]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/e1000e/mac.c
6e48895aa2ef14a04ffb8081c583205e593c4dc8
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / e1000e / mac.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 /**
32 * e1000e_get_bus_info_pcie - Get PCIe bus information
33 * @hw: pointer to the HW structure
34 *
35 * Determines and stores the system bus information for a particular
36 * network interface. The following bus information is determined and stored:
37 * bus speed, bus width, type (PCIe), and PCIe function.
38 **/
39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40 {
41 struct e1000_mac_info *mac = &hw->mac;
42 struct e1000_bus_info *bus = &hw->bus;
43 struct e1000_adapter *adapter = hw->adapter;
44 u16 pcie_link_status, cap_offset;
45
46 cap_offset = adapter->pdev->pcie_cap;
47 if (!cap_offset) {
48 bus->width = e1000_bus_width_unknown;
49 } else {
50 pci_read_config_word(adapter->pdev,
51 cap_offset + PCIE_LINK_STATUS,
52 &pcie_link_status);
53 bus->width = (enum e1000_bus_width)((pcie_link_status &
54 PCIE_LINK_WIDTH_MASK) >>
55 PCIE_LINK_WIDTH_SHIFT);
56 }
57
58 mac->ops.set_lan_id(hw);
59
60 return 0;
61 }
62
63 /**
64 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65 *
66 * @hw: pointer to the HW structure
67 *
68 * Determines the LAN function id by reading memory-mapped registers
69 * and swaps the port value if requested.
70 **/
71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72 {
73 struct e1000_bus_info *bus = &hw->bus;
74 u32 reg;
75
76 /*
77 * The status register reports the correct function number
78 * for the device regardless of function swap state.
79 */
80 reg = er32(STATUS);
81 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
82 }
83
84 /**
85 * e1000_set_lan_id_single_port - Set LAN id for a single port device
86 * @hw: pointer to the HW structure
87 *
88 * Sets the LAN function id to zero for a single port device.
89 **/
90 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
91 {
92 struct e1000_bus_info *bus = &hw->bus;
93
94 bus->func = 0;
95 }
96
97 /**
98 * e1000_clear_vfta_generic - Clear VLAN filter table
99 * @hw: pointer to the HW structure
100 *
101 * Clears the register array which contains the VLAN filter table by
102 * setting all the values to 0.
103 **/
104 void e1000_clear_vfta_generic(struct e1000_hw *hw)
105 {
106 u32 offset;
107
108 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110 e1e_flush();
111 }
112 }
113
114 /**
115 * e1000_write_vfta_generic - Write value to VLAN filter table
116 * @hw: pointer to the HW structure
117 * @offset: register offset in VLAN filter table
118 * @value: register value written to VLAN filter table
119 *
120 * Writes value at the given offset in the register array which stores
121 * the VLAN filter table.
122 **/
123 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124 {
125 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126 e1e_flush();
127 }
128
129 /**
130 * e1000e_init_rx_addrs - Initialize receive address's
131 * @hw: pointer to the HW structure
132 * @rar_count: receive address registers
133 *
134 * Setup the receive address registers by setting the base receive address
135 * register to the devices MAC address and clearing all the other receive
136 * address registers to 0.
137 **/
138 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
139 {
140 u32 i;
141 u8 mac_addr[ETH_ALEN] = { 0 };
142
143 /* Setup the receive address */
144 e_dbg("Programming MAC Address into RAR[0]\n");
145
146 e1000e_rar_set(hw, hw->mac.addr, 0);
147
148 /* Zero out the other (rar_entry_count - 1) receive addresses */
149 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150 for (i = 1; i < rar_count; i++)
151 e1000e_rar_set(hw, mac_addr, i);
152 }
153
154 /**
155 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156 * @hw: pointer to the HW structure
157 *
158 * Checks the nvm for an alternate MAC address. An alternate MAC address
159 * can be setup by pre-boot software and must be treated like a permanent
160 * address and must override the actual permanent MAC address. If an
161 * alternate MAC address is found it is programmed into RAR0, replacing
162 * the permanent address that was installed into RAR0 by the Si on reset.
163 * This function will return SUCCESS unless it encounters an error while
164 * reading the EEPROM.
165 **/
166 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
167 {
168 u32 i;
169 s32 ret_val = 0;
170 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171 u8 alt_mac_addr[ETH_ALEN];
172
173 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174 if (ret_val)
175 return ret_val;
176
177 /* not supported on 82573 */
178 if (hw->mac.type == e1000_82573)
179 return 0;
180
181 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182 &nvm_alt_mac_addr_offset);
183 if (ret_val) {
184 e_dbg("NVM Read Error\n");
185 return ret_val;
186 }
187
188 if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189 (nvm_alt_mac_addr_offset == 0x0000))
190 /* There is no Alternate MAC Address */
191 return 0;
192
193 if (hw->bus.func == E1000_FUNC_1)
194 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195 for (i = 0; i < ETH_ALEN; i += 2) {
196 offset = nvm_alt_mac_addr_offset + (i >> 1);
197 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198 if (ret_val) {
199 e_dbg("NVM Read Error\n");
200 return ret_val;
201 }
202
203 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205 }
206
207 /* if multicast bit is set, the alternate address will not be used */
208 if (is_multicast_ether_addr(alt_mac_addr)) {
209 e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210 return 0;
211 }
212
213 /*
214 * We have a valid alternate MAC address, and we want to treat it the
215 * same as the normal permanent MAC address stored by the HW into the
216 * RAR. Do this by mapping this address into RAR0.
217 */
218 e1000e_rar_set(hw, alt_mac_addr, 0);
219
220 return 0;
221 }
222
223 /**
224 * e1000e_rar_set - Set receive address register
225 * @hw: pointer to the HW structure
226 * @addr: pointer to the receive address
227 * @index: receive address array register
228 *
229 * Sets the receive address array register at index to the address passed
230 * in by addr.
231 **/
232 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
233 {
234 u32 rar_low, rar_high;
235
236 /*
237 * HW expects these in little endian so we reverse the byte order
238 * from network order (big endian) to little endian
239 */
240 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
241 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
242
243 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
244
245 /* If MAC address zero, no need to set the AV bit */
246 if (rar_low || rar_high)
247 rar_high |= E1000_RAH_AV;
248
249 /*
250 * Some bridges will combine consecutive 32-bit writes into
251 * a single burst write, which will malfunction on some parts.
252 * The flushes avoid this.
253 */
254 ew32(RAL(index), rar_low);
255 e1e_flush();
256 ew32(RAH(index), rar_high);
257 e1e_flush();
258 }
259
260 /**
261 * e1000_hash_mc_addr - Generate a multicast hash value
262 * @hw: pointer to the HW structure
263 * @mc_addr: pointer to a multicast address
264 *
265 * Generates a multicast address hash value which is used to determine
266 * the multicast filter table array address and new table value. See
267 * e1000_mta_set_generic()
268 **/
269 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
270 {
271 u32 hash_value, hash_mask;
272 u8 bit_shift = 0;
273
274 /* Register count multiplied by bits per register */
275 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
276
277 /*
278 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
279 * where 0xFF would still fall within the hash mask.
280 */
281 while (hash_mask >> bit_shift != 0xFF)
282 bit_shift++;
283
284 /*
285 * The portion of the address that is used for the hash table
286 * is determined by the mc_filter_type setting.
287 * The algorithm is such that there is a total of 8 bits of shifting.
288 * The bit_shift for a mc_filter_type of 0 represents the number of
289 * left-shifts where the MSB of mc_addr[5] would still fall within
290 * the hash_mask. Case 0 does this exactly. Since there are a total
291 * of 8 bits of shifting, then mc_addr[4] will shift right the
292 * remaining number of bits. Thus 8 - bit_shift. The rest of the
293 * cases are a variation of this algorithm...essentially raising the
294 * number of bits to shift mc_addr[5] left, while still keeping the
295 * 8-bit shifting total.
296 *
297 * For example, given the following Destination MAC Address and an
298 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
299 * we can see that the bit_shift for case 0 is 4. These are the hash
300 * values resulting from each mc_filter_type...
301 * [0] [1] [2] [3] [4] [5]
302 * 01 AA 00 12 34 56
303 * LSB MSB
304 *
305 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
306 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
307 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
308 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
309 */
310 switch (hw->mac.mc_filter_type) {
311 default:
312 case 0:
313 break;
314 case 1:
315 bit_shift += 1;
316 break;
317 case 2:
318 bit_shift += 2;
319 break;
320 case 3:
321 bit_shift += 4;
322 break;
323 }
324
325 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
326 (((u16)mc_addr[5]) << bit_shift)));
327
328 return hash_value;
329 }
330
331 /**
332 * e1000e_update_mc_addr_list_generic - Update Multicast addresses
333 * @hw: pointer to the HW structure
334 * @mc_addr_list: array of multicast addresses to program
335 * @mc_addr_count: number of multicast addresses to program
336 *
337 * Updates entire Multicast Table Array.
338 * The caller must have a packed mc_addr_list of multicast addresses.
339 **/
340 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
341 u8 *mc_addr_list, u32 mc_addr_count)
342 {
343 u32 hash_value, hash_bit, hash_reg;
344 int i;
345
346 /* clear mta_shadow */
347 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
348
349 /* update mta_shadow from mc_addr_list */
350 for (i = 0; (u32)i < mc_addr_count; i++) {
351 hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
352
353 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
354 hash_bit = hash_value & 0x1F;
355
356 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
357 mc_addr_list += (ETH_ALEN);
358 }
359
360 /* replace the entire MTA table */
361 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
362 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
363 e1e_flush();
364 }
365
366 /**
367 * e1000e_clear_hw_cntrs_base - Clear base hardware counters
368 * @hw: pointer to the HW structure
369 *
370 * Clears the base hardware counters by reading the counter registers.
371 **/
372 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
373 {
374 er32(CRCERRS);
375 er32(SYMERRS);
376 er32(MPC);
377 er32(SCC);
378 er32(ECOL);
379 er32(MCC);
380 er32(LATECOL);
381 er32(COLC);
382 er32(DC);
383 er32(SEC);
384 er32(RLEC);
385 er32(XONRXC);
386 er32(XONTXC);
387 er32(XOFFRXC);
388 er32(XOFFTXC);
389 er32(FCRUC);
390 er32(GPRC);
391 er32(BPRC);
392 er32(MPRC);
393 er32(GPTC);
394 er32(GORCL);
395 er32(GORCH);
396 er32(GOTCL);
397 er32(GOTCH);
398 er32(RNBC);
399 er32(RUC);
400 er32(RFC);
401 er32(ROC);
402 er32(RJC);
403 er32(TORL);
404 er32(TORH);
405 er32(TOTL);
406 er32(TOTH);
407 er32(TPR);
408 er32(TPT);
409 er32(MPTC);
410 er32(BPTC);
411 }
412
413 /**
414 * e1000e_check_for_copper_link - Check for link (Copper)
415 * @hw: pointer to the HW structure
416 *
417 * Checks to see of the link status of the hardware has changed. If a
418 * change in link status has been detected, then we read the PHY registers
419 * to get the current speed/duplex if link exists.
420 **/
421 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
422 {
423 struct e1000_mac_info *mac = &hw->mac;
424 s32 ret_val;
425 bool link;
426
427 /*
428 * We only want to go out to the PHY registers to see if Auto-Neg
429 * has completed and/or if our link status has changed. The
430 * get_link_status flag is set upon receiving a Link Status
431 * Change or Rx Sequence Error interrupt.
432 */
433 if (!mac->get_link_status)
434 return 0;
435
436 /*
437 * First we want to see if the MII Status Register reports
438 * link. If so, then we want to get the current speed/duplex
439 * of the PHY.
440 */
441 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
442 if (ret_val)
443 return ret_val;
444
445 if (!link)
446 return 0; /* No link detected */
447
448 mac->get_link_status = false;
449
450 /*
451 * Check if there was DownShift, must be checked
452 * immediately after link-up
453 */
454 e1000e_check_downshift(hw);
455
456 /*
457 * If we are forcing speed/duplex, then we simply return since
458 * we have already determined whether we have link or not.
459 */
460 if (!mac->autoneg)
461 return -E1000_ERR_CONFIG;
462
463 /*
464 * Auto-Neg is enabled. Auto Speed Detection takes care
465 * of MAC speed/duplex configuration. So we only need to
466 * configure Collision Distance in the MAC.
467 */
468 e1000e_config_collision_dist(hw);
469
470 /*
471 * Configure Flow Control now that Auto-Neg has completed.
472 * First, we need to restore the desired flow control
473 * settings because we may have had to re-autoneg with a
474 * different link partner.
475 */
476 ret_val = e1000e_config_fc_after_link_up(hw);
477 if (ret_val)
478 e_dbg("Error configuring flow control\n");
479
480 return ret_val;
481 }
482
483 /**
484 * e1000e_check_for_fiber_link - Check for link (Fiber)
485 * @hw: pointer to the HW structure
486 *
487 * Checks for link up on the hardware. If link is not up and we have
488 * a signal, then we need to force link up.
489 **/
490 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
491 {
492 struct e1000_mac_info *mac = &hw->mac;
493 u32 rxcw;
494 u32 ctrl;
495 u32 status;
496 s32 ret_val;
497
498 ctrl = er32(CTRL);
499 status = er32(STATUS);
500 rxcw = er32(RXCW);
501
502 /*
503 * If we don't have link (auto-negotiation failed or link partner
504 * cannot auto-negotiate), the cable is plugged in (we have signal),
505 * and our link partner is not trying to auto-negotiate with us (we
506 * are receiving idles or data), we need to force link up. We also
507 * need to give auto-negotiation time to complete, in case the cable
508 * was just plugged in. The autoneg_failed flag does this.
509 */
510 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
511 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
512 !(rxcw & E1000_RXCW_C)) {
513 if (!mac->autoneg_failed) {
514 mac->autoneg_failed = true;
515 return 0;
516 }
517 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
518
519 /* Disable auto-negotiation in the TXCW register */
520 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
521
522 /* Force link-up and also force full-duplex. */
523 ctrl = er32(CTRL);
524 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
525 ew32(CTRL, ctrl);
526
527 /* Configure Flow Control after forcing link up. */
528 ret_val = e1000e_config_fc_after_link_up(hw);
529 if (ret_val) {
530 e_dbg("Error configuring flow control\n");
531 return ret_val;
532 }
533 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
534 /*
535 * If we are forcing link and we are receiving /C/ ordered
536 * sets, re-enable auto-negotiation in the TXCW register
537 * and disable forced link in the Device Control register
538 * in an attempt to auto-negotiate with our link partner.
539 */
540 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
541 ew32(TXCW, mac->txcw);
542 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
543
544 mac->serdes_has_link = true;
545 }
546
547 return 0;
548 }
549
550 /**
551 * e1000e_check_for_serdes_link - Check for link (Serdes)
552 * @hw: pointer to the HW structure
553 *
554 * Checks for link up on the hardware. If link is not up and we have
555 * a signal, then we need to force link up.
556 **/
557 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
558 {
559 struct e1000_mac_info *mac = &hw->mac;
560 u32 rxcw;
561 u32 ctrl;
562 u32 status;
563 s32 ret_val;
564
565 ctrl = er32(CTRL);
566 status = er32(STATUS);
567 rxcw = er32(RXCW);
568
569 /*
570 * If we don't have link (auto-negotiation failed or link partner
571 * cannot auto-negotiate), and our link partner is not trying to
572 * auto-negotiate with us (we are receiving idles or data),
573 * we need to force link up. We also need to give auto-negotiation
574 * time to complete.
575 */
576 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
577 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
578 if (!mac->autoneg_failed) {
579 mac->autoneg_failed = true;
580 return 0;
581 }
582 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
583
584 /* Disable auto-negotiation in the TXCW register */
585 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
586
587 /* Force link-up and also force full-duplex. */
588 ctrl = er32(CTRL);
589 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
590 ew32(CTRL, ctrl);
591
592 /* Configure Flow Control after forcing link up. */
593 ret_val = e1000e_config_fc_after_link_up(hw);
594 if (ret_val) {
595 e_dbg("Error configuring flow control\n");
596 return ret_val;
597 }
598 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
599 /*
600 * If we are forcing link and we are receiving /C/ ordered
601 * sets, re-enable auto-negotiation in the TXCW register
602 * and disable forced link in the Device Control register
603 * in an attempt to auto-negotiate with our link partner.
604 */
605 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
606 ew32(TXCW, mac->txcw);
607 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
608
609 mac->serdes_has_link = true;
610 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
611 /*
612 * If we force link for non-auto-negotiation switch, check
613 * link status based on MAC synchronization for internal
614 * serdes media type.
615 */
616 /* SYNCH bit and IV bit are sticky. */
617 udelay(10);
618 rxcw = er32(RXCW);
619 if (rxcw & E1000_RXCW_SYNCH) {
620 if (!(rxcw & E1000_RXCW_IV)) {
621 mac->serdes_has_link = true;
622 e_dbg("SERDES: Link up - forced.\n");
623 }
624 } else {
625 mac->serdes_has_link = false;
626 e_dbg("SERDES: Link down - force failed.\n");
627 }
628 }
629
630 if (E1000_TXCW_ANE & er32(TXCW)) {
631 status = er32(STATUS);
632 if (status & E1000_STATUS_LU) {
633 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
634 udelay(10);
635 rxcw = er32(RXCW);
636 if (rxcw & E1000_RXCW_SYNCH) {
637 if (!(rxcw & E1000_RXCW_IV)) {
638 mac->serdes_has_link = true;
639 e_dbg("SERDES: Link up - autoneg completed successfully.\n");
640 } else {
641 mac->serdes_has_link = false;
642 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
643 }
644 } else {
645 mac->serdes_has_link = false;
646 e_dbg("SERDES: Link down - no sync.\n");
647 }
648 } else {
649 mac->serdes_has_link = false;
650 e_dbg("SERDES: Link down - autoneg failed\n");
651 }
652 }
653
654 return 0;
655 }
656
657 /**
658 * e1000_set_default_fc_generic - Set flow control default values
659 * @hw: pointer to the HW structure
660 *
661 * Read the EEPROM for the default values for flow control and store the
662 * values.
663 **/
664 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
665 {
666 s32 ret_val;
667 u16 nvm_data;
668
669 /*
670 * Read and store word 0x0F of the EEPROM. This word contains bits
671 * that determine the hardware's default PAUSE (flow control) mode,
672 * a bit that determines whether the HW defaults to enabling or
673 * disabling auto-negotiation, and the direction of the
674 * SW defined pins. If there is no SW over-ride of the flow
675 * control setting, then the variable hw->fc will
676 * be initialized based on a value in the EEPROM.
677 */
678 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
679
680 if (ret_val) {
681 e_dbg("NVM Read Error\n");
682 return ret_val;
683 }
684
685 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
686 hw->fc.requested_mode = e1000_fc_none;
687 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
688 hw->fc.requested_mode = e1000_fc_tx_pause;
689 else
690 hw->fc.requested_mode = e1000_fc_full;
691
692 return 0;
693 }
694
695 /**
696 * e1000e_setup_link_generic - Setup flow control and link settings
697 * @hw: pointer to the HW structure
698 *
699 * Determines which flow control settings to use, then configures flow
700 * control. Calls the appropriate media-specific link configuration
701 * function. Assuming the adapter has a valid link partner, a valid link
702 * should be established. Assumes the hardware has previously been reset
703 * and the transmitter and receiver are not enabled.
704 **/
705 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
706 {
707 struct e1000_mac_info *mac = &hw->mac;
708 s32 ret_val;
709
710 /*
711 * In the case of the phy reset being blocked, we already have a link.
712 * We do not need to set it up again.
713 */
714 if (e1000_check_reset_block(hw))
715 return 0;
716
717 /*
718 * If requested flow control is set to default, set flow control
719 * based on the EEPROM flow control settings.
720 */
721 if (hw->fc.requested_mode == e1000_fc_default) {
722 ret_val = e1000_set_default_fc_generic(hw);
723 if (ret_val)
724 return ret_val;
725 }
726
727 /*
728 * Save off the requested flow control mode for use later. Depending
729 * on the link partner's capabilities, we may or may not use this mode.
730 */
731 hw->fc.current_mode = hw->fc.requested_mode;
732
733 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
734
735 /* Call the necessary media_type subroutine to configure the link. */
736 ret_val = mac->ops.setup_physical_interface(hw);
737 if (ret_val)
738 return ret_val;
739
740 /*
741 * Initialize the flow control address, type, and PAUSE timer
742 * registers to their default values. This is done even if flow
743 * control is disabled, because it does not hurt anything to
744 * initialize these registers.
745 */
746 e_dbg("Initializing the Flow Control address, type and timer regs\n");
747 ew32(FCT, FLOW_CONTROL_TYPE);
748 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
749 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
750
751 ew32(FCTTV, hw->fc.pause_time);
752
753 return e1000e_set_fc_watermarks(hw);
754 }
755
756 /**
757 * e1000_commit_fc_settings_generic - Configure flow control
758 * @hw: pointer to the HW structure
759 *
760 * Write the flow control settings to the Transmit Config Word Register (TXCW)
761 * base on the flow control settings in e1000_mac_info.
762 **/
763 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
764 {
765 struct e1000_mac_info *mac = &hw->mac;
766 u32 txcw;
767
768 /*
769 * Check for a software override of the flow control settings, and
770 * setup the device accordingly. If auto-negotiation is enabled, then
771 * software will have to set the "PAUSE" bits to the correct value in
772 * the Transmit Config Word Register (TXCW) and re-start auto-
773 * negotiation. However, if auto-negotiation is disabled, then
774 * software will have to manually configure the two flow control enable
775 * bits in the CTRL register.
776 *
777 * The possible values of the "fc" parameter are:
778 * 0: Flow control is completely disabled
779 * 1: Rx flow control is enabled (we can receive pause frames,
780 * but not send pause frames).
781 * 2: Tx flow control is enabled (we can send pause frames but we
782 * do not support receiving pause frames).
783 * 3: Both Rx and Tx flow control (symmetric) are enabled.
784 */
785 switch (hw->fc.current_mode) {
786 case e1000_fc_none:
787 /* Flow control completely disabled by a software over-ride. */
788 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
789 break;
790 case e1000_fc_rx_pause:
791 /*
792 * Rx Flow control is enabled and Tx Flow control is disabled
793 * by a software over-ride. Since there really isn't a way to
794 * advertise that we are capable of Rx Pause ONLY, we will
795 * advertise that we support both symmetric and asymmetric Rx
796 * PAUSE. Later, we will disable the adapter's ability to send
797 * PAUSE frames.
798 */
799 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
800 break;
801 case e1000_fc_tx_pause:
802 /*
803 * Tx Flow control is enabled, and Rx Flow control is disabled,
804 * by a software over-ride.
805 */
806 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
807 break;
808 case e1000_fc_full:
809 /*
810 * Flow control (both Rx and Tx) is enabled by a software
811 * over-ride.
812 */
813 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
814 break;
815 default:
816 e_dbg("Flow control param set incorrectly\n");
817 return -E1000_ERR_CONFIG;
818 break;
819 }
820
821 ew32(TXCW, txcw);
822 mac->txcw = txcw;
823
824 return 0;
825 }
826
827 /**
828 * e1000_poll_fiber_serdes_link_generic - Poll for link up
829 * @hw: pointer to the HW structure
830 *
831 * Polls for link up by reading the status register, if link fails to come
832 * up with auto-negotiation, then the link is forced if a signal is detected.
833 **/
834 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
835 {
836 struct e1000_mac_info *mac = &hw->mac;
837 u32 i, status;
838 s32 ret_val;
839
840 /*
841 * If we have a signal (the cable is plugged in, or assumed true for
842 * serdes media) then poll for a "Link-Up" indication in the Device
843 * Status Register. Time-out if a link isn't seen in 500 milliseconds
844 * seconds (Auto-negotiation should complete in less than 500
845 * milliseconds even if the other end is doing it in SW).
846 */
847 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
848 usleep_range(10000, 20000);
849 status = er32(STATUS);
850 if (status & E1000_STATUS_LU)
851 break;
852 }
853 if (i == FIBER_LINK_UP_LIMIT) {
854 e_dbg("Never got a valid link from auto-neg!!!\n");
855 mac->autoneg_failed = true;
856 /*
857 * AutoNeg failed to achieve a link, so we'll call
858 * mac->check_for_link. This routine will force the
859 * link up if we detect a signal. This will allow us to
860 * communicate with non-autonegotiating link partners.
861 */
862 ret_val = mac->ops.check_for_link(hw);
863 if (ret_val) {
864 e_dbg("Error while checking for link\n");
865 return ret_val;
866 }
867 mac->autoneg_failed = false;
868 } else {
869 mac->autoneg_failed = false;
870 e_dbg("Valid Link Found\n");
871 }
872
873 return 0;
874 }
875
876 /**
877 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
878 * @hw: pointer to the HW structure
879 *
880 * Configures collision distance and flow control for fiber and serdes
881 * links. Upon successful setup, poll for link.
882 **/
883 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
884 {
885 u32 ctrl;
886 s32 ret_val;
887
888 ctrl = er32(CTRL);
889
890 /* Take the link out of reset */
891 ctrl &= ~E1000_CTRL_LRST;
892
893 e1000e_config_collision_dist(hw);
894
895 ret_val = e1000_commit_fc_settings_generic(hw);
896 if (ret_val)
897 return ret_val;
898
899 /*
900 * Since auto-negotiation is enabled, take the link out of reset (the
901 * link will be in reset, because we previously reset the chip). This
902 * will restart auto-negotiation. If auto-negotiation is successful
903 * then the link-up status bit will be set and the flow control enable
904 * bits (RFCE and TFCE) will be set according to their negotiated value.
905 */
906 e_dbg("Auto-negotiation enabled\n");
907
908 ew32(CTRL, ctrl);
909 e1e_flush();
910 usleep_range(1000, 2000);
911
912 /*
913 * For these adapters, the SW definable pin 1 is set when the optics
914 * detect a signal. If we have a signal, then poll for a "Link-Up"
915 * indication.
916 */
917 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
918 (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
919 ret_val = e1000_poll_fiber_serdes_link_generic(hw);
920 } else {
921 e_dbg("No signal detected\n");
922 }
923
924 return ret_val;
925 }
926
927 /**
928 * e1000e_config_collision_dist - Configure collision distance
929 * @hw: pointer to the HW structure
930 *
931 * Configures the collision distance to the default value and is used
932 * during link setup. Currently no func pointer exists and all
933 * implementations are handled in the generic version of this function.
934 **/
935 void e1000e_config_collision_dist(struct e1000_hw *hw)
936 {
937 u32 tctl;
938
939 tctl = er32(TCTL);
940
941 tctl &= ~E1000_TCTL_COLD;
942 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
943
944 ew32(TCTL, tctl);
945 e1e_flush();
946 }
947
948 /**
949 * e1000e_set_fc_watermarks - Set flow control high/low watermarks
950 * @hw: pointer to the HW structure
951 *
952 * Sets the flow control high/low threshold (watermark) registers. If
953 * flow control XON frame transmission is enabled, then set XON frame
954 * transmission as well.
955 **/
956 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
957 {
958 u32 fcrtl = 0, fcrth = 0;
959
960 /*
961 * Set the flow control receive threshold registers. Normally,
962 * these registers will be set to a default threshold that may be
963 * adjusted later by the driver's runtime code. However, if the
964 * ability to transmit pause frames is not enabled, then these
965 * registers will be set to 0.
966 */
967 if (hw->fc.current_mode & e1000_fc_tx_pause) {
968 /*
969 * We need to set up the Receive Threshold high and low water
970 * marks as well as (optionally) enabling the transmission of
971 * XON frames.
972 */
973 fcrtl = hw->fc.low_water;
974 fcrtl |= E1000_FCRTL_XONE;
975 fcrth = hw->fc.high_water;
976 }
977 ew32(FCRTL, fcrtl);
978 ew32(FCRTH, fcrth);
979
980 return 0;
981 }
982
983 /**
984 * e1000e_force_mac_fc - Force the MAC's flow control settings
985 * @hw: pointer to the HW structure
986 *
987 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
988 * device control register to reflect the adapter settings. TFCE and RFCE
989 * need to be explicitly set by software when a copper PHY is used because
990 * autonegotiation is managed by the PHY rather than the MAC. Software must
991 * also configure these bits when link is forced on a fiber connection.
992 **/
993 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
994 {
995 u32 ctrl;
996
997 ctrl = er32(CTRL);
998
999 /*
1000 * Because we didn't get link via the internal auto-negotiation
1001 * mechanism (we either forced link or we got link via PHY
1002 * auto-neg), we have to manually enable/disable transmit an
1003 * receive flow control.
1004 *
1005 * The "Case" statement below enables/disable flow control
1006 * according to the "hw->fc.current_mode" parameter.
1007 *
1008 * The possible values of the "fc" parameter are:
1009 * 0: Flow control is completely disabled
1010 * 1: Rx flow control is enabled (we can receive pause
1011 * frames but not send pause frames).
1012 * 2: Tx flow control is enabled (we can send pause frames
1013 * frames but we do not receive pause frames).
1014 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1015 * other: No other values should be possible at this point.
1016 */
1017 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1018
1019 switch (hw->fc.current_mode) {
1020 case e1000_fc_none:
1021 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1022 break;
1023 case e1000_fc_rx_pause:
1024 ctrl &= (~E1000_CTRL_TFCE);
1025 ctrl |= E1000_CTRL_RFCE;
1026 break;
1027 case e1000_fc_tx_pause:
1028 ctrl &= (~E1000_CTRL_RFCE);
1029 ctrl |= E1000_CTRL_TFCE;
1030 break;
1031 case e1000_fc_full:
1032 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1033 break;
1034 default:
1035 e_dbg("Flow control param set incorrectly\n");
1036 return -E1000_ERR_CONFIG;
1037 }
1038
1039 ew32(CTRL, ctrl);
1040
1041 return 0;
1042 }
1043
1044 /**
1045 * e1000e_config_fc_after_link_up - Configures flow control after link
1046 * @hw: pointer to the HW structure
1047 *
1048 * Checks the status of auto-negotiation after link up to ensure that the
1049 * speed and duplex were not forced. If the link needed to be forced, then
1050 * flow control needs to be forced also. If auto-negotiation is enabled
1051 * and did not fail, then we configure flow control based on our link
1052 * partner.
1053 **/
1054 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1055 {
1056 struct e1000_mac_info *mac = &hw->mac;
1057 s32 ret_val = 0;
1058 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1059 u16 speed, duplex;
1060
1061 /*
1062 * Check for the case where we have fiber media and auto-neg failed
1063 * so we had to force link. In this case, we need to force the
1064 * configuration of the MAC to match the "fc" parameter.
1065 */
1066 if (mac->autoneg_failed) {
1067 if (hw->phy.media_type == e1000_media_type_fiber ||
1068 hw->phy.media_type == e1000_media_type_internal_serdes)
1069 ret_val = e1000e_force_mac_fc(hw);
1070 } else {
1071 if (hw->phy.media_type == e1000_media_type_copper)
1072 ret_val = e1000e_force_mac_fc(hw);
1073 }
1074
1075 if (ret_val) {
1076 e_dbg("Error forcing flow control settings\n");
1077 return ret_val;
1078 }
1079
1080 /*
1081 * Check for the case where we have copper media and auto-neg is
1082 * enabled. In this case, we need to check and see if Auto-Neg
1083 * has completed, and if so, how the PHY and link partner has
1084 * flow control configured.
1085 */
1086 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1087 /*
1088 * Read the MII Status Register and check to see if AutoNeg
1089 * has completed. We read this twice because this reg has
1090 * some "sticky" (latched) bits.
1091 */
1092 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1093 if (ret_val)
1094 return ret_val;
1095 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1096 if (ret_val)
1097 return ret_val;
1098
1099 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1100 e_dbg("Copper PHY and Auto Neg has not completed.\n");
1101 return ret_val;
1102 }
1103
1104 /*
1105 * The AutoNeg process has completed, so we now need to
1106 * read both the Auto Negotiation Advertisement
1107 * Register (Address 4) and the Auto_Negotiation Base
1108 * Page Ability Register (Address 5) to determine how
1109 * flow control was negotiated.
1110 */
1111 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1112 if (ret_val)
1113 return ret_val;
1114 ret_val =
1115 e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1116 if (ret_val)
1117 return ret_val;
1118
1119 /*
1120 * Two bits in the Auto Negotiation Advertisement Register
1121 * (Address 4) and two bits in the Auto Negotiation Base
1122 * Page Ability Register (Address 5) determine flow control
1123 * for both the PHY and the link partner. The following
1124 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1125 * 1999, describes these PAUSE resolution bits and how flow
1126 * control is determined based upon these settings.
1127 * NOTE: DC = Don't Care
1128 *
1129 * LOCAL DEVICE | LINK PARTNER
1130 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1131 *-------|---------|-------|---------|--------------------
1132 * 0 | 0 | DC | DC | e1000_fc_none
1133 * 0 | 1 | 0 | DC | e1000_fc_none
1134 * 0 | 1 | 1 | 0 | e1000_fc_none
1135 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1136 * 1 | 0 | 0 | DC | e1000_fc_none
1137 * 1 | DC | 1 | DC | e1000_fc_full
1138 * 1 | 1 | 0 | 0 | e1000_fc_none
1139 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1140 *
1141 * Are both PAUSE bits set to 1? If so, this implies
1142 * Symmetric Flow Control is enabled at both ends. The
1143 * ASM_DIR bits are irrelevant per the spec.
1144 *
1145 * For Symmetric Flow Control:
1146 *
1147 * LOCAL DEVICE | LINK PARTNER
1148 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1149 *-------|---------|-------|---------|--------------------
1150 * 1 | DC | 1 | DC | E1000_fc_full
1151 *
1152 */
1153 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1154 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1155 /*
1156 * Now we need to check if the user selected Rx ONLY
1157 * of pause frames. In this case, we had to advertise
1158 * FULL flow control because we could not advertise Rx
1159 * ONLY. Hence, we must now check to see if we need to
1160 * turn OFF the TRANSMISSION of PAUSE frames.
1161 */
1162 if (hw->fc.requested_mode == e1000_fc_full) {
1163 hw->fc.current_mode = e1000_fc_full;
1164 e_dbg("Flow Control = FULL.\n");
1165 } else {
1166 hw->fc.current_mode = e1000_fc_rx_pause;
1167 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1168 }
1169 }
1170 /*
1171 * For receiving PAUSE frames ONLY.
1172 *
1173 * LOCAL DEVICE | LINK PARTNER
1174 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1175 *-------|---------|-------|---------|--------------------
1176 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1177 */
1178 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1179 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1180 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1181 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1182 hw->fc.current_mode = e1000_fc_tx_pause;
1183 e_dbg("Flow Control = Tx PAUSE frames only.\n");
1184 }
1185 /*
1186 * For transmitting PAUSE frames ONLY.
1187 *
1188 * LOCAL DEVICE | LINK PARTNER
1189 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1190 *-------|---------|-------|---------|--------------------
1191 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1192 */
1193 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1194 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1195 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1196 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1197 hw->fc.current_mode = e1000_fc_rx_pause;
1198 e_dbg("Flow Control = Rx PAUSE frames only.\n");
1199 } else {
1200 /*
1201 * Per the IEEE spec, at this point flow control
1202 * should be disabled.
1203 */
1204 hw->fc.current_mode = e1000_fc_none;
1205 e_dbg("Flow Control = NONE.\n");
1206 }
1207
1208 /*
1209 * Now we need to do one last check... If we auto-
1210 * negotiated to HALF DUPLEX, flow control should not be
1211 * enabled per IEEE 802.3 spec.
1212 */
1213 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1214 if (ret_val) {
1215 e_dbg("Error getting link speed and duplex\n");
1216 return ret_val;
1217 }
1218
1219 if (duplex == HALF_DUPLEX)
1220 hw->fc.current_mode = e1000_fc_none;
1221
1222 /*
1223 * Now we call a subroutine to actually force the MAC
1224 * controller to use the correct flow control settings.
1225 */
1226 ret_val = e1000e_force_mac_fc(hw);
1227 if (ret_val) {
1228 e_dbg("Error forcing flow control settings\n");
1229 return ret_val;
1230 }
1231 }
1232
1233 return 0;
1234 }
1235
1236 /**
1237 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1238 * @hw: pointer to the HW structure
1239 * @speed: stores the current speed
1240 * @duplex: stores the current duplex
1241 *
1242 * Read the status register for the current speed/duplex and store the current
1243 * speed and duplex for copper connections.
1244 **/
1245 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1246 u16 *duplex)
1247 {
1248 u32 status;
1249
1250 status = er32(STATUS);
1251 if (status & E1000_STATUS_SPEED_1000)
1252 *speed = SPEED_1000;
1253 else if (status & E1000_STATUS_SPEED_100)
1254 *speed = SPEED_100;
1255 else
1256 *speed = SPEED_10;
1257
1258 if (status & E1000_STATUS_FD)
1259 *duplex = FULL_DUPLEX;
1260 else
1261 *duplex = HALF_DUPLEX;
1262
1263 e_dbg("%u Mbps, %s Duplex\n",
1264 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1265 *duplex == FULL_DUPLEX ? "Full" : "Half");
1266
1267 return 0;
1268 }
1269
1270 /**
1271 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1272 * @hw: pointer to the HW structure
1273 * @speed: stores the current speed
1274 * @duplex: stores the current duplex
1275 *
1276 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1277 * for fiber/serdes links.
1278 **/
1279 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1280 u16 *duplex)
1281 {
1282 *speed = SPEED_1000;
1283 *duplex = FULL_DUPLEX;
1284
1285 return 0;
1286 }
1287
1288 /**
1289 * e1000e_get_hw_semaphore - Acquire hardware semaphore
1290 * @hw: pointer to the HW structure
1291 *
1292 * Acquire the HW semaphore to access the PHY or NVM
1293 **/
1294 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1295 {
1296 u32 swsm;
1297 s32 timeout = hw->nvm.word_size + 1;
1298 s32 i = 0;
1299
1300 /* Get the SW semaphore */
1301 while (i < timeout) {
1302 swsm = er32(SWSM);
1303 if (!(swsm & E1000_SWSM_SMBI))
1304 break;
1305
1306 udelay(50);
1307 i++;
1308 }
1309
1310 if (i == timeout) {
1311 e_dbg("Driver can't access device - SMBI bit is set.\n");
1312 return -E1000_ERR_NVM;
1313 }
1314
1315 /* Get the FW semaphore. */
1316 for (i = 0; i < timeout; i++) {
1317 swsm = er32(SWSM);
1318 ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1319
1320 /* Semaphore acquired if bit latched */
1321 if (er32(SWSM) & E1000_SWSM_SWESMBI)
1322 break;
1323
1324 udelay(50);
1325 }
1326
1327 if (i == timeout) {
1328 /* Release semaphores */
1329 e1000e_put_hw_semaphore(hw);
1330 e_dbg("Driver can't access the NVM\n");
1331 return -E1000_ERR_NVM;
1332 }
1333
1334 return 0;
1335 }
1336
1337 /**
1338 * e1000e_put_hw_semaphore - Release hardware semaphore
1339 * @hw: pointer to the HW structure
1340 *
1341 * Release hardware semaphore used to access the PHY or NVM
1342 **/
1343 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1344 {
1345 u32 swsm;
1346
1347 swsm = er32(SWSM);
1348 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1349 ew32(SWSM, swsm);
1350 }
1351
1352 /**
1353 * e1000e_get_auto_rd_done - Check for auto read completion
1354 * @hw: pointer to the HW structure
1355 *
1356 * Check EEPROM for Auto Read done bit.
1357 **/
1358 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1359 {
1360 s32 i = 0;
1361
1362 while (i < AUTO_READ_DONE_TIMEOUT) {
1363 if (er32(EECD) & E1000_EECD_AUTO_RD)
1364 break;
1365 usleep_range(1000, 2000);
1366 i++;
1367 }
1368
1369 if (i == AUTO_READ_DONE_TIMEOUT) {
1370 e_dbg("Auto read by HW from NVM has not completed.\n");
1371 return -E1000_ERR_RESET;
1372 }
1373
1374 return 0;
1375 }
1376
1377 /**
1378 * e1000e_valid_led_default - Verify a valid default LED config
1379 * @hw: pointer to the HW structure
1380 * @data: pointer to the NVM (EEPROM)
1381 *
1382 * Read the EEPROM for the current default LED configuration. If the
1383 * LED configuration is not valid, set to a valid LED configuration.
1384 **/
1385 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1386 {
1387 s32 ret_val;
1388
1389 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1390 if (ret_val) {
1391 e_dbg("NVM Read Error\n");
1392 return ret_val;
1393 }
1394
1395 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1396 *data = ID_LED_DEFAULT;
1397
1398 return 0;
1399 }
1400
1401 /**
1402 * e1000e_id_led_init_generic -
1403 * @hw: pointer to the HW structure
1404 *
1405 **/
1406 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1407 {
1408 struct e1000_mac_info *mac = &hw->mac;
1409 s32 ret_val;
1410 const u32 ledctl_mask = 0x000000FF;
1411 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1412 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1413 u16 data, i, temp;
1414 const u16 led_mask = 0x0F;
1415
1416 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1417 if (ret_val)
1418 return ret_val;
1419
1420 mac->ledctl_default = er32(LEDCTL);
1421 mac->ledctl_mode1 = mac->ledctl_default;
1422 mac->ledctl_mode2 = mac->ledctl_default;
1423
1424 for (i = 0; i < 4; i++) {
1425 temp = (data >> (i << 2)) & led_mask;
1426 switch (temp) {
1427 case ID_LED_ON1_DEF2:
1428 case ID_LED_ON1_ON2:
1429 case ID_LED_ON1_OFF2:
1430 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1431 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1432 break;
1433 case ID_LED_OFF1_DEF2:
1434 case ID_LED_OFF1_ON2:
1435 case ID_LED_OFF1_OFF2:
1436 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1437 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1438 break;
1439 default:
1440 /* Do nothing */
1441 break;
1442 }
1443 switch (temp) {
1444 case ID_LED_DEF1_ON2:
1445 case ID_LED_ON1_ON2:
1446 case ID_LED_OFF1_ON2:
1447 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1448 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1449 break;
1450 case ID_LED_DEF1_OFF2:
1451 case ID_LED_ON1_OFF2:
1452 case ID_LED_OFF1_OFF2:
1453 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1454 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1455 break;
1456 default:
1457 /* Do nothing */
1458 break;
1459 }
1460 }
1461
1462 return 0;
1463 }
1464
1465 /**
1466 * e1000e_setup_led_generic - Configures SW controllable LED
1467 * @hw: pointer to the HW structure
1468 *
1469 * This prepares the SW controllable LED for use and saves the current state
1470 * of the LED so it can be later restored.
1471 **/
1472 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1473 {
1474 u32 ledctl;
1475
1476 if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1477 return -E1000_ERR_CONFIG;
1478
1479 if (hw->phy.media_type == e1000_media_type_fiber) {
1480 ledctl = er32(LEDCTL);
1481 hw->mac.ledctl_default = ledctl;
1482 /* Turn off LED0 */
1483 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1484 E1000_LEDCTL_LED0_MODE_MASK);
1485 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1486 E1000_LEDCTL_LED0_MODE_SHIFT);
1487 ew32(LEDCTL, ledctl);
1488 } else if (hw->phy.media_type == e1000_media_type_copper) {
1489 ew32(LEDCTL, hw->mac.ledctl_mode1);
1490 }
1491
1492 return 0;
1493 }
1494
1495 /**
1496 * e1000e_cleanup_led_generic - Set LED config to default operation
1497 * @hw: pointer to the HW structure
1498 *
1499 * Remove the current LED configuration and set the LED configuration
1500 * to the default value, saved from the EEPROM.
1501 **/
1502 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1503 {
1504 ew32(LEDCTL, hw->mac.ledctl_default);
1505 return 0;
1506 }
1507
1508 /**
1509 * e1000e_blink_led_generic - Blink LED
1510 * @hw: pointer to the HW structure
1511 *
1512 * Blink the LEDs which are set to be on.
1513 **/
1514 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1515 {
1516 u32 ledctl_blink = 0;
1517 u32 i;
1518
1519 if (hw->phy.media_type == e1000_media_type_fiber) {
1520 /* always blink LED0 for PCI-E fiber */
1521 ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1522 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1523 } else {
1524 /*
1525 * set the blink bit for each LED that's "on" (0x0E)
1526 * in ledctl_mode2
1527 */
1528 ledctl_blink = hw->mac.ledctl_mode2;
1529 for (i = 0; i < 4; i++)
1530 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1531 E1000_LEDCTL_MODE_LED_ON)
1532 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1533 (i * 8));
1534 }
1535
1536 ew32(LEDCTL, ledctl_blink);
1537
1538 return 0;
1539 }
1540
1541 /**
1542 * e1000e_led_on_generic - Turn LED on
1543 * @hw: pointer to the HW structure
1544 *
1545 * Turn LED on.
1546 **/
1547 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1548 {
1549 u32 ctrl;
1550
1551 switch (hw->phy.media_type) {
1552 case e1000_media_type_fiber:
1553 ctrl = er32(CTRL);
1554 ctrl &= ~E1000_CTRL_SWDPIN0;
1555 ctrl |= E1000_CTRL_SWDPIO0;
1556 ew32(CTRL, ctrl);
1557 break;
1558 case e1000_media_type_copper:
1559 ew32(LEDCTL, hw->mac.ledctl_mode2);
1560 break;
1561 default:
1562 break;
1563 }
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * e1000e_led_off_generic - Turn LED off
1570 * @hw: pointer to the HW structure
1571 *
1572 * Turn LED off.
1573 **/
1574 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1575 {
1576 u32 ctrl;
1577
1578 switch (hw->phy.media_type) {
1579 case e1000_media_type_fiber:
1580 ctrl = er32(CTRL);
1581 ctrl |= E1000_CTRL_SWDPIN0;
1582 ctrl |= E1000_CTRL_SWDPIO0;
1583 ew32(CTRL, ctrl);
1584 break;
1585 case e1000_media_type_copper:
1586 ew32(LEDCTL, hw->mac.ledctl_mode1);
1587 break;
1588 default:
1589 break;
1590 }
1591
1592 return 0;
1593 }
1594
1595 /**
1596 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1597 * @hw: pointer to the HW structure
1598 * @no_snoop: bitmap of snoop events
1599 *
1600 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1601 **/
1602 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1603 {
1604 u32 gcr;
1605
1606 if (no_snoop) {
1607 gcr = er32(GCR);
1608 gcr &= ~(PCIE_NO_SNOOP_ALL);
1609 gcr |= no_snoop;
1610 ew32(GCR, gcr);
1611 }
1612 }
1613
1614 /**
1615 * e1000e_disable_pcie_master - Disables PCI-express master access
1616 * @hw: pointer to the HW structure
1617 *
1618 * Returns 0 if successful, else returns -10
1619 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1620 * the master requests to be disabled.
1621 *
1622 * Disables PCI-Express master access and verifies there are no pending
1623 * requests.
1624 **/
1625 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1626 {
1627 u32 ctrl;
1628 s32 timeout = MASTER_DISABLE_TIMEOUT;
1629
1630 ctrl = er32(CTRL);
1631 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1632 ew32(CTRL, ctrl);
1633
1634 while (timeout) {
1635 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1636 break;
1637 udelay(100);
1638 timeout--;
1639 }
1640
1641 if (!timeout) {
1642 e_dbg("Master requests are pending.\n");
1643 return -E1000_ERR_MASTER_REQUESTS_PENDING;
1644 }
1645
1646 return 0;
1647 }
1648
1649 /**
1650 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1651 * @hw: pointer to the HW structure
1652 *
1653 * Reset the Adaptive Interframe Spacing throttle to default values.
1654 **/
1655 void e1000e_reset_adaptive(struct e1000_hw *hw)
1656 {
1657 struct e1000_mac_info *mac = &hw->mac;
1658
1659 if (!mac->adaptive_ifs) {
1660 e_dbg("Not in Adaptive IFS mode!\n");
1661 return;
1662 }
1663
1664 mac->current_ifs_val = 0;
1665 mac->ifs_min_val = IFS_MIN;
1666 mac->ifs_max_val = IFS_MAX;
1667 mac->ifs_step_size = IFS_STEP;
1668 mac->ifs_ratio = IFS_RATIO;
1669
1670 mac->in_ifs_mode = false;
1671 ew32(AIT, 0);
1672 }
1673
1674 /**
1675 * e1000e_update_adaptive - Update Adaptive Interframe Spacing
1676 * @hw: pointer to the HW structure
1677 *
1678 * Update the Adaptive Interframe Spacing Throttle value based on the
1679 * time between transmitted packets and time between collisions.
1680 **/
1681 void e1000e_update_adaptive(struct e1000_hw *hw)
1682 {
1683 struct e1000_mac_info *mac = &hw->mac;
1684
1685 if (!mac->adaptive_ifs) {
1686 e_dbg("Not in Adaptive IFS mode!\n");
1687 return;
1688 }
1689
1690 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1691 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1692 mac->in_ifs_mode = true;
1693 if (mac->current_ifs_val < mac->ifs_max_val) {
1694 if (!mac->current_ifs_val)
1695 mac->current_ifs_val = mac->ifs_min_val;
1696 else
1697 mac->current_ifs_val +=
1698 mac->ifs_step_size;
1699 ew32(AIT, mac->current_ifs_val);
1700 }
1701 }
1702 } else {
1703 if (mac->in_ifs_mode &&
1704 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1705 mac->current_ifs_val = 0;
1706 mac->in_ifs_mode = false;
1707 ew32(AIT, 0);
1708 }
1709 }
1710 }