]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/intel/e1000e/ich8lan.c
Merge branch 'for-3.2' of git://linux-nfs.org/~bfields/linux
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / e1000e / ich8lan.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
57 */
58
59 #include "e1000.h"
60
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
67
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
77
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
80
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
90
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
92
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
102
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
111
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
113
114 #define E1000_ICH_RAR_ENTRIES 7
115
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
121
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
125
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
127
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
129
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
135
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
138
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
143
144 /* EMI Registers */
145 #define I82579_EMI_ADDR 0x10
146 #define I82579_EMI_DATA 0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
148
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP 0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
153
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
159
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
162
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW 0x0400
166
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
171
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status {
175 struct ich8_hsfsts {
176 u16 flcdone :1; /* bit 0 Flash Cycle Done */
177 u16 flcerr :1; /* bit 1 Flash Cycle Error */
178 u16 dael :1; /* bit 2 Direct Access error Log */
179 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
180 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
181 u16 reserved1 :2; /* bit 13:6 Reserved */
182 u16 reserved2 :6; /* bit 13:6 Reserved */
183 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
184 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
185 } hsf_status;
186 u16 regval;
187 };
188
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl {
192 struct ich8_hsflctl {
193 u16 flcgo :1; /* 0 Flash Cycle Go */
194 u16 flcycle :2; /* 2:1 Flash Cycle */
195 u16 reserved :5; /* 7:3 Reserved */
196 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
197 u16 flockdn :6; /* 15:10 Reserved */
198 } hsf_ctrl;
199 u16 regval;
200 };
201
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc {
204 struct ich8_flracc {
205 u32 grra :8; /* 0:7 GbE region Read Access */
206 u32 grwa :8; /* 8:15 GbE region Write Access */
207 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
208 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
209 } hsf_flregacc;
210 u16 regval;
211 };
212
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range {
215 struct ich8_pr {
216 u32 base:13; /* 0:12 Protected Range Base */
217 u32 reserved1:2; /* 13:14 Reserved */
218 u32 rpe:1; /* 15 Read Protection Enable */
219 u32 limit:13; /* 16:28 Protected Range Limit */
220 u32 reserved2:2; /* 29:30 Reserved */
221 u32 wpe:1; /* 31 Write Protection Enable */
222 } range;
223 u32 regval;
224 };
225
226 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
229 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
230 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
231 u32 offset, u8 byte);
232 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
233 u8 *data);
234 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
235 u16 *data);
236 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
237 u8 size, u16 *data);
238 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
239 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
240 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
241 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
242 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
243 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
244 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
245 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
246 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
247 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
248 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
249 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
252 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
253 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
256 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
258
259 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
260 {
261 return readw(hw->flash_address + reg);
262 }
263
264 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
265 {
266 return readl(hw->flash_address + reg);
267 }
268
269 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
270 {
271 writew(val, hw->flash_address + reg);
272 }
273
274 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
275 {
276 writel(val, hw->flash_address + reg);
277 }
278
279 #define er16flash(reg) __er16flash(hw, (reg))
280 #define er32flash(reg) __er32flash(hw, (reg))
281 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
283
284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
285 {
286 u32 ctrl;
287
288 ctrl = er32(CTRL);
289 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
290 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
291 ew32(CTRL, ctrl);
292 e1e_flush();
293 udelay(10);
294 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
295 ew32(CTRL, ctrl);
296 }
297
298 /**
299 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
300 * @hw: pointer to the HW structure
301 *
302 * Initialize family-specific PHY parameters and function pointers.
303 **/
304 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
305 {
306 struct e1000_phy_info *phy = &hw->phy;
307 u32 fwsm;
308 s32 ret_val = 0;
309
310 phy->addr = 1;
311 phy->reset_delay_us = 100;
312
313 phy->ops.set_page = e1000_set_page_igp;
314 phy->ops.read_reg = e1000_read_phy_reg_hv;
315 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
316 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
317 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
318 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
319 phy->ops.write_reg = e1000_write_phy_reg_hv;
320 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
321 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
322 phy->ops.power_up = e1000_power_up_phy_copper;
323 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
324 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
325
326 /*
327 * The MAC-PHY interconnect may still be in SMBus mode
328 * after Sx->S0. If the manageability engine (ME) is
329 * disabled, then toggle the LANPHYPC Value bit to force
330 * the interconnect to PCIe mode.
331 */
332 fwsm = er32(FWSM);
333 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
334 e1000_toggle_lanphypc_value_ich8lan(hw);
335 msleep(50);
336
337 /*
338 * Gate automatic PHY configuration by hardware on
339 * non-managed 82579
340 */
341 if (hw->mac.type == e1000_pch2lan)
342 e1000_gate_hw_phy_config_ich8lan(hw, true);
343 }
344
345 /*
346 * Reset the PHY before any access to it. Doing so, ensures that
347 * the PHY is in a known good state before we read/write PHY registers.
348 * The generic reset is sufficient here, because we haven't determined
349 * the PHY type yet.
350 */
351 ret_val = e1000e_phy_hw_reset_generic(hw);
352 if (ret_val)
353 goto out;
354
355 /* Ungate automatic PHY configuration on non-managed 82579 */
356 if ((hw->mac.type == e1000_pch2lan) &&
357 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
358 usleep_range(10000, 20000);
359 e1000_gate_hw_phy_config_ich8lan(hw, false);
360 }
361
362 phy->id = e1000_phy_unknown;
363 switch (hw->mac.type) {
364 default:
365 ret_val = e1000e_get_phy_id(hw);
366 if (ret_val)
367 goto out;
368 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
369 break;
370 /* fall-through */
371 case e1000_pch2lan:
372 /*
373 * In case the PHY needs to be in mdio slow mode,
374 * set slow mode and try to get the PHY id again.
375 */
376 ret_val = e1000_set_mdio_slow_mode_hv(hw);
377 if (ret_val)
378 goto out;
379 ret_val = e1000e_get_phy_id(hw);
380 if (ret_val)
381 goto out;
382 break;
383 }
384 phy->type = e1000e_get_phy_type_from_id(phy->id);
385
386 switch (phy->type) {
387 case e1000_phy_82577:
388 case e1000_phy_82579:
389 phy->ops.check_polarity = e1000_check_polarity_82577;
390 phy->ops.force_speed_duplex =
391 e1000_phy_force_speed_duplex_82577;
392 phy->ops.get_cable_length = e1000_get_cable_length_82577;
393 phy->ops.get_info = e1000_get_phy_info_82577;
394 phy->ops.commit = e1000e_phy_sw_reset;
395 break;
396 case e1000_phy_82578:
397 phy->ops.check_polarity = e1000_check_polarity_m88;
398 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
399 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
400 phy->ops.get_info = e1000e_get_phy_info_m88;
401 break;
402 default:
403 ret_val = -E1000_ERR_PHY;
404 break;
405 }
406
407 out:
408 return ret_val;
409 }
410
411 /**
412 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413 * @hw: pointer to the HW structure
414 *
415 * Initialize family-specific PHY parameters and function pointers.
416 **/
417 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
418 {
419 struct e1000_phy_info *phy = &hw->phy;
420 s32 ret_val;
421 u16 i = 0;
422
423 phy->addr = 1;
424 phy->reset_delay_us = 100;
425
426 phy->ops.power_up = e1000_power_up_phy_copper;
427 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
428
429 /*
430 * We may need to do this twice - once for IGP and if that fails,
431 * we'll set BM func pointers and try again
432 */
433 ret_val = e1000e_determine_phy_address(hw);
434 if (ret_val) {
435 phy->ops.write_reg = e1000e_write_phy_reg_bm;
436 phy->ops.read_reg = e1000e_read_phy_reg_bm;
437 ret_val = e1000e_determine_phy_address(hw);
438 if (ret_val) {
439 e_dbg("Cannot determine PHY addr. Erroring out\n");
440 return ret_val;
441 }
442 }
443
444 phy->id = 0;
445 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
446 (i++ < 100)) {
447 usleep_range(1000, 2000);
448 ret_val = e1000e_get_phy_id(hw);
449 if (ret_val)
450 return ret_val;
451 }
452
453 /* Verify phy id */
454 switch (phy->id) {
455 case IGP03E1000_E_PHY_ID:
456 phy->type = e1000_phy_igp_3;
457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
459 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
460 phy->ops.get_info = e1000e_get_phy_info_igp;
461 phy->ops.check_polarity = e1000_check_polarity_igp;
462 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
463 break;
464 case IFE_E_PHY_ID:
465 case IFE_PLUS_E_PHY_ID:
466 case IFE_C_E_PHY_ID:
467 phy->type = e1000_phy_ife;
468 phy->autoneg_mask = E1000_ALL_NOT_GIG;
469 phy->ops.get_info = e1000_get_phy_info_ife;
470 phy->ops.check_polarity = e1000_check_polarity_ife;
471 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
472 break;
473 case BME1000_E_PHY_ID:
474 phy->type = e1000_phy_bm;
475 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
476 phy->ops.read_reg = e1000e_read_phy_reg_bm;
477 phy->ops.write_reg = e1000e_write_phy_reg_bm;
478 phy->ops.commit = e1000e_phy_sw_reset;
479 phy->ops.get_info = e1000e_get_phy_info_m88;
480 phy->ops.check_polarity = e1000_check_polarity_m88;
481 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
482 break;
483 default:
484 return -E1000_ERR_PHY;
485 break;
486 }
487
488 return 0;
489 }
490
491 /**
492 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493 * @hw: pointer to the HW structure
494 *
495 * Initialize family-specific NVM parameters and function
496 * pointers.
497 **/
498 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
499 {
500 struct e1000_nvm_info *nvm = &hw->nvm;
501 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
502 u32 gfpreg, sector_base_addr, sector_end_addr;
503 u16 i;
504
505 /* Can't read flash registers if the register set isn't mapped. */
506 if (!hw->flash_address) {
507 e_dbg("ERROR: Flash registers not mapped\n");
508 return -E1000_ERR_CONFIG;
509 }
510
511 nvm->type = e1000_nvm_flash_sw;
512
513 gfpreg = er32flash(ICH_FLASH_GFPREG);
514
515 /*
516 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517 * Add 1 to sector_end_addr since this sector is included in
518 * the overall size.
519 */
520 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
521 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
522
523 /* flash_base_addr is byte-aligned */
524 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
525
526 /*
527 * find total size of the NVM, then cut in half since the total
528 * size represents two separate NVM banks.
529 */
530 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
531 << FLASH_SECTOR_ADDR_SHIFT;
532 nvm->flash_bank_size /= 2;
533 /* Adjust to word count */
534 nvm->flash_bank_size /= sizeof(u16);
535
536 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
537
538 /* Clear shadow ram */
539 for (i = 0; i < nvm->word_size; i++) {
540 dev_spec->shadow_ram[i].modified = false;
541 dev_spec->shadow_ram[i].value = 0xFFFF;
542 }
543
544 return 0;
545 }
546
547 /**
548 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549 * @hw: pointer to the HW structure
550 *
551 * Initialize family-specific MAC parameters and function
552 * pointers.
553 **/
554 static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
555 {
556 struct e1000_hw *hw = &adapter->hw;
557 struct e1000_mac_info *mac = &hw->mac;
558
559 /* Set media type function pointer */
560 hw->phy.media_type = e1000_media_type_copper;
561
562 /* Set mta register count */
563 mac->mta_reg_count = 32;
564 /* Set rar entry count */
565 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
566 if (mac->type == e1000_ich8lan)
567 mac->rar_entry_count--;
568 /* FWSM register */
569 mac->has_fwsm = true;
570 /* ARC subsystem not supported */
571 mac->arc_subsystem_valid = false;
572 /* Adaptive IFS supported */
573 mac->adaptive_ifs = true;
574
575 /* LED operations */
576 switch (mac->type) {
577 case e1000_ich8lan:
578 case e1000_ich9lan:
579 case e1000_ich10lan:
580 /* check management mode */
581 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
582 /* ID LED init */
583 mac->ops.id_led_init = e1000e_id_led_init;
584 /* blink LED */
585 mac->ops.blink_led = e1000e_blink_led_generic;
586 /* setup LED */
587 mac->ops.setup_led = e1000e_setup_led_generic;
588 /* cleanup LED */
589 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
590 /* turn on/off LED */
591 mac->ops.led_on = e1000_led_on_ich8lan;
592 mac->ops.led_off = e1000_led_off_ich8lan;
593 break;
594 case e1000_pchlan:
595 case e1000_pch2lan:
596 /* check management mode */
597 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
598 /* ID LED init */
599 mac->ops.id_led_init = e1000_id_led_init_pchlan;
600 /* setup LED */
601 mac->ops.setup_led = e1000_setup_led_pchlan;
602 /* cleanup LED */
603 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
604 /* turn on/off LED */
605 mac->ops.led_on = e1000_led_on_pchlan;
606 mac->ops.led_off = e1000_led_off_pchlan;
607 break;
608 default:
609 break;
610 }
611
612 /* Enable PCS Lock-loss workaround for ICH8 */
613 if (mac->type == e1000_ich8lan)
614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
615
616 /* Gate automatic PHY configuration by hardware on managed 82579 */
617 if ((mac->type == e1000_pch2lan) &&
618 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
619 e1000_gate_hw_phy_config_ich8lan(hw, true);
620
621 return 0;
622 }
623
624 /**
625 * e1000_set_eee_pchlan - Enable/disable EEE support
626 * @hw: pointer to the HW structure
627 *
628 * Enable/disable EEE based on setting in dev_spec structure. The bits in
629 * the LPI Control register will remain set only if/when link is up.
630 **/
631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
632 {
633 s32 ret_val = 0;
634 u16 phy_reg;
635
636 if (hw->phy.type != e1000_phy_82579)
637 goto out;
638
639 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
640 if (ret_val)
641 goto out;
642
643 if (hw->dev_spec.ich8lan.eee_disable)
644 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
645 else
646 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
647
648 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
649 out:
650 return ret_val;
651 }
652
653 /**
654 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655 * @hw: pointer to the HW structure
656 *
657 * Checks to see of the link status of the hardware has changed. If a
658 * change in link status has been detected, then we read the PHY registers
659 * to get the current speed/duplex if link exists.
660 **/
661 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
662 {
663 struct e1000_mac_info *mac = &hw->mac;
664 s32 ret_val;
665 bool link;
666 u16 phy_reg;
667
668 /*
669 * We only want to go out to the PHY registers to see if Auto-Neg
670 * has completed and/or if our link status has changed. The
671 * get_link_status flag is set upon receiving a Link Status
672 * Change or Rx Sequence Error interrupt.
673 */
674 if (!mac->get_link_status) {
675 ret_val = 0;
676 goto out;
677 }
678
679 /*
680 * First we want to see if the MII Status Register reports
681 * link. If so, then we want to get the current speed/duplex
682 * of the PHY.
683 */
684 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
685 if (ret_val)
686 goto out;
687
688 if (hw->mac.type == e1000_pchlan) {
689 ret_val = e1000_k1_gig_workaround_hv(hw, link);
690 if (ret_val)
691 goto out;
692 }
693
694 if (!link)
695 goto out; /* No link detected */
696
697 mac->get_link_status = false;
698
699 switch (hw->mac.type) {
700 case e1000_pch2lan:
701 ret_val = e1000_k1_workaround_lv(hw);
702 if (ret_val)
703 goto out;
704 /* fall-thru */
705 case e1000_pchlan:
706 if (hw->phy.type == e1000_phy_82578) {
707 ret_val = e1000_link_stall_workaround_hv(hw);
708 if (ret_val)
709 goto out;
710 }
711
712 /*
713 * Workaround for PCHx parts in half-duplex:
714 * Set the number of preambles removed from the packet
715 * when it is passed from the PHY to the MAC to prevent
716 * the MAC from misinterpreting the packet type.
717 */
718 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
719 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
720
721 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
722 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
723
724 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
725 break;
726 default:
727 break;
728 }
729
730 /*
731 * Check if there was DownShift, must be checked
732 * immediately after link-up
733 */
734 e1000e_check_downshift(hw);
735
736 /* Enable/Disable EEE after link up */
737 ret_val = e1000_set_eee_pchlan(hw);
738 if (ret_val)
739 goto out;
740
741 /*
742 * If we are forcing speed/duplex, then we simply return since
743 * we have already determined whether we have link or not.
744 */
745 if (!mac->autoneg) {
746 ret_val = -E1000_ERR_CONFIG;
747 goto out;
748 }
749
750 /*
751 * Auto-Neg is enabled. Auto Speed Detection takes care
752 * of MAC speed/duplex configuration. So we only need to
753 * configure Collision Distance in the MAC.
754 */
755 e1000e_config_collision_dist(hw);
756
757 /*
758 * Configure Flow Control now that Auto-Neg has completed.
759 * First, we need to restore the desired flow control
760 * settings because we may have had to re-autoneg with a
761 * different link partner.
762 */
763 ret_val = e1000e_config_fc_after_link_up(hw);
764 if (ret_val)
765 e_dbg("Error configuring flow control\n");
766
767 out:
768 return ret_val;
769 }
770
771 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
772 {
773 struct e1000_hw *hw = &adapter->hw;
774 s32 rc;
775
776 rc = e1000_init_mac_params_ich8lan(adapter);
777 if (rc)
778 return rc;
779
780 rc = e1000_init_nvm_params_ich8lan(hw);
781 if (rc)
782 return rc;
783
784 switch (hw->mac.type) {
785 case e1000_ich8lan:
786 case e1000_ich9lan:
787 case e1000_ich10lan:
788 rc = e1000_init_phy_params_ich8lan(hw);
789 break;
790 case e1000_pchlan:
791 case e1000_pch2lan:
792 rc = e1000_init_phy_params_pchlan(hw);
793 break;
794 default:
795 break;
796 }
797 if (rc)
798 return rc;
799
800 /*
801 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
803 */
804 if ((adapter->hw.phy.type == e1000_phy_ife) ||
805 ((adapter->hw.mac.type >= e1000_pch2lan) &&
806 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
807 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
808 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
809
810 hw->mac.ops.blink_led = NULL;
811 }
812
813 if ((adapter->hw.mac.type == e1000_ich8lan) &&
814 (adapter->hw.phy.type != e1000_phy_ife))
815 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
816
817 /* Enable workaround for 82579 w/ ME enabled */
818 if ((adapter->hw.mac.type == e1000_pch2lan) &&
819 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
820 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
821
822 /* Disable EEE by default until IEEE802.3az spec is finalized */
823 if (adapter->flags2 & FLAG2_HAS_EEE)
824 adapter->hw.dev_spec.ich8lan.eee_disable = true;
825
826 return 0;
827 }
828
829 static DEFINE_MUTEX(nvm_mutex);
830
831 /**
832 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833 * @hw: pointer to the HW structure
834 *
835 * Acquires the mutex for performing NVM operations.
836 **/
837 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
838 {
839 mutex_lock(&nvm_mutex);
840
841 return 0;
842 }
843
844 /**
845 * e1000_release_nvm_ich8lan - Release NVM mutex
846 * @hw: pointer to the HW structure
847 *
848 * Releases the mutex used while performing NVM operations.
849 **/
850 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
851 {
852 mutex_unlock(&nvm_mutex);
853 }
854
855 /**
856 * e1000_acquire_swflag_ich8lan - Acquire software control flag
857 * @hw: pointer to the HW structure
858 *
859 * Acquires the software control flag for performing PHY and select
860 * MAC CSR accesses.
861 **/
862 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
863 {
864 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
865 s32 ret_val = 0;
866
867 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
868 &hw->adapter->state)) {
869 WARN(1, "e1000e: %s: contention for Phy access\n",
870 hw->adapter->netdev->name);
871 return -E1000_ERR_PHY;
872 }
873
874 while (timeout) {
875 extcnf_ctrl = er32(EXTCNF_CTRL);
876 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
877 break;
878
879 mdelay(1);
880 timeout--;
881 }
882
883 if (!timeout) {
884 e_dbg("SW has already locked the resource.\n");
885 ret_val = -E1000_ERR_CONFIG;
886 goto out;
887 }
888
889 timeout = SW_FLAG_TIMEOUT;
890
891 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
892 ew32(EXTCNF_CTRL, extcnf_ctrl);
893
894 while (timeout) {
895 extcnf_ctrl = er32(EXTCNF_CTRL);
896 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
897 break;
898
899 mdelay(1);
900 timeout--;
901 }
902
903 if (!timeout) {
904 e_dbg("Failed to acquire the semaphore, FW or HW has it: "
905 "FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
906 er32(FWSM), extcnf_ctrl);
907 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
908 ew32(EXTCNF_CTRL, extcnf_ctrl);
909 ret_val = -E1000_ERR_CONFIG;
910 goto out;
911 }
912
913 out:
914 if (ret_val)
915 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
916
917 return ret_val;
918 }
919
920 /**
921 * e1000_release_swflag_ich8lan - Release software control flag
922 * @hw: pointer to the HW structure
923 *
924 * Releases the software control flag for performing PHY and select
925 * MAC CSR accesses.
926 **/
927 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
928 {
929 u32 extcnf_ctrl;
930
931 extcnf_ctrl = er32(EXTCNF_CTRL);
932
933 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
934 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
935 ew32(EXTCNF_CTRL, extcnf_ctrl);
936 } else {
937 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
938 }
939
940 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
941 }
942
943 /**
944 * e1000_check_mng_mode_ich8lan - Checks management mode
945 * @hw: pointer to the HW structure
946 *
947 * This checks if the adapter has any manageability enabled.
948 * This is a function pointer entry point only called by read/write
949 * routines for the PHY and NVM parts.
950 **/
951 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
952 {
953 u32 fwsm;
954
955 fwsm = er32(FWSM);
956 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
957 ((fwsm & E1000_FWSM_MODE_MASK) ==
958 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
959 }
960
961 /**
962 * e1000_check_mng_mode_pchlan - Checks management mode
963 * @hw: pointer to the HW structure
964 *
965 * This checks if the adapter has iAMT enabled.
966 * This is a function pointer entry point only called by read/write
967 * routines for the PHY and NVM parts.
968 **/
969 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
970 {
971 u32 fwsm;
972
973 fwsm = er32(FWSM);
974 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
975 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
976 }
977
978 /**
979 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
980 * @hw: pointer to the HW structure
981 *
982 * Checks if firmware is blocking the reset of the PHY.
983 * This is a function pointer entry point only called by
984 * reset routines.
985 **/
986 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
987 {
988 u32 fwsm;
989
990 fwsm = er32(FWSM);
991
992 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
993 }
994
995 /**
996 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
997 * @hw: pointer to the HW structure
998 *
999 * Assumes semaphore already acquired.
1000 *
1001 **/
1002 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1003 {
1004 u16 phy_data;
1005 u32 strap = er32(STRAP);
1006 s32 ret_val = 0;
1007
1008 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1009
1010 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1011 if (ret_val)
1012 goto out;
1013
1014 phy_data &= ~HV_SMB_ADDR_MASK;
1015 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1016 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1017 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1018
1019 out:
1020 return ret_val;
1021 }
1022
1023 /**
1024 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1025 * @hw: pointer to the HW structure
1026 *
1027 * SW should configure the LCD from the NVM extended configuration region
1028 * as a workaround for certain parts.
1029 **/
1030 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1031 {
1032 struct e1000_phy_info *phy = &hw->phy;
1033 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1034 s32 ret_val = 0;
1035 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1036
1037 /*
1038 * Initialize the PHY from the NVM on ICH platforms. This
1039 * is needed due to an issue where the NVM configuration is
1040 * not properly autoloaded after power transitions.
1041 * Therefore, after each PHY reset, we will load the
1042 * configuration data out of the NVM manually.
1043 */
1044 switch (hw->mac.type) {
1045 case e1000_ich8lan:
1046 if (phy->type != e1000_phy_igp_3)
1047 return ret_val;
1048
1049 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1050 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1051 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1052 break;
1053 }
1054 /* Fall-thru */
1055 case e1000_pchlan:
1056 case e1000_pch2lan:
1057 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1058 break;
1059 default:
1060 return ret_val;
1061 }
1062
1063 ret_val = hw->phy.ops.acquire(hw);
1064 if (ret_val)
1065 return ret_val;
1066
1067 data = er32(FEXTNVM);
1068 if (!(data & sw_cfg_mask))
1069 goto out;
1070
1071 /*
1072 * Make sure HW does not configure LCD from PHY
1073 * extended configuration before SW configuration
1074 */
1075 data = er32(EXTCNF_CTRL);
1076 if (!(hw->mac.type == e1000_pch2lan)) {
1077 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1078 goto out;
1079 }
1080
1081 cnf_size = er32(EXTCNF_SIZE);
1082 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1083 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1084 if (!cnf_size)
1085 goto out;
1086
1087 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1088 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1089
1090 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1091 (hw->mac.type == e1000_pchlan)) ||
1092 (hw->mac.type == e1000_pch2lan)) {
1093 /*
1094 * HW configures the SMBus address and LEDs when the
1095 * OEM and LCD Write Enable bits are set in the NVM.
1096 * When both NVM bits are cleared, SW will configure
1097 * them instead.
1098 */
1099 ret_val = e1000_write_smbus_addr(hw);
1100 if (ret_val)
1101 goto out;
1102
1103 data = er32(LEDCTL);
1104 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1105 (u16)data);
1106 if (ret_val)
1107 goto out;
1108 }
1109
1110 /* Configure LCD from extended configuration region. */
1111
1112 /* cnf_base_addr is in DWORD */
1113 word_addr = (u16)(cnf_base_addr << 1);
1114
1115 for (i = 0; i < cnf_size; i++) {
1116 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1117 &reg_data);
1118 if (ret_val)
1119 goto out;
1120
1121 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1122 1, &reg_addr);
1123 if (ret_val)
1124 goto out;
1125
1126 /* Save off the PHY page for future writes. */
1127 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1128 phy_page = reg_data;
1129 continue;
1130 }
1131
1132 reg_addr &= PHY_REG_MASK;
1133 reg_addr |= phy_page;
1134
1135 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1136 reg_data);
1137 if (ret_val)
1138 goto out;
1139 }
1140
1141 out:
1142 hw->phy.ops.release(hw);
1143 return ret_val;
1144 }
1145
1146 /**
1147 * e1000_k1_gig_workaround_hv - K1 Si workaround
1148 * @hw: pointer to the HW structure
1149 * @link: link up bool flag
1150 *
1151 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1152 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1153 * If link is down, the function will restore the default K1 setting located
1154 * in the NVM.
1155 **/
1156 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1157 {
1158 s32 ret_val = 0;
1159 u16 status_reg = 0;
1160 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1161
1162 if (hw->mac.type != e1000_pchlan)
1163 goto out;
1164
1165 /* Wrap the whole flow with the sw flag */
1166 ret_val = hw->phy.ops.acquire(hw);
1167 if (ret_val)
1168 goto out;
1169
1170 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1171 if (link) {
1172 if (hw->phy.type == e1000_phy_82578) {
1173 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1174 &status_reg);
1175 if (ret_val)
1176 goto release;
1177
1178 status_reg &= BM_CS_STATUS_LINK_UP |
1179 BM_CS_STATUS_RESOLVED |
1180 BM_CS_STATUS_SPEED_MASK;
1181
1182 if (status_reg == (BM_CS_STATUS_LINK_UP |
1183 BM_CS_STATUS_RESOLVED |
1184 BM_CS_STATUS_SPEED_1000))
1185 k1_enable = false;
1186 }
1187
1188 if (hw->phy.type == e1000_phy_82577) {
1189 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1190 &status_reg);
1191 if (ret_val)
1192 goto release;
1193
1194 status_reg &= HV_M_STATUS_LINK_UP |
1195 HV_M_STATUS_AUTONEG_COMPLETE |
1196 HV_M_STATUS_SPEED_MASK;
1197
1198 if (status_reg == (HV_M_STATUS_LINK_UP |
1199 HV_M_STATUS_AUTONEG_COMPLETE |
1200 HV_M_STATUS_SPEED_1000))
1201 k1_enable = false;
1202 }
1203
1204 /* Link stall fix for link up */
1205 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1206 0x0100);
1207 if (ret_val)
1208 goto release;
1209
1210 } else {
1211 /* Link stall fix for link down */
1212 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1213 0x4100);
1214 if (ret_val)
1215 goto release;
1216 }
1217
1218 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1219
1220 release:
1221 hw->phy.ops.release(hw);
1222 out:
1223 return ret_val;
1224 }
1225
1226 /**
1227 * e1000_configure_k1_ich8lan - Configure K1 power state
1228 * @hw: pointer to the HW structure
1229 * @enable: K1 state to configure
1230 *
1231 * Configure the K1 power state based on the provided parameter.
1232 * Assumes semaphore already acquired.
1233 *
1234 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1235 **/
1236 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1237 {
1238 s32 ret_val = 0;
1239 u32 ctrl_reg = 0;
1240 u32 ctrl_ext = 0;
1241 u32 reg = 0;
1242 u16 kmrn_reg = 0;
1243
1244 ret_val = e1000e_read_kmrn_reg_locked(hw,
1245 E1000_KMRNCTRLSTA_K1_CONFIG,
1246 &kmrn_reg);
1247 if (ret_val)
1248 goto out;
1249
1250 if (k1_enable)
1251 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1252 else
1253 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1254
1255 ret_val = e1000e_write_kmrn_reg_locked(hw,
1256 E1000_KMRNCTRLSTA_K1_CONFIG,
1257 kmrn_reg);
1258 if (ret_val)
1259 goto out;
1260
1261 udelay(20);
1262 ctrl_ext = er32(CTRL_EXT);
1263 ctrl_reg = er32(CTRL);
1264
1265 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1266 reg |= E1000_CTRL_FRCSPD;
1267 ew32(CTRL, reg);
1268
1269 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1270 e1e_flush();
1271 udelay(20);
1272 ew32(CTRL, ctrl_reg);
1273 ew32(CTRL_EXT, ctrl_ext);
1274 e1e_flush();
1275 udelay(20);
1276
1277 out:
1278 return ret_val;
1279 }
1280
1281 /**
1282 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1283 * @hw: pointer to the HW structure
1284 * @d0_state: boolean if entering d0 or d3 device state
1285 *
1286 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1287 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1288 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1289 **/
1290 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1291 {
1292 s32 ret_val = 0;
1293 u32 mac_reg;
1294 u16 oem_reg;
1295
1296 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1297 return ret_val;
1298
1299 ret_val = hw->phy.ops.acquire(hw);
1300 if (ret_val)
1301 return ret_val;
1302
1303 if (!(hw->mac.type == e1000_pch2lan)) {
1304 mac_reg = er32(EXTCNF_CTRL);
1305 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1306 goto out;
1307 }
1308
1309 mac_reg = er32(FEXTNVM);
1310 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1311 goto out;
1312
1313 mac_reg = er32(PHY_CTRL);
1314
1315 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1316 if (ret_val)
1317 goto out;
1318
1319 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1320
1321 if (d0_state) {
1322 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1323 oem_reg |= HV_OEM_BITS_GBE_DIS;
1324
1325 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1326 oem_reg |= HV_OEM_BITS_LPLU;
1327
1328 /* Set Restart auto-neg to activate the bits */
1329 if (!e1000_check_reset_block(hw))
1330 oem_reg |= HV_OEM_BITS_RESTART_AN;
1331 } else {
1332 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1333 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1334 oem_reg |= HV_OEM_BITS_GBE_DIS;
1335
1336 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1337 E1000_PHY_CTRL_NOND0A_LPLU))
1338 oem_reg |= HV_OEM_BITS_LPLU;
1339 }
1340
1341 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1342
1343 out:
1344 hw->phy.ops.release(hw);
1345
1346 return ret_val;
1347 }
1348
1349
1350 /**
1351 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1352 * @hw: pointer to the HW structure
1353 **/
1354 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1355 {
1356 s32 ret_val;
1357 u16 data;
1358
1359 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1360 if (ret_val)
1361 return ret_val;
1362
1363 data |= HV_KMRN_MDIO_SLOW;
1364
1365 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1366
1367 return ret_val;
1368 }
1369
1370 /**
1371 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1372 * done after every PHY reset.
1373 **/
1374 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1375 {
1376 s32 ret_val = 0;
1377 u16 phy_data;
1378
1379 if (hw->mac.type != e1000_pchlan)
1380 return ret_val;
1381
1382 /* Set MDIO slow mode before any other MDIO access */
1383 if (hw->phy.type == e1000_phy_82577) {
1384 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1385 if (ret_val)
1386 goto out;
1387 }
1388
1389 if (((hw->phy.type == e1000_phy_82577) &&
1390 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1391 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1392 /* Disable generation of early preamble */
1393 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1394 if (ret_val)
1395 return ret_val;
1396
1397 /* Preamble tuning for SSC */
1398 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1399 if (ret_val)
1400 return ret_val;
1401 }
1402
1403 if (hw->phy.type == e1000_phy_82578) {
1404 /*
1405 * Return registers to default by doing a soft reset then
1406 * writing 0x3140 to the control register.
1407 */
1408 if (hw->phy.revision < 2) {
1409 e1000e_phy_sw_reset(hw);
1410 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1411 }
1412 }
1413
1414 /* Select page 0 */
1415 ret_val = hw->phy.ops.acquire(hw);
1416 if (ret_val)
1417 return ret_val;
1418
1419 hw->phy.addr = 1;
1420 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1421 hw->phy.ops.release(hw);
1422 if (ret_val)
1423 goto out;
1424
1425 /*
1426 * Configure the K1 Si workaround during phy reset assuming there is
1427 * link so that it disables K1 if link is in 1Gbps.
1428 */
1429 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1430 if (ret_val)
1431 goto out;
1432
1433 /* Workaround for link disconnects on a busy hub in half duplex */
1434 ret_val = hw->phy.ops.acquire(hw);
1435 if (ret_val)
1436 goto out;
1437 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1438 if (ret_val)
1439 goto release;
1440 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1441 phy_data & 0x00FF);
1442 release:
1443 hw->phy.ops.release(hw);
1444 out:
1445 return ret_val;
1446 }
1447
1448 /**
1449 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1450 * @hw: pointer to the HW structure
1451 **/
1452 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1453 {
1454 u32 mac_reg;
1455 u16 i, phy_reg = 0;
1456 s32 ret_val;
1457
1458 ret_val = hw->phy.ops.acquire(hw);
1459 if (ret_val)
1460 return;
1461 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1462 if (ret_val)
1463 goto release;
1464
1465 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1466 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1467 mac_reg = er32(RAL(i));
1468 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1469 (u16)(mac_reg & 0xFFFF));
1470 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1471 (u16)((mac_reg >> 16) & 0xFFFF));
1472
1473 mac_reg = er32(RAH(i));
1474 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1475 (u16)(mac_reg & 0xFFFF));
1476 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1477 (u16)((mac_reg & E1000_RAH_AV)
1478 >> 16));
1479 }
1480
1481 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1482
1483 release:
1484 hw->phy.ops.release(hw);
1485 }
1486
1487 /**
1488 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1489 * with 82579 PHY
1490 * @hw: pointer to the HW structure
1491 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1492 **/
1493 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1494 {
1495 s32 ret_val = 0;
1496 u16 phy_reg, data;
1497 u32 mac_reg;
1498 u16 i;
1499
1500 if (hw->mac.type != e1000_pch2lan)
1501 goto out;
1502
1503 /* disable Rx path while enabling/disabling workaround */
1504 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1505 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1506 if (ret_val)
1507 goto out;
1508
1509 if (enable) {
1510 /*
1511 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1512 * SHRAL/H) and initial CRC values to the MAC
1513 */
1514 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1515 u8 mac_addr[ETH_ALEN] = {0};
1516 u32 addr_high, addr_low;
1517
1518 addr_high = er32(RAH(i));
1519 if (!(addr_high & E1000_RAH_AV))
1520 continue;
1521 addr_low = er32(RAL(i));
1522 mac_addr[0] = (addr_low & 0xFF);
1523 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1524 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1525 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1526 mac_addr[4] = (addr_high & 0xFF);
1527 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1528
1529 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1530 }
1531
1532 /* Write Rx addresses to the PHY */
1533 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1534
1535 /* Enable jumbo frame workaround in the MAC */
1536 mac_reg = er32(FFLT_DBG);
1537 mac_reg &= ~(1 << 14);
1538 mac_reg |= (7 << 15);
1539 ew32(FFLT_DBG, mac_reg);
1540
1541 mac_reg = er32(RCTL);
1542 mac_reg |= E1000_RCTL_SECRC;
1543 ew32(RCTL, mac_reg);
1544
1545 ret_val = e1000e_read_kmrn_reg(hw,
1546 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1547 &data);
1548 if (ret_val)
1549 goto out;
1550 ret_val = e1000e_write_kmrn_reg(hw,
1551 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1552 data | (1 << 0));
1553 if (ret_val)
1554 goto out;
1555 ret_val = e1000e_read_kmrn_reg(hw,
1556 E1000_KMRNCTRLSTA_HD_CTRL,
1557 &data);
1558 if (ret_val)
1559 goto out;
1560 data &= ~(0xF << 8);
1561 data |= (0xB << 8);
1562 ret_val = e1000e_write_kmrn_reg(hw,
1563 E1000_KMRNCTRLSTA_HD_CTRL,
1564 data);
1565 if (ret_val)
1566 goto out;
1567
1568 /* Enable jumbo frame workaround in the PHY */
1569 e1e_rphy(hw, PHY_REG(769, 23), &data);
1570 data &= ~(0x7F << 5);
1571 data |= (0x37 << 5);
1572 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1573 if (ret_val)
1574 goto out;
1575 e1e_rphy(hw, PHY_REG(769, 16), &data);
1576 data &= ~(1 << 13);
1577 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1578 if (ret_val)
1579 goto out;
1580 e1e_rphy(hw, PHY_REG(776, 20), &data);
1581 data &= ~(0x3FF << 2);
1582 data |= (0x1A << 2);
1583 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1584 if (ret_val)
1585 goto out;
1586 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1587 if (ret_val)
1588 goto out;
1589 e1e_rphy(hw, HV_PM_CTRL, &data);
1590 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1591 if (ret_val)
1592 goto out;
1593 } else {
1594 /* Write MAC register values back to h/w defaults */
1595 mac_reg = er32(FFLT_DBG);
1596 mac_reg &= ~(0xF << 14);
1597 ew32(FFLT_DBG, mac_reg);
1598
1599 mac_reg = er32(RCTL);
1600 mac_reg &= ~E1000_RCTL_SECRC;
1601 ew32(RCTL, mac_reg);
1602
1603 ret_val = e1000e_read_kmrn_reg(hw,
1604 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1605 &data);
1606 if (ret_val)
1607 goto out;
1608 ret_val = e1000e_write_kmrn_reg(hw,
1609 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1610 data & ~(1 << 0));
1611 if (ret_val)
1612 goto out;
1613 ret_val = e1000e_read_kmrn_reg(hw,
1614 E1000_KMRNCTRLSTA_HD_CTRL,
1615 &data);
1616 if (ret_val)
1617 goto out;
1618 data &= ~(0xF << 8);
1619 data |= (0xB << 8);
1620 ret_val = e1000e_write_kmrn_reg(hw,
1621 E1000_KMRNCTRLSTA_HD_CTRL,
1622 data);
1623 if (ret_val)
1624 goto out;
1625
1626 /* Write PHY register values back to h/w defaults */
1627 e1e_rphy(hw, PHY_REG(769, 23), &data);
1628 data &= ~(0x7F << 5);
1629 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1630 if (ret_val)
1631 goto out;
1632 e1e_rphy(hw, PHY_REG(769, 16), &data);
1633 data |= (1 << 13);
1634 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1635 if (ret_val)
1636 goto out;
1637 e1e_rphy(hw, PHY_REG(776, 20), &data);
1638 data &= ~(0x3FF << 2);
1639 data |= (0x8 << 2);
1640 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1641 if (ret_val)
1642 goto out;
1643 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1644 if (ret_val)
1645 goto out;
1646 e1e_rphy(hw, HV_PM_CTRL, &data);
1647 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1648 if (ret_val)
1649 goto out;
1650 }
1651
1652 /* re-enable Rx path after enabling/disabling workaround */
1653 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1654
1655 out:
1656 return ret_val;
1657 }
1658
1659 /**
1660 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1661 * done after every PHY reset.
1662 **/
1663 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1664 {
1665 s32 ret_val = 0;
1666
1667 if (hw->mac.type != e1000_pch2lan)
1668 goto out;
1669
1670 /* Set MDIO slow mode before any other MDIO access */
1671 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1672
1673 out:
1674 return ret_val;
1675 }
1676
1677 /**
1678 * e1000_k1_gig_workaround_lv - K1 Si workaround
1679 * @hw: pointer to the HW structure
1680 *
1681 * Workaround to set the K1 beacon duration for 82579 parts
1682 **/
1683 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1684 {
1685 s32 ret_val = 0;
1686 u16 status_reg = 0;
1687 u32 mac_reg;
1688 u16 phy_reg;
1689
1690 if (hw->mac.type != e1000_pch2lan)
1691 goto out;
1692
1693 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1694 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1695 if (ret_val)
1696 goto out;
1697
1698 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1699 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1700 mac_reg = er32(FEXTNVM4);
1701 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1702
1703 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1704 if (ret_val)
1705 goto out;
1706
1707 if (status_reg & HV_M_STATUS_SPEED_1000) {
1708 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1709 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1710 } else {
1711 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1712 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1713 }
1714 ew32(FEXTNVM4, mac_reg);
1715 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1716 }
1717
1718 out:
1719 return ret_val;
1720 }
1721
1722 /**
1723 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1724 * @hw: pointer to the HW structure
1725 * @gate: boolean set to true to gate, false to ungate
1726 *
1727 * Gate/ungate the automatic PHY configuration via hardware; perform
1728 * the configuration via software instead.
1729 **/
1730 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1731 {
1732 u32 extcnf_ctrl;
1733
1734 if (hw->mac.type != e1000_pch2lan)
1735 return;
1736
1737 extcnf_ctrl = er32(EXTCNF_CTRL);
1738
1739 if (gate)
1740 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1741 else
1742 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1743
1744 ew32(EXTCNF_CTRL, extcnf_ctrl);
1745 return;
1746 }
1747
1748 /**
1749 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1750 * @hw: pointer to the HW structure
1751 *
1752 * Check the appropriate indication the MAC has finished configuring the
1753 * PHY after a software reset.
1754 **/
1755 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1756 {
1757 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1758
1759 /* Wait for basic configuration completes before proceeding */
1760 do {
1761 data = er32(STATUS);
1762 data &= E1000_STATUS_LAN_INIT_DONE;
1763 udelay(100);
1764 } while ((!data) && --loop);
1765
1766 /*
1767 * If basic configuration is incomplete before the above loop
1768 * count reaches 0, loading the configuration from NVM will
1769 * leave the PHY in a bad state possibly resulting in no link.
1770 */
1771 if (loop == 0)
1772 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1773
1774 /* Clear the Init Done bit for the next init event */
1775 data = er32(STATUS);
1776 data &= ~E1000_STATUS_LAN_INIT_DONE;
1777 ew32(STATUS, data);
1778 }
1779
1780 /**
1781 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1782 * @hw: pointer to the HW structure
1783 **/
1784 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1785 {
1786 s32 ret_val = 0;
1787 u16 reg;
1788
1789 if (e1000_check_reset_block(hw))
1790 goto out;
1791
1792 /* Allow time for h/w to get to quiescent state after reset */
1793 usleep_range(10000, 20000);
1794
1795 /* Perform any necessary post-reset workarounds */
1796 switch (hw->mac.type) {
1797 case e1000_pchlan:
1798 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1799 if (ret_val)
1800 goto out;
1801 break;
1802 case e1000_pch2lan:
1803 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1804 if (ret_val)
1805 goto out;
1806 break;
1807 default:
1808 break;
1809 }
1810
1811 /* Clear the host wakeup bit after lcd reset */
1812 if (hw->mac.type >= e1000_pchlan) {
1813 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1814 reg &= ~BM_WUC_HOST_WU_BIT;
1815 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1816 }
1817
1818 /* Configure the LCD with the extended configuration region in NVM */
1819 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1820 if (ret_val)
1821 goto out;
1822
1823 /* Configure the LCD with the OEM bits in NVM */
1824 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1825
1826 if (hw->mac.type == e1000_pch2lan) {
1827 /* Ungate automatic PHY configuration on non-managed 82579 */
1828 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1829 usleep_range(10000, 20000);
1830 e1000_gate_hw_phy_config_ich8lan(hw, false);
1831 }
1832
1833 /* Set EEE LPI Update Timer to 200usec */
1834 ret_val = hw->phy.ops.acquire(hw);
1835 if (ret_val)
1836 goto out;
1837 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1838 I82579_LPI_UPDATE_TIMER);
1839 if (ret_val)
1840 goto release;
1841 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1842 0x1387);
1843 release:
1844 hw->phy.ops.release(hw);
1845 }
1846
1847 out:
1848 return ret_val;
1849 }
1850
1851 /**
1852 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1853 * @hw: pointer to the HW structure
1854 *
1855 * Resets the PHY
1856 * This is a function pointer entry point called by drivers
1857 * or other shared routines.
1858 **/
1859 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1860 {
1861 s32 ret_val = 0;
1862
1863 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1864 if ((hw->mac.type == e1000_pch2lan) &&
1865 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1866 e1000_gate_hw_phy_config_ich8lan(hw, true);
1867
1868 ret_val = e1000e_phy_hw_reset_generic(hw);
1869 if (ret_val)
1870 goto out;
1871
1872 ret_val = e1000_post_phy_reset_ich8lan(hw);
1873
1874 out:
1875 return ret_val;
1876 }
1877
1878 /**
1879 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1880 * @hw: pointer to the HW structure
1881 * @active: true to enable LPLU, false to disable
1882 *
1883 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1884 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1885 * the phy speed. This function will manually set the LPLU bit and restart
1886 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1887 * since it configures the same bit.
1888 **/
1889 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1890 {
1891 s32 ret_val = 0;
1892 u16 oem_reg;
1893
1894 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1895 if (ret_val)
1896 goto out;
1897
1898 if (active)
1899 oem_reg |= HV_OEM_BITS_LPLU;
1900 else
1901 oem_reg &= ~HV_OEM_BITS_LPLU;
1902
1903 oem_reg |= HV_OEM_BITS_RESTART_AN;
1904 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1905
1906 out:
1907 return ret_val;
1908 }
1909
1910 /**
1911 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1912 * @hw: pointer to the HW structure
1913 * @active: true to enable LPLU, false to disable
1914 *
1915 * Sets the LPLU D0 state according to the active flag. When
1916 * activating LPLU this function also disables smart speed
1917 * and vice versa. LPLU will not be activated unless the
1918 * device autonegotiation advertisement meets standards of
1919 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1920 * This is a function pointer entry point only called by
1921 * PHY setup routines.
1922 **/
1923 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1924 {
1925 struct e1000_phy_info *phy = &hw->phy;
1926 u32 phy_ctrl;
1927 s32 ret_val = 0;
1928 u16 data;
1929
1930 if (phy->type == e1000_phy_ife)
1931 return ret_val;
1932
1933 phy_ctrl = er32(PHY_CTRL);
1934
1935 if (active) {
1936 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1937 ew32(PHY_CTRL, phy_ctrl);
1938
1939 if (phy->type != e1000_phy_igp_3)
1940 return 0;
1941
1942 /*
1943 * Call gig speed drop workaround on LPLU before accessing
1944 * any PHY registers
1945 */
1946 if (hw->mac.type == e1000_ich8lan)
1947 e1000e_gig_downshift_workaround_ich8lan(hw);
1948
1949 /* When LPLU is enabled, we should disable SmartSpeed */
1950 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1951 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1952 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1953 if (ret_val)
1954 return ret_val;
1955 } else {
1956 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1957 ew32(PHY_CTRL, phy_ctrl);
1958
1959 if (phy->type != e1000_phy_igp_3)
1960 return 0;
1961
1962 /*
1963 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1964 * during Dx states where the power conservation is most
1965 * important. During driver activity we should enable
1966 * SmartSpeed, so performance is maintained.
1967 */
1968 if (phy->smart_speed == e1000_smart_speed_on) {
1969 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1970 &data);
1971 if (ret_val)
1972 return ret_val;
1973
1974 data |= IGP01E1000_PSCFR_SMART_SPEED;
1975 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1976 data);
1977 if (ret_val)
1978 return ret_val;
1979 } else if (phy->smart_speed == e1000_smart_speed_off) {
1980 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1981 &data);
1982 if (ret_val)
1983 return ret_val;
1984
1985 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1986 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1987 data);
1988 if (ret_val)
1989 return ret_val;
1990 }
1991 }
1992
1993 return 0;
1994 }
1995
1996 /**
1997 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1998 * @hw: pointer to the HW structure
1999 * @active: true to enable LPLU, false to disable
2000 *
2001 * Sets the LPLU D3 state according to the active flag. When
2002 * activating LPLU this function also disables smart speed
2003 * and vice versa. LPLU will not be activated unless the
2004 * device autonegotiation advertisement meets standards of
2005 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2006 * This is a function pointer entry point only called by
2007 * PHY setup routines.
2008 **/
2009 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2010 {
2011 struct e1000_phy_info *phy = &hw->phy;
2012 u32 phy_ctrl;
2013 s32 ret_val;
2014 u16 data;
2015
2016 phy_ctrl = er32(PHY_CTRL);
2017
2018 if (!active) {
2019 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2020 ew32(PHY_CTRL, phy_ctrl);
2021
2022 if (phy->type != e1000_phy_igp_3)
2023 return 0;
2024
2025 /*
2026 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2027 * during Dx states where the power conservation is most
2028 * important. During driver activity we should enable
2029 * SmartSpeed, so performance is maintained.
2030 */
2031 if (phy->smart_speed == e1000_smart_speed_on) {
2032 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2033 &data);
2034 if (ret_val)
2035 return ret_val;
2036
2037 data |= IGP01E1000_PSCFR_SMART_SPEED;
2038 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2039 data);
2040 if (ret_val)
2041 return ret_val;
2042 } else if (phy->smart_speed == e1000_smart_speed_off) {
2043 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2044 &data);
2045 if (ret_val)
2046 return ret_val;
2047
2048 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2049 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2050 data);
2051 if (ret_val)
2052 return ret_val;
2053 }
2054 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2055 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2056 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2057 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2058 ew32(PHY_CTRL, phy_ctrl);
2059
2060 if (phy->type != e1000_phy_igp_3)
2061 return 0;
2062
2063 /*
2064 * Call gig speed drop workaround on LPLU before accessing
2065 * any PHY registers
2066 */
2067 if (hw->mac.type == e1000_ich8lan)
2068 e1000e_gig_downshift_workaround_ich8lan(hw);
2069
2070 /* When LPLU is enabled, we should disable SmartSpeed */
2071 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2072 if (ret_val)
2073 return ret_val;
2074
2075 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2077 }
2078
2079 return 0;
2080 }
2081
2082 /**
2083 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2084 * @hw: pointer to the HW structure
2085 * @bank: pointer to the variable that returns the active bank
2086 *
2087 * Reads signature byte from the NVM using the flash access registers.
2088 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2089 **/
2090 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2091 {
2092 u32 eecd;
2093 struct e1000_nvm_info *nvm = &hw->nvm;
2094 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2095 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2096 u8 sig_byte = 0;
2097 s32 ret_val = 0;
2098
2099 switch (hw->mac.type) {
2100 case e1000_ich8lan:
2101 case e1000_ich9lan:
2102 eecd = er32(EECD);
2103 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2104 E1000_EECD_SEC1VAL_VALID_MASK) {
2105 if (eecd & E1000_EECD_SEC1VAL)
2106 *bank = 1;
2107 else
2108 *bank = 0;
2109
2110 return 0;
2111 }
2112 e_dbg("Unable to determine valid NVM bank via EEC - "
2113 "reading flash signature\n");
2114 /* fall-thru */
2115 default:
2116 /* set bank to 0 in case flash read fails */
2117 *bank = 0;
2118
2119 /* Check bank 0 */
2120 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2121 &sig_byte);
2122 if (ret_val)
2123 return ret_val;
2124 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2125 E1000_ICH_NVM_SIG_VALUE) {
2126 *bank = 0;
2127 return 0;
2128 }
2129
2130 /* Check bank 1 */
2131 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2132 bank1_offset,
2133 &sig_byte);
2134 if (ret_val)
2135 return ret_val;
2136 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2137 E1000_ICH_NVM_SIG_VALUE) {
2138 *bank = 1;
2139 return 0;
2140 }
2141
2142 e_dbg("ERROR: No valid NVM bank present\n");
2143 return -E1000_ERR_NVM;
2144 }
2145
2146 return 0;
2147 }
2148
2149 /**
2150 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2151 * @hw: pointer to the HW structure
2152 * @offset: The offset (in bytes) of the word(s) to read.
2153 * @words: Size of data to read in words
2154 * @data: Pointer to the word(s) to read at offset.
2155 *
2156 * Reads a word(s) from the NVM using the flash access registers.
2157 **/
2158 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2159 u16 *data)
2160 {
2161 struct e1000_nvm_info *nvm = &hw->nvm;
2162 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2163 u32 act_offset;
2164 s32 ret_val = 0;
2165 u32 bank = 0;
2166 u16 i, word;
2167
2168 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2169 (words == 0)) {
2170 e_dbg("nvm parameter(s) out of bounds\n");
2171 ret_val = -E1000_ERR_NVM;
2172 goto out;
2173 }
2174
2175 nvm->ops.acquire(hw);
2176
2177 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2178 if (ret_val) {
2179 e_dbg("Could not detect valid bank, assuming bank 0\n");
2180 bank = 0;
2181 }
2182
2183 act_offset = (bank) ? nvm->flash_bank_size : 0;
2184 act_offset += offset;
2185
2186 ret_val = 0;
2187 for (i = 0; i < words; i++) {
2188 if (dev_spec->shadow_ram[offset+i].modified) {
2189 data[i] = dev_spec->shadow_ram[offset+i].value;
2190 } else {
2191 ret_val = e1000_read_flash_word_ich8lan(hw,
2192 act_offset + i,
2193 &word);
2194 if (ret_val)
2195 break;
2196 data[i] = word;
2197 }
2198 }
2199
2200 nvm->ops.release(hw);
2201
2202 out:
2203 if (ret_val)
2204 e_dbg("NVM read error: %d\n", ret_val);
2205
2206 return ret_val;
2207 }
2208
2209 /**
2210 * e1000_flash_cycle_init_ich8lan - Initialize flash
2211 * @hw: pointer to the HW structure
2212 *
2213 * This function does initial flash setup so that a new read/write/erase cycle
2214 * can be started.
2215 **/
2216 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2217 {
2218 union ich8_hws_flash_status hsfsts;
2219 s32 ret_val = -E1000_ERR_NVM;
2220
2221 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2222
2223 /* Check if the flash descriptor is valid */
2224 if (hsfsts.hsf_status.fldesvalid == 0) {
2225 e_dbg("Flash descriptor invalid. "
2226 "SW Sequencing must be used.\n");
2227 return -E1000_ERR_NVM;
2228 }
2229
2230 /* Clear FCERR and DAEL in hw status by writing 1 */
2231 hsfsts.hsf_status.flcerr = 1;
2232 hsfsts.hsf_status.dael = 1;
2233
2234 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2235
2236 /*
2237 * Either we should have a hardware SPI cycle in progress
2238 * bit to check against, in order to start a new cycle or
2239 * FDONE bit should be changed in the hardware so that it
2240 * is 1 after hardware reset, which can then be used as an
2241 * indication whether a cycle is in progress or has been
2242 * completed.
2243 */
2244
2245 if (hsfsts.hsf_status.flcinprog == 0) {
2246 /*
2247 * There is no cycle running at present,
2248 * so we can start a cycle.
2249 * Begin by setting Flash Cycle Done.
2250 */
2251 hsfsts.hsf_status.flcdone = 1;
2252 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2253 ret_val = 0;
2254 } else {
2255 s32 i = 0;
2256
2257 /*
2258 * Otherwise poll for sometime so the current
2259 * cycle has a chance to end before giving up.
2260 */
2261 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2262 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2263 if (hsfsts.hsf_status.flcinprog == 0) {
2264 ret_val = 0;
2265 break;
2266 }
2267 udelay(1);
2268 }
2269 if (ret_val == 0) {
2270 /*
2271 * Successful in waiting for previous cycle to timeout,
2272 * now set the Flash Cycle Done.
2273 */
2274 hsfsts.hsf_status.flcdone = 1;
2275 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2276 } else {
2277 e_dbg("Flash controller busy, cannot get access\n");
2278 }
2279 }
2280
2281 return ret_val;
2282 }
2283
2284 /**
2285 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2286 * @hw: pointer to the HW structure
2287 * @timeout: maximum time to wait for completion
2288 *
2289 * This function starts a flash cycle and waits for its completion.
2290 **/
2291 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2292 {
2293 union ich8_hws_flash_ctrl hsflctl;
2294 union ich8_hws_flash_status hsfsts;
2295 s32 ret_val = -E1000_ERR_NVM;
2296 u32 i = 0;
2297
2298 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2299 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2300 hsflctl.hsf_ctrl.flcgo = 1;
2301 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2302
2303 /* wait till FDONE bit is set to 1 */
2304 do {
2305 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2306 if (hsfsts.hsf_status.flcdone == 1)
2307 break;
2308 udelay(1);
2309 } while (i++ < timeout);
2310
2311 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2312 return 0;
2313
2314 return ret_val;
2315 }
2316
2317 /**
2318 * e1000_read_flash_word_ich8lan - Read word from flash
2319 * @hw: pointer to the HW structure
2320 * @offset: offset to data location
2321 * @data: pointer to the location for storing the data
2322 *
2323 * Reads the flash word at offset into data. Offset is converted
2324 * to bytes before read.
2325 **/
2326 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2327 u16 *data)
2328 {
2329 /* Must convert offset into bytes. */
2330 offset <<= 1;
2331
2332 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2333 }
2334
2335 /**
2336 * e1000_read_flash_byte_ich8lan - Read byte from flash
2337 * @hw: pointer to the HW structure
2338 * @offset: The offset of the byte to read.
2339 * @data: Pointer to a byte to store the value read.
2340 *
2341 * Reads a single byte from the NVM using the flash access registers.
2342 **/
2343 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2344 u8 *data)
2345 {
2346 s32 ret_val;
2347 u16 word = 0;
2348
2349 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2350 if (ret_val)
2351 return ret_val;
2352
2353 *data = (u8)word;
2354
2355 return 0;
2356 }
2357
2358 /**
2359 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2360 * @hw: pointer to the HW structure
2361 * @offset: The offset (in bytes) of the byte or word to read.
2362 * @size: Size of data to read, 1=byte 2=word
2363 * @data: Pointer to the word to store the value read.
2364 *
2365 * Reads a byte or word from the NVM using the flash access registers.
2366 **/
2367 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2368 u8 size, u16 *data)
2369 {
2370 union ich8_hws_flash_status hsfsts;
2371 union ich8_hws_flash_ctrl hsflctl;
2372 u32 flash_linear_addr;
2373 u32 flash_data = 0;
2374 s32 ret_val = -E1000_ERR_NVM;
2375 u8 count = 0;
2376
2377 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2378 return -E1000_ERR_NVM;
2379
2380 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2381 hw->nvm.flash_base_addr;
2382
2383 do {
2384 udelay(1);
2385 /* Steps */
2386 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2387 if (ret_val != 0)
2388 break;
2389
2390 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2391 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2392 hsflctl.hsf_ctrl.fldbcount = size - 1;
2393 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2394 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2395
2396 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2397
2398 ret_val = e1000_flash_cycle_ich8lan(hw,
2399 ICH_FLASH_READ_COMMAND_TIMEOUT);
2400
2401 /*
2402 * Check if FCERR is set to 1, if set to 1, clear it
2403 * and try the whole sequence a few more times, else
2404 * read in (shift in) the Flash Data0, the order is
2405 * least significant byte first msb to lsb
2406 */
2407 if (ret_val == 0) {
2408 flash_data = er32flash(ICH_FLASH_FDATA0);
2409 if (size == 1)
2410 *data = (u8)(flash_data & 0x000000FF);
2411 else if (size == 2)
2412 *data = (u16)(flash_data & 0x0000FFFF);
2413 break;
2414 } else {
2415 /*
2416 * If we've gotten here, then things are probably
2417 * completely hosed, but if the error condition is
2418 * detected, it won't hurt to give it another try...
2419 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2420 */
2421 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2422 if (hsfsts.hsf_status.flcerr == 1) {
2423 /* Repeat for some time before giving up. */
2424 continue;
2425 } else if (hsfsts.hsf_status.flcdone == 0) {
2426 e_dbg("Timeout error - flash cycle "
2427 "did not complete.\n");
2428 break;
2429 }
2430 }
2431 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2432
2433 return ret_val;
2434 }
2435
2436 /**
2437 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2438 * @hw: pointer to the HW structure
2439 * @offset: The offset (in bytes) of the word(s) to write.
2440 * @words: Size of data to write in words
2441 * @data: Pointer to the word(s) to write at offset.
2442 *
2443 * Writes a byte or word to the NVM using the flash access registers.
2444 **/
2445 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2446 u16 *data)
2447 {
2448 struct e1000_nvm_info *nvm = &hw->nvm;
2449 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2450 u16 i;
2451
2452 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2453 (words == 0)) {
2454 e_dbg("nvm parameter(s) out of bounds\n");
2455 return -E1000_ERR_NVM;
2456 }
2457
2458 nvm->ops.acquire(hw);
2459
2460 for (i = 0; i < words; i++) {
2461 dev_spec->shadow_ram[offset+i].modified = true;
2462 dev_spec->shadow_ram[offset+i].value = data[i];
2463 }
2464
2465 nvm->ops.release(hw);
2466
2467 return 0;
2468 }
2469
2470 /**
2471 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2472 * @hw: pointer to the HW structure
2473 *
2474 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2475 * which writes the checksum to the shadow ram. The changes in the shadow
2476 * ram are then committed to the EEPROM by processing each bank at a time
2477 * checking for the modified bit and writing only the pending changes.
2478 * After a successful commit, the shadow ram is cleared and is ready for
2479 * future writes.
2480 **/
2481 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2482 {
2483 struct e1000_nvm_info *nvm = &hw->nvm;
2484 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2485 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2486 s32 ret_val;
2487 u16 data;
2488
2489 ret_val = e1000e_update_nvm_checksum_generic(hw);
2490 if (ret_val)
2491 goto out;
2492
2493 if (nvm->type != e1000_nvm_flash_sw)
2494 goto out;
2495
2496 nvm->ops.acquire(hw);
2497
2498 /*
2499 * We're writing to the opposite bank so if we're on bank 1,
2500 * write to bank 0 etc. We also need to erase the segment that
2501 * is going to be written
2502 */
2503 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2504 if (ret_val) {
2505 e_dbg("Could not detect valid bank, assuming bank 0\n");
2506 bank = 0;
2507 }
2508
2509 if (bank == 0) {
2510 new_bank_offset = nvm->flash_bank_size;
2511 old_bank_offset = 0;
2512 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2513 if (ret_val)
2514 goto release;
2515 } else {
2516 old_bank_offset = nvm->flash_bank_size;
2517 new_bank_offset = 0;
2518 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2519 if (ret_val)
2520 goto release;
2521 }
2522
2523 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2524 /*
2525 * Determine whether to write the value stored
2526 * in the other NVM bank or a modified value stored
2527 * in the shadow RAM
2528 */
2529 if (dev_spec->shadow_ram[i].modified) {
2530 data = dev_spec->shadow_ram[i].value;
2531 } else {
2532 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2533 old_bank_offset,
2534 &data);
2535 if (ret_val)
2536 break;
2537 }
2538
2539 /*
2540 * If the word is 0x13, then make sure the signature bits
2541 * (15:14) are 11b until the commit has completed.
2542 * This will allow us to write 10b which indicates the
2543 * signature is valid. We want to do this after the write
2544 * has completed so that we don't mark the segment valid
2545 * while the write is still in progress
2546 */
2547 if (i == E1000_ICH_NVM_SIG_WORD)
2548 data |= E1000_ICH_NVM_SIG_MASK;
2549
2550 /* Convert offset to bytes. */
2551 act_offset = (i + new_bank_offset) << 1;
2552
2553 udelay(100);
2554 /* Write the bytes to the new bank. */
2555 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2556 act_offset,
2557 (u8)data);
2558 if (ret_val)
2559 break;
2560
2561 udelay(100);
2562 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2563 act_offset + 1,
2564 (u8)(data >> 8));
2565 if (ret_val)
2566 break;
2567 }
2568
2569 /*
2570 * Don't bother writing the segment valid bits if sector
2571 * programming failed.
2572 */
2573 if (ret_val) {
2574 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2575 e_dbg("Flash commit failed.\n");
2576 goto release;
2577 }
2578
2579 /*
2580 * Finally validate the new segment by setting bit 15:14
2581 * to 10b in word 0x13 , this can be done without an
2582 * erase as well since these bits are 11 to start with
2583 * and we need to change bit 14 to 0b
2584 */
2585 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2586 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2587 if (ret_val)
2588 goto release;
2589
2590 data &= 0xBFFF;
2591 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2592 act_offset * 2 + 1,
2593 (u8)(data >> 8));
2594 if (ret_val)
2595 goto release;
2596
2597 /*
2598 * And invalidate the previously valid segment by setting
2599 * its signature word (0x13) high_byte to 0b. This can be
2600 * done without an erase because flash erase sets all bits
2601 * to 1's. We can write 1's to 0's without an erase
2602 */
2603 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2604 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2605 if (ret_val)
2606 goto release;
2607
2608 /* Great! Everything worked, we can now clear the cached entries. */
2609 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2610 dev_spec->shadow_ram[i].modified = false;
2611 dev_spec->shadow_ram[i].value = 0xFFFF;
2612 }
2613
2614 release:
2615 nvm->ops.release(hw);
2616
2617 /*
2618 * Reload the EEPROM, or else modifications will not appear
2619 * until after the next adapter reset.
2620 */
2621 if (!ret_val) {
2622 e1000e_reload_nvm(hw);
2623 usleep_range(10000, 20000);
2624 }
2625
2626 out:
2627 if (ret_val)
2628 e_dbg("NVM update error: %d\n", ret_val);
2629
2630 return ret_val;
2631 }
2632
2633 /**
2634 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2635 * @hw: pointer to the HW structure
2636 *
2637 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2638 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2639 * calculated, in which case we need to calculate the checksum and set bit 6.
2640 **/
2641 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2642 {
2643 s32 ret_val;
2644 u16 data;
2645
2646 /*
2647 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2648 * needs to be fixed. This bit is an indication that the NVM
2649 * was prepared by OEM software and did not calculate the
2650 * checksum...a likely scenario.
2651 */
2652 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2653 if (ret_val)
2654 return ret_val;
2655
2656 if ((data & 0x40) == 0) {
2657 data |= 0x40;
2658 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2659 if (ret_val)
2660 return ret_val;
2661 ret_val = e1000e_update_nvm_checksum(hw);
2662 if (ret_val)
2663 return ret_val;
2664 }
2665
2666 return e1000e_validate_nvm_checksum_generic(hw);
2667 }
2668
2669 /**
2670 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2671 * @hw: pointer to the HW structure
2672 *
2673 * To prevent malicious write/erase of the NVM, set it to be read-only
2674 * so that the hardware ignores all write/erase cycles of the NVM via
2675 * the flash control registers. The shadow-ram copy of the NVM will
2676 * still be updated, however any updates to this copy will not stick
2677 * across driver reloads.
2678 **/
2679 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2680 {
2681 struct e1000_nvm_info *nvm = &hw->nvm;
2682 union ich8_flash_protected_range pr0;
2683 union ich8_hws_flash_status hsfsts;
2684 u32 gfpreg;
2685
2686 nvm->ops.acquire(hw);
2687
2688 gfpreg = er32flash(ICH_FLASH_GFPREG);
2689
2690 /* Write-protect GbE Sector of NVM */
2691 pr0.regval = er32flash(ICH_FLASH_PR0);
2692 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2693 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2694 pr0.range.wpe = true;
2695 ew32flash(ICH_FLASH_PR0, pr0.regval);
2696
2697 /*
2698 * Lock down a subset of GbE Flash Control Registers, e.g.
2699 * PR0 to prevent the write-protection from being lifted.
2700 * Once FLOCKDN is set, the registers protected by it cannot
2701 * be written until FLOCKDN is cleared by a hardware reset.
2702 */
2703 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2704 hsfsts.hsf_status.flockdn = true;
2705 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2706
2707 nvm->ops.release(hw);
2708 }
2709
2710 /**
2711 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2712 * @hw: pointer to the HW structure
2713 * @offset: The offset (in bytes) of the byte/word to read.
2714 * @size: Size of data to read, 1=byte 2=word
2715 * @data: The byte(s) to write to the NVM.
2716 *
2717 * Writes one/two bytes to the NVM using the flash access registers.
2718 **/
2719 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2720 u8 size, u16 data)
2721 {
2722 union ich8_hws_flash_status hsfsts;
2723 union ich8_hws_flash_ctrl hsflctl;
2724 u32 flash_linear_addr;
2725 u32 flash_data = 0;
2726 s32 ret_val;
2727 u8 count = 0;
2728
2729 if (size < 1 || size > 2 || data > size * 0xff ||
2730 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2731 return -E1000_ERR_NVM;
2732
2733 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2734 hw->nvm.flash_base_addr;
2735
2736 do {
2737 udelay(1);
2738 /* Steps */
2739 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2740 if (ret_val)
2741 break;
2742
2743 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2744 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2745 hsflctl.hsf_ctrl.fldbcount = size -1;
2746 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2747 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2748
2749 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2750
2751 if (size == 1)
2752 flash_data = (u32)data & 0x00FF;
2753 else
2754 flash_data = (u32)data;
2755
2756 ew32flash(ICH_FLASH_FDATA0, flash_data);
2757
2758 /*
2759 * check if FCERR is set to 1 , if set to 1, clear it
2760 * and try the whole sequence a few more times else done
2761 */
2762 ret_val = e1000_flash_cycle_ich8lan(hw,
2763 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2764 if (!ret_val)
2765 break;
2766
2767 /*
2768 * If we're here, then things are most likely
2769 * completely hosed, but if the error condition
2770 * is detected, it won't hurt to give it another
2771 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2772 */
2773 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2774 if (hsfsts.hsf_status.flcerr == 1)
2775 /* Repeat for some time before giving up. */
2776 continue;
2777 if (hsfsts.hsf_status.flcdone == 0) {
2778 e_dbg("Timeout error - flash cycle "
2779 "did not complete.");
2780 break;
2781 }
2782 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2783
2784 return ret_val;
2785 }
2786
2787 /**
2788 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2789 * @hw: pointer to the HW structure
2790 * @offset: The index of the byte to read.
2791 * @data: The byte to write to the NVM.
2792 *
2793 * Writes a single byte to the NVM using the flash access registers.
2794 **/
2795 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2796 u8 data)
2797 {
2798 u16 word = (u16)data;
2799
2800 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2801 }
2802
2803 /**
2804 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2805 * @hw: pointer to the HW structure
2806 * @offset: The offset of the byte to write.
2807 * @byte: The byte to write to the NVM.
2808 *
2809 * Writes a single byte to the NVM using the flash access registers.
2810 * Goes through a retry algorithm before giving up.
2811 **/
2812 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2813 u32 offset, u8 byte)
2814 {
2815 s32 ret_val;
2816 u16 program_retries;
2817
2818 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2819 if (!ret_val)
2820 return ret_val;
2821
2822 for (program_retries = 0; program_retries < 100; program_retries++) {
2823 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2824 udelay(100);
2825 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2826 if (!ret_val)
2827 break;
2828 }
2829 if (program_retries == 100)
2830 return -E1000_ERR_NVM;
2831
2832 return 0;
2833 }
2834
2835 /**
2836 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2837 * @hw: pointer to the HW structure
2838 * @bank: 0 for first bank, 1 for second bank, etc.
2839 *
2840 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2841 * bank N is 4096 * N + flash_reg_addr.
2842 **/
2843 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2844 {
2845 struct e1000_nvm_info *nvm = &hw->nvm;
2846 union ich8_hws_flash_status hsfsts;
2847 union ich8_hws_flash_ctrl hsflctl;
2848 u32 flash_linear_addr;
2849 /* bank size is in 16bit words - adjust to bytes */
2850 u32 flash_bank_size = nvm->flash_bank_size * 2;
2851 s32 ret_val;
2852 s32 count = 0;
2853 s32 j, iteration, sector_size;
2854
2855 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2856
2857 /*
2858 * Determine HW Sector size: Read BERASE bits of hw flash status
2859 * register
2860 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2861 * consecutive sectors. The start index for the nth Hw sector
2862 * can be calculated as = bank * 4096 + n * 256
2863 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2864 * The start index for the nth Hw sector can be calculated
2865 * as = bank * 4096
2866 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2867 * (ich9 only, otherwise error condition)
2868 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2869 */
2870 switch (hsfsts.hsf_status.berasesz) {
2871 case 0:
2872 /* Hw sector size 256 */
2873 sector_size = ICH_FLASH_SEG_SIZE_256;
2874 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2875 break;
2876 case 1:
2877 sector_size = ICH_FLASH_SEG_SIZE_4K;
2878 iteration = 1;
2879 break;
2880 case 2:
2881 sector_size = ICH_FLASH_SEG_SIZE_8K;
2882 iteration = 1;
2883 break;
2884 case 3:
2885 sector_size = ICH_FLASH_SEG_SIZE_64K;
2886 iteration = 1;
2887 break;
2888 default:
2889 return -E1000_ERR_NVM;
2890 }
2891
2892 /* Start with the base address, then add the sector offset. */
2893 flash_linear_addr = hw->nvm.flash_base_addr;
2894 flash_linear_addr += (bank) ? flash_bank_size : 0;
2895
2896 for (j = 0; j < iteration ; j++) {
2897 do {
2898 /* Steps */
2899 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2900 if (ret_val)
2901 return ret_val;
2902
2903 /*
2904 * Write a value 11 (block Erase) in Flash
2905 * Cycle field in hw flash control
2906 */
2907 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2908 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2909 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2910
2911 /*
2912 * Write the last 24 bits of an index within the
2913 * block into Flash Linear address field in Flash
2914 * Address.
2915 */
2916 flash_linear_addr += (j * sector_size);
2917 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2918
2919 ret_val = e1000_flash_cycle_ich8lan(hw,
2920 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2921 if (ret_val == 0)
2922 break;
2923
2924 /*
2925 * Check if FCERR is set to 1. If 1,
2926 * clear it and try the whole sequence
2927 * a few more times else Done
2928 */
2929 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2930 if (hsfsts.hsf_status.flcerr == 1)
2931 /* repeat for some time before giving up */
2932 continue;
2933 else if (hsfsts.hsf_status.flcdone == 0)
2934 return ret_val;
2935 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2936 }
2937
2938 return 0;
2939 }
2940
2941 /**
2942 * e1000_valid_led_default_ich8lan - Set the default LED settings
2943 * @hw: pointer to the HW structure
2944 * @data: Pointer to the LED settings
2945 *
2946 * Reads the LED default settings from the NVM to data. If the NVM LED
2947 * settings is all 0's or F's, set the LED default to a valid LED default
2948 * setting.
2949 **/
2950 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2951 {
2952 s32 ret_val;
2953
2954 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2955 if (ret_val) {
2956 e_dbg("NVM Read Error\n");
2957 return ret_val;
2958 }
2959
2960 if (*data == ID_LED_RESERVED_0000 ||
2961 *data == ID_LED_RESERVED_FFFF)
2962 *data = ID_LED_DEFAULT_ICH8LAN;
2963
2964 return 0;
2965 }
2966
2967 /**
2968 * e1000_id_led_init_pchlan - store LED configurations
2969 * @hw: pointer to the HW structure
2970 *
2971 * PCH does not control LEDs via the LEDCTL register, rather it uses
2972 * the PHY LED configuration register.
2973 *
2974 * PCH also does not have an "always on" or "always off" mode which
2975 * complicates the ID feature. Instead of using the "on" mode to indicate
2976 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2977 * use "link_up" mode. The LEDs will still ID on request if there is no
2978 * link based on logic in e1000_led_[on|off]_pchlan().
2979 **/
2980 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2981 {
2982 struct e1000_mac_info *mac = &hw->mac;
2983 s32 ret_val;
2984 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2985 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2986 u16 data, i, temp, shift;
2987
2988 /* Get default ID LED modes */
2989 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2990 if (ret_val)
2991 goto out;
2992
2993 mac->ledctl_default = er32(LEDCTL);
2994 mac->ledctl_mode1 = mac->ledctl_default;
2995 mac->ledctl_mode2 = mac->ledctl_default;
2996
2997 for (i = 0; i < 4; i++) {
2998 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2999 shift = (i * 5);
3000 switch (temp) {
3001 case ID_LED_ON1_DEF2:
3002 case ID_LED_ON1_ON2:
3003 case ID_LED_ON1_OFF2:
3004 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3005 mac->ledctl_mode1 |= (ledctl_on << shift);
3006 break;
3007 case ID_LED_OFF1_DEF2:
3008 case ID_LED_OFF1_ON2:
3009 case ID_LED_OFF1_OFF2:
3010 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3011 mac->ledctl_mode1 |= (ledctl_off << shift);
3012 break;
3013 default:
3014 /* Do nothing */
3015 break;
3016 }
3017 switch (temp) {
3018 case ID_LED_DEF1_ON2:
3019 case ID_LED_ON1_ON2:
3020 case ID_LED_OFF1_ON2:
3021 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3022 mac->ledctl_mode2 |= (ledctl_on << shift);
3023 break;
3024 case ID_LED_DEF1_OFF2:
3025 case ID_LED_ON1_OFF2:
3026 case ID_LED_OFF1_OFF2:
3027 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3028 mac->ledctl_mode2 |= (ledctl_off << shift);
3029 break;
3030 default:
3031 /* Do nothing */
3032 break;
3033 }
3034 }
3035
3036 out:
3037 return ret_val;
3038 }
3039
3040 /**
3041 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3042 * @hw: pointer to the HW structure
3043 *
3044 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3045 * register, so the the bus width is hard coded.
3046 **/
3047 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3048 {
3049 struct e1000_bus_info *bus = &hw->bus;
3050 s32 ret_val;
3051
3052 ret_val = e1000e_get_bus_info_pcie(hw);
3053
3054 /*
3055 * ICH devices are "PCI Express"-ish. They have
3056 * a configuration space, but do not contain
3057 * PCI Express Capability registers, so bus width
3058 * must be hardcoded.
3059 */
3060 if (bus->width == e1000_bus_width_unknown)
3061 bus->width = e1000_bus_width_pcie_x1;
3062
3063 return ret_val;
3064 }
3065
3066 /**
3067 * e1000_reset_hw_ich8lan - Reset the hardware
3068 * @hw: pointer to the HW structure
3069 *
3070 * Does a full reset of the hardware which includes a reset of the PHY and
3071 * MAC.
3072 **/
3073 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3074 {
3075 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3076 u16 reg;
3077 u32 ctrl, kab;
3078 s32 ret_val;
3079
3080 /*
3081 * Prevent the PCI-E bus from sticking if there is no TLP connection
3082 * on the last TLP read/write transaction when MAC is reset.
3083 */
3084 ret_val = e1000e_disable_pcie_master(hw);
3085 if (ret_val)
3086 e_dbg("PCI-E Master disable polling has failed.\n");
3087
3088 e_dbg("Masking off all interrupts\n");
3089 ew32(IMC, 0xffffffff);
3090
3091 /*
3092 * Disable the Transmit and Receive units. Then delay to allow
3093 * any pending transactions to complete before we hit the MAC
3094 * with the global reset.
3095 */
3096 ew32(RCTL, 0);
3097 ew32(TCTL, E1000_TCTL_PSP);
3098 e1e_flush();
3099
3100 usleep_range(10000, 20000);
3101
3102 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3103 if (hw->mac.type == e1000_ich8lan) {
3104 /* Set Tx and Rx buffer allocation to 8k apiece. */
3105 ew32(PBA, E1000_PBA_8K);
3106 /* Set Packet Buffer Size to 16k. */
3107 ew32(PBS, E1000_PBS_16K);
3108 }
3109
3110 if (hw->mac.type == e1000_pchlan) {
3111 /* Save the NVM K1 bit setting*/
3112 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3113 if (ret_val)
3114 return ret_val;
3115
3116 if (reg & E1000_NVM_K1_ENABLE)
3117 dev_spec->nvm_k1_enabled = true;
3118 else
3119 dev_spec->nvm_k1_enabled = false;
3120 }
3121
3122 ctrl = er32(CTRL);
3123
3124 if (!e1000_check_reset_block(hw)) {
3125 /*
3126 * Full-chip reset requires MAC and PHY reset at the same
3127 * time to make sure the interface between MAC and the
3128 * external PHY is reset.
3129 */
3130 ctrl |= E1000_CTRL_PHY_RST;
3131
3132 /*
3133 * Gate automatic PHY configuration by hardware on
3134 * non-managed 82579
3135 */
3136 if ((hw->mac.type == e1000_pch2lan) &&
3137 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3138 e1000_gate_hw_phy_config_ich8lan(hw, true);
3139 }
3140 ret_val = e1000_acquire_swflag_ich8lan(hw);
3141 e_dbg("Issuing a global reset to ich8lan\n");
3142 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3143 /* cannot issue a flush here because it hangs the hardware */
3144 msleep(20);
3145
3146 if (!ret_val)
3147 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3148
3149 if (ctrl & E1000_CTRL_PHY_RST) {
3150 ret_val = hw->phy.ops.get_cfg_done(hw);
3151 if (ret_val)
3152 goto out;
3153
3154 ret_val = e1000_post_phy_reset_ich8lan(hw);
3155 if (ret_val)
3156 goto out;
3157 }
3158
3159 /*
3160 * For PCH, this write will make sure that any noise
3161 * will be detected as a CRC error and be dropped rather than show up
3162 * as a bad packet to the DMA engine.
3163 */
3164 if (hw->mac.type == e1000_pchlan)
3165 ew32(CRC_OFFSET, 0x65656565);
3166
3167 ew32(IMC, 0xffffffff);
3168 er32(ICR);
3169
3170 kab = er32(KABGTXD);
3171 kab |= E1000_KABGTXD_BGSQLBIAS;
3172 ew32(KABGTXD, kab);
3173
3174 out:
3175 return ret_val;
3176 }
3177
3178 /**
3179 * e1000_init_hw_ich8lan - Initialize the hardware
3180 * @hw: pointer to the HW structure
3181 *
3182 * Prepares the hardware for transmit and receive by doing the following:
3183 * - initialize hardware bits
3184 * - initialize LED identification
3185 * - setup receive address registers
3186 * - setup flow control
3187 * - setup transmit descriptors
3188 * - clear statistics
3189 **/
3190 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3191 {
3192 struct e1000_mac_info *mac = &hw->mac;
3193 u32 ctrl_ext, txdctl, snoop;
3194 s32 ret_val;
3195 u16 i;
3196
3197 e1000_initialize_hw_bits_ich8lan(hw);
3198
3199 /* Initialize identification LED */
3200 ret_val = mac->ops.id_led_init(hw);
3201 if (ret_val)
3202 e_dbg("Error initializing identification LED\n");
3203 /* This is not fatal and we should not stop init due to this */
3204
3205 /* Setup the receive address. */
3206 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3207
3208 /* Zero out the Multicast HASH table */
3209 e_dbg("Zeroing the MTA\n");
3210 for (i = 0; i < mac->mta_reg_count; i++)
3211 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3212
3213 /*
3214 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3215 * the ME. Disable wakeup by clearing the host wakeup bit.
3216 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3217 */
3218 if (hw->phy.type == e1000_phy_82578) {
3219 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3220 i &= ~BM_WUC_HOST_WU_BIT;
3221 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3222 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3223 if (ret_val)
3224 return ret_val;
3225 }
3226
3227 /* Setup link and flow control */
3228 ret_val = e1000_setup_link_ich8lan(hw);
3229
3230 /* Set the transmit descriptor write-back policy for both queues */
3231 txdctl = er32(TXDCTL(0));
3232 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3233 E1000_TXDCTL_FULL_TX_DESC_WB;
3234 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3235 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3236 ew32(TXDCTL(0), txdctl);
3237 txdctl = er32(TXDCTL(1));
3238 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3239 E1000_TXDCTL_FULL_TX_DESC_WB;
3240 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3241 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3242 ew32(TXDCTL(1), txdctl);
3243
3244 /*
3245 * ICH8 has opposite polarity of no_snoop bits.
3246 * By default, we should use snoop behavior.
3247 */
3248 if (mac->type == e1000_ich8lan)
3249 snoop = PCIE_ICH8_SNOOP_ALL;
3250 else
3251 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3252 e1000e_set_pcie_no_snoop(hw, snoop);
3253
3254 ctrl_ext = er32(CTRL_EXT);
3255 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3256 ew32(CTRL_EXT, ctrl_ext);
3257
3258 /*
3259 * Clear all of the statistics registers (clear on read). It is
3260 * important that we do this after we have tried to establish link
3261 * because the symbol error count will increment wildly if there
3262 * is no link.
3263 */
3264 e1000_clear_hw_cntrs_ich8lan(hw);
3265
3266 return 0;
3267 }
3268 /**
3269 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3270 * @hw: pointer to the HW structure
3271 *
3272 * Sets/Clears required hardware bits necessary for correctly setting up the
3273 * hardware for transmit and receive.
3274 **/
3275 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3276 {
3277 u32 reg;
3278
3279 /* Extended Device Control */
3280 reg = er32(CTRL_EXT);
3281 reg |= (1 << 22);
3282 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3283 if (hw->mac.type >= e1000_pchlan)
3284 reg |= E1000_CTRL_EXT_PHYPDEN;
3285 ew32(CTRL_EXT, reg);
3286
3287 /* Transmit Descriptor Control 0 */
3288 reg = er32(TXDCTL(0));
3289 reg |= (1 << 22);
3290 ew32(TXDCTL(0), reg);
3291
3292 /* Transmit Descriptor Control 1 */
3293 reg = er32(TXDCTL(1));
3294 reg |= (1 << 22);
3295 ew32(TXDCTL(1), reg);
3296
3297 /* Transmit Arbitration Control 0 */
3298 reg = er32(TARC(0));
3299 if (hw->mac.type == e1000_ich8lan)
3300 reg |= (1 << 28) | (1 << 29);
3301 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3302 ew32(TARC(0), reg);
3303
3304 /* Transmit Arbitration Control 1 */
3305 reg = er32(TARC(1));
3306 if (er32(TCTL) & E1000_TCTL_MULR)
3307 reg &= ~(1 << 28);
3308 else
3309 reg |= (1 << 28);
3310 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3311 ew32(TARC(1), reg);
3312
3313 /* Device Status */
3314 if (hw->mac.type == e1000_ich8lan) {
3315 reg = er32(STATUS);
3316 reg &= ~(1 << 31);
3317 ew32(STATUS, reg);
3318 }
3319
3320 /*
3321 * work-around descriptor data corruption issue during nfs v2 udp
3322 * traffic, just disable the nfs filtering capability
3323 */
3324 reg = er32(RFCTL);
3325 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3326 ew32(RFCTL, reg);
3327 }
3328
3329 /**
3330 * e1000_setup_link_ich8lan - Setup flow control and link settings
3331 * @hw: pointer to the HW structure
3332 *
3333 * Determines which flow control settings to use, then configures flow
3334 * control. Calls the appropriate media-specific link configuration
3335 * function. Assuming the adapter has a valid link partner, a valid link
3336 * should be established. Assumes the hardware has previously been reset
3337 * and the transmitter and receiver are not enabled.
3338 **/
3339 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3340 {
3341 s32 ret_val;
3342
3343 if (e1000_check_reset_block(hw))
3344 return 0;
3345
3346 /*
3347 * ICH parts do not have a word in the NVM to determine
3348 * the default flow control setting, so we explicitly
3349 * set it to full.
3350 */
3351 if (hw->fc.requested_mode == e1000_fc_default) {
3352 /* Workaround h/w hang when Tx flow control enabled */
3353 if (hw->mac.type == e1000_pchlan)
3354 hw->fc.requested_mode = e1000_fc_rx_pause;
3355 else
3356 hw->fc.requested_mode = e1000_fc_full;
3357 }
3358
3359 /*
3360 * Save off the requested flow control mode for use later. Depending
3361 * on the link partner's capabilities, we may or may not use this mode.
3362 */
3363 hw->fc.current_mode = hw->fc.requested_mode;
3364
3365 e_dbg("After fix-ups FlowControl is now = %x\n",
3366 hw->fc.current_mode);
3367
3368 /* Continue to configure the copper link. */
3369 ret_val = e1000_setup_copper_link_ich8lan(hw);
3370 if (ret_val)
3371 return ret_val;
3372
3373 ew32(FCTTV, hw->fc.pause_time);
3374 if ((hw->phy.type == e1000_phy_82578) ||
3375 (hw->phy.type == e1000_phy_82579) ||
3376 (hw->phy.type == e1000_phy_82577)) {
3377 ew32(FCRTV_PCH, hw->fc.refresh_time);
3378
3379 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3380 hw->fc.pause_time);
3381 if (ret_val)
3382 return ret_val;
3383 }
3384
3385 return e1000e_set_fc_watermarks(hw);
3386 }
3387
3388 /**
3389 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3390 * @hw: pointer to the HW structure
3391 *
3392 * Configures the kumeran interface to the PHY to wait the appropriate time
3393 * when polling the PHY, then call the generic setup_copper_link to finish
3394 * configuring the copper link.
3395 **/
3396 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3397 {
3398 u32 ctrl;
3399 s32 ret_val;
3400 u16 reg_data;
3401
3402 ctrl = er32(CTRL);
3403 ctrl |= E1000_CTRL_SLU;
3404 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3405 ew32(CTRL, ctrl);
3406
3407 /*
3408 * Set the mac to wait the maximum time between each iteration
3409 * and increase the max iterations when polling the phy;
3410 * this fixes erroneous timeouts at 10Mbps.
3411 */
3412 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3413 if (ret_val)
3414 return ret_val;
3415 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3416 &reg_data);
3417 if (ret_val)
3418 return ret_val;
3419 reg_data |= 0x3F;
3420 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3421 reg_data);
3422 if (ret_val)
3423 return ret_val;
3424
3425 switch (hw->phy.type) {
3426 case e1000_phy_igp_3:
3427 ret_val = e1000e_copper_link_setup_igp(hw);
3428 if (ret_val)
3429 return ret_val;
3430 break;
3431 case e1000_phy_bm:
3432 case e1000_phy_82578:
3433 ret_val = e1000e_copper_link_setup_m88(hw);
3434 if (ret_val)
3435 return ret_val;
3436 break;
3437 case e1000_phy_82577:
3438 case e1000_phy_82579:
3439 ret_val = e1000_copper_link_setup_82577(hw);
3440 if (ret_val)
3441 return ret_val;
3442 break;
3443 case e1000_phy_ife:
3444 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3445 if (ret_val)
3446 return ret_val;
3447
3448 reg_data &= ~IFE_PMC_AUTO_MDIX;
3449
3450 switch (hw->phy.mdix) {
3451 case 1:
3452 reg_data &= ~IFE_PMC_FORCE_MDIX;
3453 break;
3454 case 2:
3455 reg_data |= IFE_PMC_FORCE_MDIX;
3456 break;
3457 case 0:
3458 default:
3459 reg_data |= IFE_PMC_AUTO_MDIX;
3460 break;
3461 }
3462 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3463 if (ret_val)
3464 return ret_val;
3465 break;
3466 default:
3467 break;
3468 }
3469 return e1000e_setup_copper_link(hw);
3470 }
3471
3472 /**
3473 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3474 * @hw: pointer to the HW structure
3475 * @speed: pointer to store current link speed
3476 * @duplex: pointer to store the current link duplex
3477 *
3478 * Calls the generic get_speed_and_duplex to retrieve the current link
3479 * information and then calls the Kumeran lock loss workaround for links at
3480 * gigabit speeds.
3481 **/
3482 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3483 u16 *duplex)
3484 {
3485 s32 ret_val;
3486
3487 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3488 if (ret_val)
3489 return ret_val;
3490
3491 if ((hw->mac.type == e1000_ich8lan) &&
3492 (hw->phy.type == e1000_phy_igp_3) &&
3493 (*speed == SPEED_1000)) {
3494 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3495 }
3496
3497 return ret_val;
3498 }
3499
3500 /**
3501 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3502 * @hw: pointer to the HW structure
3503 *
3504 * Work-around for 82566 Kumeran PCS lock loss:
3505 * On link status change (i.e. PCI reset, speed change) and link is up and
3506 * speed is gigabit-
3507 * 0) if workaround is optionally disabled do nothing
3508 * 1) wait 1ms for Kumeran link to come up
3509 * 2) check Kumeran Diagnostic register PCS lock loss bit
3510 * 3) if not set the link is locked (all is good), otherwise...
3511 * 4) reset the PHY
3512 * 5) repeat up to 10 times
3513 * Note: this is only called for IGP3 copper when speed is 1gb.
3514 **/
3515 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3516 {
3517 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3518 u32 phy_ctrl;
3519 s32 ret_val;
3520 u16 i, data;
3521 bool link;
3522
3523 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3524 return 0;
3525
3526 /*
3527 * Make sure link is up before proceeding. If not just return.
3528 * Attempting this while link is negotiating fouled up link
3529 * stability
3530 */
3531 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3532 if (!link)
3533 return 0;
3534
3535 for (i = 0; i < 10; i++) {
3536 /* read once to clear */
3537 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3538 if (ret_val)
3539 return ret_val;
3540 /* and again to get new status */
3541 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3542 if (ret_val)
3543 return ret_val;
3544
3545 /* check for PCS lock */
3546 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3547 return 0;
3548
3549 /* Issue PHY reset */
3550 e1000_phy_hw_reset(hw);
3551 mdelay(5);
3552 }
3553 /* Disable GigE link negotiation */
3554 phy_ctrl = er32(PHY_CTRL);
3555 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3556 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3557 ew32(PHY_CTRL, phy_ctrl);
3558
3559 /*
3560 * Call gig speed drop workaround on Gig disable before accessing
3561 * any PHY registers
3562 */
3563 e1000e_gig_downshift_workaround_ich8lan(hw);
3564
3565 /* unable to acquire PCS lock */
3566 return -E1000_ERR_PHY;
3567 }
3568
3569 /**
3570 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3571 * @hw: pointer to the HW structure
3572 * @state: boolean value used to set the current Kumeran workaround state
3573 *
3574 * If ICH8, set the current Kumeran workaround state (enabled - true
3575 * /disabled - false).
3576 **/
3577 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3578 bool state)
3579 {
3580 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3581
3582 if (hw->mac.type != e1000_ich8lan) {
3583 e_dbg("Workaround applies to ICH8 only.\n");
3584 return;
3585 }
3586
3587 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3588 }
3589
3590 /**
3591 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3592 * @hw: pointer to the HW structure
3593 *
3594 * Workaround for 82566 power-down on D3 entry:
3595 * 1) disable gigabit link
3596 * 2) write VR power-down enable
3597 * 3) read it back
3598 * Continue if successful, else issue LCD reset and repeat
3599 **/
3600 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3601 {
3602 u32 reg;
3603 u16 data;
3604 u8 retry = 0;
3605
3606 if (hw->phy.type != e1000_phy_igp_3)
3607 return;
3608
3609 /* Try the workaround twice (if needed) */
3610 do {
3611 /* Disable link */
3612 reg = er32(PHY_CTRL);
3613 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3614 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3615 ew32(PHY_CTRL, reg);
3616
3617 /*
3618 * Call gig speed drop workaround on Gig disable before
3619 * accessing any PHY registers
3620 */
3621 if (hw->mac.type == e1000_ich8lan)
3622 e1000e_gig_downshift_workaround_ich8lan(hw);
3623
3624 /* Write VR power-down enable */
3625 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3626 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3627 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3628
3629 /* Read it back and test */
3630 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3631 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3632 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3633 break;
3634
3635 /* Issue PHY reset and repeat at most one more time */
3636 reg = er32(CTRL);
3637 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3638 retry++;
3639 } while (retry);
3640 }
3641
3642 /**
3643 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3644 * @hw: pointer to the HW structure
3645 *
3646 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3647 * LPLU, Gig disable, MDIC PHY reset):
3648 * 1) Set Kumeran Near-end loopback
3649 * 2) Clear Kumeran Near-end loopback
3650 * Should only be called for ICH8[m] devices with any 1G Phy.
3651 **/
3652 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3653 {
3654 s32 ret_val;
3655 u16 reg_data;
3656
3657 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3658 return;
3659
3660 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3661 &reg_data);
3662 if (ret_val)
3663 return;
3664 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3665 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3666 reg_data);
3667 if (ret_val)
3668 return;
3669 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3670 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3671 reg_data);
3672 }
3673
3674 /**
3675 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3676 * @hw: pointer to the HW structure
3677 *
3678 * During S0 to Sx transition, it is possible the link remains at gig
3679 * instead of negotiating to a lower speed. Before going to Sx, set
3680 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3681 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3682 * (LED, GbE disable and LPLU configurations) also needs to be written.
3683 **/
3684 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3685 {
3686 u32 phy_ctrl;
3687 s32 ret_val;
3688
3689 phy_ctrl = er32(PHY_CTRL);
3690 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3691 ew32(PHY_CTRL, phy_ctrl);
3692
3693 if (hw->mac.type == e1000_ich8lan)
3694 e1000e_gig_downshift_workaround_ich8lan(hw);
3695
3696 if (hw->mac.type >= e1000_pchlan) {
3697 e1000_oem_bits_config_ich8lan(hw, false);
3698 e1000_phy_hw_reset_ich8lan(hw);
3699 ret_val = hw->phy.ops.acquire(hw);
3700 if (ret_val)
3701 return;
3702 e1000_write_smbus_addr(hw);
3703 hw->phy.ops.release(hw);
3704 }
3705 }
3706
3707 /**
3708 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3709 * @hw: pointer to the HW structure
3710 *
3711 * During Sx to S0 transitions on non-managed devices or managed devices
3712 * on which PHY resets are not blocked, if the PHY registers cannot be
3713 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3714 * the PHY.
3715 **/
3716 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3717 {
3718 u32 fwsm;
3719
3720 if (hw->mac.type != e1000_pch2lan)
3721 return;
3722
3723 fwsm = er32(FWSM);
3724 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3725 u16 phy_id1, phy_id2;
3726 s32 ret_val;
3727
3728 ret_val = hw->phy.ops.acquire(hw);
3729 if (ret_val) {
3730 e_dbg("Failed to acquire PHY semaphore in resume\n");
3731 return;
3732 }
3733
3734 /* Test access to the PHY registers by reading the ID regs */
3735 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3736 if (ret_val)
3737 goto release;
3738 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3739 if (ret_val)
3740 goto release;
3741
3742 if (hw->phy.id == ((u32)(phy_id1 << 16) |
3743 (u32)(phy_id2 & PHY_REVISION_MASK)))
3744 goto release;
3745
3746 e1000_toggle_lanphypc_value_ich8lan(hw);
3747
3748 hw->phy.ops.release(hw);
3749 msleep(50);
3750 e1000_phy_hw_reset(hw);
3751 msleep(50);
3752 return;
3753 }
3754
3755 release:
3756 hw->phy.ops.release(hw);
3757
3758 return;
3759 }
3760
3761 /**
3762 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3763 * @hw: pointer to the HW structure
3764 *
3765 * Return the LED back to the default configuration.
3766 **/
3767 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3768 {
3769 if (hw->phy.type == e1000_phy_ife)
3770 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3771
3772 ew32(LEDCTL, hw->mac.ledctl_default);
3773 return 0;
3774 }
3775
3776 /**
3777 * e1000_led_on_ich8lan - Turn LEDs on
3778 * @hw: pointer to the HW structure
3779 *
3780 * Turn on the LEDs.
3781 **/
3782 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3783 {
3784 if (hw->phy.type == e1000_phy_ife)
3785 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3786 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3787
3788 ew32(LEDCTL, hw->mac.ledctl_mode2);
3789 return 0;
3790 }
3791
3792 /**
3793 * e1000_led_off_ich8lan - Turn LEDs off
3794 * @hw: pointer to the HW structure
3795 *
3796 * Turn off the LEDs.
3797 **/
3798 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3799 {
3800 if (hw->phy.type == e1000_phy_ife)
3801 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3802 (IFE_PSCL_PROBE_MODE |
3803 IFE_PSCL_PROBE_LEDS_OFF));
3804
3805 ew32(LEDCTL, hw->mac.ledctl_mode1);
3806 return 0;
3807 }
3808
3809 /**
3810 * e1000_setup_led_pchlan - Configures SW controllable LED
3811 * @hw: pointer to the HW structure
3812 *
3813 * This prepares the SW controllable LED for use.
3814 **/
3815 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3816 {
3817 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3818 }
3819
3820 /**
3821 * e1000_cleanup_led_pchlan - Restore the default LED operation
3822 * @hw: pointer to the HW structure
3823 *
3824 * Return the LED back to the default configuration.
3825 **/
3826 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3827 {
3828 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3829 }
3830
3831 /**
3832 * e1000_led_on_pchlan - Turn LEDs on
3833 * @hw: pointer to the HW structure
3834 *
3835 * Turn on the LEDs.
3836 **/
3837 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3838 {
3839 u16 data = (u16)hw->mac.ledctl_mode2;
3840 u32 i, led;
3841
3842 /*
3843 * If no link, then turn LED on by setting the invert bit
3844 * for each LED that's mode is "link_up" in ledctl_mode2.
3845 */
3846 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3847 for (i = 0; i < 3; i++) {
3848 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3849 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3850 E1000_LEDCTL_MODE_LINK_UP)
3851 continue;
3852 if (led & E1000_PHY_LED0_IVRT)
3853 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3854 else
3855 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3856 }
3857 }
3858
3859 return e1e_wphy(hw, HV_LED_CONFIG, data);
3860 }
3861
3862 /**
3863 * e1000_led_off_pchlan - Turn LEDs off
3864 * @hw: pointer to the HW structure
3865 *
3866 * Turn off the LEDs.
3867 **/
3868 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3869 {
3870 u16 data = (u16)hw->mac.ledctl_mode1;
3871 u32 i, led;
3872
3873 /*
3874 * If no link, then turn LED off by clearing the invert bit
3875 * for each LED that's mode is "link_up" in ledctl_mode1.
3876 */
3877 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3878 for (i = 0; i < 3; i++) {
3879 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3880 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3881 E1000_LEDCTL_MODE_LINK_UP)
3882 continue;
3883 if (led & E1000_PHY_LED0_IVRT)
3884 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3885 else
3886 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3887 }
3888 }
3889
3890 return e1e_wphy(hw, HV_LED_CONFIG, data);
3891 }
3892
3893 /**
3894 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3895 * @hw: pointer to the HW structure
3896 *
3897 * Read appropriate register for the config done bit for completion status
3898 * and configure the PHY through s/w for EEPROM-less parts.
3899 *
3900 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3901 * config done bit, so only an error is logged and continues. If we were
3902 * to return with error, EEPROM-less silicon would not be able to be reset
3903 * or change link.
3904 **/
3905 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3906 {
3907 s32 ret_val = 0;
3908 u32 bank = 0;
3909 u32 status;
3910
3911 e1000e_get_cfg_done(hw);
3912
3913 /* Wait for indication from h/w that it has completed basic config */
3914 if (hw->mac.type >= e1000_ich10lan) {
3915 e1000_lan_init_done_ich8lan(hw);
3916 } else {
3917 ret_val = e1000e_get_auto_rd_done(hw);
3918 if (ret_val) {
3919 /*
3920 * When auto config read does not complete, do not
3921 * return with an error. This can happen in situations
3922 * where there is no eeprom and prevents getting link.
3923 */
3924 e_dbg("Auto Read Done did not complete\n");
3925 ret_val = 0;
3926 }
3927 }
3928
3929 /* Clear PHY Reset Asserted bit */
3930 status = er32(STATUS);
3931 if (status & E1000_STATUS_PHYRA)
3932 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3933 else
3934 e_dbg("PHY Reset Asserted not set - needs delay\n");
3935
3936 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3937 if (hw->mac.type <= e1000_ich9lan) {
3938 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3939 (hw->phy.type == e1000_phy_igp_3)) {
3940 e1000e_phy_init_script_igp3(hw);
3941 }
3942 } else {
3943 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3944 /* Maybe we should do a basic PHY config */
3945 e_dbg("EEPROM not present\n");
3946 ret_val = -E1000_ERR_CONFIG;
3947 }
3948 }
3949
3950 return ret_val;
3951 }
3952
3953 /**
3954 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3955 * @hw: pointer to the HW structure
3956 *
3957 * In the case of a PHY power down to save power, or to turn off link during a
3958 * driver unload, or wake on lan is not enabled, remove the link.
3959 **/
3960 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3961 {
3962 /* If the management interface is not enabled, then power down */
3963 if (!(hw->mac.ops.check_mng_mode(hw) ||
3964 hw->phy.ops.check_reset_block(hw)))
3965 e1000_power_down_phy_copper(hw);
3966 }
3967
3968 /**
3969 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3970 * @hw: pointer to the HW structure
3971 *
3972 * Clears hardware counters specific to the silicon family and calls
3973 * clear_hw_cntrs_generic to clear all general purpose counters.
3974 **/
3975 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3976 {
3977 u16 phy_data;
3978 s32 ret_val;
3979
3980 e1000e_clear_hw_cntrs_base(hw);
3981
3982 er32(ALGNERRC);
3983 er32(RXERRC);
3984 er32(TNCRS);
3985 er32(CEXTERR);
3986 er32(TSCTC);
3987 er32(TSCTFC);
3988
3989 er32(MGTPRC);
3990 er32(MGTPDC);
3991 er32(MGTPTC);
3992
3993 er32(IAC);
3994 er32(ICRXOC);
3995
3996 /* Clear PHY statistics registers */
3997 if ((hw->phy.type == e1000_phy_82578) ||
3998 (hw->phy.type == e1000_phy_82579) ||
3999 (hw->phy.type == e1000_phy_82577)) {
4000 ret_val = hw->phy.ops.acquire(hw);
4001 if (ret_val)
4002 return;
4003 ret_val = hw->phy.ops.set_page(hw,
4004 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4005 if (ret_val)
4006 goto release;
4007 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4008 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4009 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4010 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4011 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4012 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4013 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4014 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4015 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4016 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4017 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4018 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4019 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4020 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4021 release:
4022 hw->phy.ops.release(hw);
4023 }
4024 }
4025
4026 static const struct e1000_mac_operations ich8_mac_ops = {
4027 .id_led_init = e1000e_id_led_init,
4028 /* check_mng_mode dependent on mac type */
4029 .check_for_link = e1000_check_for_copper_link_ich8lan,
4030 /* cleanup_led dependent on mac type */
4031 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
4032 .get_bus_info = e1000_get_bus_info_ich8lan,
4033 .set_lan_id = e1000_set_lan_id_single_port,
4034 .get_link_up_info = e1000_get_link_up_info_ich8lan,
4035 /* led_on dependent on mac type */
4036 /* led_off dependent on mac type */
4037 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
4038 .reset_hw = e1000_reset_hw_ich8lan,
4039 .init_hw = e1000_init_hw_ich8lan,
4040 .setup_link = e1000_setup_link_ich8lan,
4041 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
4042 /* id_led_init dependent on mac type */
4043 };
4044
4045 static const struct e1000_phy_operations ich8_phy_ops = {
4046 .acquire = e1000_acquire_swflag_ich8lan,
4047 .check_reset_block = e1000_check_reset_block_ich8lan,
4048 .commit = NULL,
4049 .get_cfg_done = e1000_get_cfg_done_ich8lan,
4050 .get_cable_length = e1000e_get_cable_length_igp_2,
4051 .read_reg = e1000e_read_phy_reg_igp,
4052 .release = e1000_release_swflag_ich8lan,
4053 .reset = e1000_phy_hw_reset_ich8lan,
4054 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4055 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
4056 .write_reg = e1000e_write_phy_reg_igp,
4057 };
4058
4059 static const struct e1000_nvm_operations ich8_nvm_ops = {
4060 .acquire = e1000_acquire_nvm_ich8lan,
4061 .read = e1000_read_nvm_ich8lan,
4062 .release = e1000_release_nvm_ich8lan,
4063 .update = e1000_update_nvm_checksum_ich8lan,
4064 .valid_led_default = e1000_valid_led_default_ich8lan,
4065 .validate = e1000_validate_nvm_checksum_ich8lan,
4066 .write = e1000_write_nvm_ich8lan,
4067 };
4068
4069 const struct e1000_info e1000_ich8_info = {
4070 .mac = e1000_ich8lan,
4071 .flags = FLAG_HAS_WOL
4072 | FLAG_IS_ICH
4073 | FLAG_HAS_CTRLEXT_ON_LOAD
4074 | FLAG_HAS_AMT
4075 | FLAG_HAS_FLASH
4076 | FLAG_APME_IN_WUC,
4077 .pba = 8,
4078 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4079 .get_variants = e1000_get_variants_ich8lan,
4080 .mac_ops = &ich8_mac_ops,
4081 .phy_ops = &ich8_phy_ops,
4082 .nvm_ops = &ich8_nvm_ops,
4083 };
4084
4085 const struct e1000_info e1000_ich9_info = {
4086 .mac = e1000_ich9lan,
4087 .flags = FLAG_HAS_JUMBO_FRAMES
4088 | FLAG_IS_ICH
4089 | FLAG_HAS_WOL
4090 | FLAG_HAS_CTRLEXT_ON_LOAD
4091 | FLAG_HAS_AMT
4092 | FLAG_HAS_ERT
4093 | FLAG_HAS_FLASH
4094 | FLAG_APME_IN_WUC,
4095 .pba = 10,
4096 .max_hw_frame_size = DEFAULT_JUMBO,
4097 .get_variants = e1000_get_variants_ich8lan,
4098 .mac_ops = &ich8_mac_ops,
4099 .phy_ops = &ich8_phy_ops,
4100 .nvm_ops = &ich8_nvm_ops,
4101 };
4102
4103 const struct e1000_info e1000_ich10_info = {
4104 .mac = e1000_ich10lan,
4105 .flags = FLAG_HAS_JUMBO_FRAMES
4106 | FLAG_IS_ICH
4107 | FLAG_HAS_WOL
4108 | FLAG_HAS_CTRLEXT_ON_LOAD
4109 | FLAG_HAS_AMT
4110 | FLAG_HAS_ERT
4111 | FLAG_HAS_FLASH
4112 | FLAG_APME_IN_WUC,
4113 .pba = 10,
4114 .max_hw_frame_size = DEFAULT_JUMBO,
4115 .get_variants = e1000_get_variants_ich8lan,
4116 .mac_ops = &ich8_mac_ops,
4117 .phy_ops = &ich8_phy_ops,
4118 .nvm_ops = &ich8_nvm_ops,
4119 };
4120
4121 const struct e1000_info e1000_pch_info = {
4122 .mac = e1000_pchlan,
4123 .flags = FLAG_IS_ICH
4124 | FLAG_HAS_WOL
4125 | FLAG_HAS_CTRLEXT_ON_LOAD
4126 | FLAG_HAS_AMT
4127 | FLAG_HAS_FLASH
4128 | FLAG_HAS_JUMBO_FRAMES
4129 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4130 | FLAG_APME_IN_WUC,
4131 .flags2 = FLAG2_HAS_PHY_STATS,
4132 .pba = 26,
4133 .max_hw_frame_size = 4096,
4134 .get_variants = e1000_get_variants_ich8lan,
4135 .mac_ops = &ich8_mac_ops,
4136 .phy_ops = &ich8_phy_ops,
4137 .nvm_ops = &ich8_nvm_ops,
4138 };
4139
4140 const struct e1000_info e1000_pch2_info = {
4141 .mac = e1000_pch2lan,
4142 .flags = FLAG_IS_ICH
4143 | FLAG_HAS_WOL
4144 | FLAG_HAS_CTRLEXT_ON_LOAD
4145 | FLAG_HAS_AMT
4146 | FLAG_HAS_FLASH
4147 | FLAG_HAS_JUMBO_FRAMES
4148 | FLAG_APME_IN_WUC,
4149 .flags2 = FLAG2_HAS_PHY_STATS
4150 | FLAG2_HAS_EEE,
4151 .pba = 26,
4152 .max_hw_frame_size = DEFAULT_JUMBO,
4153 .get_variants = e1000_get_variants_ich8lan,
4154 .mac_ops = &ich8_mac_ops,
4155 .phy_ops = &ich8_phy_ops,
4156 .nvm_ops = &ich8_nvm_ops,
4157 };