]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/e1000e/ich8lan.c
ASoC: cs42l52: Improve two size determinations in cs42l52_i2c_probe()
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* 82562G 10/100 Network Connection
23 * 82562G-2 10/100 Network Connection
24 * 82562GT 10/100 Network Connection
25 * 82562GT-2 10/100 Network Connection
26 * 82562V 10/100 Network Connection
27 * 82562V-2 10/100 Network Connection
28 * 82566DC-2 Gigabit Network Connection
29 * 82566DC Gigabit Network Connection
30 * 82566DM-2 Gigabit Network Connection
31 * 82566DM Gigabit Network Connection
32 * 82566MC Gigabit Network Connection
33 * 82566MM Gigabit Network Connection
34 * 82567LM Gigabit Network Connection
35 * 82567LF Gigabit Network Connection
36 * 82567V Gigabit Network Connection
37 * 82567LM-2 Gigabit Network Connection
38 * 82567LF-2 Gigabit Network Connection
39 * 82567V-2 Gigabit Network Connection
40 * 82567LF-3 Gigabit Network Connection
41 * 82567LM-3 Gigabit Network Connection
42 * 82567LM-4 Gigabit Network Connection
43 * 82577LM Gigabit Network Connection
44 * 82577LC Gigabit Network Connection
45 * 82578DM Gigabit Network Connection
46 * 82578DC Gigabit Network Connection
47 * 82579LM Gigabit Network Connection
48 * 82579V Gigabit Network Connection
49 * Ethernet Connection I217-LM
50 * Ethernet Connection I217-V
51 * Ethernet Connection I218-V
52 * Ethernet Connection I218-LM
53 * Ethernet Connection (2) I218-LM
54 * Ethernet Connection (2) I218-V
55 * Ethernet Connection (3) I218-LM
56 * Ethernet Connection (3) I218-V
57 */
58
59 #include "e1000.h"
60
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 struct ich8_hsfsts {
65 u16 flcdone:1; /* bit 0 Flash Cycle Done */
66 u16 flcerr:1; /* bit 1 Flash Cycle Error */
67 u16 dael:1; /* bit 2 Direct Access error Log */
68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
70 u16 reserved1:2; /* bit 13:6 Reserved */
71 u16 reserved2:6; /* bit 13:6 Reserved */
72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
74 } hsf_status;
75 u16 regval;
76 };
77
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 struct ich8_hsflctl {
82 u16 flcgo:1; /* 0 Flash Cycle Go */
83 u16 flcycle:2; /* 2:1 Flash Cycle */
84 u16 reserved:5; /* 7:3 Reserved */
85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
86 u16 flockdn:6; /* 15:10 Reserved */
87 } hsf_ctrl;
88 u16 regval;
89 };
90
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 struct ich8_flracc {
94 u32 grra:8; /* 0:7 GbE region Read Access */
95 u32 grwa:8; /* 8:15 GbE region Write Access */
96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
98 } hsf_flregacc;
99 u16 regval;
100 };
101
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 struct ich8_pr {
105 u32 base:13; /* 0:12 Protected Range Base */
106 u32 reserved1:2; /* 13:14 Reserved */
107 u32 rpe:1; /* 15 Read Protection Enable */
108 u32 limit:13; /* 16:28 Protected Range Limit */
109 u32 reserved2:2; /* 29:30 Reserved */
110 u32 wpe:1; /* 31 Write Protection Enable */
111 } range;
112 u32 regval;
113 };
114
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 return readw(hw->flash_address + reg);
162 }
163
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 return readl(hw->flash_address + reg);
167 }
168
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 writew(val, hw->flash_address + reg);
172 }
173
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 writel(val, hw->flash_address + reg);
177 }
178
179 #define er16flash(reg) __er16flash(hw, (reg))
180 #define er32flash(reg) __er32flash(hw, (reg))
181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
183
184 /**
185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186 * @hw: pointer to the HW structure
187 *
188 * Test access to the PHY registers by reading the PHY ID registers. If
189 * the PHY ID is already known (e.g. resume path) compare it with known ID,
190 * otherwise assume the read PHY ID is correct if it is valid.
191 *
192 * Assumes the sw/fw/hw semaphore is already acquired.
193 **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 u16 phy_reg = 0;
197 u32 phy_id = 0;
198 s32 ret_val = 0;
199 u16 retry_count;
200 u32 mac_reg = 0;
201
202 for (retry_count = 0; retry_count < 2; retry_count++) {
203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 if (ret_val || (phy_reg == 0xFFFF))
205 continue;
206 phy_id = (u32)(phy_reg << 16);
207
208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 if (ret_val || (phy_reg == 0xFFFF)) {
210 phy_id = 0;
211 continue;
212 }
213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 break;
215 }
216
217 if (hw->phy.id) {
218 if (hw->phy.id == phy_id)
219 goto out;
220 } else if (phy_id) {
221 hw->phy.id = phy_id;
222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 goto out;
224 }
225
226 /* In case the PHY needs to be in mdio slow mode,
227 * set slow mode and try to get the PHY id again.
228 */
229 if (hw->mac.type < e1000_pch_lpt) {
230 hw->phy.ops.release(hw);
231 ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 if (!ret_val)
233 ret_val = e1000e_get_phy_id(hw);
234 hw->phy.ops.acquire(hw);
235 }
236
237 if (ret_val)
238 return false;
239 out:
240 if (hw->mac.type >= e1000_pch_lpt) {
241 /* Only unforce SMBus if ME is not active */
242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 /* Unforce SMBus mode in PHY */
244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247
248 /* Unforce SMBus mode in MAC */
249 mac_reg = er32(CTRL_EXT);
250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 ew32(CTRL_EXT, mac_reg);
252 }
253 }
254
255 return true;
256 }
257
258 /**
259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260 * @hw: pointer to the HW structure
261 *
262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263 * used to reset the PHY to a quiescent state when necessary.
264 **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 u32 mac_reg;
268
269 /* Set Phy Config Counter to 50msec */
270 mac_reg = er32(FEXTNVM3);
271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 ew32(FEXTNVM3, mac_reg);
274
275 /* Toggle LANPHYPC Value bit */
276 mac_reg = er32(CTRL);
277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 ew32(CTRL, mac_reg);
280 e1e_flush();
281 usleep_range(10, 20);
282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 ew32(CTRL, mac_reg);
284 e1e_flush();
285
286 if (hw->mac.type < e1000_pch_lpt) {
287 msleep(50);
288 } else {
289 u16 count = 20;
290
291 do {
292 usleep_range(5000, 10000);
293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294
295 msleep(30);
296 }
297 }
298
299 /**
300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301 * @hw: pointer to the HW structure
302 *
303 * Workarounds/flow necessary for PHY initialization during driver load
304 * and resume paths.
305 **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 struct e1000_adapter *adapter = hw->adapter;
309 u32 mac_reg, fwsm = er32(FWSM);
310 s32 ret_val;
311
312 /* Gate automatic PHY configuration by hardware on managed and
313 * non-managed 82579 and newer adapters.
314 */
315 e1000_gate_hw_phy_config_ich8lan(hw, true);
316
317 /* It is not possible to be certain of the current state of ULP
318 * so forcibly disable it.
319 */
320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 e1000_disable_ulp_lpt_lp(hw, true);
322
323 ret_val = hw->phy.ops.acquire(hw);
324 if (ret_val) {
325 e_dbg("Failed to initialize PHY flow\n");
326 goto out;
327 }
328
329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
330 * inaccessible and resetting the PHY is not blocked, toggle the
331 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 */
333 switch (hw->mac.type) {
334 case e1000_pch_lpt:
335 case e1000_pch_spt:
336 case e1000_pch_cnp:
337 if (e1000_phy_is_accessible_pchlan(hw))
338 break;
339
340 /* Before toggling LANPHYPC, see if PHY is accessible by
341 * forcing MAC to SMBus mode first.
342 */
343 mac_reg = er32(CTRL_EXT);
344 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345 ew32(CTRL_EXT, mac_reg);
346
347 /* Wait 50 milliseconds for MAC to finish any retries
348 * that it might be trying to perform from previous
349 * attempts to acknowledge any phy read requests.
350 */
351 msleep(50);
352
353 /* fall-through */
354 case e1000_pch2lan:
355 if (e1000_phy_is_accessible_pchlan(hw))
356 break;
357
358 /* fall-through */
359 case e1000_pchlan:
360 if ((hw->mac.type == e1000_pchlan) &&
361 (fwsm & E1000_ICH_FWSM_FW_VALID))
362 break;
363
364 if (hw->phy.ops.check_reset_block(hw)) {
365 e_dbg("Required LANPHYPC toggle blocked by ME\n");
366 ret_val = -E1000_ERR_PHY;
367 break;
368 }
369
370 /* Toggle LANPHYPC Value bit */
371 e1000_toggle_lanphypc_pch_lpt(hw);
372 if (hw->mac.type >= e1000_pch_lpt) {
373 if (e1000_phy_is_accessible_pchlan(hw))
374 break;
375
376 /* Toggling LANPHYPC brings the PHY out of SMBus mode
377 * so ensure that the MAC is also out of SMBus mode
378 */
379 mac_reg = er32(CTRL_EXT);
380 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381 ew32(CTRL_EXT, mac_reg);
382
383 if (e1000_phy_is_accessible_pchlan(hw))
384 break;
385
386 ret_val = -E1000_ERR_PHY;
387 }
388 break;
389 default:
390 break;
391 }
392
393 hw->phy.ops.release(hw);
394 if (!ret_val) {
395
396 /* Check to see if able to reset PHY. Print error if not */
397 if (hw->phy.ops.check_reset_block(hw)) {
398 e_err("Reset blocked by ME\n");
399 goto out;
400 }
401
402 /* Reset the PHY before any access to it. Doing so, ensures
403 * that the PHY is in a known good state before we read/write
404 * PHY registers. The generic reset is sufficient here,
405 * because we haven't determined the PHY type yet.
406 */
407 ret_val = e1000e_phy_hw_reset_generic(hw);
408 if (ret_val)
409 goto out;
410
411 /* On a successful reset, possibly need to wait for the PHY
412 * to quiesce to an accessible state before returning control
413 * to the calling function. If the PHY does not quiesce, then
414 * return E1000E_BLK_PHY_RESET, as this is the condition that
415 * the PHY is in.
416 */
417 ret_val = hw->phy.ops.check_reset_block(hw);
418 if (ret_val)
419 e_err("ME blocked access to PHY after reset\n");
420 }
421
422 out:
423 /* Ungate automatic PHY configuration on non-managed 82579 */
424 if ((hw->mac.type == e1000_pch2lan) &&
425 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426 usleep_range(10000, 20000);
427 e1000_gate_hw_phy_config_ich8lan(hw, false);
428 }
429
430 return ret_val;
431 }
432
433 /**
434 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
435 * @hw: pointer to the HW structure
436 *
437 * Initialize family-specific PHY parameters and function pointers.
438 **/
439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441 struct e1000_phy_info *phy = &hw->phy;
442 s32 ret_val;
443
444 phy->addr = 1;
445 phy->reset_delay_us = 100;
446
447 phy->ops.set_page = e1000_set_page_igp;
448 phy->ops.read_reg = e1000_read_phy_reg_hv;
449 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
450 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
451 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
452 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
453 phy->ops.write_reg = e1000_write_phy_reg_hv;
454 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
455 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
456 phy->ops.power_up = e1000_power_up_phy_copper;
457 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
458 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459
460 phy->id = e1000_phy_unknown;
461
462 ret_val = e1000_init_phy_workarounds_pchlan(hw);
463 if (ret_val)
464 return ret_val;
465
466 if (phy->id == e1000_phy_unknown)
467 switch (hw->mac.type) {
468 default:
469 ret_val = e1000e_get_phy_id(hw);
470 if (ret_val)
471 return ret_val;
472 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
473 break;
474 /* fall-through */
475 case e1000_pch2lan:
476 case e1000_pch_lpt:
477 case e1000_pch_spt:
478 case e1000_pch_cnp:
479 /* In case the PHY needs to be in mdio slow mode,
480 * set slow mode and try to get the PHY id again.
481 */
482 ret_val = e1000_set_mdio_slow_mode_hv(hw);
483 if (ret_val)
484 return ret_val;
485 ret_val = e1000e_get_phy_id(hw);
486 if (ret_val)
487 return ret_val;
488 break;
489 }
490 phy->type = e1000e_get_phy_type_from_id(phy->id);
491
492 switch (phy->type) {
493 case e1000_phy_82577:
494 case e1000_phy_82579:
495 case e1000_phy_i217:
496 phy->ops.check_polarity = e1000_check_polarity_82577;
497 phy->ops.force_speed_duplex =
498 e1000_phy_force_speed_duplex_82577;
499 phy->ops.get_cable_length = e1000_get_cable_length_82577;
500 phy->ops.get_info = e1000_get_phy_info_82577;
501 phy->ops.commit = e1000e_phy_sw_reset;
502 break;
503 case e1000_phy_82578:
504 phy->ops.check_polarity = e1000_check_polarity_m88;
505 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
507 phy->ops.get_info = e1000e_get_phy_info_m88;
508 break;
509 default:
510 ret_val = -E1000_ERR_PHY;
511 break;
512 }
513
514 return ret_val;
515 }
516
517 /**
518 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
519 * @hw: pointer to the HW structure
520 *
521 * Initialize family-specific PHY parameters and function pointers.
522 **/
523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
524 {
525 struct e1000_phy_info *phy = &hw->phy;
526 s32 ret_val;
527 u16 i = 0;
528
529 phy->addr = 1;
530 phy->reset_delay_us = 100;
531
532 phy->ops.power_up = e1000_power_up_phy_copper;
533 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
534
535 /* We may need to do this twice - once for IGP and if that fails,
536 * we'll set BM func pointers and try again
537 */
538 ret_val = e1000e_determine_phy_address(hw);
539 if (ret_val) {
540 phy->ops.write_reg = e1000e_write_phy_reg_bm;
541 phy->ops.read_reg = e1000e_read_phy_reg_bm;
542 ret_val = e1000e_determine_phy_address(hw);
543 if (ret_val) {
544 e_dbg("Cannot determine PHY addr. Erroring out\n");
545 return ret_val;
546 }
547 }
548
549 phy->id = 0;
550 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
551 (i++ < 100)) {
552 usleep_range(1000, 2000);
553 ret_val = e1000e_get_phy_id(hw);
554 if (ret_val)
555 return ret_val;
556 }
557
558 /* Verify phy id */
559 switch (phy->id) {
560 case IGP03E1000_E_PHY_ID:
561 phy->type = e1000_phy_igp_3;
562 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
564 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
565 phy->ops.get_info = e1000e_get_phy_info_igp;
566 phy->ops.check_polarity = e1000_check_polarity_igp;
567 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568 break;
569 case IFE_E_PHY_ID:
570 case IFE_PLUS_E_PHY_ID:
571 case IFE_C_E_PHY_ID:
572 phy->type = e1000_phy_ife;
573 phy->autoneg_mask = E1000_ALL_NOT_GIG;
574 phy->ops.get_info = e1000_get_phy_info_ife;
575 phy->ops.check_polarity = e1000_check_polarity_ife;
576 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
577 break;
578 case BME1000_E_PHY_ID:
579 phy->type = e1000_phy_bm;
580 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
581 phy->ops.read_reg = e1000e_read_phy_reg_bm;
582 phy->ops.write_reg = e1000e_write_phy_reg_bm;
583 phy->ops.commit = e1000e_phy_sw_reset;
584 phy->ops.get_info = e1000e_get_phy_info_m88;
585 phy->ops.check_polarity = e1000_check_polarity_m88;
586 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587 break;
588 default:
589 return -E1000_ERR_PHY;
590 }
591
592 return 0;
593 }
594
595 /**
596 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
597 * @hw: pointer to the HW structure
598 *
599 * Initialize family-specific NVM parameters and function
600 * pointers.
601 **/
602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
603 {
604 struct e1000_nvm_info *nvm = &hw->nvm;
605 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
606 u32 gfpreg, sector_base_addr, sector_end_addr;
607 u16 i;
608 u32 nvm_size;
609
610 nvm->type = e1000_nvm_flash_sw;
611
612 if (hw->mac.type >= e1000_pch_spt) {
613 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
614 * STRAP register. This is because in SPT the GbE Flash region
615 * is no longer accessed through the flash registers. Instead,
616 * the mechanism has changed, and the Flash region access
617 * registers are now implemented in GbE memory space.
618 */
619 nvm->flash_base_addr = 0;
620 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
621 * NVM_SIZE_MULTIPLIER;
622 nvm->flash_bank_size = nvm_size / 2;
623 /* Adjust to word count */
624 nvm->flash_bank_size /= sizeof(u16);
625 /* Set the base address for flash register access */
626 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
627 } else {
628 /* Can't read flash registers if register set isn't mapped. */
629 if (!hw->flash_address) {
630 e_dbg("ERROR: Flash registers not mapped\n");
631 return -E1000_ERR_CONFIG;
632 }
633
634 gfpreg = er32flash(ICH_FLASH_GFPREG);
635
636 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
637 * Add 1 to sector_end_addr since this sector is included in
638 * the overall size.
639 */
640 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
641 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
642
643 /* flash_base_addr is byte-aligned */
644 nvm->flash_base_addr = sector_base_addr
645 << FLASH_SECTOR_ADDR_SHIFT;
646
647 /* find total size of the NVM, then cut in half since the total
648 * size represents two separate NVM banks.
649 */
650 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
651 << FLASH_SECTOR_ADDR_SHIFT);
652 nvm->flash_bank_size /= 2;
653 /* Adjust to word count */
654 nvm->flash_bank_size /= sizeof(u16);
655 }
656
657 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
658
659 /* Clear shadow ram */
660 for (i = 0; i < nvm->word_size; i++) {
661 dev_spec->shadow_ram[i].modified = false;
662 dev_spec->shadow_ram[i].value = 0xFFFF;
663 }
664
665 return 0;
666 }
667
668 /**
669 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
670 * @hw: pointer to the HW structure
671 *
672 * Initialize family-specific MAC parameters and function
673 * pointers.
674 **/
675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
676 {
677 struct e1000_mac_info *mac = &hw->mac;
678
679 /* Set media type function pointer */
680 hw->phy.media_type = e1000_media_type_copper;
681
682 /* Set mta register count */
683 mac->mta_reg_count = 32;
684 /* Set rar entry count */
685 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
686 if (mac->type == e1000_ich8lan)
687 mac->rar_entry_count--;
688 /* FWSM register */
689 mac->has_fwsm = true;
690 /* ARC subsystem not supported */
691 mac->arc_subsystem_valid = false;
692 /* Adaptive IFS supported */
693 mac->adaptive_ifs = true;
694
695 /* LED and other operations */
696 switch (mac->type) {
697 case e1000_ich8lan:
698 case e1000_ich9lan:
699 case e1000_ich10lan:
700 /* check management mode */
701 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
702 /* ID LED init */
703 mac->ops.id_led_init = e1000e_id_led_init_generic;
704 /* blink LED */
705 mac->ops.blink_led = e1000e_blink_led_generic;
706 /* setup LED */
707 mac->ops.setup_led = e1000e_setup_led_generic;
708 /* cleanup LED */
709 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
710 /* turn on/off LED */
711 mac->ops.led_on = e1000_led_on_ich8lan;
712 mac->ops.led_off = e1000_led_off_ich8lan;
713 break;
714 case e1000_pch2lan:
715 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
716 mac->ops.rar_set = e1000_rar_set_pch2lan;
717 /* fall-through */
718 case e1000_pch_lpt:
719 case e1000_pch_spt:
720 case e1000_pch_cnp:
721 case e1000_pchlan:
722 /* check management mode */
723 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
724 /* ID LED init */
725 mac->ops.id_led_init = e1000_id_led_init_pchlan;
726 /* setup LED */
727 mac->ops.setup_led = e1000_setup_led_pchlan;
728 /* cleanup LED */
729 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
730 /* turn on/off LED */
731 mac->ops.led_on = e1000_led_on_pchlan;
732 mac->ops.led_off = e1000_led_off_pchlan;
733 break;
734 default:
735 break;
736 }
737
738 if (mac->type >= e1000_pch_lpt) {
739 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
740 mac->ops.rar_set = e1000_rar_set_pch_lpt;
741 mac->ops.setup_physical_interface =
742 e1000_setup_copper_link_pch_lpt;
743 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
744 }
745
746 /* Enable PCS Lock-loss workaround for ICH8 */
747 if (mac->type == e1000_ich8lan)
748 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
749
750 return 0;
751 }
752
753 /**
754 * __e1000_access_emi_reg_locked - Read/write EMI register
755 * @hw: pointer to the HW structure
756 * @addr: EMI address to program
757 * @data: pointer to value to read/write from/to the EMI address
758 * @read: boolean flag to indicate read or write
759 *
760 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
761 **/
762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
763 u16 *data, bool read)
764 {
765 s32 ret_val;
766
767 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
768 if (ret_val)
769 return ret_val;
770
771 if (read)
772 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
773 else
774 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
775
776 return ret_val;
777 }
778
779 /**
780 * e1000_read_emi_reg_locked - Read Extended Management Interface register
781 * @hw: pointer to the HW structure
782 * @addr: EMI address to program
783 * @data: value to be read from the EMI address
784 *
785 * Assumes the SW/FW/HW Semaphore is already acquired.
786 **/
787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
788 {
789 return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 }
791
792 /**
793 * e1000_write_emi_reg_locked - Write Extended Management Interface register
794 * @hw: pointer to the HW structure
795 * @addr: EMI address to program
796 * @data: value to be written to the EMI address
797 *
798 * Assumes the SW/FW/HW Semaphore is already acquired.
799 **/
800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
801 {
802 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 }
804
805 /**
806 * e1000_set_eee_pchlan - Enable/disable EEE support
807 * @hw: pointer to the HW structure
808 *
809 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
810 * the link and the EEE capabilities of the link partner. The LPI Control
811 * register bits will remain set only if/when link is up.
812 *
813 * EEE LPI must not be asserted earlier than one second after link is up.
814 * On 82579, EEE LPI should not be enabled until such time otherwise there
815 * can be link issues with some switches. Other devices can have EEE LPI
816 * enabled immediately upon link up since they have a timer in hardware which
817 * prevents LPI from being asserted too early.
818 **/
819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
820 {
821 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
822 s32 ret_val;
823 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
824
825 switch (hw->phy.type) {
826 case e1000_phy_82579:
827 lpa = I82579_EEE_LP_ABILITY;
828 pcs_status = I82579_EEE_PCS_STATUS;
829 adv_addr = I82579_EEE_ADVERTISEMENT;
830 break;
831 case e1000_phy_i217:
832 lpa = I217_EEE_LP_ABILITY;
833 pcs_status = I217_EEE_PCS_STATUS;
834 adv_addr = I217_EEE_ADVERTISEMENT;
835 break;
836 default:
837 return 0;
838 }
839
840 ret_val = hw->phy.ops.acquire(hw);
841 if (ret_val)
842 return ret_val;
843
844 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845 if (ret_val)
846 goto release;
847
848 /* Clear bits that enable EEE in various speeds */
849 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
850
851 /* Enable EEE if not disabled by user */
852 if (!dev_spec->eee_disable) {
853 /* Save off link partner's EEE ability */
854 ret_val = e1000_read_emi_reg_locked(hw, lpa,
855 &dev_spec->eee_lp_ability);
856 if (ret_val)
857 goto release;
858
859 /* Read EEE advertisement */
860 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861 if (ret_val)
862 goto release;
863
864 /* Enable EEE only for speeds in which the link partner is
865 * EEE capable and for which we advertise EEE.
866 */
867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
868 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
869
870 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
871 e1e_rphy_locked(hw, MII_LPA, &data);
872 if (data & LPA_100FULL)
873 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
874 else
875 /* EEE is not supported in 100Half, so ignore
876 * partner's EEE in 100 ability if full-duplex
877 * is not advertised.
878 */
879 dev_spec->eee_lp_ability &=
880 ~I82579_EEE_100_SUPPORTED;
881 }
882 }
883
884 if (hw->phy.type == e1000_phy_82579) {
885 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
886 &data);
887 if (ret_val)
888 goto release;
889
890 data &= ~I82579_LPI_100_PLL_SHUT;
891 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892 data);
893 }
894
895 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
896 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897 if (ret_val)
898 goto release;
899
900 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
901 release:
902 hw->phy.ops.release(hw);
903
904 return ret_val;
905 }
906
907 /**
908 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
909 * @hw: pointer to the HW structure
910 * @link: link up bool flag
911 *
912 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
913 * preventing further DMA write requests. Workaround the issue by disabling
914 * the de-assertion of the clock request when in 1Gpbs mode.
915 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
916 * speeds in order to avoid Tx hangs.
917 **/
918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
919 {
920 u32 fextnvm6 = er32(FEXTNVM6);
921 u32 status = er32(STATUS);
922 s32 ret_val = 0;
923 u16 reg;
924
925 if (link && (status & E1000_STATUS_SPEED_1000)) {
926 ret_val = hw->phy.ops.acquire(hw);
927 if (ret_val)
928 return ret_val;
929
930 ret_val =
931 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
932 &reg);
933 if (ret_val)
934 goto release;
935
936 ret_val =
937 e1000e_write_kmrn_reg_locked(hw,
938 E1000_KMRNCTRLSTA_K1_CONFIG,
939 reg &
940 ~E1000_KMRNCTRLSTA_K1_ENABLE);
941 if (ret_val)
942 goto release;
943
944 usleep_range(10, 20);
945
946 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
947
948 ret_val =
949 e1000e_write_kmrn_reg_locked(hw,
950 E1000_KMRNCTRLSTA_K1_CONFIG,
951 reg);
952 release:
953 hw->phy.ops.release(hw);
954 } else {
955 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
956 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
957
958 if ((hw->phy.revision > 5) || !link ||
959 ((status & E1000_STATUS_SPEED_100) &&
960 (status & E1000_STATUS_FD)))
961 goto update_fextnvm6;
962
963 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
964 if (ret_val)
965 return ret_val;
966
967 /* Clear link status transmit timeout */
968 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
969
970 if (status & E1000_STATUS_SPEED_100) {
971 /* Set inband Tx timeout to 5x10us for 100Half */
972 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973
974 /* Do not extend the K1 entry latency for 100Half */
975 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 } else {
977 /* Set inband Tx timeout to 50x10us for 10Full/Half */
978 reg |= 50 <<
979 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
980
981 /* Extend the K1 entry latency for 10 Mbps */
982 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
983 }
984
985 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
986 if (ret_val)
987 return ret_val;
988
989 update_fextnvm6:
990 ew32(FEXTNVM6, fextnvm6);
991 }
992
993 return ret_val;
994 }
995
996 /**
997 * e1000_platform_pm_pch_lpt - Set platform power management values
998 * @hw: pointer to the HW structure
999 * @link: bool indicating link status
1000 *
1001 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1002 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1003 * when link is up (which must not exceed the maximum latency supported
1004 * by the platform), otherwise specify there is no LTR requirement.
1005 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1006 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1007 * Capability register set, on this device LTR is set by writing the
1008 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1009 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1010 * message to the PMC.
1011 **/
1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1013 {
1014 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1015 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1016 u16 lat_enc = 0; /* latency encoded */
1017
1018 if (link) {
1019 u16 speed, duplex, scale = 0;
1020 u16 max_snoop, max_nosnoop;
1021 u16 max_ltr_enc; /* max LTR latency encoded */
1022 u64 value;
1023 u32 rxa;
1024
1025 if (!hw->adapter->max_frame_size) {
1026 e_dbg("max_frame_size not set.\n");
1027 return -E1000_ERR_CONFIG;
1028 }
1029
1030 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031 if (!speed) {
1032 e_dbg("Speed not set.\n");
1033 return -E1000_ERR_CONFIG;
1034 }
1035
1036 /* Rx Packet Buffer Allocation size (KB) */
1037 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038
1039 /* Determine the maximum latency tolerated by the device.
1040 *
1041 * Per the PCIe spec, the tolerated latencies are encoded as
1042 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1043 * a 10-bit value (0-1023) to provide a range from 1 ns to
1044 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1045 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1046 */
1047 rxa *= 512;
1048 value = (rxa > hw->adapter->max_frame_size) ?
1049 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1050 0;
1051
1052 while (value > PCI_LTR_VALUE_MASK) {
1053 scale++;
1054 value = DIV_ROUND_UP(value, BIT(5));
1055 }
1056 if (scale > E1000_LTRV_SCALE_MAX) {
1057 e_dbg("Invalid LTR latency scale %d\n", scale);
1058 return -E1000_ERR_CONFIG;
1059 }
1060 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061
1062 /* Determine the maximum latency tolerated by the platform */
1063 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064 &max_snoop);
1065 pci_read_config_word(hw->adapter->pdev,
1066 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1067 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068
1069 if (lat_enc > max_ltr_enc)
1070 lat_enc = max_ltr_enc;
1071 }
1072
1073 /* Set Snoop and No-Snoop latencies the same */
1074 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1075 ew32(LTRV, reg);
1076
1077 return 0;
1078 }
1079
1080 /**
1081 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1082 * @hw: pointer to the HW structure
1083 * @to_sx: boolean indicating a system power state transition to Sx
1084 *
1085 * When link is down, configure ULP mode to significantly reduce the power
1086 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1087 * ME firmware to start the ULP configuration. If not on an ME enabled
1088 * system, configure the ULP mode by software.
1089 */
1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1091 {
1092 u32 mac_reg;
1093 s32 ret_val = 0;
1094 u16 phy_reg;
1095 u16 oem_reg = 0;
1096
1097 if ((hw->mac.type < e1000_pch_lpt) ||
1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1099 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1100 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1101 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1102 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1103 return 0;
1104
1105 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1106 /* Request ME configure ULP mode in the PHY */
1107 mac_reg = er32(H2ME);
1108 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1109 ew32(H2ME, mac_reg);
1110
1111 goto out;
1112 }
1113
1114 if (!to_sx) {
1115 int i = 0;
1116
1117 /* Poll up to 5 seconds for Cable Disconnected indication */
1118 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1119 /* Bail if link is re-acquired */
1120 if (er32(STATUS) & E1000_STATUS_LU)
1121 return -E1000_ERR_PHY;
1122
1123 if (i++ == 100)
1124 break;
1125
1126 msleep(50);
1127 }
1128 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1129 (er32(FEXT) &
1130 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1131 }
1132
1133 ret_val = hw->phy.ops.acquire(hw);
1134 if (ret_val)
1135 goto out;
1136
1137 /* Force SMBus mode in PHY */
1138 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1139 if (ret_val)
1140 goto release;
1141 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1142 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1143
1144 /* Force SMBus mode in MAC */
1145 mac_reg = er32(CTRL_EXT);
1146 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1147 ew32(CTRL_EXT, mac_reg);
1148
1149 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1150 * LPLU and disable Gig speed when entering ULP
1151 */
1152 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1153 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154 &oem_reg);
1155 if (ret_val)
1156 goto release;
1157
1158 phy_reg = oem_reg;
1159 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1160
1161 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162 phy_reg);
1163
1164 if (ret_val)
1165 goto release;
1166 }
1167
1168 /* Set Inband ULP Exit, Reset to SMBus mode and
1169 * Disable SMBus Release on PERST# in PHY
1170 */
1171 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1172 if (ret_val)
1173 goto release;
1174 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1175 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1176 if (to_sx) {
1177 if (er32(WUFC) & E1000_WUFC_LNKC)
1178 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1179 else
1180 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181
1182 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1183 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1184 } else {
1185 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1186 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1187 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1188 }
1189 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1190
1191 /* Set Disable SMBus Release on PERST# in MAC */
1192 mac_reg = er32(FEXTNVM7);
1193 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1194 ew32(FEXTNVM7, mac_reg);
1195
1196 /* Commit ULP changes in PHY by starting auto ULP configuration */
1197 phy_reg |= I218_ULP_CONFIG1_START;
1198 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199
1200 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1201 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1202 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1203 oem_reg);
1204 if (ret_val)
1205 goto release;
1206 }
1207
1208 release:
1209 hw->phy.ops.release(hw);
1210 out:
1211 if (ret_val)
1212 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1213 else
1214 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1215
1216 return ret_val;
1217 }
1218
1219 /**
1220 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1221 * @hw: pointer to the HW structure
1222 * @force: boolean indicating whether or not to force disabling ULP
1223 *
1224 * Un-configure ULP mode when link is up, the system is transitioned from
1225 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1226 * system, poll for an indication from ME that ULP has been un-configured.
1227 * If not on an ME enabled system, un-configure the ULP mode by software.
1228 *
1229 * During nominal operation, this function is called when link is acquired
1230 * to disable ULP mode (force=false); otherwise, for example when unloading
1231 * the driver or during Sx->S0 transitions, this is called with force=true
1232 * to forcibly disable ULP.
1233 */
1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1235 {
1236 s32 ret_val = 0;
1237 u32 mac_reg;
1238 u16 phy_reg;
1239 int i = 0;
1240
1241 if ((hw->mac.type < e1000_pch_lpt) ||
1242 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1243 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1244 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1245 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1246 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1247 return 0;
1248
1249 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1250 if (force) {
1251 /* Request ME un-configure ULP mode in the PHY */
1252 mac_reg = er32(H2ME);
1253 mac_reg &= ~E1000_H2ME_ULP;
1254 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1255 ew32(H2ME, mac_reg);
1256 }
1257
1258 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1259 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1260 if (i++ == 30) {
1261 ret_val = -E1000_ERR_PHY;
1262 goto out;
1263 }
1264
1265 usleep_range(10000, 20000);
1266 }
1267 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1268
1269 if (force) {
1270 mac_reg = er32(H2ME);
1271 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1272 ew32(H2ME, mac_reg);
1273 } else {
1274 /* Clear H2ME.ULP after ME ULP configuration */
1275 mac_reg = er32(H2ME);
1276 mac_reg &= ~E1000_H2ME_ULP;
1277 ew32(H2ME, mac_reg);
1278 }
1279
1280 goto out;
1281 }
1282
1283 ret_val = hw->phy.ops.acquire(hw);
1284 if (ret_val)
1285 goto out;
1286
1287 if (force)
1288 /* Toggle LANPHYPC Value bit */
1289 e1000_toggle_lanphypc_pch_lpt(hw);
1290
1291 /* Unforce SMBus mode in PHY */
1292 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1293 if (ret_val) {
1294 /* The MAC might be in PCIe mode, so temporarily force to
1295 * SMBus mode in order to access the PHY.
1296 */
1297 mac_reg = er32(CTRL_EXT);
1298 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1299 ew32(CTRL_EXT, mac_reg);
1300
1301 msleep(50);
1302
1303 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1304 &phy_reg);
1305 if (ret_val)
1306 goto release;
1307 }
1308 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1309 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1310
1311 /* Unforce SMBus mode in MAC */
1312 mac_reg = er32(CTRL_EXT);
1313 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1314 ew32(CTRL_EXT, mac_reg);
1315
1316 /* When ULP mode was previously entered, K1 was disabled by the
1317 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1318 */
1319 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1320 if (ret_val)
1321 goto release;
1322 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1323 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1324
1325 /* Clear ULP enabled configuration */
1326 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1327 if (ret_val)
1328 goto release;
1329 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1330 I218_ULP_CONFIG1_STICKY_ULP |
1331 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1332 I218_ULP_CONFIG1_WOL_HOST |
1333 I218_ULP_CONFIG1_INBAND_EXIT |
1334 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1335 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1336 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1337 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1338
1339 /* Commit ULP changes by starting auto ULP configuration */
1340 phy_reg |= I218_ULP_CONFIG1_START;
1341 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342
1343 /* Clear Disable SMBus Release on PERST# in MAC */
1344 mac_reg = er32(FEXTNVM7);
1345 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1346 ew32(FEXTNVM7, mac_reg);
1347
1348 release:
1349 hw->phy.ops.release(hw);
1350 if (force) {
1351 e1000_phy_hw_reset(hw);
1352 msleep(50);
1353 }
1354 out:
1355 if (ret_val)
1356 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1357 else
1358 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1359
1360 return ret_val;
1361 }
1362
1363 /**
1364 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1365 * @hw: pointer to the HW structure
1366 *
1367 * Checks to see of the link status of the hardware has changed. If a
1368 * change in link status has been detected, then we read the PHY registers
1369 * to get the current speed/duplex if link exists.
1370 **/
1371 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1372 {
1373 struct e1000_mac_info *mac = &hw->mac;
1374 s32 ret_val, tipg_reg = 0;
1375 u16 emi_addr, emi_val = 0;
1376 bool link;
1377 u16 phy_reg;
1378
1379 /* We only want to go out to the PHY registers to see if Auto-Neg
1380 * has completed and/or if our link status has changed. The
1381 * get_link_status flag is set upon receiving a Link Status
1382 * Change or Rx Sequence Error interrupt.
1383 */
1384 if (!mac->get_link_status)
1385 return 0;
1386
1387 /* First we want to see if the MII Status Register reports
1388 * link. If so, then we want to get the current speed/duplex
1389 * of the PHY.
1390 */
1391 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1392 if (ret_val)
1393 return ret_val;
1394
1395 if (hw->mac.type == e1000_pchlan) {
1396 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1397 if (ret_val)
1398 return ret_val;
1399 }
1400
1401 /* When connected at 10Mbps half-duplex, some parts are excessively
1402 * aggressive resulting in many collisions. To avoid this, increase
1403 * the IPG and reduce Rx latency in the PHY.
1404 */
1405 if ((hw->mac.type >= e1000_pch2lan) && link) {
1406 u16 speed, duplex;
1407
1408 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1409 tipg_reg = er32(TIPG);
1410 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1411
1412 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1413 tipg_reg |= 0xFF;
1414 /* Reduce Rx latency in analog PHY */
1415 emi_val = 0;
1416 } else if (hw->mac.type >= e1000_pch_spt &&
1417 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1418 tipg_reg |= 0xC;
1419 emi_val = 1;
1420 } else {
1421
1422 /* Roll back the default values */
1423 tipg_reg |= 0x08;
1424 emi_val = 1;
1425 }
1426
1427 ew32(TIPG, tipg_reg);
1428
1429 ret_val = hw->phy.ops.acquire(hw);
1430 if (ret_val)
1431 return ret_val;
1432
1433 if (hw->mac.type == e1000_pch2lan)
1434 emi_addr = I82579_RX_CONFIG;
1435 else
1436 emi_addr = I217_RX_CONFIG;
1437 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1438
1439 if (hw->mac.type >= e1000_pch_lpt) {
1440 u16 phy_reg;
1441
1442 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444 if (speed == SPEED_100 || speed == SPEED_10)
1445 phy_reg |= 0x3E8;
1446 else
1447 phy_reg |= 0xFA;
1448 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449 }
1450 hw->phy.ops.release(hw);
1451
1452 if (ret_val)
1453 return ret_val;
1454
1455 if (hw->mac.type >= e1000_pch_spt) {
1456 u16 data;
1457 u16 ptr_gap;
1458
1459 if (speed == SPEED_1000) {
1460 ret_val = hw->phy.ops.acquire(hw);
1461 if (ret_val)
1462 return ret_val;
1463
1464 ret_val = e1e_rphy_locked(hw,
1465 PHY_REG(776, 20),
1466 &data);
1467 if (ret_val) {
1468 hw->phy.ops.release(hw);
1469 return ret_val;
1470 }
1471
1472 ptr_gap = (data & (0x3FF << 2)) >> 2;
1473 if (ptr_gap < 0x18) {
1474 data &= ~(0x3FF << 2);
1475 data |= (0x18 << 2);
1476 ret_val =
1477 e1e_wphy_locked(hw,
1478 PHY_REG(776, 20),
1479 data);
1480 }
1481 hw->phy.ops.release(hw);
1482 if (ret_val)
1483 return ret_val;
1484 } else {
1485 ret_val = hw->phy.ops.acquire(hw);
1486 if (ret_val)
1487 return ret_val;
1488
1489 ret_val = e1e_wphy_locked(hw,
1490 PHY_REG(776, 20),
1491 0xC023);
1492 hw->phy.ops.release(hw);
1493 if (ret_val)
1494 return ret_val;
1495
1496 }
1497 }
1498 }
1499
1500 /* I217 Packet Loss issue:
1501 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502 * on power up.
1503 * Set the Beacon Duration for I217 to 8 usec
1504 */
1505 if (hw->mac.type >= e1000_pch_lpt) {
1506 u32 mac_reg;
1507
1508 mac_reg = er32(FEXTNVM4);
1509 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511 ew32(FEXTNVM4, mac_reg);
1512 }
1513
1514 /* Work-around I218 hang issue */
1515 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520 if (ret_val)
1521 return ret_val;
1522 }
1523 if (hw->mac.type >= e1000_pch_lpt) {
1524 /* Set platform power management values for
1525 * Latency Tolerance Reporting (LTR)
1526 */
1527 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1528 if (ret_val)
1529 return ret_val;
1530 }
1531
1532 /* Clear link partner's EEE ability */
1533 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1534
1535 if (hw->mac.type >= e1000_pch_lpt) {
1536 u32 fextnvm6 = er32(FEXTNVM6);
1537
1538 if (hw->mac.type == e1000_pch_spt) {
1539 /* FEXTNVM6 K1-off workaround - for SPT only */
1540 u32 pcieanacfg = er32(PCIEANACFG);
1541
1542 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1543 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1544 else
1545 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1546 }
1547
1548 ew32(FEXTNVM6, fextnvm6);
1549 }
1550
1551 if (!link)
1552 return 0; /* No link detected */
1553
1554 mac->get_link_status = false;
1555
1556 switch (hw->mac.type) {
1557 case e1000_pch2lan:
1558 ret_val = e1000_k1_workaround_lv(hw);
1559 if (ret_val)
1560 return ret_val;
1561 /* fall-thru */
1562 case e1000_pchlan:
1563 if (hw->phy.type == e1000_phy_82578) {
1564 ret_val = e1000_link_stall_workaround_hv(hw);
1565 if (ret_val)
1566 return ret_val;
1567 }
1568
1569 /* Workaround for PCHx parts in half-duplex:
1570 * Set the number of preambles removed from the packet
1571 * when it is passed from the PHY to the MAC to prevent
1572 * the MAC from misinterpreting the packet type.
1573 */
1574 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576
1577 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579
1580 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581 break;
1582 default:
1583 break;
1584 }
1585
1586 /* Check if there was DownShift, must be checked
1587 * immediately after link-up
1588 */
1589 e1000e_check_downshift(hw);
1590
1591 /* Enable/Disable EEE after link up */
1592 if (hw->phy.type > e1000_phy_82579) {
1593 ret_val = e1000_set_eee_pchlan(hw);
1594 if (ret_val)
1595 return ret_val;
1596 }
1597
1598 /* If we are forcing speed/duplex, then we simply return since
1599 * we have already determined whether we have link or not.
1600 */
1601 if (!mac->autoneg)
1602 return -E1000_ERR_CONFIG;
1603
1604 /* Auto-Neg is enabled. Auto Speed Detection takes care
1605 * of MAC speed/duplex configuration. So we only need to
1606 * configure Collision Distance in the MAC.
1607 */
1608 mac->ops.config_collision_dist(hw);
1609
1610 /* Configure Flow Control now that Auto-Neg has completed.
1611 * First, we need to restore the desired flow control
1612 * settings because we may have had to re-autoneg with a
1613 * different link partner.
1614 */
1615 ret_val = e1000e_config_fc_after_link_up(hw);
1616 if (ret_val)
1617 e_dbg("Error configuring flow control\n");
1618
1619 return ret_val;
1620 }
1621
1622 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1623 {
1624 struct e1000_hw *hw = &adapter->hw;
1625 s32 rc;
1626
1627 rc = e1000_init_mac_params_ich8lan(hw);
1628 if (rc)
1629 return rc;
1630
1631 rc = e1000_init_nvm_params_ich8lan(hw);
1632 if (rc)
1633 return rc;
1634
1635 switch (hw->mac.type) {
1636 case e1000_ich8lan:
1637 case e1000_ich9lan:
1638 case e1000_ich10lan:
1639 rc = e1000_init_phy_params_ich8lan(hw);
1640 break;
1641 case e1000_pchlan:
1642 case e1000_pch2lan:
1643 case e1000_pch_lpt:
1644 case e1000_pch_spt:
1645 case e1000_pch_cnp:
1646 rc = e1000_init_phy_params_pchlan(hw);
1647 break;
1648 default:
1649 break;
1650 }
1651 if (rc)
1652 return rc;
1653
1654 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1655 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1656 */
1657 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1658 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1659 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1660 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1661 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1662
1663 hw->mac.ops.blink_led = NULL;
1664 }
1665
1666 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1667 (adapter->hw.phy.type != e1000_phy_ife))
1668 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1669
1670 /* Enable workaround for 82579 w/ ME enabled */
1671 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1672 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1673 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1674
1675 return 0;
1676 }
1677
1678 static DEFINE_MUTEX(nvm_mutex);
1679
1680 /**
1681 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1682 * @hw: pointer to the HW structure
1683 *
1684 * Acquires the mutex for performing NVM operations.
1685 **/
1686 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1687 {
1688 mutex_lock(&nvm_mutex);
1689
1690 return 0;
1691 }
1692
1693 /**
1694 * e1000_release_nvm_ich8lan - Release NVM mutex
1695 * @hw: pointer to the HW structure
1696 *
1697 * Releases the mutex used while performing NVM operations.
1698 **/
1699 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1700 {
1701 mutex_unlock(&nvm_mutex);
1702 }
1703
1704 /**
1705 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1706 * @hw: pointer to the HW structure
1707 *
1708 * Acquires the software control flag for performing PHY and select
1709 * MAC CSR accesses.
1710 **/
1711 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1712 {
1713 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1714 s32 ret_val = 0;
1715
1716 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1717 &hw->adapter->state)) {
1718 e_dbg("contention for Phy access\n");
1719 return -E1000_ERR_PHY;
1720 }
1721
1722 while (timeout) {
1723 extcnf_ctrl = er32(EXTCNF_CTRL);
1724 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1725 break;
1726
1727 mdelay(1);
1728 timeout--;
1729 }
1730
1731 if (!timeout) {
1732 e_dbg("SW has already locked the resource.\n");
1733 ret_val = -E1000_ERR_CONFIG;
1734 goto out;
1735 }
1736
1737 timeout = SW_FLAG_TIMEOUT;
1738
1739 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1740 ew32(EXTCNF_CTRL, extcnf_ctrl);
1741
1742 while (timeout) {
1743 extcnf_ctrl = er32(EXTCNF_CTRL);
1744 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1745 break;
1746
1747 mdelay(1);
1748 timeout--;
1749 }
1750
1751 if (!timeout) {
1752 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1753 er32(FWSM), extcnf_ctrl);
1754 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1755 ew32(EXTCNF_CTRL, extcnf_ctrl);
1756 ret_val = -E1000_ERR_CONFIG;
1757 goto out;
1758 }
1759
1760 out:
1761 if (ret_val)
1762 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1763
1764 return ret_val;
1765 }
1766
1767 /**
1768 * e1000_release_swflag_ich8lan - Release software control flag
1769 * @hw: pointer to the HW structure
1770 *
1771 * Releases the software control flag for performing PHY and select
1772 * MAC CSR accesses.
1773 **/
1774 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1775 {
1776 u32 extcnf_ctrl;
1777
1778 extcnf_ctrl = er32(EXTCNF_CTRL);
1779
1780 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1781 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1782 ew32(EXTCNF_CTRL, extcnf_ctrl);
1783 } else {
1784 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1785 }
1786
1787 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1788 }
1789
1790 /**
1791 * e1000_check_mng_mode_ich8lan - Checks management mode
1792 * @hw: pointer to the HW structure
1793 *
1794 * This checks if the adapter has any manageability enabled.
1795 * This is a function pointer entry point only called by read/write
1796 * routines for the PHY and NVM parts.
1797 **/
1798 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1799 {
1800 u32 fwsm;
1801
1802 fwsm = er32(FWSM);
1803 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1804 ((fwsm & E1000_FWSM_MODE_MASK) ==
1805 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1806 }
1807
1808 /**
1809 * e1000_check_mng_mode_pchlan - Checks management mode
1810 * @hw: pointer to the HW structure
1811 *
1812 * This checks if the adapter has iAMT enabled.
1813 * This is a function pointer entry point only called by read/write
1814 * routines for the PHY and NVM parts.
1815 **/
1816 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1817 {
1818 u32 fwsm;
1819
1820 fwsm = er32(FWSM);
1821 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1822 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1823 }
1824
1825 /**
1826 * e1000_rar_set_pch2lan - Set receive address register
1827 * @hw: pointer to the HW structure
1828 * @addr: pointer to the receive address
1829 * @index: receive address array register
1830 *
1831 * Sets the receive address array register at index to the address passed
1832 * in by addr. For 82579, RAR[0] is the base address register that is to
1833 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1834 * Use SHRA[0-3] in place of those reserved for ME.
1835 **/
1836 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1837 {
1838 u32 rar_low, rar_high;
1839
1840 /* HW expects these in little endian so we reverse the byte order
1841 * from network order (big endian) to little endian
1842 */
1843 rar_low = ((u32)addr[0] |
1844 ((u32)addr[1] << 8) |
1845 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1846
1847 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1848
1849 /* If MAC address zero, no need to set the AV bit */
1850 if (rar_low || rar_high)
1851 rar_high |= E1000_RAH_AV;
1852
1853 if (index == 0) {
1854 ew32(RAL(index), rar_low);
1855 e1e_flush();
1856 ew32(RAH(index), rar_high);
1857 e1e_flush();
1858 return 0;
1859 }
1860
1861 /* RAR[1-6] are owned by manageability. Skip those and program the
1862 * next address into the SHRA register array.
1863 */
1864 if (index < (u32)(hw->mac.rar_entry_count)) {
1865 s32 ret_val;
1866
1867 ret_val = e1000_acquire_swflag_ich8lan(hw);
1868 if (ret_val)
1869 goto out;
1870
1871 ew32(SHRAL(index - 1), rar_low);
1872 e1e_flush();
1873 ew32(SHRAH(index - 1), rar_high);
1874 e1e_flush();
1875
1876 e1000_release_swflag_ich8lan(hw);
1877
1878 /* verify the register updates */
1879 if ((er32(SHRAL(index - 1)) == rar_low) &&
1880 (er32(SHRAH(index - 1)) == rar_high))
1881 return 0;
1882
1883 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1884 (index - 1), er32(FWSM));
1885 }
1886
1887 out:
1888 e_dbg("Failed to write receive address at index %d\n", index);
1889 return -E1000_ERR_CONFIG;
1890 }
1891
1892 /**
1893 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1894 * @hw: pointer to the HW structure
1895 *
1896 * Get the number of available receive registers that the Host can
1897 * program. SHRA[0-10] are the shared receive address registers
1898 * that are shared between the Host and manageability engine (ME).
1899 * ME can reserve any number of addresses and the host needs to be
1900 * able to tell how many available registers it has access to.
1901 **/
1902 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1903 {
1904 u32 wlock_mac;
1905 u32 num_entries;
1906
1907 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1908 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1909
1910 switch (wlock_mac) {
1911 case 0:
1912 /* All SHRA[0..10] and RAR[0] available */
1913 num_entries = hw->mac.rar_entry_count;
1914 break;
1915 case 1:
1916 /* Only RAR[0] available */
1917 num_entries = 1;
1918 break;
1919 default:
1920 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1921 num_entries = wlock_mac + 1;
1922 break;
1923 }
1924
1925 return num_entries;
1926 }
1927
1928 /**
1929 * e1000_rar_set_pch_lpt - Set receive address registers
1930 * @hw: pointer to the HW structure
1931 * @addr: pointer to the receive address
1932 * @index: receive address array register
1933 *
1934 * Sets the receive address register array at index to the address passed
1935 * in by addr. For LPT, RAR[0] is the base address register that is to
1936 * contain the MAC address. SHRA[0-10] are the shared receive address
1937 * registers that are shared between the Host and manageability engine (ME).
1938 **/
1939 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1940 {
1941 u32 rar_low, rar_high;
1942 u32 wlock_mac;
1943
1944 /* HW expects these in little endian so we reverse the byte order
1945 * from network order (big endian) to little endian
1946 */
1947 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1948 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1949
1950 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1951
1952 /* If MAC address zero, no need to set the AV bit */
1953 if (rar_low || rar_high)
1954 rar_high |= E1000_RAH_AV;
1955
1956 if (index == 0) {
1957 ew32(RAL(index), rar_low);
1958 e1e_flush();
1959 ew32(RAH(index), rar_high);
1960 e1e_flush();
1961 return 0;
1962 }
1963
1964 /* The manageability engine (ME) can lock certain SHRAR registers that
1965 * it is using - those registers are unavailable for use.
1966 */
1967 if (index < hw->mac.rar_entry_count) {
1968 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1969 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1970
1971 /* Check if all SHRAR registers are locked */
1972 if (wlock_mac == 1)
1973 goto out;
1974
1975 if ((wlock_mac == 0) || (index <= wlock_mac)) {
1976 s32 ret_val;
1977
1978 ret_val = e1000_acquire_swflag_ich8lan(hw);
1979
1980 if (ret_val)
1981 goto out;
1982
1983 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1984 e1e_flush();
1985 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1986 e1e_flush();
1987
1988 e1000_release_swflag_ich8lan(hw);
1989
1990 /* verify the register updates */
1991 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1992 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1993 return 0;
1994 }
1995 }
1996
1997 out:
1998 e_dbg("Failed to write receive address at index %d\n", index);
1999 return -E1000_ERR_CONFIG;
2000 }
2001
2002 /**
2003 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2004 * @hw: pointer to the HW structure
2005 *
2006 * Checks if firmware is blocking the reset of the PHY.
2007 * This is a function pointer entry point only called by
2008 * reset routines.
2009 **/
2010 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2011 {
2012 bool blocked = false;
2013 int i = 0;
2014
2015 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2016 (i++ < 30))
2017 usleep_range(10000, 20000);
2018 return blocked ? E1000_BLK_PHY_RESET : 0;
2019 }
2020
2021 /**
2022 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2023 * @hw: pointer to the HW structure
2024 *
2025 * Assumes semaphore already acquired.
2026 *
2027 **/
2028 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2029 {
2030 u16 phy_data;
2031 u32 strap = er32(STRAP);
2032 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2033 E1000_STRAP_SMT_FREQ_SHIFT;
2034 s32 ret_val;
2035
2036 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2037
2038 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2039 if (ret_val)
2040 return ret_val;
2041
2042 phy_data &= ~HV_SMB_ADDR_MASK;
2043 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2044 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2045
2046 if (hw->phy.type == e1000_phy_i217) {
2047 /* Restore SMBus frequency */
2048 if (freq--) {
2049 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2050 phy_data |= (freq & BIT(0)) <<
2051 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2052 phy_data |= (freq & BIT(1)) <<
2053 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2054 } else {
2055 e_dbg("Unsupported SMB frequency in PHY\n");
2056 }
2057 }
2058
2059 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2060 }
2061
2062 /**
2063 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2064 * @hw: pointer to the HW structure
2065 *
2066 * SW should configure the LCD from the NVM extended configuration region
2067 * as a workaround for certain parts.
2068 **/
2069 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2070 {
2071 struct e1000_phy_info *phy = &hw->phy;
2072 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2073 s32 ret_val = 0;
2074 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2075
2076 /* Initialize the PHY from the NVM on ICH platforms. This
2077 * is needed due to an issue where the NVM configuration is
2078 * not properly autoloaded after power transitions.
2079 * Therefore, after each PHY reset, we will load the
2080 * configuration data out of the NVM manually.
2081 */
2082 switch (hw->mac.type) {
2083 case e1000_ich8lan:
2084 if (phy->type != e1000_phy_igp_3)
2085 return ret_val;
2086
2087 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2088 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2089 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2090 break;
2091 }
2092 /* Fall-thru */
2093 case e1000_pchlan:
2094 case e1000_pch2lan:
2095 case e1000_pch_lpt:
2096 case e1000_pch_spt:
2097 case e1000_pch_cnp:
2098 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2099 break;
2100 default:
2101 return ret_val;
2102 }
2103
2104 ret_val = hw->phy.ops.acquire(hw);
2105 if (ret_val)
2106 return ret_val;
2107
2108 data = er32(FEXTNVM);
2109 if (!(data & sw_cfg_mask))
2110 goto release;
2111
2112 /* Make sure HW does not configure LCD from PHY
2113 * extended configuration before SW configuration
2114 */
2115 data = er32(EXTCNF_CTRL);
2116 if ((hw->mac.type < e1000_pch2lan) &&
2117 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2118 goto release;
2119
2120 cnf_size = er32(EXTCNF_SIZE);
2121 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2122 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2123 if (!cnf_size)
2124 goto release;
2125
2126 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2127 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2128
2129 if (((hw->mac.type == e1000_pchlan) &&
2130 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2131 (hw->mac.type > e1000_pchlan)) {
2132 /* HW configures the SMBus address and LEDs when the
2133 * OEM and LCD Write Enable bits are set in the NVM.
2134 * When both NVM bits are cleared, SW will configure
2135 * them instead.
2136 */
2137 ret_val = e1000_write_smbus_addr(hw);
2138 if (ret_val)
2139 goto release;
2140
2141 data = er32(LEDCTL);
2142 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2143 (u16)data);
2144 if (ret_val)
2145 goto release;
2146 }
2147
2148 /* Configure LCD from extended configuration region. */
2149
2150 /* cnf_base_addr is in DWORD */
2151 word_addr = (u16)(cnf_base_addr << 1);
2152
2153 for (i = 0; i < cnf_size; i++) {
2154 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2155 if (ret_val)
2156 goto release;
2157
2158 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2159 1, &reg_addr);
2160 if (ret_val)
2161 goto release;
2162
2163 /* Save off the PHY page for future writes. */
2164 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2165 phy_page = reg_data;
2166 continue;
2167 }
2168
2169 reg_addr &= PHY_REG_MASK;
2170 reg_addr |= phy_page;
2171
2172 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2173 if (ret_val)
2174 goto release;
2175 }
2176
2177 release:
2178 hw->phy.ops.release(hw);
2179 return ret_val;
2180 }
2181
2182 /**
2183 * e1000_k1_gig_workaround_hv - K1 Si workaround
2184 * @hw: pointer to the HW structure
2185 * @link: link up bool flag
2186 *
2187 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2188 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2189 * If link is down, the function will restore the default K1 setting located
2190 * in the NVM.
2191 **/
2192 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2193 {
2194 s32 ret_val = 0;
2195 u16 status_reg = 0;
2196 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2197
2198 if (hw->mac.type != e1000_pchlan)
2199 return 0;
2200
2201 /* Wrap the whole flow with the sw flag */
2202 ret_val = hw->phy.ops.acquire(hw);
2203 if (ret_val)
2204 return ret_val;
2205
2206 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2207 if (link) {
2208 if (hw->phy.type == e1000_phy_82578) {
2209 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2210 &status_reg);
2211 if (ret_val)
2212 goto release;
2213
2214 status_reg &= (BM_CS_STATUS_LINK_UP |
2215 BM_CS_STATUS_RESOLVED |
2216 BM_CS_STATUS_SPEED_MASK);
2217
2218 if (status_reg == (BM_CS_STATUS_LINK_UP |
2219 BM_CS_STATUS_RESOLVED |
2220 BM_CS_STATUS_SPEED_1000))
2221 k1_enable = false;
2222 }
2223
2224 if (hw->phy.type == e1000_phy_82577) {
2225 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2226 if (ret_val)
2227 goto release;
2228
2229 status_reg &= (HV_M_STATUS_LINK_UP |
2230 HV_M_STATUS_AUTONEG_COMPLETE |
2231 HV_M_STATUS_SPEED_MASK);
2232
2233 if (status_reg == (HV_M_STATUS_LINK_UP |
2234 HV_M_STATUS_AUTONEG_COMPLETE |
2235 HV_M_STATUS_SPEED_1000))
2236 k1_enable = false;
2237 }
2238
2239 /* Link stall fix for link up */
2240 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2241 if (ret_val)
2242 goto release;
2243
2244 } else {
2245 /* Link stall fix for link down */
2246 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2247 if (ret_val)
2248 goto release;
2249 }
2250
2251 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2252
2253 release:
2254 hw->phy.ops.release(hw);
2255
2256 return ret_val;
2257 }
2258
2259 /**
2260 * e1000_configure_k1_ich8lan - Configure K1 power state
2261 * @hw: pointer to the HW structure
2262 * @enable: K1 state to configure
2263 *
2264 * Configure the K1 power state based on the provided parameter.
2265 * Assumes semaphore already acquired.
2266 *
2267 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2268 **/
2269 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2270 {
2271 s32 ret_val;
2272 u32 ctrl_reg = 0;
2273 u32 ctrl_ext = 0;
2274 u32 reg = 0;
2275 u16 kmrn_reg = 0;
2276
2277 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2278 &kmrn_reg);
2279 if (ret_val)
2280 return ret_val;
2281
2282 if (k1_enable)
2283 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2284 else
2285 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2286
2287 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2288 kmrn_reg);
2289 if (ret_val)
2290 return ret_val;
2291
2292 usleep_range(20, 40);
2293 ctrl_ext = er32(CTRL_EXT);
2294 ctrl_reg = er32(CTRL);
2295
2296 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2297 reg |= E1000_CTRL_FRCSPD;
2298 ew32(CTRL, reg);
2299
2300 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2301 e1e_flush();
2302 usleep_range(20, 40);
2303 ew32(CTRL, ctrl_reg);
2304 ew32(CTRL_EXT, ctrl_ext);
2305 e1e_flush();
2306 usleep_range(20, 40);
2307
2308 return 0;
2309 }
2310
2311 /**
2312 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2313 * @hw: pointer to the HW structure
2314 * @d0_state: boolean if entering d0 or d3 device state
2315 *
2316 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2317 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2318 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2319 **/
2320 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2321 {
2322 s32 ret_val = 0;
2323 u32 mac_reg;
2324 u16 oem_reg;
2325
2326 if (hw->mac.type < e1000_pchlan)
2327 return ret_val;
2328
2329 ret_val = hw->phy.ops.acquire(hw);
2330 if (ret_val)
2331 return ret_val;
2332
2333 if (hw->mac.type == e1000_pchlan) {
2334 mac_reg = er32(EXTCNF_CTRL);
2335 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2336 goto release;
2337 }
2338
2339 mac_reg = er32(FEXTNVM);
2340 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2341 goto release;
2342
2343 mac_reg = er32(PHY_CTRL);
2344
2345 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2346 if (ret_val)
2347 goto release;
2348
2349 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2350
2351 if (d0_state) {
2352 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2353 oem_reg |= HV_OEM_BITS_GBE_DIS;
2354
2355 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2356 oem_reg |= HV_OEM_BITS_LPLU;
2357 } else {
2358 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2359 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2360 oem_reg |= HV_OEM_BITS_GBE_DIS;
2361
2362 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2363 E1000_PHY_CTRL_NOND0A_LPLU))
2364 oem_reg |= HV_OEM_BITS_LPLU;
2365 }
2366
2367 /* Set Restart auto-neg to activate the bits */
2368 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2369 !hw->phy.ops.check_reset_block(hw))
2370 oem_reg |= HV_OEM_BITS_RESTART_AN;
2371
2372 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2373
2374 release:
2375 hw->phy.ops.release(hw);
2376
2377 return ret_val;
2378 }
2379
2380 /**
2381 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2382 * @hw: pointer to the HW structure
2383 **/
2384 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2385 {
2386 s32 ret_val;
2387 u16 data;
2388
2389 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2390 if (ret_val)
2391 return ret_val;
2392
2393 data |= HV_KMRN_MDIO_SLOW;
2394
2395 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2396
2397 return ret_val;
2398 }
2399
2400 /**
2401 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2402 * done after every PHY reset.
2403 **/
2404 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2405 {
2406 s32 ret_val = 0;
2407 u16 phy_data;
2408
2409 if (hw->mac.type != e1000_pchlan)
2410 return 0;
2411
2412 /* Set MDIO slow mode before any other MDIO access */
2413 if (hw->phy.type == e1000_phy_82577) {
2414 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2415 if (ret_val)
2416 return ret_val;
2417 }
2418
2419 if (((hw->phy.type == e1000_phy_82577) &&
2420 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2421 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2422 /* Disable generation of early preamble */
2423 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2424 if (ret_val)
2425 return ret_val;
2426
2427 /* Preamble tuning for SSC */
2428 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2429 if (ret_val)
2430 return ret_val;
2431 }
2432
2433 if (hw->phy.type == e1000_phy_82578) {
2434 /* Return registers to default by doing a soft reset then
2435 * writing 0x3140 to the control register.
2436 */
2437 if (hw->phy.revision < 2) {
2438 e1000e_phy_sw_reset(hw);
2439 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2440 if (ret_val)
2441 return ret_val;
2442 }
2443 }
2444
2445 /* Select page 0 */
2446 ret_val = hw->phy.ops.acquire(hw);
2447 if (ret_val)
2448 return ret_val;
2449
2450 hw->phy.addr = 1;
2451 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2452 hw->phy.ops.release(hw);
2453 if (ret_val)
2454 return ret_val;
2455
2456 /* Configure the K1 Si workaround during phy reset assuming there is
2457 * link so that it disables K1 if link is in 1Gbps.
2458 */
2459 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2460 if (ret_val)
2461 return ret_val;
2462
2463 /* Workaround for link disconnects on a busy hub in half duplex */
2464 ret_val = hw->phy.ops.acquire(hw);
2465 if (ret_val)
2466 return ret_val;
2467 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2468 if (ret_val)
2469 goto release;
2470 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2471 if (ret_val)
2472 goto release;
2473
2474 /* set MSE higher to enable link to stay up when noise is high */
2475 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2476 release:
2477 hw->phy.ops.release(hw);
2478
2479 return ret_val;
2480 }
2481
2482 /**
2483 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2484 * @hw: pointer to the HW structure
2485 **/
2486 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2487 {
2488 u32 mac_reg;
2489 u16 i, phy_reg = 0;
2490 s32 ret_val;
2491
2492 ret_val = hw->phy.ops.acquire(hw);
2493 if (ret_val)
2494 return;
2495 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2496 if (ret_val)
2497 goto release;
2498
2499 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2500 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2501 mac_reg = er32(RAL(i));
2502 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2503 (u16)(mac_reg & 0xFFFF));
2504 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2505 (u16)((mac_reg >> 16) & 0xFFFF));
2506
2507 mac_reg = er32(RAH(i));
2508 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2509 (u16)(mac_reg & 0xFFFF));
2510 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2511 (u16)((mac_reg & E1000_RAH_AV)
2512 >> 16));
2513 }
2514
2515 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2516
2517 release:
2518 hw->phy.ops.release(hw);
2519 }
2520
2521 /**
2522 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2523 * with 82579 PHY
2524 * @hw: pointer to the HW structure
2525 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2526 **/
2527 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2528 {
2529 s32 ret_val = 0;
2530 u16 phy_reg, data;
2531 u32 mac_reg;
2532 u16 i;
2533
2534 if (hw->mac.type < e1000_pch2lan)
2535 return 0;
2536
2537 /* disable Rx path while enabling/disabling workaround */
2538 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2539 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2540 if (ret_val)
2541 return ret_val;
2542
2543 if (enable) {
2544 /* Write Rx addresses (rar_entry_count for RAL/H, and
2545 * SHRAL/H) and initial CRC values to the MAC
2546 */
2547 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2548 u8 mac_addr[ETH_ALEN] = { 0 };
2549 u32 addr_high, addr_low;
2550
2551 addr_high = er32(RAH(i));
2552 if (!(addr_high & E1000_RAH_AV))
2553 continue;
2554 addr_low = er32(RAL(i));
2555 mac_addr[0] = (addr_low & 0xFF);
2556 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2557 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2558 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2559 mac_addr[4] = (addr_high & 0xFF);
2560 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2561
2562 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2563 }
2564
2565 /* Write Rx addresses to the PHY */
2566 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2567
2568 /* Enable jumbo frame workaround in the MAC */
2569 mac_reg = er32(FFLT_DBG);
2570 mac_reg &= ~BIT(14);
2571 mac_reg |= (7 << 15);
2572 ew32(FFLT_DBG, mac_reg);
2573
2574 mac_reg = er32(RCTL);
2575 mac_reg |= E1000_RCTL_SECRC;
2576 ew32(RCTL, mac_reg);
2577
2578 ret_val = e1000e_read_kmrn_reg(hw,
2579 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580 &data);
2581 if (ret_val)
2582 return ret_val;
2583 ret_val = e1000e_write_kmrn_reg(hw,
2584 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2585 data | BIT(0));
2586 if (ret_val)
2587 return ret_val;
2588 ret_val = e1000e_read_kmrn_reg(hw,
2589 E1000_KMRNCTRLSTA_HD_CTRL,
2590 &data);
2591 if (ret_val)
2592 return ret_val;
2593 data &= ~(0xF << 8);
2594 data |= (0xB << 8);
2595 ret_val = e1000e_write_kmrn_reg(hw,
2596 E1000_KMRNCTRLSTA_HD_CTRL,
2597 data);
2598 if (ret_val)
2599 return ret_val;
2600
2601 /* Enable jumbo frame workaround in the PHY */
2602 e1e_rphy(hw, PHY_REG(769, 23), &data);
2603 data &= ~(0x7F << 5);
2604 data |= (0x37 << 5);
2605 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2606 if (ret_val)
2607 return ret_val;
2608 e1e_rphy(hw, PHY_REG(769, 16), &data);
2609 data &= ~BIT(13);
2610 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2611 if (ret_val)
2612 return ret_val;
2613 e1e_rphy(hw, PHY_REG(776, 20), &data);
2614 data &= ~(0x3FF << 2);
2615 data |= (E1000_TX_PTR_GAP << 2);
2616 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2617 if (ret_val)
2618 return ret_val;
2619 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2620 if (ret_val)
2621 return ret_val;
2622 e1e_rphy(hw, HV_PM_CTRL, &data);
2623 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2624 if (ret_val)
2625 return ret_val;
2626 } else {
2627 /* Write MAC register values back to h/w defaults */
2628 mac_reg = er32(FFLT_DBG);
2629 mac_reg &= ~(0xF << 14);
2630 ew32(FFLT_DBG, mac_reg);
2631
2632 mac_reg = er32(RCTL);
2633 mac_reg &= ~E1000_RCTL_SECRC;
2634 ew32(RCTL, mac_reg);
2635
2636 ret_val = e1000e_read_kmrn_reg(hw,
2637 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 &data);
2639 if (ret_val)
2640 return ret_val;
2641 ret_val = e1000e_write_kmrn_reg(hw,
2642 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2643 data & ~BIT(0));
2644 if (ret_val)
2645 return ret_val;
2646 ret_val = e1000e_read_kmrn_reg(hw,
2647 E1000_KMRNCTRLSTA_HD_CTRL,
2648 &data);
2649 if (ret_val)
2650 return ret_val;
2651 data &= ~(0xF << 8);
2652 data |= (0xB << 8);
2653 ret_val = e1000e_write_kmrn_reg(hw,
2654 E1000_KMRNCTRLSTA_HD_CTRL,
2655 data);
2656 if (ret_val)
2657 return ret_val;
2658
2659 /* Write PHY register values back to h/w defaults */
2660 e1e_rphy(hw, PHY_REG(769, 23), &data);
2661 data &= ~(0x7F << 5);
2662 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2663 if (ret_val)
2664 return ret_val;
2665 e1e_rphy(hw, PHY_REG(769, 16), &data);
2666 data |= BIT(13);
2667 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2668 if (ret_val)
2669 return ret_val;
2670 e1e_rphy(hw, PHY_REG(776, 20), &data);
2671 data &= ~(0x3FF << 2);
2672 data |= (0x8 << 2);
2673 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2674 if (ret_val)
2675 return ret_val;
2676 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2677 if (ret_val)
2678 return ret_val;
2679 e1e_rphy(hw, HV_PM_CTRL, &data);
2680 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2681 if (ret_val)
2682 return ret_val;
2683 }
2684
2685 /* re-enable Rx path after enabling/disabling workaround */
2686 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2687 }
2688
2689 /**
2690 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2691 * done after every PHY reset.
2692 **/
2693 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2694 {
2695 s32 ret_val = 0;
2696
2697 if (hw->mac.type != e1000_pch2lan)
2698 return 0;
2699
2700 /* Set MDIO slow mode before any other MDIO access */
2701 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2702 if (ret_val)
2703 return ret_val;
2704
2705 ret_val = hw->phy.ops.acquire(hw);
2706 if (ret_val)
2707 return ret_val;
2708 /* set MSE higher to enable link to stay up when noise is high */
2709 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2710 if (ret_val)
2711 goto release;
2712 /* drop link after 5 times MSE threshold was reached */
2713 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2714 release:
2715 hw->phy.ops.release(hw);
2716
2717 return ret_val;
2718 }
2719
2720 /**
2721 * e1000_k1_gig_workaround_lv - K1 Si workaround
2722 * @hw: pointer to the HW structure
2723 *
2724 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2725 * Disable K1 in 1000Mbps and 100Mbps
2726 **/
2727 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2728 {
2729 s32 ret_val = 0;
2730 u16 status_reg = 0;
2731
2732 if (hw->mac.type != e1000_pch2lan)
2733 return 0;
2734
2735 /* Set K1 beacon duration based on 10Mbs speed */
2736 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2737 if (ret_val)
2738 return ret_val;
2739
2740 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2741 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2742 if (status_reg &
2743 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2744 u16 pm_phy_reg;
2745
2746 /* LV 1G/100 Packet drop issue wa */
2747 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2748 if (ret_val)
2749 return ret_val;
2750 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2751 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2752 if (ret_val)
2753 return ret_val;
2754 } else {
2755 u32 mac_reg;
2756
2757 mac_reg = er32(FEXTNVM4);
2758 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2759 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2760 ew32(FEXTNVM4, mac_reg);
2761 }
2762 }
2763
2764 return ret_val;
2765 }
2766
2767 /**
2768 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2769 * @hw: pointer to the HW structure
2770 * @gate: boolean set to true to gate, false to ungate
2771 *
2772 * Gate/ungate the automatic PHY configuration via hardware; perform
2773 * the configuration via software instead.
2774 **/
2775 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2776 {
2777 u32 extcnf_ctrl;
2778
2779 if (hw->mac.type < e1000_pch2lan)
2780 return;
2781
2782 extcnf_ctrl = er32(EXTCNF_CTRL);
2783
2784 if (gate)
2785 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2786 else
2787 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2788
2789 ew32(EXTCNF_CTRL, extcnf_ctrl);
2790 }
2791
2792 /**
2793 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2794 * @hw: pointer to the HW structure
2795 *
2796 * Check the appropriate indication the MAC has finished configuring the
2797 * PHY after a software reset.
2798 **/
2799 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2800 {
2801 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2802
2803 /* Wait for basic configuration completes before proceeding */
2804 do {
2805 data = er32(STATUS);
2806 data &= E1000_STATUS_LAN_INIT_DONE;
2807 usleep_range(100, 200);
2808 } while ((!data) && --loop);
2809
2810 /* If basic configuration is incomplete before the above loop
2811 * count reaches 0, loading the configuration from NVM will
2812 * leave the PHY in a bad state possibly resulting in no link.
2813 */
2814 if (loop == 0)
2815 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2816
2817 /* Clear the Init Done bit for the next init event */
2818 data = er32(STATUS);
2819 data &= ~E1000_STATUS_LAN_INIT_DONE;
2820 ew32(STATUS, data);
2821 }
2822
2823 /**
2824 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2825 * @hw: pointer to the HW structure
2826 **/
2827 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2828 {
2829 s32 ret_val = 0;
2830 u16 reg;
2831
2832 if (hw->phy.ops.check_reset_block(hw))
2833 return 0;
2834
2835 /* Allow time for h/w to get to quiescent state after reset */
2836 usleep_range(10000, 20000);
2837
2838 /* Perform any necessary post-reset workarounds */
2839 switch (hw->mac.type) {
2840 case e1000_pchlan:
2841 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2842 if (ret_val)
2843 return ret_val;
2844 break;
2845 case e1000_pch2lan:
2846 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2847 if (ret_val)
2848 return ret_val;
2849 break;
2850 default:
2851 break;
2852 }
2853
2854 /* Clear the host wakeup bit after lcd reset */
2855 if (hw->mac.type >= e1000_pchlan) {
2856 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2857 reg &= ~BM_WUC_HOST_WU_BIT;
2858 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2859 }
2860
2861 /* Configure the LCD with the extended configuration region in NVM */
2862 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2863 if (ret_val)
2864 return ret_val;
2865
2866 /* Configure the LCD with the OEM bits in NVM */
2867 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2868
2869 if (hw->mac.type == e1000_pch2lan) {
2870 /* Ungate automatic PHY configuration on non-managed 82579 */
2871 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2872 usleep_range(10000, 20000);
2873 e1000_gate_hw_phy_config_ich8lan(hw, false);
2874 }
2875
2876 /* Set EEE LPI Update Timer to 200usec */
2877 ret_val = hw->phy.ops.acquire(hw);
2878 if (ret_val)
2879 return ret_val;
2880 ret_val = e1000_write_emi_reg_locked(hw,
2881 I82579_LPI_UPDATE_TIMER,
2882 0x1387);
2883 hw->phy.ops.release(hw);
2884 }
2885
2886 return ret_val;
2887 }
2888
2889 /**
2890 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2891 * @hw: pointer to the HW structure
2892 *
2893 * Resets the PHY
2894 * This is a function pointer entry point called by drivers
2895 * or other shared routines.
2896 **/
2897 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2898 {
2899 s32 ret_val = 0;
2900
2901 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2902 if ((hw->mac.type == e1000_pch2lan) &&
2903 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2904 e1000_gate_hw_phy_config_ich8lan(hw, true);
2905
2906 ret_val = e1000e_phy_hw_reset_generic(hw);
2907 if (ret_val)
2908 return ret_val;
2909
2910 return e1000_post_phy_reset_ich8lan(hw);
2911 }
2912
2913 /**
2914 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2915 * @hw: pointer to the HW structure
2916 * @active: true to enable LPLU, false to disable
2917 *
2918 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2919 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2920 * the phy speed. This function will manually set the LPLU bit and restart
2921 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2922 * since it configures the same bit.
2923 **/
2924 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2925 {
2926 s32 ret_val;
2927 u16 oem_reg;
2928
2929 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2930 if (ret_val)
2931 return ret_val;
2932
2933 if (active)
2934 oem_reg |= HV_OEM_BITS_LPLU;
2935 else
2936 oem_reg &= ~HV_OEM_BITS_LPLU;
2937
2938 if (!hw->phy.ops.check_reset_block(hw))
2939 oem_reg |= HV_OEM_BITS_RESTART_AN;
2940
2941 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2942 }
2943
2944 /**
2945 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2946 * @hw: pointer to the HW structure
2947 * @active: true to enable LPLU, false to disable
2948 *
2949 * Sets the LPLU D0 state according to the active flag. When
2950 * activating LPLU this function also disables smart speed
2951 * and vice versa. LPLU will not be activated unless the
2952 * device autonegotiation advertisement meets standards of
2953 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2954 * This is a function pointer entry point only called by
2955 * PHY setup routines.
2956 **/
2957 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2958 {
2959 struct e1000_phy_info *phy = &hw->phy;
2960 u32 phy_ctrl;
2961 s32 ret_val = 0;
2962 u16 data;
2963
2964 if (phy->type == e1000_phy_ife)
2965 return 0;
2966
2967 phy_ctrl = er32(PHY_CTRL);
2968
2969 if (active) {
2970 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2971 ew32(PHY_CTRL, phy_ctrl);
2972
2973 if (phy->type != e1000_phy_igp_3)
2974 return 0;
2975
2976 /* Call gig speed drop workaround on LPLU before accessing
2977 * any PHY registers
2978 */
2979 if (hw->mac.type == e1000_ich8lan)
2980 e1000e_gig_downshift_workaround_ich8lan(hw);
2981
2982 /* When LPLU is enabled, we should disable SmartSpeed */
2983 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2984 if (ret_val)
2985 return ret_val;
2986 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2987 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2988 if (ret_val)
2989 return ret_val;
2990 } else {
2991 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2992 ew32(PHY_CTRL, phy_ctrl);
2993
2994 if (phy->type != e1000_phy_igp_3)
2995 return 0;
2996
2997 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
2998 * during Dx states where the power conservation is most
2999 * important. During driver activity we should enable
3000 * SmartSpeed, so performance is maintained.
3001 */
3002 if (phy->smart_speed == e1000_smart_speed_on) {
3003 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004 &data);
3005 if (ret_val)
3006 return ret_val;
3007
3008 data |= IGP01E1000_PSCFR_SMART_SPEED;
3009 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010 data);
3011 if (ret_val)
3012 return ret_val;
3013 } else if (phy->smart_speed == e1000_smart_speed_off) {
3014 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 &data);
3016 if (ret_val)
3017 return ret_val;
3018
3019 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3020 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3021 data);
3022 if (ret_val)
3023 return ret_val;
3024 }
3025 }
3026
3027 return 0;
3028 }
3029
3030 /**
3031 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3032 * @hw: pointer to the HW structure
3033 * @active: true to enable LPLU, false to disable
3034 *
3035 * Sets the LPLU D3 state according to the active flag. When
3036 * activating LPLU this function also disables smart speed
3037 * and vice versa. LPLU will not be activated unless the
3038 * device autonegotiation advertisement meets standards of
3039 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3040 * This is a function pointer entry point only called by
3041 * PHY setup routines.
3042 **/
3043 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3044 {
3045 struct e1000_phy_info *phy = &hw->phy;
3046 u32 phy_ctrl;
3047 s32 ret_val = 0;
3048 u16 data;
3049
3050 phy_ctrl = er32(PHY_CTRL);
3051
3052 if (!active) {
3053 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3054 ew32(PHY_CTRL, phy_ctrl);
3055
3056 if (phy->type != e1000_phy_igp_3)
3057 return 0;
3058
3059 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3060 * during Dx states where the power conservation is most
3061 * important. During driver activity we should enable
3062 * SmartSpeed, so performance is maintained.
3063 */
3064 if (phy->smart_speed == e1000_smart_speed_on) {
3065 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 &data);
3067 if (ret_val)
3068 return ret_val;
3069
3070 data |= IGP01E1000_PSCFR_SMART_SPEED;
3071 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072 data);
3073 if (ret_val)
3074 return ret_val;
3075 } else if (phy->smart_speed == e1000_smart_speed_off) {
3076 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 &data);
3078 if (ret_val)
3079 return ret_val;
3080
3081 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3082 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3083 data);
3084 if (ret_val)
3085 return ret_val;
3086 }
3087 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3088 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3089 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3090 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3091 ew32(PHY_CTRL, phy_ctrl);
3092
3093 if (phy->type != e1000_phy_igp_3)
3094 return 0;
3095
3096 /* Call gig speed drop workaround on LPLU before accessing
3097 * any PHY registers
3098 */
3099 if (hw->mac.type == e1000_ich8lan)
3100 e1000e_gig_downshift_workaround_ich8lan(hw);
3101
3102 /* When LPLU is enabled, we should disable SmartSpeed */
3103 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3104 if (ret_val)
3105 return ret_val;
3106
3107 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3108 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3109 }
3110
3111 return ret_val;
3112 }
3113
3114 /**
3115 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3116 * @hw: pointer to the HW structure
3117 * @bank: pointer to the variable that returns the active bank
3118 *
3119 * Reads signature byte from the NVM using the flash access registers.
3120 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3121 **/
3122 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3123 {
3124 u32 eecd;
3125 struct e1000_nvm_info *nvm = &hw->nvm;
3126 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3127 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3128 u32 nvm_dword = 0;
3129 u8 sig_byte = 0;
3130 s32 ret_val;
3131
3132 switch (hw->mac.type) {
3133 case e1000_pch_spt:
3134 case e1000_pch_cnp:
3135 bank1_offset = nvm->flash_bank_size;
3136 act_offset = E1000_ICH_NVM_SIG_WORD;
3137
3138 /* set bank to 0 in case flash read fails */
3139 *bank = 0;
3140
3141 /* Check bank 0 */
3142 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3143 &nvm_dword);
3144 if (ret_val)
3145 return ret_val;
3146 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3147 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3148 E1000_ICH_NVM_SIG_VALUE) {
3149 *bank = 0;
3150 return 0;
3151 }
3152
3153 /* Check bank 1 */
3154 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3155 bank1_offset,
3156 &nvm_dword);
3157 if (ret_val)
3158 return ret_val;
3159 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3160 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3161 E1000_ICH_NVM_SIG_VALUE) {
3162 *bank = 1;
3163 return 0;
3164 }
3165
3166 e_dbg("ERROR: No valid NVM bank present\n");
3167 return -E1000_ERR_NVM;
3168 case e1000_ich8lan:
3169 case e1000_ich9lan:
3170 eecd = er32(EECD);
3171 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3172 E1000_EECD_SEC1VAL_VALID_MASK) {
3173 if (eecd & E1000_EECD_SEC1VAL)
3174 *bank = 1;
3175 else
3176 *bank = 0;
3177
3178 return 0;
3179 }
3180 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3181 /* fall-thru */
3182 default:
3183 /* set bank to 0 in case flash read fails */
3184 *bank = 0;
3185
3186 /* Check bank 0 */
3187 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3188 &sig_byte);
3189 if (ret_val)
3190 return ret_val;
3191 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3192 E1000_ICH_NVM_SIG_VALUE) {
3193 *bank = 0;
3194 return 0;
3195 }
3196
3197 /* Check bank 1 */
3198 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3199 bank1_offset,
3200 &sig_byte);
3201 if (ret_val)
3202 return ret_val;
3203 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3204 E1000_ICH_NVM_SIG_VALUE) {
3205 *bank = 1;
3206 return 0;
3207 }
3208
3209 e_dbg("ERROR: No valid NVM bank present\n");
3210 return -E1000_ERR_NVM;
3211 }
3212 }
3213
3214 /**
3215 * e1000_read_nvm_spt - NVM access for SPT
3216 * @hw: pointer to the HW structure
3217 * @offset: The offset (in bytes) of the word(s) to read.
3218 * @words: Size of data to read in words.
3219 * @data: pointer to the word(s) to read at offset.
3220 *
3221 * Reads a word(s) from the NVM
3222 **/
3223 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3224 u16 *data)
3225 {
3226 struct e1000_nvm_info *nvm = &hw->nvm;
3227 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3228 u32 act_offset;
3229 s32 ret_val = 0;
3230 u32 bank = 0;
3231 u32 dword = 0;
3232 u16 offset_to_read;
3233 u16 i;
3234
3235 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3236 (words == 0)) {
3237 e_dbg("nvm parameter(s) out of bounds\n");
3238 ret_val = -E1000_ERR_NVM;
3239 goto out;
3240 }
3241
3242 nvm->ops.acquire(hw);
3243
3244 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3245 if (ret_val) {
3246 e_dbg("Could not detect valid bank, assuming bank 0\n");
3247 bank = 0;
3248 }
3249
3250 act_offset = (bank) ? nvm->flash_bank_size : 0;
3251 act_offset += offset;
3252
3253 ret_val = 0;
3254
3255 for (i = 0; i < words; i += 2) {
3256 if (words - i == 1) {
3257 if (dev_spec->shadow_ram[offset + i].modified) {
3258 data[i] =
3259 dev_spec->shadow_ram[offset + i].value;
3260 } else {
3261 offset_to_read = act_offset + i -
3262 ((act_offset + i) % 2);
3263 ret_val =
3264 e1000_read_flash_dword_ich8lan(hw,
3265 offset_to_read,
3266 &dword);
3267 if (ret_val)
3268 break;
3269 if ((act_offset + i) % 2 == 0)
3270 data[i] = (u16)(dword & 0xFFFF);
3271 else
3272 data[i] = (u16)((dword >> 16) & 0xFFFF);
3273 }
3274 } else {
3275 offset_to_read = act_offset + i;
3276 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3277 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3278 ret_val =
3279 e1000_read_flash_dword_ich8lan(hw,
3280 offset_to_read,
3281 &dword);
3282 if (ret_val)
3283 break;
3284 }
3285 if (dev_spec->shadow_ram[offset + i].modified)
3286 data[i] =
3287 dev_spec->shadow_ram[offset + i].value;
3288 else
3289 data[i] = (u16)(dword & 0xFFFF);
3290 if (dev_spec->shadow_ram[offset + i].modified)
3291 data[i + 1] =
3292 dev_spec->shadow_ram[offset + i + 1].value;
3293 else
3294 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3295 }
3296 }
3297
3298 nvm->ops.release(hw);
3299
3300 out:
3301 if (ret_val)
3302 e_dbg("NVM read error: %d\n", ret_val);
3303
3304 return ret_val;
3305 }
3306
3307 /**
3308 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3309 * @hw: pointer to the HW structure
3310 * @offset: The offset (in bytes) of the word(s) to read.
3311 * @words: Size of data to read in words
3312 * @data: Pointer to the word(s) to read at offset.
3313 *
3314 * Reads a word(s) from the NVM using the flash access registers.
3315 **/
3316 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3317 u16 *data)
3318 {
3319 struct e1000_nvm_info *nvm = &hw->nvm;
3320 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3321 u32 act_offset;
3322 s32 ret_val = 0;
3323 u32 bank = 0;
3324 u16 i, word;
3325
3326 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3327 (words == 0)) {
3328 e_dbg("nvm parameter(s) out of bounds\n");
3329 ret_val = -E1000_ERR_NVM;
3330 goto out;
3331 }
3332
3333 nvm->ops.acquire(hw);
3334
3335 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3336 if (ret_val) {
3337 e_dbg("Could not detect valid bank, assuming bank 0\n");
3338 bank = 0;
3339 }
3340
3341 act_offset = (bank) ? nvm->flash_bank_size : 0;
3342 act_offset += offset;
3343
3344 ret_val = 0;
3345 for (i = 0; i < words; i++) {
3346 if (dev_spec->shadow_ram[offset + i].modified) {
3347 data[i] = dev_spec->shadow_ram[offset + i].value;
3348 } else {
3349 ret_val = e1000_read_flash_word_ich8lan(hw,
3350 act_offset + i,
3351 &word);
3352 if (ret_val)
3353 break;
3354 data[i] = word;
3355 }
3356 }
3357
3358 nvm->ops.release(hw);
3359
3360 out:
3361 if (ret_val)
3362 e_dbg("NVM read error: %d\n", ret_val);
3363
3364 return ret_val;
3365 }
3366
3367 /**
3368 * e1000_flash_cycle_init_ich8lan - Initialize flash
3369 * @hw: pointer to the HW structure
3370 *
3371 * This function does initial flash setup so that a new read/write/erase cycle
3372 * can be started.
3373 **/
3374 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3375 {
3376 union ich8_hws_flash_status hsfsts;
3377 s32 ret_val = -E1000_ERR_NVM;
3378
3379 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3380
3381 /* Check if the flash descriptor is valid */
3382 if (!hsfsts.hsf_status.fldesvalid) {
3383 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3384 return -E1000_ERR_NVM;
3385 }
3386
3387 /* Clear FCERR and DAEL in hw status by writing 1 */
3388 hsfsts.hsf_status.flcerr = 1;
3389 hsfsts.hsf_status.dael = 1;
3390 if (hw->mac.type >= e1000_pch_spt)
3391 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3392 else
3393 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3394
3395 /* Either we should have a hardware SPI cycle in progress
3396 * bit to check against, in order to start a new cycle or
3397 * FDONE bit should be changed in the hardware so that it
3398 * is 1 after hardware reset, which can then be used as an
3399 * indication whether a cycle is in progress or has been
3400 * completed.
3401 */
3402
3403 if (!hsfsts.hsf_status.flcinprog) {
3404 /* There is no cycle running at present,
3405 * so we can start a cycle.
3406 * Begin by setting Flash Cycle Done.
3407 */
3408 hsfsts.hsf_status.flcdone = 1;
3409 if (hw->mac.type >= e1000_pch_spt)
3410 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3411 else
3412 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3413 ret_val = 0;
3414 } else {
3415 s32 i;
3416
3417 /* Otherwise poll for sometime so the current
3418 * cycle has a chance to end before giving up.
3419 */
3420 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3421 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3422 if (!hsfsts.hsf_status.flcinprog) {
3423 ret_val = 0;
3424 break;
3425 }
3426 udelay(1);
3427 }
3428 if (!ret_val) {
3429 /* Successful in waiting for previous cycle to timeout,
3430 * now set the Flash Cycle Done.
3431 */
3432 hsfsts.hsf_status.flcdone = 1;
3433 if (hw->mac.type >= e1000_pch_spt)
3434 ew32flash(ICH_FLASH_HSFSTS,
3435 hsfsts.regval & 0xFFFF);
3436 else
3437 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3438 } else {
3439 e_dbg("Flash controller busy, cannot get access\n");
3440 }
3441 }
3442
3443 return ret_val;
3444 }
3445
3446 /**
3447 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3448 * @hw: pointer to the HW structure
3449 * @timeout: maximum time to wait for completion
3450 *
3451 * This function starts a flash cycle and waits for its completion.
3452 **/
3453 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3454 {
3455 union ich8_hws_flash_ctrl hsflctl;
3456 union ich8_hws_flash_status hsfsts;
3457 u32 i = 0;
3458
3459 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3460 if (hw->mac.type >= e1000_pch_spt)
3461 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3462 else
3463 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3464 hsflctl.hsf_ctrl.flcgo = 1;
3465
3466 if (hw->mac.type >= e1000_pch_spt)
3467 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3468 else
3469 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3470
3471 /* wait till FDONE bit is set to 1 */
3472 do {
3473 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3474 if (hsfsts.hsf_status.flcdone)
3475 break;
3476 udelay(1);
3477 } while (i++ < timeout);
3478
3479 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3480 return 0;
3481
3482 return -E1000_ERR_NVM;
3483 }
3484
3485 /**
3486 * e1000_read_flash_dword_ich8lan - Read dword from flash
3487 * @hw: pointer to the HW structure
3488 * @offset: offset to data location
3489 * @data: pointer to the location for storing the data
3490 *
3491 * Reads the flash dword at offset into data. Offset is converted
3492 * to bytes before read.
3493 **/
3494 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3495 u32 *data)
3496 {
3497 /* Must convert word offset into bytes. */
3498 offset <<= 1;
3499 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3500 }
3501
3502 /**
3503 * e1000_read_flash_word_ich8lan - Read word from flash
3504 * @hw: pointer to the HW structure
3505 * @offset: offset to data location
3506 * @data: pointer to the location for storing the data
3507 *
3508 * Reads the flash word at offset into data. Offset is converted
3509 * to bytes before read.
3510 **/
3511 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3512 u16 *data)
3513 {
3514 /* Must convert offset into bytes. */
3515 offset <<= 1;
3516
3517 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3518 }
3519
3520 /**
3521 * e1000_read_flash_byte_ich8lan - Read byte from flash
3522 * @hw: pointer to the HW structure
3523 * @offset: The offset of the byte to read.
3524 * @data: Pointer to a byte to store the value read.
3525 *
3526 * Reads a single byte from the NVM using the flash access registers.
3527 **/
3528 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3529 u8 *data)
3530 {
3531 s32 ret_val;
3532 u16 word = 0;
3533
3534 /* In SPT, only 32 bits access is supported,
3535 * so this function should not be called.
3536 */
3537 if (hw->mac.type >= e1000_pch_spt)
3538 return -E1000_ERR_NVM;
3539 else
3540 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3541
3542 if (ret_val)
3543 return ret_val;
3544
3545 *data = (u8)word;
3546
3547 return 0;
3548 }
3549
3550 /**
3551 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3552 * @hw: pointer to the HW structure
3553 * @offset: The offset (in bytes) of the byte or word to read.
3554 * @size: Size of data to read, 1=byte 2=word
3555 * @data: Pointer to the word to store the value read.
3556 *
3557 * Reads a byte or word from the NVM using the flash access registers.
3558 **/
3559 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3560 u8 size, u16 *data)
3561 {
3562 union ich8_hws_flash_status hsfsts;
3563 union ich8_hws_flash_ctrl hsflctl;
3564 u32 flash_linear_addr;
3565 u32 flash_data = 0;
3566 s32 ret_val = -E1000_ERR_NVM;
3567 u8 count = 0;
3568
3569 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3570 return -E1000_ERR_NVM;
3571
3572 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3573 hw->nvm.flash_base_addr);
3574
3575 do {
3576 udelay(1);
3577 /* Steps */
3578 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3579 if (ret_val)
3580 break;
3581
3582 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3583 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3584 hsflctl.hsf_ctrl.fldbcount = size - 1;
3585 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3586 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3587
3588 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3589
3590 ret_val =
3591 e1000_flash_cycle_ich8lan(hw,
3592 ICH_FLASH_READ_COMMAND_TIMEOUT);
3593
3594 /* Check if FCERR is set to 1, if set to 1, clear it
3595 * and try the whole sequence a few more times, else
3596 * read in (shift in) the Flash Data0, the order is
3597 * least significant byte first msb to lsb
3598 */
3599 if (!ret_val) {
3600 flash_data = er32flash(ICH_FLASH_FDATA0);
3601 if (size == 1)
3602 *data = (u8)(flash_data & 0x000000FF);
3603 else if (size == 2)
3604 *data = (u16)(flash_data & 0x0000FFFF);
3605 break;
3606 } else {
3607 /* If we've gotten here, then things are probably
3608 * completely hosed, but if the error condition is
3609 * detected, it won't hurt to give it another try...
3610 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3611 */
3612 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3613 if (hsfsts.hsf_status.flcerr) {
3614 /* Repeat for some time before giving up. */
3615 continue;
3616 } else if (!hsfsts.hsf_status.flcdone) {
3617 e_dbg("Timeout error - flash cycle did not complete.\n");
3618 break;
3619 }
3620 }
3621 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3622
3623 return ret_val;
3624 }
3625
3626 /**
3627 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3628 * @hw: pointer to the HW structure
3629 * @offset: The offset (in bytes) of the dword to read.
3630 * @data: Pointer to the dword to store the value read.
3631 *
3632 * Reads a byte or word from the NVM using the flash access registers.
3633 **/
3634
3635 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3636 u32 *data)
3637 {
3638 union ich8_hws_flash_status hsfsts;
3639 union ich8_hws_flash_ctrl hsflctl;
3640 u32 flash_linear_addr;
3641 s32 ret_val = -E1000_ERR_NVM;
3642 u8 count = 0;
3643
3644 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3645 return -E1000_ERR_NVM;
3646 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3647 hw->nvm.flash_base_addr);
3648
3649 do {
3650 udelay(1);
3651 /* Steps */
3652 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3653 if (ret_val)
3654 break;
3655 /* In SPT, This register is in Lan memory space, not flash.
3656 * Therefore, only 32 bit access is supported
3657 */
3658 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3659
3660 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3661 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3662 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3663 /* In SPT, This register is in Lan memory space, not flash.
3664 * Therefore, only 32 bit access is supported
3665 */
3666 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3667 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3668
3669 ret_val =
3670 e1000_flash_cycle_ich8lan(hw,
3671 ICH_FLASH_READ_COMMAND_TIMEOUT);
3672
3673 /* Check if FCERR is set to 1, if set to 1, clear it
3674 * and try the whole sequence a few more times, else
3675 * read in (shift in) the Flash Data0, the order is
3676 * least significant byte first msb to lsb
3677 */
3678 if (!ret_val) {
3679 *data = er32flash(ICH_FLASH_FDATA0);
3680 break;
3681 } else {
3682 /* If we've gotten here, then things are probably
3683 * completely hosed, but if the error condition is
3684 * detected, it won't hurt to give it another try...
3685 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3686 */
3687 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3688 if (hsfsts.hsf_status.flcerr) {
3689 /* Repeat for some time before giving up. */
3690 continue;
3691 } else if (!hsfsts.hsf_status.flcdone) {
3692 e_dbg("Timeout error - flash cycle did not complete.\n");
3693 break;
3694 }
3695 }
3696 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3697
3698 return ret_val;
3699 }
3700
3701 /**
3702 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3703 * @hw: pointer to the HW structure
3704 * @offset: The offset (in bytes) of the word(s) to write.
3705 * @words: Size of data to write in words
3706 * @data: Pointer to the word(s) to write at offset.
3707 *
3708 * Writes a byte or word to the NVM using the flash access registers.
3709 **/
3710 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3711 u16 *data)
3712 {
3713 struct e1000_nvm_info *nvm = &hw->nvm;
3714 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3715 u16 i;
3716
3717 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3718 (words == 0)) {
3719 e_dbg("nvm parameter(s) out of bounds\n");
3720 return -E1000_ERR_NVM;
3721 }
3722
3723 nvm->ops.acquire(hw);
3724
3725 for (i = 0; i < words; i++) {
3726 dev_spec->shadow_ram[offset + i].modified = true;
3727 dev_spec->shadow_ram[offset + i].value = data[i];
3728 }
3729
3730 nvm->ops.release(hw);
3731
3732 return 0;
3733 }
3734
3735 /**
3736 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3737 * @hw: pointer to the HW structure
3738 *
3739 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3740 * which writes the checksum to the shadow ram. The changes in the shadow
3741 * ram are then committed to the EEPROM by processing each bank at a time
3742 * checking for the modified bit and writing only the pending changes.
3743 * After a successful commit, the shadow ram is cleared and is ready for
3744 * future writes.
3745 **/
3746 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3747 {
3748 struct e1000_nvm_info *nvm = &hw->nvm;
3749 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3750 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3751 s32 ret_val;
3752 u32 dword = 0;
3753
3754 ret_val = e1000e_update_nvm_checksum_generic(hw);
3755 if (ret_val)
3756 goto out;
3757
3758 if (nvm->type != e1000_nvm_flash_sw)
3759 goto out;
3760
3761 nvm->ops.acquire(hw);
3762
3763 /* We're writing to the opposite bank so if we're on bank 1,
3764 * write to bank 0 etc. We also need to erase the segment that
3765 * is going to be written
3766 */
3767 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3768 if (ret_val) {
3769 e_dbg("Could not detect valid bank, assuming bank 0\n");
3770 bank = 0;
3771 }
3772
3773 if (bank == 0) {
3774 new_bank_offset = nvm->flash_bank_size;
3775 old_bank_offset = 0;
3776 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3777 if (ret_val)
3778 goto release;
3779 } else {
3780 old_bank_offset = nvm->flash_bank_size;
3781 new_bank_offset = 0;
3782 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3783 if (ret_val)
3784 goto release;
3785 }
3786 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3787 /* Determine whether to write the value stored
3788 * in the other NVM bank or a modified value stored
3789 * in the shadow RAM
3790 */
3791 ret_val = e1000_read_flash_dword_ich8lan(hw,
3792 i + old_bank_offset,
3793 &dword);
3794
3795 if (dev_spec->shadow_ram[i].modified) {
3796 dword &= 0xffff0000;
3797 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3798 }
3799 if (dev_spec->shadow_ram[i + 1].modified) {
3800 dword &= 0x0000ffff;
3801 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3802 << 16);
3803 }
3804 if (ret_val)
3805 break;
3806
3807 /* If the word is 0x13, then make sure the signature bits
3808 * (15:14) are 11b until the commit has completed.
3809 * This will allow us to write 10b which indicates the
3810 * signature is valid. We want to do this after the write
3811 * has completed so that we don't mark the segment valid
3812 * while the write is still in progress
3813 */
3814 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3815 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3816
3817 /* Convert offset to bytes. */
3818 act_offset = (i + new_bank_offset) << 1;
3819
3820 usleep_range(100, 200);
3821
3822 /* Write the data to the new bank. Offset in words */
3823 act_offset = i + new_bank_offset;
3824 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3825 dword);
3826 if (ret_val)
3827 break;
3828 }
3829
3830 /* Don't bother writing the segment valid bits if sector
3831 * programming failed.
3832 */
3833 if (ret_val) {
3834 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3835 e_dbg("Flash commit failed.\n");
3836 goto release;
3837 }
3838
3839 /* Finally validate the new segment by setting bit 15:14
3840 * to 10b in word 0x13 , this can be done without an
3841 * erase as well since these bits are 11 to start with
3842 * and we need to change bit 14 to 0b
3843 */
3844 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3845
3846 /*offset in words but we read dword */
3847 --act_offset;
3848 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3849
3850 if (ret_val)
3851 goto release;
3852
3853 dword &= 0xBFFFFFFF;
3854 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3855
3856 if (ret_val)
3857 goto release;
3858
3859 /* And invalidate the previously valid segment by setting
3860 * its signature word (0x13) high_byte to 0b. This can be
3861 * done without an erase because flash erase sets all bits
3862 * to 1's. We can write 1's to 0's without an erase
3863 */
3864 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3865
3866 /* offset in words but we read dword */
3867 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3868 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3869
3870 if (ret_val)
3871 goto release;
3872
3873 dword &= 0x00FFFFFF;
3874 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3875
3876 if (ret_val)
3877 goto release;
3878
3879 /* Great! Everything worked, we can now clear the cached entries. */
3880 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3881 dev_spec->shadow_ram[i].modified = false;
3882 dev_spec->shadow_ram[i].value = 0xFFFF;
3883 }
3884
3885 release:
3886 nvm->ops.release(hw);
3887
3888 /* Reload the EEPROM, or else modifications will not appear
3889 * until after the next adapter reset.
3890 */
3891 if (!ret_val) {
3892 nvm->ops.reload(hw);
3893 usleep_range(10000, 20000);
3894 }
3895
3896 out:
3897 if (ret_val)
3898 e_dbg("NVM update error: %d\n", ret_val);
3899
3900 return ret_val;
3901 }
3902
3903 /**
3904 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3905 * @hw: pointer to the HW structure
3906 *
3907 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3908 * which writes the checksum to the shadow ram. The changes in the shadow
3909 * ram are then committed to the EEPROM by processing each bank at a time
3910 * checking for the modified bit and writing only the pending changes.
3911 * After a successful commit, the shadow ram is cleared and is ready for
3912 * future writes.
3913 **/
3914 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3915 {
3916 struct e1000_nvm_info *nvm = &hw->nvm;
3917 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3918 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3919 s32 ret_val;
3920 u16 data = 0;
3921
3922 ret_val = e1000e_update_nvm_checksum_generic(hw);
3923 if (ret_val)
3924 goto out;
3925
3926 if (nvm->type != e1000_nvm_flash_sw)
3927 goto out;
3928
3929 nvm->ops.acquire(hw);
3930
3931 /* We're writing to the opposite bank so if we're on bank 1,
3932 * write to bank 0 etc. We also need to erase the segment that
3933 * is going to be written
3934 */
3935 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3936 if (ret_val) {
3937 e_dbg("Could not detect valid bank, assuming bank 0\n");
3938 bank = 0;
3939 }
3940
3941 if (bank == 0) {
3942 new_bank_offset = nvm->flash_bank_size;
3943 old_bank_offset = 0;
3944 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3945 if (ret_val)
3946 goto release;
3947 } else {
3948 old_bank_offset = nvm->flash_bank_size;
3949 new_bank_offset = 0;
3950 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3951 if (ret_val)
3952 goto release;
3953 }
3954 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3955 if (dev_spec->shadow_ram[i].modified) {
3956 data = dev_spec->shadow_ram[i].value;
3957 } else {
3958 ret_val = e1000_read_flash_word_ich8lan(hw, i +
3959 old_bank_offset,
3960 &data);
3961 if (ret_val)
3962 break;
3963 }
3964
3965 /* If the word is 0x13, then make sure the signature bits
3966 * (15:14) are 11b until the commit has completed.
3967 * This will allow us to write 10b which indicates the
3968 * signature is valid. We want to do this after the write
3969 * has completed so that we don't mark the segment valid
3970 * while the write is still in progress
3971 */
3972 if (i == E1000_ICH_NVM_SIG_WORD)
3973 data |= E1000_ICH_NVM_SIG_MASK;
3974
3975 /* Convert offset to bytes. */
3976 act_offset = (i + new_bank_offset) << 1;
3977
3978 usleep_range(100, 200);
3979 /* Write the bytes to the new bank. */
3980 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3981 act_offset,
3982 (u8)data);
3983 if (ret_val)
3984 break;
3985
3986 usleep_range(100, 200);
3987 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3988 act_offset + 1,
3989 (u8)(data >> 8));
3990 if (ret_val)
3991 break;
3992 }
3993
3994 /* Don't bother writing the segment valid bits if sector
3995 * programming failed.
3996 */
3997 if (ret_val) {
3998 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3999 e_dbg("Flash commit failed.\n");
4000 goto release;
4001 }
4002
4003 /* Finally validate the new segment by setting bit 15:14
4004 * to 10b in word 0x13 , this can be done without an
4005 * erase as well since these bits are 11 to start with
4006 * and we need to change bit 14 to 0b
4007 */
4008 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4009 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4010 if (ret_val)
4011 goto release;
4012
4013 data &= 0xBFFF;
4014 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4015 act_offset * 2 + 1,
4016 (u8)(data >> 8));
4017 if (ret_val)
4018 goto release;
4019
4020 /* And invalidate the previously valid segment by setting
4021 * its signature word (0x13) high_byte to 0b. This can be
4022 * done without an erase because flash erase sets all bits
4023 * to 1's. We can write 1's to 0's without an erase
4024 */
4025 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4026 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4027 if (ret_val)
4028 goto release;
4029
4030 /* Great! Everything worked, we can now clear the cached entries. */
4031 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4032 dev_spec->shadow_ram[i].modified = false;
4033 dev_spec->shadow_ram[i].value = 0xFFFF;
4034 }
4035
4036 release:
4037 nvm->ops.release(hw);
4038
4039 /* Reload the EEPROM, or else modifications will not appear
4040 * until after the next adapter reset.
4041 */
4042 if (!ret_val) {
4043 nvm->ops.reload(hw);
4044 usleep_range(10000, 20000);
4045 }
4046
4047 out:
4048 if (ret_val)
4049 e_dbg("NVM update error: %d\n", ret_val);
4050
4051 return ret_val;
4052 }
4053
4054 /**
4055 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4056 * @hw: pointer to the HW structure
4057 *
4058 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4059 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4060 * calculated, in which case we need to calculate the checksum and set bit 6.
4061 **/
4062 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4063 {
4064 s32 ret_val;
4065 u16 data;
4066 u16 word;
4067 u16 valid_csum_mask;
4068
4069 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4070 * the checksum needs to be fixed. This bit is an indication that
4071 * the NVM was prepared by OEM software and did not calculate
4072 * the checksum...a likely scenario.
4073 */
4074 switch (hw->mac.type) {
4075 case e1000_pch_lpt:
4076 case e1000_pch_spt:
4077 case e1000_pch_cnp:
4078 word = NVM_COMPAT;
4079 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4080 break;
4081 default:
4082 word = NVM_FUTURE_INIT_WORD1;
4083 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4084 break;
4085 }
4086
4087 ret_val = e1000_read_nvm(hw, word, 1, &data);
4088 if (ret_val)
4089 return ret_val;
4090
4091 if (!(data & valid_csum_mask)) {
4092 data |= valid_csum_mask;
4093 ret_val = e1000_write_nvm(hw, word, 1, &data);
4094 if (ret_val)
4095 return ret_val;
4096 ret_val = e1000e_update_nvm_checksum(hw);
4097 if (ret_val)
4098 return ret_val;
4099 }
4100
4101 return e1000e_validate_nvm_checksum_generic(hw);
4102 }
4103
4104 /**
4105 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4106 * @hw: pointer to the HW structure
4107 *
4108 * To prevent malicious write/erase of the NVM, set it to be read-only
4109 * so that the hardware ignores all write/erase cycles of the NVM via
4110 * the flash control registers. The shadow-ram copy of the NVM will
4111 * still be updated, however any updates to this copy will not stick
4112 * across driver reloads.
4113 **/
4114 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4115 {
4116 struct e1000_nvm_info *nvm = &hw->nvm;
4117 union ich8_flash_protected_range pr0;
4118 union ich8_hws_flash_status hsfsts;
4119 u32 gfpreg;
4120
4121 nvm->ops.acquire(hw);
4122
4123 gfpreg = er32flash(ICH_FLASH_GFPREG);
4124
4125 /* Write-protect GbE Sector of NVM */
4126 pr0.regval = er32flash(ICH_FLASH_PR0);
4127 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4128 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4129 pr0.range.wpe = true;
4130 ew32flash(ICH_FLASH_PR0, pr0.regval);
4131
4132 /* Lock down a subset of GbE Flash Control Registers, e.g.
4133 * PR0 to prevent the write-protection from being lifted.
4134 * Once FLOCKDN is set, the registers protected by it cannot
4135 * be written until FLOCKDN is cleared by a hardware reset.
4136 */
4137 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4138 hsfsts.hsf_status.flockdn = true;
4139 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4140
4141 nvm->ops.release(hw);
4142 }
4143
4144 /**
4145 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4146 * @hw: pointer to the HW structure
4147 * @offset: The offset (in bytes) of the byte/word to read.
4148 * @size: Size of data to read, 1=byte 2=word
4149 * @data: The byte(s) to write to the NVM.
4150 *
4151 * Writes one/two bytes to the NVM using the flash access registers.
4152 **/
4153 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4154 u8 size, u16 data)
4155 {
4156 union ich8_hws_flash_status hsfsts;
4157 union ich8_hws_flash_ctrl hsflctl;
4158 u32 flash_linear_addr;
4159 u32 flash_data = 0;
4160 s32 ret_val;
4161 u8 count = 0;
4162
4163 if (hw->mac.type >= e1000_pch_spt) {
4164 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4165 return -E1000_ERR_NVM;
4166 } else {
4167 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4168 return -E1000_ERR_NVM;
4169 }
4170
4171 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4172 hw->nvm.flash_base_addr);
4173
4174 do {
4175 udelay(1);
4176 /* Steps */
4177 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4178 if (ret_val)
4179 break;
4180 /* In SPT, This register is in Lan memory space, not
4181 * flash. Therefore, only 32 bit access is supported
4182 */
4183 if (hw->mac.type >= e1000_pch_spt)
4184 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4185 else
4186 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4187
4188 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4189 hsflctl.hsf_ctrl.fldbcount = size - 1;
4190 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4191 /* In SPT, This register is in Lan memory space,
4192 * not flash. Therefore, only 32 bit access is
4193 * supported
4194 */
4195 if (hw->mac.type >= e1000_pch_spt)
4196 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4197 else
4198 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4199
4200 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4201
4202 if (size == 1)
4203 flash_data = (u32)data & 0x00FF;
4204 else
4205 flash_data = (u32)data;
4206
4207 ew32flash(ICH_FLASH_FDATA0, flash_data);
4208
4209 /* check if FCERR is set to 1 , if set to 1, clear it
4210 * and try the whole sequence a few more times else done
4211 */
4212 ret_val =
4213 e1000_flash_cycle_ich8lan(hw,
4214 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4215 if (!ret_val)
4216 break;
4217
4218 /* If we're here, then things are most likely
4219 * completely hosed, but if the error condition
4220 * is detected, it won't hurt to give it another
4221 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4222 */
4223 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4224 if (hsfsts.hsf_status.flcerr)
4225 /* Repeat for some time before giving up. */
4226 continue;
4227 if (!hsfsts.hsf_status.flcdone) {
4228 e_dbg("Timeout error - flash cycle did not complete.\n");
4229 break;
4230 }
4231 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4232
4233 return ret_val;
4234 }
4235
4236 /**
4237 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4238 * @hw: pointer to the HW structure
4239 * @offset: The offset (in bytes) of the dwords to read.
4240 * @data: The 4 bytes to write to the NVM.
4241 *
4242 * Writes one/two/four bytes to the NVM using the flash access registers.
4243 **/
4244 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4245 u32 data)
4246 {
4247 union ich8_hws_flash_status hsfsts;
4248 union ich8_hws_flash_ctrl hsflctl;
4249 u32 flash_linear_addr;
4250 s32 ret_val;
4251 u8 count = 0;
4252
4253 if (hw->mac.type >= e1000_pch_spt) {
4254 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4255 return -E1000_ERR_NVM;
4256 }
4257 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4258 hw->nvm.flash_base_addr);
4259 do {
4260 udelay(1);
4261 /* Steps */
4262 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4263 if (ret_val)
4264 break;
4265
4266 /* In SPT, This register is in Lan memory space, not
4267 * flash. Therefore, only 32 bit access is supported
4268 */
4269 if (hw->mac.type >= e1000_pch_spt)
4270 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4271 >> 16;
4272 else
4273 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4274
4275 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4276 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4277
4278 /* In SPT, This register is in Lan memory space,
4279 * not flash. Therefore, only 32 bit access is
4280 * supported
4281 */
4282 if (hw->mac.type >= e1000_pch_spt)
4283 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4284 else
4285 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4286
4287 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4288
4289 ew32flash(ICH_FLASH_FDATA0, data);
4290
4291 /* check if FCERR is set to 1 , if set to 1, clear it
4292 * and try the whole sequence a few more times else done
4293 */
4294 ret_val =
4295 e1000_flash_cycle_ich8lan(hw,
4296 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4297
4298 if (!ret_val)
4299 break;
4300
4301 /* If we're here, then things are most likely
4302 * completely hosed, but if the error condition
4303 * is detected, it won't hurt to give it another
4304 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4305 */
4306 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4307
4308 if (hsfsts.hsf_status.flcerr)
4309 /* Repeat for some time before giving up. */
4310 continue;
4311 if (!hsfsts.hsf_status.flcdone) {
4312 e_dbg("Timeout error - flash cycle did not complete.\n");
4313 break;
4314 }
4315 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4316
4317 return ret_val;
4318 }
4319
4320 /**
4321 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4322 * @hw: pointer to the HW structure
4323 * @offset: The index of the byte to read.
4324 * @data: The byte to write to the NVM.
4325 *
4326 * Writes a single byte to the NVM using the flash access registers.
4327 **/
4328 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4329 u8 data)
4330 {
4331 u16 word = (u16)data;
4332
4333 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4334 }
4335
4336 /**
4337 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4338 * @hw: pointer to the HW structure
4339 * @offset: The offset of the word to write.
4340 * @dword: The dword to write to the NVM.
4341 *
4342 * Writes a single dword to the NVM using the flash access registers.
4343 * Goes through a retry algorithm before giving up.
4344 **/
4345 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4346 u32 offset, u32 dword)
4347 {
4348 s32 ret_val;
4349 u16 program_retries;
4350
4351 /* Must convert word offset into bytes. */
4352 offset <<= 1;
4353 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354
4355 if (!ret_val)
4356 return ret_val;
4357 for (program_retries = 0; program_retries < 100; program_retries++) {
4358 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4359 usleep_range(100, 200);
4360 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4361 if (!ret_val)
4362 break;
4363 }
4364 if (program_retries == 100)
4365 return -E1000_ERR_NVM;
4366
4367 return 0;
4368 }
4369
4370 /**
4371 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4372 * @hw: pointer to the HW structure
4373 * @offset: The offset of the byte to write.
4374 * @byte: The byte to write to the NVM.
4375 *
4376 * Writes a single byte to the NVM using the flash access registers.
4377 * Goes through a retry algorithm before giving up.
4378 **/
4379 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4380 u32 offset, u8 byte)
4381 {
4382 s32 ret_val;
4383 u16 program_retries;
4384
4385 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386 if (!ret_val)
4387 return ret_val;
4388
4389 for (program_retries = 0; program_retries < 100; program_retries++) {
4390 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4391 usleep_range(100, 200);
4392 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4393 if (!ret_val)
4394 break;
4395 }
4396 if (program_retries == 100)
4397 return -E1000_ERR_NVM;
4398
4399 return 0;
4400 }
4401
4402 /**
4403 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4404 * @hw: pointer to the HW structure
4405 * @bank: 0 for first bank, 1 for second bank, etc.
4406 *
4407 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4408 * bank N is 4096 * N + flash_reg_addr.
4409 **/
4410 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4411 {
4412 struct e1000_nvm_info *nvm = &hw->nvm;
4413 union ich8_hws_flash_status hsfsts;
4414 union ich8_hws_flash_ctrl hsflctl;
4415 u32 flash_linear_addr;
4416 /* bank size is in 16bit words - adjust to bytes */
4417 u32 flash_bank_size = nvm->flash_bank_size * 2;
4418 s32 ret_val;
4419 s32 count = 0;
4420 s32 j, iteration, sector_size;
4421
4422 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4423
4424 /* Determine HW Sector size: Read BERASE bits of hw flash status
4425 * register
4426 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4427 * consecutive sectors. The start index for the nth Hw sector
4428 * can be calculated as = bank * 4096 + n * 256
4429 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4430 * The start index for the nth Hw sector can be calculated
4431 * as = bank * 4096
4432 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4433 * (ich9 only, otherwise error condition)
4434 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4435 */
4436 switch (hsfsts.hsf_status.berasesz) {
4437 case 0:
4438 /* Hw sector size 256 */
4439 sector_size = ICH_FLASH_SEG_SIZE_256;
4440 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4441 break;
4442 case 1:
4443 sector_size = ICH_FLASH_SEG_SIZE_4K;
4444 iteration = 1;
4445 break;
4446 case 2:
4447 sector_size = ICH_FLASH_SEG_SIZE_8K;
4448 iteration = 1;
4449 break;
4450 case 3:
4451 sector_size = ICH_FLASH_SEG_SIZE_64K;
4452 iteration = 1;
4453 break;
4454 default:
4455 return -E1000_ERR_NVM;
4456 }
4457
4458 /* Start with the base address, then add the sector offset. */
4459 flash_linear_addr = hw->nvm.flash_base_addr;
4460 flash_linear_addr += (bank) ? flash_bank_size : 0;
4461
4462 for (j = 0; j < iteration; j++) {
4463 do {
4464 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4465
4466 /* Steps */
4467 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4468 if (ret_val)
4469 return ret_val;
4470
4471 /* Write a value 11 (block Erase) in Flash
4472 * Cycle field in hw flash control
4473 */
4474 if (hw->mac.type >= e1000_pch_spt)
4475 hsflctl.regval =
4476 er32flash(ICH_FLASH_HSFSTS) >> 16;
4477 else
4478 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4479
4480 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4481 if (hw->mac.type >= e1000_pch_spt)
4482 ew32flash(ICH_FLASH_HSFSTS,
4483 hsflctl.regval << 16);
4484 else
4485 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4486
4487 /* Write the last 24 bits of an index within the
4488 * block into Flash Linear address field in Flash
4489 * Address.
4490 */
4491 flash_linear_addr += (j * sector_size);
4492 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4493
4494 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4495 if (!ret_val)
4496 break;
4497
4498 /* Check if FCERR is set to 1. If 1,
4499 * clear it and try the whole sequence
4500 * a few more times else Done
4501 */
4502 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4503 if (hsfsts.hsf_status.flcerr)
4504 /* repeat for some time before giving up */
4505 continue;
4506 else if (!hsfsts.hsf_status.flcdone)
4507 return ret_val;
4508 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4509 }
4510
4511 return 0;
4512 }
4513
4514 /**
4515 * e1000_valid_led_default_ich8lan - Set the default LED settings
4516 * @hw: pointer to the HW structure
4517 * @data: Pointer to the LED settings
4518 *
4519 * Reads the LED default settings from the NVM to data. If the NVM LED
4520 * settings is all 0's or F's, set the LED default to a valid LED default
4521 * setting.
4522 **/
4523 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4524 {
4525 s32 ret_val;
4526
4527 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4528 if (ret_val) {
4529 e_dbg("NVM Read Error\n");
4530 return ret_val;
4531 }
4532
4533 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4534 *data = ID_LED_DEFAULT_ICH8LAN;
4535
4536 return 0;
4537 }
4538
4539 /**
4540 * e1000_id_led_init_pchlan - store LED configurations
4541 * @hw: pointer to the HW structure
4542 *
4543 * PCH does not control LEDs via the LEDCTL register, rather it uses
4544 * the PHY LED configuration register.
4545 *
4546 * PCH also does not have an "always on" or "always off" mode which
4547 * complicates the ID feature. Instead of using the "on" mode to indicate
4548 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4549 * use "link_up" mode. The LEDs will still ID on request if there is no
4550 * link based on logic in e1000_led_[on|off]_pchlan().
4551 **/
4552 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4553 {
4554 struct e1000_mac_info *mac = &hw->mac;
4555 s32 ret_val;
4556 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4557 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4558 u16 data, i, temp, shift;
4559
4560 /* Get default ID LED modes */
4561 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4562 if (ret_val)
4563 return ret_val;
4564
4565 mac->ledctl_default = er32(LEDCTL);
4566 mac->ledctl_mode1 = mac->ledctl_default;
4567 mac->ledctl_mode2 = mac->ledctl_default;
4568
4569 for (i = 0; i < 4; i++) {
4570 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4571 shift = (i * 5);
4572 switch (temp) {
4573 case ID_LED_ON1_DEF2:
4574 case ID_LED_ON1_ON2:
4575 case ID_LED_ON1_OFF2:
4576 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4577 mac->ledctl_mode1 |= (ledctl_on << shift);
4578 break;
4579 case ID_LED_OFF1_DEF2:
4580 case ID_LED_OFF1_ON2:
4581 case ID_LED_OFF1_OFF2:
4582 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4583 mac->ledctl_mode1 |= (ledctl_off << shift);
4584 break;
4585 default:
4586 /* Do nothing */
4587 break;
4588 }
4589 switch (temp) {
4590 case ID_LED_DEF1_ON2:
4591 case ID_LED_ON1_ON2:
4592 case ID_LED_OFF1_ON2:
4593 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4594 mac->ledctl_mode2 |= (ledctl_on << shift);
4595 break;
4596 case ID_LED_DEF1_OFF2:
4597 case ID_LED_ON1_OFF2:
4598 case ID_LED_OFF1_OFF2:
4599 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4600 mac->ledctl_mode2 |= (ledctl_off << shift);
4601 break;
4602 default:
4603 /* Do nothing */
4604 break;
4605 }
4606 }
4607
4608 return 0;
4609 }
4610
4611 /**
4612 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4613 * @hw: pointer to the HW structure
4614 *
4615 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4616 * register, so the the bus width is hard coded.
4617 **/
4618 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4619 {
4620 struct e1000_bus_info *bus = &hw->bus;
4621 s32 ret_val;
4622
4623 ret_val = e1000e_get_bus_info_pcie(hw);
4624
4625 /* ICH devices are "PCI Express"-ish. They have
4626 * a configuration space, but do not contain
4627 * PCI Express Capability registers, so bus width
4628 * must be hardcoded.
4629 */
4630 if (bus->width == e1000_bus_width_unknown)
4631 bus->width = e1000_bus_width_pcie_x1;
4632
4633 return ret_val;
4634 }
4635
4636 /**
4637 * e1000_reset_hw_ich8lan - Reset the hardware
4638 * @hw: pointer to the HW structure
4639 *
4640 * Does a full reset of the hardware which includes a reset of the PHY and
4641 * MAC.
4642 **/
4643 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4644 {
4645 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4646 u16 kum_cfg;
4647 u32 ctrl, reg;
4648 s32 ret_val;
4649
4650 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4651 * on the last TLP read/write transaction when MAC is reset.
4652 */
4653 ret_val = e1000e_disable_pcie_master(hw);
4654 if (ret_val)
4655 e_dbg("PCI-E Master disable polling has failed.\n");
4656
4657 e_dbg("Masking off all interrupts\n");
4658 ew32(IMC, 0xffffffff);
4659
4660 /* Disable the Transmit and Receive units. Then delay to allow
4661 * any pending transactions to complete before we hit the MAC
4662 * with the global reset.
4663 */
4664 ew32(RCTL, 0);
4665 ew32(TCTL, E1000_TCTL_PSP);
4666 e1e_flush();
4667
4668 usleep_range(10000, 20000);
4669
4670 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4671 if (hw->mac.type == e1000_ich8lan) {
4672 /* Set Tx and Rx buffer allocation to 8k apiece. */
4673 ew32(PBA, E1000_PBA_8K);
4674 /* Set Packet Buffer Size to 16k. */
4675 ew32(PBS, E1000_PBS_16K);
4676 }
4677
4678 if (hw->mac.type == e1000_pchlan) {
4679 /* Save the NVM K1 bit setting */
4680 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4681 if (ret_val)
4682 return ret_val;
4683
4684 if (kum_cfg & E1000_NVM_K1_ENABLE)
4685 dev_spec->nvm_k1_enabled = true;
4686 else
4687 dev_spec->nvm_k1_enabled = false;
4688 }
4689
4690 ctrl = er32(CTRL);
4691
4692 if (!hw->phy.ops.check_reset_block(hw)) {
4693 /* Full-chip reset requires MAC and PHY reset at the same
4694 * time to make sure the interface between MAC and the
4695 * external PHY is reset.
4696 */
4697 ctrl |= E1000_CTRL_PHY_RST;
4698
4699 /* Gate automatic PHY configuration by hardware on
4700 * non-managed 82579
4701 */
4702 if ((hw->mac.type == e1000_pch2lan) &&
4703 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4704 e1000_gate_hw_phy_config_ich8lan(hw, true);
4705 }
4706 ret_val = e1000_acquire_swflag_ich8lan(hw);
4707 e_dbg("Issuing a global reset to ich8lan\n");
4708 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4709 /* cannot issue a flush here because it hangs the hardware */
4710 msleep(20);
4711
4712 /* Set Phy Config Counter to 50msec */
4713 if (hw->mac.type == e1000_pch2lan) {
4714 reg = er32(FEXTNVM3);
4715 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4716 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4717 ew32(FEXTNVM3, reg);
4718 }
4719
4720 if (!ret_val)
4721 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4722
4723 if (ctrl & E1000_CTRL_PHY_RST) {
4724 ret_val = hw->phy.ops.get_cfg_done(hw);
4725 if (ret_val)
4726 return ret_val;
4727
4728 ret_val = e1000_post_phy_reset_ich8lan(hw);
4729 if (ret_val)
4730 return ret_val;
4731 }
4732
4733 /* For PCH, this write will make sure that any noise
4734 * will be detected as a CRC error and be dropped rather than show up
4735 * as a bad packet to the DMA engine.
4736 */
4737 if (hw->mac.type == e1000_pchlan)
4738 ew32(CRC_OFFSET, 0x65656565);
4739
4740 ew32(IMC, 0xffffffff);
4741 er32(ICR);
4742
4743 reg = er32(KABGTXD);
4744 reg |= E1000_KABGTXD_BGSQLBIAS;
4745 ew32(KABGTXD, reg);
4746
4747 return 0;
4748 }
4749
4750 /**
4751 * e1000_init_hw_ich8lan - Initialize the hardware
4752 * @hw: pointer to the HW structure
4753 *
4754 * Prepares the hardware for transmit and receive by doing the following:
4755 * - initialize hardware bits
4756 * - initialize LED identification
4757 * - setup receive address registers
4758 * - setup flow control
4759 * - setup transmit descriptors
4760 * - clear statistics
4761 **/
4762 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4763 {
4764 struct e1000_mac_info *mac = &hw->mac;
4765 u32 ctrl_ext, txdctl, snoop;
4766 s32 ret_val;
4767 u16 i;
4768
4769 e1000_initialize_hw_bits_ich8lan(hw);
4770
4771 /* Initialize identification LED */
4772 ret_val = mac->ops.id_led_init(hw);
4773 /* An error is not fatal and we should not stop init due to this */
4774 if (ret_val)
4775 e_dbg("Error initializing identification LED\n");
4776
4777 /* Setup the receive address. */
4778 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4779
4780 /* Zero out the Multicast HASH table */
4781 e_dbg("Zeroing the MTA\n");
4782 for (i = 0; i < mac->mta_reg_count; i++)
4783 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4784
4785 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4786 * the ME. Disable wakeup by clearing the host wakeup bit.
4787 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4788 */
4789 if (hw->phy.type == e1000_phy_82578) {
4790 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4791 i &= ~BM_WUC_HOST_WU_BIT;
4792 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4793 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4794 if (ret_val)
4795 return ret_val;
4796 }
4797
4798 /* Setup link and flow control */
4799 ret_val = mac->ops.setup_link(hw);
4800
4801 /* Set the transmit descriptor write-back policy for both queues */
4802 txdctl = er32(TXDCTL(0));
4803 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4804 E1000_TXDCTL_FULL_TX_DESC_WB);
4805 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4806 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4807 ew32(TXDCTL(0), txdctl);
4808 txdctl = er32(TXDCTL(1));
4809 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4810 E1000_TXDCTL_FULL_TX_DESC_WB);
4811 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4812 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4813 ew32(TXDCTL(1), txdctl);
4814
4815 /* ICH8 has opposite polarity of no_snoop bits.
4816 * By default, we should use snoop behavior.
4817 */
4818 if (mac->type == e1000_ich8lan)
4819 snoop = PCIE_ICH8_SNOOP_ALL;
4820 else
4821 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4822 e1000e_set_pcie_no_snoop(hw, snoop);
4823
4824 ctrl_ext = er32(CTRL_EXT);
4825 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4826 ew32(CTRL_EXT, ctrl_ext);
4827
4828 /* Clear all of the statistics registers (clear on read). It is
4829 * important that we do this after we have tried to establish link
4830 * because the symbol error count will increment wildly if there
4831 * is no link.
4832 */
4833 e1000_clear_hw_cntrs_ich8lan(hw);
4834
4835 return ret_val;
4836 }
4837
4838 /**
4839 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4840 * @hw: pointer to the HW structure
4841 *
4842 * Sets/Clears required hardware bits necessary for correctly setting up the
4843 * hardware for transmit and receive.
4844 **/
4845 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4846 {
4847 u32 reg;
4848
4849 /* Extended Device Control */
4850 reg = er32(CTRL_EXT);
4851 reg |= BIT(22);
4852 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4853 if (hw->mac.type >= e1000_pchlan)
4854 reg |= E1000_CTRL_EXT_PHYPDEN;
4855 ew32(CTRL_EXT, reg);
4856
4857 /* Transmit Descriptor Control 0 */
4858 reg = er32(TXDCTL(0));
4859 reg |= BIT(22);
4860 ew32(TXDCTL(0), reg);
4861
4862 /* Transmit Descriptor Control 1 */
4863 reg = er32(TXDCTL(1));
4864 reg |= BIT(22);
4865 ew32(TXDCTL(1), reg);
4866
4867 /* Transmit Arbitration Control 0 */
4868 reg = er32(TARC(0));
4869 if (hw->mac.type == e1000_ich8lan)
4870 reg |= BIT(28) | BIT(29);
4871 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4872 ew32(TARC(0), reg);
4873
4874 /* Transmit Arbitration Control 1 */
4875 reg = er32(TARC(1));
4876 if (er32(TCTL) & E1000_TCTL_MULR)
4877 reg &= ~BIT(28);
4878 else
4879 reg |= BIT(28);
4880 reg |= BIT(24) | BIT(26) | BIT(30);
4881 ew32(TARC(1), reg);
4882
4883 /* Device Status */
4884 if (hw->mac.type == e1000_ich8lan) {
4885 reg = er32(STATUS);
4886 reg &= ~BIT(31);
4887 ew32(STATUS, reg);
4888 }
4889
4890 /* work-around descriptor data corruption issue during nfs v2 udp
4891 * traffic, just disable the nfs filtering capability
4892 */
4893 reg = er32(RFCTL);
4894 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4895
4896 /* Disable IPv6 extension header parsing because some malformed
4897 * IPv6 headers can hang the Rx.
4898 */
4899 if (hw->mac.type == e1000_ich8lan)
4900 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4901 ew32(RFCTL, reg);
4902
4903 /* Enable ECC on Lynxpoint */
4904 if (hw->mac.type >= e1000_pch_lpt) {
4905 reg = er32(PBECCSTS);
4906 reg |= E1000_PBECCSTS_ECC_ENABLE;
4907 ew32(PBECCSTS, reg);
4908
4909 reg = er32(CTRL);
4910 reg |= E1000_CTRL_MEHE;
4911 ew32(CTRL, reg);
4912 }
4913 }
4914
4915 /**
4916 * e1000_setup_link_ich8lan - Setup flow control and link settings
4917 * @hw: pointer to the HW structure
4918 *
4919 * Determines which flow control settings to use, then configures flow
4920 * control. Calls the appropriate media-specific link configuration
4921 * function. Assuming the adapter has a valid link partner, a valid link
4922 * should be established. Assumes the hardware has previously been reset
4923 * and the transmitter and receiver are not enabled.
4924 **/
4925 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4926 {
4927 s32 ret_val;
4928
4929 if (hw->phy.ops.check_reset_block(hw))
4930 return 0;
4931
4932 /* ICH parts do not have a word in the NVM to determine
4933 * the default flow control setting, so we explicitly
4934 * set it to full.
4935 */
4936 if (hw->fc.requested_mode == e1000_fc_default) {
4937 /* Workaround h/w hang when Tx flow control enabled */
4938 if (hw->mac.type == e1000_pchlan)
4939 hw->fc.requested_mode = e1000_fc_rx_pause;
4940 else
4941 hw->fc.requested_mode = e1000_fc_full;
4942 }
4943
4944 /* Save off the requested flow control mode for use later. Depending
4945 * on the link partner's capabilities, we may or may not use this mode.
4946 */
4947 hw->fc.current_mode = hw->fc.requested_mode;
4948
4949 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4950
4951 /* Continue to configure the copper link. */
4952 ret_val = hw->mac.ops.setup_physical_interface(hw);
4953 if (ret_val)
4954 return ret_val;
4955
4956 ew32(FCTTV, hw->fc.pause_time);
4957 if ((hw->phy.type == e1000_phy_82578) ||
4958 (hw->phy.type == e1000_phy_82579) ||
4959 (hw->phy.type == e1000_phy_i217) ||
4960 (hw->phy.type == e1000_phy_82577)) {
4961 ew32(FCRTV_PCH, hw->fc.refresh_time);
4962
4963 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4964 hw->fc.pause_time);
4965 if (ret_val)
4966 return ret_val;
4967 }
4968
4969 return e1000e_set_fc_watermarks(hw);
4970 }
4971
4972 /**
4973 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4974 * @hw: pointer to the HW structure
4975 *
4976 * Configures the kumeran interface to the PHY to wait the appropriate time
4977 * when polling the PHY, then call the generic setup_copper_link to finish
4978 * configuring the copper link.
4979 **/
4980 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4981 {
4982 u32 ctrl;
4983 s32 ret_val;
4984 u16 reg_data;
4985
4986 ctrl = er32(CTRL);
4987 ctrl |= E1000_CTRL_SLU;
4988 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4989 ew32(CTRL, ctrl);
4990
4991 /* Set the mac to wait the maximum time between each iteration
4992 * and increase the max iterations when polling the phy;
4993 * this fixes erroneous timeouts at 10Mbps.
4994 */
4995 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4996 if (ret_val)
4997 return ret_val;
4998 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999 &reg_data);
5000 if (ret_val)
5001 return ret_val;
5002 reg_data |= 0x3F;
5003 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5004 reg_data);
5005 if (ret_val)
5006 return ret_val;
5007
5008 switch (hw->phy.type) {
5009 case e1000_phy_igp_3:
5010 ret_val = e1000e_copper_link_setup_igp(hw);
5011 if (ret_val)
5012 return ret_val;
5013 break;
5014 case e1000_phy_bm:
5015 case e1000_phy_82578:
5016 ret_val = e1000e_copper_link_setup_m88(hw);
5017 if (ret_val)
5018 return ret_val;
5019 break;
5020 case e1000_phy_82577:
5021 case e1000_phy_82579:
5022 ret_val = e1000_copper_link_setup_82577(hw);
5023 if (ret_val)
5024 return ret_val;
5025 break;
5026 case e1000_phy_ife:
5027 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5028 if (ret_val)
5029 return ret_val;
5030
5031 reg_data &= ~IFE_PMC_AUTO_MDIX;
5032
5033 switch (hw->phy.mdix) {
5034 case 1:
5035 reg_data &= ~IFE_PMC_FORCE_MDIX;
5036 break;
5037 case 2:
5038 reg_data |= IFE_PMC_FORCE_MDIX;
5039 break;
5040 case 0:
5041 default:
5042 reg_data |= IFE_PMC_AUTO_MDIX;
5043 break;
5044 }
5045 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5046 if (ret_val)
5047 return ret_val;
5048 break;
5049 default:
5050 break;
5051 }
5052
5053 return e1000e_setup_copper_link(hw);
5054 }
5055
5056 /**
5057 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5058 * @hw: pointer to the HW structure
5059 *
5060 * Calls the PHY specific link setup function and then calls the
5061 * generic setup_copper_link to finish configuring the link for
5062 * Lynxpoint PCH devices
5063 **/
5064 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5065 {
5066 u32 ctrl;
5067 s32 ret_val;
5068
5069 ctrl = er32(CTRL);
5070 ctrl |= E1000_CTRL_SLU;
5071 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5072 ew32(CTRL, ctrl);
5073
5074 ret_val = e1000_copper_link_setup_82577(hw);
5075 if (ret_val)
5076 return ret_val;
5077
5078 return e1000e_setup_copper_link(hw);
5079 }
5080
5081 /**
5082 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5083 * @hw: pointer to the HW structure
5084 * @speed: pointer to store current link speed
5085 * @duplex: pointer to store the current link duplex
5086 *
5087 * Calls the generic get_speed_and_duplex to retrieve the current link
5088 * information and then calls the Kumeran lock loss workaround for links at
5089 * gigabit speeds.
5090 **/
5091 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5092 u16 *duplex)
5093 {
5094 s32 ret_val;
5095
5096 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5097 if (ret_val)
5098 return ret_val;
5099
5100 if ((hw->mac.type == e1000_ich8lan) &&
5101 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5102 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5103 }
5104
5105 return ret_val;
5106 }
5107
5108 /**
5109 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5110 * @hw: pointer to the HW structure
5111 *
5112 * Work-around for 82566 Kumeran PCS lock loss:
5113 * On link status change (i.e. PCI reset, speed change) and link is up and
5114 * speed is gigabit-
5115 * 0) if workaround is optionally disabled do nothing
5116 * 1) wait 1ms for Kumeran link to come up
5117 * 2) check Kumeran Diagnostic register PCS lock loss bit
5118 * 3) if not set the link is locked (all is good), otherwise...
5119 * 4) reset the PHY
5120 * 5) repeat up to 10 times
5121 * Note: this is only called for IGP3 copper when speed is 1gb.
5122 **/
5123 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5124 {
5125 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5126 u32 phy_ctrl;
5127 s32 ret_val;
5128 u16 i, data;
5129 bool link;
5130
5131 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5132 return 0;
5133
5134 /* Make sure link is up before proceeding. If not just return.
5135 * Attempting this while link is negotiating fouled up link
5136 * stability
5137 */
5138 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5139 if (!link)
5140 return 0;
5141
5142 for (i = 0; i < 10; i++) {
5143 /* read once to clear */
5144 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5145 if (ret_val)
5146 return ret_val;
5147 /* and again to get new status */
5148 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149 if (ret_val)
5150 return ret_val;
5151
5152 /* check for PCS lock */
5153 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5154 return 0;
5155
5156 /* Issue PHY reset */
5157 e1000_phy_hw_reset(hw);
5158 mdelay(5);
5159 }
5160 /* Disable GigE link negotiation */
5161 phy_ctrl = er32(PHY_CTRL);
5162 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5163 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5164 ew32(PHY_CTRL, phy_ctrl);
5165
5166 /* Call gig speed drop workaround on Gig disable before accessing
5167 * any PHY registers
5168 */
5169 e1000e_gig_downshift_workaround_ich8lan(hw);
5170
5171 /* unable to acquire PCS lock */
5172 return -E1000_ERR_PHY;
5173 }
5174
5175 /**
5176 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5177 * @hw: pointer to the HW structure
5178 * @state: boolean value used to set the current Kumeran workaround state
5179 *
5180 * If ICH8, set the current Kumeran workaround state (enabled - true
5181 * /disabled - false).
5182 **/
5183 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5184 bool state)
5185 {
5186 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5187
5188 if (hw->mac.type != e1000_ich8lan) {
5189 e_dbg("Workaround applies to ICH8 only.\n");
5190 return;
5191 }
5192
5193 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5194 }
5195
5196 /**
5197 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5198 * @hw: pointer to the HW structure
5199 *
5200 * Workaround for 82566 power-down on D3 entry:
5201 * 1) disable gigabit link
5202 * 2) write VR power-down enable
5203 * 3) read it back
5204 * Continue if successful, else issue LCD reset and repeat
5205 **/
5206 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5207 {
5208 u32 reg;
5209 u16 data;
5210 u8 retry = 0;
5211
5212 if (hw->phy.type != e1000_phy_igp_3)
5213 return;
5214
5215 /* Try the workaround twice (if needed) */
5216 do {
5217 /* Disable link */
5218 reg = er32(PHY_CTRL);
5219 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5220 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5221 ew32(PHY_CTRL, reg);
5222
5223 /* Call gig speed drop workaround on Gig disable before
5224 * accessing any PHY registers
5225 */
5226 if (hw->mac.type == e1000_ich8lan)
5227 e1000e_gig_downshift_workaround_ich8lan(hw);
5228
5229 /* Write VR power-down enable */
5230 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5233
5234 /* Read it back and test */
5235 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5236 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5237 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5238 break;
5239
5240 /* Issue PHY reset and repeat at most one more time */
5241 reg = er32(CTRL);
5242 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5243 retry++;
5244 } while (retry);
5245 }
5246
5247 /**
5248 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5249 * @hw: pointer to the HW structure
5250 *
5251 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5252 * LPLU, Gig disable, MDIC PHY reset):
5253 * 1) Set Kumeran Near-end loopback
5254 * 2) Clear Kumeran Near-end loopback
5255 * Should only be called for ICH8[m] devices with any 1G Phy.
5256 **/
5257 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5258 {
5259 s32 ret_val;
5260 u16 reg_data;
5261
5262 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5263 return;
5264
5265 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266 &reg_data);
5267 if (ret_val)
5268 return;
5269 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5271 reg_data);
5272 if (ret_val)
5273 return;
5274 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5275 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5276 }
5277
5278 /**
5279 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5280 * @hw: pointer to the HW structure
5281 *
5282 * During S0 to Sx transition, it is possible the link remains at gig
5283 * instead of negotiating to a lower speed. Before going to Sx, set
5284 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5285 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5286 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5287 * needs to be written.
5288 * Parts that support (and are linked to a partner which support) EEE in
5289 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5290 * than 10Mbps w/o EEE.
5291 **/
5292 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5293 {
5294 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5295 u32 phy_ctrl;
5296 s32 ret_val;
5297
5298 phy_ctrl = er32(PHY_CTRL);
5299 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5300
5301 if (hw->phy.type == e1000_phy_i217) {
5302 u16 phy_reg, device_id = hw->adapter->pdev->device;
5303
5304 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5305 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5306 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5307 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5308 (hw->mac.type >= e1000_pch_spt)) {
5309 u32 fextnvm6 = er32(FEXTNVM6);
5310
5311 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5312 }
5313
5314 ret_val = hw->phy.ops.acquire(hw);
5315 if (ret_val)
5316 goto out;
5317
5318 if (!dev_spec->eee_disable) {
5319 u16 eee_advert;
5320
5321 ret_val =
5322 e1000_read_emi_reg_locked(hw,
5323 I217_EEE_ADVERTISEMENT,
5324 &eee_advert);
5325 if (ret_val)
5326 goto release;
5327
5328 /* Disable LPLU if both link partners support 100BaseT
5329 * EEE and 100Full is advertised on both ends of the
5330 * link, and enable Auto Enable LPI since there will
5331 * be no driver to enable LPI while in Sx.
5332 */
5333 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5334 (dev_spec->eee_lp_ability &
5335 I82579_EEE_100_SUPPORTED) &&
5336 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5337 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5338 E1000_PHY_CTRL_NOND0A_LPLU);
5339
5340 /* Set Auto Enable LPI after link up */
5341 e1e_rphy_locked(hw,
5342 I217_LPI_GPIO_CTRL, &phy_reg);
5343 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5344 e1e_wphy_locked(hw,
5345 I217_LPI_GPIO_CTRL, phy_reg);
5346 }
5347 }
5348
5349 /* For i217 Intel Rapid Start Technology support,
5350 * when the system is going into Sx and no manageability engine
5351 * is present, the driver must configure proxy to reset only on
5352 * power good. LPI (Low Power Idle) state must also reset only
5353 * on power good, as well as the MTA (Multicast table array).
5354 * The SMBus release must also be disabled on LCD reset.
5355 */
5356 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5357 /* Enable proxy to reset only on power good. */
5358 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5359 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5360 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5361
5362 /* Set bit enable LPI (EEE) to reset only on
5363 * power good.
5364 */
5365 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5366 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5367 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5368
5369 /* Disable the SMB release on LCD reset. */
5370 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5371 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5372 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5373 }
5374
5375 /* Enable MTA to reset for Intel Rapid Start Technology
5376 * Support
5377 */
5378 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5379 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5380 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5381
5382 release:
5383 hw->phy.ops.release(hw);
5384 }
5385 out:
5386 ew32(PHY_CTRL, phy_ctrl);
5387
5388 if (hw->mac.type == e1000_ich8lan)
5389 e1000e_gig_downshift_workaround_ich8lan(hw);
5390
5391 if (hw->mac.type >= e1000_pchlan) {
5392 e1000_oem_bits_config_ich8lan(hw, false);
5393
5394 /* Reset PHY to activate OEM bits on 82577/8 */
5395 if (hw->mac.type == e1000_pchlan)
5396 e1000e_phy_hw_reset_generic(hw);
5397
5398 ret_val = hw->phy.ops.acquire(hw);
5399 if (ret_val)
5400 return;
5401 e1000_write_smbus_addr(hw);
5402 hw->phy.ops.release(hw);
5403 }
5404 }
5405
5406 /**
5407 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5408 * @hw: pointer to the HW structure
5409 *
5410 * During Sx to S0 transitions on non-managed devices or managed devices
5411 * on which PHY resets are not blocked, if the PHY registers cannot be
5412 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5413 * the PHY.
5414 * On i217, setup Intel Rapid Start Technology.
5415 **/
5416 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5417 {
5418 s32 ret_val;
5419
5420 if (hw->mac.type < e1000_pch2lan)
5421 return;
5422
5423 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5424 if (ret_val) {
5425 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5426 return;
5427 }
5428
5429 /* For i217 Intel Rapid Start Technology support when the system
5430 * is transitioning from Sx and no manageability engine is present
5431 * configure SMBus to restore on reset, disable proxy, and enable
5432 * the reset on MTA (Multicast table array).
5433 */
5434 if (hw->phy.type == e1000_phy_i217) {
5435 u16 phy_reg;
5436
5437 ret_val = hw->phy.ops.acquire(hw);
5438 if (ret_val) {
5439 e_dbg("Failed to setup iRST\n");
5440 return;
5441 }
5442
5443 /* Clear Auto Enable LPI after link up */
5444 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5445 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5446 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5447
5448 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5449 /* Restore clear on SMB if no manageability engine
5450 * is present
5451 */
5452 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5453 if (ret_val)
5454 goto release;
5455 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5456 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5457
5458 /* Disable Proxy */
5459 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5460 }
5461 /* Enable reset on MTA */
5462 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5463 if (ret_val)
5464 goto release;
5465 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5466 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5467 release:
5468 if (ret_val)
5469 e_dbg("Error %d in resume workarounds\n", ret_val);
5470 hw->phy.ops.release(hw);
5471 }
5472 }
5473
5474 /**
5475 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5476 * @hw: pointer to the HW structure
5477 *
5478 * Return the LED back to the default configuration.
5479 **/
5480 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5481 {
5482 if (hw->phy.type == e1000_phy_ife)
5483 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5484
5485 ew32(LEDCTL, hw->mac.ledctl_default);
5486 return 0;
5487 }
5488
5489 /**
5490 * e1000_led_on_ich8lan - Turn LEDs on
5491 * @hw: pointer to the HW structure
5492 *
5493 * Turn on the LEDs.
5494 **/
5495 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5496 {
5497 if (hw->phy.type == e1000_phy_ife)
5498 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5499 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5500
5501 ew32(LEDCTL, hw->mac.ledctl_mode2);
5502 return 0;
5503 }
5504
5505 /**
5506 * e1000_led_off_ich8lan - Turn LEDs off
5507 * @hw: pointer to the HW structure
5508 *
5509 * Turn off the LEDs.
5510 **/
5511 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5512 {
5513 if (hw->phy.type == e1000_phy_ife)
5514 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5515 (IFE_PSCL_PROBE_MODE |
5516 IFE_PSCL_PROBE_LEDS_OFF));
5517
5518 ew32(LEDCTL, hw->mac.ledctl_mode1);
5519 return 0;
5520 }
5521
5522 /**
5523 * e1000_setup_led_pchlan - Configures SW controllable LED
5524 * @hw: pointer to the HW structure
5525 *
5526 * This prepares the SW controllable LED for use.
5527 **/
5528 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5529 {
5530 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5531 }
5532
5533 /**
5534 * e1000_cleanup_led_pchlan - Restore the default LED operation
5535 * @hw: pointer to the HW structure
5536 *
5537 * Return the LED back to the default configuration.
5538 **/
5539 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5540 {
5541 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5542 }
5543
5544 /**
5545 * e1000_led_on_pchlan - Turn LEDs on
5546 * @hw: pointer to the HW structure
5547 *
5548 * Turn on the LEDs.
5549 **/
5550 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5551 {
5552 u16 data = (u16)hw->mac.ledctl_mode2;
5553 u32 i, led;
5554
5555 /* If no link, then turn LED on by setting the invert bit
5556 * for each LED that's mode is "link_up" in ledctl_mode2.
5557 */
5558 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5559 for (i = 0; i < 3; i++) {
5560 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5561 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5562 E1000_LEDCTL_MODE_LINK_UP)
5563 continue;
5564 if (led & E1000_PHY_LED0_IVRT)
5565 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5566 else
5567 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5568 }
5569 }
5570
5571 return e1e_wphy(hw, HV_LED_CONFIG, data);
5572 }
5573
5574 /**
5575 * e1000_led_off_pchlan - Turn LEDs off
5576 * @hw: pointer to the HW structure
5577 *
5578 * Turn off the LEDs.
5579 **/
5580 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5581 {
5582 u16 data = (u16)hw->mac.ledctl_mode1;
5583 u32 i, led;
5584
5585 /* If no link, then turn LED off by clearing the invert bit
5586 * for each LED that's mode is "link_up" in ledctl_mode1.
5587 */
5588 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5589 for (i = 0; i < 3; i++) {
5590 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5591 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5592 E1000_LEDCTL_MODE_LINK_UP)
5593 continue;
5594 if (led & E1000_PHY_LED0_IVRT)
5595 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5596 else
5597 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5598 }
5599 }
5600
5601 return e1e_wphy(hw, HV_LED_CONFIG, data);
5602 }
5603
5604 /**
5605 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5606 * @hw: pointer to the HW structure
5607 *
5608 * Read appropriate register for the config done bit for completion status
5609 * and configure the PHY through s/w for EEPROM-less parts.
5610 *
5611 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5612 * config done bit, so only an error is logged and continues. If we were
5613 * to return with error, EEPROM-less silicon would not be able to be reset
5614 * or change link.
5615 **/
5616 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5617 {
5618 s32 ret_val = 0;
5619 u32 bank = 0;
5620 u32 status;
5621
5622 e1000e_get_cfg_done_generic(hw);
5623
5624 /* Wait for indication from h/w that it has completed basic config */
5625 if (hw->mac.type >= e1000_ich10lan) {
5626 e1000_lan_init_done_ich8lan(hw);
5627 } else {
5628 ret_val = e1000e_get_auto_rd_done(hw);
5629 if (ret_val) {
5630 /* When auto config read does not complete, do not
5631 * return with an error. This can happen in situations
5632 * where there is no eeprom and prevents getting link.
5633 */
5634 e_dbg("Auto Read Done did not complete\n");
5635 ret_val = 0;
5636 }
5637 }
5638
5639 /* Clear PHY Reset Asserted bit */
5640 status = er32(STATUS);
5641 if (status & E1000_STATUS_PHYRA)
5642 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5643 else
5644 e_dbg("PHY Reset Asserted not set - needs delay\n");
5645
5646 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5647 if (hw->mac.type <= e1000_ich9lan) {
5648 if (!(er32(EECD) & E1000_EECD_PRES) &&
5649 (hw->phy.type == e1000_phy_igp_3)) {
5650 e1000e_phy_init_script_igp3(hw);
5651 }
5652 } else {
5653 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5654 /* Maybe we should do a basic PHY config */
5655 e_dbg("EEPROM not present\n");
5656 ret_val = -E1000_ERR_CONFIG;
5657 }
5658 }
5659
5660 return ret_val;
5661 }
5662
5663 /**
5664 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5665 * @hw: pointer to the HW structure
5666 *
5667 * In the case of a PHY power down to save power, or to turn off link during a
5668 * driver unload, or wake on lan is not enabled, remove the link.
5669 **/
5670 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5671 {
5672 /* If the management interface is not enabled, then power down */
5673 if (!(hw->mac.ops.check_mng_mode(hw) ||
5674 hw->phy.ops.check_reset_block(hw)))
5675 e1000_power_down_phy_copper(hw);
5676 }
5677
5678 /**
5679 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5680 * @hw: pointer to the HW structure
5681 *
5682 * Clears hardware counters specific to the silicon family and calls
5683 * clear_hw_cntrs_generic to clear all general purpose counters.
5684 **/
5685 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5686 {
5687 u16 phy_data;
5688 s32 ret_val;
5689
5690 e1000e_clear_hw_cntrs_base(hw);
5691
5692 er32(ALGNERRC);
5693 er32(RXERRC);
5694 er32(TNCRS);
5695 er32(CEXTERR);
5696 er32(TSCTC);
5697 er32(TSCTFC);
5698
5699 er32(MGTPRC);
5700 er32(MGTPDC);
5701 er32(MGTPTC);
5702
5703 er32(IAC);
5704 er32(ICRXOC);
5705
5706 /* Clear PHY statistics registers */
5707 if ((hw->phy.type == e1000_phy_82578) ||
5708 (hw->phy.type == e1000_phy_82579) ||
5709 (hw->phy.type == e1000_phy_i217) ||
5710 (hw->phy.type == e1000_phy_82577)) {
5711 ret_val = hw->phy.ops.acquire(hw);
5712 if (ret_val)
5713 return;
5714 ret_val = hw->phy.ops.set_page(hw,
5715 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5716 if (ret_val)
5717 goto release;
5718 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5719 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5720 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5721 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5722 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5723 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5724 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5725 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5726 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5727 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5728 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5729 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5730 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5731 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5732 release:
5733 hw->phy.ops.release(hw);
5734 }
5735 }
5736
5737 static const struct e1000_mac_operations ich8_mac_ops = {
5738 /* check_mng_mode dependent on mac type */
5739 .check_for_link = e1000_check_for_copper_link_ich8lan,
5740 /* cleanup_led dependent on mac type */
5741 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5742 .get_bus_info = e1000_get_bus_info_ich8lan,
5743 .set_lan_id = e1000_set_lan_id_single_port,
5744 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5745 /* led_on dependent on mac type */
5746 /* led_off dependent on mac type */
5747 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5748 .reset_hw = e1000_reset_hw_ich8lan,
5749 .init_hw = e1000_init_hw_ich8lan,
5750 .setup_link = e1000_setup_link_ich8lan,
5751 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5752 /* id_led_init dependent on mac type */
5753 .config_collision_dist = e1000e_config_collision_dist_generic,
5754 .rar_set = e1000e_rar_set_generic,
5755 .rar_get_count = e1000e_rar_get_count_generic,
5756 };
5757
5758 static const struct e1000_phy_operations ich8_phy_ops = {
5759 .acquire = e1000_acquire_swflag_ich8lan,
5760 .check_reset_block = e1000_check_reset_block_ich8lan,
5761 .commit = NULL,
5762 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5763 .get_cable_length = e1000e_get_cable_length_igp_2,
5764 .read_reg = e1000e_read_phy_reg_igp,
5765 .release = e1000_release_swflag_ich8lan,
5766 .reset = e1000_phy_hw_reset_ich8lan,
5767 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5768 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5769 .write_reg = e1000e_write_phy_reg_igp,
5770 };
5771
5772 static const struct e1000_nvm_operations ich8_nvm_ops = {
5773 .acquire = e1000_acquire_nvm_ich8lan,
5774 .read = e1000_read_nvm_ich8lan,
5775 .release = e1000_release_nvm_ich8lan,
5776 .reload = e1000e_reload_nvm_generic,
5777 .update = e1000_update_nvm_checksum_ich8lan,
5778 .valid_led_default = e1000_valid_led_default_ich8lan,
5779 .validate = e1000_validate_nvm_checksum_ich8lan,
5780 .write = e1000_write_nvm_ich8lan,
5781 };
5782
5783 static const struct e1000_nvm_operations spt_nvm_ops = {
5784 .acquire = e1000_acquire_nvm_ich8lan,
5785 .release = e1000_release_nvm_ich8lan,
5786 .read = e1000_read_nvm_spt,
5787 .update = e1000_update_nvm_checksum_spt,
5788 .reload = e1000e_reload_nvm_generic,
5789 .valid_led_default = e1000_valid_led_default_ich8lan,
5790 .validate = e1000_validate_nvm_checksum_ich8lan,
5791 .write = e1000_write_nvm_ich8lan,
5792 };
5793
5794 const struct e1000_info e1000_ich8_info = {
5795 .mac = e1000_ich8lan,
5796 .flags = FLAG_HAS_WOL
5797 | FLAG_IS_ICH
5798 | FLAG_HAS_CTRLEXT_ON_LOAD
5799 | FLAG_HAS_AMT
5800 | FLAG_HAS_FLASH
5801 | FLAG_APME_IN_WUC,
5802 .pba = 8,
5803 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5804 .get_variants = e1000_get_variants_ich8lan,
5805 .mac_ops = &ich8_mac_ops,
5806 .phy_ops = &ich8_phy_ops,
5807 .nvm_ops = &ich8_nvm_ops,
5808 };
5809
5810 const struct e1000_info e1000_ich9_info = {
5811 .mac = e1000_ich9lan,
5812 .flags = FLAG_HAS_JUMBO_FRAMES
5813 | FLAG_IS_ICH
5814 | FLAG_HAS_WOL
5815 | FLAG_HAS_CTRLEXT_ON_LOAD
5816 | FLAG_HAS_AMT
5817 | FLAG_HAS_FLASH
5818 | FLAG_APME_IN_WUC,
5819 .pba = 18,
5820 .max_hw_frame_size = DEFAULT_JUMBO,
5821 .get_variants = e1000_get_variants_ich8lan,
5822 .mac_ops = &ich8_mac_ops,
5823 .phy_ops = &ich8_phy_ops,
5824 .nvm_ops = &ich8_nvm_ops,
5825 };
5826
5827 const struct e1000_info e1000_ich10_info = {
5828 .mac = e1000_ich10lan,
5829 .flags = FLAG_HAS_JUMBO_FRAMES
5830 | FLAG_IS_ICH
5831 | FLAG_HAS_WOL
5832 | FLAG_HAS_CTRLEXT_ON_LOAD
5833 | FLAG_HAS_AMT
5834 | FLAG_HAS_FLASH
5835 | FLAG_APME_IN_WUC,
5836 .pba = 18,
5837 .max_hw_frame_size = DEFAULT_JUMBO,
5838 .get_variants = e1000_get_variants_ich8lan,
5839 .mac_ops = &ich8_mac_ops,
5840 .phy_ops = &ich8_phy_ops,
5841 .nvm_ops = &ich8_nvm_ops,
5842 };
5843
5844 const struct e1000_info e1000_pch_info = {
5845 .mac = e1000_pchlan,
5846 .flags = FLAG_IS_ICH
5847 | FLAG_HAS_WOL
5848 | FLAG_HAS_CTRLEXT_ON_LOAD
5849 | FLAG_HAS_AMT
5850 | FLAG_HAS_FLASH
5851 | FLAG_HAS_JUMBO_FRAMES
5852 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5853 | FLAG_APME_IN_WUC,
5854 .flags2 = FLAG2_HAS_PHY_STATS,
5855 .pba = 26,
5856 .max_hw_frame_size = 4096,
5857 .get_variants = e1000_get_variants_ich8lan,
5858 .mac_ops = &ich8_mac_ops,
5859 .phy_ops = &ich8_phy_ops,
5860 .nvm_ops = &ich8_nvm_ops,
5861 };
5862
5863 const struct e1000_info e1000_pch2_info = {
5864 .mac = e1000_pch2lan,
5865 .flags = FLAG_IS_ICH
5866 | FLAG_HAS_WOL
5867 | FLAG_HAS_HW_TIMESTAMP
5868 | FLAG_HAS_CTRLEXT_ON_LOAD
5869 | FLAG_HAS_AMT
5870 | FLAG_HAS_FLASH
5871 | FLAG_HAS_JUMBO_FRAMES
5872 | FLAG_APME_IN_WUC,
5873 .flags2 = FLAG2_HAS_PHY_STATS
5874 | FLAG2_HAS_EEE
5875 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5876 .pba = 26,
5877 .max_hw_frame_size = 9022,
5878 .get_variants = e1000_get_variants_ich8lan,
5879 .mac_ops = &ich8_mac_ops,
5880 .phy_ops = &ich8_phy_ops,
5881 .nvm_ops = &ich8_nvm_ops,
5882 };
5883
5884 const struct e1000_info e1000_pch_lpt_info = {
5885 .mac = e1000_pch_lpt,
5886 .flags = FLAG_IS_ICH
5887 | FLAG_HAS_WOL
5888 | FLAG_HAS_HW_TIMESTAMP
5889 | FLAG_HAS_CTRLEXT_ON_LOAD
5890 | FLAG_HAS_AMT
5891 | FLAG_HAS_FLASH
5892 | FLAG_HAS_JUMBO_FRAMES
5893 | FLAG_APME_IN_WUC,
5894 .flags2 = FLAG2_HAS_PHY_STATS
5895 | FLAG2_HAS_EEE
5896 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5897 .pba = 26,
5898 .max_hw_frame_size = 9022,
5899 .get_variants = e1000_get_variants_ich8lan,
5900 .mac_ops = &ich8_mac_ops,
5901 .phy_ops = &ich8_phy_ops,
5902 .nvm_ops = &ich8_nvm_ops,
5903 };
5904
5905 const struct e1000_info e1000_pch_spt_info = {
5906 .mac = e1000_pch_spt,
5907 .flags = FLAG_IS_ICH
5908 | FLAG_HAS_WOL
5909 | FLAG_HAS_HW_TIMESTAMP
5910 | FLAG_HAS_CTRLEXT_ON_LOAD
5911 | FLAG_HAS_AMT
5912 | FLAG_HAS_FLASH
5913 | FLAG_HAS_JUMBO_FRAMES
5914 | FLAG_APME_IN_WUC,
5915 .flags2 = FLAG2_HAS_PHY_STATS
5916 | FLAG2_HAS_EEE,
5917 .pba = 26,
5918 .max_hw_frame_size = 9022,
5919 .get_variants = e1000_get_variants_ich8lan,
5920 .mac_ops = &ich8_mac_ops,
5921 .phy_ops = &ich8_phy_ops,
5922 .nvm_ops = &spt_nvm_ops,
5923 };
5924
5925 const struct e1000_info e1000_pch_cnp_info = {
5926 .mac = e1000_pch_cnp,
5927 .flags = FLAG_IS_ICH
5928 | FLAG_HAS_WOL
5929 | FLAG_HAS_HW_TIMESTAMP
5930 | FLAG_HAS_CTRLEXT_ON_LOAD
5931 | FLAG_HAS_AMT
5932 | FLAG_HAS_FLASH
5933 | FLAG_HAS_JUMBO_FRAMES
5934 | FLAG_APME_IN_WUC,
5935 .flags2 = FLAG2_HAS_PHY_STATS
5936 | FLAG2_HAS_EEE,
5937 .pba = 26,
5938 .max_hw_frame_size = 9022,
5939 .get_variants = e1000_get_variants_ich8lan,
5940 .mac_ops = &ich8_mac_ops,
5941 .phy_ops = &ich8_phy_ops,
5942 .nvm_ops = &spt_nvm_ops,
5943 };