]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
64 [board_82574] = &e1000_82574_info,
65 [board_82583] = &e1000_82583_info,
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
69 [board_ich10lan] = &e1000_ich10_info,
70 [board_pchlan] = &e1000_pch_info,
71 [board_pch2lan] = &e1000_pch2_info,
72 [board_pch_lpt] = &e1000_pch_lpt_info,
73 [board_pch_spt] = &e1000_pch_spt_info,
74 [board_pch_cnp] = &e1000_pch_cnp_info,
75 };
76
77 struct e1000_reg_info {
78 u32 ofs;
79 char *name;
80 };
81
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83 /* General Registers */
84 {E1000_CTRL, "CTRL"},
85 {E1000_STATUS, "STATUS"},
86 {E1000_CTRL_EXT, "CTRL_EXT"},
87
88 /* Interrupt Registers */
89 {E1000_ICR, "ICR"},
90
91 /* Rx Registers */
92 {E1000_RCTL, "RCTL"},
93 {E1000_RDLEN(0), "RDLEN"},
94 {E1000_RDH(0), "RDH"},
95 {E1000_RDT(0), "RDT"},
96 {E1000_RDTR, "RDTR"},
97 {E1000_RXDCTL(0), "RXDCTL"},
98 {E1000_ERT, "ERT"},
99 {E1000_RDBAL(0), "RDBAL"},
100 {E1000_RDBAH(0), "RDBAH"},
101 {E1000_RDFH, "RDFH"},
102 {E1000_RDFT, "RDFT"},
103 {E1000_RDFHS, "RDFHS"},
104 {E1000_RDFTS, "RDFTS"},
105 {E1000_RDFPC, "RDFPC"},
106
107 /* Tx Registers */
108 {E1000_TCTL, "TCTL"},
109 {E1000_TDBAL(0), "TDBAL"},
110 {E1000_TDBAH(0), "TDBAH"},
111 {E1000_TDLEN(0), "TDLEN"},
112 {E1000_TDH(0), "TDH"},
113 {E1000_TDT(0), "TDT"},
114 {E1000_TIDV, "TIDV"},
115 {E1000_TXDCTL(0), "TXDCTL"},
116 {E1000_TADV, "TADV"},
117 {E1000_TARC(0), "TARC"},
118 {E1000_TDFH, "TDFH"},
119 {E1000_TDFT, "TDFT"},
120 {E1000_TDFHS, "TDFHS"},
121 {E1000_TDFTS, "TDFTS"},
122 {E1000_TDFPC, "TDFPC"},
123
124 /* List Terminator */
125 {0, NULL}
126 };
127
128 /**
129 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130 * @hw: pointer to the HW structure
131 *
132 * When updating the MAC CSR registers, the Manageability Engine (ME) could
133 * be accessing the registers at the same time. Normally, this is handled in
134 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135 * accesses later than it should which could result in the register to have
136 * an incorrect value. Workaround this by checking the FWSM register which
137 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138 * and try again a number of times.
139 **/
140 s32 __ew32_prepare(struct e1000_hw *hw)
141 {
142 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143
144 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145 udelay(50);
146
147 return i;
148 }
149
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 {
152 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153 __ew32_prepare(hw);
154
155 writel(val, hw->hw_addr + reg);
156 }
157
158 /**
159 * e1000_regdump - register printout routine
160 * @hw: pointer to the HW structure
161 * @reginfo: pointer to the register info table
162 **/
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
164 {
165 int n = 0;
166 char rname[16];
167 u32 regs[8];
168
169 switch (reginfo->ofs) {
170 case E1000_RXDCTL(0):
171 for (n = 0; n < 2; n++)
172 regs[n] = __er32(hw, E1000_RXDCTL(n));
173 break;
174 case E1000_TXDCTL(0):
175 for (n = 0; n < 2; n++)
176 regs[n] = __er32(hw, E1000_TXDCTL(n));
177 break;
178 case E1000_TARC(0):
179 for (n = 0; n < 2; n++)
180 regs[n] = __er32(hw, E1000_TARC(n));
181 break;
182 default:
183 pr_info("%-15s %08x\n",
184 reginfo->name, __er32(hw, reginfo->ofs));
185 return;
186 }
187
188 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
190 }
191
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193 struct e1000_buffer *bi)
194 {
195 int i;
196 struct e1000_ps_page *ps_page;
197
198 for (i = 0; i < adapter->rx_ps_pages; i++) {
199 ps_page = &bi->ps_pages[i];
200
201 if (ps_page->page) {
202 pr_info("packet dump for ps_page %d:\n", i);
203 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204 16, 1, page_address(ps_page->page),
205 PAGE_SIZE, true);
206 }
207 }
208 }
209
210 /**
211 * e1000e_dump - Print registers, Tx-ring and Rx-ring
212 * @adapter: board private structure
213 **/
214 static void e1000e_dump(struct e1000_adapter *adapter)
215 {
216 struct net_device *netdev = adapter->netdev;
217 struct e1000_hw *hw = &adapter->hw;
218 struct e1000_reg_info *reginfo;
219 struct e1000_ring *tx_ring = adapter->tx_ring;
220 struct e1000_tx_desc *tx_desc;
221 struct my_u0 {
222 __le64 a;
223 __le64 b;
224 } *u0;
225 struct e1000_buffer *buffer_info;
226 struct e1000_ring *rx_ring = adapter->rx_ring;
227 union e1000_rx_desc_packet_split *rx_desc_ps;
228 union e1000_rx_desc_extended *rx_desc;
229 struct my_u1 {
230 __le64 a;
231 __le64 b;
232 __le64 c;
233 __le64 d;
234 } *u1;
235 u32 staterr;
236 int i = 0;
237
238 if (!netif_msg_hw(adapter))
239 return;
240
241 /* Print netdevice Info */
242 if (netdev) {
243 dev_info(&adapter->pdev->dev, "Net device Info\n");
244 pr_info("Device Name state trans_start\n");
245 pr_info("%-15s %016lX %016lX\n", netdev->name,
246 netdev->state, dev_trans_start(netdev));
247 }
248
249 /* Print Registers */
250 dev_info(&adapter->pdev->dev, "Register Dump\n");
251 pr_info(" Register Name Value\n");
252 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253 reginfo->name; reginfo++) {
254 e1000_regdump(hw, reginfo);
255 }
256
257 /* Print Tx Ring Summary */
258 if (!netdev || !netif_running(netdev))
259 return;
260
261 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
263 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265 0, tx_ring->next_to_use, tx_ring->next_to_clean,
266 (unsigned long long)buffer_info->dma,
267 buffer_info->length,
268 buffer_info->next_to_watch,
269 (unsigned long long)buffer_info->time_stamp);
270
271 /* Print Tx Ring */
272 if (!netif_msg_tx_done(adapter))
273 goto rx_ring_summary;
274
275 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276
277 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278 *
279 * Legacy Transmit Descriptor
280 * +--------------------------------------------------------------+
281 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
282 * +--------------------------------------------------------------+
283 * 8 | Special | CSS | Status | CMD | CSO | Length |
284 * +--------------------------------------------------------------+
285 * 63 48 47 36 35 32 31 24 23 16 15 0
286 *
287 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288 * 63 48 47 40 39 32 31 16 15 8 7 0
289 * +----------------------------------------------------------------+
290 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
291 * +----------------------------------------------------------------+
292 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
293 * +----------------------------------------------------------------+
294 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
295 *
296 * Extended Data Descriptor (DTYP=0x1)
297 * +----------------------------------------------------------------+
298 * 0 | Buffer Address [63:0] |
299 * +----------------------------------------------------------------+
300 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
301 * +----------------------------------------------------------------+
302 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
303 */
304 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
305 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
306 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
307 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308 const char *next_desc;
309 tx_desc = E1000_TX_DESC(*tx_ring, i);
310 buffer_info = &tx_ring->buffer_info[i];
311 u0 = (struct my_u0 *)tx_desc;
312 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313 next_desc = " NTC/U";
314 else if (i == tx_ring->next_to_use)
315 next_desc = " NTU";
316 else if (i == tx_ring->next_to_clean)
317 next_desc = " NTC";
318 else
319 next_desc = "";
320 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
321 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
323 i,
324 (unsigned long long)le64_to_cpu(u0->a),
325 (unsigned long long)le64_to_cpu(u0->b),
326 (unsigned long long)buffer_info->dma,
327 buffer_info->length, buffer_info->next_to_watch,
328 (unsigned long long)buffer_info->time_stamp,
329 buffer_info->skb, next_desc);
330
331 if (netif_msg_pktdata(adapter) && buffer_info->skb)
332 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333 16, 1, buffer_info->skb->data,
334 buffer_info->skb->len, true);
335 }
336
337 /* Print Rx Ring Summary */
338 rx_ring_summary:
339 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340 pr_info("Queue [NTU] [NTC]\n");
341 pr_info(" %5d %5X %5X\n",
342 0, rx_ring->next_to_use, rx_ring->next_to_clean);
343
344 /* Print Rx Ring */
345 if (!netif_msg_rx_status(adapter))
346 return;
347
348 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349 switch (adapter->rx_ps_pages) {
350 case 1:
351 case 2:
352 case 3:
353 /* [Extended] Packet Split Receive Descriptor Format
354 *
355 * +-----------------------------------------------------+
356 * 0 | Buffer Address 0 [63:0] |
357 * +-----------------------------------------------------+
358 * 8 | Buffer Address 1 [63:0] |
359 * +-----------------------------------------------------+
360 * 16 | Buffer Address 2 [63:0] |
361 * +-----------------------------------------------------+
362 * 24 | Buffer Address 3 [63:0] |
363 * +-----------------------------------------------------+
364 */
365 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
366 /* [Extended] Receive Descriptor (Write-Back) Format
367 *
368 * 63 48 47 32 31 13 12 8 7 4 3 0
369 * +------------------------------------------------------+
370 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
371 * | Checksum | Ident | | Queue | | Type |
372 * +------------------------------------------------------+
373 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374 * +------------------------------------------------------+
375 * 63 48 47 32 31 20 19 0
376 */
377 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378 for (i = 0; i < rx_ring->count; i++) {
379 const char *next_desc;
380 buffer_info = &rx_ring->buffer_info[i];
381 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382 u1 = (struct my_u1 *)rx_desc_ps;
383 staterr =
384 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385
386 if (i == rx_ring->next_to_use)
387 next_desc = " NTU";
388 else if (i == rx_ring->next_to_clean)
389 next_desc = " NTC";
390 else
391 next_desc = "";
392
393 if (staterr & E1000_RXD_STAT_DD) {
394 /* Descriptor Done */
395 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 "RWB", i,
397 (unsigned long long)le64_to_cpu(u1->a),
398 (unsigned long long)le64_to_cpu(u1->b),
399 (unsigned long long)le64_to_cpu(u1->c),
400 (unsigned long long)le64_to_cpu(u1->d),
401 buffer_info->skb, next_desc);
402 } else {
403 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 "R ", i,
405 (unsigned long long)le64_to_cpu(u1->a),
406 (unsigned long long)le64_to_cpu(u1->b),
407 (unsigned long long)le64_to_cpu(u1->c),
408 (unsigned long long)le64_to_cpu(u1->d),
409 (unsigned long long)buffer_info->dma,
410 buffer_info->skb, next_desc);
411
412 if (netif_msg_pktdata(adapter))
413 e1000e_dump_ps_pages(adapter,
414 buffer_info);
415 }
416 }
417 break;
418 default:
419 case 0:
420 /* Extended Receive Descriptor (Read) Format
421 *
422 * +-----------------------------------------------------+
423 * 0 | Buffer Address [63:0] |
424 * +-----------------------------------------------------+
425 * 8 | Reserved |
426 * +-----------------------------------------------------+
427 */
428 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
429 /* Extended Receive Descriptor (Write-Back) Format
430 *
431 * 63 48 47 32 31 24 23 4 3 0
432 * +------------------------------------------------------+
433 * | RSS Hash | | | |
434 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
435 * | Packet | IP | | | Type |
436 * | Checksum | Ident | | | |
437 * +------------------------------------------------------+
438 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439 * +------------------------------------------------------+
440 * 63 48 47 32 31 20 19 0
441 */
442 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
443
444 for (i = 0; i < rx_ring->count; i++) {
445 const char *next_desc;
446
447 buffer_info = &rx_ring->buffer_info[i];
448 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449 u1 = (struct my_u1 *)rx_desc;
450 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451
452 if (i == rx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == rx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 if (staterr & E1000_RXD_STAT_DD) {
460 /* Descriptor Done */
461 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
462 "RWB", i,
463 (unsigned long long)le64_to_cpu(u1->a),
464 (unsigned long long)le64_to_cpu(u1->b),
465 buffer_info->skb, next_desc);
466 } else {
467 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
468 "R ", i,
469 (unsigned long long)le64_to_cpu(u1->a),
470 (unsigned long long)le64_to_cpu(u1->b),
471 (unsigned long long)buffer_info->dma,
472 buffer_info->skb, next_desc);
473
474 if (netif_msg_pktdata(adapter) &&
475 buffer_info->skb)
476 print_hex_dump(KERN_INFO, "",
477 DUMP_PREFIX_ADDRESS, 16,
478 1,
479 buffer_info->skb->data,
480 adapter->rx_buffer_len,
481 true);
482 }
483 }
484 }
485 }
486
487 /**
488 * e1000_desc_unused - calculate if we have unused descriptors
489 **/
490 static int e1000_desc_unused(struct e1000_ring *ring)
491 {
492 if (ring->next_to_clean > ring->next_to_use)
493 return ring->next_to_clean - ring->next_to_use - 1;
494
495 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
496 }
497
498 /**
499 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500 * @adapter: board private structure
501 * @hwtstamps: time stamp structure to update
502 * @systim: unsigned 64bit system time value.
503 *
504 * Convert the system time value stored in the RX/TXSTMP registers into a
505 * hwtstamp which can be used by the upper level time stamping functions.
506 *
507 * The 'systim_lock' spinlock is used to protect the consistency of the
508 * system time value. This is needed because reading the 64 bit time
509 * value involves reading two 32 bit registers. The first read latches the
510 * value.
511 **/
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513 struct skb_shared_hwtstamps *hwtstamps,
514 u64 systim)
515 {
516 u64 ns;
517 unsigned long flags;
518
519 spin_lock_irqsave(&adapter->systim_lock, flags);
520 ns = timecounter_cyc2time(&adapter->tc, systim);
521 spin_unlock_irqrestore(&adapter->systim_lock, flags);
522
523 memset(hwtstamps, 0, sizeof(*hwtstamps));
524 hwtstamps->hwtstamp = ns_to_ktime(ns);
525 }
526
527 /**
528 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529 * @adapter: board private structure
530 * @status: descriptor extended error and status field
531 * @skb: particular skb to include time stamp
532 *
533 * If the time stamp is valid, convert it into the timecounter ns value
534 * and store that result into the shhwtstamps structure which is passed
535 * up the network stack.
536 **/
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538 struct sk_buff *skb)
539 {
540 struct e1000_hw *hw = &adapter->hw;
541 u64 rxstmp;
542
543 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544 !(status & E1000_RXDEXT_STATERR_TST) ||
545 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546 return;
547
548 /* The Rx time stamp registers contain the time stamp. No other
549 * received packet will be time stamped until the Rx time stamp
550 * registers are read. Because only one packet can be time stamped
551 * at a time, the register values must belong to this packet and
552 * therefore none of the other additional attributes need to be
553 * compared.
554 */
555 rxstmp = (u64)er32(RXSTMPL);
556 rxstmp |= (u64)er32(RXSTMPH) << 32;
557 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558
559 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
560 }
561
562 /**
563 * e1000_receive_skb - helper function to handle Rx indications
564 * @adapter: board private structure
565 * @staterr: descriptor extended error and status field as written by hardware
566 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567 * @skb: pointer to sk_buff to be indicated to stack
568 **/
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570 struct net_device *netdev, struct sk_buff *skb,
571 u32 staterr, __le16 vlan)
572 {
573 u16 tag = le16_to_cpu(vlan);
574
575 e1000e_rx_hwtstamp(adapter, staterr, skb);
576
577 skb->protocol = eth_type_trans(skb, netdev);
578
579 if (staterr & E1000_RXD_STAT_VP)
580 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581
582 napi_gro_receive(&adapter->napi, skb);
583 }
584
585 /**
586 * e1000_rx_checksum - Receive Checksum Offload
587 * @adapter: board private structure
588 * @status_err: receive descriptor status and error fields
589 * @csum: receive descriptor csum field
590 * @sk_buff: socket buffer with received data
591 **/
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593 struct sk_buff *skb)
594 {
595 u16 status = (u16)status_err;
596 u8 errors = (u8)(status_err >> 24);
597
598 skb_checksum_none_assert(skb);
599
600 /* Rx checksum disabled */
601 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602 return;
603
604 /* Ignore Checksum bit is set */
605 if (status & E1000_RXD_STAT_IXSM)
606 return;
607
608 /* TCP/UDP checksum error bit or IP checksum error bit is set */
609 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610 /* let the stack verify checksum errors */
611 adapter->hw_csum_err++;
612 return;
613 }
614
615 /* TCP/UDP Checksum has not been calculated */
616 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617 return;
618
619 /* It must be a TCP or UDP packet with a valid checksum */
620 skb->ip_summed = CHECKSUM_UNNECESSARY;
621 adapter->hw_csum_good++;
622 }
623
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 {
626 struct e1000_adapter *adapter = rx_ring->adapter;
627 struct e1000_hw *hw = &adapter->hw;
628 s32 ret_val = __ew32_prepare(hw);
629
630 writel(i, rx_ring->tail);
631
632 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633 u32 rctl = er32(RCTL);
634
635 ew32(RCTL, rctl & ~E1000_RCTL_EN);
636 e_err("ME firmware caused invalid RDT - resetting\n");
637 schedule_work(&adapter->reset_task);
638 }
639 }
640
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 {
643 struct e1000_adapter *adapter = tx_ring->adapter;
644 struct e1000_hw *hw = &adapter->hw;
645 s32 ret_val = __ew32_prepare(hw);
646
647 writel(i, tx_ring->tail);
648
649 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650 u32 tctl = er32(TCTL);
651
652 ew32(TCTL, tctl & ~E1000_TCTL_EN);
653 e_err("ME firmware caused invalid TDT - resetting\n");
654 schedule_work(&adapter->reset_task);
655 }
656 }
657
658 /**
659 * e1000_alloc_rx_buffers - Replace used receive buffers
660 * @rx_ring: Rx descriptor ring
661 **/
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663 int cleaned_count, gfp_t gfp)
664 {
665 struct e1000_adapter *adapter = rx_ring->adapter;
666 struct net_device *netdev = adapter->netdev;
667 struct pci_dev *pdev = adapter->pdev;
668 union e1000_rx_desc_extended *rx_desc;
669 struct e1000_buffer *buffer_info;
670 struct sk_buff *skb;
671 unsigned int i;
672 unsigned int bufsz = adapter->rx_buffer_len;
673
674 i = rx_ring->next_to_use;
675 buffer_info = &rx_ring->buffer_info[i];
676
677 while (cleaned_count--) {
678 skb = buffer_info->skb;
679 if (skb) {
680 skb_trim(skb, 0);
681 goto map_skb;
682 }
683
684 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685 if (!skb) {
686 /* Better luck next round */
687 adapter->alloc_rx_buff_failed++;
688 break;
689 }
690
691 buffer_info->skb = skb;
692 map_skb:
693 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694 adapter->rx_buffer_len,
695 DMA_FROM_DEVICE);
696 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697 dev_err(&pdev->dev, "Rx DMA map failed\n");
698 adapter->rx_dma_failed++;
699 break;
700 }
701
702 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704
705 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706 /* Force memory writes to complete before letting h/w
707 * know there are new descriptors to fetch. (Only
708 * applicable for weak-ordered memory model archs,
709 * such as IA-64).
710 */
711 wmb();
712 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713 e1000e_update_rdt_wa(rx_ring, i);
714 else
715 writel(i, rx_ring->tail);
716 }
717 i++;
718 if (i == rx_ring->count)
719 i = 0;
720 buffer_info = &rx_ring->buffer_info[i];
721 }
722
723 rx_ring->next_to_use = i;
724 }
725
726 /**
727 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728 * @rx_ring: Rx descriptor ring
729 **/
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731 int cleaned_count, gfp_t gfp)
732 {
733 struct e1000_adapter *adapter = rx_ring->adapter;
734 struct net_device *netdev = adapter->netdev;
735 struct pci_dev *pdev = adapter->pdev;
736 union e1000_rx_desc_packet_split *rx_desc;
737 struct e1000_buffer *buffer_info;
738 struct e1000_ps_page *ps_page;
739 struct sk_buff *skb;
740 unsigned int i, j;
741
742 i = rx_ring->next_to_use;
743 buffer_info = &rx_ring->buffer_info[i];
744
745 while (cleaned_count--) {
746 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747
748 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749 ps_page = &buffer_info->ps_pages[j];
750 if (j >= adapter->rx_ps_pages) {
751 /* all unused desc entries get hw null ptr */
752 rx_desc->read.buffer_addr[j + 1] =
753 ~cpu_to_le64(0);
754 continue;
755 }
756 if (!ps_page->page) {
757 ps_page->page = alloc_page(gfp);
758 if (!ps_page->page) {
759 adapter->alloc_rx_buff_failed++;
760 goto no_buffers;
761 }
762 ps_page->dma = dma_map_page(&pdev->dev,
763 ps_page->page,
764 0, PAGE_SIZE,
765 DMA_FROM_DEVICE);
766 if (dma_mapping_error(&pdev->dev,
767 ps_page->dma)) {
768 dev_err(&adapter->pdev->dev,
769 "Rx DMA page map failed\n");
770 adapter->rx_dma_failed++;
771 goto no_buffers;
772 }
773 }
774 /* Refresh the desc even if buffer_addrs
775 * didn't change because each write-back
776 * erases this info.
777 */
778 rx_desc->read.buffer_addr[j + 1] =
779 cpu_to_le64(ps_page->dma);
780 }
781
782 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783 gfp);
784
785 if (!skb) {
786 adapter->alloc_rx_buff_failed++;
787 break;
788 }
789
790 buffer_info->skb = skb;
791 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792 adapter->rx_ps_bsize0,
793 DMA_FROM_DEVICE);
794 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795 dev_err(&pdev->dev, "Rx DMA map failed\n");
796 adapter->rx_dma_failed++;
797 /* cleanup skb */
798 dev_kfree_skb_any(skb);
799 buffer_info->skb = NULL;
800 break;
801 }
802
803 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804
805 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806 /* Force memory writes to complete before letting h/w
807 * know there are new descriptors to fetch. (Only
808 * applicable for weak-ordered memory model archs,
809 * such as IA-64).
810 */
811 wmb();
812 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813 e1000e_update_rdt_wa(rx_ring, i << 1);
814 else
815 writel(i << 1, rx_ring->tail);
816 }
817
818 i++;
819 if (i == rx_ring->count)
820 i = 0;
821 buffer_info = &rx_ring->buffer_info[i];
822 }
823
824 no_buffers:
825 rx_ring->next_to_use = i;
826 }
827
828 /**
829 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830 * @rx_ring: Rx descriptor ring
831 * @cleaned_count: number of buffers to allocate this pass
832 **/
833
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835 int cleaned_count, gfp_t gfp)
836 {
837 struct e1000_adapter *adapter = rx_ring->adapter;
838 struct net_device *netdev = adapter->netdev;
839 struct pci_dev *pdev = adapter->pdev;
840 union e1000_rx_desc_extended *rx_desc;
841 struct e1000_buffer *buffer_info;
842 struct sk_buff *skb;
843 unsigned int i;
844 unsigned int bufsz = 256 - 16; /* for skb_reserve */
845
846 i = rx_ring->next_to_use;
847 buffer_info = &rx_ring->buffer_info[i];
848
849 while (cleaned_count--) {
850 skb = buffer_info->skb;
851 if (skb) {
852 skb_trim(skb, 0);
853 goto check_page;
854 }
855
856 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857 if (unlikely(!skb)) {
858 /* Better luck next round */
859 adapter->alloc_rx_buff_failed++;
860 break;
861 }
862
863 buffer_info->skb = skb;
864 check_page:
865 /* allocate a new page if necessary */
866 if (!buffer_info->page) {
867 buffer_info->page = alloc_page(gfp);
868 if (unlikely(!buffer_info->page)) {
869 adapter->alloc_rx_buff_failed++;
870 break;
871 }
872 }
873
874 if (!buffer_info->dma) {
875 buffer_info->dma = dma_map_page(&pdev->dev,
876 buffer_info->page, 0,
877 PAGE_SIZE,
878 DMA_FROM_DEVICE);
879 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880 adapter->alloc_rx_buff_failed++;
881 break;
882 }
883 }
884
885 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887
888 if (unlikely(++i == rx_ring->count))
889 i = 0;
890 buffer_info = &rx_ring->buffer_info[i];
891 }
892
893 if (likely(rx_ring->next_to_use != i)) {
894 rx_ring->next_to_use = i;
895 if (unlikely(i-- == 0))
896 i = (rx_ring->count - 1);
897
898 /* Force memory writes to complete before letting h/w
899 * know there are new descriptors to fetch. (Only
900 * applicable for weak-ordered memory model archs,
901 * such as IA-64).
902 */
903 wmb();
904 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905 e1000e_update_rdt_wa(rx_ring, i);
906 else
907 writel(i, rx_ring->tail);
908 }
909 }
910
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912 struct sk_buff *skb)
913 {
914 if (netdev->features & NETIF_F_RXHASH)
915 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
916 }
917
918 /**
919 * e1000_clean_rx_irq - Send received data up the network stack
920 * @rx_ring: Rx descriptor ring
921 *
922 * the return value indicates whether actual cleaning was done, there
923 * is no guarantee that everything was cleaned
924 **/
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926 int work_to_do)
927 {
928 struct e1000_adapter *adapter = rx_ring->adapter;
929 struct net_device *netdev = adapter->netdev;
930 struct pci_dev *pdev = adapter->pdev;
931 struct e1000_hw *hw = &adapter->hw;
932 union e1000_rx_desc_extended *rx_desc, *next_rxd;
933 struct e1000_buffer *buffer_info, *next_buffer;
934 u32 length, staterr;
935 unsigned int i;
936 int cleaned_count = 0;
937 bool cleaned = false;
938 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939
940 i = rx_ring->next_to_clean;
941 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943 buffer_info = &rx_ring->buffer_info[i];
944
945 while (staterr & E1000_RXD_STAT_DD) {
946 struct sk_buff *skb;
947
948 if (*work_done >= work_to_do)
949 break;
950 (*work_done)++;
951 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
952
953 skb = buffer_info->skb;
954 buffer_info->skb = NULL;
955
956 prefetch(skb->data - NET_IP_ALIGN);
957
958 i++;
959 if (i == rx_ring->count)
960 i = 0;
961 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962 prefetch(next_rxd);
963
964 next_buffer = &rx_ring->buffer_info[i];
965
966 cleaned = true;
967 cleaned_count++;
968 dma_unmap_single(&pdev->dev, buffer_info->dma,
969 adapter->rx_buffer_len, DMA_FROM_DEVICE);
970 buffer_info->dma = 0;
971
972 length = le16_to_cpu(rx_desc->wb.upper.length);
973
974 /* !EOP means multiple descriptors were used to store a single
975 * packet, if that's the case we need to toss it. In fact, we
976 * need to toss every packet with the EOP bit clear and the
977 * next frame that _does_ have the EOP bit set, as it is by
978 * definition only a frame fragment
979 */
980 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981 adapter->flags2 |= FLAG2_IS_DISCARDING;
982
983 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984 /* All receives must fit into a single buffer */
985 e_dbg("Receive packet consumed multiple buffers\n");
986 /* recycle */
987 buffer_info->skb = skb;
988 if (staterr & E1000_RXD_STAT_EOP)
989 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990 goto next_desc;
991 }
992
993 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994 !(netdev->features & NETIF_F_RXALL))) {
995 /* recycle */
996 buffer_info->skb = skb;
997 goto next_desc;
998 }
999
1000 /* adjust length to remove Ethernet CRC */
1001 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002 /* If configured to store CRC, don't subtract FCS,
1003 * but keep the FCS bytes out of the total_rx_bytes
1004 * counter
1005 */
1006 if (netdev->features & NETIF_F_RXFCS)
1007 total_rx_bytes -= 4;
1008 else
1009 length -= 4;
1010 }
1011
1012 total_rx_bytes += length;
1013 total_rx_packets++;
1014
1015 /* code added for copybreak, this should improve
1016 * performance for small packets with large amounts
1017 * of reassembly being done in the stack
1018 */
1019 if (length < copybreak) {
1020 struct sk_buff *new_skb =
1021 napi_alloc_skb(&adapter->napi, length);
1022 if (new_skb) {
1023 skb_copy_to_linear_data_offset(new_skb,
1024 -NET_IP_ALIGN,
1025 (skb->data -
1026 NET_IP_ALIGN),
1027 (length +
1028 NET_IP_ALIGN));
1029 /* save the skb in buffer_info as good */
1030 buffer_info->skb = skb;
1031 skb = new_skb;
1032 }
1033 /* else just continue with the old one */
1034 }
1035 /* end copybreak code */
1036 skb_put(skb, length);
1037
1038 /* Receive Checksum Offload */
1039 e1000_rx_checksum(adapter, staterr, skb);
1040
1041 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042
1043 e1000_receive_skb(adapter, netdev, skb, staterr,
1044 rx_desc->wb.upper.vlan);
1045
1046 next_desc:
1047 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048
1049 /* return some buffers to hardware, one at a time is too slow */
1050 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052 GFP_ATOMIC);
1053 cleaned_count = 0;
1054 }
1055
1056 /* use prefetched values */
1057 rx_desc = next_rxd;
1058 buffer_info = next_buffer;
1059
1060 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061 }
1062 rx_ring->next_to_clean = i;
1063
1064 cleaned_count = e1000_desc_unused(rx_ring);
1065 if (cleaned_count)
1066 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067
1068 adapter->total_rx_bytes += total_rx_bytes;
1069 adapter->total_rx_packets += total_rx_packets;
1070 return cleaned;
1071 }
1072
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074 struct e1000_buffer *buffer_info,
1075 bool drop)
1076 {
1077 struct e1000_adapter *adapter = tx_ring->adapter;
1078
1079 if (buffer_info->dma) {
1080 if (buffer_info->mapped_as_page)
1081 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1082 buffer_info->length, DMA_TO_DEVICE);
1083 else
1084 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1085 buffer_info->length, DMA_TO_DEVICE);
1086 buffer_info->dma = 0;
1087 }
1088 if (buffer_info->skb) {
1089 if (drop)
1090 dev_kfree_skb_any(buffer_info->skb);
1091 else
1092 dev_consume_skb_any(buffer_info->skb);
1093 buffer_info->skb = NULL;
1094 }
1095 buffer_info->time_stamp = 0;
1096 }
1097
1098 static void e1000_print_hw_hang(struct work_struct *work)
1099 {
1100 struct e1000_adapter *adapter = container_of(work,
1101 struct e1000_adapter,
1102 print_hang_task);
1103 struct net_device *netdev = adapter->netdev;
1104 struct e1000_ring *tx_ring = adapter->tx_ring;
1105 unsigned int i = tx_ring->next_to_clean;
1106 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1107 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1108 struct e1000_hw *hw = &adapter->hw;
1109 u16 phy_status, phy_1000t_status, phy_ext_status;
1110 u16 pci_status;
1111
1112 if (test_bit(__E1000_DOWN, &adapter->state))
1113 return;
1114
1115 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1116 /* May be block on write-back, flush and detect again
1117 * flush pending descriptor writebacks to memory
1118 */
1119 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120 /* execute the writes immediately */
1121 e1e_flush();
1122 /* Due to rare timing issues, write to TIDV again to ensure
1123 * the write is successful
1124 */
1125 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1126 /* execute the writes immediately */
1127 e1e_flush();
1128 adapter->tx_hang_recheck = true;
1129 return;
1130 }
1131 adapter->tx_hang_recheck = false;
1132
1133 if (er32(TDH(0)) == er32(TDT(0))) {
1134 e_dbg("false hang detected, ignoring\n");
1135 return;
1136 }
1137
1138 /* Real hang detected */
1139 netif_stop_queue(netdev);
1140
1141 e1e_rphy(hw, MII_BMSR, &phy_status);
1142 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1143 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1144
1145 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1146
1147 /* detected Hardware unit hang */
1148 e_err("Detected Hardware Unit Hang:\n"
1149 " TDH <%x>\n"
1150 " TDT <%x>\n"
1151 " next_to_use <%x>\n"
1152 " next_to_clean <%x>\n"
1153 "buffer_info[next_to_clean]:\n"
1154 " time_stamp <%lx>\n"
1155 " next_to_watch <%x>\n"
1156 " jiffies <%lx>\n"
1157 " next_to_watch.status <%x>\n"
1158 "MAC Status <%x>\n"
1159 "PHY Status <%x>\n"
1160 "PHY 1000BASE-T Status <%x>\n"
1161 "PHY Extended Status <%x>\n"
1162 "PCI Status <%x>\n",
1163 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1164 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1165 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1166 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1167
1168 e1000e_dump(adapter);
1169
1170 /* Suggest workaround for known h/w issue */
1171 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1172 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1173 }
1174
1175 /**
1176 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1177 * @work: pointer to work struct
1178 *
1179 * This work function polls the TSYNCTXCTL valid bit to determine when a
1180 * timestamp has been taken for the current stored skb. The timestamp must
1181 * be for this skb because only one such packet is allowed in the queue.
1182 */
1183 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1184 {
1185 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1186 tx_hwtstamp_work);
1187 struct e1000_hw *hw = &adapter->hw;
1188
1189 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1190 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1191 struct skb_shared_hwtstamps shhwtstamps;
1192 u64 txstmp;
1193
1194 txstmp = er32(TXSTMPL);
1195 txstmp |= (u64)er32(TXSTMPH) << 32;
1196
1197 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1198
1199 /* Clear the global tx_hwtstamp_skb pointer and force writes
1200 * prior to notifying the stack of a Tx timestamp.
1201 */
1202 adapter->tx_hwtstamp_skb = NULL;
1203 wmb(); /* force write prior to skb_tstamp_tx */
1204
1205 skb_tstamp_tx(skb, &shhwtstamps);
1206 dev_consume_skb_any(skb);
1207 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1208 + adapter->tx_timeout_factor * HZ)) {
1209 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1210 adapter->tx_hwtstamp_skb = NULL;
1211 adapter->tx_hwtstamp_timeouts++;
1212 e_warn("clearing Tx timestamp hang\n");
1213 } else {
1214 /* reschedule to check later */
1215 schedule_work(&adapter->tx_hwtstamp_work);
1216 }
1217 }
1218
1219 /**
1220 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1221 * @tx_ring: Tx descriptor ring
1222 *
1223 * the return value indicates whether actual cleaning was done, there
1224 * is no guarantee that everything was cleaned
1225 **/
1226 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1227 {
1228 struct e1000_adapter *adapter = tx_ring->adapter;
1229 struct net_device *netdev = adapter->netdev;
1230 struct e1000_hw *hw = &adapter->hw;
1231 struct e1000_tx_desc *tx_desc, *eop_desc;
1232 struct e1000_buffer *buffer_info;
1233 unsigned int i, eop;
1234 unsigned int count = 0;
1235 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1236 unsigned int bytes_compl = 0, pkts_compl = 0;
1237
1238 i = tx_ring->next_to_clean;
1239 eop = tx_ring->buffer_info[i].next_to_watch;
1240 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1241
1242 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1243 (count < tx_ring->count)) {
1244 bool cleaned = false;
1245
1246 dma_rmb(); /* read buffer_info after eop_desc */
1247 for (; !cleaned; count++) {
1248 tx_desc = E1000_TX_DESC(*tx_ring, i);
1249 buffer_info = &tx_ring->buffer_info[i];
1250 cleaned = (i == eop);
1251
1252 if (cleaned) {
1253 total_tx_packets += buffer_info->segs;
1254 total_tx_bytes += buffer_info->bytecount;
1255 if (buffer_info->skb) {
1256 bytes_compl += buffer_info->skb->len;
1257 pkts_compl++;
1258 }
1259 }
1260
1261 e1000_put_txbuf(tx_ring, buffer_info, false);
1262 tx_desc->upper.data = 0;
1263
1264 i++;
1265 if (i == tx_ring->count)
1266 i = 0;
1267 }
1268
1269 if (i == tx_ring->next_to_use)
1270 break;
1271 eop = tx_ring->buffer_info[i].next_to_watch;
1272 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1273 }
1274
1275 tx_ring->next_to_clean = i;
1276
1277 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1278
1279 #define TX_WAKE_THRESHOLD 32
1280 if (count && netif_carrier_ok(netdev) &&
1281 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1282 /* Make sure that anybody stopping the queue after this
1283 * sees the new next_to_clean.
1284 */
1285 smp_mb();
1286
1287 if (netif_queue_stopped(netdev) &&
1288 !(test_bit(__E1000_DOWN, &adapter->state))) {
1289 netif_wake_queue(netdev);
1290 ++adapter->restart_queue;
1291 }
1292 }
1293
1294 if (adapter->detect_tx_hung) {
1295 /* Detect a transmit hang in hardware, this serializes the
1296 * check with the clearing of time_stamp and movement of i
1297 */
1298 adapter->detect_tx_hung = false;
1299 if (tx_ring->buffer_info[i].time_stamp &&
1300 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1301 + (adapter->tx_timeout_factor * HZ)) &&
1302 !(er32(STATUS) & E1000_STATUS_TXOFF))
1303 schedule_work(&adapter->print_hang_task);
1304 else
1305 adapter->tx_hang_recheck = false;
1306 }
1307 adapter->total_tx_bytes += total_tx_bytes;
1308 adapter->total_tx_packets += total_tx_packets;
1309 return count < tx_ring->count;
1310 }
1311
1312 /**
1313 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1314 * @rx_ring: Rx descriptor ring
1315 *
1316 * the return value indicates whether actual cleaning was done, there
1317 * is no guarantee that everything was cleaned
1318 **/
1319 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1320 int work_to_do)
1321 {
1322 struct e1000_adapter *adapter = rx_ring->adapter;
1323 struct e1000_hw *hw = &adapter->hw;
1324 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1325 struct net_device *netdev = adapter->netdev;
1326 struct pci_dev *pdev = adapter->pdev;
1327 struct e1000_buffer *buffer_info, *next_buffer;
1328 struct e1000_ps_page *ps_page;
1329 struct sk_buff *skb;
1330 unsigned int i, j;
1331 u32 length, staterr;
1332 int cleaned_count = 0;
1333 bool cleaned = false;
1334 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1335
1336 i = rx_ring->next_to_clean;
1337 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1338 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1339 buffer_info = &rx_ring->buffer_info[i];
1340
1341 while (staterr & E1000_RXD_STAT_DD) {
1342 if (*work_done >= work_to_do)
1343 break;
1344 (*work_done)++;
1345 skb = buffer_info->skb;
1346 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1347
1348 /* in the packet split case this is header only */
1349 prefetch(skb->data - NET_IP_ALIGN);
1350
1351 i++;
1352 if (i == rx_ring->count)
1353 i = 0;
1354 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1355 prefetch(next_rxd);
1356
1357 next_buffer = &rx_ring->buffer_info[i];
1358
1359 cleaned = true;
1360 cleaned_count++;
1361 dma_unmap_single(&pdev->dev, buffer_info->dma,
1362 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1363 buffer_info->dma = 0;
1364
1365 /* see !EOP comment in other Rx routine */
1366 if (!(staterr & E1000_RXD_STAT_EOP))
1367 adapter->flags2 |= FLAG2_IS_DISCARDING;
1368
1369 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1370 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1371 dev_kfree_skb_irq(skb);
1372 if (staterr & E1000_RXD_STAT_EOP)
1373 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1374 goto next_desc;
1375 }
1376
1377 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1378 !(netdev->features & NETIF_F_RXALL))) {
1379 dev_kfree_skb_irq(skb);
1380 goto next_desc;
1381 }
1382
1383 length = le16_to_cpu(rx_desc->wb.middle.length0);
1384
1385 if (!length) {
1386 e_dbg("Last part of the packet spanning multiple descriptors\n");
1387 dev_kfree_skb_irq(skb);
1388 goto next_desc;
1389 }
1390
1391 /* Good Receive */
1392 skb_put(skb, length);
1393
1394 {
1395 /* this looks ugly, but it seems compiler issues make
1396 * it more efficient than reusing j
1397 */
1398 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1399
1400 /* page alloc/put takes too long and effects small
1401 * packet throughput, so unsplit small packets and
1402 * save the alloc/put only valid in softirq (napi)
1403 * context to call kmap_*
1404 */
1405 if (l1 && (l1 <= copybreak) &&
1406 ((length + l1) <= adapter->rx_ps_bsize0)) {
1407 u8 *vaddr;
1408
1409 ps_page = &buffer_info->ps_pages[0];
1410
1411 /* there is no documentation about how to call
1412 * kmap_atomic, so we can't hold the mapping
1413 * very long
1414 */
1415 dma_sync_single_for_cpu(&pdev->dev,
1416 ps_page->dma,
1417 PAGE_SIZE,
1418 DMA_FROM_DEVICE);
1419 vaddr = kmap_atomic(ps_page->page);
1420 memcpy(skb_tail_pointer(skb), vaddr, l1);
1421 kunmap_atomic(vaddr);
1422 dma_sync_single_for_device(&pdev->dev,
1423 ps_page->dma,
1424 PAGE_SIZE,
1425 DMA_FROM_DEVICE);
1426
1427 /* remove the CRC */
1428 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1429 if (!(netdev->features & NETIF_F_RXFCS))
1430 l1 -= 4;
1431 }
1432
1433 skb_put(skb, l1);
1434 goto copydone;
1435 } /* if */
1436 }
1437
1438 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1439 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1440 if (!length)
1441 break;
1442
1443 ps_page = &buffer_info->ps_pages[j];
1444 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1445 DMA_FROM_DEVICE);
1446 ps_page->dma = 0;
1447 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1448 ps_page->page = NULL;
1449 skb->len += length;
1450 skb->data_len += length;
1451 skb->truesize += PAGE_SIZE;
1452 }
1453
1454 /* strip the ethernet crc, problem is we're using pages now so
1455 * this whole operation can get a little cpu intensive
1456 */
1457 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1458 if (!(netdev->features & NETIF_F_RXFCS))
1459 pskb_trim(skb, skb->len - 4);
1460 }
1461
1462 copydone:
1463 total_rx_bytes += skb->len;
1464 total_rx_packets++;
1465
1466 e1000_rx_checksum(adapter, staterr, skb);
1467
1468 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1469
1470 if (rx_desc->wb.upper.header_status &
1471 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1472 adapter->rx_hdr_split++;
1473
1474 e1000_receive_skb(adapter, netdev, skb, staterr,
1475 rx_desc->wb.middle.vlan);
1476
1477 next_desc:
1478 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1479 buffer_info->skb = NULL;
1480
1481 /* return some buffers to hardware, one at a time is too slow */
1482 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1483 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1484 GFP_ATOMIC);
1485 cleaned_count = 0;
1486 }
1487
1488 /* use prefetched values */
1489 rx_desc = next_rxd;
1490 buffer_info = next_buffer;
1491
1492 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1493 }
1494 rx_ring->next_to_clean = i;
1495
1496 cleaned_count = e1000_desc_unused(rx_ring);
1497 if (cleaned_count)
1498 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1499
1500 adapter->total_rx_bytes += total_rx_bytes;
1501 adapter->total_rx_packets += total_rx_packets;
1502 return cleaned;
1503 }
1504
1505 /**
1506 * e1000_consume_page - helper function
1507 **/
1508 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1509 u16 length)
1510 {
1511 bi->page = NULL;
1512 skb->len += length;
1513 skb->data_len += length;
1514 skb->truesize += PAGE_SIZE;
1515 }
1516
1517 /**
1518 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1519 * @adapter: board private structure
1520 *
1521 * the return value indicates whether actual cleaning was done, there
1522 * is no guarantee that everything was cleaned
1523 **/
1524 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1525 int work_to_do)
1526 {
1527 struct e1000_adapter *adapter = rx_ring->adapter;
1528 struct net_device *netdev = adapter->netdev;
1529 struct pci_dev *pdev = adapter->pdev;
1530 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1531 struct e1000_buffer *buffer_info, *next_buffer;
1532 u32 length, staterr;
1533 unsigned int i;
1534 int cleaned_count = 0;
1535 bool cleaned = false;
1536 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1537 struct skb_shared_info *shinfo;
1538
1539 i = rx_ring->next_to_clean;
1540 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1541 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1542 buffer_info = &rx_ring->buffer_info[i];
1543
1544 while (staterr & E1000_RXD_STAT_DD) {
1545 struct sk_buff *skb;
1546
1547 if (*work_done >= work_to_do)
1548 break;
1549 (*work_done)++;
1550 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1551
1552 skb = buffer_info->skb;
1553 buffer_info->skb = NULL;
1554
1555 ++i;
1556 if (i == rx_ring->count)
1557 i = 0;
1558 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1559 prefetch(next_rxd);
1560
1561 next_buffer = &rx_ring->buffer_info[i];
1562
1563 cleaned = true;
1564 cleaned_count++;
1565 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1566 DMA_FROM_DEVICE);
1567 buffer_info->dma = 0;
1568
1569 length = le16_to_cpu(rx_desc->wb.upper.length);
1570
1571 /* errors is only valid for DD + EOP descriptors */
1572 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1573 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1574 !(netdev->features & NETIF_F_RXALL)))) {
1575 /* recycle both page and skb */
1576 buffer_info->skb = skb;
1577 /* an error means any chain goes out the window too */
1578 if (rx_ring->rx_skb_top)
1579 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1580 rx_ring->rx_skb_top = NULL;
1581 goto next_desc;
1582 }
1583 #define rxtop (rx_ring->rx_skb_top)
1584 if (!(staterr & E1000_RXD_STAT_EOP)) {
1585 /* this descriptor is only the beginning (or middle) */
1586 if (!rxtop) {
1587 /* this is the beginning of a chain */
1588 rxtop = skb;
1589 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1590 0, length);
1591 } else {
1592 /* this is the middle of a chain */
1593 shinfo = skb_shinfo(rxtop);
1594 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 buffer_info->page, 0,
1596 length);
1597 /* re-use the skb, only consumed the page */
1598 buffer_info->skb = skb;
1599 }
1600 e1000_consume_page(buffer_info, rxtop, length);
1601 goto next_desc;
1602 } else {
1603 if (rxtop) {
1604 /* end of the chain */
1605 shinfo = skb_shinfo(rxtop);
1606 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1607 buffer_info->page, 0,
1608 length);
1609 /* re-use the current skb, we only consumed the
1610 * page
1611 */
1612 buffer_info->skb = skb;
1613 skb = rxtop;
1614 rxtop = NULL;
1615 e1000_consume_page(buffer_info, skb, length);
1616 } else {
1617 /* no chain, got EOP, this buf is the packet
1618 * copybreak to save the put_page/alloc_page
1619 */
1620 if (length <= copybreak &&
1621 skb_tailroom(skb) >= length) {
1622 u8 *vaddr;
1623 vaddr = kmap_atomic(buffer_info->page);
1624 memcpy(skb_tail_pointer(skb), vaddr,
1625 length);
1626 kunmap_atomic(vaddr);
1627 /* re-use the page, so don't erase
1628 * buffer_info->page
1629 */
1630 skb_put(skb, length);
1631 } else {
1632 skb_fill_page_desc(skb, 0,
1633 buffer_info->page, 0,
1634 length);
1635 e1000_consume_page(buffer_info, skb,
1636 length);
1637 }
1638 }
1639 }
1640
1641 /* Receive Checksum Offload */
1642 e1000_rx_checksum(adapter, staterr, skb);
1643
1644 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1645
1646 /* probably a little skewed due to removing CRC */
1647 total_rx_bytes += skb->len;
1648 total_rx_packets++;
1649
1650 /* eth type trans needs skb->data to point to something */
1651 if (!pskb_may_pull(skb, ETH_HLEN)) {
1652 e_err("pskb_may_pull failed.\n");
1653 dev_kfree_skb_irq(skb);
1654 goto next_desc;
1655 }
1656
1657 e1000_receive_skb(adapter, netdev, skb, staterr,
1658 rx_desc->wb.upper.vlan);
1659
1660 next_desc:
1661 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1662
1663 /* return some buffers to hardware, one at a time is too slow */
1664 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1665 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1666 GFP_ATOMIC);
1667 cleaned_count = 0;
1668 }
1669
1670 /* use prefetched values */
1671 rx_desc = next_rxd;
1672 buffer_info = next_buffer;
1673
1674 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1675 }
1676 rx_ring->next_to_clean = i;
1677
1678 cleaned_count = e1000_desc_unused(rx_ring);
1679 if (cleaned_count)
1680 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1681
1682 adapter->total_rx_bytes += total_rx_bytes;
1683 adapter->total_rx_packets += total_rx_packets;
1684 return cleaned;
1685 }
1686
1687 /**
1688 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1689 * @rx_ring: Rx descriptor ring
1690 **/
1691 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1692 {
1693 struct e1000_adapter *adapter = rx_ring->adapter;
1694 struct e1000_buffer *buffer_info;
1695 struct e1000_ps_page *ps_page;
1696 struct pci_dev *pdev = adapter->pdev;
1697 unsigned int i, j;
1698
1699 /* Free all the Rx ring sk_buffs */
1700 for (i = 0; i < rx_ring->count; i++) {
1701 buffer_info = &rx_ring->buffer_info[i];
1702 if (buffer_info->dma) {
1703 if (adapter->clean_rx == e1000_clean_rx_irq)
1704 dma_unmap_single(&pdev->dev, buffer_info->dma,
1705 adapter->rx_buffer_len,
1706 DMA_FROM_DEVICE);
1707 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1708 dma_unmap_page(&pdev->dev, buffer_info->dma,
1709 PAGE_SIZE, DMA_FROM_DEVICE);
1710 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1711 dma_unmap_single(&pdev->dev, buffer_info->dma,
1712 adapter->rx_ps_bsize0,
1713 DMA_FROM_DEVICE);
1714 buffer_info->dma = 0;
1715 }
1716
1717 if (buffer_info->page) {
1718 put_page(buffer_info->page);
1719 buffer_info->page = NULL;
1720 }
1721
1722 if (buffer_info->skb) {
1723 dev_kfree_skb(buffer_info->skb);
1724 buffer_info->skb = NULL;
1725 }
1726
1727 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1728 ps_page = &buffer_info->ps_pages[j];
1729 if (!ps_page->page)
1730 break;
1731 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1732 DMA_FROM_DEVICE);
1733 ps_page->dma = 0;
1734 put_page(ps_page->page);
1735 ps_page->page = NULL;
1736 }
1737 }
1738
1739 /* there also may be some cached data from a chained receive */
1740 if (rx_ring->rx_skb_top) {
1741 dev_kfree_skb(rx_ring->rx_skb_top);
1742 rx_ring->rx_skb_top = NULL;
1743 }
1744
1745 /* Zero out the descriptor ring */
1746 memset(rx_ring->desc, 0, rx_ring->size);
1747
1748 rx_ring->next_to_clean = 0;
1749 rx_ring->next_to_use = 0;
1750 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1751 }
1752
1753 static void e1000e_downshift_workaround(struct work_struct *work)
1754 {
1755 struct e1000_adapter *adapter = container_of(work,
1756 struct e1000_adapter,
1757 downshift_task);
1758
1759 if (test_bit(__E1000_DOWN, &adapter->state))
1760 return;
1761
1762 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1763 }
1764
1765 /**
1766 * e1000_intr_msi - Interrupt Handler
1767 * @irq: interrupt number
1768 * @data: pointer to a network interface device structure
1769 **/
1770 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1771 {
1772 struct net_device *netdev = data;
1773 struct e1000_adapter *adapter = netdev_priv(netdev);
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 icr = er32(ICR);
1776
1777 /* read ICR disables interrupts using IAM */
1778 if (icr & E1000_ICR_LSC) {
1779 hw->mac.get_link_status = true;
1780 /* ICH8 workaround-- Call gig speed drop workaround on cable
1781 * disconnect (LSC) before accessing any PHY registers
1782 */
1783 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1784 (!(er32(STATUS) & E1000_STATUS_LU)))
1785 schedule_work(&adapter->downshift_task);
1786
1787 /* 80003ES2LAN workaround-- For packet buffer work-around on
1788 * link down event; disable receives here in the ISR and reset
1789 * adapter in watchdog
1790 */
1791 if (netif_carrier_ok(netdev) &&
1792 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1793 /* disable receives */
1794 u32 rctl = er32(RCTL);
1795
1796 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1797 adapter->flags |= FLAG_RESTART_NOW;
1798 }
1799 /* guard against interrupt when we're going down */
1800 if (!test_bit(__E1000_DOWN, &adapter->state))
1801 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1802 }
1803
1804 /* Reset on uncorrectable ECC error */
1805 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1806 u32 pbeccsts = er32(PBECCSTS);
1807
1808 adapter->corr_errors +=
1809 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810 adapter->uncorr_errors +=
1811 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1813
1814 /* Do the reset outside of interrupt context */
1815 schedule_work(&adapter->reset_task);
1816
1817 /* return immediately since reset is imminent */
1818 return IRQ_HANDLED;
1819 }
1820
1821 if (napi_schedule_prep(&adapter->napi)) {
1822 adapter->total_tx_bytes = 0;
1823 adapter->total_tx_packets = 0;
1824 adapter->total_rx_bytes = 0;
1825 adapter->total_rx_packets = 0;
1826 __napi_schedule(&adapter->napi);
1827 }
1828
1829 return IRQ_HANDLED;
1830 }
1831
1832 /**
1833 * e1000_intr - Interrupt Handler
1834 * @irq: interrupt number
1835 * @data: pointer to a network interface device structure
1836 **/
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1838 {
1839 struct net_device *netdev = data;
1840 struct e1000_adapter *adapter = netdev_priv(netdev);
1841 struct e1000_hw *hw = &adapter->hw;
1842 u32 rctl, icr = er32(ICR);
1843
1844 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845 return IRQ_NONE; /* Not our interrupt */
1846
1847 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848 * not set, then the adapter didn't send an interrupt
1849 */
1850 if (!(icr & E1000_ICR_INT_ASSERTED))
1851 return IRQ_NONE;
1852
1853 /* Interrupt Auto-Mask...upon reading ICR,
1854 * interrupts are masked. No need for the
1855 * IMC write
1856 */
1857
1858 if (icr & E1000_ICR_LSC) {
1859 hw->mac.get_link_status = true;
1860 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861 * disconnect (LSC) before accessing any PHY registers
1862 */
1863 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864 (!(er32(STATUS) & E1000_STATUS_LU)))
1865 schedule_work(&adapter->downshift_task);
1866
1867 /* 80003ES2LAN workaround--
1868 * For packet buffer work-around on link down event;
1869 * disable receives here in the ISR and
1870 * reset adapter in watchdog
1871 */
1872 if (netif_carrier_ok(netdev) &&
1873 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874 /* disable receives */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877 adapter->flags |= FLAG_RESTART_NOW;
1878 }
1879 /* guard against interrupt when we're going down */
1880 if (!test_bit(__E1000_DOWN, &adapter->state))
1881 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1882 }
1883
1884 /* Reset on uncorrectable ECC error */
1885 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1886 u32 pbeccsts = er32(PBECCSTS);
1887
1888 adapter->corr_errors +=
1889 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1890 adapter->uncorr_errors +=
1891 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1892 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1893
1894 /* Do the reset outside of interrupt context */
1895 schedule_work(&adapter->reset_task);
1896
1897 /* return immediately since reset is imminent */
1898 return IRQ_HANDLED;
1899 }
1900
1901 if (napi_schedule_prep(&adapter->napi)) {
1902 adapter->total_tx_bytes = 0;
1903 adapter->total_tx_packets = 0;
1904 adapter->total_rx_bytes = 0;
1905 adapter->total_rx_packets = 0;
1906 __napi_schedule(&adapter->napi);
1907 }
1908
1909 return IRQ_HANDLED;
1910 }
1911
1912 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1913 {
1914 struct net_device *netdev = data;
1915 struct e1000_adapter *adapter = netdev_priv(netdev);
1916 struct e1000_hw *hw = &adapter->hw;
1917 u32 icr;
1918 bool enable = true;
1919
1920 icr = er32(ICR);
1921 if (icr & E1000_ICR_RXO) {
1922 ew32(ICR, E1000_ICR_RXO);
1923 enable = false;
1924 /* napi poll will re-enable Other, make sure it runs */
1925 if (napi_schedule_prep(&adapter->napi)) {
1926 adapter->total_rx_bytes = 0;
1927 adapter->total_rx_packets = 0;
1928 __napi_schedule(&adapter->napi);
1929 }
1930 }
1931 if (icr & E1000_ICR_LSC) {
1932 ew32(ICR, E1000_ICR_LSC);
1933 hw->mac.get_link_status = true;
1934 /* guard against interrupt when we're going down */
1935 if (!test_bit(__E1000_DOWN, &adapter->state))
1936 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1937 }
1938
1939 if (enable && !test_bit(__E1000_DOWN, &adapter->state))
1940 ew32(IMS, E1000_IMS_OTHER);
1941
1942 return IRQ_HANDLED;
1943 }
1944
1945 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1946 {
1947 struct net_device *netdev = data;
1948 struct e1000_adapter *adapter = netdev_priv(netdev);
1949 struct e1000_hw *hw = &adapter->hw;
1950 struct e1000_ring *tx_ring = adapter->tx_ring;
1951
1952 adapter->total_tx_bytes = 0;
1953 adapter->total_tx_packets = 0;
1954
1955 if (!e1000_clean_tx_irq(tx_ring))
1956 /* Ring was not completely cleaned, so fire another interrupt */
1957 ew32(ICS, tx_ring->ims_val);
1958
1959 if (!test_bit(__E1000_DOWN, &adapter->state))
1960 ew32(IMS, adapter->tx_ring->ims_val);
1961
1962 return IRQ_HANDLED;
1963 }
1964
1965 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1966 {
1967 struct net_device *netdev = data;
1968 struct e1000_adapter *adapter = netdev_priv(netdev);
1969 struct e1000_ring *rx_ring = adapter->rx_ring;
1970
1971 /* Write the ITR value calculated at the end of the
1972 * previous interrupt.
1973 */
1974 if (rx_ring->set_itr) {
1975 u32 itr = rx_ring->itr_val ?
1976 1000000000 / (rx_ring->itr_val * 256) : 0;
1977
1978 writel(itr, rx_ring->itr_register);
1979 rx_ring->set_itr = 0;
1980 }
1981
1982 if (napi_schedule_prep(&adapter->napi)) {
1983 adapter->total_rx_bytes = 0;
1984 adapter->total_rx_packets = 0;
1985 __napi_schedule(&adapter->napi);
1986 }
1987 return IRQ_HANDLED;
1988 }
1989
1990 /**
1991 * e1000_configure_msix - Configure MSI-X hardware
1992 *
1993 * e1000_configure_msix sets up the hardware to properly
1994 * generate MSI-X interrupts.
1995 **/
1996 static void e1000_configure_msix(struct e1000_adapter *adapter)
1997 {
1998 struct e1000_hw *hw = &adapter->hw;
1999 struct e1000_ring *rx_ring = adapter->rx_ring;
2000 struct e1000_ring *tx_ring = adapter->tx_ring;
2001 int vector = 0;
2002 u32 ctrl_ext, ivar = 0;
2003
2004 adapter->eiac_mask = 0;
2005
2006 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2007 if (hw->mac.type == e1000_82574) {
2008 u32 rfctl = er32(RFCTL);
2009
2010 rfctl |= E1000_RFCTL_ACK_DIS;
2011 ew32(RFCTL, rfctl);
2012 }
2013
2014 /* Configure Rx vector */
2015 rx_ring->ims_val = E1000_IMS_RXQ0;
2016 adapter->eiac_mask |= rx_ring->ims_val;
2017 if (rx_ring->itr_val)
2018 writel(1000000000 / (rx_ring->itr_val * 256),
2019 rx_ring->itr_register);
2020 else
2021 writel(1, rx_ring->itr_register);
2022 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2023
2024 /* Configure Tx vector */
2025 tx_ring->ims_val = E1000_IMS_TXQ0;
2026 vector++;
2027 if (tx_ring->itr_val)
2028 writel(1000000000 / (tx_ring->itr_val * 256),
2029 tx_ring->itr_register);
2030 else
2031 writel(1, tx_ring->itr_register);
2032 adapter->eiac_mask |= tx_ring->ims_val;
2033 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2034
2035 /* set vector for Other Causes, e.g. link changes */
2036 vector++;
2037 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2038 if (rx_ring->itr_val)
2039 writel(1000000000 / (rx_ring->itr_val * 256),
2040 hw->hw_addr + E1000_EITR_82574(vector));
2041 else
2042 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2043 adapter->eiac_mask |= E1000_IMS_OTHER;
2044
2045 /* Cause Tx interrupts on every write back */
2046 ivar |= BIT(31);
2047
2048 ew32(IVAR, ivar);
2049
2050 /* enable MSI-X PBA support */
2051 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2052 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2053 ew32(CTRL_EXT, ctrl_ext);
2054 e1e_flush();
2055 }
2056
2057 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2058 {
2059 if (adapter->msix_entries) {
2060 pci_disable_msix(adapter->pdev);
2061 kfree(adapter->msix_entries);
2062 adapter->msix_entries = NULL;
2063 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2064 pci_disable_msi(adapter->pdev);
2065 adapter->flags &= ~FLAG_MSI_ENABLED;
2066 }
2067 }
2068
2069 /**
2070 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2071 *
2072 * Attempt to configure interrupts using the best available
2073 * capabilities of the hardware and kernel.
2074 **/
2075 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2076 {
2077 int err;
2078 int i;
2079
2080 switch (adapter->int_mode) {
2081 case E1000E_INT_MODE_MSIX:
2082 if (adapter->flags & FLAG_HAS_MSIX) {
2083 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2084 adapter->msix_entries = kcalloc(adapter->num_vectors,
2085 sizeof(struct
2086 msix_entry),
2087 GFP_KERNEL);
2088 if (adapter->msix_entries) {
2089 struct e1000_adapter *a = adapter;
2090
2091 for (i = 0; i < adapter->num_vectors; i++)
2092 adapter->msix_entries[i].entry = i;
2093
2094 err = pci_enable_msix_range(a->pdev,
2095 a->msix_entries,
2096 a->num_vectors,
2097 a->num_vectors);
2098 if (err > 0)
2099 return;
2100 }
2101 /* MSI-X failed, so fall through and try MSI */
2102 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2103 e1000e_reset_interrupt_capability(adapter);
2104 }
2105 adapter->int_mode = E1000E_INT_MODE_MSI;
2106 /* Fall through */
2107 case E1000E_INT_MODE_MSI:
2108 if (!pci_enable_msi(adapter->pdev)) {
2109 adapter->flags |= FLAG_MSI_ENABLED;
2110 } else {
2111 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2112 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2113 }
2114 /* Fall through */
2115 case E1000E_INT_MODE_LEGACY:
2116 /* Don't do anything; this is the system default */
2117 break;
2118 }
2119
2120 /* store the number of vectors being used */
2121 adapter->num_vectors = 1;
2122 }
2123
2124 /**
2125 * e1000_request_msix - Initialize MSI-X interrupts
2126 *
2127 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2128 * kernel.
2129 **/
2130 static int e1000_request_msix(struct e1000_adapter *adapter)
2131 {
2132 struct net_device *netdev = adapter->netdev;
2133 int err = 0, vector = 0;
2134
2135 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2136 snprintf(adapter->rx_ring->name,
2137 sizeof(adapter->rx_ring->name) - 1,
2138 "%s-rx-0", netdev->name);
2139 else
2140 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2141 err = request_irq(adapter->msix_entries[vector].vector,
2142 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2143 netdev);
2144 if (err)
2145 return err;
2146 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2147 E1000_EITR_82574(vector);
2148 adapter->rx_ring->itr_val = adapter->itr;
2149 vector++;
2150
2151 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2152 snprintf(adapter->tx_ring->name,
2153 sizeof(adapter->tx_ring->name) - 1,
2154 "%s-tx-0", netdev->name);
2155 else
2156 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2157 err = request_irq(adapter->msix_entries[vector].vector,
2158 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2159 netdev);
2160 if (err)
2161 return err;
2162 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2163 E1000_EITR_82574(vector);
2164 adapter->tx_ring->itr_val = adapter->itr;
2165 vector++;
2166
2167 err = request_irq(adapter->msix_entries[vector].vector,
2168 e1000_msix_other, 0, netdev->name, netdev);
2169 if (err)
2170 return err;
2171
2172 e1000_configure_msix(adapter);
2173
2174 return 0;
2175 }
2176
2177 /**
2178 * e1000_request_irq - initialize interrupts
2179 *
2180 * Attempts to configure interrupts using the best available
2181 * capabilities of the hardware and kernel.
2182 **/
2183 static int e1000_request_irq(struct e1000_adapter *adapter)
2184 {
2185 struct net_device *netdev = adapter->netdev;
2186 int err;
2187
2188 if (adapter->msix_entries) {
2189 err = e1000_request_msix(adapter);
2190 if (!err)
2191 return err;
2192 /* fall back to MSI */
2193 e1000e_reset_interrupt_capability(adapter);
2194 adapter->int_mode = E1000E_INT_MODE_MSI;
2195 e1000e_set_interrupt_capability(adapter);
2196 }
2197 if (adapter->flags & FLAG_MSI_ENABLED) {
2198 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2199 netdev->name, netdev);
2200 if (!err)
2201 return err;
2202
2203 /* fall back to legacy interrupt */
2204 e1000e_reset_interrupt_capability(adapter);
2205 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2206 }
2207
2208 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2209 netdev->name, netdev);
2210 if (err)
2211 e_err("Unable to allocate interrupt, Error: %d\n", err);
2212
2213 return err;
2214 }
2215
2216 static void e1000_free_irq(struct e1000_adapter *adapter)
2217 {
2218 struct net_device *netdev = adapter->netdev;
2219
2220 if (adapter->msix_entries) {
2221 int vector = 0;
2222
2223 free_irq(adapter->msix_entries[vector].vector, netdev);
2224 vector++;
2225
2226 free_irq(adapter->msix_entries[vector].vector, netdev);
2227 vector++;
2228
2229 /* Other Causes interrupt vector */
2230 free_irq(adapter->msix_entries[vector].vector, netdev);
2231 return;
2232 }
2233
2234 free_irq(adapter->pdev->irq, netdev);
2235 }
2236
2237 /**
2238 * e1000_irq_disable - Mask off interrupt generation on the NIC
2239 **/
2240 static void e1000_irq_disable(struct e1000_adapter *adapter)
2241 {
2242 struct e1000_hw *hw = &adapter->hw;
2243
2244 ew32(IMC, ~0);
2245 if (adapter->msix_entries)
2246 ew32(EIAC_82574, 0);
2247 e1e_flush();
2248
2249 if (adapter->msix_entries) {
2250 int i;
2251
2252 for (i = 0; i < adapter->num_vectors; i++)
2253 synchronize_irq(adapter->msix_entries[i].vector);
2254 } else {
2255 synchronize_irq(adapter->pdev->irq);
2256 }
2257 }
2258
2259 /**
2260 * e1000_irq_enable - Enable default interrupt generation settings
2261 **/
2262 static void e1000_irq_enable(struct e1000_adapter *adapter)
2263 {
2264 struct e1000_hw *hw = &adapter->hw;
2265
2266 if (adapter->msix_entries) {
2267 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2268 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2269 } else if (hw->mac.type >= e1000_pch_lpt) {
2270 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2271 } else {
2272 ew32(IMS, IMS_ENABLE_MASK);
2273 }
2274 e1e_flush();
2275 }
2276
2277 /**
2278 * e1000e_get_hw_control - get control of the h/w from f/w
2279 * @adapter: address of board private structure
2280 *
2281 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2282 * For ASF and Pass Through versions of f/w this means that
2283 * the driver is loaded. For AMT version (only with 82573)
2284 * of the f/w this means that the network i/f is open.
2285 **/
2286 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2287 {
2288 struct e1000_hw *hw = &adapter->hw;
2289 u32 ctrl_ext;
2290 u32 swsm;
2291
2292 /* Let firmware know the driver has taken over */
2293 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294 swsm = er32(SWSM);
2295 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2296 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297 ctrl_ext = er32(CTRL_EXT);
2298 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2299 }
2300 }
2301
2302 /**
2303 * e1000e_release_hw_control - release control of the h/w to f/w
2304 * @adapter: address of board private structure
2305 *
2306 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2307 * For ASF and Pass Through versions of f/w this means that the
2308 * driver is no longer loaded. For AMT version (only with 82573) i
2309 * of the f/w this means that the network i/f is closed.
2310 *
2311 **/
2312 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2313 {
2314 struct e1000_hw *hw = &adapter->hw;
2315 u32 ctrl_ext;
2316 u32 swsm;
2317
2318 /* Let firmware taken over control of h/w */
2319 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2320 swsm = er32(SWSM);
2321 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2322 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2323 ctrl_ext = er32(CTRL_EXT);
2324 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2325 }
2326 }
2327
2328 /**
2329 * e1000_alloc_ring_dma - allocate memory for a ring structure
2330 **/
2331 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2332 struct e1000_ring *ring)
2333 {
2334 struct pci_dev *pdev = adapter->pdev;
2335
2336 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2337 GFP_KERNEL);
2338 if (!ring->desc)
2339 return -ENOMEM;
2340
2341 return 0;
2342 }
2343
2344 /**
2345 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2346 * @tx_ring: Tx descriptor ring
2347 *
2348 * Return 0 on success, negative on failure
2349 **/
2350 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2351 {
2352 struct e1000_adapter *adapter = tx_ring->adapter;
2353 int err = -ENOMEM, size;
2354
2355 size = sizeof(struct e1000_buffer) * tx_ring->count;
2356 tx_ring->buffer_info = vzalloc(size);
2357 if (!tx_ring->buffer_info)
2358 goto err;
2359
2360 /* round up to nearest 4K */
2361 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2362 tx_ring->size = ALIGN(tx_ring->size, 4096);
2363
2364 err = e1000_alloc_ring_dma(adapter, tx_ring);
2365 if (err)
2366 goto err;
2367
2368 tx_ring->next_to_use = 0;
2369 tx_ring->next_to_clean = 0;
2370
2371 return 0;
2372 err:
2373 vfree(tx_ring->buffer_info);
2374 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2375 return err;
2376 }
2377
2378 /**
2379 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2380 * @rx_ring: Rx descriptor ring
2381 *
2382 * Returns 0 on success, negative on failure
2383 **/
2384 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2385 {
2386 struct e1000_adapter *adapter = rx_ring->adapter;
2387 struct e1000_buffer *buffer_info;
2388 int i, size, desc_len, err = -ENOMEM;
2389
2390 size = sizeof(struct e1000_buffer) * rx_ring->count;
2391 rx_ring->buffer_info = vzalloc(size);
2392 if (!rx_ring->buffer_info)
2393 goto err;
2394
2395 for (i = 0; i < rx_ring->count; i++) {
2396 buffer_info = &rx_ring->buffer_info[i];
2397 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2398 sizeof(struct e1000_ps_page),
2399 GFP_KERNEL);
2400 if (!buffer_info->ps_pages)
2401 goto err_pages;
2402 }
2403
2404 desc_len = sizeof(union e1000_rx_desc_packet_split);
2405
2406 /* Round up to nearest 4K */
2407 rx_ring->size = rx_ring->count * desc_len;
2408 rx_ring->size = ALIGN(rx_ring->size, 4096);
2409
2410 err = e1000_alloc_ring_dma(adapter, rx_ring);
2411 if (err)
2412 goto err_pages;
2413
2414 rx_ring->next_to_clean = 0;
2415 rx_ring->next_to_use = 0;
2416 rx_ring->rx_skb_top = NULL;
2417
2418 return 0;
2419
2420 err_pages:
2421 for (i = 0; i < rx_ring->count; i++) {
2422 buffer_info = &rx_ring->buffer_info[i];
2423 kfree(buffer_info->ps_pages);
2424 }
2425 err:
2426 vfree(rx_ring->buffer_info);
2427 e_err("Unable to allocate memory for the receive descriptor ring\n");
2428 return err;
2429 }
2430
2431 /**
2432 * e1000_clean_tx_ring - Free Tx Buffers
2433 * @tx_ring: Tx descriptor ring
2434 **/
2435 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2436 {
2437 struct e1000_adapter *adapter = tx_ring->adapter;
2438 struct e1000_buffer *buffer_info;
2439 unsigned long size;
2440 unsigned int i;
2441
2442 for (i = 0; i < tx_ring->count; i++) {
2443 buffer_info = &tx_ring->buffer_info[i];
2444 e1000_put_txbuf(tx_ring, buffer_info, false);
2445 }
2446
2447 netdev_reset_queue(adapter->netdev);
2448 size = sizeof(struct e1000_buffer) * tx_ring->count;
2449 memset(tx_ring->buffer_info, 0, size);
2450
2451 memset(tx_ring->desc, 0, tx_ring->size);
2452
2453 tx_ring->next_to_use = 0;
2454 tx_ring->next_to_clean = 0;
2455 }
2456
2457 /**
2458 * e1000e_free_tx_resources - Free Tx Resources per Queue
2459 * @tx_ring: Tx descriptor ring
2460 *
2461 * Free all transmit software resources
2462 **/
2463 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2464 {
2465 struct e1000_adapter *adapter = tx_ring->adapter;
2466 struct pci_dev *pdev = adapter->pdev;
2467
2468 e1000_clean_tx_ring(tx_ring);
2469
2470 vfree(tx_ring->buffer_info);
2471 tx_ring->buffer_info = NULL;
2472
2473 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2474 tx_ring->dma);
2475 tx_ring->desc = NULL;
2476 }
2477
2478 /**
2479 * e1000e_free_rx_resources - Free Rx Resources
2480 * @rx_ring: Rx descriptor ring
2481 *
2482 * Free all receive software resources
2483 **/
2484 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2485 {
2486 struct e1000_adapter *adapter = rx_ring->adapter;
2487 struct pci_dev *pdev = adapter->pdev;
2488 int i;
2489
2490 e1000_clean_rx_ring(rx_ring);
2491
2492 for (i = 0; i < rx_ring->count; i++)
2493 kfree(rx_ring->buffer_info[i].ps_pages);
2494
2495 vfree(rx_ring->buffer_info);
2496 rx_ring->buffer_info = NULL;
2497
2498 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2499 rx_ring->dma);
2500 rx_ring->desc = NULL;
2501 }
2502
2503 /**
2504 * e1000_update_itr - update the dynamic ITR value based on statistics
2505 * @adapter: pointer to adapter
2506 * @itr_setting: current adapter->itr
2507 * @packets: the number of packets during this measurement interval
2508 * @bytes: the number of bytes during this measurement interval
2509 *
2510 * Stores a new ITR value based on packets and byte
2511 * counts during the last interrupt. The advantage of per interrupt
2512 * computation is faster updates and more accurate ITR for the current
2513 * traffic pattern. Constants in this function were computed
2514 * based on theoretical maximum wire speed and thresholds were set based
2515 * on testing data as well as attempting to minimize response time
2516 * while increasing bulk throughput. This functionality is controlled
2517 * by the InterruptThrottleRate module parameter.
2518 **/
2519 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2520 {
2521 unsigned int retval = itr_setting;
2522
2523 if (packets == 0)
2524 return itr_setting;
2525
2526 switch (itr_setting) {
2527 case lowest_latency:
2528 /* handle TSO and jumbo frames */
2529 if (bytes / packets > 8000)
2530 retval = bulk_latency;
2531 else if ((packets < 5) && (bytes > 512))
2532 retval = low_latency;
2533 break;
2534 case low_latency: /* 50 usec aka 20000 ints/s */
2535 if (bytes > 10000) {
2536 /* this if handles the TSO accounting */
2537 if (bytes / packets > 8000)
2538 retval = bulk_latency;
2539 else if ((packets < 10) || ((bytes / packets) > 1200))
2540 retval = bulk_latency;
2541 else if ((packets > 35))
2542 retval = lowest_latency;
2543 } else if (bytes / packets > 2000) {
2544 retval = bulk_latency;
2545 } else if (packets <= 2 && bytes < 512) {
2546 retval = lowest_latency;
2547 }
2548 break;
2549 case bulk_latency: /* 250 usec aka 4000 ints/s */
2550 if (bytes > 25000) {
2551 if (packets > 35)
2552 retval = low_latency;
2553 } else if (bytes < 6000) {
2554 retval = low_latency;
2555 }
2556 break;
2557 }
2558
2559 return retval;
2560 }
2561
2562 static void e1000_set_itr(struct e1000_adapter *adapter)
2563 {
2564 u16 current_itr;
2565 u32 new_itr = adapter->itr;
2566
2567 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2568 if (adapter->link_speed != SPEED_1000) {
2569 current_itr = 0;
2570 new_itr = 4000;
2571 goto set_itr_now;
2572 }
2573
2574 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2575 new_itr = 0;
2576 goto set_itr_now;
2577 }
2578
2579 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2580 adapter->total_tx_packets,
2581 adapter->total_tx_bytes);
2582 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2583 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2584 adapter->tx_itr = low_latency;
2585
2586 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2587 adapter->total_rx_packets,
2588 adapter->total_rx_bytes);
2589 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2591 adapter->rx_itr = low_latency;
2592
2593 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2594
2595 /* counts and packets in update_itr are dependent on these numbers */
2596 switch (current_itr) {
2597 case lowest_latency:
2598 new_itr = 70000;
2599 break;
2600 case low_latency:
2601 new_itr = 20000; /* aka hwitr = ~200 */
2602 break;
2603 case bulk_latency:
2604 new_itr = 4000;
2605 break;
2606 default:
2607 break;
2608 }
2609
2610 set_itr_now:
2611 if (new_itr != adapter->itr) {
2612 /* this attempts to bias the interrupt rate towards Bulk
2613 * by adding intermediate steps when interrupt rate is
2614 * increasing
2615 */
2616 new_itr = new_itr > adapter->itr ?
2617 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2618 adapter->itr = new_itr;
2619 adapter->rx_ring->itr_val = new_itr;
2620 if (adapter->msix_entries)
2621 adapter->rx_ring->set_itr = 1;
2622 else
2623 e1000e_write_itr(adapter, new_itr);
2624 }
2625 }
2626
2627 /**
2628 * e1000e_write_itr - write the ITR value to the appropriate registers
2629 * @adapter: address of board private structure
2630 * @itr: new ITR value to program
2631 *
2632 * e1000e_write_itr determines if the adapter is in MSI-X mode
2633 * and, if so, writes the EITR registers with the ITR value.
2634 * Otherwise, it writes the ITR value into the ITR register.
2635 **/
2636 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2637 {
2638 struct e1000_hw *hw = &adapter->hw;
2639 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2640
2641 if (adapter->msix_entries) {
2642 int vector;
2643
2644 for (vector = 0; vector < adapter->num_vectors; vector++)
2645 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2646 } else {
2647 ew32(ITR, new_itr);
2648 }
2649 }
2650
2651 /**
2652 * e1000_alloc_queues - Allocate memory for all rings
2653 * @adapter: board private structure to initialize
2654 **/
2655 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2656 {
2657 int size = sizeof(struct e1000_ring);
2658
2659 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2660 if (!adapter->tx_ring)
2661 goto err;
2662 adapter->tx_ring->count = adapter->tx_ring_count;
2663 adapter->tx_ring->adapter = adapter;
2664
2665 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2666 if (!adapter->rx_ring)
2667 goto err;
2668 adapter->rx_ring->count = adapter->rx_ring_count;
2669 adapter->rx_ring->adapter = adapter;
2670
2671 return 0;
2672 err:
2673 e_err("Unable to allocate memory for queues\n");
2674 kfree(adapter->rx_ring);
2675 kfree(adapter->tx_ring);
2676 return -ENOMEM;
2677 }
2678
2679 /**
2680 * e1000e_poll - NAPI Rx polling callback
2681 * @napi: struct associated with this polling callback
2682 * @weight: number of packets driver is allowed to process this poll
2683 **/
2684 static int e1000e_poll(struct napi_struct *napi, int weight)
2685 {
2686 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2687 napi);
2688 struct e1000_hw *hw = &adapter->hw;
2689 struct net_device *poll_dev = adapter->netdev;
2690 int tx_cleaned = 1, work_done = 0;
2691
2692 adapter = netdev_priv(poll_dev);
2693
2694 if (!adapter->msix_entries ||
2695 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2696 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2697
2698 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2699
2700 if (!tx_cleaned)
2701 work_done = weight;
2702
2703 /* If weight not fully consumed, exit the polling mode */
2704 if (work_done < weight) {
2705 if (adapter->itr_setting & 3)
2706 e1000_set_itr(adapter);
2707 napi_complete_done(napi, work_done);
2708 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2709 if (adapter->msix_entries)
2710 ew32(IMS, adapter->rx_ring->ims_val |
2711 E1000_IMS_OTHER);
2712 else
2713 e1000_irq_enable(adapter);
2714 }
2715 }
2716
2717 return work_done;
2718 }
2719
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721 __always_unused __be16 proto, u16 vid)
2722 {
2723 struct e1000_adapter *adapter = netdev_priv(netdev);
2724 struct e1000_hw *hw = &adapter->hw;
2725 u32 vfta, index;
2726
2727 /* don't update vlan cookie if already programmed */
2728 if ((adapter->hw.mng_cookie.status &
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730 (vid == adapter->mng_vlan_id))
2731 return 0;
2732
2733 /* add VID to filter table */
2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 index = (vid >> 5) & 0x7F;
2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 vfta |= BIT((vid & 0x1F));
2738 hw->mac.ops.write_vfta(hw, index, vfta);
2739 }
2740
2741 set_bit(vid, adapter->active_vlans);
2742
2743 return 0;
2744 }
2745
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747 __always_unused __be16 proto, u16 vid)
2748 {
2749 struct e1000_adapter *adapter = netdev_priv(netdev);
2750 struct e1000_hw *hw = &adapter->hw;
2751 u32 vfta, index;
2752
2753 if ((adapter->hw.mng_cookie.status &
2754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755 (vid == adapter->mng_vlan_id)) {
2756 /* release control to f/w */
2757 e1000e_release_hw_control(adapter);
2758 return 0;
2759 }
2760
2761 /* remove VID from filter table */
2762 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 index = (vid >> 5) & 0x7F;
2764 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765 vfta &= ~BIT((vid & 0x1F));
2766 hw->mac.ops.write_vfta(hw, index, vfta);
2767 }
2768
2769 clear_bit(vid, adapter->active_vlans);
2770
2771 return 0;
2772 }
2773
2774 /**
2775 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776 * @adapter: board private structure to initialize
2777 **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780 struct net_device *netdev = adapter->netdev;
2781 struct e1000_hw *hw = &adapter->hw;
2782 u32 rctl;
2783
2784 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 /* disable VLAN receive filtering */
2786 rctl = er32(RCTL);
2787 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788 ew32(RCTL, rctl);
2789
2790 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792 adapter->mng_vlan_id);
2793 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794 }
2795 }
2796 }
2797
2798 /**
2799 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800 * @adapter: board private structure to initialize
2801 **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804 struct e1000_hw *hw = &adapter->hw;
2805 u32 rctl;
2806
2807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808 /* enable VLAN receive filtering */
2809 rctl = er32(RCTL);
2810 rctl |= E1000_RCTL_VFE;
2811 rctl &= ~E1000_RCTL_CFIEN;
2812 ew32(RCTL, rctl);
2813 }
2814 }
2815
2816 /**
2817 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2818 * @adapter: board private structure to initialize
2819 **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822 struct e1000_hw *hw = &adapter->hw;
2823 u32 ctrl;
2824
2825 /* disable VLAN tag insert/strip */
2826 ctrl = er32(CTRL);
2827 ctrl &= ~E1000_CTRL_VME;
2828 ew32(CTRL, ctrl);
2829 }
2830
2831 /**
2832 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833 * @adapter: board private structure to initialize
2834 **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837 struct e1000_hw *hw = &adapter->hw;
2838 u32 ctrl;
2839
2840 /* enable VLAN tag insert/strip */
2841 ctrl = er32(CTRL);
2842 ctrl |= E1000_CTRL_VME;
2843 ew32(CTRL, ctrl);
2844 }
2845
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848 struct net_device *netdev = adapter->netdev;
2849 u16 vid = adapter->hw.mng_cookie.vlan_id;
2850 u16 old_vid = adapter->mng_vlan_id;
2851
2852 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854 adapter->mng_vlan_id = vid;
2855 }
2856
2857 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863 u16 vid;
2864
2865 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866
2867 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873 struct e1000_hw *hw = &adapter->hw;
2874 u32 manc, manc2h, mdef, i, j;
2875
2876 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877 return;
2878
2879 manc = er32(MANC);
2880
2881 /* enable receiving management packets to the host. this will probably
2882 * generate destination unreachable messages from the host OS, but
2883 * the packets will be handled on SMBUS
2884 */
2885 manc |= E1000_MANC_EN_MNG2HOST;
2886 manc2h = er32(MANC2H);
2887
2888 switch (hw->mac.type) {
2889 default:
2890 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891 break;
2892 case e1000_82574:
2893 case e1000_82583:
2894 /* Check if IPMI pass-through decision filter already exists;
2895 * if so, enable it.
2896 */
2897 for (i = 0, j = 0; i < 8; i++) {
2898 mdef = er32(MDEF(i));
2899
2900 /* Ignore filters with anything other than IPMI ports */
2901 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 continue;
2903
2904 /* Enable this decision filter in MANC2H */
2905 if (mdef)
2906 manc2h |= BIT(i);
2907
2908 j |= mdef;
2909 }
2910
2911 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912 break;
2913
2914 /* Create new decision filter in an empty filter */
2915 for (i = 0, j = 0; i < 8; i++)
2916 if (er32(MDEF(i)) == 0) {
2917 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918 E1000_MDEF_PORT_664));
2919 manc2h |= BIT(1);
2920 j++;
2921 break;
2922 }
2923
2924 if (!j)
2925 e_warn("Unable to create IPMI pass-through filter\n");
2926 break;
2927 }
2928
2929 ew32(MANC2H, manc2h);
2930 ew32(MANC, manc);
2931 }
2932
2933 /**
2934 * e1000_configure_tx - Configure Transmit Unit after Reset
2935 * @adapter: board private structure
2936 *
2937 * Configure the Tx unit of the MAC after a reset.
2938 **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941 struct e1000_hw *hw = &adapter->hw;
2942 struct e1000_ring *tx_ring = adapter->tx_ring;
2943 u64 tdba;
2944 u32 tdlen, tctl, tarc;
2945
2946 /* Setup the HW Tx Head and Tail descriptor pointers */
2947 tdba = tx_ring->dma;
2948 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950 ew32(TDBAH(0), (tdba >> 32));
2951 ew32(TDLEN(0), tdlen);
2952 ew32(TDH(0), 0);
2953 ew32(TDT(0), 0);
2954 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956
2957 writel(0, tx_ring->head);
2958 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2959 e1000e_update_tdt_wa(tx_ring, 0);
2960 else
2961 writel(0, tx_ring->tail);
2962
2963 /* Set the Tx Interrupt Delay register */
2964 ew32(TIDV, adapter->tx_int_delay);
2965 /* Tx irq moderation */
2966 ew32(TADV, adapter->tx_abs_int_delay);
2967
2968 if (adapter->flags2 & FLAG2_DMA_BURST) {
2969 u32 txdctl = er32(TXDCTL(0));
2970
2971 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2972 E1000_TXDCTL_WTHRESH);
2973 /* set up some performance related parameters to encourage the
2974 * hardware to use the bus more efficiently in bursts, depends
2975 * on the tx_int_delay to be enabled,
2976 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2977 * hthresh = 1 ==> prefetch when one or more available
2978 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2979 * BEWARE: this seems to work but should be considered first if
2980 * there are Tx hangs or other Tx related bugs
2981 */
2982 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2983 ew32(TXDCTL(0), txdctl);
2984 }
2985 /* erratum work around: set txdctl the same for both queues */
2986 ew32(TXDCTL(1), er32(TXDCTL(0)));
2987
2988 /* Program the Transmit Control Register */
2989 tctl = er32(TCTL);
2990 tctl &= ~E1000_TCTL_CT;
2991 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2992 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2993
2994 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2995 tarc = er32(TARC(0));
2996 /* set the speed mode bit, we'll clear it if we're not at
2997 * gigabit link later
2998 */
2999 #define SPEED_MODE_BIT BIT(21)
3000 tarc |= SPEED_MODE_BIT;
3001 ew32(TARC(0), tarc);
3002 }
3003
3004 /* errata: program both queues to unweighted RR */
3005 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3006 tarc = er32(TARC(0));
3007 tarc |= 1;
3008 ew32(TARC(0), tarc);
3009 tarc = er32(TARC(1));
3010 tarc |= 1;
3011 ew32(TARC(1), tarc);
3012 }
3013
3014 /* Setup Transmit Descriptor Settings for eop descriptor */
3015 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3016
3017 /* only set IDE if we are delaying interrupts using the timers */
3018 if (adapter->tx_int_delay)
3019 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3020
3021 /* enable Report Status bit */
3022 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3023
3024 ew32(TCTL, tctl);
3025
3026 hw->mac.ops.config_collision_dist(hw);
3027
3028 /* SPT and KBL Si errata workaround to avoid data corruption */
3029 if (hw->mac.type == e1000_pch_spt) {
3030 u32 reg_val;
3031
3032 reg_val = er32(IOSFPC);
3033 reg_val |= E1000_RCTL_RDMTS_HEX;
3034 ew32(IOSFPC, reg_val);
3035
3036 reg_val = er32(TARC(0));
3037 /* SPT and KBL Si errata workaround to avoid Tx hang.
3038 * Dropping the number of outstanding requests from
3039 * 3 to 2 in order to avoid a buffer overrun.
3040 */
3041 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3042 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3043 ew32(TARC(0), reg_val);
3044 }
3045 }
3046
3047 /**
3048 * e1000_setup_rctl - configure the receive control registers
3049 * @adapter: Board private structure
3050 **/
3051 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3052 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3053 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3054 {
3055 struct e1000_hw *hw = &adapter->hw;
3056 u32 rctl, rfctl;
3057 u32 pages = 0;
3058
3059 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3060 * If jumbo frames not set, program related MAC/PHY registers
3061 * to h/w defaults
3062 */
3063 if (hw->mac.type >= e1000_pch2lan) {
3064 s32 ret_val;
3065
3066 if (adapter->netdev->mtu > ETH_DATA_LEN)
3067 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3068 else
3069 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3070
3071 if (ret_val)
3072 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3073 }
3074
3075 /* Program MC offset vector base */
3076 rctl = er32(RCTL);
3077 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3078 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3079 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3080 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3081
3082 /* Do not Store bad packets */
3083 rctl &= ~E1000_RCTL_SBP;
3084
3085 /* Enable Long Packet receive */
3086 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3087 rctl &= ~E1000_RCTL_LPE;
3088 else
3089 rctl |= E1000_RCTL_LPE;
3090
3091 /* Some systems expect that the CRC is included in SMBUS traffic. The
3092 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3093 * host memory when this is enabled
3094 */
3095 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3096 rctl |= E1000_RCTL_SECRC;
3097
3098 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3099 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3100 u16 phy_data;
3101
3102 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3103 phy_data &= 0xfff8;
3104 phy_data |= BIT(2);
3105 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3106
3107 e1e_rphy(hw, 22, &phy_data);
3108 phy_data &= 0x0fff;
3109 phy_data |= BIT(14);
3110 e1e_wphy(hw, 0x10, 0x2823);
3111 e1e_wphy(hw, 0x11, 0x0003);
3112 e1e_wphy(hw, 22, phy_data);
3113 }
3114
3115 /* Setup buffer sizes */
3116 rctl &= ~E1000_RCTL_SZ_4096;
3117 rctl |= E1000_RCTL_BSEX;
3118 switch (adapter->rx_buffer_len) {
3119 case 2048:
3120 default:
3121 rctl |= E1000_RCTL_SZ_2048;
3122 rctl &= ~E1000_RCTL_BSEX;
3123 break;
3124 case 4096:
3125 rctl |= E1000_RCTL_SZ_4096;
3126 break;
3127 case 8192:
3128 rctl |= E1000_RCTL_SZ_8192;
3129 break;
3130 case 16384:
3131 rctl |= E1000_RCTL_SZ_16384;
3132 break;
3133 }
3134
3135 /* Enable Extended Status in all Receive Descriptors */
3136 rfctl = er32(RFCTL);
3137 rfctl |= E1000_RFCTL_EXTEN;
3138 ew32(RFCTL, rfctl);
3139
3140 /* 82571 and greater support packet-split where the protocol
3141 * header is placed in skb->data and the packet data is
3142 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3143 * In the case of a non-split, skb->data is linearly filled,
3144 * followed by the page buffers. Therefore, skb->data is
3145 * sized to hold the largest protocol header.
3146 *
3147 * allocations using alloc_page take too long for regular MTU
3148 * so only enable packet split for jumbo frames
3149 *
3150 * Using pages when the page size is greater than 16k wastes
3151 * a lot of memory, since we allocate 3 pages at all times
3152 * per packet.
3153 */
3154 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3155 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3156 adapter->rx_ps_pages = pages;
3157 else
3158 adapter->rx_ps_pages = 0;
3159
3160 if (adapter->rx_ps_pages) {
3161 u32 psrctl = 0;
3162
3163 /* Enable Packet split descriptors */
3164 rctl |= E1000_RCTL_DTYP_PS;
3165
3166 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3167
3168 switch (adapter->rx_ps_pages) {
3169 case 3:
3170 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3171 /* fall-through */
3172 case 2:
3173 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3174 /* fall-through */
3175 case 1:
3176 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3177 break;
3178 }
3179
3180 ew32(PSRCTL, psrctl);
3181 }
3182
3183 /* This is useful for sniffing bad packets. */
3184 if (adapter->netdev->features & NETIF_F_RXALL) {
3185 /* UPE and MPE will be handled by normal PROMISC logic
3186 * in e1000e_set_rx_mode
3187 */
3188 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3189 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3190 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3191
3192 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3193 E1000_RCTL_DPF | /* Allow filtered pause */
3194 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3195 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3196 * and that breaks VLANs.
3197 */
3198 }
3199
3200 ew32(RCTL, rctl);
3201 /* just started the receive unit, no need to restart */
3202 adapter->flags &= ~FLAG_RESTART_NOW;
3203 }
3204
3205 /**
3206 * e1000_configure_rx - Configure Receive Unit after Reset
3207 * @adapter: board private structure
3208 *
3209 * Configure the Rx unit of the MAC after a reset.
3210 **/
3211 static void e1000_configure_rx(struct e1000_adapter *adapter)
3212 {
3213 struct e1000_hw *hw = &adapter->hw;
3214 struct e1000_ring *rx_ring = adapter->rx_ring;
3215 u64 rdba;
3216 u32 rdlen, rctl, rxcsum, ctrl_ext;
3217
3218 if (adapter->rx_ps_pages) {
3219 /* this is a 32 byte descriptor */
3220 rdlen = rx_ring->count *
3221 sizeof(union e1000_rx_desc_packet_split);
3222 adapter->clean_rx = e1000_clean_rx_irq_ps;
3223 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3224 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3225 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3226 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3227 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3228 } else {
3229 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3230 adapter->clean_rx = e1000_clean_rx_irq;
3231 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3232 }
3233
3234 /* disable receives while setting up the descriptors */
3235 rctl = er32(RCTL);
3236 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3237 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3238 e1e_flush();
3239 usleep_range(10000, 20000);
3240
3241 if (adapter->flags2 & FLAG2_DMA_BURST) {
3242 /* set the writeback threshold (only takes effect if the RDTR
3243 * is set). set GRAN=1 and write back up to 0x4 worth, and
3244 * enable prefetching of 0x20 Rx descriptors
3245 * granularity = 01
3246 * wthresh = 04,
3247 * hthresh = 04,
3248 * pthresh = 0x20
3249 */
3250 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3251 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3252 }
3253
3254 /* set the Receive Delay Timer Register */
3255 ew32(RDTR, adapter->rx_int_delay);
3256
3257 /* irq moderation */
3258 ew32(RADV, adapter->rx_abs_int_delay);
3259 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3260 e1000e_write_itr(adapter, adapter->itr);
3261
3262 ctrl_ext = er32(CTRL_EXT);
3263 /* Auto-Mask interrupts upon ICR access */
3264 ctrl_ext |= E1000_CTRL_EXT_IAME;
3265 ew32(IAM, 0xffffffff);
3266 ew32(CTRL_EXT, ctrl_ext);
3267 e1e_flush();
3268
3269 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3270 * the Base and Length of the Rx Descriptor Ring
3271 */
3272 rdba = rx_ring->dma;
3273 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3274 ew32(RDBAH(0), (rdba >> 32));
3275 ew32(RDLEN(0), rdlen);
3276 ew32(RDH(0), 0);
3277 ew32(RDT(0), 0);
3278 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3279 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3280
3281 writel(0, rx_ring->head);
3282 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3283 e1000e_update_rdt_wa(rx_ring, 0);
3284 else
3285 writel(0, rx_ring->tail);
3286
3287 /* Enable Receive Checksum Offload for TCP and UDP */
3288 rxcsum = er32(RXCSUM);
3289 if (adapter->netdev->features & NETIF_F_RXCSUM)
3290 rxcsum |= E1000_RXCSUM_TUOFL;
3291 else
3292 rxcsum &= ~E1000_RXCSUM_TUOFL;
3293 ew32(RXCSUM, rxcsum);
3294
3295 /* With jumbo frames, excessive C-state transition latencies result
3296 * in dropped transactions.
3297 */
3298 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3299 u32 lat =
3300 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3301 adapter->max_frame_size) * 8 / 1000;
3302
3303 if (adapter->flags & FLAG_IS_ICH) {
3304 u32 rxdctl = er32(RXDCTL(0));
3305
3306 ew32(RXDCTL(0), rxdctl | 0x3);
3307 }
3308
3309 pm_qos_update_request(&adapter->pm_qos_req, lat);
3310 } else {
3311 pm_qos_update_request(&adapter->pm_qos_req,
3312 PM_QOS_DEFAULT_VALUE);
3313 }
3314
3315 /* Enable Receives */
3316 ew32(RCTL, rctl);
3317 }
3318
3319 /**
3320 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3321 * @netdev: network interface device structure
3322 *
3323 * Writes multicast address list to the MTA hash table.
3324 * Returns: -ENOMEM on failure
3325 * 0 on no addresses written
3326 * X on writing X addresses to MTA
3327 */
3328 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3329 {
3330 struct e1000_adapter *adapter = netdev_priv(netdev);
3331 struct e1000_hw *hw = &adapter->hw;
3332 struct netdev_hw_addr *ha;
3333 u8 *mta_list;
3334 int i;
3335
3336 if (netdev_mc_empty(netdev)) {
3337 /* nothing to program, so clear mc list */
3338 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3339 return 0;
3340 }
3341
3342 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3343 if (!mta_list)
3344 return -ENOMEM;
3345
3346 /* update_mc_addr_list expects a packed array of only addresses. */
3347 i = 0;
3348 netdev_for_each_mc_addr(ha, netdev)
3349 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3350
3351 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3352 kfree(mta_list);
3353
3354 return netdev_mc_count(netdev);
3355 }
3356
3357 /**
3358 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3359 * @netdev: network interface device structure
3360 *
3361 * Writes unicast address list to the RAR table.
3362 * Returns: -ENOMEM on failure/insufficient address space
3363 * 0 on no addresses written
3364 * X on writing X addresses to the RAR table
3365 **/
3366 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3367 {
3368 struct e1000_adapter *adapter = netdev_priv(netdev);
3369 struct e1000_hw *hw = &adapter->hw;
3370 unsigned int rar_entries;
3371 int count = 0;
3372
3373 rar_entries = hw->mac.ops.rar_get_count(hw);
3374
3375 /* save a rar entry for our hardware address */
3376 rar_entries--;
3377
3378 /* save a rar entry for the LAA workaround */
3379 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3380 rar_entries--;
3381
3382 /* return ENOMEM indicating insufficient memory for addresses */
3383 if (netdev_uc_count(netdev) > rar_entries)
3384 return -ENOMEM;
3385
3386 if (!netdev_uc_empty(netdev) && rar_entries) {
3387 struct netdev_hw_addr *ha;
3388
3389 /* write the addresses in reverse order to avoid write
3390 * combining
3391 */
3392 netdev_for_each_uc_addr(ha, netdev) {
3393 int ret_val;
3394
3395 if (!rar_entries)
3396 break;
3397 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3398 if (ret_val < 0)
3399 return -ENOMEM;
3400 count++;
3401 }
3402 }
3403
3404 /* zero out the remaining RAR entries not used above */
3405 for (; rar_entries > 0; rar_entries--) {
3406 ew32(RAH(rar_entries), 0);
3407 ew32(RAL(rar_entries), 0);
3408 }
3409 e1e_flush();
3410
3411 return count;
3412 }
3413
3414 /**
3415 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3416 * @netdev: network interface device structure
3417 *
3418 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3419 * address list or the network interface flags are updated. This routine is
3420 * responsible for configuring the hardware for proper unicast, multicast,
3421 * promiscuous mode, and all-multi behavior.
3422 **/
3423 static void e1000e_set_rx_mode(struct net_device *netdev)
3424 {
3425 struct e1000_adapter *adapter = netdev_priv(netdev);
3426 struct e1000_hw *hw = &adapter->hw;
3427 u32 rctl;
3428
3429 if (pm_runtime_suspended(netdev->dev.parent))
3430 return;
3431
3432 /* Check for Promiscuous and All Multicast modes */
3433 rctl = er32(RCTL);
3434
3435 /* clear the affected bits */
3436 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3437
3438 if (netdev->flags & IFF_PROMISC) {
3439 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3440 /* Do not hardware filter VLANs in promisc mode */
3441 e1000e_vlan_filter_disable(adapter);
3442 } else {
3443 int count;
3444
3445 if (netdev->flags & IFF_ALLMULTI) {
3446 rctl |= E1000_RCTL_MPE;
3447 } else {
3448 /* Write addresses to the MTA, if the attempt fails
3449 * then we should just turn on promiscuous mode so
3450 * that we can at least receive multicast traffic
3451 */
3452 count = e1000e_write_mc_addr_list(netdev);
3453 if (count < 0)
3454 rctl |= E1000_RCTL_MPE;
3455 }
3456 e1000e_vlan_filter_enable(adapter);
3457 /* Write addresses to available RAR registers, if there is not
3458 * sufficient space to store all the addresses then enable
3459 * unicast promiscuous mode
3460 */
3461 count = e1000e_write_uc_addr_list(netdev);
3462 if (count < 0)
3463 rctl |= E1000_RCTL_UPE;
3464 }
3465
3466 ew32(RCTL, rctl);
3467
3468 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3469 e1000e_vlan_strip_enable(adapter);
3470 else
3471 e1000e_vlan_strip_disable(adapter);
3472 }
3473
3474 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3475 {
3476 struct e1000_hw *hw = &adapter->hw;
3477 u32 mrqc, rxcsum;
3478 u32 rss_key[10];
3479 int i;
3480
3481 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3482 for (i = 0; i < 10; i++)
3483 ew32(RSSRK(i), rss_key[i]);
3484
3485 /* Direct all traffic to queue 0 */
3486 for (i = 0; i < 32; i++)
3487 ew32(RETA(i), 0);
3488
3489 /* Disable raw packet checksumming so that RSS hash is placed in
3490 * descriptor on writeback.
3491 */
3492 rxcsum = er32(RXCSUM);
3493 rxcsum |= E1000_RXCSUM_PCSD;
3494
3495 ew32(RXCSUM, rxcsum);
3496
3497 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3498 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3499 E1000_MRQC_RSS_FIELD_IPV6 |
3500 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3501 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3502
3503 ew32(MRQC, mrqc);
3504 }
3505
3506 /**
3507 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3508 * @adapter: board private structure
3509 * @timinca: pointer to returned time increment attributes
3510 *
3511 * Get attributes for incrementing the System Time Register SYSTIML/H at
3512 * the default base frequency, and set the cyclecounter shift value.
3513 **/
3514 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3515 {
3516 struct e1000_hw *hw = &adapter->hw;
3517 u32 incvalue, incperiod, shift;
3518
3519 /* Make sure clock is enabled on I217/I218/I219 before checking
3520 * the frequency
3521 */
3522 if ((hw->mac.type >= e1000_pch_lpt) &&
3523 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3524 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3525 u32 fextnvm7 = er32(FEXTNVM7);
3526
3527 if (!(fextnvm7 & BIT(0))) {
3528 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3529 e1e_flush();
3530 }
3531 }
3532
3533 switch (hw->mac.type) {
3534 case e1000_pch2lan:
3535 /* Stable 96MHz frequency */
3536 incperiod = INCPERIOD_96MHZ;
3537 incvalue = INCVALUE_96MHZ;
3538 shift = INCVALUE_SHIFT_96MHZ;
3539 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3540 break;
3541 case e1000_pch_lpt:
3542 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3543 /* Stable 96MHz frequency */
3544 incperiod = INCPERIOD_96MHZ;
3545 incvalue = INCVALUE_96MHZ;
3546 shift = INCVALUE_SHIFT_96MHZ;
3547 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3548 } else {
3549 /* Stable 25MHz frequency */
3550 incperiod = INCPERIOD_25MHZ;
3551 incvalue = INCVALUE_25MHZ;
3552 shift = INCVALUE_SHIFT_25MHZ;
3553 adapter->cc.shift = shift;
3554 }
3555 break;
3556 case e1000_pch_spt:
3557 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3558 /* Stable 24MHz frequency */
3559 incperiod = INCPERIOD_24MHZ;
3560 incvalue = INCVALUE_24MHZ;
3561 shift = INCVALUE_SHIFT_24MHZ;
3562 adapter->cc.shift = shift;
3563 break;
3564 }
3565 return -EINVAL;
3566 case e1000_pch_cnp:
3567 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3568 /* Stable 24MHz frequency */
3569 incperiod = INCPERIOD_24MHZ;
3570 incvalue = INCVALUE_24MHZ;
3571 shift = INCVALUE_SHIFT_24MHZ;
3572 adapter->cc.shift = shift;
3573 } else {
3574 /* Stable 38400KHz frequency */
3575 incperiod = INCPERIOD_38400KHZ;
3576 incvalue = INCVALUE_38400KHZ;
3577 shift = INCVALUE_SHIFT_38400KHZ;
3578 adapter->cc.shift = shift;
3579 }
3580 break;
3581 case e1000_82574:
3582 case e1000_82583:
3583 /* Stable 25MHz frequency */
3584 incperiod = INCPERIOD_25MHZ;
3585 incvalue = INCVALUE_25MHZ;
3586 shift = INCVALUE_SHIFT_25MHZ;
3587 adapter->cc.shift = shift;
3588 break;
3589 default:
3590 return -EINVAL;
3591 }
3592
3593 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3594 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3595
3596 return 0;
3597 }
3598
3599 /**
3600 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3601 * @adapter: board private structure
3602 *
3603 * Outgoing time stamping can be enabled and disabled. Play nice and
3604 * disable it when requested, although it shouldn't cause any overhead
3605 * when no packet needs it. At most one packet in the queue may be
3606 * marked for time stamping, otherwise it would be impossible to tell
3607 * for sure to which packet the hardware time stamp belongs.
3608 *
3609 * Incoming time stamping has to be configured via the hardware filters.
3610 * Not all combinations are supported, in particular event type has to be
3611 * specified. Matching the kind of event packet is not supported, with the
3612 * exception of "all V2 events regardless of level 2 or 4".
3613 **/
3614 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3615 struct hwtstamp_config *config)
3616 {
3617 struct e1000_hw *hw = &adapter->hw;
3618 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3619 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3620 u32 rxmtrl = 0;
3621 u16 rxudp = 0;
3622 bool is_l4 = false;
3623 bool is_l2 = false;
3624 u32 regval;
3625
3626 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3627 return -EINVAL;
3628
3629 /* flags reserved for future extensions - must be zero */
3630 if (config->flags)
3631 return -EINVAL;
3632
3633 switch (config->tx_type) {
3634 case HWTSTAMP_TX_OFF:
3635 tsync_tx_ctl = 0;
3636 break;
3637 case HWTSTAMP_TX_ON:
3638 break;
3639 default:
3640 return -ERANGE;
3641 }
3642
3643 switch (config->rx_filter) {
3644 case HWTSTAMP_FILTER_NONE:
3645 tsync_rx_ctl = 0;
3646 break;
3647 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3648 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3649 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3650 is_l4 = true;
3651 break;
3652 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3653 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3654 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3655 is_l4 = true;
3656 break;
3657 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3658 /* Also time stamps V2 L2 Path Delay Request/Response */
3659 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3660 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3661 is_l2 = true;
3662 break;
3663 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3664 /* Also time stamps V2 L2 Path Delay Request/Response. */
3665 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3666 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3667 is_l2 = true;
3668 break;
3669 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3670 /* Hardware cannot filter just V2 L4 Sync messages;
3671 * fall-through to V2 (both L2 and L4) Sync.
3672 */
3673 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3674 /* Also time stamps V2 Path Delay Request/Response. */
3675 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3676 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3677 is_l2 = true;
3678 is_l4 = true;
3679 break;
3680 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3681 /* Hardware cannot filter just V2 L4 Delay Request messages;
3682 * fall-through to V2 (both L2 and L4) Delay Request.
3683 */
3684 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3685 /* Also time stamps V2 Path Delay Request/Response. */
3686 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3687 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3688 is_l2 = true;
3689 is_l4 = true;
3690 break;
3691 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3692 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3693 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3694 * fall-through to all V2 (both L2 and L4) Events.
3695 */
3696 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3697 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3698 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3699 is_l2 = true;
3700 is_l4 = true;
3701 break;
3702 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3703 /* For V1, the hardware can only filter Sync messages or
3704 * Delay Request messages but not both so fall-through to
3705 * time stamp all packets.
3706 */
3707 case HWTSTAMP_FILTER_NTP_ALL:
3708 case HWTSTAMP_FILTER_ALL:
3709 is_l2 = true;
3710 is_l4 = true;
3711 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3712 config->rx_filter = HWTSTAMP_FILTER_ALL;
3713 break;
3714 default:
3715 return -ERANGE;
3716 }
3717
3718 adapter->hwtstamp_config = *config;
3719
3720 /* enable/disable Tx h/w time stamping */
3721 regval = er32(TSYNCTXCTL);
3722 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3723 regval |= tsync_tx_ctl;
3724 ew32(TSYNCTXCTL, regval);
3725 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3726 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3727 e_err("Timesync Tx Control register not set as expected\n");
3728 return -EAGAIN;
3729 }
3730
3731 /* enable/disable Rx h/w time stamping */
3732 regval = er32(TSYNCRXCTL);
3733 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3734 regval |= tsync_rx_ctl;
3735 ew32(TSYNCRXCTL, regval);
3736 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3737 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3738 (regval & (E1000_TSYNCRXCTL_ENABLED |
3739 E1000_TSYNCRXCTL_TYPE_MASK))) {
3740 e_err("Timesync Rx Control register not set as expected\n");
3741 return -EAGAIN;
3742 }
3743
3744 /* L2: define ethertype filter for time stamped packets */
3745 if (is_l2)
3746 rxmtrl |= ETH_P_1588;
3747
3748 /* define which PTP packets get time stamped */
3749 ew32(RXMTRL, rxmtrl);
3750
3751 /* Filter by destination port */
3752 if (is_l4) {
3753 rxudp = PTP_EV_PORT;
3754 cpu_to_be16s(&rxudp);
3755 }
3756 ew32(RXUDP, rxudp);
3757
3758 e1e_flush();
3759
3760 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3761 er32(RXSTMPH);
3762 er32(TXSTMPH);
3763
3764 return 0;
3765 }
3766
3767 /**
3768 * e1000_configure - configure the hardware for Rx and Tx
3769 * @adapter: private board structure
3770 **/
3771 static void e1000_configure(struct e1000_adapter *adapter)
3772 {
3773 struct e1000_ring *rx_ring = adapter->rx_ring;
3774
3775 e1000e_set_rx_mode(adapter->netdev);
3776
3777 e1000_restore_vlan(adapter);
3778 e1000_init_manageability_pt(adapter);
3779
3780 e1000_configure_tx(adapter);
3781
3782 if (adapter->netdev->features & NETIF_F_RXHASH)
3783 e1000e_setup_rss_hash(adapter);
3784 e1000_setup_rctl(adapter);
3785 e1000_configure_rx(adapter);
3786 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3787 }
3788
3789 /**
3790 * e1000e_power_up_phy - restore link in case the phy was powered down
3791 * @adapter: address of board private structure
3792 *
3793 * The phy may be powered down to save power and turn off link when the
3794 * driver is unloaded and wake on lan is not enabled (among others)
3795 * *** this routine MUST be followed by a call to e1000e_reset ***
3796 **/
3797 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3798 {
3799 if (adapter->hw.phy.ops.power_up)
3800 adapter->hw.phy.ops.power_up(&adapter->hw);
3801
3802 adapter->hw.mac.ops.setup_link(&adapter->hw);
3803 }
3804
3805 /**
3806 * e1000_power_down_phy - Power down the PHY
3807 *
3808 * Power down the PHY so no link is implied when interface is down.
3809 * The PHY cannot be powered down if management or WoL is active.
3810 */
3811 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3812 {
3813 if (adapter->hw.phy.ops.power_down)
3814 adapter->hw.phy.ops.power_down(&adapter->hw);
3815 }
3816
3817 /**
3818 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3819 *
3820 * We want to clear all pending descriptors from the TX ring.
3821 * zeroing happens when the HW reads the regs. We assign the ring itself as
3822 * the data of the next descriptor. We don't care about the data we are about
3823 * to reset the HW.
3824 */
3825 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3826 {
3827 struct e1000_hw *hw = &adapter->hw;
3828 struct e1000_ring *tx_ring = adapter->tx_ring;
3829 struct e1000_tx_desc *tx_desc = NULL;
3830 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3831 u16 size = 512;
3832
3833 tctl = er32(TCTL);
3834 ew32(TCTL, tctl | E1000_TCTL_EN);
3835 tdt = er32(TDT(0));
3836 BUG_ON(tdt != tx_ring->next_to_use);
3837 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3838 tx_desc->buffer_addr = tx_ring->dma;
3839
3840 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3841 tx_desc->upper.data = 0;
3842 /* flush descriptors to memory before notifying the HW */
3843 wmb();
3844 tx_ring->next_to_use++;
3845 if (tx_ring->next_to_use == tx_ring->count)
3846 tx_ring->next_to_use = 0;
3847 ew32(TDT(0), tx_ring->next_to_use);
3848 mmiowb();
3849 usleep_range(200, 250);
3850 }
3851
3852 /**
3853 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3854 *
3855 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3856 */
3857 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3858 {
3859 u32 rctl, rxdctl;
3860 struct e1000_hw *hw = &adapter->hw;
3861
3862 rctl = er32(RCTL);
3863 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3864 e1e_flush();
3865 usleep_range(100, 150);
3866
3867 rxdctl = er32(RXDCTL(0));
3868 /* zero the lower 14 bits (prefetch and host thresholds) */
3869 rxdctl &= 0xffffc000;
3870
3871 /* update thresholds: prefetch threshold to 31, host threshold to 1
3872 * and make sure the granularity is "descriptors" and not "cache lines"
3873 */
3874 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3875
3876 ew32(RXDCTL(0), rxdctl);
3877 /* momentarily enable the RX ring for the changes to take effect */
3878 ew32(RCTL, rctl | E1000_RCTL_EN);
3879 e1e_flush();
3880 usleep_range(100, 150);
3881 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3882 }
3883
3884 /**
3885 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3886 *
3887 * In i219, the descriptor rings must be emptied before resetting the HW
3888 * or before changing the device state to D3 during runtime (runtime PM).
3889 *
3890 * Failure to do this will cause the HW to enter a unit hang state which can
3891 * only be released by PCI reset on the device
3892 *
3893 */
3894
3895 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3896 {
3897 u16 hang_state;
3898 u32 fext_nvm11, tdlen;
3899 struct e1000_hw *hw = &adapter->hw;
3900
3901 /* First, disable MULR fix in FEXTNVM11 */
3902 fext_nvm11 = er32(FEXTNVM11);
3903 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3904 ew32(FEXTNVM11, fext_nvm11);
3905 /* do nothing if we're not in faulty state, or if the queue is empty */
3906 tdlen = er32(TDLEN(0));
3907 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3908 &hang_state);
3909 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3910 return;
3911 e1000_flush_tx_ring(adapter);
3912 /* recheck, maybe the fault is caused by the rx ring */
3913 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3914 &hang_state);
3915 if (hang_state & FLUSH_DESC_REQUIRED)
3916 e1000_flush_rx_ring(adapter);
3917 }
3918
3919 /**
3920 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3921 * @adapter: board private structure
3922 *
3923 * When the MAC is reset, all hardware bits for timesync will be reset to the
3924 * default values. This function will restore the settings last in place.
3925 * Since the clock SYSTIME registers are reset, we will simply restore the
3926 * cyclecounter to the kernel real clock time.
3927 **/
3928 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3929 {
3930 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3931 struct e1000_hw *hw = &adapter->hw;
3932 unsigned long flags;
3933 u32 timinca;
3934 s32 ret_val;
3935
3936 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3937 return;
3938
3939 if (info->adjfreq) {
3940 /* restore the previous ptp frequency delta */
3941 ret_val = info->adjfreq(info, adapter->ptp_delta);
3942 } else {
3943 /* set the default base frequency if no adjustment possible */
3944 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3945 if (!ret_val)
3946 ew32(TIMINCA, timinca);
3947 }
3948
3949 if (ret_val) {
3950 dev_warn(&adapter->pdev->dev,
3951 "Failed to restore TIMINCA clock rate delta: %d\n",
3952 ret_val);
3953 return;
3954 }
3955
3956 /* reset the systim ns time counter */
3957 spin_lock_irqsave(&adapter->systim_lock, flags);
3958 timecounter_init(&adapter->tc, &adapter->cc,
3959 ktime_to_ns(ktime_get_real()));
3960 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3961
3962 /* restore the previous hwtstamp configuration settings */
3963 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3964 }
3965
3966 /**
3967 * e1000e_reset - bring the hardware into a known good state
3968 *
3969 * This function boots the hardware and enables some settings that
3970 * require a configuration cycle of the hardware - those cannot be
3971 * set/changed during runtime. After reset the device needs to be
3972 * properly configured for Rx, Tx etc.
3973 */
3974 void e1000e_reset(struct e1000_adapter *adapter)
3975 {
3976 struct e1000_mac_info *mac = &adapter->hw.mac;
3977 struct e1000_fc_info *fc = &adapter->hw.fc;
3978 struct e1000_hw *hw = &adapter->hw;
3979 u32 tx_space, min_tx_space, min_rx_space;
3980 u32 pba = adapter->pba;
3981 u16 hwm;
3982
3983 /* reset Packet Buffer Allocation to default */
3984 ew32(PBA, pba);
3985
3986 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3987 /* To maintain wire speed transmits, the Tx FIFO should be
3988 * large enough to accommodate two full transmit packets,
3989 * rounded up to the next 1KB and expressed in KB. Likewise,
3990 * the Rx FIFO should be large enough to accommodate at least
3991 * one full receive packet and is similarly rounded up and
3992 * expressed in KB.
3993 */
3994 pba = er32(PBA);
3995 /* upper 16 bits has Tx packet buffer allocation size in KB */
3996 tx_space = pba >> 16;
3997 /* lower 16 bits has Rx packet buffer allocation size in KB */
3998 pba &= 0xffff;
3999 /* the Tx fifo also stores 16 bytes of information about the Tx
4000 * but don't include ethernet FCS because hardware appends it
4001 */
4002 min_tx_space = (adapter->max_frame_size +
4003 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4004 min_tx_space = ALIGN(min_tx_space, 1024);
4005 min_tx_space >>= 10;
4006 /* software strips receive CRC, so leave room for it */
4007 min_rx_space = adapter->max_frame_size;
4008 min_rx_space = ALIGN(min_rx_space, 1024);
4009 min_rx_space >>= 10;
4010
4011 /* If current Tx allocation is less than the min Tx FIFO size,
4012 * and the min Tx FIFO size is less than the current Rx FIFO
4013 * allocation, take space away from current Rx allocation
4014 */
4015 if ((tx_space < min_tx_space) &&
4016 ((min_tx_space - tx_space) < pba)) {
4017 pba -= min_tx_space - tx_space;
4018
4019 /* if short on Rx space, Rx wins and must trump Tx
4020 * adjustment
4021 */
4022 if (pba < min_rx_space)
4023 pba = min_rx_space;
4024 }
4025
4026 ew32(PBA, pba);
4027 }
4028
4029 /* flow control settings
4030 *
4031 * The high water mark must be low enough to fit one full frame
4032 * (or the size used for early receive) above it in the Rx FIFO.
4033 * Set it to the lower of:
4034 * - 90% of the Rx FIFO size, and
4035 * - the full Rx FIFO size minus one full frame
4036 */
4037 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4038 fc->pause_time = 0xFFFF;
4039 else
4040 fc->pause_time = E1000_FC_PAUSE_TIME;
4041 fc->send_xon = true;
4042 fc->current_mode = fc->requested_mode;
4043
4044 switch (hw->mac.type) {
4045 case e1000_ich9lan:
4046 case e1000_ich10lan:
4047 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4048 pba = 14;
4049 ew32(PBA, pba);
4050 fc->high_water = 0x2800;
4051 fc->low_water = fc->high_water - 8;
4052 break;
4053 }
4054 /* fall-through */
4055 default:
4056 hwm = min(((pba << 10) * 9 / 10),
4057 ((pba << 10) - adapter->max_frame_size));
4058
4059 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4060 fc->low_water = fc->high_water - 8;
4061 break;
4062 case e1000_pchlan:
4063 /* Workaround PCH LOM adapter hangs with certain network
4064 * loads. If hangs persist, try disabling Tx flow control.
4065 */
4066 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4067 fc->high_water = 0x3500;
4068 fc->low_water = 0x1500;
4069 } else {
4070 fc->high_water = 0x5000;
4071 fc->low_water = 0x3000;
4072 }
4073 fc->refresh_time = 0x1000;
4074 break;
4075 case e1000_pch2lan:
4076 case e1000_pch_lpt:
4077 case e1000_pch_spt:
4078 case e1000_pch_cnp:
4079 fc->refresh_time = 0x0400;
4080
4081 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4082 fc->high_water = 0x05C20;
4083 fc->low_water = 0x05048;
4084 fc->pause_time = 0x0650;
4085 break;
4086 }
4087
4088 pba = 14;
4089 ew32(PBA, pba);
4090 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4091 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4092 break;
4093 }
4094
4095 /* Alignment of Tx data is on an arbitrary byte boundary with the
4096 * maximum size per Tx descriptor limited only to the transmit
4097 * allocation of the packet buffer minus 96 bytes with an upper
4098 * limit of 24KB due to receive synchronization limitations.
4099 */
4100 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4101 24 << 10);
4102
4103 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4104 * fit in receive buffer.
4105 */
4106 if (adapter->itr_setting & 0x3) {
4107 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4108 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4109 dev_info(&adapter->pdev->dev,
4110 "Interrupt Throttle Rate off\n");
4111 adapter->flags2 |= FLAG2_DISABLE_AIM;
4112 e1000e_write_itr(adapter, 0);
4113 }
4114 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4115 dev_info(&adapter->pdev->dev,
4116 "Interrupt Throttle Rate on\n");
4117 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4118 adapter->itr = 20000;
4119 e1000e_write_itr(adapter, adapter->itr);
4120 }
4121 }
4122
4123 if (hw->mac.type >= e1000_pch_spt)
4124 e1000_flush_desc_rings(adapter);
4125 /* Allow time for pending master requests to run */
4126 mac->ops.reset_hw(hw);
4127
4128 /* For parts with AMT enabled, let the firmware know
4129 * that the network interface is in control
4130 */
4131 if (adapter->flags & FLAG_HAS_AMT)
4132 e1000e_get_hw_control(adapter);
4133
4134 ew32(WUC, 0);
4135
4136 if (mac->ops.init_hw(hw))
4137 e_err("Hardware Error\n");
4138
4139 e1000_update_mng_vlan(adapter);
4140
4141 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4142 ew32(VET, ETH_P_8021Q);
4143
4144 e1000e_reset_adaptive(hw);
4145
4146 /* restore systim and hwtstamp settings */
4147 e1000e_systim_reset(adapter);
4148
4149 /* Set EEE advertisement as appropriate */
4150 if (adapter->flags2 & FLAG2_HAS_EEE) {
4151 s32 ret_val;
4152 u16 adv_addr;
4153
4154 switch (hw->phy.type) {
4155 case e1000_phy_82579:
4156 adv_addr = I82579_EEE_ADVERTISEMENT;
4157 break;
4158 case e1000_phy_i217:
4159 adv_addr = I217_EEE_ADVERTISEMENT;
4160 break;
4161 default:
4162 dev_err(&adapter->pdev->dev,
4163 "Invalid PHY type setting EEE advertisement\n");
4164 return;
4165 }
4166
4167 ret_val = hw->phy.ops.acquire(hw);
4168 if (ret_val) {
4169 dev_err(&adapter->pdev->dev,
4170 "EEE advertisement - unable to acquire PHY\n");
4171 return;
4172 }
4173
4174 e1000_write_emi_reg_locked(hw, adv_addr,
4175 hw->dev_spec.ich8lan.eee_disable ?
4176 0 : adapter->eee_advert);
4177
4178 hw->phy.ops.release(hw);
4179 }
4180
4181 if (!netif_running(adapter->netdev) &&
4182 !test_bit(__E1000_TESTING, &adapter->state))
4183 e1000_power_down_phy(adapter);
4184
4185 e1000_get_phy_info(hw);
4186
4187 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4188 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4189 u16 phy_data = 0;
4190 /* speed up time to link by disabling smart power down, ignore
4191 * the return value of this function because there is nothing
4192 * different we would do if it failed
4193 */
4194 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4195 phy_data &= ~IGP02E1000_PM_SPD;
4196 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4197 }
4198 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4199 u32 reg;
4200
4201 /* Fextnvm7 @ 0xe4[2] = 1 */
4202 reg = er32(FEXTNVM7);
4203 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4204 ew32(FEXTNVM7, reg);
4205 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4206 reg = er32(FEXTNVM9);
4207 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4208 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4209 ew32(FEXTNVM9, reg);
4210 }
4211
4212 }
4213
4214 /**
4215 * e1000e_trigger_lsc - trigger an LSC interrupt
4216 * @adapter:
4217 *
4218 * Fire a link status change interrupt to start the watchdog.
4219 **/
4220 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4221 {
4222 struct e1000_hw *hw = &adapter->hw;
4223
4224 if (adapter->msix_entries)
4225 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4226 else
4227 ew32(ICS, E1000_ICS_LSC);
4228 }
4229
4230 void e1000e_up(struct e1000_adapter *adapter)
4231 {
4232 /* hardware has been reset, we need to reload some things */
4233 e1000_configure(adapter);
4234
4235 clear_bit(__E1000_DOWN, &adapter->state);
4236
4237 if (adapter->msix_entries)
4238 e1000_configure_msix(adapter);
4239 e1000_irq_enable(adapter);
4240
4241 netif_start_queue(adapter->netdev);
4242
4243 e1000e_trigger_lsc(adapter);
4244 }
4245
4246 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4247 {
4248 struct e1000_hw *hw = &adapter->hw;
4249
4250 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4251 return;
4252
4253 /* flush pending descriptor writebacks to memory */
4254 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4256
4257 /* execute the writes immediately */
4258 e1e_flush();
4259
4260 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4261 * write is successful
4262 */
4263 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4264 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4265
4266 /* execute the writes immediately */
4267 e1e_flush();
4268 }
4269
4270 static void e1000e_update_stats(struct e1000_adapter *adapter);
4271
4272 /**
4273 * e1000e_down - quiesce the device and optionally reset the hardware
4274 * @adapter: board private structure
4275 * @reset: boolean flag to reset the hardware or not
4276 */
4277 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4278 {
4279 struct net_device *netdev = adapter->netdev;
4280 struct e1000_hw *hw = &adapter->hw;
4281 u32 tctl, rctl;
4282
4283 /* signal that we're down so the interrupt handler does not
4284 * reschedule our watchdog timer
4285 */
4286 set_bit(__E1000_DOWN, &adapter->state);
4287
4288 netif_carrier_off(netdev);
4289
4290 /* disable receives in the hardware */
4291 rctl = er32(RCTL);
4292 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4293 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4294 /* flush and sleep below */
4295
4296 netif_stop_queue(netdev);
4297
4298 /* disable transmits in the hardware */
4299 tctl = er32(TCTL);
4300 tctl &= ~E1000_TCTL_EN;
4301 ew32(TCTL, tctl);
4302
4303 /* flush both disables and wait for them to finish */
4304 e1e_flush();
4305 usleep_range(10000, 20000);
4306
4307 e1000_irq_disable(adapter);
4308
4309 napi_synchronize(&adapter->napi);
4310
4311 del_timer_sync(&adapter->watchdog_timer);
4312 del_timer_sync(&adapter->phy_info_timer);
4313
4314 spin_lock(&adapter->stats64_lock);
4315 e1000e_update_stats(adapter);
4316 spin_unlock(&adapter->stats64_lock);
4317
4318 e1000e_flush_descriptors(adapter);
4319
4320 adapter->link_speed = 0;
4321 adapter->link_duplex = 0;
4322
4323 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4324 if ((hw->mac.type >= e1000_pch2lan) &&
4325 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4326 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4327 e_dbg("failed to disable jumbo frame workaround mode\n");
4328
4329 if (!pci_channel_offline(adapter->pdev)) {
4330 if (reset)
4331 e1000e_reset(adapter);
4332 else if (hw->mac.type >= e1000_pch_spt)
4333 e1000_flush_desc_rings(adapter);
4334 }
4335 e1000_clean_tx_ring(adapter->tx_ring);
4336 e1000_clean_rx_ring(adapter->rx_ring);
4337 }
4338
4339 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4340 {
4341 might_sleep();
4342 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4343 usleep_range(1000, 2000);
4344 e1000e_down(adapter, true);
4345 e1000e_up(adapter);
4346 clear_bit(__E1000_RESETTING, &adapter->state);
4347 }
4348
4349 /**
4350 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4351 * @hw: pointer to the HW structure
4352 * @systim: time value read, sanitized and returned
4353 *
4354 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4355 * check to see that the time is incrementing at a reasonable
4356 * rate and is a multiple of incvalue.
4357 **/
4358 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4359 {
4360 u64 time_delta, rem, temp;
4361 u64 systim_next;
4362 u32 incvalue;
4363 int i;
4364
4365 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4366 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4367 /* latch SYSTIMH on read of SYSTIML */
4368 systim_next = (u64)er32(SYSTIML);
4369 systim_next |= (u64)er32(SYSTIMH) << 32;
4370
4371 time_delta = systim_next - systim;
4372 temp = time_delta;
4373 /* VMWare users have seen incvalue of zero, don't div / 0 */
4374 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4375
4376 systim = systim_next;
4377
4378 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4379 break;
4380 }
4381
4382 return systim;
4383 }
4384
4385 /**
4386 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4387 * @cc: cyclecounter structure
4388 **/
4389 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4390 {
4391 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4392 cc);
4393 struct e1000_hw *hw = &adapter->hw;
4394 u32 systimel, systimeh;
4395 u64 systim;
4396 /* SYSTIMH latching upon SYSTIML read does not work well.
4397 * This means that if SYSTIML overflows after we read it but before
4398 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4399 * will experience a huge non linear increment in the systime value
4400 * to fix that we test for overflow and if true, we re-read systime.
4401 */
4402 systimel = er32(SYSTIML);
4403 systimeh = er32(SYSTIMH);
4404 /* Is systimel is so large that overflow is possible? */
4405 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4406 u32 systimel_2 = er32(SYSTIML);
4407 if (systimel > systimel_2) {
4408 /* There was an overflow, read again SYSTIMH, and use
4409 * systimel_2
4410 */
4411 systimeh = er32(SYSTIMH);
4412 systimel = systimel_2;
4413 }
4414 }
4415 systim = (u64)systimel;
4416 systim |= (u64)systimeh << 32;
4417
4418 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4419 systim = e1000e_sanitize_systim(hw, systim);
4420
4421 return systim;
4422 }
4423
4424 /**
4425 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4426 * @adapter: board private structure to initialize
4427 *
4428 * e1000_sw_init initializes the Adapter private data structure.
4429 * Fields are initialized based on PCI device information and
4430 * OS network device settings (MTU size).
4431 **/
4432 static int e1000_sw_init(struct e1000_adapter *adapter)
4433 {
4434 struct net_device *netdev = adapter->netdev;
4435
4436 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4437 adapter->rx_ps_bsize0 = 128;
4438 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4439 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4440 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4441 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4442
4443 spin_lock_init(&adapter->stats64_lock);
4444
4445 e1000e_set_interrupt_capability(adapter);
4446
4447 if (e1000_alloc_queues(adapter))
4448 return -ENOMEM;
4449
4450 /* Setup hardware time stamping cyclecounter */
4451 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4452 adapter->cc.read = e1000e_cyclecounter_read;
4453 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4454 adapter->cc.mult = 1;
4455 /* cc.shift set in e1000e_get_base_tininca() */
4456
4457 spin_lock_init(&adapter->systim_lock);
4458 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4459 }
4460
4461 /* Explicitly disable IRQ since the NIC can be in any state. */
4462 e1000_irq_disable(adapter);
4463
4464 set_bit(__E1000_DOWN, &adapter->state);
4465 return 0;
4466 }
4467
4468 /**
4469 * e1000_intr_msi_test - Interrupt Handler
4470 * @irq: interrupt number
4471 * @data: pointer to a network interface device structure
4472 **/
4473 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4474 {
4475 struct net_device *netdev = data;
4476 struct e1000_adapter *adapter = netdev_priv(netdev);
4477 struct e1000_hw *hw = &adapter->hw;
4478 u32 icr = er32(ICR);
4479
4480 e_dbg("icr is %08X\n", icr);
4481 if (icr & E1000_ICR_RXSEQ) {
4482 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4483 /* Force memory writes to complete before acknowledging the
4484 * interrupt is handled.
4485 */
4486 wmb();
4487 }
4488
4489 return IRQ_HANDLED;
4490 }
4491
4492 /**
4493 * e1000_test_msi_interrupt - Returns 0 for successful test
4494 * @adapter: board private struct
4495 *
4496 * code flow taken from tg3.c
4497 **/
4498 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4499 {
4500 struct net_device *netdev = adapter->netdev;
4501 struct e1000_hw *hw = &adapter->hw;
4502 int err;
4503
4504 /* poll_enable hasn't been called yet, so don't need disable */
4505 /* clear any pending events */
4506 er32(ICR);
4507
4508 /* free the real vector and request a test handler */
4509 e1000_free_irq(adapter);
4510 e1000e_reset_interrupt_capability(adapter);
4511
4512 /* Assume that the test fails, if it succeeds then the test
4513 * MSI irq handler will unset this flag
4514 */
4515 adapter->flags |= FLAG_MSI_TEST_FAILED;
4516
4517 err = pci_enable_msi(adapter->pdev);
4518 if (err)
4519 goto msi_test_failed;
4520
4521 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4522 netdev->name, netdev);
4523 if (err) {
4524 pci_disable_msi(adapter->pdev);
4525 goto msi_test_failed;
4526 }
4527
4528 /* Force memory writes to complete before enabling and firing an
4529 * interrupt.
4530 */
4531 wmb();
4532
4533 e1000_irq_enable(adapter);
4534
4535 /* fire an unusual interrupt on the test handler */
4536 ew32(ICS, E1000_ICS_RXSEQ);
4537 e1e_flush();
4538 msleep(100);
4539
4540 e1000_irq_disable(adapter);
4541
4542 rmb(); /* read flags after interrupt has been fired */
4543
4544 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4545 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4546 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4547 } else {
4548 e_dbg("MSI interrupt test succeeded!\n");
4549 }
4550
4551 free_irq(adapter->pdev->irq, netdev);
4552 pci_disable_msi(adapter->pdev);
4553
4554 msi_test_failed:
4555 e1000e_set_interrupt_capability(adapter);
4556 return e1000_request_irq(adapter);
4557 }
4558
4559 /**
4560 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4561 * @adapter: board private struct
4562 *
4563 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4564 **/
4565 static int e1000_test_msi(struct e1000_adapter *adapter)
4566 {
4567 int err;
4568 u16 pci_cmd;
4569
4570 if (!(adapter->flags & FLAG_MSI_ENABLED))
4571 return 0;
4572
4573 /* disable SERR in case the MSI write causes a master abort */
4574 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4575 if (pci_cmd & PCI_COMMAND_SERR)
4576 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4577 pci_cmd & ~PCI_COMMAND_SERR);
4578
4579 err = e1000_test_msi_interrupt(adapter);
4580
4581 /* re-enable SERR */
4582 if (pci_cmd & PCI_COMMAND_SERR) {
4583 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4584 pci_cmd |= PCI_COMMAND_SERR;
4585 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4586 }
4587
4588 return err;
4589 }
4590
4591 /**
4592 * e1000e_open - Called when a network interface is made active
4593 * @netdev: network interface device structure
4594 *
4595 * Returns 0 on success, negative value on failure
4596 *
4597 * The open entry point is called when a network interface is made
4598 * active by the system (IFF_UP). At this point all resources needed
4599 * for transmit and receive operations are allocated, the interrupt
4600 * handler is registered with the OS, the watchdog timer is started,
4601 * and the stack is notified that the interface is ready.
4602 **/
4603 int e1000e_open(struct net_device *netdev)
4604 {
4605 struct e1000_adapter *adapter = netdev_priv(netdev);
4606 struct e1000_hw *hw = &adapter->hw;
4607 struct pci_dev *pdev = adapter->pdev;
4608 int err;
4609
4610 /* disallow open during test */
4611 if (test_bit(__E1000_TESTING, &adapter->state))
4612 return -EBUSY;
4613
4614 pm_runtime_get_sync(&pdev->dev);
4615
4616 netif_carrier_off(netdev);
4617
4618 /* allocate transmit descriptors */
4619 err = e1000e_setup_tx_resources(adapter->tx_ring);
4620 if (err)
4621 goto err_setup_tx;
4622
4623 /* allocate receive descriptors */
4624 err = e1000e_setup_rx_resources(adapter->rx_ring);
4625 if (err)
4626 goto err_setup_rx;
4627
4628 /* If AMT is enabled, let the firmware know that the network
4629 * interface is now open and reset the part to a known state.
4630 */
4631 if (adapter->flags & FLAG_HAS_AMT) {
4632 e1000e_get_hw_control(adapter);
4633 e1000e_reset(adapter);
4634 }
4635
4636 e1000e_power_up_phy(adapter);
4637
4638 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4639 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4640 e1000_update_mng_vlan(adapter);
4641
4642 /* DMA latency requirement to workaround jumbo issue */
4643 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4644 PM_QOS_DEFAULT_VALUE);
4645
4646 /* before we allocate an interrupt, we must be ready to handle it.
4647 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4648 * as soon as we call pci_request_irq, so we have to setup our
4649 * clean_rx handler before we do so.
4650 */
4651 e1000_configure(adapter);
4652
4653 err = e1000_request_irq(adapter);
4654 if (err)
4655 goto err_req_irq;
4656
4657 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4658 * ignore e1000e MSI messages, which means we need to test our MSI
4659 * interrupt now
4660 */
4661 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4662 err = e1000_test_msi(adapter);
4663 if (err) {
4664 e_err("Interrupt allocation failed\n");
4665 goto err_req_irq;
4666 }
4667 }
4668
4669 /* From here on the code is the same as e1000e_up() */
4670 clear_bit(__E1000_DOWN, &adapter->state);
4671
4672 napi_enable(&adapter->napi);
4673
4674 e1000_irq_enable(adapter);
4675
4676 adapter->tx_hang_recheck = false;
4677 netif_start_queue(netdev);
4678
4679 hw->mac.get_link_status = true;
4680 pm_runtime_put(&pdev->dev);
4681
4682 e1000e_trigger_lsc(adapter);
4683
4684 return 0;
4685
4686 err_req_irq:
4687 pm_qos_remove_request(&adapter->pm_qos_req);
4688 e1000e_release_hw_control(adapter);
4689 e1000_power_down_phy(adapter);
4690 e1000e_free_rx_resources(adapter->rx_ring);
4691 err_setup_rx:
4692 e1000e_free_tx_resources(adapter->tx_ring);
4693 err_setup_tx:
4694 e1000e_reset(adapter);
4695 pm_runtime_put_sync(&pdev->dev);
4696
4697 return err;
4698 }
4699
4700 /**
4701 * e1000e_close - Disables a network interface
4702 * @netdev: network interface device structure
4703 *
4704 * Returns 0, this is not allowed to fail
4705 *
4706 * The close entry point is called when an interface is de-activated
4707 * by the OS. The hardware is still under the drivers control, but
4708 * needs to be disabled. A global MAC reset is issued to stop the
4709 * hardware, and all transmit and receive resources are freed.
4710 **/
4711 int e1000e_close(struct net_device *netdev)
4712 {
4713 struct e1000_adapter *adapter = netdev_priv(netdev);
4714 struct pci_dev *pdev = adapter->pdev;
4715 int count = E1000_CHECK_RESET_COUNT;
4716
4717 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4718 usleep_range(10000, 20000);
4719
4720 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4721
4722 pm_runtime_get_sync(&pdev->dev);
4723
4724 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4725 e1000e_down(adapter, true);
4726 e1000_free_irq(adapter);
4727
4728 /* Link status message must follow this format */
4729 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4730 }
4731
4732 napi_disable(&adapter->napi);
4733
4734 e1000e_free_tx_resources(adapter->tx_ring);
4735 e1000e_free_rx_resources(adapter->rx_ring);
4736
4737 /* kill manageability vlan ID if supported, but not if a vlan with
4738 * the same ID is registered on the host OS (let 8021q kill it)
4739 */
4740 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4741 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4742 adapter->mng_vlan_id);
4743
4744 /* If AMT is enabled, let the firmware know that the network
4745 * interface is now closed
4746 */
4747 if ((adapter->flags & FLAG_HAS_AMT) &&
4748 !test_bit(__E1000_TESTING, &adapter->state))
4749 e1000e_release_hw_control(adapter);
4750
4751 pm_qos_remove_request(&adapter->pm_qos_req);
4752
4753 pm_runtime_put_sync(&pdev->dev);
4754
4755 return 0;
4756 }
4757
4758 /**
4759 * e1000_set_mac - Change the Ethernet Address of the NIC
4760 * @netdev: network interface device structure
4761 * @p: pointer to an address structure
4762 *
4763 * Returns 0 on success, negative on failure
4764 **/
4765 static int e1000_set_mac(struct net_device *netdev, void *p)
4766 {
4767 struct e1000_adapter *adapter = netdev_priv(netdev);
4768 struct e1000_hw *hw = &adapter->hw;
4769 struct sockaddr *addr = p;
4770
4771 if (!is_valid_ether_addr(addr->sa_data))
4772 return -EADDRNOTAVAIL;
4773
4774 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4775 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4776
4777 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4778
4779 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4780 /* activate the work around */
4781 e1000e_set_laa_state_82571(&adapter->hw, 1);
4782
4783 /* Hold a copy of the LAA in RAR[14] This is done so that
4784 * between the time RAR[0] gets clobbered and the time it
4785 * gets fixed (in e1000_watchdog), the actual LAA is in one
4786 * of the RARs and no incoming packets directed to this port
4787 * are dropped. Eventually the LAA will be in RAR[0] and
4788 * RAR[14]
4789 */
4790 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4791 adapter->hw.mac.rar_entry_count - 1);
4792 }
4793
4794 return 0;
4795 }
4796
4797 /**
4798 * e1000e_update_phy_task - work thread to update phy
4799 * @work: pointer to our work struct
4800 *
4801 * this worker thread exists because we must acquire a
4802 * semaphore to read the phy, which we could msleep while
4803 * waiting for it, and we can't msleep in a timer.
4804 **/
4805 static void e1000e_update_phy_task(struct work_struct *work)
4806 {
4807 struct e1000_adapter *adapter = container_of(work,
4808 struct e1000_adapter,
4809 update_phy_task);
4810 struct e1000_hw *hw = &adapter->hw;
4811
4812 if (test_bit(__E1000_DOWN, &adapter->state))
4813 return;
4814
4815 e1000_get_phy_info(hw);
4816
4817 /* Enable EEE on 82579 after link up */
4818 if (hw->phy.type >= e1000_phy_82579)
4819 e1000_set_eee_pchlan(hw);
4820 }
4821
4822 /**
4823 * e1000_update_phy_info - timre call-back to update PHY info
4824 * @data: pointer to adapter cast into an unsigned long
4825 *
4826 * Need to wait a few seconds after link up to get diagnostic information from
4827 * the phy
4828 **/
4829 static void e1000_update_phy_info(struct timer_list *t)
4830 {
4831 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4832
4833 if (test_bit(__E1000_DOWN, &adapter->state))
4834 return;
4835
4836 schedule_work(&adapter->update_phy_task);
4837 }
4838
4839 /**
4840 * e1000e_update_phy_stats - Update the PHY statistics counters
4841 * @adapter: board private structure
4842 *
4843 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4844 **/
4845 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4846 {
4847 struct e1000_hw *hw = &adapter->hw;
4848 s32 ret_val;
4849 u16 phy_data;
4850
4851 ret_val = hw->phy.ops.acquire(hw);
4852 if (ret_val)
4853 return;
4854
4855 /* A page set is expensive so check if already on desired page.
4856 * If not, set to the page with the PHY status registers.
4857 */
4858 hw->phy.addr = 1;
4859 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4860 &phy_data);
4861 if (ret_val)
4862 goto release;
4863 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4864 ret_val = hw->phy.ops.set_page(hw,
4865 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4866 if (ret_val)
4867 goto release;
4868 }
4869
4870 /* Single Collision Count */
4871 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4872 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4873 if (!ret_val)
4874 adapter->stats.scc += phy_data;
4875
4876 /* Excessive Collision Count */
4877 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4878 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4879 if (!ret_val)
4880 adapter->stats.ecol += phy_data;
4881
4882 /* Multiple Collision Count */
4883 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4884 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4885 if (!ret_val)
4886 adapter->stats.mcc += phy_data;
4887
4888 /* Late Collision Count */
4889 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4890 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4891 if (!ret_val)
4892 adapter->stats.latecol += phy_data;
4893
4894 /* Collision Count - also used for adaptive IFS */
4895 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4896 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4897 if (!ret_val)
4898 hw->mac.collision_delta = phy_data;
4899
4900 /* Defer Count */
4901 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4902 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4903 if (!ret_val)
4904 adapter->stats.dc += phy_data;
4905
4906 /* Transmit with no CRS */
4907 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4908 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4909 if (!ret_val)
4910 adapter->stats.tncrs += phy_data;
4911
4912 release:
4913 hw->phy.ops.release(hw);
4914 }
4915
4916 /**
4917 * e1000e_update_stats - Update the board statistics counters
4918 * @adapter: board private structure
4919 **/
4920 static void e1000e_update_stats(struct e1000_adapter *adapter)
4921 {
4922 struct net_device *netdev = adapter->netdev;
4923 struct e1000_hw *hw = &adapter->hw;
4924 struct pci_dev *pdev = adapter->pdev;
4925
4926 /* Prevent stats update while adapter is being reset, or if the pci
4927 * connection is down.
4928 */
4929 if (adapter->link_speed == 0)
4930 return;
4931 if (pci_channel_offline(pdev))
4932 return;
4933
4934 adapter->stats.crcerrs += er32(CRCERRS);
4935 adapter->stats.gprc += er32(GPRC);
4936 adapter->stats.gorc += er32(GORCL);
4937 er32(GORCH); /* Clear gorc */
4938 adapter->stats.bprc += er32(BPRC);
4939 adapter->stats.mprc += er32(MPRC);
4940 adapter->stats.roc += er32(ROC);
4941
4942 adapter->stats.mpc += er32(MPC);
4943
4944 /* Half-duplex statistics */
4945 if (adapter->link_duplex == HALF_DUPLEX) {
4946 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4947 e1000e_update_phy_stats(adapter);
4948 } else {
4949 adapter->stats.scc += er32(SCC);
4950 adapter->stats.ecol += er32(ECOL);
4951 adapter->stats.mcc += er32(MCC);
4952 adapter->stats.latecol += er32(LATECOL);
4953 adapter->stats.dc += er32(DC);
4954
4955 hw->mac.collision_delta = er32(COLC);
4956
4957 if ((hw->mac.type != e1000_82574) &&
4958 (hw->mac.type != e1000_82583))
4959 adapter->stats.tncrs += er32(TNCRS);
4960 }
4961 adapter->stats.colc += hw->mac.collision_delta;
4962 }
4963
4964 adapter->stats.xonrxc += er32(XONRXC);
4965 adapter->stats.xontxc += er32(XONTXC);
4966 adapter->stats.xoffrxc += er32(XOFFRXC);
4967 adapter->stats.xofftxc += er32(XOFFTXC);
4968 adapter->stats.gptc += er32(GPTC);
4969 adapter->stats.gotc += er32(GOTCL);
4970 er32(GOTCH); /* Clear gotc */
4971 adapter->stats.rnbc += er32(RNBC);
4972 adapter->stats.ruc += er32(RUC);
4973
4974 adapter->stats.mptc += er32(MPTC);
4975 adapter->stats.bptc += er32(BPTC);
4976
4977 /* used for adaptive IFS */
4978
4979 hw->mac.tx_packet_delta = er32(TPT);
4980 adapter->stats.tpt += hw->mac.tx_packet_delta;
4981
4982 adapter->stats.algnerrc += er32(ALGNERRC);
4983 adapter->stats.rxerrc += er32(RXERRC);
4984 adapter->stats.cexterr += er32(CEXTERR);
4985 adapter->stats.tsctc += er32(TSCTC);
4986 adapter->stats.tsctfc += er32(TSCTFC);
4987
4988 /* Fill out the OS statistics structure */
4989 netdev->stats.multicast = adapter->stats.mprc;
4990 netdev->stats.collisions = adapter->stats.colc;
4991
4992 /* Rx Errors */
4993
4994 /* RLEC on some newer hardware can be incorrect so build
4995 * our own version based on RUC and ROC
4996 */
4997 netdev->stats.rx_errors = adapter->stats.rxerrc +
4998 adapter->stats.crcerrs + adapter->stats.algnerrc +
4999 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5000 netdev->stats.rx_length_errors = adapter->stats.ruc +
5001 adapter->stats.roc;
5002 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5003 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5004 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5005
5006 /* Tx Errors */
5007 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5008 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5009 netdev->stats.tx_window_errors = adapter->stats.latecol;
5010 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5011
5012 /* Tx Dropped needs to be maintained elsewhere */
5013
5014 /* Management Stats */
5015 adapter->stats.mgptc += er32(MGTPTC);
5016 adapter->stats.mgprc += er32(MGTPRC);
5017 adapter->stats.mgpdc += er32(MGTPDC);
5018
5019 /* Correctable ECC Errors */
5020 if (hw->mac.type >= e1000_pch_lpt) {
5021 u32 pbeccsts = er32(PBECCSTS);
5022
5023 adapter->corr_errors +=
5024 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5025 adapter->uncorr_errors +=
5026 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5027 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5028 }
5029 }
5030
5031 /**
5032 * e1000_phy_read_status - Update the PHY register status snapshot
5033 * @adapter: board private structure
5034 **/
5035 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5036 {
5037 struct e1000_hw *hw = &adapter->hw;
5038 struct e1000_phy_regs *phy = &adapter->phy_regs;
5039
5040 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5041 (er32(STATUS) & E1000_STATUS_LU) &&
5042 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5043 int ret_val;
5044
5045 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5046 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5047 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5048 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5049 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5050 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5051 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5052 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5053 if (ret_val)
5054 e_warn("Error reading PHY register\n");
5055 } else {
5056 /* Do not read PHY registers if link is not up
5057 * Set values to typical power-on defaults
5058 */
5059 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5060 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5061 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5062 BMSR_ERCAP);
5063 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5064 ADVERTISE_ALL | ADVERTISE_CSMA);
5065 phy->lpa = 0;
5066 phy->expansion = EXPANSION_ENABLENPAGE;
5067 phy->ctrl1000 = ADVERTISE_1000FULL;
5068 phy->stat1000 = 0;
5069 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5070 }
5071 }
5072
5073 static void e1000_print_link_info(struct e1000_adapter *adapter)
5074 {
5075 struct e1000_hw *hw = &adapter->hw;
5076 u32 ctrl = er32(CTRL);
5077
5078 /* Link status message must follow this format for user tools */
5079 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5080 adapter->netdev->name, adapter->link_speed,
5081 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5082 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5083 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5084 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5085 }
5086
5087 static bool e1000e_has_link(struct e1000_adapter *adapter)
5088 {
5089 struct e1000_hw *hw = &adapter->hw;
5090 bool link_active = false;
5091 s32 ret_val = 0;
5092
5093 /* get_link_status is set on LSC (link status) interrupt or
5094 * Rx sequence error interrupt. get_link_status will stay
5095 * true until the check_for_link establishes link
5096 * for copper adapters ONLY
5097 */
5098 switch (hw->phy.media_type) {
5099 case e1000_media_type_copper:
5100 if (hw->mac.get_link_status) {
5101 ret_val = hw->mac.ops.check_for_link(hw);
5102 link_active = ret_val > 0;
5103 } else {
5104 link_active = true;
5105 }
5106 break;
5107 case e1000_media_type_fiber:
5108 ret_val = hw->mac.ops.check_for_link(hw);
5109 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5110 break;
5111 case e1000_media_type_internal_serdes:
5112 ret_val = hw->mac.ops.check_for_link(hw);
5113 link_active = hw->mac.serdes_has_link;
5114 break;
5115 default:
5116 case e1000_media_type_unknown:
5117 break;
5118 }
5119
5120 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5121 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5122 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5123 e_info("Gigabit has been disabled, downgrading speed\n");
5124 }
5125
5126 return link_active;
5127 }
5128
5129 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5130 {
5131 /* make sure the receive unit is started */
5132 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5133 (adapter->flags & FLAG_RESTART_NOW)) {
5134 struct e1000_hw *hw = &adapter->hw;
5135 u32 rctl = er32(RCTL);
5136
5137 ew32(RCTL, rctl | E1000_RCTL_EN);
5138 adapter->flags &= ~FLAG_RESTART_NOW;
5139 }
5140 }
5141
5142 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5143 {
5144 struct e1000_hw *hw = &adapter->hw;
5145
5146 /* With 82574 controllers, PHY needs to be checked periodically
5147 * for hung state and reset, if two calls return true
5148 */
5149 if (e1000_check_phy_82574(hw))
5150 adapter->phy_hang_count++;
5151 else
5152 adapter->phy_hang_count = 0;
5153
5154 if (adapter->phy_hang_count > 1) {
5155 adapter->phy_hang_count = 0;
5156 e_dbg("PHY appears hung - resetting\n");
5157 schedule_work(&adapter->reset_task);
5158 }
5159 }
5160
5161 /**
5162 * e1000_watchdog - Timer Call-back
5163 * @data: pointer to adapter cast into an unsigned long
5164 **/
5165 static void e1000_watchdog(struct timer_list *t)
5166 {
5167 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5168
5169 /* Do the rest outside of interrupt context */
5170 schedule_work(&adapter->watchdog_task);
5171
5172 /* TODO: make this use queue_delayed_work() */
5173 }
5174
5175 static void e1000_watchdog_task(struct work_struct *work)
5176 {
5177 struct e1000_adapter *adapter = container_of(work,
5178 struct e1000_adapter,
5179 watchdog_task);
5180 struct net_device *netdev = adapter->netdev;
5181 struct e1000_mac_info *mac = &adapter->hw.mac;
5182 struct e1000_phy_info *phy = &adapter->hw.phy;
5183 struct e1000_ring *tx_ring = adapter->tx_ring;
5184 struct e1000_hw *hw = &adapter->hw;
5185 u32 link, tctl;
5186
5187 if (test_bit(__E1000_DOWN, &adapter->state))
5188 return;
5189
5190 link = e1000e_has_link(adapter);
5191 if ((netif_carrier_ok(netdev)) && link) {
5192 /* Cancel scheduled suspend requests. */
5193 pm_runtime_resume(netdev->dev.parent);
5194
5195 e1000e_enable_receives(adapter);
5196 goto link_up;
5197 }
5198
5199 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5200 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5201 e1000_update_mng_vlan(adapter);
5202
5203 if (link) {
5204 if (!netif_carrier_ok(netdev)) {
5205 bool txb2b = true;
5206
5207 /* Cancel scheduled suspend requests. */
5208 pm_runtime_resume(netdev->dev.parent);
5209
5210 /* update snapshot of PHY registers on LSC */
5211 e1000_phy_read_status(adapter);
5212 mac->ops.get_link_up_info(&adapter->hw,
5213 &adapter->link_speed,
5214 &adapter->link_duplex);
5215 e1000_print_link_info(adapter);
5216
5217 /* check if SmartSpeed worked */
5218 e1000e_check_downshift(hw);
5219 if (phy->speed_downgraded)
5220 netdev_warn(netdev,
5221 "Link Speed was downgraded by SmartSpeed\n");
5222
5223 /* On supported PHYs, check for duplex mismatch only
5224 * if link has autonegotiated at 10/100 half
5225 */
5226 if ((hw->phy.type == e1000_phy_igp_3 ||
5227 hw->phy.type == e1000_phy_bm) &&
5228 hw->mac.autoneg &&
5229 (adapter->link_speed == SPEED_10 ||
5230 adapter->link_speed == SPEED_100) &&
5231 (adapter->link_duplex == HALF_DUPLEX)) {
5232 u16 autoneg_exp;
5233
5234 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5235
5236 if (!(autoneg_exp & EXPANSION_NWAY))
5237 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5238 }
5239
5240 /* adjust timeout factor according to speed/duplex */
5241 adapter->tx_timeout_factor = 1;
5242 switch (adapter->link_speed) {
5243 case SPEED_10:
5244 txb2b = false;
5245 adapter->tx_timeout_factor = 16;
5246 break;
5247 case SPEED_100:
5248 txb2b = false;
5249 adapter->tx_timeout_factor = 10;
5250 break;
5251 }
5252
5253 /* workaround: re-program speed mode bit after
5254 * link-up event
5255 */
5256 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5257 !txb2b) {
5258 u32 tarc0;
5259
5260 tarc0 = er32(TARC(0));
5261 tarc0 &= ~SPEED_MODE_BIT;
5262 ew32(TARC(0), tarc0);
5263 }
5264
5265 /* disable TSO for pcie and 10/100 speeds, to avoid
5266 * some hardware issues
5267 */
5268 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5269 switch (adapter->link_speed) {
5270 case SPEED_10:
5271 case SPEED_100:
5272 e_info("10/100 speed: disabling TSO\n");
5273 netdev->features &= ~NETIF_F_TSO;
5274 netdev->features &= ~NETIF_F_TSO6;
5275 break;
5276 case SPEED_1000:
5277 netdev->features |= NETIF_F_TSO;
5278 netdev->features |= NETIF_F_TSO6;
5279 break;
5280 default:
5281 /* oops */
5282 break;
5283 }
5284 }
5285
5286 /* enable transmits in the hardware, need to do this
5287 * after setting TARC(0)
5288 */
5289 tctl = er32(TCTL);
5290 tctl |= E1000_TCTL_EN;
5291 ew32(TCTL, tctl);
5292
5293 /* Perform any post-link-up configuration before
5294 * reporting link up.
5295 */
5296 if (phy->ops.cfg_on_link_up)
5297 phy->ops.cfg_on_link_up(hw);
5298
5299 netif_carrier_on(netdev);
5300
5301 if (!test_bit(__E1000_DOWN, &adapter->state))
5302 mod_timer(&adapter->phy_info_timer,
5303 round_jiffies(jiffies + 2 * HZ));
5304 }
5305 } else {
5306 if (netif_carrier_ok(netdev)) {
5307 adapter->link_speed = 0;
5308 adapter->link_duplex = 0;
5309 /* Link status message must follow this format */
5310 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5311 netif_carrier_off(netdev);
5312 if (!test_bit(__E1000_DOWN, &adapter->state))
5313 mod_timer(&adapter->phy_info_timer,
5314 round_jiffies(jiffies + 2 * HZ));
5315
5316 /* 8000ES2LAN requires a Rx packet buffer work-around
5317 * on link down event; reset the controller to flush
5318 * the Rx packet buffer.
5319 */
5320 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5321 adapter->flags |= FLAG_RESTART_NOW;
5322 else
5323 pm_schedule_suspend(netdev->dev.parent,
5324 LINK_TIMEOUT);
5325 }
5326 }
5327
5328 link_up:
5329 spin_lock(&adapter->stats64_lock);
5330 e1000e_update_stats(adapter);
5331
5332 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5333 adapter->tpt_old = adapter->stats.tpt;
5334 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5335 adapter->colc_old = adapter->stats.colc;
5336
5337 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5338 adapter->gorc_old = adapter->stats.gorc;
5339 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5340 adapter->gotc_old = adapter->stats.gotc;
5341 spin_unlock(&adapter->stats64_lock);
5342
5343 /* If the link is lost the controller stops DMA, but
5344 * if there is queued Tx work it cannot be done. So
5345 * reset the controller to flush the Tx packet buffers.
5346 */
5347 if (!netif_carrier_ok(netdev) &&
5348 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5349 adapter->flags |= FLAG_RESTART_NOW;
5350
5351 /* If reset is necessary, do it outside of interrupt context. */
5352 if (adapter->flags & FLAG_RESTART_NOW) {
5353 schedule_work(&adapter->reset_task);
5354 /* return immediately since reset is imminent */
5355 return;
5356 }
5357
5358 e1000e_update_adaptive(&adapter->hw);
5359
5360 /* Simple mode for Interrupt Throttle Rate (ITR) */
5361 if (adapter->itr_setting == 4) {
5362 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5363 * Total asymmetrical Tx or Rx gets ITR=8000;
5364 * everyone else is between 2000-8000.
5365 */
5366 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5367 u32 dif = (adapter->gotc > adapter->gorc ?
5368 adapter->gotc - adapter->gorc :
5369 adapter->gorc - adapter->gotc) / 10000;
5370 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5371
5372 e1000e_write_itr(adapter, itr);
5373 }
5374
5375 /* Cause software interrupt to ensure Rx ring is cleaned */
5376 if (adapter->msix_entries)
5377 ew32(ICS, adapter->rx_ring->ims_val);
5378 else
5379 ew32(ICS, E1000_ICS_RXDMT0);
5380
5381 /* flush pending descriptors to memory before detecting Tx hang */
5382 e1000e_flush_descriptors(adapter);
5383
5384 /* Force detection of hung controller every watchdog period */
5385 adapter->detect_tx_hung = true;
5386
5387 /* With 82571 controllers, LAA may be overwritten due to controller
5388 * reset from the other port. Set the appropriate LAA in RAR[0]
5389 */
5390 if (e1000e_get_laa_state_82571(hw))
5391 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5392
5393 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5394 e1000e_check_82574_phy_workaround(adapter);
5395
5396 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5397 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5398 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5399 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5400 er32(RXSTMPH);
5401 adapter->rx_hwtstamp_cleared++;
5402 } else {
5403 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5404 }
5405 }
5406
5407 /* Reset the timer */
5408 if (!test_bit(__E1000_DOWN, &adapter->state))
5409 mod_timer(&adapter->watchdog_timer,
5410 round_jiffies(jiffies + 2 * HZ));
5411 }
5412
5413 #define E1000_TX_FLAGS_CSUM 0x00000001
5414 #define E1000_TX_FLAGS_VLAN 0x00000002
5415 #define E1000_TX_FLAGS_TSO 0x00000004
5416 #define E1000_TX_FLAGS_IPV4 0x00000008
5417 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5418 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5419 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5420 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5421
5422 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5423 __be16 protocol)
5424 {
5425 struct e1000_context_desc *context_desc;
5426 struct e1000_buffer *buffer_info;
5427 unsigned int i;
5428 u32 cmd_length = 0;
5429 u16 ipcse = 0, mss;
5430 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5431 int err;
5432
5433 if (!skb_is_gso(skb))
5434 return 0;
5435
5436 err = skb_cow_head(skb, 0);
5437 if (err < 0)
5438 return err;
5439
5440 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5441 mss = skb_shinfo(skb)->gso_size;
5442 if (protocol == htons(ETH_P_IP)) {
5443 struct iphdr *iph = ip_hdr(skb);
5444 iph->tot_len = 0;
5445 iph->check = 0;
5446 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5447 0, IPPROTO_TCP, 0);
5448 cmd_length = E1000_TXD_CMD_IP;
5449 ipcse = skb_transport_offset(skb) - 1;
5450 } else if (skb_is_gso_v6(skb)) {
5451 ipv6_hdr(skb)->payload_len = 0;
5452 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5453 &ipv6_hdr(skb)->daddr,
5454 0, IPPROTO_TCP, 0);
5455 ipcse = 0;
5456 }
5457 ipcss = skb_network_offset(skb);
5458 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5459 tucss = skb_transport_offset(skb);
5460 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5461
5462 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5463 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5464
5465 i = tx_ring->next_to_use;
5466 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5467 buffer_info = &tx_ring->buffer_info[i];
5468
5469 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5470 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5471 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5472 context_desc->upper_setup.tcp_fields.tucss = tucss;
5473 context_desc->upper_setup.tcp_fields.tucso = tucso;
5474 context_desc->upper_setup.tcp_fields.tucse = 0;
5475 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5476 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5477 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5478
5479 buffer_info->time_stamp = jiffies;
5480 buffer_info->next_to_watch = i;
5481
5482 i++;
5483 if (i == tx_ring->count)
5484 i = 0;
5485 tx_ring->next_to_use = i;
5486
5487 return 1;
5488 }
5489
5490 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5491 __be16 protocol)
5492 {
5493 struct e1000_adapter *adapter = tx_ring->adapter;
5494 struct e1000_context_desc *context_desc;
5495 struct e1000_buffer *buffer_info;
5496 unsigned int i;
5497 u8 css;
5498 u32 cmd_len = E1000_TXD_CMD_DEXT;
5499
5500 if (skb->ip_summed != CHECKSUM_PARTIAL)
5501 return false;
5502
5503 switch (protocol) {
5504 case cpu_to_be16(ETH_P_IP):
5505 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5506 cmd_len |= E1000_TXD_CMD_TCP;
5507 break;
5508 case cpu_to_be16(ETH_P_IPV6):
5509 /* XXX not handling all IPV6 headers */
5510 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5511 cmd_len |= E1000_TXD_CMD_TCP;
5512 break;
5513 default:
5514 if (unlikely(net_ratelimit()))
5515 e_warn("checksum_partial proto=%x!\n",
5516 be16_to_cpu(protocol));
5517 break;
5518 }
5519
5520 css = skb_checksum_start_offset(skb);
5521
5522 i = tx_ring->next_to_use;
5523 buffer_info = &tx_ring->buffer_info[i];
5524 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5525
5526 context_desc->lower_setup.ip_config = 0;
5527 context_desc->upper_setup.tcp_fields.tucss = css;
5528 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5529 context_desc->upper_setup.tcp_fields.tucse = 0;
5530 context_desc->tcp_seg_setup.data = 0;
5531 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5532
5533 buffer_info->time_stamp = jiffies;
5534 buffer_info->next_to_watch = i;
5535
5536 i++;
5537 if (i == tx_ring->count)
5538 i = 0;
5539 tx_ring->next_to_use = i;
5540
5541 return true;
5542 }
5543
5544 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5545 unsigned int first, unsigned int max_per_txd,
5546 unsigned int nr_frags)
5547 {
5548 struct e1000_adapter *adapter = tx_ring->adapter;
5549 struct pci_dev *pdev = adapter->pdev;
5550 struct e1000_buffer *buffer_info;
5551 unsigned int len = skb_headlen(skb);
5552 unsigned int offset = 0, size, count = 0, i;
5553 unsigned int f, bytecount, segs;
5554
5555 i = tx_ring->next_to_use;
5556
5557 while (len) {
5558 buffer_info = &tx_ring->buffer_info[i];
5559 size = min(len, max_per_txd);
5560
5561 buffer_info->length = size;
5562 buffer_info->time_stamp = jiffies;
5563 buffer_info->next_to_watch = i;
5564 buffer_info->dma = dma_map_single(&pdev->dev,
5565 skb->data + offset,
5566 size, DMA_TO_DEVICE);
5567 buffer_info->mapped_as_page = false;
5568 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5569 goto dma_error;
5570
5571 len -= size;
5572 offset += size;
5573 count++;
5574
5575 if (len) {
5576 i++;
5577 if (i == tx_ring->count)
5578 i = 0;
5579 }
5580 }
5581
5582 for (f = 0; f < nr_frags; f++) {
5583 const struct skb_frag_struct *frag;
5584
5585 frag = &skb_shinfo(skb)->frags[f];
5586 len = skb_frag_size(frag);
5587 offset = 0;
5588
5589 while (len) {
5590 i++;
5591 if (i == tx_ring->count)
5592 i = 0;
5593
5594 buffer_info = &tx_ring->buffer_info[i];
5595 size = min(len, max_per_txd);
5596
5597 buffer_info->length = size;
5598 buffer_info->time_stamp = jiffies;
5599 buffer_info->next_to_watch = i;
5600 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5601 offset, size,
5602 DMA_TO_DEVICE);
5603 buffer_info->mapped_as_page = true;
5604 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5605 goto dma_error;
5606
5607 len -= size;
5608 offset += size;
5609 count++;
5610 }
5611 }
5612
5613 segs = skb_shinfo(skb)->gso_segs ? : 1;
5614 /* multiply data chunks by size of headers */
5615 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5616
5617 tx_ring->buffer_info[i].skb = skb;
5618 tx_ring->buffer_info[i].segs = segs;
5619 tx_ring->buffer_info[i].bytecount = bytecount;
5620 tx_ring->buffer_info[first].next_to_watch = i;
5621
5622 return count;
5623
5624 dma_error:
5625 dev_err(&pdev->dev, "Tx DMA map failed\n");
5626 buffer_info->dma = 0;
5627 if (count)
5628 count--;
5629
5630 while (count--) {
5631 if (i == 0)
5632 i += tx_ring->count;
5633 i--;
5634 buffer_info = &tx_ring->buffer_info[i];
5635 e1000_put_txbuf(tx_ring, buffer_info, true);
5636 }
5637
5638 return 0;
5639 }
5640
5641 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5642 {
5643 struct e1000_adapter *adapter = tx_ring->adapter;
5644 struct e1000_tx_desc *tx_desc = NULL;
5645 struct e1000_buffer *buffer_info;
5646 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5647 unsigned int i;
5648
5649 if (tx_flags & E1000_TX_FLAGS_TSO) {
5650 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5651 E1000_TXD_CMD_TSE;
5652 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5653
5654 if (tx_flags & E1000_TX_FLAGS_IPV4)
5655 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5656 }
5657
5658 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5659 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5660 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5661 }
5662
5663 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5664 txd_lower |= E1000_TXD_CMD_VLE;
5665 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5666 }
5667
5668 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5669 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5670
5671 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5672 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5673 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5674 }
5675
5676 i = tx_ring->next_to_use;
5677
5678 do {
5679 buffer_info = &tx_ring->buffer_info[i];
5680 tx_desc = E1000_TX_DESC(*tx_ring, i);
5681 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5682 tx_desc->lower.data = cpu_to_le32(txd_lower |
5683 buffer_info->length);
5684 tx_desc->upper.data = cpu_to_le32(txd_upper);
5685
5686 i++;
5687 if (i == tx_ring->count)
5688 i = 0;
5689 } while (--count > 0);
5690
5691 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5692
5693 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5694 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5695 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5696
5697 /* Force memory writes to complete before letting h/w
5698 * know there are new descriptors to fetch. (Only
5699 * applicable for weak-ordered memory model archs,
5700 * such as IA-64).
5701 */
5702 wmb();
5703
5704 tx_ring->next_to_use = i;
5705 }
5706
5707 #define MINIMUM_DHCP_PACKET_SIZE 282
5708 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5709 struct sk_buff *skb)
5710 {
5711 struct e1000_hw *hw = &adapter->hw;
5712 u16 length, offset;
5713
5714 if (skb_vlan_tag_present(skb) &&
5715 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5716 (adapter->hw.mng_cookie.status &
5717 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5718 return 0;
5719
5720 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5721 return 0;
5722
5723 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5724 return 0;
5725
5726 {
5727 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5728 struct udphdr *udp;
5729
5730 if (ip->protocol != IPPROTO_UDP)
5731 return 0;
5732
5733 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5734 if (ntohs(udp->dest) != 67)
5735 return 0;
5736
5737 offset = (u8 *)udp + 8 - skb->data;
5738 length = skb->len - offset;
5739 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5740 }
5741
5742 return 0;
5743 }
5744
5745 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5746 {
5747 struct e1000_adapter *adapter = tx_ring->adapter;
5748
5749 netif_stop_queue(adapter->netdev);
5750 /* Herbert's original patch had:
5751 * smp_mb__after_netif_stop_queue();
5752 * but since that doesn't exist yet, just open code it.
5753 */
5754 smp_mb();
5755
5756 /* We need to check again in a case another CPU has just
5757 * made room available.
5758 */
5759 if (e1000_desc_unused(tx_ring) < size)
5760 return -EBUSY;
5761
5762 /* A reprieve! */
5763 netif_start_queue(adapter->netdev);
5764 ++adapter->restart_queue;
5765 return 0;
5766 }
5767
5768 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5769 {
5770 BUG_ON(size > tx_ring->count);
5771
5772 if (e1000_desc_unused(tx_ring) >= size)
5773 return 0;
5774 return __e1000_maybe_stop_tx(tx_ring, size);
5775 }
5776
5777 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5778 struct net_device *netdev)
5779 {
5780 struct e1000_adapter *adapter = netdev_priv(netdev);
5781 struct e1000_ring *tx_ring = adapter->tx_ring;
5782 unsigned int first;
5783 unsigned int tx_flags = 0;
5784 unsigned int len = skb_headlen(skb);
5785 unsigned int nr_frags;
5786 unsigned int mss;
5787 int count = 0;
5788 int tso;
5789 unsigned int f;
5790 __be16 protocol = vlan_get_protocol(skb);
5791
5792 if (test_bit(__E1000_DOWN, &adapter->state)) {
5793 dev_kfree_skb_any(skb);
5794 return NETDEV_TX_OK;
5795 }
5796
5797 if (skb->len <= 0) {
5798 dev_kfree_skb_any(skb);
5799 return NETDEV_TX_OK;
5800 }
5801
5802 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5803 * pad skb in order to meet this minimum size requirement
5804 */
5805 if (skb_put_padto(skb, 17))
5806 return NETDEV_TX_OK;
5807
5808 mss = skb_shinfo(skb)->gso_size;
5809 if (mss) {
5810 u8 hdr_len;
5811
5812 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5813 * points to just header, pull a few bytes of payload from
5814 * frags into skb->data
5815 */
5816 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5817 /* we do this workaround for ES2LAN, but it is un-necessary,
5818 * avoiding it could save a lot of cycles
5819 */
5820 if (skb->data_len && (hdr_len == len)) {
5821 unsigned int pull_size;
5822
5823 pull_size = min_t(unsigned int, 4, skb->data_len);
5824 if (!__pskb_pull_tail(skb, pull_size)) {
5825 e_err("__pskb_pull_tail failed.\n");
5826 dev_kfree_skb_any(skb);
5827 return NETDEV_TX_OK;
5828 }
5829 len = skb_headlen(skb);
5830 }
5831 }
5832
5833 /* reserve a descriptor for the offload context */
5834 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5835 count++;
5836 count++;
5837
5838 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5839
5840 nr_frags = skb_shinfo(skb)->nr_frags;
5841 for (f = 0; f < nr_frags; f++)
5842 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5843 adapter->tx_fifo_limit);
5844
5845 if (adapter->hw.mac.tx_pkt_filtering)
5846 e1000_transfer_dhcp_info(adapter, skb);
5847
5848 /* need: count + 2 desc gap to keep tail from touching
5849 * head, otherwise try next time
5850 */
5851 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5852 return NETDEV_TX_BUSY;
5853
5854 if (skb_vlan_tag_present(skb)) {
5855 tx_flags |= E1000_TX_FLAGS_VLAN;
5856 tx_flags |= (skb_vlan_tag_get(skb) <<
5857 E1000_TX_FLAGS_VLAN_SHIFT);
5858 }
5859
5860 first = tx_ring->next_to_use;
5861
5862 tso = e1000_tso(tx_ring, skb, protocol);
5863 if (tso < 0) {
5864 dev_kfree_skb_any(skb);
5865 return NETDEV_TX_OK;
5866 }
5867
5868 if (tso)
5869 tx_flags |= E1000_TX_FLAGS_TSO;
5870 else if (e1000_tx_csum(tx_ring, skb, protocol))
5871 tx_flags |= E1000_TX_FLAGS_CSUM;
5872
5873 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5874 * 82571 hardware supports TSO capabilities for IPv6 as well...
5875 * no longer assume, we must.
5876 */
5877 if (protocol == htons(ETH_P_IP))
5878 tx_flags |= E1000_TX_FLAGS_IPV4;
5879
5880 if (unlikely(skb->no_fcs))
5881 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5882
5883 /* if count is 0 then mapping error has occurred */
5884 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5885 nr_frags);
5886 if (count) {
5887 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5888 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5889 if (!adapter->tx_hwtstamp_skb) {
5890 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5891 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5892 adapter->tx_hwtstamp_skb = skb_get(skb);
5893 adapter->tx_hwtstamp_start = jiffies;
5894 schedule_work(&adapter->tx_hwtstamp_work);
5895 } else {
5896 adapter->tx_hwtstamp_skipped++;
5897 }
5898 }
5899
5900 skb_tx_timestamp(skb);
5901
5902 netdev_sent_queue(netdev, skb->len);
5903 e1000_tx_queue(tx_ring, tx_flags, count);
5904 /* Make sure there is space in the ring for the next send. */
5905 e1000_maybe_stop_tx(tx_ring,
5906 (MAX_SKB_FRAGS *
5907 DIV_ROUND_UP(PAGE_SIZE,
5908 adapter->tx_fifo_limit) + 2));
5909
5910 if (!skb->xmit_more ||
5911 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5912 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5913 e1000e_update_tdt_wa(tx_ring,
5914 tx_ring->next_to_use);
5915 else
5916 writel(tx_ring->next_to_use, tx_ring->tail);
5917
5918 /* we need this if more than one processor can write
5919 * to our tail at a time, it synchronizes IO on
5920 *IA64/Altix systems
5921 */
5922 mmiowb();
5923 }
5924 } else {
5925 dev_kfree_skb_any(skb);
5926 tx_ring->buffer_info[first].time_stamp = 0;
5927 tx_ring->next_to_use = first;
5928 }
5929
5930 return NETDEV_TX_OK;
5931 }
5932
5933 /**
5934 * e1000_tx_timeout - Respond to a Tx Hang
5935 * @netdev: network interface device structure
5936 **/
5937 static void e1000_tx_timeout(struct net_device *netdev)
5938 {
5939 struct e1000_adapter *adapter = netdev_priv(netdev);
5940
5941 /* Do the reset outside of interrupt context */
5942 adapter->tx_timeout_count++;
5943 schedule_work(&adapter->reset_task);
5944 }
5945
5946 static void e1000_reset_task(struct work_struct *work)
5947 {
5948 struct e1000_adapter *adapter;
5949 adapter = container_of(work, struct e1000_adapter, reset_task);
5950
5951 /* don't run the task if already down */
5952 if (test_bit(__E1000_DOWN, &adapter->state))
5953 return;
5954
5955 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5956 e1000e_dump(adapter);
5957 e_err("Reset adapter unexpectedly\n");
5958 }
5959 e1000e_reinit_locked(adapter);
5960 }
5961
5962 /**
5963 * e1000_get_stats64 - Get System Network Statistics
5964 * @netdev: network interface device structure
5965 * @stats: rtnl_link_stats64 pointer
5966 *
5967 * Returns the address of the device statistics structure.
5968 **/
5969 void e1000e_get_stats64(struct net_device *netdev,
5970 struct rtnl_link_stats64 *stats)
5971 {
5972 struct e1000_adapter *adapter = netdev_priv(netdev);
5973
5974 spin_lock(&adapter->stats64_lock);
5975 e1000e_update_stats(adapter);
5976 /* Fill out the OS statistics structure */
5977 stats->rx_bytes = adapter->stats.gorc;
5978 stats->rx_packets = adapter->stats.gprc;
5979 stats->tx_bytes = adapter->stats.gotc;
5980 stats->tx_packets = adapter->stats.gptc;
5981 stats->multicast = adapter->stats.mprc;
5982 stats->collisions = adapter->stats.colc;
5983
5984 /* Rx Errors */
5985
5986 /* RLEC on some newer hardware can be incorrect so build
5987 * our own version based on RUC and ROC
5988 */
5989 stats->rx_errors = adapter->stats.rxerrc +
5990 adapter->stats.crcerrs + adapter->stats.algnerrc +
5991 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5992 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5993 stats->rx_crc_errors = adapter->stats.crcerrs;
5994 stats->rx_frame_errors = adapter->stats.algnerrc;
5995 stats->rx_missed_errors = adapter->stats.mpc;
5996
5997 /* Tx Errors */
5998 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5999 stats->tx_aborted_errors = adapter->stats.ecol;
6000 stats->tx_window_errors = adapter->stats.latecol;
6001 stats->tx_carrier_errors = adapter->stats.tncrs;
6002
6003 /* Tx Dropped needs to be maintained elsewhere */
6004
6005 spin_unlock(&adapter->stats64_lock);
6006 }
6007
6008 /**
6009 * e1000_change_mtu - Change the Maximum Transfer Unit
6010 * @netdev: network interface device structure
6011 * @new_mtu: new value for maximum frame size
6012 *
6013 * Returns 0 on success, negative on failure
6014 **/
6015 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6016 {
6017 struct e1000_adapter *adapter = netdev_priv(netdev);
6018 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6019
6020 /* Jumbo frame support */
6021 if ((new_mtu > ETH_DATA_LEN) &&
6022 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6023 e_err("Jumbo Frames not supported.\n");
6024 return -EINVAL;
6025 }
6026
6027 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6028 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6029 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6030 (new_mtu > ETH_DATA_LEN)) {
6031 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6032 return -EINVAL;
6033 }
6034
6035 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6036 usleep_range(1000, 2000);
6037 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6038 adapter->max_frame_size = max_frame;
6039 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6040 netdev->mtu = new_mtu;
6041
6042 pm_runtime_get_sync(netdev->dev.parent);
6043
6044 if (netif_running(netdev))
6045 e1000e_down(adapter, true);
6046
6047 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6048 * means we reserve 2 more, this pushes us to allocate from the next
6049 * larger slab size.
6050 * i.e. RXBUFFER_2048 --> size-4096 slab
6051 * However with the new *_jumbo_rx* routines, jumbo receives will use
6052 * fragmented skbs
6053 */
6054
6055 if (max_frame <= 2048)
6056 adapter->rx_buffer_len = 2048;
6057 else
6058 adapter->rx_buffer_len = 4096;
6059
6060 /* adjust allocation if LPE protects us, and we aren't using SBP */
6061 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6062 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6063
6064 if (netif_running(netdev))
6065 e1000e_up(adapter);
6066 else
6067 e1000e_reset(adapter);
6068
6069 pm_runtime_put_sync(netdev->dev.parent);
6070
6071 clear_bit(__E1000_RESETTING, &adapter->state);
6072
6073 return 0;
6074 }
6075
6076 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6077 int cmd)
6078 {
6079 struct e1000_adapter *adapter = netdev_priv(netdev);
6080 struct mii_ioctl_data *data = if_mii(ifr);
6081
6082 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6083 return -EOPNOTSUPP;
6084
6085 switch (cmd) {
6086 case SIOCGMIIPHY:
6087 data->phy_id = adapter->hw.phy.addr;
6088 break;
6089 case SIOCGMIIREG:
6090 e1000_phy_read_status(adapter);
6091
6092 switch (data->reg_num & 0x1F) {
6093 case MII_BMCR:
6094 data->val_out = adapter->phy_regs.bmcr;
6095 break;
6096 case MII_BMSR:
6097 data->val_out = adapter->phy_regs.bmsr;
6098 break;
6099 case MII_PHYSID1:
6100 data->val_out = (adapter->hw.phy.id >> 16);
6101 break;
6102 case MII_PHYSID2:
6103 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6104 break;
6105 case MII_ADVERTISE:
6106 data->val_out = adapter->phy_regs.advertise;
6107 break;
6108 case MII_LPA:
6109 data->val_out = adapter->phy_regs.lpa;
6110 break;
6111 case MII_EXPANSION:
6112 data->val_out = adapter->phy_regs.expansion;
6113 break;
6114 case MII_CTRL1000:
6115 data->val_out = adapter->phy_regs.ctrl1000;
6116 break;
6117 case MII_STAT1000:
6118 data->val_out = adapter->phy_regs.stat1000;
6119 break;
6120 case MII_ESTATUS:
6121 data->val_out = adapter->phy_regs.estatus;
6122 break;
6123 default:
6124 return -EIO;
6125 }
6126 break;
6127 case SIOCSMIIREG:
6128 default:
6129 return -EOPNOTSUPP;
6130 }
6131 return 0;
6132 }
6133
6134 /**
6135 * e1000e_hwtstamp_ioctl - control hardware time stamping
6136 * @netdev: network interface device structure
6137 * @ifreq: interface request
6138 *
6139 * Outgoing time stamping can be enabled and disabled. Play nice and
6140 * disable it when requested, although it shouldn't cause any overhead
6141 * when no packet needs it. At most one packet in the queue may be
6142 * marked for time stamping, otherwise it would be impossible to tell
6143 * for sure to which packet the hardware time stamp belongs.
6144 *
6145 * Incoming time stamping has to be configured via the hardware filters.
6146 * Not all combinations are supported, in particular event type has to be
6147 * specified. Matching the kind of event packet is not supported, with the
6148 * exception of "all V2 events regardless of level 2 or 4".
6149 **/
6150 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6151 {
6152 struct e1000_adapter *adapter = netdev_priv(netdev);
6153 struct hwtstamp_config config;
6154 int ret_val;
6155
6156 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6157 return -EFAULT;
6158
6159 ret_val = e1000e_config_hwtstamp(adapter, &config);
6160 if (ret_val)
6161 return ret_val;
6162
6163 switch (config.rx_filter) {
6164 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6165 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6166 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6167 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6168 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6169 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6170 /* With V2 type filters which specify a Sync or Delay Request,
6171 * Path Delay Request/Response messages are also time stamped
6172 * by hardware so notify the caller the requested packets plus
6173 * some others are time stamped.
6174 */
6175 config.rx_filter = HWTSTAMP_FILTER_SOME;
6176 break;
6177 default:
6178 break;
6179 }
6180
6181 return copy_to_user(ifr->ifr_data, &config,
6182 sizeof(config)) ? -EFAULT : 0;
6183 }
6184
6185 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6186 {
6187 struct e1000_adapter *adapter = netdev_priv(netdev);
6188
6189 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6190 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6191 }
6192
6193 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6194 {
6195 switch (cmd) {
6196 case SIOCGMIIPHY:
6197 case SIOCGMIIREG:
6198 case SIOCSMIIREG:
6199 return e1000_mii_ioctl(netdev, ifr, cmd);
6200 case SIOCSHWTSTAMP:
6201 return e1000e_hwtstamp_set(netdev, ifr);
6202 case SIOCGHWTSTAMP:
6203 return e1000e_hwtstamp_get(netdev, ifr);
6204 default:
6205 return -EOPNOTSUPP;
6206 }
6207 }
6208
6209 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6210 {
6211 struct e1000_hw *hw = &adapter->hw;
6212 u32 i, mac_reg, wuc;
6213 u16 phy_reg, wuc_enable;
6214 int retval;
6215
6216 /* copy MAC RARs to PHY RARs */
6217 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6218
6219 retval = hw->phy.ops.acquire(hw);
6220 if (retval) {
6221 e_err("Could not acquire PHY\n");
6222 return retval;
6223 }
6224
6225 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6226 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6227 if (retval)
6228 goto release;
6229
6230 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6231 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6232 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6233 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6234 (u16)(mac_reg & 0xFFFF));
6235 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6236 (u16)((mac_reg >> 16) & 0xFFFF));
6237 }
6238
6239 /* configure PHY Rx Control register */
6240 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6241 mac_reg = er32(RCTL);
6242 if (mac_reg & E1000_RCTL_UPE)
6243 phy_reg |= BM_RCTL_UPE;
6244 if (mac_reg & E1000_RCTL_MPE)
6245 phy_reg |= BM_RCTL_MPE;
6246 phy_reg &= ~(BM_RCTL_MO_MASK);
6247 if (mac_reg & E1000_RCTL_MO_3)
6248 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6249 << BM_RCTL_MO_SHIFT);
6250 if (mac_reg & E1000_RCTL_BAM)
6251 phy_reg |= BM_RCTL_BAM;
6252 if (mac_reg & E1000_RCTL_PMCF)
6253 phy_reg |= BM_RCTL_PMCF;
6254 mac_reg = er32(CTRL);
6255 if (mac_reg & E1000_CTRL_RFCE)
6256 phy_reg |= BM_RCTL_RFCE;
6257 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6258
6259 wuc = E1000_WUC_PME_EN;
6260 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6261 wuc |= E1000_WUC_APME;
6262
6263 /* enable PHY wakeup in MAC register */
6264 ew32(WUFC, wufc);
6265 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6266 E1000_WUC_PME_STATUS | wuc));
6267
6268 /* configure and enable PHY wakeup in PHY registers */
6269 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6270 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6271
6272 /* activate PHY wakeup */
6273 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6274 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6275 if (retval)
6276 e_err("Could not set PHY Host Wakeup bit\n");
6277 release:
6278 hw->phy.ops.release(hw);
6279
6280 return retval;
6281 }
6282
6283 static void e1000e_flush_lpic(struct pci_dev *pdev)
6284 {
6285 struct net_device *netdev = pci_get_drvdata(pdev);
6286 struct e1000_adapter *adapter = netdev_priv(netdev);
6287 struct e1000_hw *hw = &adapter->hw;
6288 u32 ret_val;
6289
6290 pm_runtime_get_sync(netdev->dev.parent);
6291
6292 ret_val = hw->phy.ops.acquire(hw);
6293 if (ret_val)
6294 goto fl_out;
6295
6296 pr_info("EEE TX LPI TIMER: %08X\n",
6297 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6298
6299 hw->phy.ops.release(hw);
6300
6301 fl_out:
6302 pm_runtime_put_sync(netdev->dev.parent);
6303 }
6304
6305 static int e1000e_pm_freeze(struct device *dev)
6306 {
6307 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6308 struct e1000_adapter *adapter = netdev_priv(netdev);
6309
6310 netif_device_detach(netdev);
6311
6312 if (netif_running(netdev)) {
6313 int count = E1000_CHECK_RESET_COUNT;
6314
6315 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6316 usleep_range(10000, 20000);
6317
6318 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6319
6320 /* Quiesce the device without resetting the hardware */
6321 e1000e_down(adapter, false);
6322 e1000_free_irq(adapter);
6323 }
6324 e1000e_reset_interrupt_capability(adapter);
6325
6326 /* Allow time for pending master requests to run */
6327 e1000e_disable_pcie_master(&adapter->hw);
6328
6329 return 0;
6330 }
6331
6332 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6333 {
6334 struct net_device *netdev = pci_get_drvdata(pdev);
6335 struct e1000_adapter *adapter = netdev_priv(netdev);
6336 struct e1000_hw *hw = &adapter->hw;
6337 u32 ctrl, ctrl_ext, rctl, status;
6338 /* Runtime suspend should only enable wakeup for link changes */
6339 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6340 int retval = 0;
6341
6342 status = er32(STATUS);
6343 if (status & E1000_STATUS_LU)
6344 wufc &= ~E1000_WUFC_LNKC;
6345
6346 if (wufc) {
6347 e1000_setup_rctl(adapter);
6348 e1000e_set_rx_mode(netdev);
6349
6350 /* turn on all-multi mode if wake on multicast is enabled */
6351 if (wufc & E1000_WUFC_MC) {
6352 rctl = er32(RCTL);
6353 rctl |= E1000_RCTL_MPE;
6354 ew32(RCTL, rctl);
6355 }
6356
6357 ctrl = er32(CTRL);
6358 ctrl |= E1000_CTRL_ADVD3WUC;
6359 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6360 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6361 ew32(CTRL, ctrl);
6362
6363 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6364 adapter->hw.phy.media_type ==
6365 e1000_media_type_internal_serdes) {
6366 /* keep the laser running in D3 */
6367 ctrl_ext = er32(CTRL_EXT);
6368 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6369 ew32(CTRL_EXT, ctrl_ext);
6370 }
6371
6372 if (!runtime)
6373 e1000e_power_up_phy(adapter);
6374
6375 if (adapter->flags & FLAG_IS_ICH)
6376 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6377
6378 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6379 /* enable wakeup by the PHY */
6380 retval = e1000_init_phy_wakeup(adapter, wufc);
6381 if (retval)
6382 return retval;
6383 } else {
6384 /* enable wakeup by the MAC */
6385 ew32(WUFC, wufc);
6386 ew32(WUC, E1000_WUC_PME_EN);
6387 }
6388 } else {
6389 ew32(WUC, 0);
6390 ew32(WUFC, 0);
6391
6392 e1000_power_down_phy(adapter);
6393 }
6394
6395 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6396 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6397 } else if (hw->mac.type >= e1000_pch_lpt) {
6398 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6399 /* ULP does not support wake from unicast, multicast
6400 * or broadcast.
6401 */
6402 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6403
6404 if (retval)
6405 return retval;
6406 }
6407
6408 /* Ensure that the appropriate bits are set in LPI_CTRL
6409 * for EEE in Sx
6410 */
6411 if ((hw->phy.type >= e1000_phy_i217) &&
6412 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6413 u16 lpi_ctrl = 0;
6414
6415 retval = hw->phy.ops.acquire(hw);
6416 if (!retval) {
6417 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6418 &lpi_ctrl);
6419 if (!retval) {
6420 if (adapter->eee_advert &
6421 hw->dev_spec.ich8lan.eee_lp_ability &
6422 I82579_EEE_100_SUPPORTED)
6423 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6424 if (adapter->eee_advert &
6425 hw->dev_spec.ich8lan.eee_lp_ability &
6426 I82579_EEE_1000_SUPPORTED)
6427 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6428
6429 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6430 lpi_ctrl);
6431 }
6432 }
6433 hw->phy.ops.release(hw);
6434 }
6435
6436 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6437 * would have already happened in close and is redundant.
6438 */
6439 e1000e_release_hw_control(adapter);
6440
6441 pci_clear_master(pdev);
6442
6443 /* The pci-e switch on some quad port adapters will report a
6444 * correctable error when the MAC transitions from D0 to D3. To
6445 * prevent this we need to mask off the correctable errors on the
6446 * downstream port of the pci-e switch.
6447 *
6448 * We don't have the associated upstream bridge while assigning
6449 * the PCI device into guest. For example, the KVM on power is
6450 * one of the cases.
6451 */
6452 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6453 struct pci_dev *us_dev = pdev->bus->self;
6454 u16 devctl;
6455
6456 if (!us_dev)
6457 return 0;
6458
6459 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6460 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6461 (devctl & ~PCI_EXP_DEVCTL_CERE));
6462
6463 pci_save_state(pdev);
6464 pci_prepare_to_sleep(pdev);
6465
6466 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6467 }
6468
6469 return 0;
6470 }
6471
6472 /**
6473 * __e1000e_disable_aspm - Disable ASPM states
6474 * @pdev: pointer to PCI device struct
6475 * @state: bit-mask of ASPM states to disable
6476 * @locked: indication if this context holds pci_bus_sem locked.
6477 *
6478 * Some devices *must* have certain ASPM states disabled per hardware errata.
6479 **/
6480 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6481 {
6482 struct pci_dev *parent = pdev->bus->self;
6483 u16 aspm_dis_mask = 0;
6484 u16 pdev_aspmc, parent_aspmc;
6485
6486 switch (state) {
6487 case PCIE_LINK_STATE_L0S:
6488 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6489 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6490 /* fall-through - can't have L1 without L0s */
6491 case PCIE_LINK_STATE_L1:
6492 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6493 break;
6494 default:
6495 return;
6496 }
6497
6498 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6499 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6500
6501 if (parent) {
6502 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6503 &parent_aspmc);
6504 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6505 }
6506
6507 /* Nothing to do if the ASPM states to be disabled already are */
6508 if (!(pdev_aspmc & aspm_dis_mask) &&
6509 (!parent || !(parent_aspmc & aspm_dis_mask)))
6510 return;
6511
6512 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6513 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6514 "L0s" : "",
6515 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6516 "L1" : "");
6517
6518 #ifdef CONFIG_PCIEASPM
6519 if (locked)
6520 pci_disable_link_state_locked(pdev, state);
6521 else
6522 pci_disable_link_state(pdev, state);
6523
6524 /* Double-check ASPM control. If not disabled by the above, the
6525 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6526 * not enabled); override by writing PCI config space directly.
6527 */
6528 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6529 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6530
6531 if (!(aspm_dis_mask & pdev_aspmc))
6532 return;
6533 #endif
6534
6535 /* Both device and parent should have the same ASPM setting.
6536 * Disable ASPM in downstream component first and then upstream.
6537 */
6538 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6539
6540 if (parent)
6541 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6542 aspm_dis_mask);
6543 }
6544
6545 /**
6546 * e1000e_disable_aspm - Disable ASPM states.
6547 * @pdev: pointer to PCI device struct
6548 * @state: bit-mask of ASPM states to disable
6549 *
6550 * This function acquires the pci_bus_sem!
6551 * Some devices *must* have certain ASPM states disabled per hardware errata.
6552 **/
6553 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6554 {
6555 __e1000e_disable_aspm(pdev, state, 0);
6556 }
6557
6558 /**
6559 * e1000e_disable_aspm_locked Disable ASPM states.
6560 * @pdev: pointer to PCI device struct
6561 * @state: bit-mask of ASPM states to disable
6562 *
6563 * This function must be called with pci_bus_sem acquired!
6564 * Some devices *must* have certain ASPM states disabled per hardware errata.
6565 **/
6566 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6567 {
6568 __e1000e_disable_aspm(pdev, state, 1);
6569 }
6570
6571 #ifdef CONFIG_PM
6572 static int __e1000_resume(struct pci_dev *pdev)
6573 {
6574 struct net_device *netdev = pci_get_drvdata(pdev);
6575 struct e1000_adapter *adapter = netdev_priv(netdev);
6576 struct e1000_hw *hw = &adapter->hw;
6577 u16 aspm_disable_flag = 0;
6578
6579 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6580 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6581 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6582 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6583 if (aspm_disable_flag)
6584 e1000e_disable_aspm(pdev, aspm_disable_flag);
6585
6586 pci_set_master(pdev);
6587
6588 if (hw->mac.type >= e1000_pch2lan)
6589 e1000_resume_workarounds_pchlan(&adapter->hw);
6590
6591 e1000e_power_up_phy(adapter);
6592
6593 /* report the system wakeup cause from S3/S4 */
6594 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6595 u16 phy_data;
6596
6597 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6598 if (phy_data) {
6599 e_info("PHY Wakeup cause - %s\n",
6600 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6601 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6602 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6603 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6604 phy_data & E1000_WUS_LNKC ?
6605 "Link Status Change" : "other");
6606 }
6607 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6608 } else {
6609 u32 wus = er32(WUS);
6610
6611 if (wus) {
6612 e_info("MAC Wakeup cause - %s\n",
6613 wus & E1000_WUS_EX ? "Unicast Packet" :
6614 wus & E1000_WUS_MC ? "Multicast Packet" :
6615 wus & E1000_WUS_BC ? "Broadcast Packet" :
6616 wus & E1000_WUS_MAG ? "Magic Packet" :
6617 wus & E1000_WUS_LNKC ? "Link Status Change" :
6618 "other");
6619 }
6620 ew32(WUS, ~0);
6621 }
6622
6623 e1000e_reset(adapter);
6624
6625 e1000_init_manageability_pt(adapter);
6626
6627 /* If the controller has AMT, do not set DRV_LOAD until the interface
6628 * is up. For all other cases, let the f/w know that the h/w is now
6629 * under the control of the driver.
6630 */
6631 if (!(adapter->flags & FLAG_HAS_AMT))
6632 e1000e_get_hw_control(adapter);
6633
6634 return 0;
6635 }
6636
6637 #ifdef CONFIG_PM_SLEEP
6638 static int e1000e_pm_thaw(struct device *dev)
6639 {
6640 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6641 struct e1000_adapter *adapter = netdev_priv(netdev);
6642
6643 e1000e_set_interrupt_capability(adapter);
6644 if (netif_running(netdev)) {
6645 u32 err = e1000_request_irq(adapter);
6646
6647 if (err)
6648 return err;
6649
6650 e1000e_up(adapter);
6651 }
6652
6653 netif_device_attach(netdev);
6654
6655 return 0;
6656 }
6657
6658 static int e1000e_pm_suspend(struct device *dev)
6659 {
6660 struct pci_dev *pdev = to_pci_dev(dev);
6661 int rc;
6662
6663 e1000e_flush_lpic(pdev);
6664
6665 e1000e_pm_freeze(dev);
6666
6667 rc = __e1000_shutdown(pdev, false);
6668 if (rc)
6669 e1000e_pm_thaw(dev);
6670
6671 return rc;
6672 }
6673
6674 static int e1000e_pm_resume(struct device *dev)
6675 {
6676 struct pci_dev *pdev = to_pci_dev(dev);
6677 int rc;
6678
6679 rc = __e1000_resume(pdev);
6680 if (rc)
6681 return rc;
6682
6683 return e1000e_pm_thaw(dev);
6684 }
6685 #endif /* CONFIG_PM_SLEEP */
6686
6687 static int e1000e_pm_runtime_idle(struct device *dev)
6688 {
6689 struct pci_dev *pdev = to_pci_dev(dev);
6690 struct net_device *netdev = pci_get_drvdata(pdev);
6691 struct e1000_adapter *adapter = netdev_priv(netdev);
6692 u16 eee_lp;
6693
6694 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6695
6696 if (!e1000e_has_link(adapter)) {
6697 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6698 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6699 }
6700
6701 return -EBUSY;
6702 }
6703
6704 static int e1000e_pm_runtime_resume(struct device *dev)
6705 {
6706 struct pci_dev *pdev = to_pci_dev(dev);
6707 struct net_device *netdev = pci_get_drvdata(pdev);
6708 struct e1000_adapter *adapter = netdev_priv(netdev);
6709 int rc;
6710
6711 rc = __e1000_resume(pdev);
6712 if (rc)
6713 return rc;
6714
6715 if (netdev->flags & IFF_UP)
6716 e1000e_up(adapter);
6717
6718 return rc;
6719 }
6720
6721 static int e1000e_pm_runtime_suspend(struct device *dev)
6722 {
6723 struct pci_dev *pdev = to_pci_dev(dev);
6724 struct net_device *netdev = pci_get_drvdata(pdev);
6725 struct e1000_adapter *adapter = netdev_priv(netdev);
6726
6727 if (netdev->flags & IFF_UP) {
6728 int count = E1000_CHECK_RESET_COUNT;
6729
6730 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6731 usleep_range(10000, 20000);
6732
6733 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6734
6735 /* Down the device without resetting the hardware */
6736 e1000e_down(adapter, false);
6737 }
6738
6739 if (__e1000_shutdown(pdev, true)) {
6740 e1000e_pm_runtime_resume(dev);
6741 return -EBUSY;
6742 }
6743
6744 return 0;
6745 }
6746 #endif /* CONFIG_PM */
6747
6748 static void e1000_shutdown(struct pci_dev *pdev)
6749 {
6750 e1000e_flush_lpic(pdev);
6751
6752 e1000e_pm_freeze(&pdev->dev);
6753
6754 __e1000_shutdown(pdev, false);
6755 }
6756
6757 #ifdef CONFIG_NET_POLL_CONTROLLER
6758
6759 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6760 {
6761 struct net_device *netdev = data;
6762 struct e1000_adapter *adapter = netdev_priv(netdev);
6763
6764 if (adapter->msix_entries) {
6765 int vector, msix_irq;
6766
6767 vector = 0;
6768 msix_irq = adapter->msix_entries[vector].vector;
6769 if (disable_hardirq(msix_irq))
6770 e1000_intr_msix_rx(msix_irq, netdev);
6771 enable_irq(msix_irq);
6772
6773 vector++;
6774 msix_irq = adapter->msix_entries[vector].vector;
6775 if (disable_hardirq(msix_irq))
6776 e1000_intr_msix_tx(msix_irq, netdev);
6777 enable_irq(msix_irq);
6778
6779 vector++;
6780 msix_irq = adapter->msix_entries[vector].vector;
6781 if (disable_hardirq(msix_irq))
6782 e1000_msix_other(msix_irq, netdev);
6783 enable_irq(msix_irq);
6784 }
6785
6786 return IRQ_HANDLED;
6787 }
6788
6789 /**
6790 * e1000_netpoll
6791 * @netdev: network interface device structure
6792 *
6793 * Polling 'interrupt' - used by things like netconsole to send skbs
6794 * without having to re-enable interrupts. It's not called while
6795 * the interrupt routine is executing.
6796 */
6797 static void e1000_netpoll(struct net_device *netdev)
6798 {
6799 struct e1000_adapter *adapter = netdev_priv(netdev);
6800
6801 switch (adapter->int_mode) {
6802 case E1000E_INT_MODE_MSIX:
6803 e1000_intr_msix(adapter->pdev->irq, netdev);
6804 break;
6805 case E1000E_INT_MODE_MSI:
6806 if (disable_hardirq(adapter->pdev->irq))
6807 e1000_intr_msi(adapter->pdev->irq, netdev);
6808 enable_irq(adapter->pdev->irq);
6809 break;
6810 default: /* E1000E_INT_MODE_LEGACY */
6811 if (disable_hardirq(adapter->pdev->irq))
6812 e1000_intr(adapter->pdev->irq, netdev);
6813 enable_irq(adapter->pdev->irq);
6814 break;
6815 }
6816 }
6817 #endif
6818
6819 /**
6820 * e1000_io_error_detected - called when PCI error is detected
6821 * @pdev: Pointer to PCI device
6822 * @state: The current pci connection state
6823 *
6824 * This function is called after a PCI bus error affecting
6825 * this device has been detected.
6826 */
6827 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6828 pci_channel_state_t state)
6829 {
6830 struct net_device *netdev = pci_get_drvdata(pdev);
6831 struct e1000_adapter *adapter = netdev_priv(netdev);
6832
6833 netif_device_detach(netdev);
6834
6835 if (state == pci_channel_io_perm_failure)
6836 return PCI_ERS_RESULT_DISCONNECT;
6837
6838 if (netif_running(netdev))
6839 e1000e_down(adapter, true);
6840 pci_disable_device(pdev);
6841
6842 /* Request a slot slot reset. */
6843 return PCI_ERS_RESULT_NEED_RESET;
6844 }
6845
6846 /**
6847 * e1000_io_slot_reset - called after the pci bus has been reset.
6848 * @pdev: Pointer to PCI device
6849 *
6850 * Restart the card from scratch, as if from a cold-boot. Implementation
6851 * resembles the first-half of the e1000e_pm_resume routine.
6852 */
6853 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6854 {
6855 struct net_device *netdev = pci_get_drvdata(pdev);
6856 struct e1000_adapter *adapter = netdev_priv(netdev);
6857 struct e1000_hw *hw = &adapter->hw;
6858 u16 aspm_disable_flag = 0;
6859 int err;
6860 pci_ers_result_t result;
6861
6862 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6863 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6864 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6865 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6866 if (aspm_disable_flag)
6867 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6868
6869 err = pci_enable_device_mem(pdev);
6870 if (err) {
6871 dev_err(&pdev->dev,
6872 "Cannot re-enable PCI device after reset.\n");
6873 result = PCI_ERS_RESULT_DISCONNECT;
6874 } else {
6875 pdev->state_saved = true;
6876 pci_restore_state(pdev);
6877 pci_set_master(pdev);
6878
6879 pci_enable_wake(pdev, PCI_D3hot, 0);
6880 pci_enable_wake(pdev, PCI_D3cold, 0);
6881
6882 e1000e_reset(adapter);
6883 ew32(WUS, ~0);
6884 result = PCI_ERS_RESULT_RECOVERED;
6885 }
6886
6887 pci_cleanup_aer_uncorrect_error_status(pdev);
6888
6889 return result;
6890 }
6891
6892 /**
6893 * e1000_io_resume - called when traffic can start flowing again.
6894 * @pdev: Pointer to PCI device
6895 *
6896 * This callback is called when the error recovery driver tells us that
6897 * its OK to resume normal operation. Implementation resembles the
6898 * second-half of the e1000e_pm_resume routine.
6899 */
6900 static void e1000_io_resume(struct pci_dev *pdev)
6901 {
6902 struct net_device *netdev = pci_get_drvdata(pdev);
6903 struct e1000_adapter *adapter = netdev_priv(netdev);
6904
6905 e1000_init_manageability_pt(adapter);
6906
6907 if (netif_running(netdev))
6908 e1000e_up(adapter);
6909
6910 netif_device_attach(netdev);
6911
6912 /* If the controller has AMT, do not set DRV_LOAD until the interface
6913 * is up. For all other cases, let the f/w know that the h/w is now
6914 * under the control of the driver.
6915 */
6916 if (!(adapter->flags & FLAG_HAS_AMT))
6917 e1000e_get_hw_control(adapter);
6918 }
6919
6920 static void e1000_print_device_info(struct e1000_adapter *adapter)
6921 {
6922 struct e1000_hw *hw = &adapter->hw;
6923 struct net_device *netdev = adapter->netdev;
6924 u32 ret_val;
6925 u8 pba_str[E1000_PBANUM_LENGTH];
6926
6927 /* print bus type/speed/width info */
6928 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6929 /* bus width */
6930 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6931 "Width x1"),
6932 /* MAC address */
6933 netdev->dev_addr);
6934 e_info("Intel(R) PRO/%s Network Connection\n",
6935 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6936 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6937 E1000_PBANUM_LENGTH);
6938 if (ret_val)
6939 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6940 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6941 hw->mac.type, hw->phy.type, pba_str);
6942 }
6943
6944 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6945 {
6946 struct e1000_hw *hw = &adapter->hw;
6947 int ret_val;
6948 u16 buf = 0;
6949
6950 if (hw->mac.type != e1000_82573)
6951 return;
6952
6953 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6954 le16_to_cpus(&buf);
6955 if (!ret_val && (!(buf & BIT(0)))) {
6956 /* Deep Smart Power Down (DSPD) */
6957 dev_warn(&adapter->pdev->dev,
6958 "Warning: detected DSPD enabled in EEPROM\n");
6959 }
6960 }
6961
6962 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6963 netdev_features_t features)
6964 {
6965 struct e1000_adapter *adapter = netdev_priv(netdev);
6966 struct e1000_hw *hw = &adapter->hw;
6967
6968 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6969 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6970 features &= ~NETIF_F_RXFCS;
6971
6972 /* Since there is no support for separate Rx/Tx vlan accel
6973 * enable/disable make sure Tx flag is always in same state as Rx.
6974 */
6975 if (features & NETIF_F_HW_VLAN_CTAG_RX)
6976 features |= NETIF_F_HW_VLAN_CTAG_TX;
6977 else
6978 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6979
6980 return features;
6981 }
6982
6983 static int e1000_set_features(struct net_device *netdev,
6984 netdev_features_t features)
6985 {
6986 struct e1000_adapter *adapter = netdev_priv(netdev);
6987 netdev_features_t changed = features ^ netdev->features;
6988
6989 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6990 adapter->flags |= FLAG_TSO_FORCE;
6991
6992 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6993 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6994 NETIF_F_RXALL)))
6995 return 0;
6996
6997 if (changed & NETIF_F_RXFCS) {
6998 if (features & NETIF_F_RXFCS) {
6999 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7000 } else {
7001 /* We need to take it back to defaults, which might mean
7002 * stripping is still disabled at the adapter level.
7003 */
7004 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7005 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7006 else
7007 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7008 }
7009 }
7010
7011 netdev->features = features;
7012
7013 if (netif_running(netdev))
7014 e1000e_reinit_locked(adapter);
7015 else
7016 e1000e_reset(adapter);
7017
7018 return 0;
7019 }
7020
7021 static const struct net_device_ops e1000e_netdev_ops = {
7022 .ndo_open = e1000e_open,
7023 .ndo_stop = e1000e_close,
7024 .ndo_start_xmit = e1000_xmit_frame,
7025 .ndo_get_stats64 = e1000e_get_stats64,
7026 .ndo_set_rx_mode = e1000e_set_rx_mode,
7027 .ndo_set_mac_address = e1000_set_mac,
7028 .ndo_change_mtu = e1000_change_mtu,
7029 .ndo_do_ioctl = e1000_ioctl,
7030 .ndo_tx_timeout = e1000_tx_timeout,
7031 .ndo_validate_addr = eth_validate_addr,
7032
7033 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7034 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7035 #ifdef CONFIG_NET_POLL_CONTROLLER
7036 .ndo_poll_controller = e1000_netpoll,
7037 #endif
7038 .ndo_set_features = e1000_set_features,
7039 .ndo_fix_features = e1000_fix_features,
7040 .ndo_features_check = passthru_features_check,
7041 };
7042
7043 /**
7044 * e1000_probe - Device Initialization Routine
7045 * @pdev: PCI device information struct
7046 * @ent: entry in e1000_pci_tbl
7047 *
7048 * Returns 0 on success, negative on failure
7049 *
7050 * e1000_probe initializes an adapter identified by a pci_dev structure.
7051 * The OS initialization, configuring of the adapter private structure,
7052 * and a hardware reset occur.
7053 **/
7054 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7055 {
7056 struct net_device *netdev;
7057 struct e1000_adapter *adapter;
7058 struct e1000_hw *hw;
7059 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7060 resource_size_t mmio_start, mmio_len;
7061 resource_size_t flash_start, flash_len;
7062 static int cards_found;
7063 u16 aspm_disable_flag = 0;
7064 int bars, i, err, pci_using_dac;
7065 u16 eeprom_data = 0;
7066 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7067 s32 ret_val = 0;
7068
7069 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7070 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7071 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7072 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7073 if (aspm_disable_flag)
7074 e1000e_disable_aspm(pdev, aspm_disable_flag);
7075
7076 err = pci_enable_device_mem(pdev);
7077 if (err)
7078 return err;
7079
7080 pci_using_dac = 0;
7081 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7082 if (!err) {
7083 pci_using_dac = 1;
7084 } else {
7085 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7086 if (err) {
7087 dev_err(&pdev->dev,
7088 "No usable DMA configuration, aborting\n");
7089 goto err_dma;
7090 }
7091 }
7092
7093 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7094 err = pci_request_selected_regions_exclusive(pdev, bars,
7095 e1000e_driver_name);
7096 if (err)
7097 goto err_pci_reg;
7098
7099 /* AER (Advanced Error Reporting) hooks */
7100 pci_enable_pcie_error_reporting(pdev);
7101
7102 pci_set_master(pdev);
7103 /* PCI config space info */
7104 err = pci_save_state(pdev);
7105 if (err)
7106 goto err_alloc_etherdev;
7107
7108 err = -ENOMEM;
7109 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7110 if (!netdev)
7111 goto err_alloc_etherdev;
7112
7113 SET_NETDEV_DEV(netdev, &pdev->dev);
7114
7115 netdev->irq = pdev->irq;
7116
7117 pci_set_drvdata(pdev, netdev);
7118 adapter = netdev_priv(netdev);
7119 hw = &adapter->hw;
7120 adapter->netdev = netdev;
7121 adapter->pdev = pdev;
7122 adapter->ei = ei;
7123 adapter->pba = ei->pba;
7124 adapter->flags = ei->flags;
7125 adapter->flags2 = ei->flags2;
7126 adapter->hw.adapter = adapter;
7127 adapter->hw.mac.type = ei->mac;
7128 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7129 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7130
7131 mmio_start = pci_resource_start(pdev, 0);
7132 mmio_len = pci_resource_len(pdev, 0);
7133
7134 err = -EIO;
7135 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7136 if (!adapter->hw.hw_addr)
7137 goto err_ioremap;
7138
7139 if ((adapter->flags & FLAG_HAS_FLASH) &&
7140 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7141 (hw->mac.type < e1000_pch_spt)) {
7142 flash_start = pci_resource_start(pdev, 1);
7143 flash_len = pci_resource_len(pdev, 1);
7144 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7145 if (!adapter->hw.flash_address)
7146 goto err_flashmap;
7147 }
7148
7149 /* Set default EEE advertisement */
7150 if (adapter->flags2 & FLAG2_HAS_EEE)
7151 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7152
7153 /* construct the net_device struct */
7154 netdev->netdev_ops = &e1000e_netdev_ops;
7155 e1000e_set_ethtool_ops(netdev);
7156 netdev->watchdog_timeo = 5 * HZ;
7157 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7158 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7159
7160 netdev->mem_start = mmio_start;
7161 netdev->mem_end = mmio_start + mmio_len;
7162
7163 adapter->bd_number = cards_found++;
7164
7165 e1000e_check_options(adapter);
7166
7167 /* setup adapter struct */
7168 err = e1000_sw_init(adapter);
7169 if (err)
7170 goto err_sw_init;
7171
7172 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7173 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7174 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7175
7176 err = ei->get_variants(adapter);
7177 if (err)
7178 goto err_hw_init;
7179
7180 if ((adapter->flags & FLAG_IS_ICH) &&
7181 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7182 (hw->mac.type < e1000_pch_spt))
7183 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7184
7185 hw->mac.ops.get_bus_info(&adapter->hw);
7186
7187 adapter->hw.phy.autoneg_wait_to_complete = 0;
7188
7189 /* Copper options */
7190 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7191 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7192 adapter->hw.phy.disable_polarity_correction = 0;
7193 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7194 }
7195
7196 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7197 dev_info(&pdev->dev,
7198 "PHY reset is blocked due to SOL/IDER session.\n");
7199
7200 /* Set initial default active device features */
7201 netdev->features = (NETIF_F_SG |
7202 NETIF_F_HW_VLAN_CTAG_RX |
7203 NETIF_F_HW_VLAN_CTAG_TX |
7204 NETIF_F_TSO |
7205 NETIF_F_TSO6 |
7206 NETIF_F_RXHASH |
7207 NETIF_F_RXCSUM |
7208 NETIF_F_HW_CSUM);
7209
7210 /* Set user-changeable features (subset of all device features) */
7211 netdev->hw_features = netdev->features;
7212 netdev->hw_features |= NETIF_F_RXFCS;
7213 netdev->priv_flags |= IFF_SUPP_NOFCS;
7214 netdev->hw_features |= NETIF_F_RXALL;
7215
7216 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7217 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7218
7219 netdev->vlan_features |= (NETIF_F_SG |
7220 NETIF_F_TSO |
7221 NETIF_F_TSO6 |
7222 NETIF_F_HW_CSUM);
7223
7224 netdev->priv_flags |= IFF_UNICAST_FLT;
7225
7226 if (pci_using_dac) {
7227 netdev->features |= NETIF_F_HIGHDMA;
7228 netdev->vlan_features |= NETIF_F_HIGHDMA;
7229 }
7230
7231 /* MTU range: 68 - max_hw_frame_size */
7232 netdev->min_mtu = ETH_MIN_MTU;
7233 netdev->max_mtu = adapter->max_hw_frame_size -
7234 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7235
7236 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7237 adapter->flags |= FLAG_MNG_PT_ENABLED;
7238
7239 /* before reading the NVM, reset the controller to
7240 * put the device in a known good starting state
7241 */
7242 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7243
7244 /* systems with ASPM and others may see the checksum fail on the first
7245 * attempt. Let's give it a few tries
7246 */
7247 for (i = 0;; i++) {
7248 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7249 break;
7250 if (i == 2) {
7251 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7252 err = -EIO;
7253 goto err_eeprom;
7254 }
7255 }
7256
7257 e1000_eeprom_checks(adapter);
7258
7259 /* copy the MAC address */
7260 if (e1000e_read_mac_addr(&adapter->hw))
7261 dev_err(&pdev->dev,
7262 "NVM Read Error while reading MAC address\n");
7263
7264 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7265
7266 if (!is_valid_ether_addr(netdev->dev_addr)) {
7267 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7268 netdev->dev_addr);
7269 err = -EIO;
7270 goto err_eeprom;
7271 }
7272
7273 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7274 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7275
7276 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7277 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7278 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7279 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7280 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7281
7282 /* Initialize link parameters. User can change them with ethtool */
7283 adapter->hw.mac.autoneg = 1;
7284 adapter->fc_autoneg = true;
7285 adapter->hw.fc.requested_mode = e1000_fc_default;
7286 adapter->hw.fc.current_mode = e1000_fc_default;
7287 adapter->hw.phy.autoneg_advertised = 0x2f;
7288
7289 /* Initial Wake on LAN setting - If APM wake is enabled in
7290 * the EEPROM, enable the ACPI Magic Packet filter
7291 */
7292 if (adapter->flags & FLAG_APME_IN_WUC) {
7293 /* APME bit in EEPROM is mapped to WUC.APME */
7294 eeprom_data = er32(WUC);
7295 eeprom_apme_mask = E1000_WUC_APME;
7296 if ((hw->mac.type > e1000_ich10lan) &&
7297 (eeprom_data & E1000_WUC_PHY_WAKE))
7298 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7299 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7300 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7301 (adapter->hw.bus.func == 1))
7302 ret_val = e1000_read_nvm(&adapter->hw,
7303 NVM_INIT_CONTROL3_PORT_B,
7304 1, &eeprom_data);
7305 else
7306 ret_val = e1000_read_nvm(&adapter->hw,
7307 NVM_INIT_CONTROL3_PORT_A,
7308 1, &eeprom_data);
7309 }
7310
7311 /* fetch WoL from EEPROM */
7312 if (ret_val)
7313 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7314 else if (eeprom_data & eeprom_apme_mask)
7315 adapter->eeprom_wol |= E1000_WUFC_MAG;
7316
7317 /* now that we have the eeprom settings, apply the special cases
7318 * where the eeprom may be wrong or the board simply won't support
7319 * wake on lan on a particular port
7320 */
7321 if (!(adapter->flags & FLAG_HAS_WOL))
7322 adapter->eeprom_wol = 0;
7323
7324 /* initialize the wol settings based on the eeprom settings */
7325 adapter->wol = adapter->eeprom_wol;
7326
7327 /* make sure adapter isn't asleep if manageability is enabled */
7328 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7329 (hw->mac.ops.check_mng_mode(hw)))
7330 device_wakeup_enable(&pdev->dev);
7331
7332 /* save off EEPROM version number */
7333 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7334
7335 if (ret_val) {
7336 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7337 adapter->eeprom_vers = 0;
7338 }
7339
7340 /* init PTP hardware clock */
7341 e1000e_ptp_init(adapter);
7342
7343 /* reset the hardware with the new settings */
7344 e1000e_reset(adapter);
7345
7346 /* If the controller has AMT, do not set DRV_LOAD until the interface
7347 * is up. For all other cases, let the f/w know that the h/w is now
7348 * under the control of the driver.
7349 */
7350 if (!(adapter->flags & FLAG_HAS_AMT))
7351 e1000e_get_hw_control(adapter);
7352
7353 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7354 err = register_netdev(netdev);
7355 if (err)
7356 goto err_register;
7357
7358 /* carrier off reporting is important to ethtool even BEFORE open */
7359 netif_carrier_off(netdev);
7360
7361 e1000_print_device_info(adapter);
7362
7363 if (pci_dev_run_wake(pdev))
7364 pm_runtime_put_noidle(&pdev->dev);
7365
7366 return 0;
7367
7368 err_register:
7369 if (!(adapter->flags & FLAG_HAS_AMT))
7370 e1000e_release_hw_control(adapter);
7371 err_eeprom:
7372 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7373 e1000_phy_hw_reset(&adapter->hw);
7374 err_hw_init:
7375 kfree(adapter->tx_ring);
7376 kfree(adapter->rx_ring);
7377 err_sw_init:
7378 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7379 iounmap(adapter->hw.flash_address);
7380 e1000e_reset_interrupt_capability(adapter);
7381 err_flashmap:
7382 iounmap(adapter->hw.hw_addr);
7383 err_ioremap:
7384 free_netdev(netdev);
7385 err_alloc_etherdev:
7386 pci_release_mem_regions(pdev);
7387 err_pci_reg:
7388 err_dma:
7389 pci_disable_device(pdev);
7390 return err;
7391 }
7392
7393 /**
7394 * e1000_remove - Device Removal Routine
7395 * @pdev: PCI device information struct
7396 *
7397 * e1000_remove is called by the PCI subsystem to alert the driver
7398 * that it should release a PCI device. The could be caused by a
7399 * Hot-Plug event, or because the driver is going to be removed from
7400 * memory.
7401 **/
7402 static void e1000_remove(struct pci_dev *pdev)
7403 {
7404 struct net_device *netdev = pci_get_drvdata(pdev);
7405 struct e1000_adapter *adapter = netdev_priv(netdev);
7406 bool down = test_bit(__E1000_DOWN, &adapter->state);
7407
7408 e1000e_ptp_remove(adapter);
7409
7410 /* The timers may be rescheduled, so explicitly disable them
7411 * from being rescheduled.
7412 */
7413 if (!down)
7414 set_bit(__E1000_DOWN, &adapter->state);
7415 del_timer_sync(&adapter->watchdog_timer);
7416 del_timer_sync(&adapter->phy_info_timer);
7417
7418 cancel_work_sync(&adapter->reset_task);
7419 cancel_work_sync(&adapter->watchdog_task);
7420 cancel_work_sync(&adapter->downshift_task);
7421 cancel_work_sync(&adapter->update_phy_task);
7422 cancel_work_sync(&adapter->print_hang_task);
7423
7424 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7425 cancel_work_sync(&adapter->tx_hwtstamp_work);
7426 if (adapter->tx_hwtstamp_skb) {
7427 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7428 adapter->tx_hwtstamp_skb = NULL;
7429 }
7430 }
7431
7432 /* Don't lie to e1000_close() down the road. */
7433 if (!down)
7434 clear_bit(__E1000_DOWN, &adapter->state);
7435 unregister_netdev(netdev);
7436
7437 if (pci_dev_run_wake(pdev))
7438 pm_runtime_get_noresume(&pdev->dev);
7439
7440 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7441 * would have already happened in close and is redundant.
7442 */
7443 e1000e_release_hw_control(adapter);
7444
7445 e1000e_reset_interrupt_capability(adapter);
7446 kfree(adapter->tx_ring);
7447 kfree(adapter->rx_ring);
7448
7449 iounmap(adapter->hw.hw_addr);
7450 if ((adapter->hw.flash_address) &&
7451 (adapter->hw.mac.type < e1000_pch_spt))
7452 iounmap(adapter->hw.flash_address);
7453 pci_release_mem_regions(pdev);
7454
7455 free_netdev(netdev);
7456
7457 /* AER disable */
7458 pci_disable_pcie_error_reporting(pdev);
7459
7460 pci_disable_device(pdev);
7461 }
7462
7463 /* PCI Error Recovery (ERS) */
7464 static const struct pci_error_handlers e1000_err_handler = {
7465 .error_detected = e1000_io_error_detected,
7466 .slot_reset = e1000_io_slot_reset,
7467 .resume = e1000_io_resume,
7468 };
7469
7470 static const struct pci_device_id e1000_pci_tbl[] = {
7471 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7472 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7473 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7475 board_82571 },
7476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7477 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7479 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7481
7482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7483 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7485 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7486
7487 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7490
7491 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7492 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7493 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7494
7495 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7496 board_80003es2lan },
7497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7498 board_80003es2lan },
7499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7500 board_80003es2lan },
7501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7502 board_80003es2lan },
7503
7504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7509 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7512
7513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7522
7523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7524 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7526
7527 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7528 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7529 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7530
7531 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7532 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7533 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7534 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7535
7536 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7537 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7538
7539 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7540 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7541 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7542 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7543 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7544 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7545 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7546 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7547 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7548 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7549 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7550 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7551 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7552 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7553 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7554 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7555 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7556 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7557 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7558 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7559 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7560 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7561 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7562 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7563 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7564
7565 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7566 };
7567 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7568
7569 static const struct dev_pm_ops e1000_pm_ops = {
7570 #ifdef CONFIG_PM_SLEEP
7571 .suspend = e1000e_pm_suspend,
7572 .resume = e1000e_pm_resume,
7573 .freeze = e1000e_pm_freeze,
7574 .thaw = e1000e_pm_thaw,
7575 .poweroff = e1000e_pm_suspend,
7576 .restore = e1000e_pm_resume,
7577 #endif
7578 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7579 e1000e_pm_runtime_idle)
7580 };
7581
7582 /* PCI Device API Driver */
7583 static struct pci_driver e1000_driver = {
7584 .name = e1000e_driver_name,
7585 .id_table = e1000_pci_tbl,
7586 .probe = e1000_probe,
7587 .remove = e1000_remove,
7588 .driver = {
7589 .pm = &e1000_pm_ops,
7590 },
7591 .shutdown = e1000_shutdown,
7592 .err_handler = &e1000_err_handler
7593 };
7594
7595 /**
7596 * e1000_init_module - Driver Registration Routine
7597 *
7598 * e1000_init_module is the first routine called when the driver is
7599 * loaded. All it does is register with the PCI subsystem.
7600 **/
7601 static int __init e1000_init_module(void)
7602 {
7603 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7604 e1000e_driver_version);
7605 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7606
7607 return pci_register_driver(&e1000_driver);
7608 }
7609 module_init(e1000_init_module);
7610
7611 /**
7612 * e1000_exit_module - Driver Exit Cleanup Routine
7613 *
7614 * e1000_exit_module is called just before the driver is removed
7615 * from memory.
7616 **/
7617 static void __exit e1000_exit_module(void)
7618 {
7619 pci_unregister_driver(&e1000_driver);
7620 }
7621 module_exit(e1000_exit_module);
7622
7623 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7624 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7625 MODULE_LICENSE("GPL");
7626 MODULE_VERSION(DRV_VERSION);
7627
7628 /* netdev.c */