
717 case e1000_pch_spt:
718 case e1000_pchlan:
719 /* check management mode */
720 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
721 /* ID LED init */
722 mac->ops.id_led_init = e1000_id_led_init_pchlan;
723 /* setup LED */
724 mac->ops.setup_led = e1000_setup_led_pchlan;
725 /* cleanup LED */
726 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 /* turn on/off LED */
728 mac->ops.led_on = e1000_led_on_pchlan;
729 mac->ops.led_off = e1000_led_off_pchlan;
730 break;
731 default:
732 break;
733 }
734
735 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 mac->ops.setup_physical_interface =
739 e1000_setup_copper_link_pch_lpt;
740 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
741 }
742
743 /* Enable PCS Lock-loss workaround for ICH8 */
744 if (mac->type == e1000_ich8lan)
745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
746
747 return 0;
748 }
749
750 /**
751 * __e1000_access_emi_reg_locked - Read/write EMI register
752 * @hw: pointer to the HW structure
753 * @addr: EMI address to program
754 * @data: pointer to value to read/write from/to the EMI address
755 * @read: boolean flag to indicate read or write
756 *
757 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
758 **/
759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 u16 *data, bool read)
761 {
762 s32 ret_val;
763
764 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
765 if (ret_val)
766 return ret_val;
767
768 if (read)
769 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
770 else
771 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
772
773 return ret_val;
774 }
775
776 /**
777 * e1000_read_emi_reg_locked - Read Extended Management Interface register
778 * @hw: pointer to the HW structure
779 * @addr: EMI address to program
780 * @data: value to be read from the EMI address
781 *
782 * Assumes the SW/FW/HW Semaphore is already acquired.
783 **/
784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
785 {
786 return __e1000_access_emi_reg_locked(hw, addr, data, true);
787 }
788
789 /**
790 * e1000_write_emi_reg_locked - Write Extended Management Interface register
791 * @hw: pointer to the HW structure
792 * @addr: EMI address to program
793 * @data: value to be written to the EMI address
794 *
795 * Assumes the SW/FW/HW Semaphore is already acquired.
796 **/
797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
798 {
799 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
800 }
801
802 /**
803 * e1000_set_eee_pchlan - Enable/disable EEE support
804 * @hw: pointer to the HW structure
805 *
806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
807 * the link and the EEE capabilities of the link partner. The LPI Control
808 * register bits will remain set only if/when link is up.
809 *
810 * EEE LPI must not be asserted earlier than one second after link is up.
811 * On 82579, EEE LPI should not be enabled until such time otherwise there
812 * can be link issues with some switches. Other devices can have EEE LPI
813 * enabled immediately upon link up since they have a timer in hardware which
814 * prevents LPI from being asserted too early.
815 **/
816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
817 {
818 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
819 s32 ret_val;
820 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
821
822 switch (hw->phy.type) {
823 case e1000_phy_82579:
824 lpa = I82579_EEE_LP_ABILITY;
825 pcs_status = I82579_EEE_PCS_STATUS;
826 adv_addr = I82579_EEE_ADVERTISEMENT;
827 break;
828 case e1000_phy_i217:
829 lpa = I217_EEE_LP_ABILITY;
830 pcs_status = I217_EEE_PCS_STATUS;
831 adv_addr = I217_EEE_ADVERTISEMENT;
832 break;
833 default:
834 return 0;
835 }
836
837 ret_val = hw->phy.ops.acquire(hw);
838 if (ret_val)
839 return ret_val;
840
841 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
842 if (ret_val)
843 goto release;
844
845 /* Clear bits that enable EEE in various speeds */
846 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
847
848 /* Enable EEE if not disabled by user */
849 if (!dev_spec->eee_disable) {
850 /* Save off link partner's EEE ability */
851 ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 &dev_spec->eee_lp_ability);
853 if (ret_val)
854 goto release;
855
856 /* Read EEE advertisement */
857 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
858 if (ret_val)
859 goto release;
860
861 /* Enable EEE only for speeds in which the link partner is
862 * EEE capable and for which we advertise EEE.
863 */
864 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
866
867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 e1e_rphy_locked(hw, MII_LPA, &data);
869 if (data & LPA_100FULL)
870 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
871 else
872 /* EEE is not supported in 100Half, so ignore
873 * partner's EEE in 100 ability if full-duplex
874 * is not advertised.
875 */
876 dev_spec->eee_lp_ability &=
877 ~I82579_EEE_100_SUPPORTED;
878 }
879 }
880
881 if (hw->phy.type == e1000_phy_82579) {
882 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
883 &data);
884 if (ret_val)
885 goto release;
886
887 data &= ~I82579_LPI_100_PLL_SHUT;
888 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
889 data);
890 }
891
892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
894 if (ret_val)
895 goto release;
896
897 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
898 release:
899 hw->phy.ops.release(hw);
900
901 return ret_val;
902 }
903
904 /**
905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906 * @hw: pointer to the HW structure
907 * @link: link up bool flag
908 *
909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910 * preventing further DMA write requests. Workaround the issue by disabling
911 * the de-assertion of the clock request when in 1Gpbs mode.
912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913 * speeds in order to avoid Tx hangs.
914 **/
915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
916 {
917 u32 fextnvm6 = er32(FEXTNVM6);
918 u32 status = er32(STATUS);
919 s32 ret_val = 0;
920 u16 reg;
921
922 if (link && (status & E1000_STATUS_SPEED_1000)) {
923 ret_val = hw->phy.ops.acquire(hw);
924 if (ret_val)
925 return ret_val;
926
927 ret_val =
928 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
929 &reg);
930 if (ret_val)
931 goto release;
932
933 ret_val =
934 e1000e_write_kmrn_reg_locked(hw,
935 E1000_KMRNCTRLSTA_K1_CONFIG,
936 reg &
937 ~E1000_KMRNCTRLSTA_K1_ENABLE);
938 if (ret_val)
939 goto release;
940
941 usleep_range(10, 20);
942
943 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
944
945 ret_val =
946 e1000e_write_kmrn_reg_locked(hw,
947 E1000_KMRNCTRLSTA_K1_CONFIG,
948 reg);
949 release:
950 hw->phy.ops.release(hw);
951 } else {
952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
954
955 if ((hw->phy.revision > 5) || !link ||
956 ((status & E1000_STATUS_SPEED_100) &&
957 (status & E1000_STATUS_FD)))
958 goto update_fextnvm6;
959
960 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
961 if (ret_val)
962 return ret_val;
963
964 /* Clear link status transmit timeout */
965 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
966
967 if (status & E1000_STATUS_SPEED_100) {
968 /* Set inband Tx timeout to 5x10us for 100Half */
969 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
970
971 /* Do not extend the K1 entry latency for 100Half */
972 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 } else {
974 /* Set inband Tx timeout to 50x10us for 10Full/Half */
975 reg |= 50 <<
976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
977
978 /* Extend the K1 entry latency for 10 Mbps */
979 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
980 }
981
982 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
983 if (ret_val)
984 return ret_val;
985
986 update_fextnvm6:
987 ew32(FEXTNVM6, fextnvm6);
988 }
989
990 return ret_val;
991 }
992
993 /**
994 * e1000_platform_pm_pch_lpt - Set platform power management values
995 * @hw: pointer to the HW structure
996 * @link: bool indicating link status
997 *
998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 * when link is up (which must not exceed the maximum latency supported
1001 * by the platform), otherwise specify there is no LTR requirement.
1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 * Capability register set, on this device LTR is set by writing the
1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 * message to the PMC.
1008 **/
1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010 {
1011 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 u16 lat_enc = 0; /* latency encoded */
1014
1015 if (link) {
1016 u16 speed, duplex, scale = 0;
1017 u16 max_snoop, max_nosnoop;
1018 u16 max_ltr_enc; /* max LTR latency encoded */
1019 u64 value;
1020 u32 rxa;
1021
1022 if (!hw->adapter->max_frame_size) {
1023 e_dbg("max_frame_size not set.\n");
1024 return -E1000_ERR_CONFIG;
1025 }
1026
1027 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028 if (!speed) {
1029 e_dbg("Speed not set.\n");
1030 return -E1000_ERR_CONFIG;
1031 }
1032
1033 /* Rx Packet Buffer Allocation size (KB) */
1034 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035
1036 /* Determine the maximum latency tolerated by the device.
1037 *
1038 * Per the PCIe spec, the tolerated latencies are encoded as
1039 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1042 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043 */
1044 rxa *= 512;
1045 value = (rxa > hw->adapter->max_frame_size) ?
1046 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047 0;
1048
1049 while (value > PCI_LTR_VALUE_MASK) {
1050 scale++;
1051 value = DIV_ROUND_UP(value, (1 << 5));
1052 }
1053 if (scale > E1000_LTRV_SCALE_MAX) {
1054 e_dbg("Invalid LTR latency scale %d\n", scale);
1055 return -E1000_ERR_CONFIG;
1056 }
1057 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058
1059 /* Determine the maximum latency tolerated by the platform */
1060 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061 &max_snoop);
1062 pci_read_config_word(hw->adapter->pdev,
1063 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065
1066 if (lat_enc > max_ltr_enc)
1067 lat_enc = max_ltr_enc;
1068 }
1069
1070 /* Set Snoop and No-Snoop latencies the same */
1071 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072 ew32(LTRV, reg);
1073
1074 return 0;
1075 }
1076
1077 /**
1078 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 * @hw: pointer to the HW structure
1080 * @to_sx: boolean indicating a system power state transition to Sx
1081 *
1082 * When link is down, configure ULP mode to significantly reduce the power
1083 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1084 * ME firmware to start the ULP configuration. If not on an ME enabled
1085 * system, configure the ULP mode by software.
1086 */
1087 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088 {
1089 u32 mac_reg;
1090 s32 ret_val = 0;
1091 u16 phy_reg;
1092 u16 oem_reg = 0;
1093
1094 if ((hw->mac.type < e1000_pch_lpt) ||
1095 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100 return 0;
1101
1102 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103 /* Request ME configure ULP mode in the PHY */
1104 mac_reg = er32(H2ME);
1105 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106 ew32(H2ME, mac_reg);
1107
1108 goto out;
1109 }
1110
1111 if (!to_sx) {
1112 int i = 0;
1113
1114 /* Poll up to 5 seconds for Cable Disconnected indication */
1115 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116 /* Bail if link is re-acquired */
1117 if (er32(STATUS) & E1000_STATUS_LU)
1118 return -E1000_ERR_PHY;
1119
1120 if (i++ == 100)
1121 break;
1122
1123 msleep(50);
1124 }
1125 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126 (er32(FEXT) &
1127 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128 }
1129
1130 ret_val = hw->phy.ops.acquire(hw);
1131 if (ret_val)
1132 goto out;
1133
1134 /* Force SMBus mode in PHY */
1135 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136 if (ret_val)
1137 goto release;
1138 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140
1141 /* Force SMBus mode in MAC */
1142 mac_reg = er32(CTRL_EXT);
1143 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144 ew32(CTRL_EXT, mac_reg);
1145
1146 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1147 * LPLU and disable Gig speed when entering ULP
1148 */
1149 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151 &oem_reg);
1152 if (ret_val)
1153 goto release;
1154
1155 phy_reg = oem_reg;
1156 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157
1158 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159 phy_reg);
1160
1161 if (ret_val)
1162 goto release;
1163 }
1164
1165 /* Set Inband ULP Exit, Reset to SMBus mode and
1166 * Disable SMBus Release on PERST# in PHY
1167 */
1168 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169 if (ret_val)
1170 goto release;
1171 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173 if (to_sx) {
1174 if (er32(WUFC) & E1000_WUFC_LNKC)
1175 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176 else
1177 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178
1179 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181 } else {
1182 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185 }
1186 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187
1188 /* Set Disable SMBus Release on PERST# in MAC */
1189 mac_reg = er32(FEXTNVM7);
1190 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191 ew32(FEXTNVM7, mac_reg);
1192
1193 /* Commit ULP changes in PHY by starting auto ULP configuration */
1194 phy_reg |= I218_ULP_CONFIG1_START;
1195 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196
1197 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200 oem_reg);
1201 if (ret_val)
1202 goto release;
1203 }
1204
1205 release:
1206 hw->phy.ops.release(hw);
1207 out:
1208 if (ret_val)
1209 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210 else
1211 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212
1213 return ret_val;
1214 }
1215
1216 /**
1217 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 * @hw: pointer to the HW structure
1219 * @force: boolean indicating whether or not to force disabling ULP
1220 *
1221 * Un-configure ULP mode when link is up, the system is transitioned from
1222 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1223 * system, poll for an indication from ME that ULP has been un-configured.
1224 * If not on an ME enabled system, un-configure the ULP mode by software.
1225 *
1226 * During nominal operation, this function is called when link is acquired
1227 * to disable ULP mode (force=false); otherwise, for example when unloading
1228 * the driver or during Sx->S0 transitions, this is called with force=true
1229 * to forcibly disable ULP.
1230 */
1231 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232 {
1233 s32 ret_val = 0;
1234 u32 mac_reg;
1235 u16 phy_reg;
1236 int i = 0;
1237
1238 if ((hw->mac.type < e1000_pch_lpt) ||
1239 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244 return 0;
1245
1246 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247 if (force) {
1248 /* Request ME un-configure ULP mode in the PHY */
1249 mac_reg = er32(H2ME);
1250 mac_reg &= ~E1000_H2ME_ULP;
1251 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252 ew32(H2ME, mac_reg);
1253 }
1254
1255 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1256 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257 if (i++ == 10) {
1258 ret_val = -E1000_ERR_PHY;
1259 goto out;
1260 }
1261
1262 usleep_range(10000, 20000);
1263 }
1264 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1265
1266 if (force) {
1267 mac_reg = er32(H2ME);
1268 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269 ew32(H2ME, mac_reg);
1270 } else {
1271 /* Clear H2ME.ULP after ME ULP configuration */
1272 mac_reg = er32(H2ME);
1273 mac_reg &= ~E1000_H2ME_ULP;
1274 ew32(H2ME, mac_reg);
1275 }
1276
1277 goto out;
1278 }
1279
1280 ret_val = hw->phy.ops.acquire(hw);
1281 if (ret_val)
1282 goto out;
1283
1284 if (force)
1285 /* Toggle LANPHYPC Value bit */
1286 e1000_toggle_lanphypc_pch_lpt(hw);
1287
1288 /* Unforce SMBus mode in PHY */
1289 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290 if (ret_val) {
1291 /* The MAC might be in PCIe mode, so temporarily force to
1292 * SMBus mode in order to access the PHY.
1293 */
1294 mac_reg = er32(CTRL_EXT);
1295 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296 ew32(CTRL_EXT, mac_reg);
1297
1298 msleep(50);
1299
1300 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301 &phy_reg);
1302 if (ret_val)
1303 goto release;
1304 }
1305 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307
1308 /* Unforce SMBus mode in MAC */
1309 mac_reg = er32(CTRL_EXT);
1310 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311 ew32(CTRL_EXT, mac_reg);
1312
1313 /* When ULP mode was previously entered, K1 was disabled by the
1314 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1315 */
1316 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317 if (ret_val)
1318 goto release;
1319 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321
1322 /* Clear ULP enabled configuration */
1323 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324 if (ret_val)
1325 goto release;
1326 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327 I218_ULP_CONFIG1_STICKY_ULP |
1328 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329 I218_ULP_CONFIG1_WOL_HOST |
1330 I218_ULP_CONFIG1_INBAND_EXIT |
1331 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1332 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1333
1334 /* Commit ULP changes by starting auto ULP configuration */
1335 phy_reg |= I218_ULP_CONFIG1_START;
1336 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1337
1338 /* Clear Disable SMBus Release on PERST# in MAC */
1339 mac_reg = er32(FEXTNVM7);
1340 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1341 ew32(FEXTNVM7, mac_reg);
1342
1343 release:
1344 hw->phy.ops.release(hw);
1345 if (force) {
1346 e1000_phy_hw_reset(hw);
1347 msleep(50);
1348 }
1349 out:
1350 if (ret_val)
1351 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1352 else
1353 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1354
1355 return ret_val;
1356 }
1357
1358 /**
1359 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1360 * @hw: pointer to the HW structure
1361 *
1362 * Checks to see of the link status of the hardware has changed. If a
1363 * change in link status has been detected, then we read the PHY registers
1364 * to get the current speed/duplex if link exists.
1365 **/
1366 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1367 {
1368 struct e1000_mac_info *mac = &hw->mac;
1369 s32 ret_val, tipg_reg = 0;
1370 u16 emi_addr, emi_val = 0;
1371 bool link;
1372 u16 phy_reg;
1373
1374 /* We only want to go out to the PHY registers to see if Auto-Neg
1375 * has completed and/or if our link status has changed. The
1376 * get_link_status flag is set upon receiving a Link Status
1377 * Change or Rx Sequence Error interrupt.
1378 */
1379 if (!mac->get_link_status)
1380 return 0;
1381
1382 /* First we want to see if the MII Status Register reports
1383 * link. If so, then we want to get the current speed/duplex
1384 * of the PHY.
1385 */
1386 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1387 if (ret_val)
1388 return ret_val;
1389
1390 if (hw->mac.type == e1000_pchlan) {
1391 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1392 if (ret_val)
1393 return ret_val;
1394 }
1395
1396 /* When connected at 10Mbps half-duplex, some parts are excessively
1397 * aggressive resulting in many collisions. To avoid this, increase
1398 * the IPG and reduce Rx latency in the PHY.
1399 */
1400 if (((hw->mac.type == e1000_pch2lan) ||
1401 (hw->mac.type == e1000_pch_lpt) ||
1402 (hw->mac.type == e1000_pch_spt)) && link) {
1403 u16 speed, duplex;
1404
1405 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1406 tipg_reg = er32(TIPG);
1407 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1408
1409 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1410 tipg_reg |= 0xFF;
1411 /* Reduce Rx latency in analog PHY */
1412 emi_val = 0;
1413 } else if (hw->mac.type == e1000_pch_spt &&
1414 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1415 tipg_reg |= 0xC;
1416 emi_val = 1;
1417 } else {
1418
1419 /* Roll back the default values */
1420 tipg_reg |= 0x08;
1421 emi_val = 1;
1422 }
1423
1424 ew32(TIPG, tipg_reg);
1425
1426 ret_val = hw->phy.ops.acquire(hw);
1427 if (ret_val)
1428 return ret_val;
1429
1430 if (hw->mac.type == e1000_pch2lan)
1431 emi_addr = I82579_RX_CONFIG;
1432 else
1433 emi_addr = I217_RX_CONFIG;
1434 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1435
1436 hw->phy.ops.release(hw);
1437
1438 if (ret_val)
1439 return ret_val;
1440
1441 if (hw->mac.type == e1000_pch_spt) {
1442 u16 data;
1443 u16 ptr_gap;
1444
1445 if (speed == SPEED_1000) {
1446 ret_val = hw->phy.ops.acquire(hw);
1447 if (ret_val)
1448 return ret_val;
1449
1450 ret_val = e1e_rphy_locked(hw,
1451 PHY_REG(776, 20),
1452 &data);
1453 if (ret_val) {
1454 hw->phy.ops.release(hw);
1455 return ret_val;
1456 }
1457
1458 ptr_gap = (data & (0x3FF << 2)) >> 2;
1459 if (ptr_gap < 0x18) {
1460 data &= ~(0x3FF << 2);
1461 data |= (0x18 << 2);
1462 ret_val =
1463 e1e_wphy_locked(hw,
1464 PHY_REG(776, 20),
1465 data);
1466 }
1467 hw->phy.ops.release(hw);
1468 if (ret_val)
1469 return ret_val;
1470 }
1471 }
1472 }
1473
1474 /* I217 Packet Loss issue:
1475 * ensure that FEXTNVM4 Beacon Duration is set correctly
1476 * on power up.
1477 * Set the Beacon Duration for I217 to 8 usec
1478 */
1479 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1480 u32 mac_reg;
1481
1482 mac_reg = er32(FEXTNVM4);
1483 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1484 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1485 ew32(FEXTNVM4, mac_reg);
1486 }
1487
1488 /* Work-around I218 hang issue */
1489 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1490 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1491 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1492 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1493 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1494 if (ret_val)
1495 return ret_val;
1496 }
1497 if ((hw->mac.type == e1000_pch_lpt) ||
1498 (hw->mac.type == e1000_pch_spt)) {
1499 /* Set platform power management values for
1500 * Latency Tolerance Reporting (LTR)
1501 */
1502 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1503 if (ret_val)
1504 return ret_val;
1505 }
1506
1507 /* Clear link partner's EEE ability */
1508 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1509
1510 /* FEXTNVM6 K1-off workaround */
1511 if (hw->mac.type == e1000_pch_spt) {
1512 u32 pcieanacfg = er32(PCIEANACFG);
1513 u32 fextnvm6 = er32(FEXTNVM6);
1514
1515 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1516 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1517 else
1518 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1519
1520 ew32(FEXTNVM6, fextnvm6);
1521 }
1522
1523 if (!link)
1524 return 0; /* No link detected */
1525
1526 mac->get_link_status = false;
1527
1528 switch (hw->mac.type) {
1529 case e1000_pch2lan:
1530 ret_val = e1000_k1_workaround_lv(hw);
1531 if (ret_val)
1532 return ret_val;
1533 /* fall-thru */
1534 case e1000_pchlan:
1535 if (hw->phy.type == e1000_phy_82578) {
1536 ret_val = e1000_link_stall_workaround_hv(hw);
1537 if (ret_val)
1538 return ret_val;
1539 }
1540
1541 /* Workaround for PCHx parts in half-duplex:
1542 * Set the number of preambles removed from the packet
1543 * when it is passed from the PHY to the MAC to prevent
1544 * the MAC from misinterpreting the packet type.
1545 */
1546 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1547 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1548
1549 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1550 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1551
1552 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1553 break;
1554 default:
1555 break;
1556 }
1557
1558 /* Check if there was DownShift, must be checked
1559 * immediately after link-up
1560 */
1561 e1000e_check_downshift(hw);
1562
1563 /* Enable/Disable EEE after link up */
1564 if (hw->phy.type > e1000_phy_82579) {
1565 ret_val = e1000_set_eee_pchlan(hw);
1566 if (ret_val)
1567 return ret_val;
1568 }
1569
1570 /* If we are forcing speed/duplex, then we simply return since
1571 * we have already determined whether we have link or not.
1572 */
1573 if (!mac->autoneg)
1574 return -E1000_ERR_CONFIG;
1575
1576 /* Auto-Neg is enabled. Auto Speed Detection takes care
1577 * of MAC speed/duplex configuration. So we only need to
1578 * configure Collision Distance in the MAC.
1579 */
1580 mac->ops.config_collision_dist(hw);
1581
1582 /* Configure Flow Control now that Auto-Neg has completed.
1583 * First, we need to restore the desired flow control
1584 * settings because we may have had to re-autoneg with a
1585 * different link partner.
1586 */
1587 ret_val = e1000e_config_fc_after_link_up(hw);
1588 if (ret_val)
1589 e_dbg("Error configuring flow control\n");
1590
1591 return ret_val;
1592 }
1593
1594 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1595 {
1596 struct e1000_hw *hw = &adapter->hw;
1597 s32 rc;
1598
1599 rc = e1000_init_mac_params_ich8lan(hw);
1600 if (rc)
1601 return rc;
1602
1603 rc = e1000_init_nvm_params_ich8lan(hw);
1604 if (rc)
1605 return rc;
1606
1607 switch (hw->mac.type) {
1608 case e1000_ich8lan:
1609 case e1000_ich9lan:
1610 case e1000_ich10lan:
1611 rc = e1000_init_phy_params_ich8lan(hw);
1612 break;
1613 case e1000_pchlan:
1614 case e1000_pch2lan:
1615 case e1000_pch_lpt:
1616 case e1000_pch_spt:
1617 rc = e1000_init_phy_params_pchlan(hw);
1618 break;
1619 default:
1620 break;
1621 }
1622 if (rc)
1623 return rc;
1624
1625 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1626 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1627 */
1628 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1629 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1630 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1631 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1632 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1633
1634 hw->mac.ops.blink_led = NULL;
1635 }
1636
1637 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1638 (adapter->hw.phy.type != e1000_phy_ife))
1639 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1640
1641 /* Enable workaround for 82579 w/ ME enabled */
1642 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1643 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1644 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1645
1646 return 0;
1647 }
1648
1649 static DEFINE_MUTEX(nvm_mutex);
1650
1651 /**
1652 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1653 * @hw: pointer to the HW structure
1654 *
1655 * Acquires the mutex for performing NVM operations.
1656 **/
1657 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1658 {
1659 mutex_lock(&nvm_mutex);
1660
1661 return 0;
1662 }
1663
1664 /**
1665 * e1000_release_nvm_ich8lan - Release NVM mutex
1666 * @hw: pointer to the HW structure
1667 *
1668 * Releases the mutex used while performing NVM operations.
1669 **/
1670 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1671 {
1672 mutex_unlock(&nvm_mutex);
1673 }
1674
1675 /**
1676 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1677 * @hw: pointer to the HW structure
1678 *
1679 * Acquires the software control flag for performing PHY and select
1680 * MAC CSR accesses.
1681 **/
1682 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1683 {
1684 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1685 s32 ret_val = 0;
1686
1687 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1688 &hw->adapter->state)) {
1689 e_dbg("contention for Phy access\n");
1690 return -E1000_ERR_PHY;
1691 }
1692
1693 while (timeout) {
1694 extcnf_ctrl = er32(EXTCNF_CTRL);
1695 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1696 break;
1697
1698 mdelay(1);
1699 timeout--;
1700 }
1701
1702 if (!timeout) {
1703 e_dbg("SW has already locked the resource.\n");
1704 ret_val = -E1000_ERR_CONFIG;
1705 goto out;
1706 }
1707
1708 timeout = SW_FLAG_TIMEOUT;
1709
1710 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1711 ew32(EXTCNF_CTRL, extcnf_ctrl);
1712
1713 while (timeout) {
1714 extcnf_ctrl = er32(EXTCNF_CTRL);
1715 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1716 break;
1717
1718 mdelay(1);
1719 timeout--;
1720 }
1721
1722 if (!timeout) {
1723 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1724 er32(FWSM), extcnf_ctrl);
1725 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1726 ew32(EXTCNF_CTRL, extcnf_ctrl);
1727 ret_val = -E1000_ERR_CONFIG;
1728 goto out;
1729 }
1730
1731 out:
1732 if (ret_val)
1733 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1734
1735 return ret_val;
1736 }
1737
1738 /**
1739 * e1000_release_swflag_ich8lan - Release software control flag
1740 * @hw: pointer to the HW structure
1741 *
1742 * Releases the software control flag for performing PHY and select
1743 * MAC CSR accesses.
1744 **/
1745 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1746 {
1747 u32 extcnf_ctrl;
1748
1749 extcnf_ctrl = er32(EXTCNF_CTRL);
1750
1751 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1752 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1753 ew32(EXTCNF_CTRL, extcnf_ctrl);
1754 } else {
1755 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1756 }
1757
1758 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1759 }
1760
1761 /**
1762 * e1000_check_mng_mode_ich8lan - Checks management mode
1763 * @hw: pointer to the HW structure
1764 *
1765 * This checks if the adapter has any manageability enabled.
1766 * This is a function pointer entry point only called by read/write
1767 * routines for the PHY and NVM parts.
1768 **/
1769 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1770 {
1771 u32 fwsm;
1772
1773 fwsm = er32(FWSM);
1774 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1775 ((fwsm & E1000_FWSM_MODE_MASK) ==
1776 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1777 }
1778
1779 /**
1780 * e1000_check_mng_mode_pchlan - Checks management mode
1781 * @hw: pointer to the HW structure
1782 *
1783 * This checks if the adapter has iAMT enabled.
1784 * This is a function pointer entry point only called by read/write
1785 * routines for the PHY and NVM parts.
1786 **/
1787 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1788 {
1789 u32 fwsm;
1790
1791 fwsm = er32(FWSM);
1792 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1793 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1794 }
1795
1796 /**
1797 * e1000_rar_set_pch2lan - Set receive address register
1798 * @hw: pointer to the HW structure
1799 * @addr: pointer to the receive address
1800 * @index: receive address array register
1801 *
1802 * Sets the receive address array register at index to the address passed
1803 * in by addr. For 82579, RAR[0] is the base address register that is to
1804 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1805 * Use SHRA[0-3] in place of those reserved for ME.
1806 **/
1807 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1808 {
1809 u32 rar_low, rar_high;
1810
1811 /* HW expects these in little endian so we reverse the byte order
1812 * from network order (big endian) to little endian
1813 */
1814 rar_low = ((u32)addr[0] |
1815 ((u32)addr[1] << 8) |
1816 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1817
1818 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1819
1820 /* If MAC address zero, no need to set the AV bit */
1821 if (rar_low || rar_high)
1822 rar_high |= E1000_RAH_AV;
1823
1824 if (index == 0) {
1825 ew32(RAL(index), rar_low);
1826 e1e_flush();
1827 ew32(RAH(index), rar_high);
1828 e1e_flush();
1829 return 0;
1830 }
1831
1832 /* RAR[1-6] are owned by manageability. Skip those and program the
1833 * next address into the SHRA register array.
1834 */
1835 if (index < (u32)(hw->mac.rar_entry_count)) {
1836 s32 ret_val;
1837
1838 ret_val = e1000_acquire_swflag_ich8lan(hw);
1839 if (ret_val)
1840 goto out;
1841
1842 ew32(SHRAL(index - 1), rar_low);
1843 e1e_flush();
1844 ew32(SHRAH(index - 1), rar_high);
1845 e1e_flush();
1846
1847 e1000_release_swflag_ich8lan(hw);
1848
1849 /* verify the register updates */
1850 if ((er32(SHRAL(index - 1)) == rar_low) &&
1851 (er32(SHRAH(index - 1)) == rar_high))
1852 return 0;
1853
1854 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1855 (index - 1), er32(FWSM));
1856 }
1857
1858 out:
1859 e_dbg("Failed to write receive address at index %d\n", index);
1860 return -E1000_ERR_CONFIG;
1861 }
1862
1863 /**
1864 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1865 * @hw: pointer to the HW structure
1866 *
1867 * Get the number of available receive registers that the Host can
1868 * program. SHRA[0-10] are the shared receive address registers
1869 * that are shared between the Host and manageability engine (ME).
1870 * ME can reserve any number of addresses and the host needs to be
1871 * able to tell how many available registers it has access to.
1872 **/
1873 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1874 {
1875 u32 wlock_mac;
1876 u32 num_entries;
1877
1878 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1879 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1880
1881 switch (wlock_mac) {
1882 case 0:
1883 /* All SHRA[0..10] and RAR[0] available */
1884 num_entries = hw->mac.rar_entry_count;
1885 break;
1886 case 1:
1887 /* Only RAR[0] available */
1888 num_entries = 1;
1889 break;
1890 default:
1891 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1892 num_entries = wlock_mac + 1;
1893 break;
1894 }
1895
1896 return num_entries;
1897 }
1898
1899 /**
1900 * e1000_rar_set_pch_lpt - Set receive address registers
1901 * @hw: pointer to the HW structure
1902 * @addr: pointer to the receive address
1903 * @index: receive address array register
1904 *
1905 * Sets the receive address register array at index to the address passed
1906 * in by addr. For LPT, RAR[0] is the base address register that is to
1907 * contain the MAC address. SHRA[0-10] are the shared receive address
1908 * registers that are shared between the Host and manageability engine (ME).
1909 **/
1910 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1911 {
1912 u32 rar_low, rar_high;
1913 u32 wlock_mac;
1914
1915 /* HW expects these in little endian so we reverse the byte order
1916 * from network order (big endian) to little endian
1917 */
1918 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1919 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1920
1921 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1922
1923 /* If MAC address zero, no need to set the AV bit */
1924 if (rar_low || rar_high)
1925 rar_high |= E1000_RAH_AV;
1926
1927 if (index == 0) {
1928 ew32(RAL(index), rar_low);
1929 e1e_flush();
1930 ew32(RAH(index), rar_high);
1931 e1e_flush();
1932 return 0;
1933 }
1934
1935 /* The manageability engine (ME) can lock certain SHRAR registers that
1936 * it is using - those registers are unavailable for use.
1937 */
1938 if (index < hw->mac.rar_entry_count) {
1939 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1940 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1941
1942 /* Check if all SHRAR registers are locked */
1943 if (wlock_mac == 1)
1944 goto out;
1945
1946 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1947 s32 ret_val;
1948
1949 ret_val = e1000_acquire_swflag_ich8lan(hw);
1950
1951 if (ret_val)
1952 goto out;
1953
1954 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1955 e1e_flush();
1956 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1957 e1e_flush();
1958
1959 e1000_release_swflag_ich8lan(hw);
1960
1961 /* verify the register updates */
1962 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1963 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1964 return 0;
1965 }
1966 }
1967
1968 out:
1969 e_dbg("Failed to write receive address at index %d\n", index);
1970 return -E1000_ERR_CONFIG;
1971 }
1972
1973 /**
1974 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1975 * @hw: pointer to the HW structure
1976 *
1977 * Checks if firmware is blocking the reset of the PHY.
1978 * This is a function pointer entry point only called by
1979 * reset routines.
1980 **/
1981 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1982 {
1983 bool blocked = false;
1984 int i = 0;
1985
1986 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1987 (i++ < 30))
1988 usleep_range(10000, 20000);
1989 return blocked ? E1000_BLK_PHY_RESET : 0;
1990 }
1991
1992 /**
1993 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1994 * @hw: pointer to the HW structure
1995 *
1996 * Assumes semaphore already acquired.
1997 *
1998 **/
1999 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2000 {
2001 u16 phy_data;
2002 u32 strap = er32(STRAP);
2003 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2004 E1000_STRAP_SMT_FREQ_SHIFT;
2005 s32 ret_val;
2006
2007 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2008
2009 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2010 if (ret_val)
2011 return ret_val;
2012
2013 phy_data &= ~HV_SMB_ADDR_MASK;
2014 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2015 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2016
2017 if (hw->phy.type == e1000_phy_i217) {
2018 /* Restore SMBus frequency */
2019 if (freq--) {
2020 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2021 phy_data |= (freq & (1 << 0)) <<
2022 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2023 phy_data |= (freq & (1 << 1)) <<
2024 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2025 } else {
2026 e_dbg("Unsupported SMB frequency in PHY\n");
2027 }
2028 }
2029
2030 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2031 }
2032
2033 /**
2034 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2035 * @hw: pointer to the HW structure
2036 *
2037 * SW should configure the LCD from the NVM extended configuration region
2038 * as a workaround for certain parts.
2039 **/
2040 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2041 {
2042 struct e1000_phy_info *phy = &hw->phy;
2043 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2044 s32 ret_val = 0;
2045 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2046
2047 /* Initialize the PHY from the NVM on ICH platforms. This
2048 * is needed due to an issue where the NVM configuration is
2049 * not properly autoloaded after power transitions.
2050 * Therefore, after each PHY reset, we will load the
2051 * configuration data out of the NVM manually.
2052 */
2053 switch (hw->mac.type) {
2054 case e1000_ich8lan:
2055 if (phy->type != e1000_phy_igp_3)
2056 return ret_val;
2057
2058 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2059 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2060 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2061 break;
2062 }
2063 /* Fall-thru */
2064 case e1000_pchlan:
2065 case e1000_pch2lan:
2066 case e1000_pch_lpt:
2067 case e1000_pch_spt:
2068 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2069 break;
2070 default:
2071 return ret_val;
2072 }
2073
2074 ret_val = hw->phy.ops.acquire(hw);
2075 if (ret_val)
2076 return ret_val;
2077
2078 data = er32(FEXTNVM);
2079 if (!(data & sw_cfg_mask))
2080 goto release;
2081
2082 /* Make sure HW does not configure LCD from PHY
2083 * extended configuration before SW configuration
2084 */
2085 data = er32(EXTCNF_CTRL);
2086 if ((hw->mac.type < e1000_pch2lan) &&
2087 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2088 goto release;
2089
2090 cnf_size = er32(EXTCNF_SIZE);
2091 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2092 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2093 if (!cnf_size)
2094 goto release;
2095
2096 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2097 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2098
2099 if (((hw->mac.type == e1000_pchlan) &&
2100 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2101 (hw->mac.type > e1000_pchlan)) {
2102 /* HW configures the SMBus address and LEDs when the
2103 * OEM and LCD Write Enable bits are set in the NVM.
2104 * When both NVM bits are cleared, SW will configure
2105 * them instead.
2106 */
2107 ret_val = e1000_write_smbus_addr(hw);
2108 if (ret_val)
2109 goto release;
2110
2111 data = er32(LEDCTL);
2112 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2113 (u16)data);
2114 if (ret_val)
2115 goto release;
2116 }
2117
2118 /* Configure LCD from extended configuration region. */
2119
2120 /* cnf_base_addr is in DWORD */
2121 word_addr = (u16)(cnf_base_addr << 1);
2122
2123 for (i = 0; i < cnf_size; i++) {
2124 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2125 if (ret_val)
2126 goto release;
2127
2128 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2129 1, &reg_addr);
2130 if (ret_val)
2131 goto release;
2132
2133 /* Save off the PHY page for future writes. */
2134 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2135 phy_page = reg_data;
2136 continue;
2137 }
2138
2139 reg_addr &= PHY_REG_MASK;
2140 reg_addr |= phy_page;
2141
2142 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2143 if (ret_val)
2144 goto release;
2145 }
2146
2147 release:
2148 hw->phy.ops.release(hw);
2149 return ret_val;
2150 }
2151
2152 /**
2153 * e1000_k1_gig_workaround_hv - K1 Si workaround
2154 * @hw: pointer to the HW structure
2155 * @link: link up bool flag
2156 *
2157 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2158 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2159 * If link is down, the function will restore the default K1 setting located
2160 * in the NVM.
2161 **/
2162 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2163 {
2164 s32 ret_val = 0;
2165 u16 status_reg = 0;
2166 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2167
2168 if (hw->mac.type != e1000_pchlan)
2169 return 0;
2170
2171 /* Wrap the whole flow with the sw flag */
2172 ret_val = hw->phy.ops.acquire(hw);
2173 if (ret_val)
2174 return ret_val;
2175
2176 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2177 if (link) {
2178 if (hw->phy.type == e1000_phy_82578) {
2179 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2180 &status_reg);
2181 if (ret_val)
2182 goto release;
2183
2184 status_reg &= (BM_CS_STATUS_LINK_UP |
2185 BM_CS_STATUS_RESOLVED |
2186 BM_CS_STATUS_SPEED_MASK);
2187
2188 if (status_reg == (BM_CS_STATUS_LINK_UP |
2189 BM_CS_STATUS_RESOLVED |
2190 BM_CS_STATUS_SPEED_1000))
2191 k1_enable = false;
2192 }
2193
2194 if (hw->phy.type == e1000_phy_82577) {
2195 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2196 if (ret_val)
2197 goto release;
2198
2199 status_reg &= (HV_M_STATUS_LINK_UP |
2200 HV_M_STATUS_AUTONEG_COMPLETE |
2201 HV_M_STATUS_SPEED_MASK);
2202
2203 if (status_reg == (HV_M_STATUS_LINK_UP |
2204 HV_M_STATUS_AUTONEG_COMPLETE |
2205 HV_M_STATUS_SPEED_1000))
2206 k1_enable = false;
2207 }
2208
2209 /* Link stall fix for link up */
2210 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2211 if (ret_val)
2212 goto release;
2213
2214 } else {
2215 /* Link stall fix for link down */
2216 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2217 if (ret_val)
2218 goto release;
2219 }
2220
2221 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2222
2223 release:
2224 hw->phy.ops.release(hw);
2225
2226 return ret_val;
2227 }
2228
2229 /**
2230 * e1000_configure_k1_ich8lan - Configure K1 power state
2231 * @hw: pointer to the HW structure
2232 * @enable: K1 state to configure
2233 *
2234 * Configure the K1 power state based on the provided parameter.
2235 * Assumes semaphore already acquired.
2236 *
2237 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2238 **/
2239 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2240 {
2241 s32 ret_val;
2242 u32 ctrl_reg = 0;
2243 u32 ctrl_ext = 0;
2244 u32 reg = 0;
2245 u16 kmrn_reg = 0;
2246
2247 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2248 &kmrn_reg);
2249 if (ret_val)
2250 return ret_val;
2251
2252 if (k1_enable)
2253 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2254 else
2255 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2256
2257 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2258 kmrn_reg);
2259 if (ret_val)
2260 return ret_val;
2261
2262 usleep_range(20, 40);
2263 ctrl_ext = er32(CTRL_EXT);
2264 ctrl_reg = er32(CTRL);
2265
2266 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2267 reg |= E1000_CTRL_FRCSPD;
2268 ew32(CTRL, reg);
2269
2270 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2271 e1e_flush();
2272 usleep_range(20, 40);
2273 ew32(CTRL, ctrl_reg);
2274 ew32(CTRL_EXT, ctrl_ext);
2275 e1e_flush();
2276 usleep_range(20, 40);
2277
2278 return 0;
2279 }
2280
2281 /**
2282 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2283 * @hw: pointer to the HW structure
2284 * @d0_state: boolean if entering d0 or d3 device state
2285 *
2286 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2287 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2288 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2289 **/
2290 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2291 {
2292 s32 ret_val = 0;
2293 u32 mac_reg;
2294 u16 oem_reg;
2295
2296 if (hw->mac.type < e1000_pchlan)
2297 return ret_val;
2298
2299 ret_val = hw->phy.ops.acquire(hw);
2300 if (ret_val)
2301 return ret_val;
2302
2303 if (hw->mac.type == e1000_pchlan) {
2304 mac_reg = er32(EXTCNF_CTRL);
2305 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2306 goto release;
2307 }
2308
2309 mac_reg = er32(FEXTNVM);
2310 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2311 goto release;
2312
2313 mac_reg = er32(PHY_CTRL);
2314
2315 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2316 if (ret_val)
2317 goto release;
2318
2319 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2320
2321 if (d0_state) {
2322 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2323 oem_reg |= HV_OEM_BITS_GBE_DIS;
2324
2325 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2326 oem_reg |= HV_OEM_BITS_LPLU;
2327 } else {
2328 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2329 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2330 oem_reg |= HV_OEM_BITS_GBE_DIS;
2331
2332 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2333 E1000_PHY_CTRL_NOND0A_LPLU))
2334 oem_reg |= HV_OEM_BITS_LPLU;
2335 }
2336
2337 /* Set Restart auto-neg to activate the bits */
2338 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2339 !hw->phy.ops.check_reset_block(hw))
2340 oem_reg |= HV_OEM_BITS_RESTART_AN;
2341
2342 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2343
2344 release:
2345 hw->phy.ops.release(hw);
2346
2347 return ret_val;
2348 }
2349
2350 /**
2351 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2352 * @hw: pointer to the HW structure
2353 **/
2354 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2355 {
2356 s32 ret_val;
2357 u16 data;
2358
2359 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2360 if (ret_val)
2361 return ret_val;
2362
2363 data |= HV_KMRN_MDIO_SLOW;
2364
2365 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2366
2367 return ret_val;
2368 }
2369
2370 /**
2371 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2372 * done after every PHY reset.
2373 **/
2374 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2375 {
2376 s32 ret_val = 0;
2377 u16 phy_data;
2378
2379 if (hw->mac.type != e1000_pchlan)
2380 return 0;
2381
2382 /* Set MDIO slow mode before any other MDIO access */
2383 if (hw->phy.type == e1000_phy_82577) {
2384 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2385 if (ret_val)
2386 return ret_val;
2387 }
2388
2389 if (((hw->phy.type == e1000_phy_82577) &&
2390 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2391 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2392 /* Disable generation of early preamble */
2393 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2394 if (ret_val)
2395 return ret_val;
2396
2397 /* Preamble tuning for SSC */
2398 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2399 if (ret_val)
2400 return ret_val;
2401 }
2402
2403 if (hw->phy.type == e1000_phy_82578) {
2404 /* Return registers to default by doing a soft reset then
2405 * writing 0x3140 to the control register.
2406 */
2407 if (hw->phy.revision < 2) {
2408 e1000e_phy_sw_reset(hw);
2409 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2410 }
2411 }
2412
2413 /* Select page 0 */
2414 ret_val = hw->phy.ops.acquire(hw);
2415 if (ret_val)
2416 return ret_val;
2417
2418 hw->phy.addr = 1;
2419 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2420 hw->phy.ops.release(hw);
2421 if (ret_val)
2422 return ret_val;
2423
2424 /* Configure the K1 Si workaround during phy reset assuming there is
2425 * link so that it disables K1 if link is in 1Gbps.
2426 */
2427 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2428 if (ret_val)
2429 return ret_val;
2430
2431 /* Workaround for link disconnects on a busy hub in half duplex */
2432 ret_val = hw->phy.ops.acquire(hw);
2433 if (ret_val)
2434 return ret_val;
2435 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2436 if (ret_val)
2437 goto release;
2438 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2439 if (ret_val)
2440 goto release;
2441
2442 /* set MSE higher to enable link to stay up when noise is high */
2443 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2444 release:
2445 hw->phy.ops.release(hw);
2446
2447 return ret_val;
2448 }
2449
2450 /**
2451 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2452 * @hw: pointer to the HW structure
2453 **/
2454 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2455 {
2456 u32 mac_reg;
2457 u16 i, phy_reg = 0;
2458 s32 ret_val;
2459
2460 ret_val = hw->phy.ops.acquire(hw);
2461 if (ret_val)
2462 return;
2463 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2464 if (ret_val)
2465 goto release;
2466
2467 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2468 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2469 mac_reg = er32(RAL(i));
2470 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2471 (u16)(mac_reg & 0xFFFF));
2472 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2473 (u16)((mac_reg >> 16) & 0xFFFF));
2474
2475 mac_reg = er32(RAH(i));
2476 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2477 (u16)(mac_reg & 0xFFFF));
2478 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2479 (u16)((mac_reg & E1000_RAH_AV)
2480 >> 16));
2481 }
2482
2483 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2484
2485 release:
2486 hw->phy.ops.release(hw);
2487 }
2488
2489 /**
2490 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2491 * with 82579 PHY
2492 * @hw: pointer to the HW structure
2493 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2494 **/
2495 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2496 {
2497 s32 ret_val = 0;
2498 u16 phy_reg, data;
2499 u32 mac_reg;
2500 u16 i;
2501
2502 if (hw->mac.type < e1000_pch2lan)
2503 return 0;
2504
2505 /* disable Rx path while enabling/disabling workaround */
2506 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2507 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2508 if (ret_val)
2509 return ret_val;
2510
2511 if (enable) {
2512 /* Write Rx addresses (rar_entry_count for RAL/H, and
2513 * SHRAL/H) and initial CRC values to the MAC
2514 */
2515 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2516 u8 mac_addr[ETH_ALEN] = { 0 };
2517 u32 addr_high, addr_low;
2518
2519 addr_high = er32(RAH(i));
2520 if (!(addr_high & E1000_RAH_AV))
2521 continue;
2522 addr_low = er32(RAL(i));
2523 mac_addr[0] = (addr_low & 0xFF);
2524 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2525 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2526 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2527 mac_addr[4] = (addr_high & 0xFF);
2528 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2529
2530 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2531 }
2532
2533 /* Write Rx addresses to the PHY */
2534 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2535
2536 /* Enable jumbo frame workaround in the MAC */
2537 mac_reg = er32(FFLT_DBG);
2538 mac_reg &= ~(1 << 14);
2539 mac_reg |= (7 << 15);
2540 ew32(FFLT_DBG, mac_reg);
2541
2542 mac_reg = er32(RCTL);
2543 mac_reg |= E1000_RCTL_SECRC;
2544 ew32(RCTL, mac_reg);
2545
2546 ret_val = e1000e_read_kmrn_reg(hw,
2547 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2548 &data);
2549 if (ret_val)
2550 return ret_val;
2551 ret_val = e1000e_write_kmrn_reg(hw,
2552 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2553 data | (1 << 0));
2554 if (ret_val)
2555 return ret_val;
2556 ret_val = e1000e_read_kmrn_reg(hw,
2557 E1000_KMRNCTRLSTA_HD_CTRL,
2558 &data);
2559 if (ret_val)
2560 return ret_val;
2561 data &= ~(0xF << 8);
2562 data |= (0xB << 8);
2563 ret_val = e1000e_write_kmrn_reg(hw,
2564 E1000_KMRNCTRLSTA_HD_CTRL,
2565 data);
2566 if (ret_val)
2567 return ret_val;
2568
2569 /* Enable jumbo frame workaround in the PHY */
2570 e1e_rphy(hw, PHY_REG(769, 23), &data);
2571 data &= ~(0x7F << 5);
2572 data |= (0x37 << 5);
2573 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2574 if (ret_val)
2575 return ret_val;
2576 e1e_rphy(hw, PHY_REG(769, 16), &data);
2577 data &= ~(1 << 13);
2578 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2579 if (ret_val)
2580 return ret_val;
2581 e1e_rphy(hw, PHY_REG(776, 20), &data);
2582 data &= ~(0x3FF << 2);
2583 data |= (E1000_TX_PTR_GAP << 2);
2584 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2585 if (ret_val)
2586 return ret_val;
2587 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2588 if (ret_val)
2589 return ret_val;
2590 e1e_rphy(hw, HV_PM_CTRL, &data);
2591 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2592 if (ret_val)
2593 return ret_val;
2594 } else {
2595 /* Write MAC register values back to h/w defaults */
2596 mac_reg = er32(FFLT_DBG);
2597 mac_reg &= ~(0xF << 14);
2598 ew32(FFLT_DBG, mac_reg);
2599
2600 mac_reg = er32(RCTL);
2601 mac_reg &= ~E1000_RCTL_SECRC;
2602 ew32(RCTL, mac_reg);
2603
2604 ret_val = e1000e_read_kmrn_reg(hw,
2605 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2606 &data);
2607 if (ret_val)
2608 return ret_val;
2609 ret_val = e1000e_write_kmrn_reg(hw,
2610 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2611 data & ~(1 << 0));
2612 if (ret_val)
2613 return ret_val;
2614 ret_val = e1000e_read_kmrn_reg(hw,
2615 E1000_KMRNCTRLSTA_HD_CTRL,
2616 &data);
2617 if (ret_val)
2618 return ret_val;
2619 data &= ~(0xF << 8);
2620 data |= (0xB << 8);
2621 ret_val = e1000e_write_kmrn_reg(hw,
2622 E1000_KMRNCTRLSTA_HD_CTRL,
2623 data);
2624 if (ret_val)
2625 return ret_val;
2626
2627 /* Write PHY register values back to h/w defaults */
2628 e1e_rphy(hw, PHY_REG(769, 23), &data);
2629 data &= ~(0x7F << 5);
2630 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2631 if (ret_val)
2632 return ret_val;
2633 e1e_rphy(hw, PHY_REG(769, 16), &data);
2634 data |= (1 << 13);
2635 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2636 if (ret_val)
2637 return ret_val;
2638 e1e_rphy(hw, PHY_REG(776, 20), &data);
2639 data &= ~(0x3FF << 2);
2640 data |= (0x8 << 2);
2641 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2642 if (ret_val)
2643 return ret_val;
2644 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2645 if (ret_val)
2646 return ret_val;
2647 e1e_rphy(hw, HV_PM_CTRL, &data);
2648 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2649 if (ret_val)
2650 return ret_val;
2651 }
2652
2653 /* re-enable Rx path after enabling/disabling workaround */
2654 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2655 }
2656
2657 /**
2658 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2659 * done after every PHY reset.
2660 **/
2661 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2662 {
2663 s32 ret_val = 0;
2664
2665 if (hw->mac.type != e1000_pch2lan)
2666 return 0;
2667
2668 /* Set MDIO slow mode before any other MDIO access */
2669 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2670 if (ret_val)
2671 return ret_val;
2672
2673 ret_val = hw->phy.ops.acquire(hw);
2674 if (ret_val)
2675 return ret_val;
2676 /* set MSE higher to enable link to stay up when noise is high */
2677 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2678 if (ret_val)
2679 goto release;
2680 /* drop link after 5 times MSE threshold was reached */
2681 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2682 release:
2683 hw->phy.ops.release(hw);
2684
2685 return ret_val;
2686 }
2687
2688 /**
2689 * e1000_k1_gig_workaround_lv - K1 Si workaround
2690 * @hw: pointer to the HW structure
2691 *
2692 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2693 * Disable K1 in 1000Mbps and 100Mbps
2694 **/
2695 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2696 {
2697 s32 ret_val = 0;
2698 u16 status_reg = 0;
2699
2700 if (hw->mac.type != e1000_pch2lan)
2701 return 0;
2702
2703 /* Set K1 beacon duration based on 10Mbs speed */
2704 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2705 if (ret_val)
2706 return ret_val;
2707
2708 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2709 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2710 if (status_reg &
2711 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2712 u16 pm_phy_reg;
2713
2714 /* LV 1G/100 Packet drop issue wa */
2715 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2716 if (ret_val)
2717 return ret_val;
2718 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2719 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2720 if (ret_val)
2721 return ret_val;
2722 } else {
2723 u32 mac_reg;
2724
2725 mac_reg = er32(FEXTNVM4);
2726 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2727 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2728 ew32(FEXTNVM4, mac_reg);
2729 }
2730 }
2731
2732 return ret_val;
2733 }
2734
2735 /**
2736 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2737 * @hw: pointer to the HW structure
2738 * @gate: boolean set to true to gate, false to ungate
2739 *
2740 * Gate/ungate the automatic PHY configuration via hardware; perform
2741 * the configuration via software instead.
2742 **/
2743 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2744 {
2745 u32 extcnf_ctrl;
2746
2747 if (hw->mac.type < e1000_pch2lan)
2748 return;
2749
2750 extcnf_ctrl = er32(EXTCNF_CTRL);
2751
2752 if (gate)
2753 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2754 else
2755 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2756
2757 ew32(EXTCNF_CTRL, extcnf_ctrl);
2758 }
2759
2760 /**
2761 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2762 * @hw: pointer to the HW structure
2763 *
2764 * Check the appropriate indication the MAC has finished configuring the
2765 * PHY after a software reset.
2766 **/
2767 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2768 {
2769 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2770
2771 /* Wait for basic configuration completes before proceeding */
2772 do {
2773 data = er32(STATUS);
2774 data &= E1000_STATUS_LAN_INIT_DONE;
2775 usleep_range(100, 200);
2776 } while ((!data) && --loop);
2777
2778 /* If basic configuration is incomplete before the above loop
2779 * count reaches 0, loading the configuration from NVM will
2780 * leave the PHY in a bad state possibly resulting in no link.
2781 */
2782 if (loop == 0)
2783 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2784
2785 /* Clear the Init Done bit for the next init event */
2786 data = er32(STATUS);
2787 data &= ~E1000_STATUS_LAN_INIT_DONE;
2788 ew32(STATUS, data);
2789 }
2790
2791 /**
2792 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2793 * @hw: pointer to the HW structure
2794 **/
2795 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2796 {
2797 s32 ret_val = 0;
2798 u16 reg;
2799
2800 if (hw->phy.ops.check_reset_block(hw))
2801 return 0;
2802
2803 /* Allow time for h/w to get to quiescent state after reset */
2804 usleep_range(10000, 20000);
2805
2806 /* Perform any necessary post-reset workarounds */
2807 switch (hw->mac.type) {
2808 case e1000_pchlan:
2809 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2810 if (ret_val)
2811 return ret_val;
2812 break;
2813 case e1000_pch2lan:
2814 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2815 if (ret_val)
2816 return ret_val;
2817 break;
2818 default:
2819 break;
2820 }
2821
2822 /* Clear the host wakeup bit after lcd reset */
2823 if (hw->mac.type >= e1000_pchlan) {
2824 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2825 reg &= ~BM_WUC_HOST_WU_BIT;
2826 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2827 }
2828
2829 /* Configure the LCD with the extended configuration region in NVM */
2830 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2831 if (ret_val)
2832 return ret_val;
2833
2834 /* Configure the LCD with the OEM bits in NVM */
2835 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2836
2837 if (hw->mac.type == e1000_pch2lan) {
2838 /* Ungate automatic PHY configuration on non-managed 82579 */
2839 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2840 usleep_range(10000, 20000);
2841 e1000_gate_hw_phy_config_ich8lan(hw, false);
2842 }
2843
2844 /* Set EEE LPI Update Timer to 200usec */
2845 ret_val = hw->phy.ops.acquire(hw);
2846 if (ret_val)
2847 return ret_val;
2848 ret_val = e1000_write_emi_reg_locked(hw,
2849 I82579_LPI_UPDATE_TIMER,
2850 0x1387);
2851 hw->phy.ops.release(hw);
2852 }
2853
2854 return ret_val;
2855 }
2856
2857 /**
2858 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2859 * @hw: pointer to the HW structure
2860 *
2861 * Resets the PHY
2862 * This is a function pointer entry point called by drivers
2863 * or other shared routines.
2864 **/
2865 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2866 {
2867 s32 ret_val = 0;
2868
2869 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2870 if ((hw->mac.type == e1000_pch2lan) &&
2871 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2872 e1000_gate_hw_phy_config_ich8lan(hw, true);
2873
2874 ret_val = e1000e_phy_hw_reset_generic(hw);
2875 if (ret_val)
2876 return ret_val;
2877
2878 return e1000_post_phy_reset_ich8lan(hw);
2879 }
2880
2881 /**
2882 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2883 * @hw: pointer to the HW structure
2884 * @active: true to enable LPLU, false to disable
2885 *
2886 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2887 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2888 * the phy speed. This function will manually set the LPLU bit and restart
2889 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2890 * since it configures the same bit.
2891 **/
2892 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2893 {
2894 s32 ret_val;
2895 u16 oem_reg;
2896
2897 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2898 if (ret_val)
2899 return ret_val;
2900
2901 if (active)
2902 oem_reg |= HV_OEM_BITS_LPLU;
2903 else
2904 oem_reg &= ~HV_OEM_BITS_LPLU;
2905
2906 if (!hw->phy.ops.check_reset_block(hw))
2907 oem_reg |= HV_OEM_BITS_RESTART_AN;
2908
2909 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2910 }
2911
2912 /**
2913 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2914 * @hw: pointer to the HW structure
2915 * @active: true to enable LPLU, false to disable
2916 *
2917 * Sets the LPLU D0 state according to the active flag. When
2918 * activating LPLU this function also disables smart speed
2919 * and vice versa. LPLU will not be activated unless the
2920 * device autonegotiation advertisement meets standards of
2921 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2922 * This is a function pointer entry point only called by
2923 * PHY setup routines.
2924 **/
2925 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2926 {
2927 struct e1000_phy_info *phy = &hw->phy;
2928 u32 phy_ctrl;
2929 s32 ret_val = 0;
2930 u16 data;
2931
2932 if (phy->type == e1000_phy_ife)
2933 return 0;
2934
2935 phy_ctrl = er32(PHY_CTRL);
2936
2937 if (active) {
2938 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2939 ew32(PHY_CTRL, phy_ctrl);
2940
2941 if (phy->type != e1000_phy_igp_3)
2942 return 0;
2943
2944 /* Call gig speed drop workaround on LPLU before accessing
2945 * any PHY registers
2946 */
2947 if (hw->mac.type == e1000_ich8lan)
2948 e1000e_gig_downshift_workaround_ich8lan(hw);
2949
2950 /* When LPLU is enabled, we should disable SmartSpeed */
2951 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2952 if (ret_val)
2953 return ret_val;
2954 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2955 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2956 if (ret_val)
2957 return ret_val;
2958 } else {
2959 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2960 ew32(PHY_CTRL, phy_ctrl);
2961
2962 if (phy->type != e1000_phy_igp_3)
2963 return 0;
2964
2965 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2966 * during Dx states where the power conservation is most
2967 * important. During driver activity we should enable
2968 * SmartSpeed, so performance is maintained.
2969 */
2970 if (phy->smart_speed == e1000_smart_speed_on) {
2971 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2972 &data);
2973 if (ret_val)
2974 return ret_val;
2975
2976 data |= IGP01E1000_PSCFR_SMART_SPEED;
2977 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2978 data);
2979 if (ret_val)
2980 return ret_val;
2981 } else if (phy->smart_speed == e1000_smart_speed_off) {
2982 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2983 &data);
2984 if (ret_val)
2985 return ret_val;
2986
2987 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2988 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2989 data);
2990 if (ret_val)
2991 return ret_val;
2992 }
2993 }
2994
2995 return 0;
2996 }
2997
2998 /**
2999 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3000 * @hw: pointer to the HW structure
3001 * @active: true to enable LPLU, false to disable
3002 *
3003 * Sets the LPLU D3 state according to the active flag. When
3004 * activating LPLU this function also disables smart speed
3005 * and vice versa. LPLU will not be activated unless the
3006 * device autonegotiation advertisement meets standards of
3007 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3008 * This is a function pointer entry point only called by
3009 * PHY setup routines.
3010 **/
3011 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3012 {
3013 struct e1000_phy_info *phy = &hw->phy;
3014 u32 phy_ctrl;
3015 s32 ret_val = 0;
3016 u16 data;
3017
3018 phy_ctrl = er32(PHY_CTRL);
3019
3020 if (!active) {
3021 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3022 ew32(PHY_CTRL, phy_ctrl);
3023
3024 if (phy->type != e1000_phy_igp_3)
3025 return 0;
3026
3027 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3028 * during Dx states where the power conservation is most
3029 * important. During driver activity we should enable
3030 * SmartSpeed, so performance is maintained.
3031 */
3032 if (phy->smart_speed == e1000_smart_speed_on) {
3033 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3034 &data);
3035 if (ret_val)
3036 return ret_val;
3037
3038 data |= IGP01E1000_PSCFR_SMART_SPEED;
3039 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3040 data);
3041 if (ret_val)
3042 return ret_val;
3043 } else if (phy->smart_speed == e1000_smart_speed_off) {
3044 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3045 &data);
3046 if (ret_val)
3047 return ret_val;
3048
3049 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3050 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3051 data);
3052 if (ret_val)
3053 return ret_val;
3054 }
3055 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3056 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3057 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3058 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3059 ew32(PHY_CTRL, phy_ctrl);
3060
3061 if (phy->type != e1000_phy_igp_3)
3062 return 0;
3063
3064 /* Call gig speed drop workaround on LPLU before accessing
3065 * any PHY registers
3066 */
3067 if (hw->mac.type == e1000_ich8lan)
3068 e1000e_gig_downshift_workaround_ich8lan(hw);
3069
3070 /* When LPLU is enabled, we should disable SmartSpeed */
3071 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3072 if (ret_val)
3073 return ret_val;
3074
3075 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3077 }
3078
3079 return ret_val;
3080 }
3081
3082 /**
3083 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3084 * @hw: pointer to the HW structure
3085 * @bank: pointer to the variable that returns the active bank
3086 *
3087 * Reads signature byte from the NVM using the flash access registers.
3088 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3089 **/
3090 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3091 {
3092 u32 eecd;
3093 struct e1000_nvm_info *nvm = &hw->nvm;
3094 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3095 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3096 u8 sig_byte = 0;
3097 s32 ret_val;
3098
3099 switch (hw->mac.type) {
3100 /* In SPT, read from the CTRL_EXT reg instead of
3101 * accessing the sector valid bits from the nvm
3102 */
3103 case e1000_pch_spt:
3104 *bank = er32(CTRL_EXT)
3105 & E1000_CTRL_EXT_NVMVS;
3106 if ((*bank == 0) || (*bank == 1)) {
3107 e_dbg("ERROR: No valid NVM bank present\n");
3108 return -E1000_ERR_NVM;
3109 } else {
3110 *bank = *bank - 2;
3111 return 0;
3112 }
3113 break;
3114 case e1000_ich8lan:
3115 case e1000_ich9lan:
3116 eecd = er32(EECD);
3117 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3118 E1000_EECD_SEC1VAL_VALID_MASK) {
3119 if (eecd & E1000_EECD_SEC1VAL)
3120 *bank = 1;
3121 else
3122 *bank = 0;
3123
3124 return 0;
3125 }
3126 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3127 /* fall-thru */
3128 default:
3129 /* set bank to 0 in case flash read fails */
3130 *bank = 0;
3131
3132 /* Check bank 0 */
3133 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3134 &sig_byte);
3135 if (ret_val)
3136 return ret_val;
3137 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3138 E1000_ICH_NVM_SIG_VALUE) {
3139 *bank = 0;
3140 return 0;
3141 }
3142
3143 /* Check bank 1 */
3144 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3145 bank1_offset,
3146 &sig_byte);
3147 if (ret_val)
3148 return ret_val;
3149 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3150 E1000_ICH_NVM_SIG_VALUE) {
3151 *bank = 1;
3152 return 0;
3153 }
3154
3155 e_dbg("ERROR: No valid NVM bank present\n");
3156 return -E1000_ERR_NVM;
3157 }
3158 }
3159
3160 /**
3161 * e1000_read_nvm_spt - NVM access for SPT
3162 * @hw: pointer to the HW structure
3163 * @offset: The offset (in bytes) of the word(s) to read.
3164 * @words: Size of data to read in words.
3165 * @data: pointer to the word(s) to read at offset.
3166 *
3167 * Reads a word(s) from the NVM
3168 **/
3169 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3170 u16 *data)
3171 {
3172 struct e1000_nvm_info *nvm = &hw->nvm;
3173 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3174 u32 act_offset;
3175 s32 ret_val = 0;
3176 u32 bank = 0;
3177 u32 dword = 0;
3178 u16 offset_to_read;
3179 u16 i;
3180
3181 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3182 (words == 0)) {
3183 e_dbg("nvm parameter(s) out of bounds\n");
3184 ret_val = -E1000_ERR_NVM;
3185 goto out;
3186 }
3187
3188 nvm->ops.acquire(hw);
3189
3190 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3191 if (ret_val) {
3192 e_dbg("Could not detect valid bank, assuming bank 0\n");
3193 bank = 0;
3194 }
3195
3196 act_offset = (bank) ? nvm->flash_bank_size : 0;
3197 act_offset += offset;
3198
3199 ret_val = 0;
3200
3201 for (i = 0; i < words; i += 2) {
3202 if (words - i == 1) {
3203 if (dev_spec->shadow_ram[offset + i].modified) {
3204 data[i] =
3205 dev_spec->shadow_ram[offset + i].value;
3206 } else {
3207 offset_to_read = act_offset + i -
3208 ((act_offset + i) % 2);
3209 ret_val =
3210 e1000_read_flash_dword_ich8lan(hw,
3211 offset_to_read,
3212 &dword);
3213 if (ret_val)
3214 break;
3215 if ((act_offset + i) % 2 == 0)
3216 data[i] = (u16)(dword & 0xFFFF);
3217 else
3218 data[i] = (u16)((dword >> 16) & 0xFFFF);
3219 }
3220 } else {
3221 offset_to_read = act_offset + i;
3222 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3223 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3224 ret_val =
3225 e1000_read_flash_dword_ich8lan(hw,
3226 offset_to_read,
3227 &dword);
3228 if (ret_val)
3229 break;
3230 }
3231 if (dev_spec->shadow_ram[offset + i].modified)
3232 data[i] =
3233 dev_spec->shadow_ram[offset + i].value;
3234 else
3235 data[i] = (u16)(dword & 0xFFFF);
3236 if (dev_spec->shadow_ram[offset + i].modified)
3237 data[i + 1] =
3238 dev_spec->shadow_ram[offset + i + 1].value;
3239 else
3240 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3241 }
3242 }
3243
3244 nvm->ops.release(hw);
3245
3246 out:
3247 if (ret_val)
3248 e_dbg("NVM read error: %d\n", ret_val);
3249
3250 return ret_val;
3251 }
3252
3253 /**
3254 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3255 * @hw: pointer to the HW structure
3256 * @offset: The offset (in bytes) of the word(s) to read.
3257 * @words: Size of data to read in words
3258 * @data: Pointer to the word(s) to read at offset.
3259 *
3260 * Reads a word(s) from the NVM using the flash access registers.
3261 **/
3262 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3263 u16 *data)
3264 {
3265 struct e1000_nvm_info *nvm = &hw->nvm;
3266 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3267 u32 act_offset;
3268 s32 ret_val = 0;
3269 u32 bank = 0;
3270 u16 i, word;
3271
3272 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3273 (words == 0)) {
3274 e_dbg("nvm parameter(s) out of bounds\n");
3275 ret_val = -E1000_ERR_NVM;
3276 goto out;
3277 }
3278
3279 nvm->ops.acquire(hw);
3280
3281 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3282 if (ret_val) {
3283 e_dbg("Could not detect valid bank, assuming bank 0\n");
3284 bank = 0;
3285 }
3286
3287 act_offset = (bank) ? nvm->flash_bank_size : 0;
3288 act_offset += offset;
3289
3290 ret_val = 0;
3291 for (i = 0; i < words; i++) {
3292 if (dev_spec->shadow_ram[offset + i].modified) {
3293 data[i] = dev_spec->shadow_ram[offset + i].value;
3294 } else {
3295 ret_val = e1000_read_flash_word_ich8lan(hw,
3296 act_offset + i,
3297 &word);
3298 if (ret_val)
3299 break;
3300 data[i] = word;
3301 }
3302 }
3303
3304 nvm->ops.release(hw);
3305
3306 out:
3307 if (ret_val)
3308 e_dbg("NVM read error: %d\n", ret_val);
3309
3310 return ret_val;
3311 }
3312
3313 /**
3314 * e1000_flash_cycle_init_ich8lan - Initialize flash
3315 * @hw: pointer to the HW structure
3316 *
3317 * This function does initial flash setup so that a new read/write/erase cycle
3318 * can be started.
3319 **/
3320 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3321 {
3322 union ich8_hws_flash_status hsfsts;
3323 s32 ret_val = -E1000_ERR_NVM;
3324
3325 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3326
3327 /* Check if the flash descriptor is valid */
3328 if (!hsfsts.hsf_status.fldesvalid) {
3329 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3330 return -E1000_ERR_NVM;
3331 }
3332
3333 /* Clear FCERR and DAEL in hw status by writing 1 */
3334 hsfsts.hsf_status.flcerr = 1;
3335 hsfsts.hsf_status.dael = 1;
3336 if (hw->mac.type == e1000_pch_spt)
3337 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3338 else
3339 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3340
3341 /* Either we should have a hardware SPI cycle in progress
3342 * bit to check against, in order to start a new cycle or
3343 * FDONE bit should be changed in the hardware so that it
3344 * is 1 after hardware reset, which can then be used as an
3345 * indication whether a cycle is in progress or has been
3346 * completed.
3347 */
3348
3349 if (!hsfsts.hsf_status.flcinprog) {
3350 /* There is no cycle running at present,
3351 * so we can start a cycle.
3352 * Begin by setting Flash Cycle Done.
3353 */
3354 hsfsts.hsf_status.flcdone = 1;
3355 if (hw->mac.type == e1000_pch_spt)
3356 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3357 else
3358 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3359 ret_val = 0;
3360 } else {
3361 s32 i;
3362
3363 /* Otherwise poll for sometime so the current
3364 * cycle has a chance to end before giving up.
3365 */
3366 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3367 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3368 if (!hsfsts.hsf_status.flcinprog) {
3369 ret_val = 0;
3370 break;
3371 }
3372 udelay(1);
3373 }
3374 if (!ret_val) {
3375 /* Successful in waiting for previous cycle to timeout,
3376 * now set the Flash Cycle Done.
3377 */
3378 hsfsts.hsf_status.flcdone = 1;
3379 if (hw->mac.type == e1000_pch_spt)
3380 ew32flash(ICH_FLASH_HSFSTS,
3381 hsfsts.regval & 0xFFFF);
3382 else
3383 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3384 } else {
3385 e_dbg("Flash controller busy, cannot get access\n");
3386 }
3387 }
3388
3389 return ret_val;
3390 }
3391
3392 /**
3393 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3394 * @hw: pointer to the HW structure
3395 * @timeout: maximum time to wait for completion
3396 *
3397 * This function starts a flash cycle and waits for its completion.
3398 **/
3399 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3400 {
3401 union ich8_hws_flash_ctrl hsflctl;
3402 union ich8_hws_flash_status hsfsts;
3403 u32 i = 0;
3404
3405 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3406 if (hw->mac.type == e1000_pch_spt)
3407 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3408 else
3409 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3410 hsflctl.hsf_ctrl.flcgo = 1;
3411
3412 if (hw->mac.type == e1000_pch_spt)
3413 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3414 else
3415 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3416
3417 /* wait till FDONE bit is set to 1 */
3418 do {
3419 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3420 if (hsfsts.hsf_status.flcdone)
3421 break;
3422 udelay(1);
3423 } while (i++ < timeout);
3424
3425 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3426 return 0;
3427
3428 return -E1000_ERR_NVM;
3429 }
3430
3431 /**
3432 * e1000_read_flash_dword_ich8lan - Read dword from flash
3433 * @hw: pointer to the HW structure
3434 * @offset: offset to data location
3435 * @data: pointer to the location for storing the data
3436 *
3437 * Reads the flash dword at offset into data. Offset is converted
3438 * to bytes before read.
3439 **/
3440 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3441 u32 *data)
3442 {
3443 /* Must convert word offset into bytes. */
3444 offset <<= 1;
3445 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3446 }
3447
3448 /**
3449 * e1000_read_flash_word_ich8lan - Read word from flash
3450 * @hw: pointer to the HW structure
3451 * @offset: offset to data location
3452 * @data: pointer to the location for storing the data
3453 *
3454 * Reads the flash word at offset into data. Offset is converted
3455 * to bytes before read.
3456 **/
3457 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3458 u16 *data)
3459 {
3460 /* Must convert offset into bytes. */
3461 offset <<= 1;
3462
3463 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3464 }
3465
3466 /**
3467 * e1000_read_flash_byte_ich8lan - Read byte from flash
3468 * @hw: pointer to the HW structure
3469 * @offset: The offset of the byte to read.
3470 * @data: Pointer to a byte to store the value read.
3471 *
3472 * Reads a single byte from the NVM using the flash access registers.
3473 **/
3474 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3475 u8 *data)
3476 {
3477 s32 ret_val;
3478 u16 word = 0;
3479
3480 /* In SPT, only 32 bits access is supported,
3481 * so this function should not be called.
3482 */
3483 if (hw->mac.type == e1000_pch_spt)
3484 return -E1000_ERR_NVM;
3485 else
3486 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3487
3488 if (ret_val)
3489 return ret_val;
3490
3491 *data = (u8)word;
3492
3493 return 0;
3494 }
3495
3496 /**
3497 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3498 * @hw: pointer to the HW structure
3499 * @offset: The offset (in bytes) of the byte or word to read.
3500 * @size: Size of data to read, 1=byte 2=word
3501 * @data: Pointer to the word to store the value read.
3502 *
3503 * Reads a byte or word from the NVM using the flash access registers.
3504 **/
3505 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3506 u8 size, u16 *data)
3507 {
3508 union ich8_hws_flash_status hsfsts;
3509 union ich8_hws_flash_ctrl hsflctl;
3510 u32 flash_linear_addr;
3511 u32 flash_data = 0;
3512 s32 ret_val = -E1000_ERR_NVM;
3513 u8 count = 0;
3514
3515 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3516 return -E1000_ERR_NVM;
3517
3518 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3519 hw->nvm.flash_base_addr);
3520
3521 do {
3522 udelay(1);
3523 /* Steps */
3524 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3525 if (ret_val)
3526 break;
3527
3528 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3529 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3530 hsflctl.hsf_ctrl.fldbcount = size - 1;
3531 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3532 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3533
3534 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3535
3536 ret_val =
3537 e1000_flash_cycle_ich8lan(hw,
3538 ICH_FLASH_READ_COMMAND_TIMEOUT);
3539
3540 /* Check if FCERR is set to 1, if set to 1, clear it
3541 * and try the whole sequence a few more times, else
3542 * read in (shift in) the Flash Data0, the order is
3543 * least significant byte first msb to lsb
3544 */
3545 if (!ret_val) {
3546 flash_data = er32flash(ICH_FLASH_FDATA0);
3547 if (size == 1)
3548 *data = (u8)(flash_data & 0x000000FF);
3549 else if (size == 2)
3550 *data = (u16)(flash_data & 0x0000FFFF);
3551 break;
3552 } else {
3553 /* If we've gotten here, then things are probably
3554 * completely hosed, but if the error condition is
3555 * detected, it won't hurt to give it another try...
3556 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3557 */
3558 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3559 if (hsfsts.hsf_status.flcerr) {
3560 /* Repeat for some time before giving up. */
3561 continue;
3562 } else if (!hsfsts.hsf_status.flcdone) {
3563 e_dbg("Timeout error - flash cycle did not complete.\n");
3564 break;
3565 }
3566 }
3567 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3568
3569 return ret_val;
3570 }
3571
3572 /**
3573 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3574 * @hw: pointer to the HW structure
3575 * @offset: The offset (in bytes) of the dword to read.
3576 * @data: Pointer to the dword to store the value read.
3577 *
3578 * Reads a byte or word from the NVM using the flash access registers.
3579 **/
3580
3581 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3582 u32 *data)
3583 {
3584 union ich8_hws_flash_status hsfsts;
3585 union ich8_hws_flash_ctrl hsflctl;
3586 u32 flash_linear_addr;
3587 s32 ret_val = -E1000_ERR_NVM;
3588 u8 count = 0;
3589
3590 if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3591 hw->mac.type != e1000_pch_spt)
3592 return -E1000_ERR_NVM;
3593 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3594 hw->nvm.flash_base_addr);
3595
3596 do {
3597 udelay(1);
3598 /* Steps */
3599 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3600 if (ret_val)
3601 break;
3602 /* In SPT, This register is in Lan memory space, not flash.
3603 * Therefore, only 32 bit access is supported
3604 */
3605 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3606
3607 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3608 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3609 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3610 /* In SPT, This register is in Lan memory space, not flash.
3611 * Therefore, only 32 bit access is supported
3612 */
3613 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3614 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3615
3616 ret_val =
3617 e1000_flash_cycle_ich8lan(hw,
3618 ICH_FLASH_READ_COMMAND_TIMEOUT);
3619
3620 /* Check if FCERR is set to 1, if set to 1, clear it
3621 * and try the whole sequence a few more times, else
3622 * read in (shift in) the Flash Data0, the order is
3623 * least significant byte first msb to lsb
3624 */
3625 if (!ret_val) {
3626 *data = er32flash(ICH_FLASH_FDATA0);
3627 break;
3628 } else {
3629 /* If we've gotten here, then things are probably
3630 * completely hosed, but if the error condition is
3631 * detected, it won't hurt to give it another try...
3632 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3633 */
3634 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3635 if (hsfsts.hsf_status.flcerr) {
3636 /* Repeat for some time before giving up. */
3637 continue;
3638 } else if (!hsfsts.hsf_status.flcdone) {
3639 e_dbg("Timeout error - flash cycle did not complete.\n");
3640 break;
3641 }
3642 }
3643 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3644
3645 return ret_val;
3646 }
3647
3648 /**
3649 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3650 * @hw: pointer to the HW structure
3651 * @offset: The offset (in bytes) of the word(s) to write.
3652 * @words: Size of data to write in words
3653 * @data: Pointer to the word(s) to write at offset.
3654 *
3655 * Writes a byte or word to the NVM using the flash access registers.
3656 **/
3657 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3658 u16 *data)
3659 {
3660 struct e1000_nvm_info *nvm = &hw->nvm;
3661 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3662 u16 i;
3663
3664 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3665 (words == 0)) {
3666 e_dbg("nvm parameter(s) out of bounds\n");
3667 return -E1000_ERR_NVM;
3668 }
3669
3670 nvm->ops.acquire(hw);
3671
3672 for (i = 0; i < words; i++) {
3673 dev_spec->shadow_ram[offset + i].modified = true;
3674 dev_spec->shadow_ram[offset + i].value = data[i];
3675 }
3676
3677 nvm->ops.release(hw);
3678
3679 return 0;
3680 }
3681
3682 /**
3683 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3684 * @hw: pointer to the HW structure
3685 *
3686 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3687 * which writes the checksum to the shadow ram. The changes in the shadow
3688 * ram are then committed to the EEPROM by processing each bank at a time
3689 * checking for the modified bit and writing only the pending changes.
3690 * After a successful commit, the shadow ram is cleared and is ready for
3691 * future writes.
3692 **/
3693 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3694 {
3695 struct e1000_nvm_info *nvm = &hw->nvm;
3696 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3697 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3698 s32 ret_val;
3699 u32 dword = 0;
3700
3701 ret_val = e1000e_update_nvm_checksum_generic(hw);
3702 if (ret_val)
3703 goto out;
3704
3705 if (nvm->type != e1000_nvm_flash_sw)
3706 goto out;
3707
3708 nvm->ops.acquire(hw);
3709
3710 /* We're writing to the opposite bank so if we're on bank 1,
3711 * write to bank 0 etc. We also need to erase the segment that
3712 * is going to be written
3713 */
3714 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3715 if (ret_val) {
3716 e_dbg("Could not detect valid bank, assuming bank 0\n");
3717 bank = 0;
3718 }
3719
3720 if (bank == 0) {
3721 new_bank_offset = nvm->flash_bank_size;
3722 old_bank_offset = 0;
3723 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3724 if (ret_val)
3725 goto release;
3726 } else {
3727 old_bank_offset = nvm->flash_bank_size;
3728 new_bank_offset = 0;
3729 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3730 if (ret_val)
3731 goto release;
3732 }
3733 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3734 /* Determine whether to write the value stored
3735 * in the other NVM bank or a modified value stored
3736 * in the shadow RAM
3737 */
3738 ret_val = e1000_read_flash_dword_ich8lan(hw,
3739 i + old_bank_offset,
3740 &dword);
3741
3742 if (dev_spec->shadow_ram[i].modified) {
3743 dword &= 0xffff0000;
3744 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3745 }
3746 if (dev_spec->shadow_ram[i + 1].modified) {
3747 dword &= 0x0000ffff;
3748 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3749 << 16);
3750 }
3751 if (ret_val)
3752 break;
3753
3754 /* If the word is 0x13, then make sure the signature bits
3755 * (15:14) are 11b until the commit has completed.
3756 * This will allow us to write 10b which indicates the
3757 * signature is valid. We want to do this after the write
3758 * has completed so that we don't mark the segment valid
3759 * while the write is still in progress
3760 */
3761 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3762 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3763
3764 /* Convert offset to bytes. */
3765 act_offset = (i + new_bank_offset) << 1;
3766
3767 usleep_range(100, 200);
3768
3769 /* Write the data to the new bank. Offset in words */
3770 act_offset = i + new_bank_offset;
3771 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3772 dword);
3773 if (ret_val)
3774 break;
3775 }
3776
3777 /* Don't bother writing the segment valid bits if sector
3778 * programming failed.
3779 */
3780 if (ret_val) {
3781 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3782 e_dbg("Flash commit failed.\n");
3783 goto release;
3784 }
3785
3786 /* Finally validate the new segment by setting bit 15:14
3787 * to 10b in word 0x13 , this can be done without an
3788 * erase as well since these bits are 11 to start with
3789 * and we need to change bit 14 to 0b
3790 */
3791 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3792
3793 /*offset in words but we read dword */
3794 --act_offset;
3795 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3796
3797 if (ret_val)
3798 goto release;
3799
3800 dword &= 0xBFFFFFFF;
3801 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3802
3803 if (ret_val)
3804 goto release;
3805
3806 /* And invalidate the previously valid segment by setting
3807 * its signature word (0x13) high_byte to 0b. This can be
3808 * done without an erase because flash erase sets all bits
3809 * to 1's. We can write 1's to 0's without an erase
3810 */
3811 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3812
3813 /* offset in words but we read dword */
3814 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3815 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3816
3817 if (ret_val)
3818 goto release;
3819
3820 dword &= 0x00FFFFFF;
3821 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3822
3823 if (ret_val)
3824 goto release;
3825
3826 /* Great! Everything worked, we can now clear the cached entries. */
3827 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3828 dev_spec->shadow_ram[i].modified = false;
3829 dev_spec->shadow_ram[i].value = 0xFFFF;
3830 }
3831
3832 release:
3833 nvm->ops.release(hw);
3834
3835 /* Reload the EEPROM, or else modifications will not appear
3836 * until after the next adapter reset.
3837 */
3838 if (!ret_val) {
3839 nvm->ops.reload(hw);
3840 usleep_range(10000, 20000);
3841 }
3842
3843 out:
3844 if (ret_val)
3845 e_dbg("NVM update error: %d\n", ret_val);
3846
3847 return ret_val;
3848 }
3849
3850 /**
3851 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3852 * @hw: pointer to the HW structure
3853 *
3854 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3855 * which writes the checksum to the shadow ram. The changes in the shadow
3856 * ram are then committed to the EEPROM by processing each bank at a time
3857 * checking for the modified bit and writing only the pending changes.
3858 * After a successful commit, the shadow ram is cleared and is ready for
3859 * future writes.
3860 **/
3861 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3862 {
3863 struct e1000_nvm_info *nvm = &hw->nvm;
3864 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3865 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3866 s32 ret_val;
3867 u16 data = 0;
3868
3869 ret_val = e1000e_update_nvm_checksum_generic(hw);
3870 if (ret_val)
3871 goto out;
3872
3873 if (nvm->type != e1000_nvm_flash_sw)
3874 goto out;
3875
3876 nvm->ops.acquire(hw);
3877
3878 /* We're writing to the opposite bank so if we're on bank 1,
3879 * write to bank 0 etc. We also need to erase the segment that
3880 * is going to be written
3881 */
3882 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3883 if (ret_val) {
3884 e_dbg("Could not detect valid bank, assuming bank 0\n");
3885 bank = 0;
3886 }
3887
3888 if (bank == 0) {
3889 new_bank_offset = nvm->flash_bank_size;
3890 old_bank_offset = 0;
3891 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3892 if (ret_val)
3893 goto release;
3894 } else {
3895 old_bank_offset = nvm->flash_bank_size;
3896 new_bank_offset = 0;
3897 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3898 if (ret_val)
3899 goto release;
3900 }
3901 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3902 if (dev_spec->shadow_ram[i].modified) {
3903 data = dev_spec->shadow_ram[i].value;
3904 } else {
3905 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3906 old_bank_offset,
3907 &data);
3908 if (ret_val)
3909 break;
3910 }
3911
3912 /* If the word is 0x13, then make sure the signature bits
3913 * (15:14) are 11b until the commit has completed.
3914 * This will allow us to write 10b which indicates the
3915 * signature is valid. We want to do this after the write
3916 * has completed so that we don't mark the segment valid
3917 * while the write is still in progress
3918 */
3919 if (i == E1000_ICH_NVM_SIG_WORD)
3920 data |= E1000_ICH_NVM_SIG_MASK;
3921
3922 /* Convert offset to bytes. */
3923 act_offset = (i + new_bank_offset) << 1;
3924
3925 usleep_range(100, 200);
3926 /* Write the bytes to the new bank. */
3927 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3928 act_offset,
3929 (u8)data);
3930 if (ret_val)
3931 break;
3932
3933 usleep_range(100, 200);
3934 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3935 act_offset + 1,
3936 (u8)(data >> 8));
3937 if (ret_val)
3938 break;
3939 }
3940
3941 /* Don't bother writing the segment valid bits if sector
3942 * programming failed.
3943 */
3944 if (ret_val) {
3945 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3946 e_dbg("Flash commit failed.\n");
3947 goto release;
3948 }
3949
3950 /* Finally validate the new segment by setting bit 15:14
3951 * to 10b in word 0x13 , this can be done without an
3952 * erase as well since these bits are 11 to start with
3953 * and we need to change bit 14 to 0b
3954 */
3955 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3956 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3957 if (ret_val)
3958 goto release;
3959
3960 data &= 0xBFFF;
3961 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3962 act_offset * 2 + 1,
3963 (u8)(data >> 8));
3964 if (ret_val)
3965 goto release;
3966
3967 /* And invalidate the previously valid segment by setting
3968 * its signature word (0x13) high_byte to 0b. This can be
3969 * done without an erase because flash erase sets all bits
3970 * to 1's. We can write 1's to 0's without an erase
3971 */
3972 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3973 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3974 if (ret_val)
3975 goto release;
3976
3977 /* Great! Everything worked, we can now clear the cached entries. */
3978 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3979 dev_spec->shadow_ram[i].modified = false;
3980 dev_spec->shadow_ram[i].value = 0xFFFF;
3981 }
3982
3983 release:
3984 nvm->ops.release(hw);
3985
3986 /* Reload the EEPROM, or else modifications will not appear
3987 * until after the next adapter reset.
3988 */
3989 if (!ret_val) {
3990 nvm->ops.reload(hw);
3991 usleep_range(10000, 20000);
3992 }
3993
3994 out:
3995 if (ret_val)
3996 e_dbg("NVM update error: %d\n", ret_val);
3997
3998 return ret_val;
3999 }
4000
4001 /**
4002 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4003 * @hw: pointer to the HW structure
4004 *
4005 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4006 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4007 * calculated, in which case we need to calculate the checksum and set bit 6.
4008 **/
4009 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4010 {
4011 s32 ret_val;
4012 u16 data;
4013 u16 word;
4014 u16 valid_csum_mask;
4015
4016 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4017 * the checksum needs to be fixed. This bit is an indication that
4018 * the NVM was prepared by OEM software and did not calculate
4019 * the checksum...a likely scenario.
4020 */
4021 switch (hw->mac.type) {
4022 case e1000_pch_lpt:
4023 case e1000_pch_spt:
4024 word = NVM_COMPAT;
4025 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4026 break;
4027 default:
4028 word = NVM_FUTURE_INIT_WORD1;
4029 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4030 break;
4031 }
4032
4033 ret_val = e1000_read_nvm(hw, word, 1, &data);
4034 if (ret_val)
4035 return ret_val;
4036
4037 if (!(data & valid_csum_mask)) {
4038 data |= valid_csum_mask;
4039 ret_val = e1000_write_nvm(hw, word, 1, &data);
4040 if (ret_val)
4041 return ret_val;
4042 ret_val = e1000e_update_nvm_checksum(hw);
4043 if (ret_val)
4044 return ret_val;
4045 }
4046
4047 return e1000e_validate_nvm_checksum_generic(hw);
4048 }
4049
4050 /**
4051 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4052 * @hw: pointer to the HW structure
4053 *
4054 * To prevent malicious write/erase of the NVM, set it to be read-only
4055 * so that the hardware ignores all write/erase cycles of the NVM via
4056 * the flash control registers. The shadow-ram copy of the NVM will
4057 * still be updated, however any updates to this copy will not stick
4058 * across driver reloads.
4059 **/
4060 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4061 {
4062 struct e1000_nvm_info *nvm = &hw->nvm;
4063 union ich8_flash_protected_range pr0;
4064 union ich8_hws_flash_status hsfsts;
4065 u32 gfpreg;
4066
4067 nvm->ops.acquire(hw);
4068
4069 gfpreg = er32flash(ICH_FLASH_GFPREG);
4070
4071 /* Write-protect GbE Sector of NVM */
4072 pr0.regval = er32flash(ICH_FLASH_PR0);
4073 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4074 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4075 pr0.range.wpe = true;
4076 ew32flash(ICH_FLASH_PR0, pr0.regval);
4077
4078 /* Lock down a subset of GbE Flash Control Registers, e.g.
4079 * PR0 to prevent the write-protection from being lifted.
4080 * Once FLOCKDN is set, the registers protected by it cannot
4081 * be written until FLOCKDN is cleared by a hardware reset.
4082 */
4083 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4084 hsfsts.hsf_status.flockdn = true;
4085 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4086
4087 nvm->ops.release(hw);
4088 }
4089
4090 /**
4091 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4092 * @hw: pointer to the HW structure
4093 * @offset: The offset (in bytes) of the byte/word to read.
4094 * @size: Size of data to read, 1=byte 2=word
4095 * @data: The byte(s) to write to the NVM.
4096 *
4097 * Writes one/two bytes to the NVM using the flash access registers.
4098 **/
4099 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4100 u8 size, u16 data)
4101 {
4102 union ich8_hws_flash_status hsfsts;
4103 union ich8_hws_flash_ctrl hsflctl;
4104 u32 flash_linear_addr;
4105 u32 flash_data = 0;
4106 s32 ret_val;
4107 u8 count = 0;
4108
4109 if (hw->mac.type == e1000_pch_spt) {
4110 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4111 return -E1000_ERR_NVM;
4112 } else {
4113 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4114 return -E1000_ERR_NVM;
4115 }
4116
4117 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4118 hw->nvm.flash_base_addr);
4119
4120 do {
4121 udelay(1);
4122 /* Steps */
4123 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4124 if (ret_val)
4125 break;
4126 /* In SPT, This register is in Lan memory space, not
4127 * flash. Therefore, only 32 bit access is supported
4128 */
4129 if (hw->mac.type == e1000_pch_spt)
4130 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4131 else
4132 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4133
4134 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4135 hsflctl.hsf_ctrl.fldbcount = size - 1;
4136 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4137 /* In SPT, This register is in Lan memory space,
4138 * not flash. Therefore, only 32 bit access is
4139 * supported
4140 */
4141 if (hw->mac.type == e1000_pch_spt)
4142 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4143 else
4144 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4145
4146 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4147
4148 if (size == 1)
4149 flash_data = (u32)data & 0x00FF;
4150 else
4151 flash_data = (u32)data;
4152
4153 ew32flash(ICH_FLASH_FDATA0, flash_data);
4154
4155 /* check if FCERR is set to 1 , if set to 1, clear it
4156 * and try the whole sequence a few more times else done
4157 */
4158 ret_val =
4159 e1000_flash_cycle_ich8lan(hw,
4160 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4161 if (!ret_val)
4162 break;
4163
4164 /* If we're here, then things are most likely
4165 * completely hosed, but if the error condition
4166 * is detected, it won't hurt to give it another
4167 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4168 */
4169 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4170 if (hsfsts.hsf_status.flcerr)
4171 /* Repeat for some time before giving up. */
4172 continue;
4173 if (!hsfsts.hsf_status.flcdone) {
4174 e_dbg("Timeout error - flash cycle did not complete.\n");
4175 break;
4176 }
4177 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4178
4179 return ret_val;
4180 }
4181
4182 /**
4183 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4184 * @hw: pointer to the HW structure
4185 * @offset: The offset (in bytes) of the dwords to read.
4186 * @data: The 4 bytes to write to the NVM.
4187 *
4188 * Writes one/two/four bytes to the NVM using the flash access registers.
4189 **/
4190 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4191 u32 data)
4192 {
4193 union ich8_hws_flash_status hsfsts;
4194 union ich8_hws_flash_ctrl hsflctl;
4195 u32 flash_linear_addr;
4196 s32 ret_val;
4197 u8 count = 0;
4198
4199 if (hw->mac.type == e1000_pch_spt) {
4200 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4201 return -E1000_ERR_NVM;
4202 }
4203 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4204 hw->nvm.flash_base_addr);
4205 do {
4206 udelay(1);
4207 /* Steps */
4208 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4209 if (ret_val)
4210 break;
4211
4212 /* In SPT, This register is in Lan memory space, not
4213 * flash. Therefore, only 32 bit access is supported
4214 */
4215 if (hw->mac.type == e1000_pch_spt)
4216 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4217 >> 16;
4218 else
4219 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4220
4221 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4222 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4223
4224 /* In SPT, This register is in Lan memory space,
4225 * not flash. Therefore, only 32 bit access is
4226 * supported
4227 */
4228 if (hw->mac.type == e1000_pch_spt)
4229 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4230 else
4231 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4232
4233 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4234
4235 ew32flash(ICH_FLASH_FDATA0, data);
4236
4237 /* check if FCERR is set to 1 , if set to 1, clear it
4238 * and try the whole sequence a few more times else done
4239 */
4240 ret_val =
4241 e1000_flash_cycle_ich8lan(hw,
4242 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4243
4244 if (!ret_val)
4245 break;
4246
4247 /* If we're here, then things are most likely
4248 * completely hosed, but if the error condition
4249 * is detected, it won't hurt to give it another
4250 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4251 */
4252 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4253
4254 if (hsfsts.hsf_status.flcerr)
4255 /* Repeat for some time before giving up. */
4256 continue;
4257 if (!hsfsts.hsf_status.flcdone) {
4258 e_dbg("Timeout error - flash cycle did not complete.\n");
4259 break;
4260 }
4261 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4262
4263 return ret_val;
4264 }
4265
4266 /**
4267 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4268 * @hw: pointer to the HW structure
4269 * @offset: The index of the byte to read.
4270 * @data: The byte to write to the NVM.
4271 *
4272 * Writes a single byte to the NVM using the flash access registers.
4273 **/
4274 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4275 u8 data)
4276 {
4277 u16 word = (u16)data;
4278
4279 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4280 }
4281
4282 /**
4283 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4284 * @hw: pointer to the HW structure
4285 * @offset: The offset of the word to write.
4286 * @dword: The dword to write to the NVM.
4287 *
4288 * Writes a single dword to the NVM using the flash access registers.
4289 * Goes through a retry algorithm before giving up.
4290 **/
4291 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4292 u32 offset, u32 dword)
4293 {
4294 s32 ret_val;
4295 u16 program_retries;
4296
4297 /* Must convert word offset into bytes. */
4298 offset <<= 1;
4299 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4300
4301 if (!ret_val)
4302 return ret_val;
4303 for (program_retries = 0; program_retries < 100; program_retries++) {
4304 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4305 usleep_range(100, 200);
4306 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4307 if (!ret_val)
4308 break;
4309 }
4310 if (program_retries == 100)
4311 return -E1000_ERR_NVM;
4312
4313 return 0;
4314 }
4315
4316 /**
4317 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4318 * @hw: pointer to the HW structure
4319 * @offset: The offset of the byte to write.
4320 * @byte: The byte to write to the NVM.
4321 *
4322 * Writes a single byte to the NVM using the flash access registers.
4323 * Goes through a retry algorithm before giving up.
4324 **/
4325 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4326 u32 offset, u8 byte)
4327 {
4328 s32 ret_val;
4329 u16 program_retries;
4330
4331 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4332 if (!ret_val)
4333 return ret_val;
4334
4335 for (program_retries = 0; program_retries < 100; program_retries++) {
4336 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4337 usleep_range(100, 200);
4338 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4339 if (!ret_val)
4340 break;
4341 }
4342 if (program_retries == 100)
4343 return -E1000_ERR_NVM;
4344
4345 return 0;
4346 }
4347
4348 /**
4349 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4350 * @hw: pointer to the HW structure
4351 * @bank: 0 for first bank, 1 for second bank, etc.
4352 *
4353 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4354 * bank N is 4096 * N + flash_reg_addr.
4355 **/
4356 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4357 {
4358 struct e1000_nvm_info *nvm = &hw->nvm;
4359 union ich8_hws_flash_status hsfsts;
4360 union ich8_hws_flash_ctrl hsflctl;
4361 u32 flash_linear_addr;
4362 /* bank size is in 16bit words - adjust to bytes */
4363 u32 flash_bank_size = nvm->flash_bank_size * 2;
4364 s32 ret_val;
4365 s32 count = 0;
4366 s32 j, iteration, sector_size;
4367
4368 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4369
4370 /* Determine HW Sector size: Read BERASE bits of hw flash status
4371 * register
4372 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4373 * consecutive sectors. The start index for the nth Hw sector
4374 * can be calculated as = bank * 4096 + n * 256
4375 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4376 * The start index for the nth Hw sector can be calculated
4377 * as = bank * 4096
4378 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4379 * (ich9 only, otherwise error condition)
4380 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4381 */
4382 switch (hsfsts.hsf_status.berasesz) {
4383 case 0:
4384 /* Hw sector size 256 */
4385 sector_size = ICH_FLASH_SEG_SIZE_256;
4386 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4387 break;
4388 case 1:
4389 sector_size = ICH_FLASH_SEG_SIZE_4K;
4390 iteration = 1;
4391 break;
4392 case 2:
4393 sector_size = ICH_FLASH_SEG_SIZE_8K;
4394 iteration = 1;
4395 break;
4396 case 3:
4397 sector_size = ICH_FLASH_SEG_SIZE_64K;
4398 iteration = 1;
4399 break;
4400 default:
4401 return -E1000_ERR_NVM;
4402 }
4403
4404 /* Start with the base address, then add the sector offset. */
4405 flash_linear_addr = hw->nvm.flash_base_addr;
4406 flash_linear_addr += (bank) ? flash_bank_size : 0;
4407
4408 for (j = 0; j < iteration; j++) {
4409 do {
4410 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4411
4412 /* Steps */
4413 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4414 if (ret_val)
4415 return ret_val;
4416
4417 /* Write a value 11 (block Erase) in Flash
4418 * Cycle field in hw flash control
4419 */
4420 if (hw->mac.type == e1000_pch_spt)
4421 hsflctl.regval =
4422 er32flash(ICH_FLASH_HSFSTS) >> 16;
4423 else
4424 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4425
4426 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4427 if (hw->mac.type == e1000_pch_spt)
4428 ew32flash(ICH_FLASH_HSFSTS,
4429 hsflctl.regval << 16);
4430 else
4431 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4432
4433 /* Write the last 24 bits of an index within the
4434 * block into Flash Linear address field in Flash
4435 * Address.
4436 */
4437 flash_linear_addr += (j * sector_size);
4438 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4439
4440 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4441 if (!ret_val)
4442 break;
4443
4444 /* Check if FCERR is set to 1. If 1,
4445 * clear it and try the whole sequence
4446 * a few more times else Done
4447 */
4448 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4449 if (hsfsts.hsf_status.flcerr)
4450 /* repeat for some time before giving up */
4451 continue;
4452 else if (!hsfsts.hsf_status.flcdone)
4453 return ret_val;
4454 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4455 }
4456
4457 return 0;
4458 }
4459
4460 /**
4461 * e1000_valid_led_default_ich8lan - Set the default LED settings
4462 * @hw: pointer to the HW structure
4463 * @data: Pointer to the LED settings
4464 *
4465 * Reads the LED default settings from the NVM to data. If the NVM LED
4466 * settings is all 0's or F's, set the LED default to a valid LED default
4467 * setting.
4468 **/
4469 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4470 {
4471 s32 ret_val;
4472
4473 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4474 if (ret_val) {
4475 e_dbg("NVM Read Error\n");
4476 return ret_val;
4477 }
4478
4479 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4480 *data = ID_LED_DEFAULT_ICH8LAN;
4481
4482 return 0;
4483 }
4484
4485 /**
4486 * e1000_id_led_init_pchlan - store LED configurations
4487 * @hw: pointer to the HW structure
4488 *
4489 * PCH does not control LEDs via the LEDCTL register, rather it uses
4490 * the PHY LED configuration register.
4491 *
4492 * PCH also does not have an "always on" or "always off" mode which
4493 * complicates the ID feature. Instead of using the "on" mode to indicate
4494 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4495 * use "link_up" mode. The LEDs will still ID on request if there is no
4496 * link based on logic in e1000_led_[on|off]_pchlan().
4497 **/
4498 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4499 {
4500 struct e1000_mac_info *mac = &hw->mac;
4501 s32 ret_val;
4502 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4503 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4504 u16 data, i, temp, shift;
4505
4506 /* Get default ID LED modes */
4507 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4508 if (ret_val)
4509 return ret_val;
4510
4511 mac->ledctl_default = er32(LEDCTL);
4512 mac->ledctl_mode1 = mac->ledctl_default;
4513 mac->ledctl_mode2 = mac->ledctl_default;
4514
4515 for (i = 0; i < 4; i++) {
4516 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4517 shift = (i * 5);
4518 switch (temp) {
4519 case ID_LED_ON1_DEF2:
4520 case ID_LED_ON1_ON2:
4521 case ID_LED_ON1_OFF2:
4522 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4523 mac->ledctl_mode1 |= (ledctl_on << shift);
4524 break;
4525 case ID_LED_OFF1_DEF2:
4526 case ID_LED_OFF1_ON2:
4527 case ID_LED_OFF1_OFF2:
4528 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4529 mac->ledctl_mode1 |= (ledctl_off << shift);
4530 break;
4531 default:
4532 /* Do nothing */
4533 break;
4534 }
4535 switch (temp) {
4536 case ID_LED_DEF1_ON2:
4537 case ID_LED_ON1_ON2:
4538 case ID_LED_OFF1_ON2:
4539 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4540 mac->ledctl_mode2 |= (ledctl_on << shift);
4541 break;
4542 case ID_LED_DEF1_OFF2:
4543 case ID_LED_ON1_OFF2:
4544 case ID_LED_OFF1_OFF2:
4545 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4546 mac->ledctl_mode2 |= (ledctl_off << shift);
4547 break;
4548 default:
4549 /* Do nothing */
4550 break;
4551 }
4552 }
4553
4554 return 0;
4555 }
4556
4557 /**
4558 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4559 * @hw: pointer to the HW structure
4560 *
4561 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4562 * register, so the the bus width is hard coded.
4563 **/
4564 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4565 {
4566 struct e1000_bus_info *bus = &hw->bus;
4567 s32 ret_val;
4568
4569 ret_val = e1000e_get_bus_info_pcie(hw);
4570
4571 /* ICH devices are "PCI Express"-ish. They have
4572 * a configuration space, but do not contain
4573 * PCI Express Capability registers, so bus width
4574 * must be hardcoded.
4575 */
4576 if (bus->width == e1000_bus_width_unknown)
4577 bus->width = e1000_bus_width_pcie_x1;
4578
4579 return ret_val;
4580 }
4581
4582 /**
4583 * e1000_reset_hw_ich8lan - Reset the hardware
4584 * @hw: pointer to the HW structure
4585 *
4586 * Does a full reset of the hardware which includes a reset of the PHY and
4587 * MAC.
4588 **/
4589 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4590 {
4591 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4592 u16 kum_cfg;
4593 u32 ctrl, reg;
4594 s32 ret_val;
4595
4596 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4597 * on the last TLP read/write transaction when MAC is reset.
4598 */
4599 ret_val = e1000e_disable_pcie_master(hw);
4600 if (ret_val)
4601 e_dbg("PCI-E Master disable polling has failed.\n");
4602
4603 e_dbg("Masking off all interrupts\n");
4604 ew32(IMC, 0xffffffff);
4605
4606 /* Disable the Transmit and Receive units. Then delay to allow
4607 * any pending transactions to complete before we hit the MAC
4608 * with the global reset.
4609 */
4610 ew32(RCTL, 0);
4611 ew32(TCTL, E1000_TCTL_PSP);
4612 e1e_flush();
4613
4614 usleep_range(10000, 20000);
4615
4616 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4617 if (hw->mac.type == e1000_ich8lan) {
4618 /* Set Tx and Rx buffer allocation to 8k apiece. */
4619 ew32(PBA, E1000_PBA_8K);
4620 /* Set Packet Buffer Size to 16k. */
4621 ew32(PBS, E1000_PBS_16K);
4622 }
4623
4624 if (hw->mac.type == e1000_pchlan) {
4625 /* Save the NVM K1 bit setting */
4626 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4627 if (ret_val)
4628 return ret_val;
4629
4630 if (kum_cfg & E1000_NVM_K1_ENABLE)
4631 dev_spec->nvm_k1_enabled = true;
4632 else
4633 dev_spec->nvm_k1_enabled = false;
4634 }
4635
4636 ctrl = er32(CTRL);
4637
4638 if (!hw->phy.ops.check_reset_block(hw)) {
4639 /* Full-chip reset requires MAC and PHY reset at the same
4640 * time to make sure the interface between MAC and the
4641 * external PHY is reset.
4642 */
4643 ctrl |= E1000_CTRL_PHY_RST;
4644
4645 /* Gate automatic PHY configuration by hardware on
4646 * non-managed 82579
4647 */
4648 if ((hw->mac.type == e1000_pch2lan) &&
4649 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4650 e1000_gate_hw_phy_config_ich8lan(hw, true);
4651 }
4652 ret_val = e1000_acquire_swflag_ich8lan(hw);
4653 e_dbg("Issuing a global reset to ich8lan\n");
4654 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4655 /* cannot issue a flush here because it hangs the hardware */
4656 msleep(20);
4657
4658 /* Set Phy Config Counter to 50msec */
4659 if (hw->mac.type == e1000_pch2lan) {
4660 reg = er32(FEXTNVM3);
4661 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4662 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4663 ew32(FEXTNVM3, reg);
4664 }
4665
4666 if (!ret_val)
4667 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4668
4669 if (ctrl & E1000_CTRL_PHY_RST) {
4670 ret_val = hw->phy.ops.get_cfg_done(hw);
4671 if (ret_val)
4672 return ret_val;
4673
4674 ret_val = e1000_post_phy_reset_ich8lan(hw);
4675 if (ret_val)
4676 return ret_val;
4677 }
4678
4679 /* For PCH, this write will make sure that any noise
4680 * will be detected as a CRC error and be dropped rather than show up
4681 * as a bad packet to the DMA engine.
4682 */
4683 if (hw->mac.type == e1000_pchlan)
4684 ew32(CRC_OFFSET, 0x65656565);
4685
4686 ew32(IMC, 0xffffffff);
4687 er32(ICR);
4688
4689 reg = er32(KABGTXD);
4690 reg |= E1000_KABGTXD_BGSQLBIAS;
4691 ew32(KABGTXD, reg);
4692
4693 return 0;
4694 }
4695
4696 /**
4697 * e1000_init_hw_ich8lan - Initialize the hardware
4698 * @hw: pointer to the HW structure
4699 *
4700 * Prepares the hardware for transmit and receive by doing the following:
4701 * - initialize hardware bits
4702 * - initialize LED identification
4703 * - setup receive address registers
4704 * - setup flow control
4705 * - setup transmit descriptors
4706 * - clear statistics
4707 **/
4708 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4709 {
4710 struct e1000_mac_info *mac = &hw->mac;
4711 u32 ctrl_ext, txdctl, snoop;
4712 s32 ret_val;
4713 u16 i;
4714
4715 e1000_initialize_hw_bits_ich8lan(hw);
4716
4717 /* Initialize identification LED */
4718 ret_val = mac->ops.id_led_init(hw);
4719 /* An error is not fatal and we should not stop init due to this */
4720 if (ret_val)
4721 e_dbg("Error initializing identification LED\n");
4722
4723 /* Setup the receive address. */
4724 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4725
4726 /* Zero out the Multicast HASH table */
4727 e_dbg("Zeroing the MTA\n");
4728 for (i = 0; i < mac->mta_reg_count; i++)
4729 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4730
4731 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4732 * the ME. Disable wakeup by clearing the host wakeup bit.
4733 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4734 */
4735 if (hw->phy.type == e1000_phy_82578) {
4736 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4737 i &= ~BM_WUC_HOST_WU_BIT;
4738 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4739 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4740 if (ret_val)
4741 return ret_val;
4742 }
4743
4744 /* Setup link and flow control */
4745 ret_val = mac->ops.setup_link(hw);
4746
4747 /* Set the transmit descriptor write-back policy for both queues */
4748 txdctl = er32(TXDCTL(0));
4749 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4750 E1000_TXDCTL_FULL_TX_DESC_WB);
4751 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4752 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4753 ew32(TXDCTL(0), txdctl);
4754 txdctl = er32(TXDCTL(1));
4755 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4756 E1000_TXDCTL_FULL_TX_DESC_WB);
4757 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4758 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4759 ew32(TXDCTL(1), txdctl);
4760
4761 /* ICH8 has opposite polarity of no_snoop bits.
4762 * By default, we should use snoop behavior.
4763 */
4764 if (mac->type == e1000_ich8lan)
4765 snoop = PCIE_ICH8_SNOOP_ALL;
4766 else
4767 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4768 e1000e_set_pcie_no_snoop(hw, snoop);
4769
4770 ctrl_ext = er32(CTRL_EXT);
4771 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4772 ew32(CTRL_EXT, ctrl_ext);
4773
4774 /* Clear all of the statistics registers (clear on read). It is
4775 * important that we do this after we have tried to establish link
4776 * because the symbol error count will increment wildly if there
4777 * is no link.
4778 */
4779 e1000_clear_hw_cntrs_ich8lan(hw);
4780
4781 return ret_val;
4782 }
4783
4784 /**
4785 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4786 * @hw: pointer to the HW structure
4787 *
4788 * Sets/Clears required hardware bits necessary for correctly setting up the
4789 * hardware for transmit and receive.
4790 **/
4791 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4792 {
4793 u32 reg;
4794
4795 /* Extended Device Control */
4796 reg = er32(CTRL_EXT);
4797 reg |= (1 << 22);
4798 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4799 if (hw->mac.type >= e1000_pchlan)
4800 reg |= E1000_CTRL_EXT_PHYPDEN;
4801 ew32(CTRL_EXT, reg);
4802
4803 /* Transmit Descriptor Control 0 */
4804 reg = er32(TXDCTL(0));
4805 reg |= (1 << 22);
4806 ew32(TXDCTL(0), reg);
4807
4808 /* Transmit Descriptor Control 1 */
4809 reg = er32(TXDCTL(1));
4810 reg |= (1 << 22);
4811 ew32(TXDCTL(1), reg);
4812
4813 /* Transmit Arbitration Control 0 */
4814 reg = er32(TARC(0));
4815 if (hw->mac.type == e1000_ich8lan)
4816 reg |= (1 << 28) | (1 << 29);
4817 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4818 ew32(TARC(0), reg);
4819
4820 /* Transmit Arbitration Control 1 */
4821 reg = er32(TARC(1));
4822 if (er32(TCTL) & E1000_TCTL_MULR)
4823 reg &= ~(1 << 28);
4824 else
4825 reg |= (1 << 28);
4826 reg |= (1 << 24) | (1 << 26) | (1 << 30);
4827 ew32(TARC(1), reg);
4828
4829 /* Device Status */
4830 if (hw->mac.type == e1000_ich8lan) {
4831 reg = er32(STATUS);
4832 reg &= ~(1 << 31);
4833 ew32(STATUS, reg);
4834 }
4835
4836 /* work-around descriptor data corruption issue during nfs v2 udp
4837 * traffic, just disable the nfs filtering capability
4838 */
4839 reg = er32(RFCTL);
4840 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4841
4842 /* Disable IPv6 extension header parsing because some malformed
4843 * IPv6 headers can hang the Rx.
4844 */
4845 if (hw->mac.type == e1000_ich8lan)
4846 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4847 ew32(RFCTL, reg);
4848
4849 /* Enable ECC on Lynxpoint */
4850 if ((hw->mac.type == e1000_pch_lpt) ||
4851 (hw->mac.type == e1000_pch_spt)) {
4852 reg = er32(PBECCSTS);
4853 reg |= E1000_PBECCSTS_ECC_ENABLE;
4854 ew32(PBECCSTS, reg);
4855
4856 reg = er32(CTRL);
4857 reg |= E1000_CTRL_MEHE;
4858 ew32(CTRL, reg);
4859 }
4860 }
4861
4862 /**
4863 * e1000_setup_link_ich8lan - Setup flow control and link settings
4864 * @hw: pointer to the HW structure
4865 *
4866 * Determines which flow control settings to use, then configures flow
4867 * control. Calls the appropriate media-specific link configuration
4868 * function. Assuming the adapter has a valid link partner, a valid link
4869 * should be established. Assumes the hardware has previously been reset
4870 * and the transmitter and receiver are not enabled.
4871 **/
4872 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4873 {
4874 s32 ret_val;
4875
4876 if (hw->phy.ops.check_reset_block(hw))
4877 return 0;
4878
4879 /* ICH parts do not have a word in the NVM to determine
4880 * the default flow control setting, so we explicitly
4881 * set it to full.
4882 */
4883 if (hw->fc.requested_mode == e1000_fc_default) {
4884 /* Workaround h/w hang when Tx flow control enabled */
4885 if (hw->mac.type == e1000_pchlan)
4886 hw->fc.requested_mode = e1000_fc_rx_pause;
4887 else
4888 hw->fc.requested_mode = e1000_fc_full;
4889 }
4890
4891 /* Save off the requested flow control mode for use later. Depending
4892 * on the link partner's capabilities, we may or may not use this mode.
4893 */
4894 hw->fc.current_mode = hw->fc.requested_mode;
4895
4896 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4897
4898 /* Continue to configure the copper link. */
4899 ret_val = hw->mac.ops.setup_physical_interface(hw);
4900 if (ret_val)
4901 return ret_val;
4902
4903 ew32(FCTTV, hw->fc.pause_time);
4904 if ((hw->phy.type == e1000_phy_82578) ||
4905 (hw->phy.type == e1000_phy_82579) ||
4906 (hw->phy.type == e1000_phy_i217) ||
4907 (hw->phy.type == e1000_phy_82577)) {
4908 ew32(FCRTV_PCH, hw->fc.refresh_time);
4909
4910 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4911 hw->fc.pause_time);
4912 if (ret_val)
4913 return ret_val;
4914 }
4915
4916 return e1000e_set_fc_watermarks(hw);
4917 }
4918
4919 /**
4920 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4921 * @hw: pointer to the HW structure
4922 *
4923 * Configures the kumeran interface to the PHY to wait the appropriate time
4924 * when polling the PHY, then call the generic setup_copper_link to finish
4925 * configuring the copper link.
4926 **/
4927 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4928 {
4929 u32 ctrl;
4930 s32 ret_val;
4931 u16 reg_data;
4932
4933 ctrl = er32(CTRL);
4934 ctrl |= E1000_CTRL_SLU;
4935 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4936 ew32(CTRL, ctrl);
4937
4938 /* Set the mac to wait the maximum time between each iteration
4939 * and increase the max iterations when polling the phy;
4940 * this fixes erroneous timeouts at 10Mbps.
4941 */
4942 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4943 if (ret_val)
4944 return ret_val;
4945 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4946 &reg_data);
4947 if (ret_val)
4948 return ret_val;
4949 reg_data |= 0x3F;
4950 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4951 reg_data);
4952 if (ret_val)
4953 return ret_val;
4954
4955 switch (hw->phy.type) {
4956 case e1000_phy_igp_3:
4957 ret_val = e1000e_copper_link_setup_igp(hw);
4958 if (ret_val)
4959 return ret_val;
4960 break;
4961 case e1000_phy_bm:
4962 case e1000_phy_82578:
4963 ret_val = e1000e_copper_link_setup_m88(hw);
4964 if (ret_val)
4965 return ret_val;
4966 break;
4967 case e1000_phy_82577:
4968 case e1000_phy_82579:
4969 ret_val = e1000_copper_link_setup_82577(hw);
4970 if (ret_val)
4971 return ret_val;
4972 break;
4973 case e1000_phy_ife:
4974 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4975 if (ret_val)
4976 return ret_val;
4977
4978 reg_data &= ~IFE_PMC_AUTO_MDIX;
4979
4980 switch (hw->phy.mdix) {
4981 case 1:
4982 reg_data &= ~IFE_PMC_FORCE_MDIX;
4983 break;
4984 case 2:
4985 reg_data |= IFE_PMC_FORCE_MDIX;
4986 break;
4987 case 0:
4988 default:
4989 reg_data |= IFE_PMC_AUTO_MDIX;
4990 break;
4991 }
4992 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4993 if (ret_val)
4994 return ret_val;
4995 break;
4996 default:
4997 break;
4998 }
4999
5000 return e1000e_setup_copper_link(hw);
5001 }
5002
5003 /**
5004 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5005 * @hw: pointer to the HW structure
5006 *
5007 * Calls the PHY specific link setup function and then calls the
5008 * generic setup_copper_link to finish configuring the link for
5009 * Lynxpoint PCH devices
5010 **/
5011 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5012 {
5013 u32 ctrl;
5014 s32 ret_val;
5015
5016 ctrl = er32(CTRL);
5017 ctrl |= E1000_CTRL_SLU;
5018 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5019 ew32(CTRL, ctrl);
5020
5021 ret_val = e1000_copper_link_setup_82577(hw);
5022 if (ret_val)
5023 return ret_val;
5024
5025 return e1000e_setup_copper_link(hw);
5026 }
5027
5028 /**
5029 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5030 * @hw: pointer to the HW structure
5031 * @speed: pointer to store current link speed
5032 * @duplex: pointer to store the current link duplex
5033 *
5034 * Calls the generic get_speed_and_duplex to retrieve the current link
5035 * information and then calls the Kumeran lock loss workaround for links at
5036 * gigabit speeds.
5037 **/
5038 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5039 u16 *duplex)
5040 {
5041 s32 ret_val;
5042
5043 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5044 if (ret_val)
5045 return ret_val;
5046
5047 if ((hw->mac.type == e1000_ich8lan) &&
5048 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5049 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5050 }
5051
5052 return ret_val;
5053 }
5054
5055 /**
5056 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5057 * @hw: pointer to the HW structure
5058 *
5059 * Work-around for 82566 Kumeran PCS lock loss:
5060 * On link status change (i.e. PCI reset, speed change) and link is up and
5061 * speed is gigabit-
5062 * 0) if workaround is optionally disabled do nothing
5063 * 1) wait 1ms for Kumeran link to come up
5064 * 2) check Kumeran Diagnostic register PCS lock loss bit
5065 * 3) if not set the link is locked (all is good), otherwise...
5066 * 4) reset the PHY
5067 * 5) repeat up to 10 times
5068 * Note: this is only called for IGP3 copper when speed is 1gb.
5069 **/
5070 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5071 {
5072 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5073 u32 phy_ctrl;
5074 s32 ret_val;
5075 u16 i, data;
5076 bool link;
5077
5078 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5079 return 0;
5080
5081 /* Make sure link is up before proceeding. If not just return.
5082 * Attempting this while link is negotiating fouled up link
5083 * stability
5084 */
5085 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5086 if (!link)
5087 return 0;
5088
5089 for (i = 0; i < 10; i++) {
5090 /* read once to clear */
5091 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5092 if (ret_val)
5093 return ret_val;
5094 /* and again to get new status */
5095 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5096 if (ret_val)
5097 return ret_val;
5098
5099 /* check for PCS lock */
5100 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5101 return 0;
5102
5103 /* Issue PHY reset */
5104 e1000_phy_hw_reset(hw);
5105 mdelay(5);
5106 }
5107 /* Disable GigE link negotiation */
5108 phy_ctrl = er32(PHY_CTRL);
5109 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5110 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5111 ew32(PHY_CTRL, phy_ctrl);
5112
5113 /* Call gig speed drop workaround on Gig disable before accessing
5114 * any PHY registers
5115 */
5116 e1000e_gig_downshift_workaround_ich8lan(hw);
5117
5118 /* unable to acquire PCS lock */
5119 return -E1000_ERR_PHY;
5120 }
5121
5122 /**
5123 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5124 * @hw: pointer to the HW structure
5125 * @state: boolean value used to set the current Kumeran workaround state
5126 *
5127 * If ICH8, set the current Kumeran workaround state (enabled - true
5128 * /disabled - false).
5129 **/
5130 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5131 bool state)
5132 {
5133 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5134
5135 if (hw->mac.type != e1000_ich8lan) {
5136 e_dbg("Workaround applies to ICH8 only.\n");
5137 return;
5138 }
5139
5140 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5141 }
5142
5143 /**
5144 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5145 * @hw: pointer to the HW structure
5146 *
5147 * Workaround for 82566 power-down on D3 entry:
5148 * 1) disable gigabit link
5149 * 2) write VR power-down enable
5150 * 3) read it back
5151 * Continue if successful, else issue LCD reset and repeat
5152 **/
5153 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5154 {
5155 u32 reg;
5156 u16 data;
5157 u8 retry = 0;
5158
5159 if (hw->phy.type != e1000_phy_igp_3)
5160 return;
5161
5162 /* Try the workaround twice (if needed) */
5163 do {
5164 /* Disable link */
5165 reg = er32(PHY_CTRL);
5166 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5167 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5168 ew32(PHY_CTRL, reg);
5169
5170 /* Call gig speed drop workaround on Gig disable before
5171 * accessing any PHY registers
5172 */
5173 if (hw->mac.type == e1000_ich8lan)
5174 e1000e_gig_downshift_workaround_ich8lan(hw);
5175
5176 /* Write VR power-down enable */
5177 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5178 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5179 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5180
5181 /* Read it back and test */
5182 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5183 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5184 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5185 break;
5186
5187 /* Issue PHY reset and repeat at most one more time */
5188 reg = er32(CTRL);
5189 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5190 retry++;
5191 } while (retry);
5192 }
5193
5194 /**
5195 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5196 * @hw: pointer to the HW structure
5197 *
5198 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5199 * LPLU, Gig disable, MDIC PHY reset):
5200 * 1) Set Kumeran Near-end loopback
5201 * 2) Clear Kumeran Near-end loopback
5202 * Should only be called for ICH8[m] devices with any 1G Phy.
5203 **/
5204 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5205 {
5206 s32 ret_val;
5207 u16 reg_data;
5208
5209 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5210 return;
5211
5212 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5213 &reg_data);
5214 if (ret_val)
5215 return;
5216 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5217 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5218 reg_data);
5219 if (ret_val)
5220 return;
5221 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5222 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5223 }
5224
5225 /**
5226 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5227 * @hw: pointer to the HW structure
5228 *
5229 * During S0 to Sx transition, it is possible the link remains at gig
5230 * instead of negotiating to a lower speed. Before going to Sx, set
5231 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5232 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5233 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5234 * needs to be written.
5235 * Parts that support (and are linked to a partner which support) EEE in
5236 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5237 * than 10Mbps w/o EEE.
5238 **/
5239 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5240 {
5241 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5242 u32 phy_ctrl;
5243 s32 ret_val;
5244
5245 phy_ctrl = er32(PHY_CTRL);
5246 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5247
5248 if (hw->phy.type == e1000_phy_i217) {
5249 u16 phy_reg, device_id = hw->adapter->pdev->device;
5250
5251 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5252 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5253 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5254 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5255 (hw->mac.type == e1000_pch_spt)) {
5256 u32 fextnvm6 = er32(FEXTNVM6);
5257
5258 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5259 }
5260
5261 ret_val = hw->phy.ops.acquire(hw);
5262 if (ret_val)
5263 goto out;
5264
5265 if (!dev_spec->eee_disable) {
5266 u16 eee_advert;
5267
5268 ret_val =
5269 e1000_read_emi_reg_locked(hw,
5270 I217_EEE_ADVERTISEMENT,
5271 &eee_advert);
5272 if (ret_val)
5273 goto release;
5274
5275 /* Disable LPLU if both link partners support 100BaseT
5276 * EEE and 100Full is advertised on both ends of the
5277 * link, and enable Auto Enable LPI since there will
5278 * be no driver to enable LPI while in Sx.
5279 */
5280 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5281 (dev_spec->eee_lp_ability &
5282 I82579_EEE_100_SUPPORTED) &&
5283 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5284 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5285 E1000_PHY_CTRL_NOND0A_LPLU);
5286
5287 /* Set Auto Enable LPI after link up */
5288 e1e_rphy_locked(hw,
5289 I217_LPI_GPIO_CTRL, &phy_reg);
5290 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5291 e1e_wphy_locked(hw,
5292 I217_LPI_GPIO_CTRL, phy_reg);
5293 }
5294 }
5295
5296 /* For i217 Intel Rapid Start Technology support,
5297 * when the system is going into Sx and no manageability engine
5298 * is present, the driver must configure proxy to reset only on
5299 * power good. LPI (Low Power Idle) state must also reset only
5300 * on power good, as well as the MTA (Multicast table array).
5301 * The SMBus release must also be disabled on LCD reset.
5302 */
5303 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5304 /* Enable proxy to reset only on power good. */
5305 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5306 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5307 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5308
5309 /* Set bit enable LPI (EEE) to reset only on
5310 * power good.
5311 */
5312 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5313 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5314 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5315
5316 /* Disable the SMB release on LCD reset. */
5317 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5318 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5319 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5320 }
5321
5322 /* Enable MTA to reset for Intel Rapid Start Technology
5323 * Support
5324 */
5325 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5326 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5327 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5328
5329 release:
5330 hw->phy.ops.release(hw);
5331 }
5332 out:
5333 ew32(PHY_CTRL, phy_ctrl);
5334
5335 if (hw->mac.type == e1000_ich8lan)
5336 e1000e_gig_downshift_workaround_ich8lan(hw);
5337
5338 if (hw->mac.type >= e1000_pchlan) {
5339 e1000_oem_bits_config_ich8lan(hw, false);
5340
5341 /* Reset PHY to activate OEM bits on 82577/8 */
5342 if (hw->mac.type == e1000_pchlan)
5343 e1000e_phy_hw_reset_generic(hw);
5344
5345 ret_val = hw->phy.ops.acquire(hw);
5346 if (ret_val)
5347 return;
5348 e1000_write_smbus_addr(hw);
5349 hw->phy.ops.release(hw);
5350 }
5351 }
5352
5353 /**
5354 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5355 * @hw: pointer to the HW structure
5356 *
5357 * During Sx to S0 transitions on non-managed devices or managed devices
5358 * on which PHY resets are not blocked, if the PHY registers cannot be
5359 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5360 * the PHY.
5361 * On i217, setup Intel Rapid Start Technology.
5362 **/
5363 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5364 {
5365 s32 ret_val;
5366
5367 if (hw->mac.type < e1000_pch2lan)
5368 return;
5369
5370 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5371 if (ret_val) {
5372 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5373 return;
5374 }
5375
5376 /* For i217 Intel Rapid Start Technology support when the system
5377 * is transitioning from Sx and no manageability engine is present
5378 * configure SMBus to restore on reset, disable proxy, and enable
5379 * the reset on MTA (Multicast table array).
5380 */
5381 if (hw->phy.type == e1000_phy_i217) {
5382 u16 phy_reg;
5383
5384 ret_val = hw->phy.ops.acquire(hw);
5385 if (ret_val) {
5386 e_dbg("Failed to setup iRST\n");
5387 return;
5388 }
5389
5390 /* Clear Auto Enable LPI after link up */
5391 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5392 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5393 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5394
5395 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5396 /* Restore clear on SMB if no manageability engine
5397 * is present
5398 */
5399 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5400 if (ret_val)
5401 goto release;
5402 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5403 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5404
5405 /* Disable Proxy */
5406 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5407 }
5408 /* Enable reset on MTA */
5409 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5410 if (ret_val)
5411 goto release;
5412 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5413 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5414 release:
5415 if (ret_val)
5416 e_dbg("Error %d in resume workarounds\n", ret_val);
5417 hw->phy.ops.release(hw);
5418 }
5419 }
5420
5421 /**
5422 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5423 * @hw: pointer to the HW structure
5424 *
5425 * Return the LED back to the default configuration.
5426 **/
5427 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5428 {
5429 if (hw->phy.type == e1000_phy_ife)
5430 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5431
5432 ew32(LEDCTL, hw->mac.ledctl_default);
5433 return 0;
5434 }
5435
5436 /**
5437 * e1000_led_on_ich8lan - Turn LEDs on
5438 * @hw: pointer to the HW structure
5439 *
5440 * Turn on the LEDs.
5441 **/
5442 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5443 {
5444 if (hw->phy.type == e1000_phy_ife)
5445 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5446 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5447
5448 ew32(LEDCTL, hw->mac.ledctl_mode2);
5449 return 0;
5450 }
5451
5452 /**
5453 * e1000_led_off_ich8lan - Turn LEDs off
5454 * @hw: pointer to the HW structure
5455 *
5456 * Turn off the LEDs.
5457 **/
5458 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5459 {
5460 if (hw->phy.type == e1000_phy_ife)
5461 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5462 (IFE_PSCL_PROBE_MODE |
5463 IFE_PSCL_PROBE_LEDS_OFF));
5464
5465 ew32(LEDCTL, hw->mac.ledctl_mode1);
5466 return 0;
5467 }
5468
5469 /**
5470 * e1000_setup_led_pchlan - Configures SW controllable LED
5471 * @hw: pointer to the HW structure
5472 *
5473 * This prepares the SW controllable LED for use.
5474 **/
5475 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5476 {
5477 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5478 }
5479
5480 /**
5481 * e1000_cleanup_led_pchlan - Restore the default LED operation
5482 * @hw: pointer to the HW structure
5483 *
5484 * Return the LED back to the default configuration.
5485 **/
5486 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5487 {
5488 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5489 }
5490
5491 /**
5492 * e1000_led_on_pchlan - Turn LEDs on
5493 * @hw: pointer to the HW structure
5494 *
5495 * Turn on the LEDs.
5496 **/
5497 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5498 {
5499 u16 data = (u16)hw->mac.ledctl_mode2;
5500 u32 i, led;
5501
5502 /* If no link, then turn LED on by setting the invert bit
5503 * for each LED that's mode is "link_up" in ledctl_mode2.
5504 */
5505 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5506 for (i = 0; i < 3; i++) {
5507 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5508 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5509 E1000_LEDCTL_MODE_LINK_UP)
5510 continue;
5511 if (led & E1000_PHY_LED0_IVRT)
5512 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5513 else
5514 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5515 }
5516 }
5517
5518 return e1e_wphy(hw, HV_LED_CONFIG, data);
5519 }
5520
5521 /**
5522 * e1000_led_off_pchlan - Turn LEDs off
5523 * @hw: pointer to the HW structure
5524 *
5525 * Turn off the LEDs.
5526 **/
5527 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5528 {
5529 u16 data = (u16)hw->mac.ledctl_mode1;
5530 u32 i, led;
5531
5532 /* If no link, then turn LED off by clearing the invert bit
5533 * for each LED that's mode is "link_up" in ledctl_mode1.
5534 */
5535 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5536 for (i = 0; i < 3; i++) {
5537 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5538 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5539 E1000_LEDCTL_MODE_LINK_UP)
5540 continue;
5541 if (led & E1000_PHY_LED0_IVRT)
5542 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5543 else
5544 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5545 }
5546 }
5547
5548 return e1e_wphy(hw, HV_LED_CONFIG, data);
5549 }
5550
5551 /**
5552 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5553 * @hw: pointer to the HW structure
5554 *
5555 * Read appropriate register for the config done bit for completion status
5556 * and configure the PHY through s/w for EEPROM-less parts.
5557 *
5558 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5559 * config done bit, so only an error is logged and continues. If we were
5560 * to return with error, EEPROM-less silicon would not be able to be reset
5561 * or change link.
5562 **/
5563 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5564 {
5565 s32 ret_val = 0;
5566 u32 bank = 0;
5567 u32 status;
5568
5569 e1000e_get_cfg_done_generic(hw);
5570
5571 /* Wait for indication from h/w that it has completed basic config */
5572 if (hw->mac.type >= e1000_ich10lan) {
5573 e1000_lan_init_done_ich8lan(hw);
5574 } else {
5575 ret_val = e1000e_get_auto_rd_done(hw);
5576 if (ret_val) {
5577 /* When auto config read does not complete, do not
5578 * return with an error. This can happen in situations
5579 * where there is no eeprom and prevents getting link.
5580 */
5581 e_dbg("Auto Read Done did not complete\n");
5582 ret_val = 0;
5583 }
5584 }
5585
5586 /* Clear PHY Reset Asserted bit */
5587 status = er32(STATUS);
5588 if (status & E1000_STATUS_PHYRA)
5589 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5590 else
5591 e_dbg("PHY Reset Asserted not set - needs delay\n");
5592
5593 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5594 if (hw->mac.type <= e1000_ich9lan) {
5595 if (!(er32(EECD) & E1000_EECD_PRES) &&
5596 (hw->phy.type == e1000_phy_igp_3)) {
5597 e1000e_phy_init_script_igp3(hw);
5598 }
5599 } else {
5600 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5601 /* Maybe we should do a basic PHY config */
5602 e_dbg("EEPROM not present\n");
5603 ret_val = -E1000_ERR_CONFIG;
5604 }
5605 }
5606
5607 return ret_val;
5608 }
5609
5610 /**
5611 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5612 * @hw: pointer to the HW structure
5613 *
5614 * In the case of a PHY power down to save power, or to turn off link during a
5615 * driver unload, or wake on lan is not enabled, remove the link.
5616 **/
5617 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5618 {
5619 /* If the management interface is not enabled, then power down */
5620 if (!(hw->mac.ops.check_mng_mode(hw) ||
5621 hw->phy.ops.check_reset_block(hw)))
5622 e1000_power_down_phy_copper(hw);
5623 }
5624
5625 /**
5626 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5627 * @hw: pointer to the HW structure
5628 *
5629 * Clears hardware counters specific to the silicon family and calls
5630 * clear_hw_cntrs_generic to clear all general purpose counters.
5631 **/
5632 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5633 {
5634 u16 phy_data;
5635 s32 ret_val;
5636
5637 e1000e_clear_hw_cntrs_base(hw);
5638
5639 er32(ALGNERRC);
5640 er32(RXERRC);
5641 er32(TNCRS);
5642 er32(CEXTERR);
5643 er32(TSCTC);
5644 er32(TSCTFC);
5645
5646 er32(MGTPRC);
5647 er32(MGTPDC);
5648 er32(MGTPTC);
5649
5650 er32(IAC);
5651 er32(ICRXOC);
5652
5653 /* Clear PHY statistics registers */
5654 if ((hw->phy.type == e1000_phy_82578) ||
5655 (hw->phy.type == e1000_phy_82579) ||
5656 (hw->phy.type == e1000_phy_i217) ||
5657 (hw->phy.type == e1000_phy_82577)) {
5658 ret_val = hw->phy.ops.acquire(hw);
5659 if (ret_val)
5660 return;
5661 ret_val = hw->phy.ops.set_page(hw,
5662 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5663 if (ret_val)
5664 goto release;
5665 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5666 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5667 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5668 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5669 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5670 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5671 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5672 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5673 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5674 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5675 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5676 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5677 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5678 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5679 release:
5680 hw->phy.ops.release(hw);
5681 }
5682 }
5683
5684 static const struct e1000_mac_operations ich8_mac_ops = {
5685 /* check_mng_mode dependent on mac type */
5686 .check_for_link = e1000_check_for_copper_link_ich8lan,
5687 /* cleanup_led dependent on mac type */
5688 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5689 .get_bus_info = e1000_get_bus_info_ich8lan,
5690 .set_lan_id = e1000_set_lan_id_single_port,
5691 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5692 /* led_on dependent on mac type */
5693 /* led_off dependent on mac type */
5694 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5695 .reset_hw = e1000_reset_hw_ich8lan,
5696 .init_hw = e1000_init_hw_ich8lan,
5697 .setup_link = e1000_setup_link_ich8lan,
5698 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5699 /* id_led_init dependent on mac type */
5700 .config_collision_dist = e1000e_config_collision_dist_generic,
5701 .rar_set = e1000e_rar_set_generic,
5702 .rar_get_count = e1000e_rar_get_count_generic,
5703 };
5704
5705 static const struct e1000_phy_operations ich8_phy_ops = {
5706 .acquire = e1000_acquire_swflag_ich8lan,
5707 .check_reset_block = e1000_check_reset_block_ich8lan,
5708 .commit = NULL,
5709 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5710 .get_cable_length = e1000e_get_cable_length_igp_2,
5711 .read_reg = e1000e_read_phy_reg_igp,
5712 .release = e1000_release_swflag_ich8lan,
5713 .reset = e1000_phy_hw_reset_ich8lan,
5714 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5715 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5716 .write_reg = e1000e_write_phy_reg_igp,
5717 };
5718
5719 static const struct e1000_nvm_operations ich8_nvm_ops = {
5720 .acquire = e1000_acquire_nvm_ich8lan,
5721 .read = e1000_read_nvm_ich8lan,
5722 .release = e1000_release_nvm_ich8lan,
5723 .reload = e1000e_reload_nvm_generic,
5724 .update = e1000_update_nvm_checksum_ich8lan,
5725 .valid_led_default = e1000_valid_led_default_ich8lan,
5726 .validate = e1000_validate_nvm_checksum_ich8lan,
5727 .write = e1000_write_nvm_ich8lan,
5728 };
5729
5730 static const struct e1000_nvm_operations spt_nvm_ops = {
5731 .acquire = e1000_acquire_nvm_ich8lan,
5732 .release = e1000_release_nvm_ich8lan,
5733 .read = e1000_read_nvm_spt,
5734 .update = e1000_update_nvm_checksum_spt,
5735 .reload = e1000e_reload_nvm_generic,
5736 .valid_led_default = e1000_valid_led_default_ich8lan,
5737 .validate = e1000_validate_nvm_checksum_ich8lan,
5738 .write = e1000_write_nvm_ich8lan,
5739 };
5740
5741 const struct e1000_info e1000_ich8_info = {
5742 .mac = e1000_ich8lan,
5743 .flags = FLAG_HAS_WOL
5744 | FLAG_IS_ICH
5745 | FLAG_HAS_CTRLEXT_ON_LOAD
5746 | FLAG_HAS_AMT
5747 | FLAG_HAS_FLASH
5748 | FLAG_APME_IN_WUC,
5749 .pba = 8,
5750 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5751 .get_variants = e1000_get_variants_ich8lan,
5752 .mac_ops = &ich8_mac_ops,
5753 .phy_ops = &ich8_phy_ops,
5754 .nvm_ops = &ich8_nvm_ops,
5755 };
5756
5757 const struct e1000_info e1000_ich9_info = {
5758 .mac = e1000_ich9lan,
5759 .flags = FLAG_HAS_JUMBO_FRAMES
5760 | FLAG_IS_ICH
5761 | FLAG_HAS_WOL
5762 | FLAG_HAS_CTRLEXT_ON_LOAD
5763 | FLAG_HAS_AMT
5764 | FLAG_HAS_FLASH
5765 | FLAG_APME_IN_WUC,
5766 .pba = 18,
5767 .max_hw_frame_size = DEFAULT_JUMBO,
5768 .get_variants = e1000_get_variants_ich8lan,
5769 .mac_ops = &ich8_mac_ops,
5770 .phy_ops = &ich8_phy_ops,
5771 .nvm_ops = &ich8_nvm_ops,
5772 };
5773
5774 const struct e1000_info e1000_ich10_info = {
5775 .mac = e1000_ich10lan,
5776 .flags = FLAG_HAS_JUMBO_FRAMES
5777 | FLAG_IS_ICH
5778 | FLAG_HAS_WOL
5779 | FLAG_HAS_CTRLEXT_ON_LOAD
5780 | FLAG_HAS_AMT
5781 | FLAG_HAS_FLASH
5782 | FLAG_APME_IN_WUC,
5783 .pba = 18,
5784 .max_hw_frame_size = DEFAULT_JUMBO,
5785 .get_variants = e1000_get_variants_ich8lan,
5786 .mac_ops = &ich8_mac_ops,
5787 .phy_ops = &ich8_phy_ops,
5788 .nvm_ops = &ich8_nvm_ops,
5789 };
5790
5791 const struct e1000_info e1000_pch_info = {
5792 .mac = e1000_pchlan,
5793 .flags = FLAG_IS_ICH
5794 | FLAG_HAS_WOL
5795 | FLAG_HAS_CTRLEXT_ON_LOAD
5796 | FLAG_HAS_AMT
5797 | FLAG_HAS_FLASH
5798 | FLAG_HAS_JUMBO_FRAMES
5799 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5800 | FLAG_APME_IN_WUC,
5801 .flags2 = FLAG2_HAS_PHY_STATS,
5802 .pba = 26,
5803 .max_hw_frame_size = 4096,
5804 .get_variants = e1000_get_variants_ich8lan,
5805 .mac_ops = &ich8_mac_ops,
5806 .phy_ops = &ich8_phy_ops,
5807 .nvm_ops = &ich8_nvm_ops,
5808 };
5809
5810 const struct e1000_info e1000_pch2_info = {
5811 .mac = e1000_pch2lan,
5812 .flags = FLAG_IS_ICH
5813 | FLAG_HAS_WOL
5814 | FLAG_HAS_HW_TIMESTAMP
5815 | FLAG_HAS_CTRLEXT_ON_LOAD
5816 | FLAG_HAS_AMT
5817 | FLAG_HAS_FLASH
5818 | FLAG_HAS_JUMBO_FRAMES
5819 | FLAG_APME_IN_WUC,
5820 .flags2 = FLAG2_HAS_PHY_STATS
5821 | FLAG2_HAS_EEE,
5822 .pba = 26,
5823 .max_hw_frame_size = 9022,
5824 .get_variants = e1000_get_variants_ich8lan,
5825 .mac_ops = &ich8_mac_ops,
5826 .phy_ops = &ich8_phy_ops,
5827 .nvm_ops = &ich8_nvm_ops,
5828 };
5829
5830 const struct e1000_info e1000_pch_lpt_info = {
5831 .mac = e1000_pch_lpt,
5832 .flags = FLAG_IS_ICH
5833 | FLAG_HAS_WOL
5834 | FLAG_HAS_HW_TIMESTAMP
5835 | FLAG_HAS_CTRLEXT_ON_LOAD
5836 | FLAG_HAS_AMT
5837 | FLAG_HAS_FLASH
5838 | FLAG_HAS_JUMBO_FRAMES
5839 | FLAG_APME_IN_WUC,
5840 .flags2 = FLAG2_HAS_PHY_STATS
5841 | FLAG2_HAS_EEE,
5842 .pba = 26,
5843 .max_hw_frame_size = 9022,
5844 .get_variants = e1000_get_variants_ich8lan,
5845 .mac_ops = &ich8_mac_ops,
5846 .phy_ops = &ich8_phy_ops,
5847 .nvm_ops = &ich8_nvm_ops,
5848 };
5849
5850 const struct e1000_info e1000_pch_spt_info = {
5851 .mac = e1000_pch_spt,
5852 .flags = FLAG_IS_ICH
5853 | FLAG_HAS_WOL
5854 | FLAG_HAS_HW_TIMESTAMP
5855 | FLAG_HAS_CTRLEXT_ON_LOAD
5856 | FLAG_HAS_AMT
5857 | FLAG_HAS_FLASH
5858 | FLAG_HAS_JUMBO_FRAMES
5859 | FLAG_APME_IN_WUC,
5860 .flags2 = FLAG2_HAS_PHY_STATS
5861 | FLAG2_HAS_EEE,
5862 .pba = 26,
5863 .max_hw_frame_size = 9022,
5864 .get_variants = e1000_get_variants_ich8lan,
5865 .mac_ops = &ich8_mac_ops,
5866 .phy_ops = &ich8_phy_ops,
5867 .nvm_ops = &spt_nvm_ops,
5868 };