]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/intel/e1000e/netdev.c
ASoC: tlv320aic31xx: Reset registers during power up
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / intel / e1000e / netdev.c
1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46
47 #include "e1000.h"
48
49 #define DRV_EXTRAVERSION "-k"
50
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59
60 static const struct e1000_info *e1000_info_tbl[] = {
61 [board_82571] = &e1000_82571_info,
62 [board_82572] = &e1000_82572_info,
63 [board_82573] = &e1000_82573_info,
64 [board_82574] = &e1000_82574_info,
65 [board_82583] = &e1000_82583_info,
66 [board_80003es2lan] = &e1000_es2_info,
67 [board_ich8lan] = &e1000_ich8_info,
68 [board_ich9lan] = &e1000_ich9_info,
69 [board_ich10lan] = &e1000_ich10_info,
70 [board_pchlan] = &e1000_pch_info,
71 [board_pch2lan] = &e1000_pch2_info,
72 [board_pch_lpt] = &e1000_pch_lpt_info,
73 [board_pch_spt] = &e1000_pch_spt_info,
74 [board_pch_cnp] = &e1000_pch_cnp_info,
75 };
76
77 struct e1000_reg_info {
78 u32 ofs;
79 char *name;
80 };
81
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83 /* General Registers */
84 {E1000_CTRL, "CTRL"},
85 {E1000_STATUS, "STATUS"},
86 {E1000_CTRL_EXT, "CTRL_EXT"},
87
88 /* Interrupt Registers */
89 {E1000_ICR, "ICR"},
90
91 /* Rx Registers */
92 {E1000_RCTL, "RCTL"},
93 {E1000_RDLEN(0), "RDLEN"},
94 {E1000_RDH(0), "RDH"},
95 {E1000_RDT(0), "RDT"},
96 {E1000_RDTR, "RDTR"},
97 {E1000_RXDCTL(0), "RXDCTL"},
98 {E1000_ERT, "ERT"},
99 {E1000_RDBAL(0), "RDBAL"},
100 {E1000_RDBAH(0), "RDBAH"},
101 {E1000_RDFH, "RDFH"},
102 {E1000_RDFT, "RDFT"},
103 {E1000_RDFHS, "RDFHS"},
104 {E1000_RDFTS, "RDFTS"},
105 {E1000_RDFPC, "RDFPC"},
106
107 /* Tx Registers */
108 {E1000_TCTL, "TCTL"},
109 {E1000_TDBAL(0), "TDBAL"},
110 {E1000_TDBAH(0), "TDBAH"},
111 {E1000_TDLEN(0), "TDLEN"},
112 {E1000_TDH(0), "TDH"},
113 {E1000_TDT(0), "TDT"},
114 {E1000_TIDV, "TIDV"},
115 {E1000_TXDCTL(0), "TXDCTL"},
116 {E1000_TADV, "TADV"},
117 {E1000_TARC(0), "TARC"},
118 {E1000_TDFH, "TDFH"},
119 {E1000_TDFT, "TDFT"},
120 {E1000_TDFHS, "TDFHS"},
121 {E1000_TDFTS, "TDFTS"},
122 {E1000_TDFPC, "TDFPC"},
123
124 /* List Terminator */
125 {0, NULL}
126 };
127
128 /**
129 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130 * @hw: pointer to the HW structure
131 *
132 * When updating the MAC CSR registers, the Manageability Engine (ME) could
133 * be accessing the registers at the same time. Normally, this is handled in
134 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135 * accesses later than it should which could result in the register to have
136 * an incorrect value. Workaround this by checking the FWSM register which
137 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138 * and try again a number of times.
139 **/
140 s32 __ew32_prepare(struct e1000_hw *hw)
141 {
142 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143
144 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145 udelay(50);
146
147 return i;
148 }
149
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 {
152 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153 __ew32_prepare(hw);
154
155 writel(val, hw->hw_addr + reg);
156 }
157
158 /**
159 * e1000_regdump - register printout routine
160 * @hw: pointer to the HW structure
161 * @reginfo: pointer to the register info table
162 **/
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
164 {
165 int n = 0;
166 char rname[16];
167 u32 regs[8];
168
169 switch (reginfo->ofs) {
170 case E1000_RXDCTL(0):
171 for (n = 0; n < 2; n++)
172 regs[n] = __er32(hw, E1000_RXDCTL(n));
173 break;
174 case E1000_TXDCTL(0):
175 for (n = 0; n < 2; n++)
176 regs[n] = __er32(hw, E1000_TXDCTL(n));
177 break;
178 case E1000_TARC(0):
179 for (n = 0; n < 2; n++)
180 regs[n] = __er32(hw, E1000_TARC(n));
181 break;
182 default:
183 pr_info("%-15s %08x\n",
184 reginfo->name, __er32(hw, reginfo->ofs));
185 return;
186 }
187
188 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
190 }
191
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193 struct e1000_buffer *bi)
194 {
195 int i;
196 struct e1000_ps_page *ps_page;
197
198 for (i = 0; i < adapter->rx_ps_pages; i++) {
199 ps_page = &bi->ps_pages[i];
200
201 if (ps_page->page) {
202 pr_info("packet dump for ps_page %d:\n", i);
203 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204 16, 1, page_address(ps_page->page),
205 PAGE_SIZE, true);
206 }
207 }
208 }
209
210 /**
211 * e1000e_dump - Print registers, Tx-ring and Rx-ring
212 * @adapter: board private structure
213 **/
214 static void e1000e_dump(struct e1000_adapter *adapter)
215 {
216 struct net_device *netdev = adapter->netdev;
217 struct e1000_hw *hw = &adapter->hw;
218 struct e1000_reg_info *reginfo;
219 struct e1000_ring *tx_ring = adapter->tx_ring;
220 struct e1000_tx_desc *tx_desc;
221 struct my_u0 {
222 __le64 a;
223 __le64 b;
224 } *u0;
225 struct e1000_buffer *buffer_info;
226 struct e1000_ring *rx_ring = adapter->rx_ring;
227 union e1000_rx_desc_packet_split *rx_desc_ps;
228 union e1000_rx_desc_extended *rx_desc;
229 struct my_u1 {
230 __le64 a;
231 __le64 b;
232 __le64 c;
233 __le64 d;
234 } *u1;
235 u32 staterr;
236 int i = 0;
237
238 if (!netif_msg_hw(adapter))
239 return;
240
241 /* Print netdevice Info */
242 if (netdev) {
243 dev_info(&adapter->pdev->dev, "Net device Info\n");
244 pr_info("Device Name state trans_start\n");
245 pr_info("%-15s %016lX %016lX\n", netdev->name,
246 netdev->state, dev_trans_start(netdev));
247 }
248
249 /* Print Registers */
250 dev_info(&adapter->pdev->dev, "Register Dump\n");
251 pr_info(" Register Name Value\n");
252 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253 reginfo->name; reginfo++) {
254 e1000_regdump(hw, reginfo);
255 }
256
257 /* Print Tx Ring Summary */
258 if (!netdev || !netif_running(netdev))
259 return;
260
261 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
263 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265 0, tx_ring->next_to_use, tx_ring->next_to_clean,
266 (unsigned long long)buffer_info->dma,
267 buffer_info->length,
268 buffer_info->next_to_watch,
269 (unsigned long long)buffer_info->time_stamp);
270
271 /* Print Tx Ring */
272 if (!netif_msg_tx_done(adapter))
273 goto rx_ring_summary;
274
275 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276
277 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278 *
279 * Legacy Transmit Descriptor
280 * +--------------------------------------------------------------+
281 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
282 * +--------------------------------------------------------------+
283 * 8 | Special | CSS | Status | CMD | CSO | Length |
284 * +--------------------------------------------------------------+
285 * 63 48 47 36 35 32 31 24 23 16 15 0
286 *
287 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288 * 63 48 47 40 39 32 31 16 15 8 7 0
289 * +----------------------------------------------------------------+
290 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
291 * +----------------------------------------------------------------+
292 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
293 * +----------------------------------------------------------------+
294 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
295 *
296 * Extended Data Descriptor (DTYP=0x1)
297 * +----------------------------------------------------------------+
298 * 0 | Buffer Address [63:0] |
299 * +----------------------------------------------------------------+
300 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
301 * +----------------------------------------------------------------+
302 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
303 */
304 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
305 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
306 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
307 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308 const char *next_desc;
309 tx_desc = E1000_TX_DESC(*tx_ring, i);
310 buffer_info = &tx_ring->buffer_info[i];
311 u0 = (struct my_u0 *)tx_desc;
312 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313 next_desc = " NTC/U";
314 else if (i == tx_ring->next_to_use)
315 next_desc = " NTU";
316 else if (i == tx_ring->next_to_clean)
317 next_desc = " NTC";
318 else
319 next_desc = "";
320 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
321 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
323 i,
324 (unsigned long long)le64_to_cpu(u0->a),
325 (unsigned long long)le64_to_cpu(u0->b),
326 (unsigned long long)buffer_info->dma,
327 buffer_info->length, buffer_info->next_to_watch,
328 (unsigned long long)buffer_info->time_stamp,
329 buffer_info->skb, next_desc);
330
331 if (netif_msg_pktdata(adapter) && buffer_info->skb)
332 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333 16, 1, buffer_info->skb->data,
334 buffer_info->skb->len, true);
335 }
336
337 /* Print Rx Ring Summary */
338 rx_ring_summary:
339 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340 pr_info("Queue [NTU] [NTC]\n");
341 pr_info(" %5d %5X %5X\n",
342 0, rx_ring->next_to_use, rx_ring->next_to_clean);
343
344 /* Print Rx Ring */
345 if (!netif_msg_rx_status(adapter))
346 return;
347
348 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349 switch (adapter->rx_ps_pages) {
350 case 1:
351 case 2:
352 case 3:
353 /* [Extended] Packet Split Receive Descriptor Format
354 *
355 * +-----------------------------------------------------+
356 * 0 | Buffer Address 0 [63:0] |
357 * +-----------------------------------------------------+
358 * 8 | Buffer Address 1 [63:0] |
359 * +-----------------------------------------------------+
360 * 16 | Buffer Address 2 [63:0] |
361 * +-----------------------------------------------------+
362 * 24 | Buffer Address 3 [63:0] |
363 * +-----------------------------------------------------+
364 */
365 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
366 /* [Extended] Receive Descriptor (Write-Back) Format
367 *
368 * 63 48 47 32 31 13 12 8 7 4 3 0
369 * +------------------------------------------------------+
370 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
371 * | Checksum | Ident | | Queue | | Type |
372 * +------------------------------------------------------+
373 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374 * +------------------------------------------------------+
375 * 63 48 47 32 31 20 19 0
376 */
377 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378 for (i = 0; i < rx_ring->count; i++) {
379 const char *next_desc;
380 buffer_info = &rx_ring->buffer_info[i];
381 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382 u1 = (struct my_u1 *)rx_desc_ps;
383 staterr =
384 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385
386 if (i == rx_ring->next_to_use)
387 next_desc = " NTU";
388 else if (i == rx_ring->next_to_clean)
389 next_desc = " NTC";
390 else
391 next_desc = "";
392
393 if (staterr & E1000_RXD_STAT_DD) {
394 /* Descriptor Done */
395 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 "RWB", i,
397 (unsigned long long)le64_to_cpu(u1->a),
398 (unsigned long long)le64_to_cpu(u1->b),
399 (unsigned long long)le64_to_cpu(u1->c),
400 (unsigned long long)le64_to_cpu(u1->d),
401 buffer_info->skb, next_desc);
402 } else {
403 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 "R ", i,
405 (unsigned long long)le64_to_cpu(u1->a),
406 (unsigned long long)le64_to_cpu(u1->b),
407 (unsigned long long)le64_to_cpu(u1->c),
408 (unsigned long long)le64_to_cpu(u1->d),
409 (unsigned long long)buffer_info->dma,
410 buffer_info->skb, next_desc);
411
412 if (netif_msg_pktdata(adapter))
413 e1000e_dump_ps_pages(adapter,
414 buffer_info);
415 }
416 }
417 break;
418 default:
419 case 0:
420 /* Extended Receive Descriptor (Read) Format
421 *
422 * +-----------------------------------------------------+
423 * 0 | Buffer Address [63:0] |
424 * +-----------------------------------------------------+
425 * 8 | Reserved |
426 * +-----------------------------------------------------+
427 */
428 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
429 /* Extended Receive Descriptor (Write-Back) Format
430 *
431 * 63 48 47 32 31 24 23 4 3 0
432 * +------------------------------------------------------+
433 * | RSS Hash | | | |
434 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
435 * | Packet | IP | | | Type |
436 * | Checksum | Ident | | | |
437 * +------------------------------------------------------+
438 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439 * +------------------------------------------------------+
440 * 63 48 47 32 31 20 19 0
441 */
442 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
443
444 for (i = 0; i < rx_ring->count; i++) {
445 const char *next_desc;
446
447 buffer_info = &rx_ring->buffer_info[i];
448 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449 u1 = (struct my_u1 *)rx_desc;
450 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451
452 if (i == rx_ring->next_to_use)
453 next_desc = " NTU";
454 else if (i == rx_ring->next_to_clean)
455 next_desc = " NTC";
456 else
457 next_desc = "";
458
459 if (staterr & E1000_RXD_STAT_DD) {
460 /* Descriptor Done */
461 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
462 "RWB", i,
463 (unsigned long long)le64_to_cpu(u1->a),
464 (unsigned long long)le64_to_cpu(u1->b),
465 buffer_info->skb, next_desc);
466 } else {
467 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
468 "R ", i,
469 (unsigned long long)le64_to_cpu(u1->a),
470 (unsigned long long)le64_to_cpu(u1->b),
471 (unsigned long long)buffer_info->dma,
472 buffer_info->skb, next_desc);
473
474 if (netif_msg_pktdata(adapter) &&
475 buffer_info->skb)
476 print_hex_dump(KERN_INFO, "",
477 DUMP_PREFIX_ADDRESS, 16,
478 1,
479 buffer_info->skb->data,
480 adapter->rx_buffer_len,
481 true);
482 }
483 }
484 }
485 }
486
487 /**
488 * e1000_desc_unused - calculate if we have unused descriptors
489 **/
490 static int e1000_desc_unused(struct e1000_ring *ring)
491 {
492 if (ring->next_to_clean > ring->next_to_use)
493 return ring->next_to_clean - ring->next_to_use - 1;
494
495 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
496 }
497
498 /**
499 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500 * @adapter: board private structure
501 * @hwtstamps: time stamp structure to update
502 * @systim: unsigned 64bit system time value.
503 *
504 * Convert the system time value stored in the RX/TXSTMP registers into a
505 * hwtstamp which can be used by the upper level time stamping functions.
506 *
507 * The 'systim_lock' spinlock is used to protect the consistency of the
508 * system time value. This is needed because reading the 64 bit time
509 * value involves reading two 32 bit registers. The first read latches the
510 * value.
511 **/
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513 struct skb_shared_hwtstamps *hwtstamps,
514 u64 systim)
515 {
516 u64 ns;
517 unsigned long flags;
518
519 spin_lock_irqsave(&adapter->systim_lock, flags);
520 ns = timecounter_cyc2time(&adapter->tc, systim);
521 spin_unlock_irqrestore(&adapter->systim_lock, flags);
522
523 memset(hwtstamps, 0, sizeof(*hwtstamps));
524 hwtstamps->hwtstamp = ns_to_ktime(ns);
525 }
526
527 /**
528 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529 * @adapter: board private structure
530 * @status: descriptor extended error and status field
531 * @skb: particular skb to include time stamp
532 *
533 * If the time stamp is valid, convert it into the timecounter ns value
534 * and store that result into the shhwtstamps structure which is passed
535 * up the network stack.
536 **/
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538 struct sk_buff *skb)
539 {
540 struct e1000_hw *hw = &adapter->hw;
541 u64 rxstmp;
542
543 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544 !(status & E1000_RXDEXT_STATERR_TST) ||
545 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546 return;
547
548 /* The Rx time stamp registers contain the time stamp. No other
549 * received packet will be time stamped until the Rx time stamp
550 * registers are read. Because only one packet can be time stamped
551 * at a time, the register values must belong to this packet and
552 * therefore none of the other additional attributes need to be
553 * compared.
554 */
555 rxstmp = (u64)er32(RXSTMPL);
556 rxstmp |= (u64)er32(RXSTMPH) << 32;
557 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558
559 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
560 }
561
562 /**
563 * e1000_receive_skb - helper function to handle Rx indications
564 * @adapter: board private structure
565 * @staterr: descriptor extended error and status field as written by hardware
566 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567 * @skb: pointer to sk_buff to be indicated to stack
568 **/
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570 struct net_device *netdev, struct sk_buff *skb,
571 u32 staterr, __le16 vlan)
572 {
573 u16 tag = le16_to_cpu(vlan);
574
575 e1000e_rx_hwtstamp(adapter, staterr, skb);
576
577 skb->protocol = eth_type_trans(skb, netdev);
578
579 if (staterr & E1000_RXD_STAT_VP)
580 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581
582 napi_gro_receive(&adapter->napi, skb);
583 }
584
585 /**
586 * e1000_rx_checksum - Receive Checksum Offload
587 * @adapter: board private structure
588 * @status_err: receive descriptor status and error fields
589 * @csum: receive descriptor csum field
590 * @sk_buff: socket buffer with received data
591 **/
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593 struct sk_buff *skb)
594 {
595 u16 status = (u16)status_err;
596 u8 errors = (u8)(status_err >> 24);
597
598 skb_checksum_none_assert(skb);
599
600 /* Rx checksum disabled */
601 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602 return;
603
604 /* Ignore Checksum bit is set */
605 if (status & E1000_RXD_STAT_IXSM)
606 return;
607
608 /* TCP/UDP checksum error bit or IP checksum error bit is set */
609 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610 /* let the stack verify checksum errors */
611 adapter->hw_csum_err++;
612 return;
613 }
614
615 /* TCP/UDP Checksum has not been calculated */
616 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617 return;
618
619 /* It must be a TCP or UDP packet with a valid checksum */
620 skb->ip_summed = CHECKSUM_UNNECESSARY;
621 adapter->hw_csum_good++;
622 }
623
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 {
626 struct e1000_adapter *adapter = rx_ring->adapter;
627 struct e1000_hw *hw = &adapter->hw;
628 s32 ret_val = __ew32_prepare(hw);
629
630 writel(i, rx_ring->tail);
631
632 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633 u32 rctl = er32(RCTL);
634
635 ew32(RCTL, rctl & ~E1000_RCTL_EN);
636 e_err("ME firmware caused invalid RDT - resetting\n");
637 schedule_work(&adapter->reset_task);
638 }
639 }
640
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 {
643 struct e1000_adapter *adapter = tx_ring->adapter;
644 struct e1000_hw *hw = &adapter->hw;
645 s32 ret_val = __ew32_prepare(hw);
646
647 writel(i, tx_ring->tail);
648
649 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650 u32 tctl = er32(TCTL);
651
652 ew32(TCTL, tctl & ~E1000_TCTL_EN);
653 e_err("ME firmware caused invalid TDT - resetting\n");
654 schedule_work(&adapter->reset_task);
655 }
656 }
657
658 /**
659 * e1000_alloc_rx_buffers - Replace used receive buffers
660 * @rx_ring: Rx descriptor ring
661 **/
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663 int cleaned_count, gfp_t gfp)
664 {
665 struct e1000_adapter *adapter = rx_ring->adapter;
666 struct net_device *netdev = adapter->netdev;
667 struct pci_dev *pdev = adapter->pdev;
668 union e1000_rx_desc_extended *rx_desc;
669 struct e1000_buffer *buffer_info;
670 struct sk_buff *skb;
671 unsigned int i;
672 unsigned int bufsz = adapter->rx_buffer_len;
673
674 i = rx_ring->next_to_use;
675 buffer_info = &rx_ring->buffer_info[i];
676
677 while (cleaned_count--) {
678 skb = buffer_info->skb;
679 if (skb) {
680 skb_trim(skb, 0);
681 goto map_skb;
682 }
683
684 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685 if (!skb) {
686 /* Better luck next round */
687 adapter->alloc_rx_buff_failed++;
688 break;
689 }
690
691 buffer_info->skb = skb;
692 map_skb:
693 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694 adapter->rx_buffer_len,
695 DMA_FROM_DEVICE);
696 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697 dev_err(&pdev->dev, "Rx DMA map failed\n");
698 adapter->rx_dma_failed++;
699 break;
700 }
701
702 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704
705 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706 /* Force memory writes to complete before letting h/w
707 * know there are new descriptors to fetch. (Only
708 * applicable for weak-ordered memory model archs,
709 * such as IA-64).
710 */
711 wmb();
712 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713 e1000e_update_rdt_wa(rx_ring, i);
714 else
715 writel(i, rx_ring->tail);
716 }
717 i++;
718 if (i == rx_ring->count)
719 i = 0;
720 buffer_info = &rx_ring->buffer_info[i];
721 }
722
723 rx_ring->next_to_use = i;
724 }
725
726 /**
727 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728 * @rx_ring: Rx descriptor ring
729 **/
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731 int cleaned_count, gfp_t gfp)
732 {
733 struct e1000_adapter *adapter = rx_ring->adapter;
734 struct net_device *netdev = adapter->netdev;
735 struct pci_dev *pdev = adapter->pdev;
736 union e1000_rx_desc_packet_split *rx_desc;
737 struct e1000_buffer *buffer_info;
738 struct e1000_ps_page *ps_page;
739 struct sk_buff *skb;
740 unsigned int i, j;
741
742 i = rx_ring->next_to_use;
743 buffer_info = &rx_ring->buffer_info[i];
744
745 while (cleaned_count--) {
746 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747
748 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749 ps_page = &buffer_info->ps_pages[j];
750 if (j >= adapter->rx_ps_pages) {
751 /* all unused desc entries get hw null ptr */
752 rx_desc->read.buffer_addr[j + 1] =
753 ~cpu_to_le64(0);
754 continue;
755 }
756 if (!ps_page->page) {
757 ps_page->page = alloc_page(gfp);
758 if (!ps_page->page) {
759 adapter->alloc_rx_buff_failed++;
760 goto no_buffers;
761 }
762 ps_page->dma = dma_map_page(&pdev->dev,
763 ps_page->page,
764 0, PAGE_SIZE,
765 DMA_FROM_DEVICE);
766 if (dma_mapping_error(&pdev->dev,
767 ps_page->dma)) {
768 dev_err(&adapter->pdev->dev,
769 "Rx DMA page map failed\n");
770 adapter->rx_dma_failed++;
771 goto no_buffers;
772 }
773 }
774 /* Refresh the desc even if buffer_addrs
775 * didn't change because each write-back
776 * erases this info.
777 */
778 rx_desc->read.buffer_addr[j + 1] =
779 cpu_to_le64(ps_page->dma);
780 }
781
782 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783 gfp);
784
785 if (!skb) {
786 adapter->alloc_rx_buff_failed++;
787 break;
788 }
789
790 buffer_info->skb = skb;
791 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792 adapter->rx_ps_bsize0,
793 DMA_FROM_DEVICE);
794 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795 dev_err(&pdev->dev, "Rx DMA map failed\n");
796 adapter->rx_dma_failed++;
797 /* cleanup skb */
798 dev_kfree_skb_any(skb);
799 buffer_info->skb = NULL;
800 break;
801 }
802
803 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804
805 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806 /* Force memory writes to complete before letting h/w
807 * know there are new descriptors to fetch. (Only
808 * applicable for weak-ordered memory model archs,
809 * such as IA-64).
810 */
811 wmb();
812 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813 e1000e_update_rdt_wa(rx_ring, i << 1);
814 else
815 writel(i << 1, rx_ring->tail);
816 }
817
818 i++;
819 if (i == rx_ring->count)
820 i = 0;
821 buffer_info = &rx_ring->buffer_info[i];
822 }
823
824 no_buffers:
825 rx_ring->next_to_use = i;
826 }
827
828 /**
829 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830 * @rx_ring: Rx descriptor ring
831 * @cleaned_count: number of buffers to allocate this pass
832 **/
833
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835 int cleaned_count, gfp_t gfp)
836 {
837 struct e1000_adapter *adapter = rx_ring->adapter;
838 struct net_device *netdev = adapter->netdev;
839 struct pci_dev *pdev = adapter->pdev;
840 union e1000_rx_desc_extended *rx_desc;
841 struct e1000_buffer *buffer_info;
842 struct sk_buff *skb;
843 unsigned int i;
844 unsigned int bufsz = 256 - 16; /* for skb_reserve */
845
846 i = rx_ring->next_to_use;
847 buffer_info = &rx_ring->buffer_info[i];
848
849 while (cleaned_count--) {
850 skb = buffer_info->skb;
851 if (skb) {
852 skb_trim(skb, 0);
853 goto check_page;
854 }
855
856 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857 if (unlikely(!skb)) {
858 /* Better luck next round */
859 adapter->alloc_rx_buff_failed++;
860 break;
861 }
862
863 buffer_info->skb = skb;
864 check_page:
865 /* allocate a new page if necessary */
866 if (!buffer_info->page) {
867 buffer_info->page = alloc_page(gfp);
868 if (unlikely(!buffer_info->page)) {
869 adapter->alloc_rx_buff_failed++;
870 break;
871 }
872 }
873
874 if (!buffer_info->dma) {
875 buffer_info->dma = dma_map_page(&pdev->dev,
876 buffer_info->page, 0,
877 PAGE_SIZE,
878 DMA_FROM_DEVICE);
879 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880 adapter->alloc_rx_buff_failed++;
881 break;
882 }
883 }
884
885 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887
888 if (unlikely(++i == rx_ring->count))
889 i = 0;
890 buffer_info = &rx_ring->buffer_info[i];
891 }
892
893 if (likely(rx_ring->next_to_use != i)) {
894 rx_ring->next_to_use = i;
895 if (unlikely(i-- == 0))
896 i = (rx_ring->count - 1);
897
898 /* Force memory writes to complete before letting h/w
899 * know there are new descriptors to fetch. (Only
900 * applicable for weak-ordered memory model archs,
901 * such as IA-64).
902 */
903 wmb();
904 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905 e1000e_update_rdt_wa(rx_ring, i);
906 else
907 writel(i, rx_ring->tail);
908 }
909 }
910
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912 struct sk_buff *skb)
913 {
914 if (netdev->features & NETIF_F_RXHASH)
915 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
916 }
917
918 /**
919 * e1000_clean_rx_irq - Send received data up the network stack
920 * @rx_ring: Rx descriptor ring
921 *
922 * the return value indicates whether actual cleaning was done, there
923 * is no guarantee that everything was cleaned
924 **/
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926 int work_to_do)
927 {
928 struct e1000_adapter *adapter = rx_ring->adapter;
929 struct net_device *netdev = adapter->netdev;
930 struct pci_dev *pdev = adapter->pdev;
931 struct e1000_hw *hw = &adapter->hw;
932 union e1000_rx_desc_extended *rx_desc, *next_rxd;
933 struct e1000_buffer *buffer_info, *next_buffer;
934 u32 length, staterr;
935 unsigned int i;
936 int cleaned_count = 0;
937 bool cleaned = false;
938 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939
940 i = rx_ring->next_to_clean;
941 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943 buffer_info = &rx_ring->buffer_info[i];
944
945 while (staterr & E1000_RXD_STAT_DD) {
946 struct sk_buff *skb;
947
948 if (*work_done >= work_to_do)
949 break;
950 (*work_done)++;
951 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
952
953 skb = buffer_info->skb;
954 buffer_info->skb = NULL;
955
956 prefetch(skb->data - NET_IP_ALIGN);
957
958 i++;
959 if (i == rx_ring->count)
960 i = 0;
961 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962 prefetch(next_rxd);
963
964 next_buffer = &rx_ring->buffer_info[i];
965
966 cleaned = true;
967 cleaned_count++;
968 dma_unmap_single(&pdev->dev, buffer_info->dma,
969 adapter->rx_buffer_len, DMA_FROM_DEVICE);
970 buffer_info->dma = 0;
971
972 length = le16_to_cpu(rx_desc->wb.upper.length);
973
974 /* !EOP means multiple descriptors were used to store a single
975 * packet, if that's the case we need to toss it. In fact, we
976 * need to toss every packet with the EOP bit clear and the
977 * next frame that _does_ have the EOP bit set, as it is by
978 * definition only a frame fragment
979 */
980 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981 adapter->flags2 |= FLAG2_IS_DISCARDING;
982
983 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984 /* All receives must fit into a single buffer */
985 e_dbg("Receive packet consumed multiple buffers\n");
986 /* recycle */
987 buffer_info->skb = skb;
988 if (staterr & E1000_RXD_STAT_EOP)
989 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990 goto next_desc;
991 }
992
993 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994 !(netdev->features & NETIF_F_RXALL))) {
995 /* recycle */
996 buffer_info->skb = skb;
997 goto next_desc;
998 }
999
1000 /* adjust length to remove Ethernet CRC */
1001 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002 /* If configured to store CRC, don't subtract FCS,
1003 * but keep the FCS bytes out of the total_rx_bytes
1004 * counter
1005 */
1006 if (netdev->features & NETIF_F_RXFCS)
1007 total_rx_bytes -= 4;
1008 else
1009 length -= 4;
1010 }
1011
1012 total_rx_bytes += length;
1013 total_rx_packets++;
1014
1015 /* code added for copybreak, this should improve
1016 * performance for small packets with large amounts
1017 * of reassembly being done in the stack
1018 */
1019 if (length < copybreak) {
1020 struct sk_buff *new_skb =
1021 napi_alloc_skb(&adapter->napi, length);
1022 if (new_skb) {
1023 skb_copy_to_linear_data_offset(new_skb,
1024 -NET_IP_ALIGN,
1025 (skb->data -
1026 NET_IP_ALIGN),
1027 (length +
1028 NET_IP_ALIGN));
1029 /* save the skb in buffer_info as good */
1030 buffer_info->skb = skb;
1031 skb = new_skb;
1032 }
1033 /* else just continue with the old one */
1034 }
1035 /* end copybreak code */
1036 skb_put(skb, length);
1037
1038 /* Receive Checksum Offload */
1039 e1000_rx_checksum(adapter, staterr, skb);
1040
1041 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042
1043 e1000_receive_skb(adapter, netdev, skb, staterr,
1044 rx_desc->wb.upper.vlan);
1045
1046 next_desc:
1047 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048
1049 /* return some buffers to hardware, one at a time is too slow */
1050 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052 GFP_ATOMIC);
1053 cleaned_count = 0;
1054 }
1055
1056 /* use prefetched values */
1057 rx_desc = next_rxd;
1058 buffer_info = next_buffer;
1059
1060 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061 }
1062 rx_ring->next_to_clean = i;
1063
1064 cleaned_count = e1000_desc_unused(rx_ring);
1065 if (cleaned_count)
1066 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067
1068 adapter->total_rx_bytes += total_rx_bytes;
1069 adapter->total_rx_packets += total_rx_packets;
1070 return cleaned;
1071 }
1072
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074 struct e1000_buffer *buffer_info,
1075 bool drop)
1076 {
1077 struct e1000_adapter *adapter = tx_ring->adapter;
1078
1079 if (buffer_info->dma) {
1080 if (buffer_info->mapped_as_page)
1081 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1082 buffer_info->length, DMA_TO_DEVICE);
1083 else
1084 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1085 buffer_info->length, DMA_TO_DEVICE);
1086 buffer_info->dma = 0;
1087 }
1088 if (buffer_info->skb) {
1089 if (drop)
1090 dev_kfree_skb_any(buffer_info->skb);
1091 else
1092 dev_consume_skb_any(buffer_info->skb);
1093 buffer_info->skb = NULL;
1094 }
1095 buffer_info->time_stamp = 0;
1096 }
1097
1098 static void e1000_print_hw_hang(struct work_struct *work)
1099 {
1100 struct e1000_adapter *adapter = container_of(work,
1101 struct e1000_adapter,
1102 print_hang_task);
1103 struct net_device *netdev = adapter->netdev;
1104 struct e1000_ring *tx_ring = adapter->tx_ring;
1105 unsigned int i = tx_ring->next_to_clean;
1106 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1107 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1108 struct e1000_hw *hw = &adapter->hw;
1109 u16 phy_status, phy_1000t_status, phy_ext_status;
1110 u16 pci_status;
1111
1112 if (test_bit(__E1000_DOWN, &adapter->state))
1113 return;
1114
1115 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1116 /* May be block on write-back, flush and detect again
1117 * flush pending descriptor writebacks to memory
1118 */
1119 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120 /* execute the writes immediately */
1121 e1e_flush();
1122 /* Due to rare timing issues, write to TIDV again to ensure
1123 * the write is successful
1124 */
1125 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1126 /* execute the writes immediately */
1127 e1e_flush();
1128 adapter->tx_hang_recheck = true;
1129 return;
1130 }
1131 adapter->tx_hang_recheck = false;
1132
1133 if (er32(TDH(0)) == er32(TDT(0))) {
1134 e_dbg("false hang detected, ignoring\n");
1135 return;
1136 }
1137
1138 /* Real hang detected */
1139 netif_stop_queue(netdev);
1140
1141 e1e_rphy(hw, MII_BMSR, &phy_status);
1142 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1143 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1144
1145 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1146
1147 /* detected Hardware unit hang */
1148 e_err("Detected Hardware Unit Hang:\n"
1149 " TDH <%x>\n"
1150 " TDT <%x>\n"
1151 " next_to_use <%x>\n"
1152 " next_to_clean <%x>\n"
1153 "buffer_info[next_to_clean]:\n"
1154 " time_stamp <%lx>\n"
1155 " next_to_watch <%x>\n"
1156 " jiffies <%lx>\n"
1157 " next_to_watch.status <%x>\n"
1158 "MAC Status <%x>\n"
1159 "PHY Status <%x>\n"
1160 "PHY 1000BASE-T Status <%x>\n"
1161 "PHY Extended Status <%x>\n"
1162 "PCI Status <%x>\n",
1163 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1164 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1165 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1166 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1167
1168 e1000e_dump(adapter);
1169
1170 /* Suggest workaround for known h/w issue */
1171 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1172 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1173 }
1174
1175 /**
1176 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1177 * @work: pointer to work struct
1178 *
1179 * This work function polls the TSYNCTXCTL valid bit to determine when a
1180 * timestamp has been taken for the current stored skb. The timestamp must
1181 * be for this skb because only one such packet is allowed in the queue.
1182 */
1183 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1184 {
1185 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1186 tx_hwtstamp_work);
1187 struct e1000_hw *hw = &adapter->hw;
1188
1189 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1190 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1191 struct skb_shared_hwtstamps shhwtstamps;
1192 u64 txstmp;
1193
1194 txstmp = er32(TXSTMPL);
1195 txstmp |= (u64)er32(TXSTMPH) << 32;
1196
1197 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1198
1199 /* Clear the global tx_hwtstamp_skb pointer and force writes
1200 * prior to notifying the stack of a Tx timestamp.
1201 */
1202 adapter->tx_hwtstamp_skb = NULL;
1203 wmb(); /* force write prior to skb_tstamp_tx */
1204
1205 skb_tstamp_tx(skb, &shhwtstamps);
1206 dev_consume_skb_any(skb);
1207 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1208 + adapter->tx_timeout_factor * HZ)) {
1209 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1210 adapter->tx_hwtstamp_skb = NULL;
1211 adapter->tx_hwtstamp_timeouts++;
1212 e_warn("clearing Tx timestamp hang\n");
1213 } else {
1214 /* reschedule to check later */
1215 schedule_work(&adapter->tx_hwtstamp_work);
1216 }
1217 }
1218
1219 /**
1220 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1221 * @tx_ring: Tx descriptor ring
1222 *
1223 * the return value indicates whether actual cleaning was done, there
1224 * is no guarantee that everything was cleaned
1225 **/
1226 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1227 {
1228 struct e1000_adapter *adapter = tx_ring->adapter;
1229 struct net_device *netdev = adapter->netdev;
1230 struct e1000_hw *hw = &adapter->hw;
1231 struct e1000_tx_desc *tx_desc, *eop_desc;
1232 struct e1000_buffer *buffer_info;
1233 unsigned int i, eop;
1234 unsigned int count = 0;
1235 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1236 unsigned int bytes_compl = 0, pkts_compl = 0;
1237
1238 i = tx_ring->next_to_clean;
1239 eop = tx_ring->buffer_info[i].next_to_watch;
1240 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1241
1242 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1243 (count < tx_ring->count)) {
1244 bool cleaned = false;
1245
1246 dma_rmb(); /* read buffer_info after eop_desc */
1247 for (; !cleaned; count++) {
1248 tx_desc = E1000_TX_DESC(*tx_ring, i);
1249 buffer_info = &tx_ring->buffer_info[i];
1250 cleaned = (i == eop);
1251
1252 if (cleaned) {
1253 total_tx_packets += buffer_info->segs;
1254 total_tx_bytes += buffer_info->bytecount;
1255 if (buffer_info->skb) {
1256 bytes_compl += buffer_info->skb->len;
1257 pkts_compl++;
1258 }
1259 }
1260
1261 e1000_put_txbuf(tx_ring, buffer_info, false);
1262 tx_desc->upper.data = 0;
1263
1264 i++;
1265 if (i == tx_ring->count)
1266 i = 0;
1267 }
1268
1269 if (i == tx_ring->next_to_use)
1270 break;
1271 eop = tx_ring->buffer_info[i].next_to_watch;
1272 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1273 }
1274
1275 tx_ring->next_to_clean = i;
1276
1277 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1278
1279 #define TX_WAKE_THRESHOLD 32
1280 if (count && netif_carrier_ok(netdev) &&
1281 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1282 /* Make sure that anybody stopping the queue after this
1283 * sees the new next_to_clean.
1284 */
1285 smp_mb();
1286
1287 if (netif_queue_stopped(netdev) &&
1288 !(test_bit(__E1000_DOWN, &adapter->state))) {
1289 netif_wake_queue(netdev);
1290 ++adapter->restart_queue;
1291 }
1292 }
1293
1294 if (adapter->detect_tx_hung) {
1295 /* Detect a transmit hang in hardware, this serializes the
1296 * check with the clearing of time_stamp and movement of i
1297 */
1298 adapter->detect_tx_hung = false;
1299 if (tx_ring->buffer_info[i].time_stamp &&
1300 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1301 + (adapter->tx_timeout_factor * HZ)) &&
1302 !(er32(STATUS) & E1000_STATUS_TXOFF))
1303 schedule_work(&adapter->print_hang_task);
1304 else
1305 adapter->tx_hang_recheck = false;
1306 }
1307 adapter->total_tx_bytes += total_tx_bytes;
1308 adapter->total_tx_packets += total_tx_packets;
1309 return count < tx_ring->count;
1310 }
1311
1312 /**
1313 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1314 * @rx_ring: Rx descriptor ring
1315 *
1316 * the return value indicates whether actual cleaning was done, there
1317 * is no guarantee that everything was cleaned
1318 **/
1319 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1320 int work_to_do)
1321 {
1322 struct e1000_adapter *adapter = rx_ring->adapter;
1323 struct e1000_hw *hw = &adapter->hw;
1324 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1325 struct net_device *netdev = adapter->netdev;
1326 struct pci_dev *pdev = adapter->pdev;
1327 struct e1000_buffer *buffer_info, *next_buffer;
1328 struct e1000_ps_page *ps_page;
1329 struct sk_buff *skb;
1330 unsigned int i, j;
1331 u32 length, staterr;
1332 int cleaned_count = 0;
1333 bool cleaned = false;
1334 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1335
1336 i = rx_ring->next_to_clean;
1337 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1338 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1339 buffer_info = &rx_ring->buffer_info[i];
1340
1341 while (staterr & E1000_RXD_STAT_DD) {
1342 if (*work_done >= work_to_do)
1343 break;
1344 (*work_done)++;
1345 skb = buffer_info->skb;
1346 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1347
1348 /* in the packet split case this is header only */
1349 prefetch(skb->data - NET_IP_ALIGN);
1350
1351 i++;
1352 if (i == rx_ring->count)
1353 i = 0;
1354 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1355 prefetch(next_rxd);
1356
1357 next_buffer = &rx_ring->buffer_info[i];
1358
1359 cleaned = true;
1360 cleaned_count++;
1361 dma_unmap_single(&pdev->dev, buffer_info->dma,
1362 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1363 buffer_info->dma = 0;
1364
1365 /* see !EOP comment in other Rx routine */
1366 if (!(staterr & E1000_RXD_STAT_EOP))
1367 adapter->flags2 |= FLAG2_IS_DISCARDING;
1368
1369 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1370 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1371 dev_kfree_skb_irq(skb);
1372 if (staterr & E1000_RXD_STAT_EOP)
1373 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1374 goto next_desc;
1375 }
1376
1377 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1378 !(netdev->features & NETIF_F_RXALL))) {
1379 dev_kfree_skb_irq(skb);
1380 goto next_desc;
1381 }
1382
1383 length = le16_to_cpu(rx_desc->wb.middle.length0);
1384
1385 if (!length) {
1386 e_dbg("Last part of the packet spanning multiple descriptors\n");
1387 dev_kfree_skb_irq(skb);
1388 goto next_desc;
1389 }
1390
1391 /* Good Receive */
1392 skb_put(skb, length);
1393
1394 {
1395 /* this looks ugly, but it seems compiler issues make
1396 * it more efficient than reusing j
1397 */
1398 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1399
1400 /* page alloc/put takes too long and effects small
1401 * packet throughput, so unsplit small packets and
1402 * save the alloc/put only valid in softirq (napi)
1403 * context to call kmap_*
1404 */
1405 if (l1 && (l1 <= copybreak) &&
1406 ((length + l1) <= adapter->rx_ps_bsize0)) {
1407 u8 *vaddr;
1408
1409 ps_page = &buffer_info->ps_pages[0];
1410
1411 /* there is no documentation about how to call
1412 * kmap_atomic, so we can't hold the mapping
1413 * very long
1414 */
1415 dma_sync_single_for_cpu(&pdev->dev,
1416 ps_page->dma,
1417 PAGE_SIZE,
1418 DMA_FROM_DEVICE);
1419 vaddr = kmap_atomic(ps_page->page);
1420 memcpy(skb_tail_pointer(skb), vaddr, l1);
1421 kunmap_atomic(vaddr);
1422 dma_sync_single_for_device(&pdev->dev,
1423 ps_page->dma,
1424 PAGE_SIZE,
1425 DMA_FROM_DEVICE);
1426
1427 /* remove the CRC */
1428 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1429 if (!(netdev->features & NETIF_F_RXFCS))
1430 l1 -= 4;
1431 }
1432
1433 skb_put(skb, l1);
1434 goto copydone;
1435 } /* if */
1436 }
1437
1438 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1439 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1440 if (!length)
1441 break;
1442
1443 ps_page = &buffer_info->ps_pages[j];
1444 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1445 DMA_FROM_DEVICE);
1446 ps_page->dma = 0;
1447 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1448 ps_page->page = NULL;
1449 skb->len += length;
1450 skb->data_len += length;
1451 skb->truesize += PAGE_SIZE;
1452 }
1453
1454 /* strip the ethernet crc, problem is we're using pages now so
1455 * this whole operation can get a little cpu intensive
1456 */
1457 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1458 if (!(netdev->features & NETIF_F_RXFCS))
1459 pskb_trim(skb, skb->len - 4);
1460 }
1461
1462 copydone:
1463 total_rx_bytes += skb->len;
1464 total_rx_packets++;
1465
1466 e1000_rx_checksum(adapter, staterr, skb);
1467
1468 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1469
1470 if (rx_desc->wb.upper.header_status &
1471 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1472 adapter->rx_hdr_split++;
1473
1474 e1000_receive_skb(adapter, netdev, skb, staterr,
1475 rx_desc->wb.middle.vlan);
1476
1477 next_desc:
1478 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1479 buffer_info->skb = NULL;
1480
1481 /* return some buffers to hardware, one at a time is too slow */
1482 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1483 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1484 GFP_ATOMIC);
1485 cleaned_count = 0;
1486 }
1487
1488 /* use prefetched values */
1489 rx_desc = next_rxd;
1490 buffer_info = next_buffer;
1491
1492 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1493 }
1494 rx_ring->next_to_clean = i;
1495
1496 cleaned_count = e1000_desc_unused(rx_ring);
1497 if (cleaned_count)
1498 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1499
1500 adapter->total_rx_bytes += total_rx_bytes;
1501 adapter->total_rx_packets += total_rx_packets;
1502 return cleaned;
1503 }
1504
1505 /**
1506 * e1000_consume_page - helper function
1507 **/
1508 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1509 u16 length)
1510 {
1511 bi->page = NULL;
1512 skb->len += length;
1513 skb->data_len += length;
1514 skb->truesize += PAGE_SIZE;
1515 }
1516
1517 /**
1518 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1519 * @adapter: board private structure
1520 *
1521 * the return value indicates whether actual cleaning was done, there
1522 * is no guarantee that everything was cleaned
1523 **/
1524 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1525 int work_to_do)
1526 {
1527 struct e1000_adapter *adapter = rx_ring->adapter;
1528 struct net_device *netdev = adapter->netdev;
1529 struct pci_dev *pdev = adapter->pdev;
1530 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1531 struct e1000_buffer *buffer_info, *next_buffer;
1532 u32 length, staterr;
1533 unsigned int i;
1534 int cleaned_count = 0;
1535 bool cleaned = false;
1536 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1537 struct skb_shared_info *shinfo;
1538
1539 i = rx_ring->next_to_clean;
1540 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1541 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1542 buffer_info = &rx_ring->buffer_info[i];
1543
1544 while (staterr & E1000_RXD_STAT_DD) {
1545 struct sk_buff *skb;
1546
1547 if (*work_done >= work_to_do)
1548 break;
1549 (*work_done)++;
1550 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1551
1552 skb = buffer_info->skb;
1553 buffer_info->skb = NULL;
1554
1555 ++i;
1556 if (i == rx_ring->count)
1557 i = 0;
1558 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1559 prefetch(next_rxd);
1560
1561 next_buffer = &rx_ring->buffer_info[i];
1562
1563 cleaned = true;
1564 cleaned_count++;
1565 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1566 DMA_FROM_DEVICE);
1567 buffer_info->dma = 0;
1568
1569 length = le16_to_cpu(rx_desc->wb.upper.length);
1570
1571 /* errors is only valid for DD + EOP descriptors */
1572 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1573 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1574 !(netdev->features & NETIF_F_RXALL)))) {
1575 /* recycle both page and skb */
1576 buffer_info->skb = skb;
1577 /* an error means any chain goes out the window too */
1578 if (rx_ring->rx_skb_top)
1579 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1580 rx_ring->rx_skb_top = NULL;
1581 goto next_desc;
1582 }
1583 #define rxtop (rx_ring->rx_skb_top)
1584 if (!(staterr & E1000_RXD_STAT_EOP)) {
1585 /* this descriptor is only the beginning (or middle) */
1586 if (!rxtop) {
1587 /* this is the beginning of a chain */
1588 rxtop = skb;
1589 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1590 0, length);
1591 } else {
1592 /* this is the middle of a chain */
1593 shinfo = skb_shinfo(rxtop);
1594 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 buffer_info->page, 0,
1596 length);
1597 /* re-use the skb, only consumed the page */
1598 buffer_info->skb = skb;
1599 }
1600 e1000_consume_page(buffer_info, rxtop, length);
1601 goto next_desc;
1602 } else {
1603 if (rxtop) {
1604 /* end of the chain */
1605 shinfo = skb_shinfo(rxtop);
1606 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1607 buffer_info->page, 0,
1608 length);
1609 /* re-use the current skb, we only consumed the
1610 * page
1611 */
1612 buffer_info->skb = skb;
1613 skb = rxtop;
1614 rxtop = NULL;
1615 e1000_consume_page(buffer_info, skb, length);
1616 } else {
1617 /* no chain, got EOP, this buf is the packet
1618 * copybreak to save the put_page/alloc_page
1619 */
1620 if (length <= copybreak &&
1621 skb_tailroom(skb) >= length) {
1622 u8 *vaddr;
1623 vaddr = kmap_atomic(buffer_info->page);
1624 memcpy(skb_tail_pointer(skb), vaddr,
1625 length);
1626 kunmap_atomic(vaddr);
1627 /* re-use the page, so don't erase
1628 * buffer_info->page
1629 */
1630 skb_put(skb, length);
1631 } else {
1632 skb_fill_page_desc(skb, 0,
1633 buffer_info->page, 0,
1634 length);
1635 e1000_consume_page(buffer_info, skb,
1636 length);
1637 }
1638 }
1639 }
1640
1641 /* Receive Checksum Offload */
1642 e1000_rx_checksum(adapter, staterr, skb);
1643
1644 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1645
1646 /* probably a little skewed due to removing CRC */
1647 total_rx_bytes += skb->len;
1648 total_rx_packets++;
1649
1650 /* eth type trans needs skb->data to point to something */
1651 if (!pskb_may_pull(skb, ETH_HLEN)) {
1652 e_err("pskb_may_pull failed.\n");
1653 dev_kfree_skb_irq(skb);
1654 goto next_desc;
1655 }
1656
1657 e1000_receive_skb(adapter, netdev, skb, staterr,
1658 rx_desc->wb.upper.vlan);
1659
1660 next_desc:
1661 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1662
1663 /* return some buffers to hardware, one at a time is too slow */
1664 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1665 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1666 GFP_ATOMIC);
1667 cleaned_count = 0;
1668 }
1669
1670 /* use prefetched values */
1671 rx_desc = next_rxd;
1672 buffer_info = next_buffer;
1673
1674 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1675 }
1676 rx_ring->next_to_clean = i;
1677
1678 cleaned_count = e1000_desc_unused(rx_ring);
1679 if (cleaned_count)
1680 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1681
1682 adapter->total_rx_bytes += total_rx_bytes;
1683 adapter->total_rx_packets += total_rx_packets;
1684 return cleaned;
1685 }
1686
1687 /**
1688 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1689 * @rx_ring: Rx descriptor ring
1690 **/
1691 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1692 {
1693 struct e1000_adapter *adapter = rx_ring->adapter;
1694 struct e1000_buffer *buffer_info;
1695 struct e1000_ps_page *ps_page;
1696 struct pci_dev *pdev = adapter->pdev;
1697 unsigned int i, j;
1698
1699 /* Free all the Rx ring sk_buffs */
1700 for (i = 0; i < rx_ring->count; i++) {
1701 buffer_info = &rx_ring->buffer_info[i];
1702 if (buffer_info->dma) {
1703 if (adapter->clean_rx == e1000_clean_rx_irq)
1704 dma_unmap_single(&pdev->dev, buffer_info->dma,
1705 adapter->rx_buffer_len,
1706 DMA_FROM_DEVICE);
1707 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1708 dma_unmap_page(&pdev->dev, buffer_info->dma,
1709 PAGE_SIZE, DMA_FROM_DEVICE);
1710 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1711 dma_unmap_single(&pdev->dev, buffer_info->dma,
1712 adapter->rx_ps_bsize0,
1713 DMA_FROM_DEVICE);
1714 buffer_info->dma = 0;
1715 }
1716
1717 if (buffer_info->page) {
1718 put_page(buffer_info->page);
1719 buffer_info->page = NULL;
1720 }
1721
1722 if (buffer_info->skb) {
1723 dev_kfree_skb(buffer_info->skb);
1724 buffer_info->skb = NULL;
1725 }
1726
1727 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1728 ps_page = &buffer_info->ps_pages[j];
1729 if (!ps_page->page)
1730 break;
1731 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1732 DMA_FROM_DEVICE);
1733 ps_page->dma = 0;
1734 put_page(ps_page->page);
1735 ps_page->page = NULL;
1736 }
1737 }
1738
1739 /* there also may be some cached data from a chained receive */
1740 if (rx_ring->rx_skb_top) {
1741 dev_kfree_skb(rx_ring->rx_skb_top);
1742 rx_ring->rx_skb_top = NULL;
1743 }
1744
1745 /* Zero out the descriptor ring */
1746 memset(rx_ring->desc, 0, rx_ring->size);
1747
1748 rx_ring->next_to_clean = 0;
1749 rx_ring->next_to_use = 0;
1750 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1751 }
1752
1753 static void e1000e_downshift_workaround(struct work_struct *work)
1754 {
1755 struct e1000_adapter *adapter = container_of(work,
1756 struct e1000_adapter,
1757 downshift_task);
1758
1759 if (test_bit(__E1000_DOWN, &adapter->state))
1760 return;
1761
1762 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1763 }
1764
1765 /**
1766 * e1000_intr_msi - Interrupt Handler
1767 * @irq: interrupt number
1768 * @data: pointer to a network interface device structure
1769 **/
1770 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1771 {
1772 struct net_device *netdev = data;
1773 struct e1000_adapter *adapter = netdev_priv(netdev);
1774 struct e1000_hw *hw = &adapter->hw;
1775 u32 icr = er32(ICR);
1776
1777 /* read ICR disables interrupts using IAM */
1778 if (icr & E1000_ICR_LSC) {
1779 hw->mac.get_link_status = true;
1780 /* ICH8 workaround-- Call gig speed drop workaround on cable
1781 * disconnect (LSC) before accessing any PHY registers
1782 */
1783 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1784 (!(er32(STATUS) & E1000_STATUS_LU)))
1785 schedule_work(&adapter->downshift_task);
1786
1787 /* 80003ES2LAN workaround-- For packet buffer work-around on
1788 * link down event; disable receives here in the ISR and reset
1789 * adapter in watchdog
1790 */
1791 if (netif_carrier_ok(netdev) &&
1792 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1793 /* disable receives */
1794 u32 rctl = er32(RCTL);
1795
1796 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1797 adapter->flags |= FLAG_RESTART_NOW;
1798 }
1799 /* guard against interrupt when we're going down */
1800 if (!test_bit(__E1000_DOWN, &adapter->state))
1801 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1802 }
1803
1804 /* Reset on uncorrectable ECC error */
1805 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1806 u32 pbeccsts = er32(PBECCSTS);
1807
1808 adapter->corr_errors +=
1809 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810 adapter->uncorr_errors +=
1811 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1813
1814 /* Do the reset outside of interrupt context */
1815 schedule_work(&adapter->reset_task);
1816
1817 /* return immediately since reset is imminent */
1818 return IRQ_HANDLED;
1819 }
1820
1821 if (napi_schedule_prep(&adapter->napi)) {
1822 adapter->total_tx_bytes = 0;
1823 adapter->total_tx_packets = 0;
1824 adapter->total_rx_bytes = 0;
1825 adapter->total_rx_packets = 0;
1826 __napi_schedule(&adapter->napi);
1827 }
1828
1829 return IRQ_HANDLED;
1830 }
1831
1832 /**
1833 * e1000_intr - Interrupt Handler
1834 * @irq: interrupt number
1835 * @data: pointer to a network interface device structure
1836 **/
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1838 {
1839 struct net_device *netdev = data;
1840 struct e1000_adapter *adapter = netdev_priv(netdev);
1841 struct e1000_hw *hw = &adapter->hw;
1842 u32 rctl, icr = er32(ICR);
1843
1844 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845 return IRQ_NONE; /* Not our interrupt */
1846
1847 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848 * not set, then the adapter didn't send an interrupt
1849 */
1850 if (!(icr & E1000_ICR_INT_ASSERTED))
1851 return IRQ_NONE;
1852
1853 /* Interrupt Auto-Mask...upon reading ICR,
1854 * interrupts are masked. No need for the
1855 * IMC write
1856 */
1857
1858 if (icr & E1000_ICR_LSC) {
1859 hw->mac.get_link_status = true;
1860 /* ICH8 workaround-- Call gig speed drop workaround on cable
1861 * disconnect (LSC) before accessing any PHY registers
1862 */
1863 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864 (!(er32(STATUS) & E1000_STATUS_LU)))
1865 schedule_work(&adapter->downshift_task);
1866
1867 /* 80003ES2LAN workaround--
1868 * For packet buffer work-around on link down event;
1869 * disable receives here in the ISR and
1870 * reset adapter in watchdog
1871 */
1872 if (netif_carrier_ok(netdev) &&
1873 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874 /* disable receives */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877 adapter->flags |= FLAG_RESTART_NOW;
1878 }
1879 /* guard against interrupt when we're going down */
1880 if (!test_bit(__E1000_DOWN, &adapter->state))
1881 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1882 }
1883
1884 /* Reset on uncorrectable ECC error */
1885 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1886 u32 pbeccsts = er32(PBECCSTS);
1887
1888 adapter->corr_errors +=
1889 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1890 adapter->uncorr_errors +=
1891 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1892 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1893
1894 /* Do the reset outside of interrupt context */
1895 schedule_work(&adapter->reset_task);
1896
1897 /* return immediately since reset is imminent */
1898 return IRQ_HANDLED;
1899 }
1900
1901 if (napi_schedule_prep(&adapter->napi)) {
1902 adapter->total_tx_bytes = 0;
1903 adapter->total_tx_packets = 0;
1904 adapter->total_rx_bytes = 0;
1905 adapter->total_rx_packets = 0;
1906 __napi_schedule(&adapter->napi);
1907 }
1908
1909 return IRQ_HANDLED;
1910 }
1911
1912 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1913 {
1914 struct net_device *netdev = data;
1915 struct e1000_adapter *adapter = netdev_priv(netdev);
1916 struct e1000_hw *hw = &adapter->hw;
1917 u32 icr;
1918 bool enable = true;
1919
1920 icr = er32(ICR);
1921 if (icr & E1000_ICR_RXO) {
1922 ew32(ICR, E1000_ICR_RXO);
1923 enable = false;
1924 /* napi poll will re-enable Other, make sure it runs */
1925 if (napi_schedule_prep(&adapter->napi)) {
1926 adapter->total_rx_bytes = 0;
1927 adapter->total_rx_packets = 0;
1928 __napi_schedule(&adapter->napi);
1929 }
1930 }
1931 if (icr & E1000_ICR_LSC) {
1932 ew32(ICR, E1000_ICR_LSC);
1933 hw->mac.get_link_status = true;
1934 /* guard against interrupt when we're going down */
1935 if (!test_bit(__E1000_DOWN, &adapter->state))
1936 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1937 }
1938
1939 if (enable && !test_bit(__E1000_DOWN, &adapter->state))
1940 ew32(IMS, E1000_IMS_OTHER);
1941
1942 return IRQ_HANDLED;
1943 }
1944
1945 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1946 {
1947 struct net_device *netdev = data;
1948 struct e1000_adapter *adapter = netdev_priv(netdev);
1949 struct e1000_hw *hw = &adapter->hw;
1950 struct e1000_ring *tx_ring = adapter->tx_ring;
1951
1952 adapter->total_tx_bytes = 0;
1953 adapter->total_tx_packets = 0;
1954
1955 if (!e1000_clean_tx_irq(tx_ring))
1956 /* Ring was not completely cleaned, so fire another interrupt */
1957 ew32(ICS, tx_ring->ims_val);
1958
1959 if (!test_bit(__E1000_DOWN, &adapter->state))
1960 ew32(IMS, adapter->tx_ring->ims_val);
1961
1962 return IRQ_HANDLED;
1963 }
1964
1965 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1966 {
1967 struct net_device *netdev = data;
1968 struct e1000_adapter *adapter = netdev_priv(netdev);
1969 struct e1000_ring *rx_ring = adapter->rx_ring;
1970
1971 /* Write the ITR value calculated at the end of the
1972 * previous interrupt.
1973 */
1974 if (rx_ring->set_itr) {
1975 u32 itr = rx_ring->itr_val ?
1976 1000000000 / (rx_ring->itr_val * 256) : 0;
1977
1978 writel(itr, rx_ring->itr_register);
1979 rx_ring->set_itr = 0;
1980 }
1981
1982 if (napi_schedule_prep(&adapter->napi)) {
1983 adapter->total_rx_bytes = 0;
1984 adapter->total_rx_packets = 0;
1985 __napi_schedule(&adapter->napi);
1986 }
1987 return IRQ_HANDLED;
1988 }
1989
1990 /**
1991 * e1000_configure_msix - Configure MSI-X hardware
1992 *
1993 * e1000_configure_msix sets up the hardware to properly
1994 * generate MSI-X interrupts.
1995 **/
1996 static void e1000_configure_msix(struct e1000_adapter *adapter)
1997 {
1998 struct e1000_hw *hw = &adapter->hw;
1999 struct e1000_ring *rx_ring = adapter->rx_ring;
2000 struct e1000_ring *tx_ring = adapter->tx_ring;
2001 int vector = 0;
2002 u32 ctrl_ext, ivar = 0;
2003
2004 adapter->eiac_mask = 0;
2005
2006 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2007 if (hw->mac.type == e1000_82574) {
2008 u32 rfctl = er32(RFCTL);
2009
2010 rfctl |= E1000_RFCTL_ACK_DIS;
2011 ew32(RFCTL, rfctl);
2012 }
2013
2014 /* Configure Rx vector */
2015 rx_ring->ims_val = E1000_IMS_RXQ0;
2016 adapter->eiac_mask |= rx_ring->ims_val;
2017 if (rx_ring->itr_val)
2018 writel(1000000000 / (rx_ring->itr_val * 256),
2019 rx_ring->itr_register);
2020 else
2021 writel(1, rx_ring->itr_register);
2022 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2023
2024 /* Configure Tx vector */
2025 tx_ring->ims_val = E1000_IMS_TXQ0;
2026 vector++;
2027 if (tx_ring->itr_val)
2028 writel(1000000000 / (tx_ring->itr_val * 256),
2029 tx_ring->itr_register);
2030 else
2031 writel(1, tx_ring->itr_register);
2032 adapter->eiac_mask |= tx_ring->ims_val;
2033 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2034
2035 /* set vector for Other Causes, e.g. link changes */
2036 vector++;
2037 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2038 if (rx_ring->itr_val)
2039 writel(1000000000 / (rx_ring->itr_val * 256),
2040 hw->hw_addr + E1000_EITR_82574(vector));
2041 else
2042 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2043 adapter->eiac_mask |= E1000_IMS_OTHER;
2044
2045 /* Cause Tx interrupts on every write back */
2046 ivar |= BIT(31);
2047
2048 ew32(IVAR, ivar);
2049
2050 /* enable MSI-X PBA support */
2051 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2052 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2053 ew32(CTRL_EXT, ctrl_ext);
2054 e1e_flush();
2055 }
2056
2057 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2058 {
2059 if (adapter->msix_entries) {
2060 pci_disable_msix(adapter->pdev);
2061 kfree(adapter->msix_entries);
2062 adapter->msix_entries = NULL;
2063 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2064 pci_disable_msi(adapter->pdev);
2065 adapter->flags &= ~FLAG_MSI_ENABLED;
2066 }
2067 }
2068
2069 /**
2070 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2071 *
2072 * Attempt to configure interrupts using the best available
2073 * capabilities of the hardware and kernel.
2074 **/
2075 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2076 {
2077 int err;
2078 int i;
2079
2080 switch (adapter->int_mode) {
2081 case E1000E_INT_MODE_MSIX:
2082 if (adapter->flags & FLAG_HAS_MSIX) {
2083 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2084 adapter->msix_entries = kcalloc(adapter->num_vectors,
2085 sizeof(struct
2086 msix_entry),
2087 GFP_KERNEL);
2088 if (adapter->msix_entries) {
2089 struct e1000_adapter *a = adapter;
2090
2091 for (i = 0; i < adapter->num_vectors; i++)
2092 adapter->msix_entries[i].entry = i;
2093
2094 err = pci_enable_msix_range(a->pdev,
2095 a->msix_entries,
2096 a->num_vectors,
2097 a->num_vectors);
2098 if (err > 0)
2099 return;
2100 }
2101 /* MSI-X failed, so fall through and try MSI */
2102 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2103 e1000e_reset_interrupt_capability(adapter);
2104 }
2105 adapter->int_mode = E1000E_INT_MODE_MSI;
2106 /* Fall through */
2107 case E1000E_INT_MODE_MSI:
2108 if (!pci_enable_msi(adapter->pdev)) {
2109 adapter->flags |= FLAG_MSI_ENABLED;
2110 } else {
2111 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2112 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2113 }
2114 /* Fall through */
2115 case E1000E_INT_MODE_LEGACY:
2116 /* Don't do anything; this is the system default */
2117 break;
2118 }
2119
2120 /* store the number of vectors being used */
2121 adapter->num_vectors = 1;
2122 }
2123
2124 /**
2125 * e1000_request_msix - Initialize MSI-X interrupts
2126 *
2127 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2128 * kernel.
2129 **/
2130 static int e1000_request_msix(struct e1000_adapter *adapter)
2131 {
2132 struct net_device *netdev = adapter->netdev;
2133 int err = 0, vector = 0;
2134
2135 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2136 snprintf(adapter->rx_ring->name,
2137 sizeof(adapter->rx_ring->name) - 1,
2138 "%s-rx-0", netdev->name);
2139 else
2140 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2141 err = request_irq(adapter->msix_entries[vector].vector,
2142 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2143 netdev);
2144 if (err)
2145 return err;
2146 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2147 E1000_EITR_82574(vector);
2148 adapter->rx_ring->itr_val = adapter->itr;
2149 vector++;
2150
2151 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2152 snprintf(adapter->tx_ring->name,
2153 sizeof(adapter->tx_ring->name) - 1,
2154 "%s-tx-0", netdev->name);
2155 else
2156 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2157 err = request_irq(adapter->msix_entries[vector].vector,
2158 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2159 netdev);
2160 if (err)
2161 return err;
2162 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2163 E1000_EITR_82574(vector);
2164 adapter->tx_ring->itr_val = adapter->itr;
2165 vector++;
2166
2167 err = request_irq(adapter->msix_entries[vector].vector,
2168 e1000_msix_other, 0, netdev->name, netdev);
2169 if (err)
2170 return err;
2171
2172 e1000_configure_msix(adapter);
2173
2174 return 0;
2175 }
2176
2177 /**
2178 * e1000_request_irq - initialize interrupts
2179 *
2180 * Attempts to configure interrupts using the best available
2181 * capabilities of the hardware and kernel.
2182 **/
2183 static int e1000_request_irq(struct e1000_adapter *adapter)
2184 {
2185 struct net_device *netdev = adapter->netdev;
2186 int err;
2187
2188 if (adapter->msix_entries) {
2189 err = e1000_request_msix(adapter);
2190 if (!err)
2191 return err;
2192 /* fall back to MSI */
2193 e1000e_reset_interrupt_capability(adapter);
2194 adapter->int_mode = E1000E_INT_MODE_MSI;
2195 e1000e_set_interrupt_capability(adapter);
2196 }
2197 if (adapter->flags & FLAG_MSI_ENABLED) {
2198 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2199 netdev->name, netdev);
2200 if (!err)
2201 return err;
2202
2203 /* fall back to legacy interrupt */
2204 e1000e_reset_interrupt_capability(adapter);
2205 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2206 }
2207
2208 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2209 netdev->name, netdev);
2210 if (err)
2211 e_err("Unable to allocate interrupt, Error: %d\n", err);
2212
2213 return err;
2214 }
2215
2216 static void e1000_free_irq(struct e1000_adapter *adapter)
2217 {
2218 struct net_device *netdev = adapter->netdev;
2219
2220 if (adapter->msix_entries) {
2221 int vector = 0;
2222
2223 free_irq(adapter->msix_entries[vector].vector, netdev);
2224 vector++;
2225
2226 free_irq(adapter->msix_entries[vector].vector, netdev);
2227 vector++;
2228
2229 /* Other Causes interrupt vector */
2230 free_irq(adapter->msix_entries[vector].vector, netdev);
2231 return;
2232 }
2233
2234 free_irq(adapter->pdev->irq, netdev);
2235 }
2236
2237 /**
2238 * e1000_irq_disable - Mask off interrupt generation on the NIC
2239 **/
2240 static void e1000_irq_disable(struct e1000_adapter *adapter)
2241 {
2242 struct e1000_hw *hw = &adapter->hw;
2243
2244 ew32(IMC, ~0);
2245 if (adapter->msix_entries)
2246 ew32(EIAC_82574, 0);
2247 e1e_flush();
2248
2249 if (adapter->msix_entries) {
2250 int i;
2251
2252 for (i = 0; i < adapter->num_vectors; i++)
2253 synchronize_irq(adapter->msix_entries[i].vector);
2254 } else {
2255 synchronize_irq(adapter->pdev->irq);
2256 }
2257 }
2258
2259 /**
2260 * e1000_irq_enable - Enable default interrupt generation settings
2261 **/
2262 static void e1000_irq_enable(struct e1000_adapter *adapter)
2263 {
2264 struct e1000_hw *hw = &adapter->hw;
2265
2266 if (adapter->msix_entries) {
2267 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2268 ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2269 } else if (hw->mac.type >= e1000_pch_lpt) {
2270 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2271 } else {
2272 ew32(IMS, IMS_ENABLE_MASK);
2273 }
2274 e1e_flush();
2275 }
2276
2277 /**
2278 * e1000e_get_hw_control - get control of the h/w from f/w
2279 * @adapter: address of board private structure
2280 *
2281 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2282 * For ASF and Pass Through versions of f/w this means that
2283 * the driver is loaded. For AMT version (only with 82573)
2284 * of the f/w this means that the network i/f is open.
2285 **/
2286 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2287 {
2288 struct e1000_hw *hw = &adapter->hw;
2289 u32 ctrl_ext;
2290 u32 swsm;
2291
2292 /* Let firmware know the driver has taken over */
2293 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294 swsm = er32(SWSM);
2295 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2296 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297 ctrl_ext = er32(CTRL_EXT);
2298 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2299 }
2300 }
2301
2302 /**
2303 * e1000e_release_hw_control - release control of the h/w to f/w
2304 * @adapter: address of board private structure
2305 *
2306 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2307 * For ASF and Pass Through versions of f/w this means that the
2308 * driver is no longer loaded. For AMT version (only with 82573) i
2309 * of the f/w this means that the network i/f is closed.
2310 *
2311 **/
2312 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2313 {
2314 struct e1000_hw *hw = &adapter->hw;
2315 u32 ctrl_ext;
2316 u32 swsm;
2317
2318 /* Let firmware taken over control of h/w */
2319 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2320 swsm = er32(SWSM);
2321 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2322 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2323 ctrl_ext = er32(CTRL_EXT);
2324 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2325 }
2326 }
2327
2328 /**
2329 * e1000_alloc_ring_dma - allocate memory for a ring structure
2330 **/
2331 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2332 struct e1000_ring *ring)
2333 {
2334 struct pci_dev *pdev = adapter->pdev;
2335
2336 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2337 GFP_KERNEL);
2338 if (!ring->desc)
2339 return -ENOMEM;
2340
2341 return 0;
2342 }
2343
2344 /**
2345 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2346 * @tx_ring: Tx descriptor ring
2347 *
2348 * Return 0 on success, negative on failure
2349 **/
2350 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2351 {
2352 struct e1000_adapter *adapter = tx_ring->adapter;
2353 int err = -ENOMEM, size;
2354
2355 size = sizeof(struct e1000_buffer) * tx_ring->count;
2356 tx_ring->buffer_info = vzalloc(size);
2357 if (!tx_ring->buffer_info)
2358 goto err;
2359
2360 /* round up to nearest 4K */
2361 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2362 tx_ring->size = ALIGN(tx_ring->size, 4096);
2363
2364 err = e1000_alloc_ring_dma(adapter, tx_ring);
2365 if (err)
2366 goto err;
2367
2368 tx_ring->next_to_use = 0;
2369 tx_ring->next_to_clean = 0;
2370
2371 return 0;
2372 err:
2373 vfree(tx_ring->buffer_info);
2374 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2375 return err;
2376 }
2377
2378 /**
2379 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2380 * @rx_ring: Rx descriptor ring
2381 *
2382 * Returns 0 on success, negative on failure
2383 **/
2384 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2385 {
2386 struct e1000_adapter *adapter = rx_ring->adapter;
2387 struct e1000_buffer *buffer_info;
2388 int i, size, desc_len, err = -ENOMEM;
2389
2390 size = sizeof(struct e1000_buffer) * rx_ring->count;
2391 rx_ring->buffer_info = vzalloc(size);
2392 if (!rx_ring->buffer_info)
2393 goto err;
2394
2395 for (i = 0; i < rx_ring->count; i++) {
2396 buffer_info = &rx_ring->buffer_info[i];
2397 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2398 sizeof(struct e1000_ps_page),
2399 GFP_KERNEL);
2400 if (!buffer_info->ps_pages)
2401 goto err_pages;
2402 }
2403
2404 desc_len = sizeof(union e1000_rx_desc_packet_split);
2405
2406 /* Round up to nearest 4K */
2407 rx_ring->size = rx_ring->count * desc_len;
2408 rx_ring->size = ALIGN(rx_ring->size, 4096);
2409
2410 err = e1000_alloc_ring_dma(adapter, rx_ring);
2411 if (err)
2412 goto err_pages;
2413
2414 rx_ring->next_to_clean = 0;
2415 rx_ring->next_to_use = 0;
2416 rx_ring->rx_skb_top = NULL;
2417
2418 return 0;
2419
2420 err_pages:
2421 for (i = 0; i < rx_ring->count; i++) {
2422 buffer_info = &rx_ring->buffer_info[i];
2423 kfree(buffer_info->ps_pages);
2424 }
2425 err:
2426 vfree(rx_ring->buffer_info);
2427 e_err("Unable to allocate memory for the receive descriptor ring\n");
2428 return err;
2429 }
2430
2431 /**
2432 * e1000_clean_tx_ring - Free Tx Buffers
2433 * @tx_ring: Tx descriptor ring
2434 **/
2435 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2436 {
2437 struct e1000_adapter *adapter = tx_ring->adapter;
2438 struct e1000_buffer *buffer_info;
2439 unsigned long size;
2440 unsigned int i;
2441
2442 for (i = 0; i < tx_ring->count; i++) {
2443 buffer_info = &tx_ring->buffer_info[i];
2444 e1000_put_txbuf(tx_ring, buffer_info, false);
2445 }
2446
2447 netdev_reset_queue(adapter->netdev);
2448 size = sizeof(struct e1000_buffer) * tx_ring->count;
2449 memset(tx_ring->buffer_info, 0, size);
2450
2451 memset(tx_ring->desc, 0, tx_ring->size);
2452
2453 tx_ring->next_to_use = 0;
2454 tx_ring->next_to_clean = 0;
2455 }
2456
2457 /**
2458 * e1000e_free_tx_resources - Free Tx Resources per Queue
2459 * @tx_ring: Tx descriptor ring
2460 *
2461 * Free all transmit software resources
2462 **/
2463 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2464 {
2465 struct e1000_adapter *adapter = tx_ring->adapter;
2466 struct pci_dev *pdev = adapter->pdev;
2467
2468 e1000_clean_tx_ring(tx_ring);
2469
2470 vfree(tx_ring->buffer_info);
2471 tx_ring->buffer_info = NULL;
2472
2473 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2474 tx_ring->dma);
2475 tx_ring->desc = NULL;
2476 }
2477
2478 /**
2479 * e1000e_free_rx_resources - Free Rx Resources
2480 * @rx_ring: Rx descriptor ring
2481 *
2482 * Free all receive software resources
2483 **/
2484 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2485 {
2486 struct e1000_adapter *adapter = rx_ring->adapter;
2487 struct pci_dev *pdev = adapter->pdev;
2488 int i;
2489
2490 e1000_clean_rx_ring(rx_ring);
2491
2492 for (i = 0; i < rx_ring->count; i++)
2493 kfree(rx_ring->buffer_info[i].ps_pages);
2494
2495 vfree(rx_ring->buffer_info);
2496 rx_ring->buffer_info = NULL;
2497
2498 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2499 rx_ring->dma);
2500 rx_ring->desc = NULL;
2501 }
2502
2503 /**
2504 * e1000_update_itr - update the dynamic ITR value based on statistics
2505 * @adapter: pointer to adapter
2506 * @itr_setting: current adapter->itr
2507 * @packets: the number of packets during this measurement interval
2508 * @bytes: the number of bytes during this measurement interval
2509 *
2510 * Stores a new ITR value based on packets and byte
2511 * counts during the last interrupt. The advantage of per interrupt
2512 * computation is faster updates and more accurate ITR for the current
2513 * traffic pattern. Constants in this function were computed
2514 * based on theoretical maximum wire speed and thresholds were set based
2515 * on testing data as well as attempting to minimize response time
2516 * while increasing bulk throughput. This functionality is controlled
2517 * by the InterruptThrottleRate module parameter.
2518 **/
2519 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2520 {
2521 unsigned int retval = itr_setting;
2522
2523 if (packets == 0)
2524 return itr_setting;
2525
2526 switch (itr_setting) {
2527 case lowest_latency:
2528 /* handle TSO and jumbo frames */
2529 if (bytes / packets > 8000)
2530 retval = bulk_latency;
2531 else if ((packets < 5) && (bytes > 512))
2532 retval = low_latency;
2533 break;
2534 case low_latency: /* 50 usec aka 20000 ints/s */
2535 if (bytes > 10000) {
2536 /* this if handles the TSO accounting */
2537 if (bytes / packets > 8000)
2538 retval = bulk_latency;
2539 else if ((packets < 10) || ((bytes / packets) > 1200))
2540 retval = bulk_latency;
2541 else if ((packets > 35))
2542 retval = lowest_latency;
2543 } else if (bytes / packets > 2000) {
2544 retval = bulk_latency;
2545 } else if (packets <= 2 && bytes < 512) {
2546 retval = lowest_latency;
2547 }
2548 break;
2549 case bulk_latency: /* 250 usec aka 4000 ints/s */
2550 if (bytes > 25000) {
2551 if (packets > 35)
2552 retval = low_latency;
2553 } else if (bytes < 6000) {
2554 retval = low_latency;
2555 }
2556 break;
2557 }
2558
2559 return retval;
2560 }
2561
2562 static void e1000_set_itr(struct e1000_adapter *adapter)
2563 {
2564 u16 current_itr;
2565 u32 new_itr = adapter->itr;
2566
2567 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2568 if (adapter->link_speed != SPEED_1000) {
2569 current_itr = 0;
2570 new_itr = 4000;
2571 goto set_itr_now;
2572 }
2573
2574 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2575 new_itr = 0;
2576 goto set_itr_now;
2577 }
2578
2579 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2580 adapter->total_tx_packets,
2581 adapter->total_tx_bytes);
2582 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2583 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2584 adapter->tx_itr = low_latency;
2585
2586 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2587 adapter->total_rx_packets,
2588 adapter->total_rx_bytes);
2589 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2590 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2591 adapter->rx_itr = low_latency;
2592
2593 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2594
2595 /* counts and packets in update_itr are dependent on these numbers */
2596 switch (current_itr) {
2597 case lowest_latency:
2598 new_itr = 70000;
2599 break;
2600 case low_latency:
2601 new_itr = 20000; /* aka hwitr = ~200 */
2602 break;
2603 case bulk_latency:
2604 new_itr = 4000;
2605 break;
2606 default:
2607 break;
2608 }
2609
2610 set_itr_now:
2611 if (new_itr != adapter->itr) {
2612 /* this attempts to bias the interrupt rate towards Bulk
2613 * by adding intermediate steps when interrupt rate is
2614 * increasing
2615 */
2616 new_itr = new_itr > adapter->itr ?
2617 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2618 adapter->itr = new_itr;
2619 adapter->rx_ring->itr_val = new_itr;
2620 if (adapter->msix_entries)
2621 adapter->rx_ring->set_itr = 1;
2622 else
2623 e1000e_write_itr(adapter, new_itr);
2624 }
2625 }
2626
2627 /**
2628 * e1000e_write_itr - write the ITR value to the appropriate registers
2629 * @adapter: address of board private structure
2630 * @itr: new ITR value to program
2631 *
2632 * e1000e_write_itr determines if the adapter is in MSI-X mode
2633 * and, if so, writes the EITR registers with the ITR value.
2634 * Otherwise, it writes the ITR value into the ITR register.
2635 **/
2636 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2637 {
2638 struct e1000_hw *hw = &adapter->hw;
2639 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2640
2641 if (adapter->msix_entries) {
2642 int vector;
2643
2644 for (vector = 0; vector < adapter->num_vectors; vector++)
2645 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2646 } else {
2647 ew32(ITR, new_itr);
2648 }
2649 }
2650
2651 /**
2652 * e1000_alloc_queues - Allocate memory for all rings
2653 * @adapter: board private structure to initialize
2654 **/
2655 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2656 {
2657 int size = sizeof(struct e1000_ring);
2658
2659 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2660 if (!adapter->tx_ring)
2661 goto err;
2662 adapter->tx_ring->count = adapter->tx_ring_count;
2663 adapter->tx_ring->adapter = adapter;
2664
2665 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2666 if (!adapter->rx_ring)
2667 goto err;
2668 adapter->rx_ring->count = adapter->rx_ring_count;
2669 adapter->rx_ring->adapter = adapter;
2670
2671 return 0;
2672 err:
2673 e_err("Unable to allocate memory for queues\n");
2674 kfree(adapter->rx_ring);
2675 kfree(adapter->tx_ring);
2676 return -ENOMEM;
2677 }
2678
2679 /**
2680 * e1000e_poll - NAPI Rx polling callback
2681 * @napi: struct associated with this polling callback
2682 * @weight: number of packets driver is allowed to process this poll
2683 **/
2684 static int e1000e_poll(struct napi_struct *napi, int weight)
2685 {
2686 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2687 napi);
2688 struct e1000_hw *hw = &adapter->hw;
2689 struct net_device *poll_dev = adapter->netdev;
2690 int tx_cleaned = 1, work_done = 0;
2691
2692 adapter = netdev_priv(poll_dev);
2693
2694 if (!adapter->msix_entries ||
2695 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2696 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2697
2698 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2699
2700 if (!tx_cleaned)
2701 work_done = weight;
2702
2703 /* If weight not fully consumed, exit the polling mode */
2704 if (work_done < weight) {
2705 if (adapter->itr_setting & 3)
2706 e1000_set_itr(adapter);
2707 napi_complete_done(napi, work_done);
2708 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2709 if (adapter->msix_entries)
2710 ew32(IMS, adapter->rx_ring->ims_val |
2711 E1000_IMS_OTHER);
2712 else
2713 e1000_irq_enable(adapter);
2714 }
2715 }
2716
2717 return work_done;
2718 }
2719
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721 __always_unused __be16 proto, u16 vid)
2722 {
2723 struct e1000_adapter *adapter = netdev_priv(netdev);
2724 struct e1000_hw *hw = &adapter->hw;
2725 u32 vfta, index;
2726
2727 /* don't update vlan cookie if already programmed */
2728 if ((adapter->hw.mng_cookie.status &
2729 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730 (vid == adapter->mng_vlan_id))
2731 return 0;
2732
2733 /* add VID to filter table */
2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 index = (vid >> 5) & 0x7F;
2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 vfta |= BIT((vid & 0x1F));
2738 hw->mac.ops.write_vfta(hw, index, vfta);
2739 }
2740
2741 set_bit(vid, adapter->active_vlans);
2742
2743 return 0;
2744 }
2745
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747 __always_unused __be16 proto, u16 vid)
2748 {
2749 struct e1000_adapter *adapter = netdev_priv(netdev);
2750 struct e1000_hw *hw = &adapter->hw;
2751 u32 vfta, index;
2752
2753 if ((adapter->hw.mng_cookie.status &
2754 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755 (vid == adapter->mng_vlan_id)) {
2756 /* release control to f/w */
2757 e1000e_release_hw_control(adapter);
2758 return 0;
2759 }
2760
2761 /* remove VID from filter table */
2762 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 index = (vid >> 5) & 0x7F;
2764 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765 vfta &= ~BIT((vid & 0x1F));
2766 hw->mac.ops.write_vfta(hw, index, vfta);
2767 }
2768
2769 clear_bit(vid, adapter->active_vlans);
2770
2771 return 0;
2772 }
2773
2774 /**
2775 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776 * @adapter: board private structure to initialize
2777 **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780 struct net_device *netdev = adapter->netdev;
2781 struct e1000_hw *hw = &adapter->hw;
2782 u32 rctl;
2783
2784 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 /* disable VLAN receive filtering */
2786 rctl = er32(RCTL);
2787 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788 ew32(RCTL, rctl);
2789
2790 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792 adapter->mng_vlan_id);
2793 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794 }
2795 }
2796 }
2797
2798 /**
2799 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800 * @adapter: board private structure to initialize
2801 **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804 struct e1000_hw *hw = &adapter->hw;
2805 u32 rctl;
2806
2807 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808 /* enable VLAN receive filtering */
2809 rctl = er32(RCTL);
2810 rctl |= E1000_RCTL_VFE;
2811 rctl &= ~E1000_RCTL_CFIEN;
2812 ew32(RCTL, rctl);
2813 }
2814 }
2815
2816 /**
2817 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2818 * @adapter: board private structure to initialize
2819 **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822 struct e1000_hw *hw = &adapter->hw;
2823 u32 ctrl;
2824
2825 /* disable VLAN tag insert/strip */
2826 ctrl = er32(CTRL);
2827 ctrl &= ~E1000_CTRL_VME;
2828 ew32(CTRL, ctrl);
2829 }
2830
2831 /**
2832 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833 * @adapter: board private structure to initialize
2834 **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837 struct e1000_hw *hw = &adapter->hw;
2838 u32 ctrl;
2839
2840 /* enable VLAN tag insert/strip */
2841 ctrl = er32(CTRL);
2842 ctrl |= E1000_CTRL_VME;
2843 ew32(CTRL, ctrl);
2844 }
2845
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848 struct net_device *netdev = adapter->netdev;
2849 u16 vid = adapter->hw.mng_cookie.vlan_id;
2850 u16 old_vid = adapter->mng_vlan_id;
2851
2852 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854 adapter->mng_vlan_id = vid;
2855 }
2856
2857 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863 u16 vid;
2864
2865 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866
2867 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873 struct e1000_hw *hw = &adapter->hw;
2874 u32 manc, manc2h, mdef, i, j;
2875
2876 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877 return;
2878
2879 manc = er32(MANC);
2880
2881 /* enable receiving management packets to the host. this will probably
2882 * generate destination unreachable messages from the host OS, but
2883 * the packets will be handled on SMBUS
2884 */
2885 manc |= E1000_MANC_EN_MNG2HOST;
2886 manc2h = er32(MANC2H);
2887
2888 switch (hw->mac.type) {
2889 default:
2890 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891 break;
2892 case e1000_82574:
2893 case e1000_82583:
2894 /* Check if IPMI pass-through decision filter already exists;
2895 * if so, enable it.
2896 */
2897 for (i = 0, j = 0; i < 8; i++) {
2898 mdef = er32(MDEF(i));
2899
2900 /* Ignore filters with anything other than IPMI ports */
2901 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 continue;
2903
2904 /* Enable this decision filter in MANC2H */
2905 if (mdef)
2906 manc2h |= BIT(i);
2907
2908 j |= mdef;
2909 }
2910
2911 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912 break;
2913
2914 /* Create new decision filter in an empty filter */
2915 for (i = 0, j = 0; i < 8; i++)
2916 if (er32(MDEF(i)) == 0) {
2917 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918 E1000_MDEF_PORT_664));
2919 manc2h |= BIT(1);
2920 j++;
2921 break;
2922 }
2923
2924 if (!j)
2925 e_warn("Unable to create IPMI pass-through filter\n");
2926 break;
2927 }
2928
2929 ew32(MANC2H, manc2h);
2930 ew32(MANC, manc);
2931 }
2932
2933 /**
2934 * e1000_configure_tx - Configure Transmit Unit after Reset
2935 * @adapter: board private structure
2936 *
2937 * Configure the Tx unit of the MAC after a reset.
2938 **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941 struct e1000_hw *hw = &adapter->hw;
2942 struct e1000_ring *tx_ring = adapter->tx_ring;
2943 u64 tdba;
2944 u32 tdlen, tctl, tarc;
2945
2946 /* Setup the HW Tx Head and Tail descriptor pointers */
2947 tdba = tx_ring->dma;
2948 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950 ew32(TDBAH(0), (tdba >> 32));
2951 ew32(TDLEN(0), tdlen);
2952 ew32(TDH(0), 0);
2953 ew32(TDT(0), 0);
2954 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956
2957 writel(0, tx_ring->head);
2958 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2959 e1000e_update_tdt_wa(tx_ring, 0);
2960 else
2961 writel(0, tx_ring->tail);
2962
2963 /* Set the Tx Interrupt Delay register */
2964 ew32(TIDV, adapter->tx_int_delay);
2965 /* Tx irq moderation */
2966 ew32(TADV, adapter->tx_abs_int_delay);
2967
2968 if (adapter->flags2 & FLAG2_DMA_BURST) {
2969 u32 txdctl = er32(TXDCTL(0));
2970
2971 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2972 E1000_TXDCTL_WTHRESH);
2973 /* set up some performance related parameters to encourage the
2974 * hardware to use the bus more efficiently in bursts, depends
2975 * on the tx_int_delay to be enabled,
2976 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2977 * hthresh = 1 ==> prefetch when one or more available
2978 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2979 * BEWARE: this seems to work but should be considered first if
2980 * there are Tx hangs or other Tx related bugs
2981 */
2982 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2983 ew32(TXDCTL(0), txdctl);
2984 }
2985 /* erratum work around: set txdctl the same for both queues */
2986 ew32(TXDCTL(1), er32(TXDCTL(0)));
2987
2988 /* Program the Transmit Control Register */
2989 tctl = er32(TCTL);
2990 tctl &= ~E1000_TCTL_CT;
2991 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2992 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2993
2994 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2995 tarc = er32(TARC(0));
2996 /* set the speed mode bit, we'll clear it if we're not at
2997 * gigabit link later
2998 */
2999 #define SPEED_MODE_BIT BIT(21)
3000 tarc |= SPEED_MODE_BIT;
3001 ew32(TARC(0), tarc);
3002 }
3003
3004 /* errata: program both queues to unweighted RR */
3005 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3006 tarc = er32(TARC(0));
3007 tarc |= 1;
3008 ew32(TARC(0), tarc);
3009 tarc = er32(TARC(1));
3010 tarc |= 1;
3011 ew32(TARC(1), tarc);
3012 }
3013
3014 /* Setup Transmit Descriptor Settings for eop descriptor */
3015 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3016
3017 /* only set IDE if we are delaying interrupts using the timers */
3018 if (adapter->tx_int_delay)
3019 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3020
3021 /* enable Report Status bit */
3022 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3023
3024 ew32(TCTL, tctl);
3025
3026 hw->mac.ops.config_collision_dist(hw);
3027
3028 /* SPT and KBL Si errata workaround to avoid data corruption */
3029 if (hw->mac.type == e1000_pch_spt) {
3030 u32 reg_val;
3031
3032 reg_val = er32(IOSFPC);
3033 reg_val |= E1000_RCTL_RDMTS_HEX;
3034 ew32(IOSFPC, reg_val);
3035
3036 reg_val = er32(TARC(0));
3037 /* SPT and KBL Si errata workaround to avoid Tx hang */
3038 reg_val &= ~BIT(28);
3039 reg_val |= BIT(29);
3040 ew32(TARC(0), reg_val);
3041 }
3042 }
3043
3044 /**
3045 * e1000_setup_rctl - configure the receive control registers
3046 * @adapter: Board private structure
3047 **/
3048 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3049 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3050 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3051 {
3052 struct e1000_hw *hw = &adapter->hw;
3053 u32 rctl, rfctl;
3054 u32 pages = 0;
3055
3056 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3057 * If jumbo frames not set, program related MAC/PHY registers
3058 * to h/w defaults
3059 */
3060 if (hw->mac.type >= e1000_pch2lan) {
3061 s32 ret_val;
3062
3063 if (adapter->netdev->mtu > ETH_DATA_LEN)
3064 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3065 else
3066 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3067
3068 if (ret_val)
3069 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3070 }
3071
3072 /* Program MC offset vector base */
3073 rctl = er32(RCTL);
3074 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3075 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3076 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3077 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3078
3079 /* Do not Store bad packets */
3080 rctl &= ~E1000_RCTL_SBP;
3081
3082 /* Enable Long Packet receive */
3083 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3084 rctl &= ~E1000_RCTL_LPE;
3085 else
3086 rctl |= E1000_RCTL_LPE;
3087
3088 /* Some systems expect that the CRC is included in SMBUS traffic. The
3089 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3090 * host memory when this is enabled
3091 */
3092 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3093 rctl |= E1000_RCTL_SECRC;
3094
3095 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3096 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3097 u16 phy_data;
3098
3099 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3100 phy_data &= 0xfff8;
3101 phy_data |= BIT(2);
3102 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3103
3104 e1e_rphy(hw, 22, &phy_data);
3105 phy_data &= 0x0fff;
3106 phy_data |= BIT(14);
3107 e1e_wphy(hw, 0x10, 0x2823);
3108 e1e_wphy(hw, 0x11, 0x0003);
3109 e1e_wphy(hw, 22, phy_data);
3110 }
3111
3112 /* Setup buffer sizes */
3113 rctl &= ~E1000_RCTL_SZ_4096;
3114 rctl |= E1000_RCTL_BSEX;
3115 switch (adapter->rx_buffer_len) {
3116 case 2048:
3117 default:
3118 rctl |= E1000_RCTL_SZ_2048;
3119 rctl &= ~E1000_RCTL_BSEX;
3120 break;
3121 case 4096:
3122 rctl |= E1000_RCTL_SZ_4096;
3123 break;
3124 case 8192:
3125 rctl |= E1000_RCTL_SZ_8192;
3126 break;
3127 case 16384:
3128 rctl |= E1000_RCTL_SZ_16384;
3129 break;
3130 }
3131
3132 /* Enable Extended Status in all Receive Descriptors */
3133 rfctl = er32(RFCTL);
3134 rfctl |= E1000_RFCTL_EXTEN;
3135 ew32(RFCTL, rfctl);
3136
3137 /* 82571 and greater support packet-split where the protocol
3138 * header is placed in skb->data and the packet data is
3139 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3140 * In the case of a non-split, skb->data is linearly filled,
3141 * followed by the page buffers. Therefore, skb->data is
3142 * sized to hold the largest protocol header.
3143 *
3144 * allocations using alloc_page take too long for regular MTU
3145 * so only enable packet split for jumbo frames
3146 *
3147 * Using pages when the page size is greater than 16k wastes
3148 * a lot of memory, since we allocate 3 pages at all times
3149 * per packet.
3150 */
3151 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3152 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3153 adapter->rx_ps_pages = pages;
3154 else
3155 adapter->rx_ps_pages = 0;
3156
3157 if (adapter->rx_ps_pages) {
3158 u32 psrctl = 0;
3159
3160 /* Enable Packet split descriptors */
3161 rctl |= E1000_RCTL_DTYP_PS;
3162
3163 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3164
3165 switch (adapter->rx_ps_pages) {
3166 case 3:
3167 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3168 /* fall-through */
3169 case 2:
3170 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3171 /* fall-through */
3172 case 1:
3173 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3174 break;
3175 }
3176
3177 ew32(PSRCTL, psrctl);
3178 }
3179
3180 /* This is useful for sniffing bad packets. */
3181 if (adapter->netdev->features & NETIF_F_RXALL) {
3182 /* UPE and MPE will be handled by normal PROMISC logic
3183 * in e1000e_set_rx_mode
3184 */
3185 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3186 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3187 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3188
3189 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3190 E1000_RCTL_DPF | /* Allow filtered pause */
3191 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3192 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3193 * and that breaks VLANs.
3194 */
3195 }
3196
3197 ew32(RCTL, rctl);
3198 /* just started the receive unit, no need to restart */
3199 adapter->flags &= ~FLAG_RESTART_NOW;
3200 }
3201
3202 /**
3203 * e1000_configure_rx - Configure Receive Unit after Reset
3204 * @adapter: board private structure
3205 *
3206 * Configure the Rx unit of the MAC after a reset.
3207 **/
3208 static void e1000_configure_rx(struct e1000_adapter *adapter)
3209 {
3210 struct e1000_hw *hw = &adapter->hw;
3211 struct e1000_ring *rx_ring = adapter->rx_ring;
3212 u64 rdba;
3213 u32 rdlen, rctl, rxcsum, ctrl_ext;
3214
3215 if (adapter->rx_ps_pages) {
3216 /* this is a 32 byte descriptor */
3217 rdlen = rx_ring->count *
3218 sizeof(union e1000_rx_desc_packet_split);
3219 adapter->clean_rx = e1000_clean_rx_irq_ps;
3220 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3221 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3222 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3223 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3224 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3225 } else {
3226 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3227 adapter->clean_rx = e1000_clean_rx_irq;
3228 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3229 }
3230
3231 /* disable receives while setting up the descriptors */
3232 rctl = er32(RCTL);
3233 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3234 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3235 e1e_flush();
3236 usleep_range(10000, 20000);
3237
3238 if (adapter->flags2 & FLAG2_DMA_BURST) {
3239 /* set the writeback threshold (only takes effect if the RDTR
3240 * is set). set GRAN=1 and write back up to 0x4 worth, and
3241 * enable prefetching of 0x20 Rx descriptors
3242 * granularity = 01
3243 * wthresh = 04,
3244 * hthresh = 04,
3245 * pthresh = 0x20
3246 */
3247 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3248 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3249 }
3250
3251 /* set the Receive Delay Timer Register */
3252 ew32(RDTR, adapter->rx_int_delay);
3253
3254 /* irq moderation */
3255 ew32(RADV, adapter->rx_abs_int_delay);
3256 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257 e1000e_write_itr(adapter, adapter->itr);
3258
3259 ctrl_ext = er32(CTRL_EXT);
3260 /* Auto-Mask interrupts upon ICR access */
3261 ctrl_ext |= E1000_CTRL_EXT_IAME;
3262 ew32(IAM, 0xffffffff);
3263 ew32(CTRL_EXT, ctrl_ext);
3264 e1e_flush();
3265
3266 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3267 * the Base and Length of the Rx Descriptor Ring
3268 */
3269 rdba = rx_ring->dma;
3270 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271 ew32(RDBAH(0), (rdba >> 32));
3272 ew32(RDLEN(0), rdlen);
3273 ew32(RDH(0), 0);
3274 ew32(RDT(0), 0);
3275 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277
3278 writel(0, rx_ring->head);
3279 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3280 e1000e_update_rdt_wa(rx_ring, 0);
3281 else
3282 writel(0, rx_ring->tail);
3283
3284 /* Enable Receive Checksum Offload for TCP and UDP */
3285 rxcsum = er32(RXCSUM);
3286 if (adapter->netdev->features & NETIF_F_RXCSUM)
3287 rxcsum |= E1000_RXCSUM_TUOFL;
3288 else
3289 rxcsum &= ~E1000_RXCSUM_TUOFL;
3290 ew32(RXCSUM, rxcsum);
3291
3292 /* With jumbo frames, excessive C-state transition latencies result
3293 * in dropped transactions.
3294 */
3295 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3296 u32 lat =
3297 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3298 adapter->max_frame_size) * 8 / 1000;
3299
3300 if (adapter->flags & FLAG_IS_ICH) {
3301 u32 rxdctl = er32(RXDCTL(0));
3302
3303 ew32(RXDCTL(0), rxdctl | 0x3);
3304 }
3305
3306 pm_qos_update_request(&adapter->pm_qos_req, lat);
3307 } else {
3308 pm_qos_update_request(&adapter->pm_qos_req,
3309 PM_QOS_DEFAULT_VALUE);
3310 }
3311
3312 /* Enable Receives */
3313 ew32(RCTL, rctl);
3314 }
3315
3316 /**
3317 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3318 * @netdev: network interface device structure
3319 *
3320 * Writes multicast address list to the MTA hash table.
3321 * Returns: -ENOMEM on failure
3322 * 0 on no addresses written
3323 * X on writing X addresses to MTA
3324 */
3325 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3326 {
3327 struct e1000_adapter *adapter = netdev_priv(netdev);
3328 struct e1000_hw *hw = &adapter->hw;
3329 struct netdev_hw_addr *ha;
3330 u8 *mta_list;
3331 int i;
3332
3333 if (netdev_mc_empty(netdev)) {
3334 /* nothing to program, so clear mc list */
3335 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3336 return 0;
3337 }
3338
3339 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3340 if (!mta_list)
3341 return -ENOMEM;
3342
3343 /* update_mc_addr_list expects a packed array of only addresses. */
3344 i = 0;
3345 netdev_for_each_mc_addr(ha, netdev)
3346 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3347
3348 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3349 kfree(mta_list);
3350
3351 return netdev_mc_count(netdev);
3352 }
3353
3354 /**
3355 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3356 * @netdev: network interface device structure
3357 *
3358 * Writes unicast address list to the RAR table.
3359 * Returns: -ENOMEM on failure/insufficient address space
3360 * 0 on no addresses written
3361 * X on writing X addresses to the RAR table
3362 **/
3363 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3364 {
3365 struct e1000_adapter *adapter = netdev_priv(netdev);
3366 struct e1000_hw *hw = &adapter->hw;
3367 unsigned int rar_entries;
3368 int count = 0;
3369
3370 rar_entries = hw->mac.ops.rar_get_count(hw);
3371
3372 /* save a rar entry for our hardware address */
3373 rar_entries--;
3374
3375 /* save a rar entry for the LAA workaround */
3376 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3377 rar_entries--;
3378
3379 /* return ENOMEM indicating insufficient memory for addresses */
3380 if (netdev_uc_count(netdev) > rar_entries)
3381 return -ENOMEM;
3382
3383 if (!netdev_uc_empty(netdev) && rar_entries) {
3384 struct netdev_hw_addr *ha;
3385
3386 /* write the addresses in reverse order to avoid write
3387 * combining
3388 */
3389 netdev_for_each_uc_addr(ha, netdev) {
3390 int ret_val;
3391
3392 if (!rar_entries)
3393 break;
3394 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3395 if (ret_val < 0)
3396 return -ENOMEM;
3397 count++;
3398 }
3399 }
3400
3401 /* zero out the remaining RAR entries not used above */
3402 for (; rar_entries > 0; rar_entries--) {
3403 ew32(RAH(rar_entries), 0);
3404 ew32(RAL(rar_entries), 0);
3405 }
3406 e1e_flush();
3407
3408 return count;
3409 }
3410
3411 /**
3412 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3413 * @netdev: network interface device structure
3414 *
3415 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3416 * address list or the network interface flags are updated. This routine is
3417 * responsible for configuring the hardware for proper unicast, multicast,
3418 * promiscuous mode, and all-multi behavior.
3419 **/
3420 static void e1000e_set_rx_mode(struct net_device *netdev)
3421 {
3422 struct e1000_adapter *adapter = netdev_priv(netdev);
3423 struct e1000_hw *hw = &adapter->hw;
3424 u32 rctl;
3425
3426 if (pm_runtime_suspended(netdev->dev.parent))
3427 return;
3428
3429 /* Check for Promiscuous and All Multicast modes */
3430 rctl = er32(RCTL);
3431
3432 /* clear the affected bits */
3433 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3434
3435 if (netdev->flags & IFF_PROMISC) {
3436 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3437 /* Do not hardware filter VLANs in promisc mode */
3438 e1000e_vlan_filter_disable(adapter);
3439 } else {
3440 int count;
3441
3442 if (netdev->flags & IFF_ALLMULTI) {
3443 rctl |= E1000_RCTL_MPE;
3444 } else {
3445 /* Write addresses to the MTA, if the attempt fails
3446 * then we should just turn on promiscuous mode so
3447 * that we can at least receive multicast traffic
3448 */
3449 count = e1000e_write_mc_addr_list(netdev);
3450 if (count < 0)
3451 rctl |= E1000_RCTL_MPE;
3452 }
3453 e1000e_vlan_filter_enable(adapter);
3454 /* Write addresses to available RAR registers, if there is not
3455 * sufficient space to store all the addresses then enable
3456 * unicast promiscuous mode
3457 */
3458 count = e1000e_write_uc_addr_list(netdev);
3459 if (count < 0)
3460 rctl |= E1000_RCTL_UPE;
3461 }
3462
3463 ew32(RCTL, rctl);
3464
3465 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3466 e1000e_vlan_strip_enable(adapter);
3467 else
3468 e1000e_vlan_strip_disable(adapter);
3469 }
3470
3471 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3472 {
3473 struct e1000_hw *hw = &adapter->hw;
3474 u32 mrqc, rxcsum;
3475 u32 rss_key[10];
3476 int i;
3477
3478 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3479 for (i = 0; i < 10; i++)
3480 ew32(RSSRK(i), rss_key[i]);
3481
3482 /* Direct all traffic to queue 0 */
3483 for (i = 0; i < 32; i++)
3484 ew32(RETA(i), 0);
3485
3486 /* Disable raw packet checksumming so that RSS hash is placed in
3487 * descriptor on writeback.
3488 */
3489 rxcsum = er32(RXCSUM);
3490 rxcsum |= E1000_RXCSUM_PCSD;
3491
3492 ew32(RXCSUM, rxcsum);
3493
3494 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3495 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3496 E1000_MRQC_RSS_FIELD_IPV6 |
3497 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3498 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3499
3500 ew32(MRQC, mrqc);
3501 }
3502
3503 /**
3504 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3505 * @adapter: board private structure
3506 * @timinca: pointer to returned time increment attributes
3507 *
3508 * Get attributes for incrementing the System Time Register SYSTIML/H at
3509 * the default base frequency, and set the cyclecounter shift value.
3510 **/
3511 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3512 {
3513 struct e1000_hw *hw = &adapter->hw;
3514 u32 incvalue, incperiod, shift;
3515
3516 /* Make sure clock is enabled on I217/I218/I219 before checking
3517 * the frequency
3518 */
3519 if ((hw->mac.type >= e1000_pch_lpt) &&
3520 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3521 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3522 u32 fextnvm7 = er32(FEXTNVM7);
3523
3524 if (!(fextnvm7 & BIT(0))) {
3525 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3526 e1e_flush();
3527 }
3528 }
3529
3530 switch (hw->mac.type) {
3531 case e1000_pch2lan:
3532 /* Stable 96MHz frequency */
3533 incperiod = INCPERIOD_96MHZ;
3534 incvalue = INCVALUE_96MHZ;
3535 shift = INCVALUE_SHIFT_96MHZ;
3536 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3537 break;
3538 case e1000_pch_lpt:
3539 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3540 /* Stable 96MHz frequency */
3541 incperiod = INCPERIOD_96MHZ;
3542 incvalue = INCVALUE_96MHZ;
3543 shift = INCVALUE_SHIFT_96MHZ;
3544 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3545 } else {
3546 /* Stable 25MHz frequency */
3547 incperiod = INCPERIOD_25MHZ;
3548 incvalue = INCVALUE_25MHZ;
3549 shift = INCVALUE_SHIFT_25MHZ;
3550 adapter->cc.shift = shift;
3551 }
3552 break;
3553 case e1000_pch_spt:
3554 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3555 /* Stable 24MHz frequency */
3556 incperiod = INCPERIOD_24MHZ;
3557 incvalue = INCVALUE_24MHZ;
3558 shift = INCVALUE_SHIFT_24MHZ;
3559 adapter->cc.shift = shift;
3560 break;
3561 }
3562 return -EINVAL;
3563 case e1000_pch_cnp:
3564 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3565 /* Stable 24MHz frequency */
3566 incperiod = INCPERIOD_24MHZ;
3567 incvalue = INCVALUE_24MHZ;
3568 shift = INCVALUE_SHIFT_24MHZ;
3569 adapter->cc.shift = shift;
3570 } else {
3571 /* Stable 38400KHz frequency */
3572 incperiod = INCPERIOD_38400KHZ;
3573 incvalue = INCVALUE_38400KHZ;
3574 shift = INCVALUE_SHIFT_38400KHZ;
3575 adapter->cc.shift = shift;
3576 }
3577 break;
3578 case e1000_82574:
3579 case e1000_82583:
3580 /* Stable 25MHz frequency */
3581 incperiod = INCPERIOD_25MHZ;
3582 incvalue = INCVALUE_25MHZ;
3583 shift = INCVALUE_SHIFT_25MHZ;
3584 adapter->cc.shift = shift;
3585 break;
3586 default:
3587 return -EINVAL;
3588 }
3589
3590 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3591 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3592
3593 return 0;
3594 }
3595
3596 /**
3597 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3598 * @adapter: board private structure
3599 *
3600 * Outgoing time stamping can be enabled and disabled. Play nice and
3601 * disable it when requested, although it shouldn't cause any overhead
3602 * when no packet needs it. At most one packet in the queue may be
3603 * marked for time stamping, otherwise it would be impossible to tell
3604 * for sure to which packet the hardware time stamp belongs.
3605 *
3606 * Incoming time stamping has to be configured via the hardware filters.
3607 * Not all combinations are supported, in particular event type has to be
3608 * specified. Matching the kind of event packet is not supported, with the
3609 * exception of "all V2 events regardless of level 2 or 4".
3610 **/
3611 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3612 struct hwtstamp_config *config)
3613 {
3614 struct e1000_hw *hw = &adapter->hw;
3615 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3616 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3617 u32 rxmtrl = 0;
3618 u16 rxudp = 0;
3619 bool is_l4 = false;
3620 bool is_l2 = false;
3621 u32 regval;
3622
3623 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3624 return -EINVAL;
3625
3626 /* flags reserved for future extensions - must be zero */
3627 if (config->flags)
3628 return -EINVAL;
3629
3630 switch (config->tx_type) {
3631 case HWTSTAMP_TX_OFF:
3632 tsync_tx_ctl = 0;
3633 break;
3634 case HWTSTAMP_TX_ON:
3635 break;
3636 default:
3637 return -ERANGE;
3638 }
3639
3640 switch (config->rx_filter) {
3641 case HWTSTAMP_FILTER_NONE:
3642 tsync_rx_ctl = 0;
3643 break;
3644 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3645 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3646 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3647 is_l4 = true;
3648 break;
3649 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3650 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3651 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3652 is_l4 = true;
3653 break;
3654 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3655 /* Also time stamps V2 L2 Path Delay Request/Response */
3656 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3657 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3658 is_l2 = true;
3659 break;
3660 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3661 /* Also time stamps V2 L2 Path Delay Request/Response. */
3662 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3663 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3664 is_l2 = true;
3665 break;
3666 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3667 /* Hardware cannot filter just V2 L4 Sync messages;
3668 * fall-through to V2 (both L2 and L4) Sync.
3669 */
3670 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3671 /* Also time stamps V2 Path Delay Request/Response. */
3672 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3673 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3674 is_l2 = true;
3675 is_l4 = true;
3676 break;
3677 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3678 /* Hardware cannot filter just V2 L4 Delay Request messages;
3679 * fall-through to V2 (both L2 and L4) Delay Request.
3680 */
3681 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3682 /* Also time stamps V2 Path Delay Request/Response. */
3683 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3684 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3685 is_l2 = true;
3686 is_l4 = true;
3687 break;
3688 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3689 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3690 /* Hardware cannot filter just V2 L4 or L2 Event messages;
3691 * fall-through to all V2 (both L2 and L4) Events.
3692 */
3693 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3694 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3695 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3696 is_l2 = true;
3697 is_l4 = true;
3698 break;
3699 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3700 /* For V1, the hardware can only filter Sync messages or
3701 * Delay Request messages but not both so fall-through to
3702 * time stamp all packets.
3703 */
3704 case HWTSTAMP_FILTER_NTP_ALL:
3705 case HWTSTAMP_FILTER_ALL:
3706 is_l2 = true;
3707 is_l4 = true;
3708 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3709 config->rx_filter = HWTSTAMP_FILTER_ALL;
3710 break;
3711 default:
3712 return -ERANGE;
3713 }
3714
3715 adapter->hwtstamp_config = *config;
3716
3717 /* enable/disable Tx h/w time stamping */
3718 regval = er32(TSYNCTXCTL);
3719 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3720 regval |= tsync_tx_ctl;
3721 ew32(TSYNCTXCTL, regval);
3722 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3723 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3724 e_err("Timesync Tx Control register not set as expected\n");
3725 return -EAGAIN;
3726 }
3727
3728 /* enable/disable Rx h/w time stamping */
3729 regval = er32(TSYNCRXCTL);
3730 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3731 regval |= tsync_rx_ctl;
3732 ew32(TSYNCRXCTL, regval);
3733 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3734 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3735 (regval & (E1000_TSYNCRXCTL_ENABLED |
3736 E1000_TSYNCRXCTL_TYPE_MASK))) {
3737 e_err("Timesync Rx Control register not set as expected\n");
3738 return -EAGAIN;
3739 }
3740
3741 /* L2: define ethertype filter for time stamped packets */
3742 if (is_l2)
3743 rxmtrl |= ETH_P_1588;
3744
3745 /* define which PTP packets get time stamped */
3746 ew32(RXMTRL, rxmtrl);
3747
3748 /* Filter by destination port */
3749 if (is_l4) {
3750 rxudp = PTP_EV_PORT;
3751 cpu_to_be16s(&rxudp);
3752 }
3753 ew32(RXUDP, rxudp);
3754
3755 e1e_flush();
3756
3757 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3758 er32(RXSTMPH);
3759 er32(TXSTMPH);
3760
3761 return 0;
3762 }
3763
3764 /**
3765 * e1000_configure - configure the hardware for Rx and Tx
3766 * @adapter: private board structure
3767 **/
3768 static void e1000_configure(struct e1000_adapter *adapter)
3769 {
3770 struct e1000_ring *rx_ring = adapter->rx_ring;
3771
3772 e1000e_set_rx_mode(adapter->netdev);
3773
3774 e1000_restore_vlan(adapter);
3775 e1000_init_manageability_pt(adapter);
3776
3777 e1000_configure_tx(adapter);
3778
3779 if (adapter->netdev->features & NETIF_F_RXHASH)
3780 e1000e_setup_rss_hash(adapter);
3781 e1000_setup_rctl(adapter);
3782 e1000_configure_rx(adapter);
3783 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3784 }
3785
3786 /**
3787 * e1000e_power_up_phy - restore link in case the phy was powered down
3788 * @adapter: address of board private structure
3789 *
3790 * The phy may be powered down to save power and turn off link when the
3791 * driver is unloaded and wake on lan is not enabled (among others)
3792 * *** this routine MUST be followed by a call to e1000e_reset ***
3793 **/
3794 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3795 {
3796 if (adapter->hw.phy.ops.power_up)
3797 adapter->hw.phy.ops.power_up(&adapter->hw);
3798
3799 adapter->hw.mac.ops.setup_link(&adapter->hw);
3800 }
3801
3802 /**
3803 * e1000_power_down_phy - Power down the PHY
3804 *
3805 * Power down the PHY so no link is implied when interface is down.
3806 * The PHY cannot be powered down if management or WoL is active.
3807 */
3808 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3809 {
3810 if (adapter->hw.phy.ops.power_down)
3811 adapter->hw.phy.ops.power_down(&adapter->hw);
3812 }
3813
3814 /**
3815 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3816 *
3817 * We want to clear all pending descriptors from the TX ring.
3818 * zeroing happens when the HW reads the regs. We assign the ring itself as
3819 * the data of the next descriptor. We don't care about the data we are about
3820 * to reset the HW.
3821 */
3822 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3823 {
3824 struct e1000_hw *hw = &adapter->hw;
3825 struct e1000_ring *tx_ring = adapter->tx_ring;
3826 struct e1000_tx_desc *tx_desc = NULL;
3827 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3828 u16 size = 512;
3829
3830 tctl = er32(TCTL);
3831 ew32(TCTL, tctl | E1000_TCTL_EN);
3832 tdt = er32(TDT(0));
3833 BUG_ON(tdt != tx_ring->next_to_use);
3834 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3835 tx_desc->buffer_addr = tx_ring->dma;
3836
3837 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3838 tx_desc->upper.data = 0;
3839 /* flush descriptors to memory before notifying the HW */
3840 wmb();
3841 tx_ring->next_to_use++;
3842 if (tx_ring->next_to_use == tx_ring->count)
3843 tx_ring->next_to_use = 0;
3844 ew32(TDT(0), tx_ring->next_to_use);
3845 mmiowb();
3846 usleep_range(200, 250);
3847 }
3848
3849 /**
3850 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3851 *
3852 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3853 */
3854 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3855 {
3856 u32 rctl, rxdctl;
3857 struct e1000_hw *hw = &adapter->hw;
3858
3859 rctl = er32(RCTL);
3860 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3861 e1e_flush();
3862 usleep_range(100, 150);
3863
3864 rxdctl = er32(RXDCTL(0));
3865 /* zero the lower 14 bits (prefetch and host thresholds) */
3866 rxdctl &= 0xffffc000;
3867
3868 /* update thresholds: prefetch threshold to 31, host threshold to 1
3869 * and make sure the granularity is "descriptors" and not "cache lines"
3870 */
3871 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3872
3873 ew32(RXDCTL(0), rxdctl);
3874 /* momentarily enable the RX ring for the changes to take effect */
3875 ew32(RCTL, rctl | E1000_RCTL_EN);
3876 e1e_flush();
3877 usleep_range(100, 150);
3878 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3879 }
3880
3881 /**
3882 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3883 *
3884 * In i219, the descriptor rings must be emptied before resetting the HW
3885 * or before changing the device state to D3 during runtime (runtime PM).
3886 *
3887 * Failure to do this will cause the HW to enter a unit hang state which can
3888 * only be released by PCI reset on the device
3889 *
3890 */
3891
3892 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3893 {
3894 u16 hang_state;
3895 u32 fext_nvm11, tdlen;
3896 struct e1000_hw *hw = &adapter->hw;
3897
3898 /* First, disable MULR fix in FEXTNVM11 */
3899 fext_nvm11 = er32(FEXTNVM11);
3900 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3901 ew32(FEXTNVM11, fext_nvm11);
3902 /* do nothing if we're not in faulty state, or if the queue is empty */
3903 tdlen = er32(TDLEN(0));
3904 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3905 &hang_state);
3906 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3907 return;
3908 e1000_flush_tx_ring(adapter);
3909 /* recheck, maybe the fault is caused by the rx ring */
3910 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3911 &hang_state);
3912 if (hang_state & FLUSH_DESC_REQUIRED)
3913 e1000_flush_rx_ring(adapter);
3914 }
3915
3916 /**
3917 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3918 * @adapter: board private structure
3919 *
3920 * When the MAC is reset, all hardware bits for timesync will be reset to the
3921 * default values. This function will restore the settings last in place.
3922 * Since the clock SYSTIME registers are reset, we will simply restore the
3923 * cyclecounter to the kernel real clock time.
3924 **/
3925 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3926 {
3927 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3928 struct e1000_hw *hw = &adapter->hw;
3929 unsigned long flags;
3930 u32 timinca;
3931 s32 ret_val;
3932
3933 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3934 return;
3935
3936 if (info->adjfreq) {
3937 /* restore the previous ptp frequency delta */
3938 ret_val = info->adjfreq(info, adapter->ptp_delta);
3939 } else {
3940 /* set the default base frequency if no adjustment possible */
3941 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3942 if (!ret_val)
3943 ew32(TIMINCA, timinca);
3944 }
3945
3946 if (ret_val) {
3947 dev_warn(&adapter->pdev->dev,
3948 "Failed to restore TIMINCA clock rate delta: %d\n",
3949 ret_val);
3950 return;
3951 }
3952
3953 /* reset the systim ns time counter */
3954 spin_lock_irqsave(&adapter->systim_lock, flags);
3955 timecounter_init(&adapter->tc, &adapter->cc,
3956 ktime_to_ns(ktime_get_real()));
3957 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3958
3959 /* restore the previous hwtstamp configuration settings */
3960 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3961 }
3962
3963 /**
3964 * e1000e_reset - bring the hardware into a known good state
3965 *
3966 * This function boots the hardware and enables some settings that
3967 * require a configuration cycle of the hardware - those cannot be
3968 * set/changed during runtime. After reset the device needs to be
3969 * properly configured for Rx, Tx etc.
3970 */
3971 void e1000e_reset(struct e1000_adapter *adapter)
3972 {
3973 struct e1000_mac_info *mac = &adapter->hw.mac;
3974 struct e1000_fc_info *fc = &adapter->hw.fc;
3975 struct e1000_hw *hw = &adapter->hw;
3976 u32 tx_space, min_tx_space, min_rx_space;
3977 u32 pba = adapter->pba;
3978 u16 hwm;
3979
3980 /* reset Packet Buffer Allocation to default */
3981 ew32(PBA, pba);
3982
3983 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3984 /* To maintain wire speed transmits, the Tx FIFO should be
3985 * large enough to accommodate two full transmit packets,
3986 * rounded up to the next 1KB and expressed in KB. Likewise,
3987 * the Rx FIFO should be large enough to accommodate at least
3988 * one full receive packet and is similarly rounded up and
3989 * expressed in KB.
3990 */
3991 pba = er32(PBA);
3992 /* upper 16 bits has Tx packet buffer allocation size in KB */
3993 tx_space = pba >> 16;
3994 /* lower 16 bits has Rx packet buffer allocation size in KB */
3995 pba &= 0xffff;
3996 /* the Tx fifo also stores 16 bytes of information about the Tx
3997 * but don't include ethernet FCS because hardware appends it
3998 */
3999 min_tx_space = (adapter->max_frame_size +
4000 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4001 min_tx_space = ALIGN(min_tx_space, 1024);
4002 min_tx_space >>= 10;
4003 /* software strips receive CRC, so leave room for it */
4004 min_rx_space = adapter->max_frame_size;
4005 min_rx_space = ALIGN(min_rx_space, 1024);
4006 min_rx_space >>= 10;
4007
4008 /* If current Tx allocation is less than the min Tx FIFO size,
4009 * and the min Tx FIFO size is less than the current Rx FIFO
4010 * allocation, take space away from current Rx allocation
4011 */
4012 if ((tx_space < min_tx_space) &&
4013 ((min_tx_space - tx_space) < pba)) {
4014 pba -= min_tx_space - tx_space;
4015
4016 /* if short on Rx space, Rx wins and must trump Tx
4017 * adjustment
4018 */
4019 if (pba < min_rx_space)
4020 pba = min_rx_space;
4021 }
4022
4023 ew32(PBA, pba);
4024 }
4025
4026 /* flow control settings
4027 *
4028 * The high water mark must be low enough to fit one full frame
4029 * (or the size used for early receive) above it in the Rx FIFO.
4030 * Set it to the lower of:
4031 * - 90% of the Rx FIFO size, and
4032 * - the full Rx FIFO size minus one full frame
4033 */
4034 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4035 fc->pause_time = 0xFFFF;
4036 else
4037 fc->pause_time = E1000_FC_PAUSE_TIME;
4038 fc->send_xon = true;
4039 fc->current_mode = fc->requested_mode;
4040
4041 switch (hw->mac.type) {
4042 case e1000_ich9lan:
4043 case e1000_ich10lan:
4044 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4045 pba = 14;
4046 ew32(PBA, pba);
4047 fc->high_water = 0x2800;
4048 fc->low_water = fc->high_water - 8;
4049 break;
4050 }
4051 /* fall-through */
4052 default:
4053 hwm = min(((pba << 10) * 9 / 10),
4054 ((pba << 10) - adapter->max_frame_size));
4055
4056 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4057 fc->low_water = fc->high_water - 8;
4058 break;
4059 case e1000_pchlan:
4060 /* Workaround PCH LOM adapter hangs with certain network
4061 * loads. If hangs persist, try disabling Tx flow control.
4062 */
4063 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4064 fc->high_water = 0x3500;
4065 fc->low_water = 0x1500;
4066 } else {
4067 fc->high_water = 0x5000;
4068 fc->low_water = 0x3000;
4069 }
4070 fc->refresh_time = 0x1000;
4071 break;
4072 case e1000_pch2lan:
4073 case e1000_pch_lpt:
4074 case e1000_pch_spt:
4075 case e1000_pch_cnp:
4076 fc->refresh_time = 0x0400;
4077
4078 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4079 fc->high_water = 0x05C20;
4080 fc->low_water = 0x05048;
4081 fc->pause_time = 0x0650;
4082 break;
4083 }
4084
4085 pba = 14;
4086 ew32(PBA, pba);
4087 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4088 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4089 break;
4090 }
4091
4092 /* Alignment of Tx data is on an arbitrary byte boundary with the
4093 * maximum size per Tx descriptor limited only to the transmit
4094 * allocation of the packet buffer minus 96 bytes with an upper
4095 * limit of 24KB due to receive synchronization limitations.
4096 */
4097 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4098 24 << 10);
4099
4100 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4101 * fit in receive buffer.
4102 */
4103 if (adapter->itr_setting & 0x3) {
4104 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4105 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4106 dev_info(&adapter->pdev->dev,
4107 "Interrupt Throttle Rate off\n");
4108 adapter->flags2 |= FLAG2_DISABLE_AIM;
4109 e1000e_write_itr(adapter, 0);
4110 }
4111 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4112 dev_info(&adapter->pdev->dev,
4113 "Interrupt Throttle Rate on\n");
4114 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4115 adapter->itr = 20000;
4116 e1000e_write_itr(adapter, adapter->itr);
4117 }
4118 }
4119
4120 if (hw->mac.type >= e1000_pch_spt)
4121 e1000_flush_desc_rings(adapter);
4122 /* Allow time for pending master requests to run */
4123 mac->ops.reset_hw(hw);
4124
4125 /* For parts with AMT enabled, let the firmware know
4126 * that the network interface is in control
4127 */
4128 if (adapter->flags & FLAG_HAS_AMT)
4129 e1000e_get_hw_control(adapter);
4130
4131 ew32(WUC, 0);
4132
4133 if (mac->ops.init_hw(hw))
4134 e_err("Hardware Error\n");
4135
4136 e1000_update_mng_vlan(adapter);
4137
4138 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4139 ew32(VET, ETH_P_8021Q);
4140
4141 e1000e_reset_adaptive(hw);
4142
4143 /* restore systim and hwtstamp settings */
4144 e1000e_systim_reset(adapter);
4145
4146 /* Set EEE advertisement as appropriate */
4147 if (adapter->flags2 & FLAG2_HAS_EEE) {
4148 s32 ret_val;
4149 u16 adv_addr;
4150
4151 switch (hw->phy.type) {
4152 case e1000_phy_82579:
4153 adv_addr = I82579_EEE_ADVERTISEMENT;
4154 break;
4155 case e1000_phy_i217:
4156 adv_addr = I217_EEE_ADVERTISEMENT;
4157 break;
4158 default:
4159 dev_err(&adapter->pdev->dev,
4160 "Invalid PHY type setting EEE advertisement\n");
4161 return;
4162 }
4163
4164 ret_val = hw->phy.ops.acquire(hw);
4165 if (ret_val) {
4166 dev_err(&adapter->pdev->dev,
4167 "EEE advertisement - unable to acquire PHY\n");
4168 return;
4169 }
4170
4171 e1000_write_emi_reg_locked(hw, adv_addr,
4172 hw->dev_spec.ich8lan.eee_disable ?
4173 0 : adapter->eee_advert);
4174
4175 hw->phy.ops.release(hw);
4176 }
4177
4178 if (!netif_running(adapter->netdev) &&
4179 !test_bit(__E1000_TESTING, &adapter->state))
4180 e1000_power_down_phy(adapter);
4181
4182 e1000_get_phy_info(hw);
4183
4184 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4185 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4186 u16 phy_data = 0;
4187 /* speed up time to link by disabling smart power down, ignore
4188 * the return value of this function because there is nothing
4189 * different we would do if it failed
4190 */
4191 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4192 phy_data &= ~IGP02E1000_PM_SPD;
4193 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4194 }
4195 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4196 u32 reg;
4197
4198 /* Fextnvm7 @ 0xe4[2] = 1 */
4199 reg = er32(FEXTNVM7);
4200 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4201 ew32(FEXTNVM7, reg);
4202 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4203 reg = er32(FEXTNVM9);
4204 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4205 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4206 ew32(FEXTNVM9, reg);
4207 }
4208
4209 }
4210
4211 /**
4212 * e1000e_trigger_lsc - trigger an LSC interrupt
4213 * @adapter:
4214 *
4215 * Fire a link status change interrupt to start the watchdog.
4216 **/
4217 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4218 {
4219 struct e1000_hw *hw = &adapter->hw;
4220
4221 if (adapter->msix_entries)
4222 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4223 else
4224 ew32(ICS, E1000_ICS_LSC);
4225 }
4226
4227 void e1000e_up(struct e1000_adapter *adapter)
4228 {
4229 /* hardware has been reset, we need to reload some things */
4230 e1000_configure(adapter);
4231
4232 clear_bit(__E1000_DOWN, &adapter->state);
4233
4234 if (adapter->msix_entries)
4235 e1000_configure_msix(adapter);
4236 e1000_irq_enable(adapter);
4237
4238 netif_start_queue(adapter->netdev);
4239
4240 e1000e_trigger_lsc(adapter);
4241 }
4242
4243 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4244 {
4245 struct e1000_hw *hw = &adapter->hw;
4246
4247 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4248 return;
4249
4250 /* flush pending descriptor writebacks to memory */
4251 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4252 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4253
4254 /* execute the writes immediately */
4255 e1e_flush();
4256
4257 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4258 * write is successful
4259 */
4260 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4261 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4262
4263 /* execute the writes immediately */
4264 e1e_flush();
4265 }
4266
4267 static void e1000e_update_stats(struct e1000_adapter *adapter);
4268
4269 /**
4270 * e1000e_down - quiesce the device and optionally reset the hardware
4271 * @adapter: board private structure
4272 * @reset: boolean flag to reset the hardware or not
4273 */
4274 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4275 {
4276 struct net_device *netdev = adapter->netdev;
4277 struct e1000_hw *hw = &adapter->hw;
4278 u32 tctl, rctl;
4279
4280 /* signal that we're down so the interrupt handler does not
4281 * reschedule our watchdog timer
4282 */
4283 set_bit(__E1000_DOWN, &adapter->state);
4284
4285 netif_carrier_off(netdev);
4286
4287 /* disable receives in the hardware */
4288 rctl = er32(RCTL);
4289 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4290 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4291 /* flush and sleep below */
4292
4293 netif_stop_queue(netdev);
4294
4295 /* disable transmits in the hardware */
4296 tctl = er32(TCTL);
4297 tctl &= ~E1000_TCTL_EN;
4298 ew32(TCTL, tctl);
4299
4300 /* flush both disables and wait for them to finish */
4301 e1e_flush();
4302 usleep_range(10000, 20000);
4303
4304 e1000_irq_disable(adapter);
4305
4306 napi_synchronize(&adapter->napi);
4307
4308 del_timer_sync(&adapter->watchdog_timer);
4309 del_timer_sync(&adapter->phy_info_timer);
4310
4311 spin_lock(&adapter->stats64_lock);
4312 e1000e_update_stats(adapter);
4313 spin_unlock(&adapter->stats64_lock);
4314
4315 e1000e_flush_descriptors(adapter);
4316
4317 adapter->link_speed = 0;
4318 adapter->link_duplex = 0;
4319
4320 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4321 if ((hw->mac.type >= e1000_pch2lan) &&
4322 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4323 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4324 e_dbg("failed to disable jumbo frame workaround mode\n");
4325
4326 if (!pci_channel_offline(adapter->pdev)) {
4327 if (reset)
4328 e1000e_reset(adapter);
4329 else if (hw->mac.type >= e1000_pch_spt)
4330 e1000_flush_desc_rings(adapter);
4331 }
4332 e1000_clean_tx_ring(adapter->tx_ring);
4333 e1000_clean_rx_ring(adapter->rx_ring);
4334 }
4335
4336 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4337 {
4338 might_sleep();
4339 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4340 usleep_range(1000, 2000);
4341 e1000e_down(adapter, true);
4342 e1000e_up(adapter);
4343 clear_bit(__E1000_RESETTING, &adapter->state);
4344 }
4345
4346 /**
4347 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4348 * @hw: pointer to the HW structure
4349 * @systim: time value read, sanitized and returned
4350 *
4351 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4352 * check to see that the time is incrementing at a reasonable
4353 * rate and is a multiple of incvalue.
4354 **/
4355 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4356 {
4357 u64 time_delta, rem, temp;
4358 u64 systim_next;
4359 u32 incvalue;
4360 int i;
4361
4362 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4363 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4364 /* latch SYSTIMH on read of SYSTIML */
4365 systim_next = (u64)er32(SYSTIML);
4366 systim_next |= (u64)er32(SYSTIMH) << 32;
4367
4368 time_delta = systim_next - systim;
4369 temp = time_delta;
4370 /* VMWare users have seen incvalue of zero, don't div / 0 */
4371 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4372
4373 systim = systim_next;
4374
4375 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4376 break;
4377 }
4378
4379 return systim;
4380 }
4381
4382 /**
4383 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4384 * @cc: cyclecounter structure
4385 **/
4386 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4387 {
4388 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4389 cc);
4390 struct e1000_hw *hw = &adapter->hw;
4391 u32 systimel, systimeh;
4392 u64 systim;
4393 /* SYSTIMH latching upon SYSTIML read does not work well.
4394 * This means that if SYSTIML overflows after we read it but before
4395 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396 * will experience a huge non linear increment in the systime value
4397 * to fix that we test for overflow and if true, we re-read systime.
4398 */
4399 systimel = er32(SYSTIML);
4400 systimeh = er32(SYSTIMH);
4401 /* Is systimel is so large that overflow is possible? */
4402 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4403 u32 systimel_2 = er32(SYSTIML);
4404 if (systimel > systimel_2) {
4405 /* There was an overflow, read again SYSTIMH, and use
4406 * systimel_2
4407 */
4408 systimeh = er32(SYSTIMH);
4409 systimel = systimel_2;
4410 }
4411 }
4412 systim = (u64)systimel;
4413 systim |= (u64)systimeh << 32;
4414
4415 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4416 systim = e1000e_sanitize_systim(hw, systim);
4417
4418 return systim;
4419 }
4420
4421 /**
4422 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4423 * @adapter: board private structure to initialize
4424 *
4425 * e1000_sw_init initializes the Adapter private data structure.
4426 * Fields are initialized based on PCI device information and
4427 * OS network device settings (MTU size).
4428 **/
4429 static int e1000_sw_init(struct e1000_adapter *adapter)
4430 {
4431 struct net_device *netdev = adapter->netdev;
4432
4433 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4434 adapter->rx_ps_bsize0 = 128;
4435 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4436 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4437 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4438 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4439
4440 spin_lock_init(&adapter->stats64_lock);
4441
4442 e1000e_set_interrupt_capability(adapter);
4443
4444 if (e1000_alloc_queues(adapter))
4445 return -ENOMEM;
4446
4447 /* Setup hardware time stamping cyclecounter */
4448 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4449 adapter->cc.read = e1000e_cyclecounter_read;
4450 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4451 adapter->cc.mult = 1;
4452 /* cc.shift set in e1000e_get_base_tininca() */
4453
4454 spin_lock_init(&adapter->systim_lock);
4455 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4456 }
4457
4458 /* Explicitly disable IRQ since the NIC can be in any state. */
4459 e1000_irq_disable(adapter);
4460
4461 set_bit(__E1000_DOWN, &adapter->state);
4462 return 0;
4463 }
4464
4465 /**
4466 * e1000_intr_msi_test - Interrupt Handler
4467 * @irq: interrupt number
4468 * @data: pointer to a network interface device structure
4469 **/
4470 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4471 {
4472 struct net_device *netdev = data;
4473 struct e1000_adapter *adapter = netdev_priv(netdev);
4474 struct e1000_hw *hw = &adapter->hw;
4475 u32 icr = er32(ICR);
4476
4477 e_dbg("icr is %08X\n", icr);
4478 if (icr & E1000_ICR_RXSEQ) {
4479 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4480 /* Force memory writes to complete before acknowledging the
4481 * interrupt is handled.
4482 */
4483 wmb();
4484 }
4485
4486 return IRQ_HANDLED;
4487 }
4488
4489 /**
4490 * e1000_test_msi_interrupt - Returns 0 for successful test
4491 * @adapter: board private struct
4492 *
4493 * code flow taken from tg3.c
4494 **/
4495 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4496 {
4497 struct net_device *netdev = adapter->netdev;
4498 struct e1000_hw *hw = &adapter->hw;
4499 int err;
4500
4501 /* poll_enable hasn't been called yet, so don't need disable */
4502 /* clear any pending events */
4503 er32(ICR);
4504
4505 /* free the real vector and request a test handler */
4506 e1000_free_irq(adapter);
4507 e1000e_reset_interrupt_capability(adapter);
4508
4509 /* Assume that the test fails, if it succeeds then the test
4510 * MSI irq handler will unset this flag
4511 */
4512 adapter->flags |= FLAG_MSI_TEST_FAILED;
4513
4514 err = pci_enable_msi(adapter->pdev);
4515 if (err)
4516 goto msi_test_failed;
4517
4518 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4519 netdev->name, netdev);
4520 if (err) {
4521 pci_disable_msi(adapter->pdev);
4522 goto msi_test_failed;
4523 }
4524
4525 /* Force memory writes to complete before enabling and firing an
4526 * interrupt.
4527 */
4528 wmb();
4529
4530 e1000_irq_enable(adapter);
4531
4532 /* fire an unusual interrupt on the test handler */
4533 ew32(ICS, E1000_ICS_RXSEQ);
4534 e1e_flush();
4535 msleep(100);
4536
4537 e1000_irq_disable(adapter);
4538
4539 rmb(); /* read flags after interrupt has been fired */
4540
4541 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4542 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4543 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4544 } else {
4545 e_dbg("MSI interrupt test succeeded!\n");
4546 }
4547
4548 free_irq(adapter->pdev->irq, netdev);
4549 pci_disable_msi(adapter->pdev);
4550
4551 msi_test_failed:
4552 e1000e_set_interrupt_capability(adapter);
4553 return e1000_request_irq(adapter);
4554 }
4555
4556 /**
4557 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4558 * @adapter: board private struct
4559 *
4560 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4561 **/
4562 static int e1000_test_msi(struct e1000_adapter *adapter)
4563 {
4564 int err;
4565 u16 pci_cmd;
4566
4567 if (!(adapter->flags & FLAG_MSI_ENABLED))
4568 return 0;
4569
4570 /* disable SERR in case the MSI write causes a master abort */
4571 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4572 if (pci_cmd & PCI_COMMAND_SERR)
4573 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4574 pci_cmd & ~PCI_COMMAND_SERR);
4575
4576 err = e1000_test_msi_interrupt(adapter);
4577
4578 /* re-enable SERR */
4579 if (pci_cmd & PCI_COMMAND_SERR) {
4580 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4581 pci_cmd |= PCI_COMMAND_SERR;
4582 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4583 }
4584
4585 return err;
4586 }
4587
4588 /**
4589 * e1000e_open - Called when a network interface is made active
4590 * @netdev: network interface device structure
4591 *
4592 * Returns 0 on success, negative value on failure
4593 *
4594 * The open entry point is called when a network interface is made
4595 * active by the system (IFF_UP). At this point all resources needed
4596 * for transmit and receive operations are allocated, the interrupt
4597 * handler is registered with the OS, the watchdog timer is started,
4598 * and the stack is notified that the interface is ready.
4599 **/
4600 int e1000e_open(struct net_device *netdev)
4601 {
4602 struct e1000_adapter *adapter = netdev_priv(netdev);
4603 struct e1000_hw *hw = &adapter->hw;
4604 struct pci_dev *pdev = adapter->pdev;
4605 int err;
4606
4607 /* disallow open during test */
4608 if (test_bit(__E1000_TESTING, &adapter->state))
4609 return -EBUSY;
4610
4611 pm_runtime_get_sync(&pdev->dev);
4612
4613 netif_carrier_off(netdev);
4614
4615 /* allocate transmit descriptors */
4616 err = e1000e_setup_tx_resources(adapter->tx_ring);
4617 if (err)
4618 goto err_setup_tx;
4619
4620 /* allocate receive descriptors */
4621 err = e1000e_setup_rx_resources(adapter->rx_ring);
4622 if (err)
4623 goto err_setup_rx;
4624
4625 /* If AMT is enabled, let the firmware know that the network
4626 * interface is now open and reset the part to a known state.
4627 */
4628 if (adapter->flags & FLAG_HAS_AMT) {
4629 e1000e_get_hw_control(adapter);
4630 e1000e_reset(adapter);
4631 }
4632
4633 e1000e_power_up_phy(adapter);
4634
4635 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4636 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4637 e1000_update_mng_vlan(adapter);
4638
4639 /* DMA latency requirement to workaround jumbo issue */
4640 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4641 PM_QOS_DEFAULT_VALUE);
4642
4643 /* before we allocate an interrupt, we must be ready to handle it.
4644 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4645 * as soon as we call pci_request_irq, so we have to setup our
4646 * clean_rx handler before we do so.
4647 */
4648 e1000_configure(adapter);
4649
4650 err = e1000_request_irq(adapter);
4651 if (err)
4652 goto err_req_irq;
4653
4654 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4655 * ignore e1000e MSI messages, which means we need to test our MSI
4656 * interrupt now
4657 */
4658 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4659 err = e1000_test_msi(adapter);
4660 if (err) {
4661 e_err("Interrupt allocation failed\n");
4662 goto err_req_irq;
4663 }
4664 }
4665
4666 /* From here on the code is the same as e1000e_up() */
4667 clear_bit(__E1000_DOWN, &adapter->state);
4668
4669 napi_enable(&adapter->napi);
4670
4671 e1000_irq_enable(adapter);
4672
4673 adapter->tx_hang_recheck = false;
4674 netif_start_queue(netdev);
4675
4676 hw->mac.get_link_status = true;
4677 pm_runtime_put(&pdev->dev);
4678
4679 e1000e_trigger_lsc(adapter);
4680
4681 return 0;
4682
4683 err_req_irq:
4684 pm_qos_remove_request(&adapter->pm_qos_req);
4685 e1000e_release_hw_control(adapter);
4686 e1000_power_down_phy(adapter);
4687 e1000e_free_rx_resources(adapter->rx_ring);
4688 err_setup_rx:
4689 e1000e_free_tx_resources(adapter->tx_ring);
4690 err_setup_tx:
4691 e1000e_reset(adapter);
4692 pm_runtime_put_sync(&pdev->dev);
4693
4694 return err;
4695 }
4696
4697 /**
4698 * e1000e_close - Disables a network interface
4699 * @netdev: network interface device structure
4700 *
4701 * Returns 0, this is not allowed to fail
4702 *
4703 * The close entry point is called when an interface is de-activated
4704 * by the OS. The hardware is still under the drivers control, but
4705 * needs to be disabled. A global MAC reset is issued to stop the
4706 * hardware, and all transmit and receive resources are freed.
4707 **/
4708 int e1000e_close(struct net_device *netdev)
4709 {
4710 struct e1000_adapter *adapter = netdev_priv(netdev);
4711 struct pci_dev *pdev = adapter->pdev;
4712 int count = E1000_CHECK_RESET_COUNT;
4713
4714 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4715 usleep_range(10000, 20000);
4716
4717 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4718
4719 pm_runtime_get_sync(&pdev->dev);
4720
4721 if (!test_bit(__E1000_DOWN, &adapter->state)) {
4722 e1000e_down(adapter, true);
4723 e1000_free_irq(adapter);
4724
4725 /* Link status message must follow this format */
4726 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4727 }
4728
4729 napi_disable(&adapter->napi);
4730
4731 e1000e_free_tx_resources(adapter->tx_ring);
4732 e1000e_free_rx_resources(adapter->rx_ring);
4733
4734 /* kill manageability vlan ID if supported, but not if a vlan with
4735 * the same ID is registered on the host OS (let 8021q kill it)
4736 */
4737 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4738 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4739 adapter->mng_vlan_id);
4740
4741 /* If AMT is enabled, let the firmware know that the network
4742 * interface is now closed
4743 */
4744 if ((adapter->flags & FLAG_HAS_AMT) &&
4745 !test_bit(__E1000_TESTING, &adapter->state))
4746 e1000e_release_hw_control(adapter);
4747
4748 pm_qos_remove_request(&adapter->pm_qos_req);
4749
4750 pm_runtime_put_sync(&pdev->dev);
4751
4752 return 0;
4753 }
4754
4755 /**
4756 * e1000_set_mac - Change the Ethernet Address of the NIC
4757 * @netdev: network interface device structure
4758 * @p: pointer to an address structure
4759 *
4760 * Returns 0 on success, negative on failure
4761 **/
4762 static int e1000_set_mac(struct net_device *netdev, void *p)
4763 {
4764 struct e1000_adapter *adapter = netdev_priv(netdev);
4765 struct e1000_hw *hw = &adapter->hw;
4766 struct sockaddr *addr = p;
4767
4768 if (!is_valid_ether_addr(addr->sa_data))
4769 return -EADDRNOTAVAIL;
4770
4771 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4772 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4773
4774 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4775
4776 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4777 /* activate the work around */
4778 e1000e_set_laa_state_82571(&adapter->hw, 1);
4779
4780 /* Hold a copy of the LAA in RAR[14] This is done so that
4781 * between the time RAR[0] gets clobbered and the time it
4782 * gets fixed (in e1000_watchdog), the actual LAA is in one
4783 * of the RARs and no incoming packets directed to this port
4784 * are dropped. Eventually the LAA will be in RAR[0] and
4785 * RAR[14]
4786 */
4787 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4788 adapter->hw.mac.rar_entry_count - 1);
4789 }
4790
4791 return 0;
4792 }
4793
4794 /**
4795 * e1000e_update_phy_task - work thread to update phy
4796 * @work: pointer to our work struct
4797 *
4798 * this worker thread exists because we must acquire a
4799 * semaphore to read the phy, which we could msleep while
4800 * waiting for it, and we can't msleep in a timer.
4801 **/
4802 static void e1000e_update_phy_task(struct work_struct *work)
4803 {
4804 struct e1000_adapter *adapter = container_of(work,
4805 struct e1000_adapter,
4806 update_phy_task);
4807 struct e1000_hw *hw = &adapter->hw;
4808
4809 if (test_bit(__E1000_DOWN, &adapter->state))
4810 return;
4811
4812 e1000_get_phy_info(hw);
4813
4814 /* Enable EEE on 82579 after link up */
4815 if (hw->phy.type >= e1000_phy_82579)
4816 e1000_set_eee_pchlan(hw);
4817 }
4818
4819 /**
4820 * e1000_update_phy_info - timre call-back to update PHY info
4821 * @data: pointer to adapter cast into an unsigned long
4822 *
4823 * Need to wait a few seconds after link up to get diagnostic information from
4824 * the phy
4825 **/
4826 static void e1000_update_phy_info(struct timer_list *t)
4827 {
4828 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4829
4830 if (test_bit(__E1000_DOWN, &adapter->state))
4831 return;
4832
4833 schedule_work(&adapter->update_phy_task);
4834 }
4835
4836 /**
4837 * e1000e_update_phy_stats - Update the PHY statistics counters
4838 * @adapter: board private structure
4839 *
4840 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4841 **/
4842 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4843 {
4844 struct e1000_hw *hw = &adapter->hw;
4845 s32 ret_val;
4846 u16 phy_data;
4847
4848 ret_val = hw->phy.ops.acquire(hw);
4849 if (ret_val)
4850 return;
4851
4852 /* A page set is expensive so check if already on desired page.
4853 * If not, set to the page with the PHY status registers.
4854 */
4855 hw->phy.addr = 1;
4856 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4857 &phy_data);
4858 if (ret_val)
4859 goto release;
4860 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4861 ret_val = hw->phy.ops.set_page(hw,
4862 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4863 if (ret_val)
4864 goto release;
4865 }
4866
4867 /* Single Collision Count */
4868 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4869 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4870 if (!ret_val)
4871 adapter->stats.scc += phy_data;
4872
4873 /* Excessive Collision Count */
4874 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4875 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4876 if (!ret_val)
4877 adapter->stats.ecol += phy_data;
4878
4879 /* Multiple Collision Count */
4880 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4881 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4882 if (!ret_val)
4883 adapter->stats.mcc += phy_data;
4884
4885 /* Late Collision Count */
4886 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4887 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4888 if (!ret_val)
4889 adapter->stats.latecol += phy_data;
4890
4891 /* Collision Count - also used for adaptive IFS */
4892 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4893 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4894 if (!ret_val)
4895 hw->mac.collision_delta = phy_data;
4896
4897 /* Defer Count */
4898 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4899 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4900 if (!ret_val)
4901 adapter->stats.dc += phy_data;
4902
4903 /* Transmit with no CRS */
4904 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4905 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4906 if (!ret_val)
4907 adapter->stats.tncrs += phy_data;
4908
4909 release:
4910 hw->phy.ops.release(hw);
4911 }
4912
4913 /**
4914 * e1000e_update_stats - Update the board statistics counters
4915 * @adapter: board private structure
4916 **/
4917 static void e1000e_update_stats(struct e1000_adapter *adapter)
4918 {
4919 struct net_device *netdev = adapter->netdev;
4920 struct e1000_hw *hw = &adapter->hw;
4921 struct pci_dev *pdev = adapter->pdev;
4922
4923 /* Prevent stats update while adapter is being reset, or if the pci
4924 * connection is down.
4925 */
4926 if (adapter->link_speed == 0)
4927 return;
4928 if (pci_channel_offline(pdev))
4929 return;
4930
4931 adapter->stats.crcerrs += er32(CRCERRS);
4932 adapter->stats.gprc += er32(GPRC);
4933 adapter->stats.gorc += er32(GORCL);
4934 er32(GORCH); /* Clear gorc */
4935 adapter->stats.bprc += er32(BPRC);
4936 adapter->stats.mprc += er32(MPRC);
4937 adapter->stats.roc += er32(ROC);
4938
4939 adapter->stats.mpc += er32(MPC);
4940
4941 /* Half-duplex statistics */
4942 if (adapter->link_duplex == HALF_DUPLEX) {
4943 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4944 e1000e_update_phy_stats(adapter);
4945 } else {
4946 adapter->stats.scc += er32(SCC);
4947 adapter->stats.ecol += er32(ECOL);
4948 adapter->stats.mcc += er32(MCC);
4949 adapter->stats.latecol += er32(LATECOL);
4950 adapter->stats.dc += er32(DC);
4951
4952 hw->mac.collision_delta = er32(COLC);
4953
4954 if ((hw->mac.type != e1000_82574) &&
4955 (hw->mac.type != e1000_82583))
4956 adapter->stats.tncrs += er32(TNCRS);
4957 }
4958 adapter->stats.colc += hw->mac.collision_delta;
4959 }
4960
4961 adapter->stats.xonrxc += er32(XONRXC);
4962 adapter->stats.xontxc += er32(XONTXC);
4963 adapter->stats.xoffrxc += er32(XOFFRXC);
4964 adapter->stats.xofftxc += er32(XOFFTXC);
4965 adapter->stats.gptc += er32(GPTC);
4966 adapter->stats.gotc += er32(GOTCL);
4967 er32(GOTCH); /* Clear gotc */
4968 adapter->stats.rnbc += er32(RNBC);
4969 adapter->stats.ruc += er32(RUC);
4970
4971 adapter->stats.mptc += er32(MPTC);
4972 adapter->stats.bptc += er32(BPTC);
4973
4974 /* used for adaptive IFS */
4975
4976 hw->mac.tx_packet_delta = er32(TPT);
4977 adapter->stats.tpt += hw->mac.tx_packet_delta;
4978
4979 adapter->stats.algnerrc += er32(ALGNERRC);
4980 adapter->stats.rxerrc += er32(RXERRC);
4981 adapter->stats.cexterr += er32(CEXTERR);
4982 adapter->stats.tsctc += er32(TSCTC);
4983 adapter->stats.tsctfc += er32(TSCTFC);
4984
4985 /* Fill out the OS statistics structure */
4986 netdev->stats.multicast = adapter->stats.mprc;
4987 netdev->stats.collisions = adapter->stats.colc;
4988
4989 /* Rx Errors */
4990
4991 /* RLEC on some newer hardware can be incorrect so build
4992 * our own version based on RUC and ROC
4993 */
4994 netdev->stats.rx_errors = adapter->stats.rxerrc +
4995 adapter->stats.crcerrs + adapter->stats.algnerrc +
4996 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4997 netdev->stats.rx_length_errors = adapter->stats.ruc +
4998 adapter->stats.roc;
4999 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5000 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5001 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5002
5003 /* Tx Errors */
5004 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5005 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5006 netdev->stats.tx_window_errors = adapter->stats.latecol;
5007 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5008
5009 /* Tx Dropped needs to be maintained elsewhere */
5010
5011 /* Management Stats */
5012 adapter->stats.mgptc += er32(MGTPTC);
5013 adapter->stats.mgprc += er32(MGTPRC);
5014 adapter->stats.mgpdc += er32(MGTPDC);
5015
5016 /* Correctable ECC Errors */
5017 if (hw->mac.type >= e1000_pch_lpt) {
5018 u32 pbeccsts = er32(PBECCSTS);
5019
5020 adapter->corr_errors +=
5021 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5022 adapter->uncorr_errors +=
5023 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5024 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5025 }
5026 }
5027
5028 /**
5029 * e1000_phy_read_status - Update the PHY register status snapshot
5030 * @adapter: board private structure
5031 **/
5032 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5033 {
5034 struct e1000_hw *hw = &adapter->hw;
5035 struct e1000_phy_regs *phy = &adapter->phy_regs;
5036
5037 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5038 (er32(STATUS) & E1000_STATUS_LU) &&
5039 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5040 int ret_val;
5041
5042 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5043 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5044 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5045 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5046 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5047 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5048 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5049 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5050 if (ret_val)
5051 e_warn("Error reading PHY register\n");
5052 } else {
5053 /* Do not read PHY registers if link is not up
5054 * Set values to typical power-on defaults
5055 */
5056 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5057 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5058 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5059 BMSR_ERCAP);
5060 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5061 ADVERTISE_ALL | ADVERTISE_CSMA);
5062 phy->lpa = 0;
5063 phy->expansion = EXPANSION_ENABLENPAGE;
5064 phy->ctrl1000 = ADVERTISE_1000FULL;
5065 phy->stat1000 = 0;
5066 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5067 }
5068 }
5069
5070 static void e1000_print_link_info(struct e1000_adapter *adapter)
5071 {
5072 struct e1000_hw *hw = &adapter->hw;
5073 u32 ctrl = er32(CTRL);
5074
5075 /* Link status message must follow this format for user tools */
5076 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5077 adapter->netdev->name, adapter->link_speed,
5078 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5079 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5080 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5081 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5082 }
5083
5084 static bool e1000e_has_link(struct e1000_adapter *adapter)
5085 {
5086 struct e1000_hw *hw = &adapter->hw;
5087 bool link_active = false;
5088 s32 ret_val = 0;
5089
5090 /* get_link_status is set on LSC (link status) interrupt or
5091 * Rx sequence error interrupt. get_link_status will stay
5092 * true until the check_for_link establishes link
5093 * for copper adapters ONLY
5094 */
5095 switch (hw->phy.media_type) {
5096 case e1000_media_type_copper:
5097 if (hw->mac.get_link_status) {
5098 ret_val = hw->mac.ops.check_for_link(hw);
5099 link_active = ret_val > 0;
5100 } else {
5101 link_active = true;
5102 }
5103 break;
5104 case e1000_media_type_fiber:
5105 ret_val = hw->mac.ops.check_for_link(hw);
5106 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5107 break;
5108 case e1000_media_type_internal_serdes:
5109 ret_val = hw->mac.ops.check_for_link(hw);
5110 link_active = hw->mac.serdes_has_link;
5111 break;
5112 default:
5113 case e1000_media_type_unknown:
5114 break;
5115 }
5116
5117 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5118 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5119 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5120 e_info("Gigabit has been disabled, downgrading speed\n");
5121 }
5122
5123 return link_active;
5124 }
5125
5126 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5127 {
5128 /* make sure the receive unit is started */
5129 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5130 (adapter->flags & FLAG_RESTART_NOW)) {
5131 struct e1000_hw *hw = &adapter->hw;
5132 u32 rctl = er32(RCTL);
5133
5134 ew32(RCTL, rctl | E1000_RCTL_EN);
5135 adapter->flags &= ~FLAG_RESTART_NOW;
5136 }
5137 }
5138
5139 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5140 {
5141 struct e1000_hw *hw = &adapter->hw;
5142
5143 /* With 82574 controllers, PHY needs to be checked periodically
5144 * for hung state and reset, if two calls return true
5145 */
5146 if (e1000_check_phy_82574(hw))
5147 adapter->phy_hang_count++;
5148 else
5149 adapter->phy_hang_count = 0;
5150
5151 if (adapter->phy_hang_count > 1) {
5152 adapter->phy_hang_count = 0;
5153 e_dbg("PHY appears hung - resetting\n");
5154 schedule_work(&adapter->reset_task);
5155 }
5156 }
5157
5158 /**
5159 * e1000_watchdog - Timer Call-back
5160 * @data: pointer to adapter cast into an unsigned long
5161 **/
5162 static void e1000_watchdog(struct timer_list *t)
5163 {
5164 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5165
5166 /* Do the rest outside of interrupt context */
5167 schedule_work(&adapter->watchdog_task);
5168
5169 /* TODO: make this use queue_delayed_work() */
5170 }
5171
5172 static void e1000_watchdog_task(struct work_struct *work)
5173 {
5174 struct e1000_adapter *adapter = container_of(work,
5175 struct e1000_adapter,
5176 watchdog_task);
5177 struct net_device *netdev = adapter->netdev;
5178 struct e1000_mac_info *mac = &adapter->hw.mac;
5179 struct e1000_phy_info *phy = &adapter->hw.phy;
5180 struct e1000_ring *tx_ring = adapter->tx_ring;
5181 struct e1000_hw *hw = &adapter->hw;
5182 u32 link, tctl;
5183
5184 if (test_bit(__E1000_DOWN, &adapter->state))
5185 return;
5186
5187 link = e1000e_has_link(adapter);
5188 if ((netif_carrier_ok(netdev)) && link) {
5189 /* Cancel scheduled suspend requests. */
5190 pm_runtime_resume(netdev->dev.parent);
5191
5192 e1000e_enable_receives(adapter);
5193 goto link_up;
5194 }
5195
5196 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5197 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5198 e1000_update_mng_vlan(adapter);
5199
5200 if (link) {
5201 if (!netif_carrier_ok(netdev)) {
5202 bool txb2b = true;
5203
5204 /* Cancel scheduled suspend requests. */
5205 pm_runtime_resume(netdev->dev.parent);
5206
5207 /* update snapshot of PHY registers on LSC */
5208 e1000_phy_read_status(adapter);
5209 mac->ops.get_link_up_info(&adapter->hw,
5210 &adapter->link_speed,
5211 &adapter->link_duplex);
5212 e1000_print_link_info(adapter);
5213
5214 /* check if SmartSpeed worked */
5215 e1000e_check_downshift(hw);
5216 if (phy->speed_downgraded)
5217 netdev_warn(netdev,
5218 "Link Speed was downgraded by SmartSpeed\n");
5219
5220 /* On supported PHYs, check for duplex mismatch only
5221 * if link has autonegotiated at 10/100 half
5222 */
5223 if ((hw->phy.type == e1000_phy_igp_3 ||
5224 hw->phy.type == e1000_phy_bm) &&
5225 hw->mac.autoneg &&
5226 (adapter->link_speed == SPEED_10 ||
5227 adapter->link_speed == SPEED_100) &&
5228 (adapter->link_duplex == HALF_DUPLEX)) {
5229 u16 autoneg_exp;
5230
5231 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5232
5233 if (!(autoneg_exp & EXPANSION_NWAY))
5234 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5235 }
5236
5237 /* adjust timeout factor according to speed/duplex */
5238 adapter->tx_timeout_factor = 1;
5239 switch (adapter->link_speed) {
5240 case SPEED_10:
5241 txb2b = false;
5242 adapter->tx_timeout_factor = 16;
5243 break;
5244 case SPEED_100:
5245 txb2b = false;
5246 adapter->tx_timeout_factor = 10;
5247 break;
5248 }
5249
5250 /* workaround: re-program speed mode bit after
5251 * link-up event
5252 */
5253 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5254 !txb2b) {
5255 u32 tarc0;
5256
5257 tarc0 = er32(TARC(0));
5258 tarc0 &= ~SPEED_MODE_BIT;
5259 ew32(TARC(0), tarc0);
5260 }
5261
5262 /* disable TSO for pcie and 10/100 speeds, to avoid
5263 * some hardware issues
5264 */
5265 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5266 switch (adapter->link_speed) {
5267 case SPEED_10:
5268 case SPEED_100:
5269 e_info("10/100 speed: disabling TSO\n");
5270 netdev->features &= ~NETIF_F_TSO;
5271 netdev->features &= ~NETIF_F_TSO6;
5272 break;
5273 case SPEED_1000:
5274 netdev->features |= NETIF_F_TSO;
5275 netdev->features |= NETIF_F_TSO6;
5276 break;
5277 default:
5278 /* oops */
5279 break;
5280 }
5281 }
5282
5283 /* enable transmits in the hardware, need to do this
5284 * after setting TARC(0)
5285 */
5286 tctl = er32(TCTL);
5287 tctl |= E1000_TCTL_EN;
5288 ew32(TCTL, tctl);
5289
5290 /* Perform any post-link-up configuration before
5291 * reporting link up.
5292 */
5293 if (phy->ops.cfg_on_link_up)
5294 phy->ops.cfg_on_link_up(hw);
5295
5296 netif_carrier_on(netdev);
5297
5298 if (!test_bit(__E1000_DOWN, &adapter->state))
5299 mod_timer(&adapter->phy_info_timer,
5300 round_jiffies(jiffies + 2 * HZ));
5301 }
5302 } else {
5303 if (netif_carrier_ok(netdev)) {
5304 adapter->link_speed = 0;
5305 adapter->link_duplex = 0;
5306 /* Link status message must follow this format */
5307 pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5308 netif_carrier_off(netdev);
5309 if (!test_bit(__E1000_DOWN, &adapter->state))
5310 mod_timer(&adapter->phy_info_timer,
5311 round_jiffies(jiffies + 2 * HZ));
5312
5313 /* 8000ES2LAN requires a Rx packet buffer work-around
5314 * on link down event; reset the controller to flush
5315 * the Rx packet buffer.
5316 */
5317 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5318 adapter->flags |= FLAG_RESTART_NOW;
5319 else
5320 pm_schedule_suspend(netdev->dev.parent,
5321 LINK_TIMEOUT);
5322 }
5323 }
5324
5325 link_up:
5326 spin_lock(&adapter->stats64_lock);
5327 e1000e_update_stats(adapter);
5328
5329 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5330 adapter->tpt_old = adapter->stats.tpt;
5331 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5332 adapter->colc_old = adapter->stats.colc;
5333
5334 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5335 adapter->gorc_old = adapter->stats.gorc;
5336 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5337 adapter->gotc_old = adapter->stats.gotc;
5338 spin_unlock(&adapter->stats64_lock);
5339
5340 /* If the link is lost the controller stops DMA, but
5341 * if there is queued Tx work it cannot be done. So
5342 * reset the controller to flush the Tx packet buffers.
5343 */
5344 if (!netif_carrier_ok(netdev) &&
5345 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5346 adapter->flags |= FLAG_RESTART_NOW;
5347
5348 /* If reset is necessary, do it outside of interrupt context. */
5349 if (adapter->flags & FLAG_RESTART_NOW) {
5350 schedule_work(&adapter->reset_task);
5351 /* return immediately since reset is imminent */
5352 return;
5353 }
5354
5355 e1000e_update_adaptive(&adapter->hw);
5356
5357 /* Simple mode for Interrupt Throttle Rate (ITR) */
5358 if (adapter->itr_setting == 4) {
5359 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5360 * Total asymmetrical Tx or Rx gets ITR=8000;
5361 * everyone else is between 2000-8000.
5362 */
5363 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5364 u32 dif = (adapter->gotc > adapter->gorc ?
5365 adapter->gotc - adapter->gorc :
5366 adapter->gorc - adapter->gotc) / 10000;
5367 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5368
5369 e1000e_write_itr(adapter, itr);
5370 }
5371
5372 /* Cause software interrupt to ensure Rx ring is cleaned */
5373 if (adapter->msix_entries)
5374 ew32(ICS, adapter->rx_ring->ims_val);
5375 else
5376 ew32(ICS, E1000_ICS_RXDMT0);
5377
5378 /* flush pending descriptors to memory before detecting Tx hang */
5379 e1000e_flush_descriptors(adapter);
5380
5381 /* Force detection of hung controller every watchdog period */
5382 adapter->detect_tx_hung = true;
5383
5384 /* With 82571 controllers, LAA may be overwritten due to controller
5385 * reset from the other port. Set the appropriate LAA in RAR[0]
5386 */
5387 if (e1000e_get_laa_state_82571(hw))
5388 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5389
5390 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5391 e1000e_check_82574_phy_workaround(adapter);
5392
5393 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5394 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5395 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5396 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5397 er32(RXSTMPH);
5398 adapter->rx_hwtstamp_cleared++;
5399 } else {
5400 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5401 }
5402 }
5403
5404 /* Reset the timer */
5405 if (!test_bit(__E1000_DOWN, &adapter->state))
5406 mod_timer(&adapter->watchdog_timer,
5407 round_jiffies(jiffies + 2 * HZ));
5408 }
5409
5410 #define E1000_TX_FLAGS_CSUM 0x00000001
5411 #define E1000_TX_FLAGS_VLAN 0x00000002
5412 #define E1000_TX_FLAGS_TSO 0x00000004
5413 #define E1000_TX_FLAGS_IPV4 0x00000008
5414 #define E1000_TX_FLAGS_NO_FCS 0x00000010
5415 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5416 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5417 #define E1000_TX_FLAGS_VLAN_SHIFT 16
5418
5419 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5420 __be16 protocol)
5421 {
5422 struct e1000_context_desc *context_desc;
5423 struct e1000_buffer *buffer_info;
5424 unsigned int i;
5425 u32 cmd_length = 0;
5426 u16 ipcse = 0, mss;
5427 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5428 int err;
5429
5430 if (!skb_is_gso(skb))
5431 return 0;
5432
5433 err = skb_cow_head(skb, 0);
5434 if (err < 0)
5435 return err;
5436
5437 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5438 mss = skb_shinfo(skb)->gso_size;
5439 if (protocol == htons(ETH_P_IP)) {
5440 struct iphdr *iph = ip_hdr(skb);
5441 iph->tot_len = 0;
5442 iph->check = 0;
5443 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5444 0, IPPROTO_TCP, 0);
5445 cmd_length = E1000_TXD_CMD_IP;
5446 ipcse = skb_transport_offset(skb) - 1;
5447 } else if (skb_is_gso_v6(skb)) {
5448 ipv6_hdr(skb)->payload_len = 0;
5449 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5450 &ipv6_hdr(skb)->daddr,
5451 0, IPPROTO_TCP, 0);
5452 ipcse = 0;
5453 }
5454 ipcss = skb_network_offset(skb);
5455 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5456 tucss = skb_transport_offset(skb);
5457 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5458
5459 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5460 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5461
5462 i = tx_ring->next_to_use;
5463 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5464 buffer_info = &tx_ring->buffer_info[i];
5465
5466 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5467 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5468 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5469 context_desc->upper_setup.tcp_fields.tucss = tucss;
5470 context_desc->upper_setup.tcp_fields.tucso = tucso;
5471 context_desc->upper_setup.tcp_fields.tucse = 0;
5472 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5473 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5474 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5475
5476 buffer_info->time_stamp = jiffies;
5477 buffer_info->next_to_watch = i;
5478
5479 i++;
5480 if (i == tx_ring->count)
5481 i = 0;
5482 tx_ring->next_to_use = i;
5483
5484 return 1;
5485 }
5486
5487 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5488 __be16 protocol)
5489 {
5490 struct e1000_adapter *adapter = tx_ring->adapter;
5491 struct e1000_context_desc *context_desc;
5492 struct e1000_buffer *buffer_info;
5493 unsigned int i;
5494 u8 css;
5495 u32 cmd_len = E1000_TXD_CMD_DEXT;
5496
5497 if (skb->ip_summed != CHECKSUM_PARTIAL)
5498 return false;
5499
5500 switch (protocol) {
5501 case cpu_to_be16(ETH_P_IP):
5502 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5503 cmd_len |= E1000_TXD_CMD_TCP;
5504 break;
5505 case cpu_to_be16(ETH_P_IPV6):
5506 /* XXX not handling all IPV6 headers */
5507 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5508 cmd_len |= E1000_TXD_CMD_TCP;
5509 break;
5510 default:
5511 if (unlikely(net_ratelimit()))
5512 e_warn("checksum_partial proto=%x!\n",
5513 be16_to_cpu(protocol));
5514 break;
5515 }
5516
5517 css = skb_checksum_start_offset(skb);
5518
5519 i = tx_ring->next_to_use;
5520 buffer_info = &tx_ring->buffer_info[i];
5521 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5522
5523 context_desc->lower_setup.ip_config = 0;
5524 context_desc->upper_setup.tcp_fields.tucss = css;
5525 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5526 context_desc->upper_setup.tcp_fields.tucse = 0;
5527 context_desc->tcp_seg_setup.data = 0;
5528 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5529
5530 buffer_info->time_stamp = jiffies;
5531 buffer_info->next_to_watch = i;
5532
5533 i++;
5534 if (i == tx_ring->count)
5535 i = 0;
5536 tx_ring->next_to_use = i;
5537
5538 return true;
5539 }
5540
5541 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5542 unsigned int first, unsigned int max_per_txd,
5543 unsigned int nr_frags)
5544 {
5545 struct e1000_adapter *adapter = tx_ring->adapter;
5546 struct pci_dev *pdev = adapter->pdev;
5547 struct e1000_buffer *buffer_info;
5548 unsigned int len = skb_headlen(skb);
5549 unsigned int offset = 0, size, count = 0, i;
5550 unsigned int f, bytecount, segs;
5551
5552 i = tx_ring->next_to_use;
5553
5554 while (len) {
5555 buffer_info = &tx_ring->buffer_info[i];
5556 size = min(len, max_per_txd);
5557
5558 buffer_info->length = size;
5559 buffer_info->time_stamp = jiffies;
5560 buffer_info->next_to_watch = i;
5561 buffer_info->dma = dma_map_single(&pdev->dev,
5562 skb->data + offset,
5563 size, DMA_TO_DEVICE);
5564 buffer_info->mapped_as_page = false;
5565 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5566 goto dma_error;
5567
5568 len -= size;
5569 offset += size;
5570 count++;
5571
5572 if (len) {
5573 i++;
5574 if (i == tx_ring->count)
5575 i = 0;
5576 }
5577 }
5578
5579 for (f = 0; f < nr_frags; f++) {
5580 const struct skb_frag_struct *frag;
5581
5582 frag = &skb_shinfo(skb)->frags[f];
5583 len = skb_frag_size(frag);
5584 offset = 0;
5585
5586 while (len) {
5587 i++;
5588 if (i == tx_ring->count)
5589 i = 0;
5590
5591 buffer_info = &tx_ring->buffer_info[i];
5592 size = min(len, max_per_txd);
5593
5594 buffer_info->length = size;
5595 buffer_info->time_stamp = jiffies;
5596 buffer_info->next_to_watch = i;
5597 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5598 offset, size,
5599 DMA_TO_DEVICE);
5600 buffer_info->mapped_as_page = true;
5601 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5602 goto dma_error;
5603
5604 len -= size;
5605 offset += size;
5606 count++;
5607 }
5608 }
5609
5610 segs = skb_shinfo(skb)->gso_segs ? : 1;
5611 /* multiply data chunks by size of headers */
5612 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5613
5614 tx_ring->buffer_info[i].skb = skb;
5615 tx_ring->buffer_info[i].segs = segs;
5616 tx_ring->buffer_info[i].bytecount = bytecount;
5617 tx_ring->buffer_info[first].next_to_watch = i;
5618
5619 return count;
5620
5621 dma_error:
5622 dev_err(&pdev->dev, "Tx DMA map failed\n");
5623 buffer_info->dma = 0;
5624 if (count)
5625 count--;
5626
5627 while (count--) {
5628 if (i == 0)
5629 i += tx_ring->count;
5630 i--;
5631 buffer_info = &tx_ring->buffer_info[i];
5632 e1000_put_txbuf(tx_ring, buffer_info, true);
5633 }
5634
5635 return 0;
5636 }
5637
5638 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5639 {
5640 struct e1000_adapter *adapter = tx_ring->adapter;
5641 struct e1000_tx_desc *tx_desc = NULL;
5642 struct e1000_buffer *buffer_info;
5643 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5644 unsigned int i;
5645
5646 if (tx_flags & E1000_TX_FLAGS_TSO) {
5647 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5648 E1000_TXD_CMD_TSE;
5649 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5650
5651 if (tx_flags & E1000_TX_FLAGS_IPV4)
5652 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5653 }
5654
5655 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5656 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5657 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5658 }
5659
5660 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5661 txd_lower |= E1000_TXD_CMD_VLE;
5662 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5663 }
5664
5665 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5666 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5667
5668 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5669 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5670 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5671 }
5672
5673 i = tx_ring->next_to_use;
5674
5675 do {
5676 buffer_info = &tx_ring->buffer_info[i];
5677 tx_desc = E1000_TX_DESC(*tx_ring, i);
5678 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5679 tx_desc->lower.data = cpu_to_le32(txd_lower |
5680 buffer_info->length);
5681 tx_desc->upper.data = cpu_to_le32(txd_upper);
5682
5683 i++;
5684 if (i == tx_ring->count)
5685 i = 0;
5686 } while (--count > 0);
5687
5688 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5689
5690 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5691 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5692 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5693
5694 /* Force memory writes to complete before letting h/w
5695 * know there are new descriptors to fetch. (Only
5696 * applicable for weak-ordered memory model archs,
5697 * such as IA-64).
5698 */
5699 wmb();
5700
5701 tx_ring->next_to_use = i;
5702 }
5703
5704 #define MINIMUM_DHCP_PACKET_SIZE 282
5705 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5706 struct sk_buff *skb)
5707 {
5708 struct e1000_hw *hw = &adapter->hw;
5709 u16 length, offset;
5710
5711 if (skb_vlan_tag_present(skb) &&
5712 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5713 (adapter->hw.mng_cookie.status &
5714 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5715 return 0;
5716
5717 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5718 return 0;
5719
5720 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5721 return 0;
5722
5723 {
5724 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5725 struct udphdr *udp;
5726
5727 if (ip->protocol != IPPROTO_UDP)
5728 return 0;
5729
5730 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5731 if (ntohs(udp->dest) != 67)
5732 return 0;
5733
5734 offset = (u8 *)udp + 8 - skb->data;
5735 length = skb->len - offset;
5736 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5737 }
5738
5739 return 0;
5740 }
5741
5742 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5743 {
5744 struct e1000_adapter *adapter = tx_ring->adapter;
5745
5746 netif_stop_queue(adapter->netdev);
5747 /* Herbert's original patch had:
5748 * smp_mb__after_netif_stop_queue();
5749 * but since that doesn't exist yet, just open code it.
5750 */
5751 smp_mb();
5752
5753 /* We need to check again in a case another CPU has just
5754 * made room available.
5755 */
5756 if (e1000_desc_unused(tx_ring) < size)
5757 return -EBUSY;
5758
5759 /* A reprieve! */
5760 netif_start_queue(adapter->netdev);
5761 ++adapter->restart_queue;
5762 return 0;
5763 }
5764
5765 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5766 {
5767 BUG_ON(size > tx_ring->count);
5768
5769 if (e1000_desc_unused(tx_ring) >= size)
5770 return 0;
5771 return __e1000_maybe_stop_tx(tx_ring, size);
5772 }
5773
5774 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5775 struct net_device *netdev)
5776 {
5777 struct e1000_adapter *adapter = netdev_priv(netdev);
5778 struct e1000_ring *tx_ring = adapter->tx_ring;
5779 unsigned int first;
5780 unsigned int tx_flags = 0;
5781 unsigned int len = skb_headlen(skb);
5782 unsigned int nr_frags;
5783 unsigned int mss;
5784 int count = 0;
5785 int tso;
5786 unsigned int f;
5787 __be16 protocol = vlan_get_protocol(skb);
5788
5789 if (test_bit(__E1000_DOWN, &adapter->state)) {
5790 dev_kfree_skb_any(skb);
5791 return NETDEV_TX_OK;
5792 }
5793
5794 if (skb->len <= 0) {
5795 dev_kfree_skb_any(skb);
5796 return NETDEV_TX_OK;
5797 }
5798
5799 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5800 * pad skb in order to meet this minimum size requirement
5801 */
5802 if (skb_put_padto(skb, 17))
5803 return NETDEV_TX_OK;
5804
5805 mss = skb_shinfo(skb)->gso_size;
5806 if (mss) {
5807 u8 hdr_len;
5808
5809 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5810 * points to just header, pull a few bytes of payload from
5811 * frags into skb->data
5812 */
5813 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5814 /* we do this workaround for ES2LAN, but it is un-necessary,
5815 * avoiding it could save a lot of cycles
5816 */
5817 if (skb->data_len && (hdr_len == len)) {
5818 unsigned int pull_size;
5819
5820 pull_size = min_t(unsigned int, 4, skb->data_len);
5821 if (!__pskb_pull_tail(skb, pull_size)) {
5822 e_err("__pskb_pull_tail failed.\n");
5823 dev_kfree_skb_any(skb);
5824 return NETDEV_TX_OK;
5825 }
5826 len = skb_headlen(skb);
5827 }
5828 }
5829
5830 /* reserve a descriptor for the offload context */
5831 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5832 count++;
5833 count++;
5834
5835 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5836
5837 nr_frags = skb_shinfo(skb)->nr_frags;
5838 for (f = 0; f < nr_frags; f++)
5839 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5840 adapter->tx_fifo_limit);
5841
5842 if (adapter->hw.mac.tx_pkt_filtering)
5843 e1000_transfer_dhcp_info(adapter, skb);
5844
5845 /* need: count + 2 desc gap to keep tail from touching
5846 * head, otherwise try next time
5847 */
5848 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5849 return NETDEV_TX_BUSY;
5850
5851 if (skb_vlan_tag_present(skb)) {
5852 tx_flags |= E1000_TX_FLAGS_VLAN;
5853 tx_flags |= (skb_vlan_tag_get(skb) <<
5854 E1000_TX_FLAGS_VLAN_SHIFT);
5855 }
5856
5857 first = tx_ring->next_to_use;
5858
5859 tso = e1000_tso(tx_ring, skb, protocol);
5860 if (tso < 0) {
5861 dev_kfree_skb_any(skb);
5862 return NETDEV_TX_OK;
5863 }
5864
5865 if (tso)
5866 tx_flags |= E1000_TX_FLAGS_TSO;
5867 else if (e1000_tx_csum(tx_ring, skb, protocol))
5868 tx_flags |= E1000_TX_FLAGS_CSUM;
5869
5870 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5871 * 82571 hardware supports TSO capabilities for IPv6 as well...
5872 * no longer assume, we must.
5873 */
5874 if (protocol == htons(ETH_P_IP))
5875 tx_flags |= E1000_TX_FLAGS_IPV4;
5876
5877 if (unlikely(skb->no_fcs))
5878 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5879
5880 /* if count is 0 then mapping error has occurred */
5881 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5882 nr_frags);
5883 if (count) {
5884 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5885 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5886 if (!adapter->tx_hwtstamp_skb) {
5887 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5888 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5889 adapter->tx_hwtstamp_skb = skb_get(skb);
5890 adapter->tx_hwtstamp_start = jiffies;
5891 schedule_work(&adapter->tx_hwtstamp_work);
5892 } else {
5893 adapter->tx_hwtstamp_skipped++;
5894 }
5895 }
5896
5897 skb_tx_timestamp(skb);
5898
5899 netdev_sent_queue(netdev, skb->len);
5900 e1000_tx_queue(tx_ring, tx_flags, count);
5901 /* Make sure there is space in the ring for the next send. */
5902 e1000_maybe_stop_tx(tx_ring,
5903 (MAX_SKB_FRAGS *
5904 DIV_ROUND_UP(PAGE_SIZE,
5905 adapter->tx_fifo_limit) + 2));
5906
5907 if (!skb->xmit_more ||
5908 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5909 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5910 e1000e_update_tdt_wa(tx_ring,
5911 tx_ring->next_to_use);
5912 else
5913 writel(tx_ring->next_to_use, tx_ring->tail);
5914
5915 /* we need this if more than one processor can write
5916 * to our tail at a time, it synchronizes IO on
5917 *IA64/Altix systems
5918 */
5919 mmiowb();
5920 }
5921 } else {
5922 dev_kfree_skb_any(skb);
5923 tx_ring->buffer_info[first].time_stamp = 0;
5924 tx_ring->next_to_use = first;
5925 }
5926
5927 return NETDEV_TX_OK;
5928 }
5929
5930 /**
5931 * e1000_tx_timeout - Respond to a Tx Hang
5932 * @netdev: network interface device structure
5933 **/
5934 static void e1000_tx_timeout(struct net_device *netdev)
5935 {
5936 struct e1000_adapter *adapter = netdev_priv(netdev);
5937
5938 /* Do the reset outside of interrupt context */
5939 adapter->tx_timeout_count++;
5940 schedule_work(&adapter->reset_task);
5941 }
5942
5943 static void e1000_reset_task(struct work_struct *work)
5944 {
5945 struct e1000_adapter *adapter;
5946 adapter = container_of(work, struct e1000_adapter, reset_task);
5947
5948 /* don't run the task if already down */
5949 if (test_bit(__E1000_DOWN, &adapter->state))
5950 return;
5951
5952 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5953 e1000e_dump(adapter);
5954 e_err("Reset adapter unexpectedly\n");
5955 }
5956 e1000e_reinit_locked(adapter);
5957 }
5958
5959 /**
5960 * e1000_get_stats64 - Get System Network Statistics
5961 * @netdev: network interface device structure
5962 * @stats: rtnl_link_stats64 pointer
5963 *
5964 * Returns the address of the device statistics structure.
5965 **/
5966 void e1000e_get_stats64(struct net_device *netdev,
5967 struct rtnl_link_stats64 *stats)
5968 {
5969 struct e1000_adapter *adapter = netdev_priv(netdev);
5970
5971 spin_lock(&adapter->stats64_lock);
5972 e1000e_update_stats(adapter);
5973 /* Fill out the OS statistics structure */
5974 stats->rx_bytes = adapter->stats.gorc;
5975 stats->rx_packets = adapter->stats.gprc;
5976 stats->tx_bytes = adapter->stats.gotc;
5977 stats->tx_packets = adapter->stats.gptc;
5978 stats->multicast = adapter->stats.mprc;
5979 stats->collisions = adapter->stats.colc;
5980
5981 /* Rx Errors */
5982
5983 /* RLEC on some newer hardware can be incorrect so build
5984 * our own version based on RUC and ROC
5985 */
5986 stats->rx_errors = adapter->stats.rxerrc +
5987 adapter->stats.crcerrs + adapter->stats.algnerrc +
5988 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5989 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5990 stats->rx_crc_errors = adapter->stats.crcerrs;
5991 stats->rx_frame_errors = adapter->stats.algnerrc;
5992 stats->rx_missed_errors = adapter->stats.mpc;
5993
5994 /* Tx Errors */
5995 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5996 stats->tx_aborted_errors = adapter->stats.ecol;
5997 stats->tx_window_errors = adapter->stats.latecol;
5998 stats->tx_carrier_errors = adapter->stats.tncrs;
5999
6000 /* Tx Dropped needs to be maintained elsewhere */
6001
6002 spin_unlock(&adapter->stats64_lock);
6003 }
6004
6005 /**
6006 * e1000_change_mtu - Change the Maximum Transfer Unit
6007 * @netdev: network interface device structure
6008 * @new_mtu: new value for maximum frame size
6009 *
6010 * Returns 0 on success, negative on failure
6011 **/
6012 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6013 {
6014 struct e1000_adapter *adapter = netdev_priv(netdev);
6015 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6016
6017 /* Jumbo frame support */
6018 if ((new_mtu > ETH_DATA_LEN) &&
6019 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6020 e_err("Jumbo Frames not supported.\n");
6021 return -EINVAL;
6022 }
6023
6024 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6025 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6026 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6027 (new_mtu > ETH_DATA_LEN)) {
6028 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6029 return -EINVAL;
6030 }
6031
6032 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6033 usleep_range(1000, 2000);
6034 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6035 adapter->max_frame_size = max_frame;
6036 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6037 netdev->mtu = new_mtu;
6038
6039 pm_runtime_get_sync(netdev->dev.parent);
6040
6041 if (netif_running(netdev))
6042 e1000e_down(adapter, true);
6043
6044 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6045 * means we reserve 2 more, this pushes us to allocate from the next
6046 * larger slab size.
6047 * i.e. RXBUFFER_2048 --> size-4096 slab
6048 * However with the new *_jumbo_rx* routines, jumbo receives will use
6049 * fragmented skbs
6050 */
6051
6052 if (max_frame <= 2048)
6053 adapter->rx_buffer_len = 2048;
6054 else
6055 adapter->rx_buffer_len = 4096;
6056
6057 /* adjust allocation if LPE protects us, and we aren't using SBP */
6058 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6059 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6060
6061 if (netif_running(netdev))
6062 e1000e_up(adapter);
6063 else
6064 e1000e_reset(adapter);
6065
6066 pm_runtime_put_sync(netdev->dev.parent);
6067
6068 clear_bit(__E1000_RESETTING, &adapter->state);
6069
6070 return 0;
6071 }
6072
6073 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6074 int cmd)
6075 {
6076 struct e1000_adapter *adapter = netdev_priv(netdev);
6077 struct mii_ioctl_data *data = if_mii(ifr);
6078
6079 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6080 return -EOPNOTSUPP;
6081
6082 switch (cmd) {
6083 case SIOCGMIIPHY:
6084 data->phy_id = adapter->hw.phy.addr;
6085 break;
6086 case SIOCGMIIREG:
6087 e1000_phy_read_status(adapter);
6088
6089 switch (data->reg_num & 0x1F) {
6090 case MII_BMCR:
6091 data->val_out = adapter->phy_regs.bmcr;
6092 break;
6093 case MII_BMSR:
6094 data->val_out = adapter->phy_regs.bmsr;
6095 break;
6096 case MII_PHYSID1:
6097 data->val_out = (adapter->hw.phy.id >> 16);
6098 break;
6099 case MII_PHYSID2:
6100 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6101 break;
6102 case MII_ADVERTISE:
6103 data->val_out = adapter->phy_regs.advertise;
6104 break;
6105 case MII_LPA:
6106 data->val_out = adapter->phy_regs.lpa;
6107 break;
6108 case MII_EXPANSION:
6109 data->val_out = adapter->phy_regs.expansion;
6110 break;
6111 case MII_CTRL1000:
6112 data->val_out = adapter->phy_regs.ctrl1000;
6113 break;
6114 case MII_STAT1000:
6115 data->val_out = adapter->phy_regs.stat1000;
6116 break;
6117 case MII_ESTATUS:
6118 data->val_out = adapter->phy_regs.estatus;
6119 break;
6120 default:
6121 return -EIO;
6122 }
6123 break;
6124 case SIOCSMIIREG:
6125 default:
6126 return -EOPNOTSUPP;
6127 }
6128 return 0;
6129 }
6130
6131 /**
6132 * e1000e_hwtstamp_ioctl - control hardware time stamping
6133 * @netdev: network interface device structure
6134 * @ifreq: interface request
6135 *
6136 * Outgoing time stamping can be enabled and disabled. Play nice and
6137 * disable it when requested, although it shouldn't cause any overhead
6138 * when no packet needs it. At most one packet in the queue may be
6139 * marked for time stamping, otherwise it would be impossible to tell
6140 * for sure to which packet the hardware time stamp belongs.
6141 *
6142 * Incoming time stamping has to be configured via the hardware filters.
6143 * Not all combinations are supported, in particular event type has to be
6144 * specified. Matching the kind of event packet is not supported, with the
6145 * exception of "all V2 events regardless of level 2 or 4".
6146 **/
6147 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6148 {
6149 struct e1000_adapter *adapter = netdev_priv(netdev);
6150 struct hwtstamp_config config;
6151 int ret_val;
6152
6153 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6154 return -EFAULT;
6155
6156 ret_val = e1000e_config_hwtstamp(adapter, &config);
6157 if (ret_val)
6158 return ret_val;
6159
6160 switch (config.rx_filter) {
6161 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6162 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6163 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6164 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6165 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6166 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6167 /* With V2 type filters which specify a Sync or Delay Request,
6168 * Path Delay Request/Response messages are also time stamped
6169 * by hardware so notify the caller the requested packets plus
6170 * some others are time stamped.
6171 */
6172 config.rx_filter = HWTSTAMP_FILTER_SOME;
6173 break;
6174 default:
6175 break;
6176 }
6177
6178 return copy_to_user(ifr->ifr_data, &config,
6179 sizeof(config)) ? -EFAULT : 0;
6180 }
6181
6182 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6183 {
6184 struct e1000_adapter *adapter = netdev_priv(netdev);
6185
6186 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6187 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6188 }
6189
6190 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6191 {
6192 switch (cmd) {
6193 case SIOCGMIIPHY:
6194 case SIOCGMIIREG:
6195 case SIOCSMIIREG:
6196 return e1000_mii_ioctl(netdev, ifr, cmd);
6197 case SIOCSHWTSTAMP:
6198 return e1000e_hwtstamp_set(netdev, ifr);
6199 case SIOCGHWTSTAMP:
6200 return e1000e_hwtstamp_get(netdev, ifr);
6201 default:
6202 return -EOPNOTSUPP;
6203 }
6204 }
6205
6206 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6207 {
6208 struct e1000_hw *hw = &adapter->hw;
6209 u32 i, mac_reg, wuc;
6210 u16 phy_reg, wuc_enable;
6211 int retval;
6212
6213 /* copy MAC RARs to PHY RARs */
6214 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6215
6216 retval = hw->phy.ops.acquire(hw);
6217 if (retval) {
6218 e_err("Could not acquire PHY\n");
6219 return retval;
6220 }
6221
6222 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6223 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6224 if (retval)
6225 goto release;
6226
6227 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6228 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6229 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6230 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6231 (u16)(mac_reg & 0xFFFF));
6232 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6233 (u16)((mac_reg >> 16) & 0xFFFF));
6234 }
6235
6236 /* configure PHY Rx Control register */
6237 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6238 mac_reg = er32(RCTL);
6239 if (mac_reg & E1000_RCTL_UPE)
6240 phy_reg |= BM_RCTL_UPE;
6241 if (mac_reg & E1000_RCTL_MPE)
6242 phy_reg |= BM_RCTL_MPE;
6243 phy_reg &= ~(BM_RCTL_MO_MASK);
6244 if (mac_reg & E1000_RCTL_MO_3)
6245 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6246 << BM_RCTL_MO_SHIFT);
6247 if (mac_reg & E1000_RCTL_BAM)
6248 phy_reg |= BM_RCTL_BAM;
6249 if (mac_reg & E1000_RCTL_PMCF)
6250 phy_reg |= BM_RCTL_PMCF;
6251 mac_reg = er32(CTRL);
6252 if (mac_reg & E1000_CTRL_RFCE)
6253 phy_reg |= BM_RCTL_RFCE;
6254 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6255
6256 wuc = E1000_WUC_PME_EN;
6257 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6258 wuc |= E1000_WUC_APME;
6259
6260 /* enable PHY wakeup in MAC register */
6261 ew32(WUFC, wufc);
6262 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6263 E1000_WUC_PME_STATUS | wuc));
6264
6265 /* configure and enable PHY wakeup in PHY registers */
6266 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6267 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6268
6269 /* activate PHY wakeup */
6270 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6271 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6272 if (retval)
6273 e_err("Could not set PHY Host Wakeup bit\n");
6274 release:
6275 hw->phy.ops.release(hw);
6276
6277 return retval;
6278 }
6279
6280 static void e1000e_flush_lpic(struct pci_dev *pdev)
6281 {
6282 struct net_device *netdev = pci_get_drvdata(pdev);
6283 struct e1000_adapter *adapter = netdev_priv(netdev);
6284 struct e1000_hw *hw = &adapter->hw;
6285 u32 ret_val;
6286
6287 pm_runtime_get_sync(netdev->dev.parent);
6288
6289 ret_val = hw->phy.ops.acquire(hw);
6290 if (ret_val)
6291 goto fl_out;
6292
6293 pr_info("EEE TX LPI TIMER: %08X\n",
6294 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6295
6296 hw->phy.ops.release(hw);
6297
6298 fl_out:
6299 pm_runtime_put_sync(netdev->dev.parent);
6300 }
6301
6302 static int e1000e_pm_freeze(struct device *dev)
6303 {
6304 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6305 struct e1000_adapter *adapter = netdev_priv(netdev);
6306
6307 netif_device_detach(netdev);
6308
6309 if (netif_running(netdev)) {
6310 int count = E1000_CHECK_RESET_COUNT;
6311
6312 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6313 usleep_range(10000, 20000);
6314
6315 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6316
6317 /* Quiesce the device without resetting the hardware */
6318 e1000e_down(adapter, false);
6319 e1000_free_irq(adapter);
6320 }
6321 e1000e_reset_interrupt_capability(adapter);
6322
6323 /* Allow time for pending master requests to run */
6324 e1000e_disable_pcie_master(&adapter->hw);
6325
6326 return 0;
6327 }
6328
6329 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6330 {
6331 struct net_device *netdev = pci_get_drvdata(pdev);
6332 struct e1000_adapter *adapter = netdev_priv(netdev);
6333 struct e1000_hw *hw = &adapter->hw;
6334 u32 ctrl, ctrl_ext, rctl, status;
6335 /* Runtime suspend should only enable wakeup for link changes */
6336 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6337 int retval = 0;
6338
6339 status = er32(STATUS);
6340 if (status & E1000_STATUS_LU)
6341 wufc &= ~E1000_WUFC_LNKC;
6342
6343 if (wufc) {
6344 e1000_setup_rctl(adapter);
6345 e1000e_set_rx_mode(netdev);
6346
6347 /* turn on all-multi mode if wake on multicast is enabled */
6348 if (wufc & E1000_WUFC_MC) {
6349 rctl = er32(RCTL);
6350 rctl |= E1000_RCTL_MPE;
6351 ew32(RCTL, rctl);
6352 }
6353
6354 ctrl = er32(CTRL);
6355 ctrl |= E1000_CTRL_ADVD3WUC;
6356 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6357 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6358 ew32(CTRL, ctrl);
6359
6360 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6361 adapter->hw.phy.media_type ==
6362 e1000_media_type_internal_serdes) {
6363 /* keep the laser running in D3 */
6364 ctrl_ext = er32(CTRL_EXT);
6365 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6366 ew32(CTRL_EXT, ctrl_ext);
6367 }
6368
6369 if (!runtime)
6370 e1000e_power_up_phy(adapter);
6371
6372 if (adapter->flags & FLAG_IS_ICH)
6373 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6374
6375 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6376 /* enable wakeup by the PHY */
6377 retval = e1000_init_phy_wakeup(adapter, wufc);
6378 if (retval)
6379 return retval;
6380 } else {
6381 /* enable wakeup by the MAC */
6382 ew32(WUFC, wufc);
6383 ew32(WUC, E1000_WUC_PME_EN);
6384 }
6385 } else {
6386 ew32(WUC, 0);
6387 ew32(WUFC, 0);
6388
6389 e1000_power_down_phy(adapter);
6390 }
6391
6392 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6393 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6394 } else if (hw->mac.type >= e1000_pch_lpt) {
6395 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6396 /* ULP does not support wake from unicast, multicast
6397 * or broadcast.
6398 */
6399 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6400
6401 if (retval)
6402 return retval;
6403 }
6404
6405 /* Ensure that the appropriate bits are set in LPI_CTRL
6406 * for EEE in Sx
6407 */
6408 if ((hw->phy.type >= e1000_phy_i217) &&
6409 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6410 u16 lpi_ctrl = 0;
6411
6412 retval = hw->phy.ops.acquire(hw);
6413 if (!retval) {
6414 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6415 &lpi_ctrl);
6416 if (!retval) {
6417 if (adapter->eee_advert &
6418 hw->dev_spec.ich8lan.eee_lp_ability &
6419 I82579_EEE_100_SUPPORTED)
6420 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6421 if (adapter->eee_advert &
6422 hw->dev_spec.ich8lan.eee_lp_ability &
6423 I82579_EEE_1000_SUPPORTED)
6424 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6425
6426 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6427 lpi_ctrl);
6428 }
6429 }
6430 hw->phy.ops.release(hw);
6431 }
6432
6433 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6434 * would have already happened in close and is redundant.
6435 */
6436 e1000e_release_hw_control(adapter);
6437
6438 pci_clear_master(pdev);
6439
6440 /* The pci-e switch on some quad port adapters will report a
6441 * correctable error when the MAC transitions from D0 to D3. To
6442 * prevent this we need to mask off the correctable errors on the
6443 * downstream port of the pci-e switch.
6444 *
6445 * We don't have the associated upstream bridge while assigning
6446 * the PCI device into guest. For example, the KVM on power is
6447 * one of the cases.
6448 */
6449 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6450 struct pci_dev *us_dev = pdev->bus->self;
6451 u16 devctl;
6452
6453 if (!us_dev)
6454 return 0;
6455
6456 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6457 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6458 (devctl & ~PCI_EXP_DEVCTL_CERE));
6459
6460 pci_save_state(pdev);
6461 pci_prepare_to_sleep(pdev);
6462
6463 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6464 }
6465
6466 return 0;
6467 }
6468
6469 /**
6470 * __e1000e_disable_aspm - Disable ASPM states
6471 * @pdev: pointer to PCI device struct
6472 * @state: bit-mask of ASPM states to disable
6473 * @locked: indication if this context holds pci_bus_sem locked.
6474 *
6475 * Some devices *must* have certain ASPM states disabled per hardware errata.
6476 **/
6477 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6478 {
6479 struct pci_dev *parent = pdev->bus->self;
6480 u16 aspm_dis_mask = 0;
6481 u16 pdev_aspmc, parent_aspmc;
6482
6483 switch (state) {
6484 case PCIE_LINK_STATE_L0S:
6485 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6486 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6487 /* fall-through - can't have L1 without L0s */
6488 case PCIE_LINK_STATE_L1:
6489 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6490 break;
6491 default:
6492 return;
6493 }
6494
6495 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6496 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6497
6498 if (parent) {
6499 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6500 &parent_aspmc);
6501 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6502 }
6503
6504 /* Nothing to do if the ASPM states to be disabled already are */
6505 if (!(pdev_aspmc & aspm_dis_mask) &&
6506 (!parent || !(parent_aspmc & aspm_dis_mask)))
6507 return;
6508
6509 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6510 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6511 "L0s" : "",
6512 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6513 "L1" : "");
6514
6515 #ifdef CONFIG_PCIEASPM
6516 if (locked)
6517 pci_disable_link_state_locked(pdev, state);
6518 else
6519 pci_disable_link_state(pdev, state);
6520
6521 /* Double-check ASPM control. If not disabled by the above, the
6522 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6523 * not enabled); override by writing PCI config space directly.
6524 */
6525 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6526 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6527
6528 if (!(aspm_dis_mask & pdev_aspmc))
6529 return;
6530 #endif
6531
6532 /* Both device and parent should have the same ASPM setting.
6533 * Disable ASPM in downstream component first and then upstream.
6534 */
6535 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6536
6537 if (parent)
6538 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6539 aspm_dis_mask);
6540 }
6541
6542 /**
6543 * e1000e_disable_aspm - Disable ASPM states.
6544 * @pdev: pointer to PCI device struct
6545 * @state: bit-mask of ASPM states to disable
6546 *
6547 * This function acquires the pci_bus_sem!
6548 * Some devices *must* have certain ASPM states disabled per hardware errata.
6549 **/
6550 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6551 {
6552 __e1000e_disable_aspm(pdev, state, 0);
6553 }
6554
6555 /**
6556 * e1000e_disable_aspm_locked Disable ASPM states.
6557 * @pdev: pointer to PCI device struct
6558 * @state: bit-mask of ASPM states to disable
6559 *
6560 * This function must be called with pci_bus_sem acquired!
6561 * Some devices *must* have certain ASPM states disabled per hardware errata.
6562 **/
6563 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6564 {
6565 __e1000e_disable_aspm(pdev, state, 1);
6566 }
6567
6568 #ifdef CONFIG_PM
6569 static int __e1000_resume(struct pci_dev *pdev)
6570 {
6571 struct net_device *netdev = pci_get_drvdata(pdev);
6572 struct e1000_adapter *adapter = netdev_priv(netdev);
6573 struct e1000_hw *hw = &adapter->hw;
6574 u16 aspm_disable_flag = 0;
6575
6576 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6577 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6578 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6579 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6580 if (aspm_disable_flag)
6581 e1000e_disable_aspm(pdev, aspm_disable_flag);
6582
6583 pci_set_master(pdev);
6584
6585 if (hw->mac.type >= e1000_pch2lan)
6586 e1000_resume_workarounds_pchlan(&adapter->hw);
6587
6588 e1000e_power_up_phy(adapter);
6589
6590 /* report the system wakeup cause from S3/S4 */
6591 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6592 u16 phy_data;
6593
6594 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6595 if (phy_data) {
6596 e_info("PHY Wakeup cause - %s\n",
6597 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6598 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6599 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6600 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6601 phy_data & E1000_WUS_LNKC ?
6602 "Link Status Change" : "other");
6603 }
6604 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6605 } else {
6606 u32 wus = er32(WUS);
6607
6608 if (wus) {
6609 e_info("MAC Wakeup cause - %s\n",
6610 wus & E1000_WUS_EX ? "Unicast Packet" :
6611 wus & E1000_WUS_MC ? "Multicast Packet" :
6612 wus & E1000_WUS_BC ? "Broadcast Packet" :
6613 wus & E1000_WUS_MAG ? "Magic Packet" :
6614 wus & E1000_WUS_LNKC ? "Link Status Change" :
6615 "other");
6616 }
6617 ew32(WUS, ~0);
6618 }
6619
6620 e1000e_reset(adapter);
6621
6622 e1000_init_manageability_pt(adapter);
6623
6624 /* If the controller has AMT, do not set DRV_LOAD until the interface
6625 * is up. For all other cases, let the f/w know that the h/w is now
6626 * under the control of the driver.
6627 */
6628 if (!(adapter->flags & FLAG_HAS_AMT))
6629 e1000e_get_hw_control(adapter);
6630
6631 return 0;
6632 }
6633
6634 #ifdef CONFIG_PM_SLEEP
6635 static int e1000e_pm_thaw(struct device *dev)
6636 {
6637 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6638 struct e1000_adapter *adapter = netdev_priv(netdev);
6639
6640 e1000e_set_interrupt_capability(adapter);
6641 if (netif_running(netdev)) {
6642 u32 err = e1000_request_irq(adapter);
6643
6644 if (err)
6645 return err;
6646
6647 e1000e_up(adapter);
6648 }
6649
6650 netif_device_attach(netdev);
6651
6652 return 0;
6653 }
6654
6655 static int e1000e_pm_suspend(struct device *dev)
6656 {
6657 struct pci_dev *pdev = to_pci_dev(dev);
6658 int rc;
6659
6660 e1000e_flush_lpic(pdev);
6661
6662 e1000e_pm_freeze(dev);
6663
6664 rc = __e1000_shutdown(pdev, false);
6665 if (rc)
6666 e1000e_pm_thaw(dev);
6667
6668 return rc;
6669 }
6670
6671 static int e1000e_pm_resume(struct device *dev)
6672 {
6673 struct pci_dev *pdev = to_pci_dev(dev);
6674 int rc;
6675
6676 rc = __e1000_resume(pdev);
6677 if (rc)
6678 return rc;
6679
6680 return e1000e_pm_thaw(dev);
6681 }
6682 #endif /* CONFIG_PM_SLEEP */
6683
6684 static int e1000e_pm_runtime_idle(struct device *dev)
6685 {
6686 struct pci_dev *pdev = to_pci_dev(dev);
6687 struct net_device *netdev = pci_get_drvdata(pdev);
6688 struct e1000_adapter *adapter = netdev_priv(netdev);
6689 u16 eee_lp;
6690
6691 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6692
6693 if (!e1000e_has_link(adapter)) {
6694 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6695 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6696 }
6697
6698 return -EBUSY;
6699 }
6700
6701 static int e1000e_pm_runtime_resume(struct device *dev)
6702 {
6703 struct pci_dev *pdev = to_pci_dev(dev);
6704 struct net_device *netdev = pci_get_drvdata(pdev);
6705 struct e1000_adapter *adapter = netdev_priv(netdev);
6706 int rc;
6707
6708 rc = __e1000_resume(pdev);
6709 if (rc)
6710 return rc;
6711
6712 if (netdev->flags & IFF_UP)
6713 e1000e_up(adapter);
6714
6715 return rc;
6716 }
6717
6718 static int e1000e_pm_runtime_suspend(struct device *dev)
6719 {
6720 struct pci_dev *pdev = to_pci_dev(dev);
6721 struct net_device *netdev = pci_get_drvdata(pdev);
6722 struct e1000_adapter *adapter = netdev_priv(netdev);
6723
6724 if (netdev->flags & IFF_UP) {
6725 int count = E1000_CHECK_RESET_COUNT;
6726
6727 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6728 usleep_range(10000, 20000);
6729
6730 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6731
6732 /* Down the device without resetting the hardware */
6733 e1000e_down(adapter, false);
6734 }
6735
6736 if (__e1000_shutdown(pdev, true)) {
6737 e1000e_pm_runtime_resume(dev);
6738 return -EBUSY;
6739 }
6740
6741 return 0;
6742 }
6743 #endif /* CONFIG_PM */
6744
6745 static void e1000_shutdown(struct pci_dev *pdev)
6746 {
6747 e1000e_flush_lpic(pdev);
6748
6749 e1000e_pm_freeze(&pdev->dev);
6750
6751 __e1000_shutdown(pdev, false);
6752 }
6753
6754 #ifdef CONFIG_NET_POLL_CONTROLLER
6755
6756 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6757 {
6758 struct net_device *netdev = data;
6759 struct e1000_adapter *adapter = netdev_priv(netdev);
6760
6761 if (adapter->msix_entries) {
6762 int vector, msix_irq;
6763
6764 vector = 0;
6765 msix_irq = adapter->msix_entries[vector].vector;
6766 if (disable_hardirq(msix_irq))
6767 e1000_intr_msix_rx(msix_irq, netdev);
6768 enable_irq(msix_irq);
6769
6770 vector++;
6771 msix_irq = adapter->msix_entries[vector].vector;
6772 if (disable_hardirq(msix_irq))
6773 e1000_intr_msix_tx(msix_irq, netdev);
6774 enable_irq(msix_irq);
6775
6776 vector++;
6777 msix_irq = adapter->msix_entries[vector].vector;
6778 if (disable_hardirq(msix_irq))
6779 e1000_msix_other(msix_irq, netdev);
6780 enable_irq(msix_irq);
6781 }
6782
6783 return IRQ_HANDLED;
6784 }
6785
6786 /**
6787 * e1000_netpoll
6788 * @netdev: network interface device structure
6789 *
6790 * Polling 'interrupt' - used by things like netconsole to send skbs
6791 * without having to re-enable interrupts. It's not called while
6792 * the interrupt routine is executing.
6793 */
6794 static void e1000_netpoll(struct net_device *netdev)
6795 {
6796 struct e1000_adapter *adapter = netdev_priv(netdev);
6797
6798 switch (adapter->int_mode) {
6799 case E1000E_INT_MODE_MSIX:
6800 e1000_intr_msix(adapter->pdev->irq, netdev);
6801 break;
6802 case E1000E_INT_MODE_MSI:
6803 if (disable_hardirq(adapter->pdev->irq))
6804 e1000_intr_msi(adapter->pdev->irq, netdev);
6805 enable_irq(adapter->pdev->irq);
6806 break;
6807 default: /* E1000E_INT_MODE_LEGACY */
6808 if (disable_hardirq(adapter->pdev->irq))
6809 e1000_intr(adapter->pdev->irq, netdev);
6810 enable_irq(adapter->pdev->irq);
6811 break;
6812 }
6813 }
6814 #endif
6815
6816 /**
6817 * e1000_io_error_detected - called when PCI error is detected
6818 * @pdev: Pointer to PCI device
6819 * @state: The current pci connection state
6820 *
6821 * This function is called after a PCI bus error affecting
6822 * this device has been detected.
6823 */
6824 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6825 pci_channel_state_t state)
6826 {
6827 struct net_device *netdev = pci_get_drvdata(pdev);
6828 struct e1000_adapter *adapter = netdev_priv(netdev);
6829
6830 netif_device_detach(netdev);
6831
6832 if (state == pci_channel_io_perm_failure)
6833 return PCI_ERS_RESULT_DISCONNECT;
6834
6835 if (netif_running(netdev))
6836 e1000e_down(adapter, true);
6837 pci_disable_device(pdev);
6838
6839 /* Request a slot slot reset. */
6840 return PCI_ERS_RESULT_NEED_RESET;
6841 }
6842
6843 /**
6844 * e1000_io_slot_reset - called after the pci bus has been reset.
6845 * @pdev: Pointer to PCI device
6846 *
6847 * Restart the card from scratch, as if from a cold-boot. Implementation
6848 * resembles the first-half of the e1000e_pm_resume routine.
6849 */
6850 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6851 {
6852 struct net_device *netdev = pci_get_drvdata(pdev);
6853 struct e1000_adapter *adapter = netdev_priv(netdev);
6854 struct e1000_hw *hw = &adapter->hw;
6855 u16 aspm_disable_flag = 0;
6856 int err;
6857 pci_ers_result_t result;
6858
6859 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6860 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6861 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6862 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6863 if (aspm_disable_flag)
6864 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6865
6866 err = pci_enable_device_mem(pdev);
6867 if (err) {
6868 dev_err(&pdev->dev,
6869 "Cannot re-enable PCI device after reset.\n");
6870 result = PCI_ERS_RESULT_DISCONNECT;
6871 } else {
6872 pdev->state_saved = true;
6873 pci_restore_state(pdev);
6874 pci_set_master(pdev);
6875
6876 pci_enable_wake(pdev, PCI_D3hot, 0);
6877 pci_enable_wake(pdev, PCI_D3cold, 0);
6878
6879 e1000e_reset(adapter);
6880 ew32(WUS, ~0);
6881 result = PCI_ERS_RESULT_RECOVERED;
6882 }
6883
6884 pci_cleanup_aer_uncorrect_error_status(pdev);
6885
6886 return result;
6887 }
6888
6889 /**
6890 * e1000_io_resume - called when traffic can start flowing again.
6891 * @pdev: Pointer to PCI device
6892 *
6893 * This callback is called when the error recovery driver tells us that
6894 * its OK to resume normal operation. Implementation resembles the
6895 * second-half of the e1000e_pm_resume routine.
6896 */
6897 static void e1000_io_resume(struct pci_dev *pdev)
6898 {
6899 struct net_device *netdev = pci_get_drvdata(pdev);
6900 struct e1000_adapter *adapter = netdev_priv(netdev);
6901
6902 e1000_init_manageability_pt(adapter);
6903
6904 if (netif_running(netdev))
6905 e1000e_up(adapter);
6906
6907 netif_device_attach(netdev);
6908
6909 /* If the controller has AMT, do not set DRV_LOAD until the interface
6910 * is up. For all other cases, let the f/w know that the h/w is now
6911 * under the control of the driver.
6912 */
6913 if (!(adapter->flags & FLAG_HAS_AMT))
6914 e1000e_get_hw_control(adapter);
6915 }
6916
6917 static void e1000_print_device_info(struct e1000_adapter *adapter)
6918 {
6919 struct e1000_hw *hw = &adapter->hw;
6920 struct net_device *netdev = adapter->netdev;
6921 u32 ret_val;
6922 u8 pba_str[E1000_PBANUM_LENGTH];
6923
6924 /* print bus type/speed/width info */
6925 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6926 /* bus width */
6927 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6928 "Width x1"),
6929 /* MAC address */
6930 netdev->dev_addr);
6931 e_info("Intel(R) PRO/%s Network Connection\n",
6932 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6933 ret_val = e1000_read_pba_string_generic(hw, pba_str,
6934 E1000_PBANUM_LENGTH);
6935 if (ret_val)
6936 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6937 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6938 hw->mac.type, hw->phy.type, pba_str);
6939 }
6940
6941 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6942 {
6943 struct e1000_hw *hw = &adapter->hw;
6944 int ret_val;
6945 u16 buf = 0;
6946
6947 if (hw->mac.type != e1000_82573)
6948 return;
6949
6950 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6951 le16_to_cpus(&buf);
6952 if (!ret_val && (!(buf & BIT(0)))) {
6953 /* Deep Smart Power Down (DSPD) */
6954 dev_warn(&adapter->pdev->dev,
6955 "Warning: detected DSPD enabled in EEPROM\n");
6956 }
6957 }
6958
6959 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6960 netdev_features_t features)
6961 {
6962 struct e1000_adapter *adapter = netdev_priv(netdev);
6963 struct e1000_hw *hw = &adapter->hw;
6964
6965 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6966 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6967 features &= ~NETIF_F_RXFCS;
6968
6969 /* Since there is no support for separate Rx/Tx vlan accel
6970 * enable/disable make sure Tx flag is always in same state as Rx.
6971 */
6972 if (features & NETIF_F_HW_VLAN_CTAG_RX)
6973 features |= NETIF_F_HW_VLAN_CTAG_TX;
6974 else
6975 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6976
6977 return features;
6978 }
6979
6980 static int e1000_set_features(struct net_device *netdev,
6981 netdev_features_t features)
6982 {
6983 struct e1000_adapter *adapter = netdev_priv(netdev);
6984 netdev_features_t changed = features ^ netdev->features;
6985
6986 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6987 adapter->flags |= FLAG_TSO_FORCE;
6988
6989 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6990 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6991 NETIF_F_RXALL)))
6992 return 0;
6993
6994 if (changed & NETIF_F_RXFCS) {
6995 if (features & NETIF_F_RXFCS) {
6996 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6997 } else {
6998 /* We need to take it back to defaults, which might mean
6999 * stripping is still disabled at the adapter level.
7000 */
7001 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7002 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7003 else
7004 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7005 }
7006 }
7007
7008 netdev->features = features;
7009
7010 if (netif_running(netdev))
7011 e1000e_reinit_locked(adapter);
7012 else
7013 e1000e_reset(adapter);
7014
7015 return 0;
7016 }
7017
7018 static const struct net_device_ops e1000e_netdev_ops = {
7019 .ndo_open = e1000e_open,
7020 .ndo_stop = e1000e_close,
7021 .ndo_start_xmit = e1000_xmit_frame,
7022 .ndo_get_stats64 = e1000e_get_stats64,
7023 .ndo_set_rx_mode = e1000e_set_rx_mode,
7024 .ndo_set_mac_address = e1000_set_mac,
7025 .ndo_change_mtu = e1000_change_mtu,
7026 .ndo_do_ioctl = e1000_ioctl,
7027 .ndo_tx_timeout = e1000_tx_timeout,
7028 .ndo_validate_addr = eth_validate_addr,
7029
7030 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7031 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7032 #ifdef CONFIG_NET_POLL_CONTROLLER
7033 .ndo_poll_controller = e1000_netpoll,
7034 #endif
7035 .ndo_set_features = e1000_set_features,
7036 .ndo_fix_features = e1000_fix_features,
7037 .ndo_features_check = passthru_features_check,
7038 };
7039
7040 /**
7041 * e1000_probe - Device Initialization Routine
7042 * @pdev: PCI device information struct
7043 * @ent: entry in e1000_pci_tbl
7044 *
7045 * Returns 0 on success, negative on failure
7046 *
7047 * e1000_probe initializes an adapter identified by a pci_dev structure.
7048 * The OS initialization, configuring of the adapter private structure,
7049 * and a hardware reset occur.
7050 **/
7051 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7052 {
7053 struct net_device *netdev;
7054 struct e1000_adapter *adapter;
7055 struct e1000_hw *hw;
7056 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7057 resource_size_t mmio_start, mmio_len;
7058 resource_size_t flash_start, flash_len;
7059 static int cards_found;
7060 u16 aspm_disable_flag = 0;
7061 int bars, i, err, pci_using_dac;
7062 u16 eeprom_data = 0;
7063 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7064 s32 ret_val = 0;
7065
7066 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7067 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7068 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7069 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7070 if (aspm_disable_flag)
7071 e1000e_disable_aspm(pdev, aspm_disable_flag);
7072
7073 err = pci_enable_device_mem(pdev);
7074 if (err)
7075 return err;
7076
7077 pci_using_dac = 0;
7078 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7079 if (!err) {
7080 pci_using_dac = 1;
7081 } else {
7082 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7083 if (err) {
7084 dev_err(&pdev->dev,
7085 "No usable DMA configuration, aborting\n");
7086 goto err_dma;
7087 }
7088 }
7089
7090 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7091 err = pci_request_selected_regions_exclusive(pdev, bars,
7092 e1000e_driver_name);
7093 if (err)
7094 goto err_pci_reg;
7095
7096 /* AER (Advanced Error Reporting) hooks */
7097 pci_enable_pcie_error_reporting(pdev);
7098
7099 pci_set_master(pdev);
7100 /* PCI config space info */
7101 err = pci_save_state(pdev);
7102 if (err)
7103 goto err_alloc_etherdev;
7104
7105 err = -ENOMEM;
7106 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7107 if (!netdev)
7108 goto err_alloc_etherdev;
7109
7110 SET_NETDEV_DEV(netdev, &pdev->dev);
7111
7112 netdev->irq = pdev->irq;
7113
7114 pci_set_drvdata(pdev, netdev);
7115 adapter = netdev_priv(netdev);
7116 hw = &adapter->hw;
7117 adapter->netdev = netdev;
7118 adapter->pdev = pdev;
7119 adapter->ei = ei;
7120 adapter->pba = ei->pba;
7121 adapter->flags = ei->flags;
7122 adapter->flags2 = ei->flags2;
7123 adapter->hw.adapter = adapter;
7124 adapter->hw.mac.type = ei->mac;
7125 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7126 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7127
7128 mmio_start = pci_resource_start(pdev, 0);
7129 mmio_len = pci_resource_len(pdev, 0);
7130
7131 err = -EIO;
7132 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7133 if (!adapter->hw.hw_addr)
7134 goto err_ioremap;
7135
7136 if ((adapter->flags & FLAG_HAS_FLASH) &&
7137 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7138 (hw->mac.type < e1000_pch_spt)) {
7139 flash_start = pci_resource_start(pdev, 1);
7140 flash_len = pci_resource_len(pdev, 1);
7141 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7142 if (!adapter->hw.flash_address)
7143 goto err_flashmap;
7144 }
7145
7146 /* Set default EEE advertisement */
7147 if (adapter->flags2 & FLAG2_HAS_EEE)
7148 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7149
7150 /* construct the net_device struct */
7151 netdev->netdev_ops = &e1000e_netdev_ops;
7152 e1000e_set_ethtool_ops(netdev);
7153 netdev->watchdog_timeo = 5 * HZ;
7154 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7155 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7156
7157 netdev->mem_start = mmio_start;
7158 netdev->mem_end = mmio_start + mmio_len;
7159
7160 adapter->bd_number = cards_found++;
7161
7162 e1000e_check_options(adapter);
7163
7164 /* setup adapter struct */
7165 err = e1000_sw_init(adapter);
7166 if (err)
7167 goto err_sw_init;
7168
7169 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7170 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7171 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7172
7173 err = ei->get_variants(adapter);
7174 if (err)
7175 goto err_hw_init;
7176
7177 if ((adapter->flags & FLAG_IS_ICH) &&
7178 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7179 (hw->mac.type < e1000_pch_spt))
7180 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7181
7182 hw->mac.ops.get_bus_info(&adapter->hw);
7183
7184 adapter->hw.phy.autoneg_wait_to_complete = 0;
7185
7186 /* Copper options */
7187 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7188 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7189 adapter->hw.phy.disable_polarity_correction = 0;
7190 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7191 }
7192
7193 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7194 dev_info(&pdev->dev,
7195 "PHY reset is blocked due to SOL/IDER session.\n");
7196
7197 /* Set initial default active device features */
7198 netdev->features = (NETIF_F_SG |
7199 NETIF_F_HW_VLAN_CTAG_RX |
7200 NETIF_F_HW_VLAN_CTAG_TX |
7201 NETIF_F_TSO |
7202 NETIF_F_TSO6 |
7203 NETIF_F_RXHASH |
7204 NETIF_F_RXCSUM |
7205 NETIF_F_HW_CSUM);
7206
7207 /* Set user-changeable features (subset of all device features) */
7208 netdev->hw_features = netdev->features;
7209 netdev->hw_features |= NETIF_F_RXFCS;
7210 netdev->priv_flags |= IFF_SUPP_NOFCS;
7211 netdev->hw_features |= NETIF_F_RXALL;
7212
7213 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7214 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7215
7216 netdev->vlan_features |= (NETIF_F_SG |
7217 NETIF_F_TSO |
7218 NETIF_F_TSO6 |
7219 NETIF_F_HW_CSUM);
7220
7221 netdev->priv_flags |= IFF_UNICAST_FLT;
7222
7223 if (pci_using_dac) {
7224 netdev->features |= NETIF_F_HIGHDMA;
7225 netdev->vlan_features |= NETIF_F_HIGHDMA;
7226 }
7227
7228 /* MTU range: 68 - max_hw_frame_size */
7229 netdev->min_mtu = ETH_MIN_MTU;
7230 netdev->max_mtu = adapter->max_hw_frame_size -
7231 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7232
7233 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7234 adapter->flags |= FLAG_MNG_PT_ENABLED;
7235
7236 /* before reading the NVM, reset the controller to
7237 * put the device in a known good starting state
7238 */
7239 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7240
7241 /* systems with ASPM and others may see the checksum fail on the first
7242 * attempt. Let's give it a few tries
7243 */
7244 for (i = 0;; i++) {
7245 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7246 break;
7247 if (i == 2) {
7248 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7249 err = -EIO;
7250 goto err_eeprom;
7251 }
7252 }
7253
7254 e1000_eeprom_checks(adapter);
7255
7256 /* copy the MAC address */
7257 if (e1000e_read_mac_addr(&adapter->hw))
7258 dev_err(&pdev->dev,
7259 "NVM Read Error while reading MAC address\n");
7260
7261 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7262
7263 if (!is_valid_ether_addr(netdev->dev_addr)) {
7264 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7265 netdev->dev_addr);
7266 err = -EIO;
7267 goto err_eeprom;
7268 }
7269
7270 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7271 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7272
7273 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7274 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7275 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7276 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7277 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7278
7279 /* Initialize link parameters. User can change them with ethtool */
7280 adapter->hw.mac.autoneg = 1;
7281 adapter->fc_autoneg = true;
7282 adapter->hw.fc.requested_mode = e1000_fc_default;
7283 adapter->hw.fc.current_mode = e1000_fc_default;
7284 adapter->hw.phy.autoneg_advertised = 0x2f;
7285
7286 /* Initial Wake on LAN setting - If APM wake is enabled in
7287 * the EEPROM, enable the ACPI Magic Packet filter
7288 */
7289 if (adapter->flags & FLAG_APME_IN_WUC) {
7290 /* APME bit in EEPROM is mapped to WUC.APME */
7291 eeprom_data = er32(WUC);
7292 eeprom_apme_mask = E1000_WUC_APME;
7293 if ((hw->mac.type > e1000_ich10lan) &&
7294 (eeprom_data & E1000_WUC_PHY_WAKE))
7295 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7296 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7297 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7298 (adapter->hw.bus.func == 1))
7299 ret_val = e1000_read_nvm(&adapter->hw,
7300 NVM_INIT_CONTROL3_PORT_B,
7301 1, &eeprom_data);
7302 else
7303 ret_val = e1000_read_nvm(&adapter->hw,
7304 NVM_INIT_CONTROL3_PORT_A,
7305 1, &eeprom_data);
7306 }
7307
7308 /* fetch WoL from EEPROM */
7309 if (ret_val)
7310 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7311 else if (eeprom_data & eeprom_apme_mask)
7312 adapter->eeprom_wol |= E1000_WUFC_MAG;
7313
7314 /* now that we have the eeprom settings, apply the special cases
7315 * where the eeprom may be wrong or the board simply won't support
7316 * wake on lan on a particular port
7317 */
7318 if (!(adapter->flags & FLAG_HAS_WOL))
7319 adapter->eeprom_wol = 0;
7320
7321 /* initialize the wol settings based on the eeprom settings */
7322 adapter->wol = adapter->eeprom_wol;
7323
7324 /* make sure adapter isn't asleep if manageability is enabled */
7325 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7326 (hw->mac.ops.check_mng_mode(hw)))
7327 device_wakeup_enable(&pdev->dev);
7328
7329 /* save off EEPROM version number */
7330 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7331
7332 if (ret_val) {
7333 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7334 adapter->eeprom_vers = 0;
7335 }
7336
7337 /* init PTP hardware clock */
7338 e1000e_ptp_init(adapter);
7339
7340 /* reset the hardware with the new settings */
7341 e1000e_reset(adapter);
7342
7343 /* If the controller has AMT, do not set DRV_LOAD until the interface
7344 * is up. For all other cases, let the f/w know that the h/w is now
7345 * under the control of the driver.
7346 */
7347 if (!(adapter->flags & FLAG_HAS_AMT))
7348 e1000e_get_hw_control(adapter);
7349
7350 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7351 err = register_netdev(netdev);
7352 if (err)
7353 goto err_register;
7354
7355 /* carrier off reporting is important to ethtool even BEFORE open */
7356 netif_carrier_off(netdev);
7357
7358 e1000_print_device_info(adapter);
7359
7360 if (pci_dev_run_wake(pdev))
7361 pm_runtime_put_noidle(&pdev->dev);
7362
7363 return 0;
7364
7365 err_register:
7366 if (!(adapter->flags & FLAG_HAS_AMT))
7367 e1000e_release_hw_control(adapter);
7368 err_eeprom:
7369 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7370 e1000_phy_hw_reset(&adapter->hw);
7371 err_hw_init:
7372 kfree(adapter->tx_ring);
7373 kfree(adapter->rx_ring);
7374 err_sw_init:
7375 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7376 iounmap(adapter->hw.flash_address);
7377 e1000e_reset_interrupt_capability(adapter);
7378 err_flashmap:
7379 iounmap(adapter->hw.hw_addr);
7380 err_ioremap:
7381 free_netdev(netdev);
7382 err_alloc_etherdev:
7383 pci_release_mem_regions(pdev);
7384 err_pci_reg:
7385 err_dma:
7386 pci_disable_device(pdev);
7387 return err;
7388 }
7389
7390 /**
7391 * e1000_remove - Device Removal Routine
7392 * @pdev: PCI device information struct
7393 *
7394 * e1000_remove is called by the PCI subsystem to alert the driver
7395 * that it should release a PCI device. The could be caused by a
7396 * Hot-Plug event, or because the driver is going to be removed from
7397 * memory.
7398 **/
7399 static void e1000_remove(struct pci_dev *pdev)
7400 {
7401 struct net_device *netdev = pci_get_drvdata(pdev);
7402 struct e1000_adapter *adapter = netdev_priv(netdev);
7403 bool down = test_bit(__E1000_DOWN, &adapter->state);
7404
7405 e1000e_ptp_remove(adapter);
7406
7407 /* The timers may be rescheduled, so explicitly disable them
7408 * from being rescheduled.
7409 */
7410 if (!down)
7411 set_bit(__E1000_DOWN, &adapter->state);
7412 del_timer_sync(&adapter->watchdog_timer);
7413 del_timer_sync(&adapter->phy_info_timer);
7414
7415 cancel_work_sync(&adapter->reset_task);
7416 cancel_work_sync(&adapter->watchdog_task);
7417 cancel_work_sync(&adapter->downshift_task);
7418 cancel_work_sync(&adapter->update_phy_task);
7419 cancel_work_sync(&adapter->print_hang_task);
7420
7421 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7422 cancel_work_sync(&adapter->tx_hwtstamp_work);
7423 if (adapter->tx_hwtstamp_skb) {
7424 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7425 adapter->tx_hwtstamp_skb = NULL;
7426 }
7427 }
7428
7429 /* Don't lie to e1000_close() down the road. */
7430 if (!down)
7431 clear_bit(__E1000_DOWN, &adapter->state);
7432 unregister_netdev(netdev);
7433
7434 if (pci_dev_run_wake(pdev))
7435 pm_runtime_get_noresume(&pdev->dev);
7436
7437 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7438 * would have already happened in close and is redundant.
7439 */
7440 e1000e_release_hw_control(adapter);
7441
7442 e1000e_reset_interrupt_capability(adapter);
7443 kfree(adapter->tx_ring);
7444 kfree(adapter->rx_ring);
7445
7446 iounmap(adapter->hw.hw_addr);
7447 if ((adapter->hw.flash_address) &&
7448 (adapter->hw.mac.type < e1000_pch_spt))
7449 iounmap(adapter->hw.flash_address);
7450 pci_release_mem_regions(pdev);
7451
7452 free_netdev(netdev);
7453
7454 /* AER disable */
7455 pci_disable_pcie_error_reporting(pdev);
7456
7457 pci_disable_device(pdev);
7458 }
7459
7460 /* PCI Error Recovery (ERS) */
7461 static const struct pci_error_handlers e1000_err_handler = {
7462 .error_detected = e1000_io_error_detected,
7463 .slot_reset = e1000_io_slot_reset,
7464 .resume = e1000_io_resume,
7465 };
7466
7467 static const struct pci_device_id e1000_pci_tbl[] = {
7468 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7469 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7470 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7471 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7472 board_82571 },
7473 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7475 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7477 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7478
7479 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7481 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7483
7484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7485 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7486 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7487
7488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7490 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7491
7492 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7493 board_80003es2lan },
7494 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7495 board_80003es2lan },
7496 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7497 board_80003es2lan },
7498 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7499 board_80003es2lan },
7500
7501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7502 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7503 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7509
7510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7519
7520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7523
7524 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7526 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7527
7528 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7529 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7530 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7531 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7532
7533 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7534 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7535
7536 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7537 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7538 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7539 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7540 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7541 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7542 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7543 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7544 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7545 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7546 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7547 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7548 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7549 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7550 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7551 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7552 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7553 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7554 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7555 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7556 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7557 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7558 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7559 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7560 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7561
7562 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7563 };
7564 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7565
7566 static const struct dev_pm_ops e1000_pm_ops = {
7567 #ifdef CONFIG_PM_SLEEP
7568 .suspend = e1000e_pm_suspend,
7569 .resume = e1000e_pm_resume,
7570 .freeze = e1000e_pm_freeze,
7571 .thaw = e1000e_pm_thaw,
7572 .poweroff = e1000e_pm_suspend,
7573 .restore = e1000e_pm_resume,
7574 #endif
7575 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7576 e1000e_pm_runtime_idle)
7577 };
7578
7579 /* PCI Device API Driver */
7580 static struct pci_driver e1000_driver = {
7581 .name = e1000e_driver_name,
7582 .id_table = e1000_pci_tbl,
7583 .probe = e1000_probe,
7584 .remove = e1000_remove,
7585 .driver = {
7586 .pm = &e1000_pm_ops,
7587 },
7588 .shutdown = e1000_shutdown,
7589 .err_handler = &e1000_err_handler
7590 };
7591
7592 /**
7593 * e1000_init_module - Driver Registration Routine
7594 *
7595 * e1000_init_module is the first routine called when the driver is
7596 * loaded. All it does is register with the PCI subsystem.
7597 **/
7598 static int __init e1000_init_module(void)
7599 {
7600 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7601 e1000e_driver_version);
7602 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7603
7604 return pci_register_driver(&e1000_driver);
7605 }
7606 module_init(e1000_init_module);
7607
7608 /**
7609 * e1000_exit_module - Driver Exit Cleanup Routine
7610 *
7611 * e1000_exit_module is called just before the driver is removed
7612 * from memory.
7613 **/
7614 static void __exit e1000_exit_module(void)
7615 {
7616 pci_unregister_driver(&e1000_driver);
7617 }
7618 module_exit(e1000_exit_module);
7619
7620 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7621 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7622 MODULE_LICENSE("GPL");
7623 MODULE_VERSION(DRV_VERSION);
7624
7625 /* netdev.c */