]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/e1000e/phy.c
e1000e: cleanup CODE_INDENT checkpatch errors
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / e1000e / phy.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
32 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
33 u16 *data, bool read, bool page_set);
34 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
35 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
36 u16 *data, bool read);
37
38 /* Cable length tables */
39 static const u16 e1000_m88_cable_length_table[] = {
40 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
41 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
42 ARRAY_SIZE(e1000_m88_cable_length_table)
43
44 static const u16 e1000_igp_2_cable_length_table[] = {
45 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
46 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
47 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
48 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
49 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
50 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
51 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
52 124};
53 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
54 ARRAY_SIZE(e1000_igp_2_cable_length_table)
55
56 /**
57 * e1000e_check_reset_block_generic - Check if PHY reset is blocked
58 * @hw: pointer to the HW structure
59 *
60 * Read the PHY management control register and check whether a PHY reset
61 * is blocked. If a reset is not blocked return 0, otherwise
62 * return E1000_BLK_PHY_RESET (12).
63 **/
64 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
65 {
66 u32 manc;
67
68 manc = er32(MANC);
69
70 return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
71 E1000_BLK_PHY_RESET : 0;
72 }
73
74 /**
75 * e1000e_get_phy_id - Retrieve the PHY ID and revision
76 * @hw: pointer to the HW structure
77 *
78 * Reads the PHY registers and stores the PHY ID and possibly the PHY
79 * revision in the hardware structure.
80 **/
81 s32 e1000e_get_phy_id(struct e1000_hw *hw)
82 {
83 struct e1000_phy_info *phy = &hw->phy;
84 s32 ret_val = 0;
85 u16 phy_id;
86 u16 retry_count = 0;
87
88 if (!phy->ops.read_reg)
89 return 0;
90
91 while (retry_count < 2) {
92 ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
93 if (ret_val)
94 return ret_val;
95
96 phy->id = (u32)(phy_id << 16);
97 udelay(20);
98 ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
99 if (ret_val)
100 return ret_val;
101
102 phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
103 phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
104
105 if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
106 return 0;
107
108 retry_count++;
109 }
110
111 return 0;
112 }
113
114 /**
115 * e1000e_phy_reset_dsp - Reset PHY DSP
116 * @hw: pointer to the HW structure
117 *
118 * Reset the digital signal processor.
119 **/
120 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
121 {
122 s32 ret_val;
123
124 ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
125 if (ret_val)
126 return ret_val;
127
128 return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
129 }
130
131 /**
132 * e1000e_read_phy_reg_mdic - Read MDI control register
133 * @hw: pointer to the HW structure
134 * @offset: register offset to be read
135 * @data: pointer to the read data
136 *
137 * Reads the MDI control register in the PHY at offset and stores the
138 * information read to data.
139 **/
140 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
141 {
142 struct e1000_phy_info *phy = &hw->phy;
143 u32 i, mdic = 0;
144
145 if (offset > MAX_PHY_REG_ADDRESS) {
146 e_dbg("PHY Address %d is out of range\n", offset);
147 return -E1000_ERR_PARAM;
148 }
149
150 /* Set up Op-code, Phy Address, and register offset in the MDI
151 * Control register. The MAC will take care of interfacing with the
152 * PHY to retrieve the desired data.
153 */
154 mdic = ((offset << E1000_MDIC_REG_SHIFT) |
155 (phy->addr << E1000_MDIC_PHY_SHIFT) |
156 (E1000_MDIC_OP_READ));
157
158 ew32(MDIC, mdic);
159
160 /* Poll the ready bit to see if the MDI read completed
161 * Increasing the time out as testing showed failures with
162 * the lower time out
163 */
164 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
165 udelay(50);
166 mdic = er32(MDIC);
167 if (mdic & E1000_MDIC_READY)
168 break;
169 }
170 if (!(mdic & E1000_MDIC_READY)) {
171 e_dbg("MDI Read did not complete\n");
172 return -E1000_ERR_PHY;
173 }
174 if (mdic & E1000_MDIC_ERROR) {
175 e_dbg("MDI Error\n");
176 return -E1000_ERR_PHY;
177 }
178 *data = (u16) mdic;
179
180 /* Allow some time after each MDIC transaction to avoid
181 * reading duplicate data in the next MDIC transaction.
182 */
183 if (hw->mac.type == e1000_pch2lan)
184 udelay(100);
185
186 return 0;
187 }
188
189 /**
190 * e1000e_write_phy_reg_mdic - Write MDI control register
191 * @hw: pointer to the HW structure
192 * @offset: register offset to write to
193 * @data: data to write to register at offset
194 *
195 * Writes data to MDI control register in the PHY at offset.
196 **/
197 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
198 {
199 struct e1000_phy_info *phy = &hw->phy;
200 u32 i, mdic = 0;
201
202 if (offset > MAX_PHY_REG_ADDRESS) {
203 e_dbg("PHY Address %d is out of range\n", offset);
204 return -E1000_ERR_PARAM;
205 }
206
207 /* Set up Op-code, Phy Address, and register offset in the MDI
208 * Control register. The MAC will take care of interfacing with the
209 * PHY to retrieve the desired data.
210 */
211 mdic = (((u32)data) |
212 (offset << E1000_MDIC_REG_SHIFT) |
213 (phy->addr << E1000_MDIC_PHY_SHIFT) |
214 (E1000_MDIC_OP_WRITE));
215
216 ew32(MDIC, mdic);
217
218 /* Poll the ready bit to see if the MDI read completed
219 * Increasing the time out as testing showed failures with
220 * the lower time out
221 */
222 for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
223 udelay(50);
224 mdic = er32(MDIC);
225 if (mdic & E1000_MDIC_READY)
226 break;
227 }
228 if (!(mdic & E1000_MDIC_READY)) {
229 e_dbg("MDI Write did not complete\n");
230 return -E1000_ERR_PHY;
231 }
232 if (mdic & E1000_MDIC_ERROR) {
233 e_dbg("MDI Error\n");
234 return -E1000_ERR_PHY;
235 }
236
237 /* Allow some time after each MDIC transaction to avoid
238 * reading duplicate data in the next MDIC transaction.
239 */
240 if (hw->mac.type == e1000_pch2lan)
241 udelay(100);
242
243 return 0;
244 }
245
246 /**
247 * e1000e_read_phy_reg_m88 - Read m88 PHY register
248 * @hw: pointer to the HW structure
249 * @offset: register offset to be read
250 * @data: pointer to the read data
251 *
252 * Acquires semaphore, if necessary, then reads the PHY register at offset
253 * and storing the retrieved information in data. Release any acquired
254 * semaphores before exiting.
255 **/
256 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
257 {
258 s32 ret_val;
259
260 ret_val = hw->phy.ops.acquire(hw);
261 if (ret_val)
262 return ret_val;
263
264 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
265 data);
266
267 hw->phy.ops.release(hw);
268
269 return ret_val;
270 }
271
272 /**
273 * e1000e_write_phy_reg_m88 - Write m88 PHY register
274 * @hw: pointer to the HW structure
275 * @offset: register offset to write to
276 * @data: data to write at register offset
277 *
278 * Acquires semaphore, if necessary, then writes the data to PHY register
279 * at the offset. Release any acquired semaphores before exiting.
280 **/
281 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
282 {
283 s32 ret_val;
284
285 ret_val = hw->phy.ops.acquire(hw);
286 if (ret_val)
287 return ret_val;
288
289 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
290 data);
291
292 hw->phy.ops.release(hw);
293
294 return ret_val;
295 }
296
297 /**
298 * e1000_set_page_igp - Set page as on IGP-like PHY(s)
299 * @hw: pointer to the HW structure
300 * @page: page to set (shifted left when necessary)
301 *
302 * Sets PHY page required for PHY register access. Assumes semaphore is
303 * already acquired. Note, this function sets phy.addr to 1 so the caller
304 * must set it appropriately (if necessary) after this function returns.
305 **/
306 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
307 {
308 e_dbg("Setting page 0x%x\n", page);
309
310 hw->phy.addr = 1;
311
312 return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
313 }
314
315 /**
316 * __e1000e_read_phy_reg_igp - Read igp PHY register
317 * @hw: pointer to the HW structure
318 * @offset: register offset to be read
319 * @data: pointer to the read data
320 * @locked: semaphore has already been acquired or not
321 *
322 * Acquires semaphore, if necessary, then reads the PHY register at offset
323 * and stores the retrieved information in data. Release any acquired
324 * semaphores before exiting.
325 **/
326 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
327 bool locked)
328 {
329 s32 ret_val = 0;
330
331 if (!locked) {
332 if (!hw->phy.ops.acquire)
333 return 0;
334
335 ret_val = hw->phy.ops.acquire(hw);
336 if (ret_val)
337 return ret_val;
338 }
339
340 if (offset > MAX_PHY_MULTI_PAGE_REG)
341 ret_val = e1000e_write_phy_reg_mdic(hw,
342 IGP01E1000_PHY_PAGE_SELECT,
343 (u16)offset);
344 if (!ret_val)
345 ret_val = e1000e_read_phy_reg_mdic(hw,
346 MAX_PHY_REG_ADDRESS & offset,
347 data);
348 if (!locked)
349 hw->phy.ops.release(hw);
350
351 return ret_val;
352 }
353
354 /**
355 * e1000e_read_phy_reg_igp - Read igp PHY register
356 * @hw: pointer to the HW structure
357 * @offset: register offset to be read
358 * @data: pointer to the read data
359 *
360 * Acquires semaphore then reads the PHY register at offset and stores the
361 * retrieved information in data.
362 * Release the acquired semaphore before exiting.
363 **/
364 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
365 {
366 return __e1000e_read_phy_reg_igp(hw, offset, data, false);
367 }
368
369 /**
370 * e1000e_read_phy_reg_igp_locked - Read igp PHY register
371 * @hw: pointer to the HW structure
372 * @offset: register offset to be read
373 * @data: pointer to the read data
374 *
375 * Reads the PHY register at offset and stores the retrieved information
376 * in data. Assumes semaphore already acquired.
377 **/
378 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
379 {
380 return __e1000e_read_phy_reg_igp(hw, offset, data, true);
381 }
382
383 /**
384 * e1000e_write_phy_reg_igp - Write igp PHY register
385 * @hw: pointer to the HW structure
386 * @offset: register offset to write to
387 * @data: data to write at register offset
388 * @locked: semaphore has already been acquired or not
389 *
390 * Acquires semaphore, if necessary, then writes the data to PHY register
391 * at the offset. Release any acquired semaphores before exiting.
392 **/
393 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
394 bool locked)
395 {
396 s32 ret_val = 0;
397
398 if (!locked) {
399 if (!hw->phy.ops.acquire)
400 return 0;
401
402 ret_val = hw->phy.ops.acquire(hw);
403 if (ret_val)
404 return ret_val;
405 }
406
407 if (offset > MAX_PHY_MULTI_PAGE_REG)
408 ret_val = e1000e_write_phy_reg_mdic(hw,
409 IGP01E1000_PHY_PAGE_SELECT,
410 (u16)offset);
411 if (!ret_val)
412 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
413 offset,
414 data);
415 if (!locked)
416 hw->phy.ops.release(hw);
417
418 return ret_val;
419 }
420
421 /**
422 * e1000e_write_phy_reg_igp - Write igp PHY register
423 * @hw: pointer to the HW structure
424 * @offset: register offset to write to
425 * @data: data to write at register offset
426 *
427 * Acquires semaphore then writes the data to PHY register
428 * at the offset. Release any acquired semaphores before exiting.
429 **/
430 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
431 {
432 return __e1000e_write_phy_reg_igp(hw, offset, data, false);
433 }
434
435 /**
436 * e1000e_write_phy_reg_igp_locked - Write igp PHY register
437 * @hw: pointer to the HW structure
438 * @offset: register offset to write to
439 * @data: data to write at register offset
440 *
441 * Writes the data to PHY register at the offset.
442 * Assumes semaphore already acquired.
443 **/
444 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
445 {
446 return __e1000e_write_phy_reg_igp(hw, offset, data, true);
447 }
448
449 /**
450 * __e1000_read_kmrn_reg - Read kumeran register
451 * @hw: pointer to the HW structure
452 * @offset: register offset to be read
453 * @data: pointer to the read data
454 * @locked: semaphore has already been acquired or not
455 *
456 * Acquires semaphore, if necessary. Then reads the PHY register at offset
457 * using the kumeran interface. The information retrieved is stored in data.
458 * Release any acquired semaphores before exiting.
459 **/
460 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
461 bool locked)
462 {
463 u32 kmrnctrlsta;
464
465 if (!locked) {
466 s32 ret_val = 0;
467
468 if (!hw->phy.ops.acquire)
469 return 0;
470
471 ret_val = hw->phy.ops.acquire(hw);
472 if (ret_val)
473 return ret_val;
474 }
475
476 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
477 E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
478 ew32(KMRNCTRLSTA, kmrnctrlsta);
479 e1e_flush();
480
481 udelay(2);
482
483 kmrnctrlsta = er32(KMRNCTRLSTA);
484 *data = (u16)kmrnctrlsta;
485
486 if (!locked)
487 hw->phy.ops.release(hw);
488
489 return 0;
490 }
491
492 /**
493 * e1000e_read_kmrn_reg - Read kumeran register
494 * @hw: pointer to the HW structure
495 * @offset: register offset to be read
496 * @data: pointer to the read data
497 *
498 * Acquires semaphore then reads the PHY register at offset using the
499 * kumeran interface. The information retrieved is stored in data.
500 * Release the acquired semaphore before exiting.
501 **/
502 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
503 {
504 return __e1000_read_kmrn_reg(hw, offset, data, false);
505 }
506
507 /**
508 * e1000e_read_kmrn_reg_locked - Read kumeran register
509 * @hw: pointer to the HW structure
510 * @offset: register offset to be read
511 * @data: pointer to the read data
512 *
513 * Reads the PHY register at offset using the kumeran interface. The
514 * information retrieved is stored in data.
515 * Assumes semaphore already acquired.
516 **/
517 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
518 {
519 return __e1000_read_kmrn_reg(hw, offset, data, true);
520 }
521
522 /**
523 * __e1000_write_kmrn_reg - Write kumeran register
524 * @hw: pointer to the HW structure
525 * @offset: register offset to write to
526 * @data: data to write at register offset
527 * @locked: semaphore has already been acquired or not
528 *
529 * Acquires semaphore, if necessary. Then write the data to PHY register
530 * at the offset using the kumeran interface. Release any acquired semaphores
531 * before exiting.
532 **/
533 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
534 bool locked)
535 {
536 u32 kmrnctrlsta;
537
538 if (!locked) {
539 s32 ret_val = 0;
540
541 if (!hw->phy.ops.acquire)
542 return 0;
543
544 ret_val = hw->phy.ops.acquire(hw);
545 if (ret_val)
546 return ret_val;
547 }
548
549 kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
550 E1000_KMRNCTRLSTA_OFFSET) | data;
551 ew32(KMRNCTRLSTA, kmrnctrlsta);
552 e1e_flush();
553
554 udelay(2);
555
556 if (!locked)
557 hw->phy.ops.release(hw);
558
559 return 0;
560 }
561
562 /**
563 * e1000e_write_kmrn_reg - Write kumeran register
564 * @hw: pointer to the HW structure
565 * @offset: register offset to write to
566 * @data: data to write at register offset
567 *
568 * Acquires semaphore then writes the data to the PHY register at the offset
569 * using the kumeran interface. Release the acquired semaphore before exiting.
570 **/
571 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
572 {
573 return __e1000_write_kmrn_reg(hw, offset, data, false);
574 }
575
576 /**
577 * e1000e_write_kmrn_reg_locked - Write kumeran register
578 * @hw: pointer to the HW structure
579 * @offset: register offset to write to
580 * @data: data to write at register offset
581 *
582 * Write the data to PHY register at the offset using the kumeran interface.
583 * Assumes semaphore already acquired.
584 **/
585 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
586 {
587 return __e1000_write_kmrn_reg(hw, offset, data, true);
588 }
589
590 /**
591 * e1000_set_master_slave_mode - Setup PHY for Master/slave mode
592 * @hw: pointer to the HW structure
593 *
594 * Sets up Master/slave mode
595 **/
596 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
597 {
598 s32 ret_val;
599 u16 phy_data;
600
601 /* Resolve Master/Slave mode */
602 ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
603 if (ret_val)
604 return ret_val;
605
606 /* load defaults for future use */
607 hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
608 ((phy_data & CTL1000_AS_MASTER) ?
609 e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
610
611 switch (hw->phy.ms_type) {
612 case e1000_ms_force_master:
613 phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
614 break;
615 case e1000_ms_force_slave:
616 phy_data |= CTL1000_ENABLE_MASTER;
617 phy_data &= ~(CTL1000_AS_MASTER);
618 break;
619 case e1000_ms_auto:
620 phy_data &= ~CTL1000_ENABLE_MASTER;
621 /* fall-through */
622 default:
623 break;
624 }
625
626 return e1e_wphy(hw, MII_CTRL1000, phy_data);
627 }
628
629 /**
630 * e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
631 * @hw: pointer to the HW structure
632 *
633 * Sets up Carrier-sense on Transmit and downshift values.
634 **/
635 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
636 {
637 s32 ret_val;
638 u16 phy_data;
639
640 /* Enable CRS on Tx. This must be set for half-duplex operation. */
641 ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
642 if (ret_val)
643 return ret_val;
644
645 phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
646
647 /* Enable downshift */
648 phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
649
650 ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
651 if (ret_val)
652 return ret_val;
653
654 /* Set MDI/MDIX mode */
655 ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
656 if (ret_val)
657 return ret_val;
658 phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
659 /* Options:
660 * 0 - Auto (default)
661 * 1 - MDI mode
662 * 2 - MDI-X mode
663 */
664 switch (hw->phy.mdix) {
665 case 1:
666 break;
667 case 2:
668 phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
669 break;
670 case 0:
671 default:
672 phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
673 break;
674 }
675 ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
676 if (ret_val)
677 return ret_val;
678
679 return e1000_set_master_slave_mode(hw);
680 }
681
682 /**
683 * e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
684 * @hw: pointer to the HW structure
685 *
686 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
687 * and downshift values are set also.
688 **/
689 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
690 {
691 struct e1000_phy_info *phy = &hw->phy;
692 s32 ret_val;
693 u16 phy_data;
694
695 /* Enable CRS on Tx. This must be set for half-duplex operation. */
696 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
697 if (ret_val)
698 return ret_val;
699
700 /* For BM PHY this bit is downshift enable */
701 if (phy->type != e1000_phy_bm)
702 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
703
704 /* Options:
705 * MDI/MDI-X = 0 (default)
706 * 0 - Auto for all speeds
707 * 1 - MDI mode
708 * 2 - MDI-X mode
709 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
710 */
711 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
712
713 switch (phy->mdix) {
714 case 1:
715 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
716 break;
717 case 2:
718 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
719 break;
720 case 3:
721 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
722 break;
723 case 0:
724 default:
725 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
726 break;
727 }
728
729 /* Options:
730 * disable_polarity_correction = 0 (default)
731 * Automatic Correction for Reversed Cable Polarity
732 * 0 - Disabled
733 * 1 - Enabled
734 */
735 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
736 if (phy->disable_polarity_correction)
737 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
738
739 /* Enable downshift on BM (disabled by default) */
740 if (phy->type == e1000_phy_bm) {
741 /* For 82574/82583, first disable then enable downshift */
742 if (phy->id == BME1000_E_PHY_ID_R2) {
743 phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
744 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
745 phy_data);
746 if (ret_val)
747 return ret_val;
748 /* Commit the changes. */
749 ret_val = phy->ops.commit(hw);
750 if (ret_val) {
751 e_dbg("Error committing the PHY changes\n");
752 return ret_val;
753 }
754 }
755
756 phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
757 }
758
759 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
760 if (ret_val)
761 return ret_val;
762
763 if ((phy->type == e1000_phy_m88) &&
764 (phy->revision < E1000_REVISION_4) &&
765 (phy->id != BME1000_E_PHY_ID_R2)) {
766 /* Force TX_CLK in the Extended PHY Specific Control Register
767 * to 25MHz clock.
768 */
769 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
770 if (ret_val)
771 return ret_val;
772
773 phy_data |= M88E1000_EPSCR_TX_CLK_25;
774
775 if ((phy->revision == 2) &&
776 (phy->id == M88E1111_I_PHY_ID)) {
777 /* 82573L PHY - set the downshift counter to 5x. */
778 phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
779 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
780 } else {
781 /* Configure Master and Slave downshift values */
782 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
783 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
784 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
785 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
786 }
787 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
788 if (ret_val)
789 return ret_val;
790 }
791
792 if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
793 /* Set PHY page 0, register 29 to 0x0003 */
794 ret_val = e1e_wphy(hw, 29, 0x0003);
795 if (ret_val)
796 return ret_val;
797
798 /* Set PHY page 0, register 30 to 0x0000 */
799 ret_val = e1e_wphy(hw, 30, 0x0000);
800 if (ret_val)
801 return ret_val;
802 }
803
804 /* Commit the changes. */
805 if (phy->ops.commit) {
806 ret_val = phy->ops.commit(hw);
807 if (ret_val) {
808 e_dbg("Error committing the PHY changes\n");
809 return ret_val;
810 }
811 }
812
813 if (phy->type == e1000_phy_82578) {
814 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
815 if (ret_val)
816 return ret_val;
817
818 /* 82578 PHY - set the downshift count to 1x. */
819 phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
820 phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
821 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
822 if (ret_val)
823 return ret_val;
824 }
825
826 return 0;
827 }
828
829 /**
830 * e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
831 * @hw: pointer to the HW structure
832 *
833 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
834 * igp PHY's.
835 **/
836 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
837 {
838 struct e1000_phy_info *phy = &hw->phy;
839 s32 ret_val;
840 u16 data;
841
842 ret_val = e1000_phy_hw_reset(hw);
843 if (ret_val) {
844 e_dbg("Error resetting the PHY.\n");
845 return ret_val;
846 }
847
848 /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
849 * timeout issues when LFS is enabled.
850 */
851 msleep(100);
852
853 /* disable lplu d0 during driver init */
854 if (hw->phy.ops.set_d0_lplu_state) {
855 ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
856 if (ret_val) {
857 e_dbg("Error Disabling LPLU D0\n");
858 return ret_val;
859 }
860 }
861 /* Configure mdi-mdix settings */
862 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
863 if (ret_val)
864 return ret_val;
865
866 data &= ~IGP01E1000_PSCR_AUTO_MDIX;
867
868 switch (phy->mdix) {
869 case 1:
870 data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
871 break;
872 case 2:
873 data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
874 break;
875 case 0:
876 default:
877 data |= IGP01E1000_PSCR_AUTO_MDIX;
878 break;
879 }
880 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
881 if (ret_val)
882 return ret_val;
883
884 /* set auto-master slave resolution settings */
885 if (hw->mac.autoneg) {
886 /* when autonegotiation advertisement is only 1000Mbps then we
887 * should disable SmartSpeed and enable Auto MasterSlave
888 * resolution as hardware default.
889 */
890 if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
891 /* Disable SmartSpeed */
892 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
893 &data);
894 if (ret_val)
895 return ret_val;
896
897 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
898 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
899 data);
900 if (ret_val)
901 return ret_val;
902
903 /* Set auto Master/Slave resolution process */
904 ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
905 if (ret_val)
906 return ret_val;
907
908 data &= ~CTL1000_ENABLE_MASTER;
909 ret_val = e1e_wphy(hw, MII_CTRL1000, data);
910 if (ret_val)
911 return ret_val;
912 }
913
914 ret_val = e1000_set_master_slave_mode(hw);
915 }
916
917 return ret_val;
918 }
919
920 /**
921 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
922 * @hw: pointer to the HW structure
923 *
924 * Reads the MII auto-neg advertisement register and/or the 1000T control
925 * register and if the PHY is already setup for auto-negotiation, then
926 * return successful. Otherwise, setup advertisement and flow control to
927 * the appropriate values for the wanted auto-negotiation.
928 **/
929 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
930 {
931 struct e1000_phy_info *phy = &hw->phy;
932 s32 ret_val;
933 u16 mii_autoneg_adv_reg;
934 u16 mii_1000t_ctrl_reg = 0;
935
936 phy->autoneg_advertised &= phy->autoneg_mask;
937
938 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
939 ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
940 if (ret_val)
941 return ret_val;
942
943 if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
944 /* Read the MII 1000Base-T Control Register (Address 9). */
945 ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
946 if (ret_val)
947 return ret_val;
948 }
949
950 /* Need to parse both autoneg_advertised and fc and set up
951 * the appropriate PHY registers. First we will parse for
952 * autoneg_advertised software override. Since we can advertise
953 * a plethora of combinations, we need to check each bit
954 * individually.
955 */
956
957 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
958 * Advertisement Register (Address 4) and the 1000 mb speed bits in
959 * the 1000Base-T Control Register (Address 9).
960 */
961 mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
962 ADVERTISE_100HALF |
963 ADVERTISE_10FULL | ADVERTISE_10HALF);
964 mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
965
966 e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
967
968 /* Do we want to advertise 10 Mb Half Duplex? */
969 if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
970 e_dbg("Advertise 10mb Half duplex\n");
971 mii_autoneg_adv_reg |= ADVERTISE_10HALF;
972 }
973
974 /* Do we want to advertise 10 Mb Full Duplex? */
975 if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
976 e_dbg("Advertise 10mb Full duplex\n");
977 mii_autoneg_adv_reg |= ADVERTISE_10FULL;
978 }
979
980 /* Do we want to advertise 100 Mb Half Duplex? */
981 if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
982 e_dbg("Advertise 100mb Half duplex\n");
983 mii_autoneg_adv_reg |= ADVERTISE_100HALF;
984 }
985
986 /* Do we want to advertise 100 Mb Full Duplex? */
987 if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
988 e_dbg("Advertise 100mb Full duplex\n");
989 mii_autoneg_adv_reg |= ADVERTISE_100FULL;
990 }
991
992 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
993 if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
994 e_dbg("Advertise 1000mb Half duplex request denied!\n");
995
996 /* Do we want to advertise 1000 Mb Full Duplex? */
997 if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
998 e_dbg("Advertise 1000mb Full duplex\n");
999 mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1000 }
1001
1002 /* Check for a software override of the flow control settings, and
1003 * setup the PHY advertisement registers accordingly. If
1004 * auto-negotiation is enabled, then software will have to set the
1005 * "PAUSE" bits to the correct value in the Auto-Negotiation
1006 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1007 * negotiation.
1008 *
1009 * The possible values of the "fc" parameter are:
1010 * 0: Flow control is completely disabled
1011 * 1: Rx flow control is enabled (we can receive pause frames
1012 * but not send pause frames).
1013 * 2: Tx flow control is enabled (we can send pause frames
1014 * but we do not support receiving pause frames).
1015 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1016 * other: No software override. The flow control configuration
1017 * in the EEPROM is used.
1018 */
1019 switch (hw->fc.current_mode) {
1020 case e1000_fc_none:
1021 /* Flow control (Rx & Tx) is completely disabled by a
1022 * software over-ride.
1023 */
1024 mii_autoneg_adv_reg &=
1025 ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1026 break;
1027 case e1000_fc_rx_pause:
1028 /* Rx Flow control is enabled, and Tx Flow control is
1029 * disabled, by a software over-ride.
1030 *
1031 * Since there really isn't a way to advertise that we are
1032 * capable of Rx Pause ONLY, we will advertise that we
1033 * support both symmetric and asymmetric Rx PAUSE. Later
1034 * (in e1000e_config_fc_after_link_up) we will disable the
1035 * hw's ability to send PAUSE frames.
1036 */
1037 mii_autoneg_adv_reg |=
1038 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1039 break;
1040 case e1000_fc_tx_pause:
1041 /* Tx Flow control is enabled, and Rx Flow control is
1042 * disabled, by a software over-ride.
1043 */
1044 mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1045 mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1046 break;
1047 case e1000_fc_full:
1048 /* Flow control (both Rx and Tx) is enabled by a software
1049 * over-ride.
1050 */
1051 mii_autoneg_adv_reg |=
1052 (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1053 break;
1054 default:
1055 e_dbg("Flow control param set incorrectly\n");
1056 return -E1000_ERR_CONFIG;
1057 }
1058
1059 ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1060 if (ret_val)
1061 return ret_val;
1062
1063 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1064
1065 if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1066 ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1067
1068 return ret_val;
1069 }
1070
1071 /**
1072 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1073 * @hw: pointer to the HW structure
1074 *
1075 * Performs initial bounds checking on autoneg advertisement parameter, then
1076 * configure to advertise the full capability. Setup the PHY to autoneg
1077 * and restart the negotiation process between the link partner. If
1078 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1079 **/
1080 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1081 {
1082 struct e1000_phy_info *phy = &hw->phy;
1083 s32 ret_val;
1084 u16 phy_ctrl;
1085
1086 /* Perform some bounds checking on the autoneg advertisement
1087 * parameter.
1088 */
1089 phy->autoneg_advertised &= phy->autoneg_mask;
1090
1091 /* If autoneg_advertised is zero, we assume it was not defaulted
1092 * by the calling code so we set to advertise full capability.
1093 */
1094 if (!phy->autoneg_advertised)
1095 phy->autoneg_advertised = phy->autoneg_mask;
1096
1097 e_dbg("Reconfiguring auto-neg advertisement params\n");
1098 ret_val = e1000_phy_setup_autoneg(hw);
1099 if (ret_val) {
1100 e_dbg("Error Setting up Auto-Negotiation\n");
1101 return ret_val;
1102 }
1103 e_dbg("Restarting Auto-Neg\n");
1104
1105 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1106 * the Auto Neg Restart bit in the PHY control register.
1107 */
1108 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1109 if (ret_val)
1110 return ret_val;
1111
1112 phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1113 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1114 if (ret_val)
1115 return ret_val;
1116
1117 /* Does the user want to wait for Auto-Neg to complete here, or
1118 * check at a later time (for example, callback routine).
1119 */
1120 if (phy->autoneg_wait_to_complete) {
1121 ret_val = e1000_wait_autoneg(hw);
1122 if (ret_val) {
1123 e_dbg("Error while waiting for autoneg to complete\n");
1124 return ret_val;
1125 }
1126 }
1127
1128 hw->mac.get_link_status = true;
1129
1130 return ret_val;
1131 }
1132
1133 /**
1134 * e1000e_setup_copper_link - Configure copper link settings
1135 * @hw: pointer to the HW structure
1136 *
1137 * Calls the appropriate function to configure the link for auto-neg or forced
1138 * speed and duplex. Then we check for link, once link is established calls
1139 * to configure collision distance and flow control are called. If link is
1140 * not established, we return -E1000_ERR_PHY (-2).
1141 **/
1142 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1143 {
1144 s32 ret_val;
1145 bool link;
1146
1147 if (hw->mac.autoneg) {
1148 /* Setup autoneg and flow control advertisement and perform
1149 * autonegotiation.
1150 */
1151 ret_val = e1000_copper_link_autoneg(hw);
1152 if (ret_val)
1153 return ret_val;
1154 } else {
1155 /* PHY will be set to 10H, 10F, 100H or 100F
1156 * depending on user settings.
1157 */
1158 e_dbg("Forcing Speed and Duplex\n");
1159 ret_val = hw->phy.ops.force_speed_duplex(hw);
1160 if (ret_val) {
1161 e_dbg("Error Forcing Speed and Duplex\n");
1162 return ret_val;
1163 }
1164 }
1165
1166 /* Check link status. Wait up to 100 microseconds for link to become
1167 * valid.
1168 */
1169 ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1170 &link);
1171 if (ret_val)
1172 return ret_val;
1173
1174 if (link) {
1175 e_dbg("Valid link established!!!\n");
1176 hw->mac.ops.config_collision_dist(hw);
1177 ret_val = e1000e_config_fc_after_link_up(hw);
1178 } else {
1179 e_dbg("Unable to establish link!!!\n");
1180 }
1181
1182 return ret_val;
1183 }
1184
1185 /**
1186 * e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1187 * @hw: pointer to the HW structure
1188 *
1189 * Calls the PHY setup function to force speed and duplex. Clears the
1190 * auto-crossover to force MDI manually. Waits for link and returns
1191 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1192 **/
1193 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1194 {
1195 struct e1000_phy_info *phy = &hw->phy;
1196 s32 ret_val;
1197 u16 phy_data;
1198 bool link;
1199
1200 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1201 if (ret_val)
1202 return ret_val;
1203
1204 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1205
1206 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1207 if (ret_val)
1208 return ret_val;
1209
1210 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1211 * forced whenever speed and duplex are forced.
1212 */
1213 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1214 if (ret_val)
1215 return ret_val;
1216
1217 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1218 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1219
1220 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1221 if (ret_val)
1222 return ret_val;
1223
1224 e_dbg("IGP PSCR: %X\n", phy_data);
1225
1226 udelay(1);
1227
1228 if (phy->autoneg_wait_to_complete) {
1229 e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1230
1231 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1232 100000, &link);
1233 if (ret_val)
1234 return ret_val;
1235
1236 if (!link)
1237 e_dbg("Link taking longer than expected.\n");
1238
1239 /* Try once more */
1240 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1241 100000, &link);
1242 }
1243
1244 return ret_val;
1245 }
1246
1247 /**
1248 * e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1249 * @hw: pointer to the HW structure
1250 *
1251 * Calls the PHY setup function to force speed and duplex. Clears the
1252 * auto-crossover to force MDI manually. Resets the PHY to commit the
1253 * changes. If time expires while waiting for link up, we reset the DSP.
1254 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1255 * successful completion, else return corresponding error code.
1256 **/
1257 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1258 {
1259 struct e1000_phy_info *phy = &hw->phy;
1260 s32 ret_val;
1261 u16 phy_data;
1262 bool link;
1263
1264 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1265 * forced whenever speed and duplex are forced.
1266 */
1267 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1268 if (ret_val)
1269 return ret_val;
1270
1271 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1272 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1273 if (ret_val)
1274 return ret_val;
1275
1276 e_dbg("M88E1000 PSCR: %X\n", phy_data);
1277
1278 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1279 if (ret_val)
1280 return ret_val;
1281
1282 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1283
1284 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1285 if (ret_val)
1286 return ret_val;
1287
1288 /* Reset the phy to commit changes. */
1289 if (hw->phy.ops.commit) {
1290 ret_val = hw->phy.ops.commit(hw);
1291 if (ret_val)
1292 return ret_val;
1293 }
1294
1295 if (phy->autoneg_wait_to_complete) {
1296 e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1297
1298 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1299 100000, &link);
1300 if (ret_val)
1301 return ret_val;
1302
1303 if (!link) {
1304 if (hw->phy.type != e1000_phy_m88) {
1305 e_dbg("Link taking longer than expected.\n");
1306 } else {
1307 /* We didn't get link.
1308 * Reset the DSP and cross our fingers.
1309 */
1310 ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1311 0x001d);
1312 if (ret_val)
1313 return ret_val;
1314 ret_val = e1000e_phy_reset_dsp(hw);
1315 if (ret_val)
1316 return ret_val;
1317 }
1318 }
1319
1320 /* Try once more */
1321 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1322 100000, &link);
1323 if (ret_val)
1324 return ret_val;
1325 }
1326
1327 if (hw->phy.type != e1000_phy_m88)
1328 return 0;
1329
1330 ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1331 if (ret_val)
1332 return ret_val;
1333
1334 /* Resetting the phy means we need to re-force TX_CLK in the
1335 * Extended PHY Specific Control Register to 25MHz clock from
1336 * the reset value of 2.5MHz.
1337 */
1338 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1339 ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1340 if (ret_val)
1341 return ret_val;
1342
1343 /* In addition, we must re-enable CRS on Tx for both half and full
1344 * duplex.
1345 */
1346 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1347 if (ret_val)
1348 return ret_val;
1349
1350 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1351 ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1352
1353 return ret_val;
1354 }
1355
1356 /**
1357 * e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1358 * @hw: pointer to the HW structure
1359 *
1360 * Forces the speed and duplex settings of the PHY.
1361 * This is a function pointer entry point only called by
1362 * PHY setup routines.
1363 **/
1364 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1365 {
1366 struct e1000_phy_info *phy = &hw->phy;
1367 s32 ret_val;
1368 u16 data;
1369 bool link;
1370
1371 ret_val = e1e_rphy(hw, MII_BMCR, &data);
1372 if (ret_val)
1373 return ret_val;
1374
1375 e1000e_phy_force_speed_duplex_setup(hw, &data);
1376
1377 ret_val = e1e_wphy(hw, MII_BMCR, data);
1378 if (ret_val)
1379 return ret_val;
1380
1381 /* Disable MDI-X support for 10/100 */
1382 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1383 if (ret_val)
1384 return ret_val;
1385
1386 data &= ~IFE_PMC_AUTO_MDIX;
1387 data &= ~IFE_PMC_FORCE_MDIX;
1388
1389 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1390 if (ret_val)
1391 return ret_val;
1392
1393 e_dbg("IFE PMC: %X\n", data);
1394
1395 udelay(1);
1396
1397 if (phy->autoneg_wait_to_complete) {
1398 e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1399
1400 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1401 100000, &link);
1402 if (ret_val)
1403 return ret_val;
1404
1405 if (!link)
1406 e_dbg("Link taking longer than expected.\n");
1407
1408 /* Try once more */
1409 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1410 100000, &link);
1411 if (ret_val)
1412 return ret_val;
1413 }
1414
1415 return 0;
1416 }
1417
1418 /**
1419 * e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1420 * @hw: pointer to the HW structure
1421 * @phy_ctrl: pointer to current value of MII_BMCR
1422 *
1423 * Forces speed and duplex on the PHY by doing the following: disable flow
1424 * control, force speed/duplex on the MAC, disable auto speed detection,
1425 * disable auto-negotiation, configure duplex, configure speed, configure
1426 * the collision distance, write configuration to CTRL register. The
1427 * caller must write to the MII_BMCR register for these settings to
1428 * take affect.
1429 **/
1430 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1431 {
1432 struct e1000_mac_info *mac = &hw->mac;
1433 u32 ctrl;
1434
1435 /* Turn off flow control when forcing speed/duplex */
1436 hw->fc.current_mode = e1000_fc_none;
1437
1438 /* Force speed/duplex on the mac */
1439 ctrl = er32(CTRL);
1440 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1441 ctrl &= ~E1000_CTRL_SPD_SEL;
1442
1443 /* Disable Auto Speed Detection */
1444 ctrl &= ~E1000_CTRL_ASDE;
1445
1446 /* Disable autoneg on the phy */
1447 *phy_ctrl &= ~BMCR_ANENABLE;
1448
1449 /* Forcing Full or Half Duplex? */
1450 if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1451 ctrl &= ~E1000_CTRL_FD;
1452 *phy_ctrl &= ~BMCR_FULLDPLX;
1453 e_dbg("Half Duplex\n");
1454 } else {
1455 ctrl |= E1000_CTRL_FD;
1456 *phy_ctrl |= BMCR_FULLDPLX;
1457 e_dbg("Full Duplex\n");
1458 }
1459
1460 /* Forcing 10mb or 100mb? */
1461 if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1462 ctrl |= E1000_CTRL_SPD_100;
1463 *phy_ctrl |= BMCR_SPEED100;
1464 *phy_ctrl &= ~BMCR_SPEED1000;
1465 e_dbg("Forcing 100mb\n");
1466 } else {
1467 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1468 *phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1469 e_dbg("Forcing 10mb\n");
1470 }
1471
1472 hw->mac.ops.config_collision_dist(hw);
1473
1474 ew32(CTRL, ctrl);
1475 }
1476
1477 /**
1478 * e1000e_set_d3_lplu_state - Sets low power link up state for D3
1479 * @hw: pointer to the HW structure
1480 * @active: boolean used to enable/disable lplu
1481 *
1482 * Success returns 0, Failure returns 1
1483 *
1484 * The low power link up (lplu) state is set to the power management level D3
1485 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1486 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1487 * is used during Dx states where the power conservation is most important.
1488 * During driver activity, SmartSpeed should be enabled so performance is
1489 * maintained.
1490 **/
1491 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1492 {
1493 struct e1000_phy_info *phy = &hw->phy;
1494 s32 ret_val;
1495 u16 data;
1496
1497 ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1498 if (ret_val)
1499 return ret_val;
1500
1501 if (!active) {
1502 data &= ~IGP02E1000_PM_D3_LPLU;
1503 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1504 if (ret_val)
1505 return ret_val;
1506 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1507 * during Dx states where the power conservation is most
1508 * important. During driver activity we should enable
1509 * SmartSpeed, so performance is maintained.
1510 */
1511 if (phy->smart_speed == e1000_smart_speed_on) {
1512 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1513 &data);
1514 if (ret_val)
1515 return ret_val;
1516
1517 data |= IGP01E1000_PSCFR_SMART_SPEED;
1518 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1519 data);
1520 if (ret_val)
1521 return ret_val;
1522 } else if (phy->smart_speed == e1000_smart_speed_off) {
1523 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1524 &data);
1525 if (ret_val)
1526 return ret_val;
1527
1528 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1529 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1530 data);
1531 if (ret_val)
1532 return ret_val;
1533 }
1534 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1535 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1536 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1537 data |= IGP02E1000_PM_D3_LPLU;
1538 ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1539 if (ret_val)
1540 return ret_val;
1541
1542 /* When LPLU is enabled, we should disable SmartSpeed */
1543 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1544 if (ret_val)
1545 return ret_val;
1546
1547 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1548 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1549 }
1550
1551 return ret_val;
1552 }
1553
1554 /**
1555 * e1000e_check_downshift - Checks whether a downshift in speed occurred
1556 * @hw: pointer to the HW structure
1557 *
1558 * Success returns 0, Failure returns 1
1559 *
1560 * A downshift is detected by querying the PHY link health.
1561 **/
1562 s32 e1000e_check_downshift(struct e1000_hw *hw)
1563 {
1564 struct e1000_phy_info *phy = &hw->phy;
1565 s32 ret_val;
1566 u16 phy_data, offset, mask;
1567
1568 switch (phy->type) {
1569 case e1000_phy_m88:
1570 case e1000_phy_gg82563:
1571 case e1000_phy_bm:
1572 case e1000_phy_82578:
1573 offset = M88E1000_PHY_SPEC_STATUS;
1574 mask = M88E1000_PSSR_DOWNSHIFT;
1575 break;
1576 case e1000_phy_igp_2:
1577 case e1000_phy_igp_3:
1578 offset = IGP01E1000_PHY_LINK_HEALTH;
1579 mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1580 break;
1581 default:
1582 /* speed downshift not supported */
1583 phy->speed_downgraded = false;
1584 return 0;
1585 }
1586
1587 ret_val = e1e_rphy(hw, offset, &phy_data);
1588
1589 if (!ret_val)
1590 phy->speed_downgraded = !!(phy_data & mask);
1591
1592 return ret_val;
1593 }
1594
1595 /**
1596 * e1000_check_polarity_m88 - Checks the polarity.
1597 * @hw: pointer to the HW structure
1598 *
1599 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1600 *
1601 * Polarity is determined based on the PHY specific status register.
1602 **/
1603 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1604 {
1605 struct e1000_phy_info *phy = &hw->phy;
1606 s32 ret_val;
1607 u16 data;
1608
1609 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1610
1611 if (!ret_val)
1612 phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1613 ? e1000_rev_polarity_reversed
1614 : e1000_rev_polarity_normal);
1615
1616 return ret_val;
1617 }
1618
1619 /**
1620 * e1000_check_polarity_igp - Checks the polarity.
1621 * @hw: pointer to the HW structure
1622 *
1623 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1624 *
1625 * Polarity is determined based on the PHY port status register, and the
1626 * current speed (since there is no polarity at 100Mbps).
1627 **/
1628 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1629 {
1630 struct e1000_phy_info *phy = &hw->phy;
1631 s32 ret_val;
1632 u16 data, offset, mask;
1633
1634 /* Polarity is determined based on the speed of
1635 * our connection.
1636 */
1637 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1638 if (ret_val)
1639 return ret_val;
1640
1641 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1642 IGP01E1000_PSSR_SPEED_1000MBPS) {
1643 offset = IGP01E1000_PHY_PCS_INIT_REG;
1644 mask = IGP01E1000_PHY_POLARITY_MASK;
1645 } else {
1646 /* This really only applies to 10Mbps since
1647 * there is no polarity for 100Mbps (always 0).
1648 */
1649 offset = IGP01E1000_PHY_PORT_STATUS;
1650 mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1651 }
1652
1653 ret_val = e1e_rphy(hw, offset, &data);
1654
1655 if (!ret_val)
1656 phy->cable_polarity = ((data & mask)
1657 ? e1000_rev_polarity_reversed
1658 : e1000_rev_polarity_normal);
1659
1660 return ret_val;
1661 }
1662
1663 /**
1664 * e1000_check_polarity_ife - Check cable polarity for IFE PHY
1665 * @hw: pointer to the HW structure
1666 *
1667 * Polarity is determined on the polarity reversal feature being enabled.
1668 **/
1669 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1670 {
1671 struct e1000_phy_info *phy = &hw->phy;
1672 s32 ret_val;
1673 u16 phy_data, offset, mask;
1674
1675 /* Polarity is determined based on the reversal feature being enabled.
1676 */
1677 if (phy->polarity_correction) {
1678 offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1679 mask = IFE_PESC_POLARITY_REVERSED;
1680 } else {
1681 offset = IFE_PHY_SPECIAL_CONTROL;
1682 mask = IFE_PSC_FORCE_POLARITY;
1683 }
1684
1685 ret_val = e1e_rphy(hw, offset, &phy_data);
1686
1687 if (!ret_val)
1688 phy->cable_polarity = ((phy_data & mask)
1689 ? e1000_rev_polarity_reversed
1690 : e1000_rev_polarity_normal);
1691
1692 return ret_val;
1693 }
1694
1695 /**
1696 * e1000_wait_autoneg - Wait for auto-neg completion
1697 * @hw: pointer to the HW structure
1698 *
1699 * Waits for auto-negotiation to complete or for the auto-negotiation time
1700 * limit to expire, which ever happens first.
1701 **/
1702 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1703 {
1704 s32 ret_val = 0;
1705 u16 i, phy_status;
1706
1707 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1708 for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1709 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1710 if (ret_val)
1711 break;
1712 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1713 if (ret_val)
1714 break;
1715 if (phy_status & BMSR_ANEGCOMPLETE)
1716 break;
1717 msleep(100);
1718 }
1719
1720 /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1721 * has completed.
1722 */
1723 return ret_val;
1724 }
1725
1726 /**
1727 * e1000e_phy_has_link_generic - Polls PHY for link
1728 * @hw: pointer to the HW structure
1729 * @iterations: number of times to poll for link
1730 * @usec_interval: delay between polling attempts
1731 * @success: pointer to whether polling was successful or not
1732 *
1733 * Polls the PHY status register for link, 'iterations' number of times.
1734 **/
1735 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1736 u32 usec_interval, bool *success)
1737 {
1738 s32 ret_val = 0;
1739 u16 i, phy_status;
1740
1741 for (i = 0; i < iterations; i++) {
1742 /* Some PHYs require the MII_BMSR register to be read
1743 * twice due to the link bit being sticky. No harm doing
1744 * it across the board.
1745 */
1746 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1747 if (ret_val)
1748 /* If the first read fails, another entity may have
1749 * ownership of the resources, wait and try again to
1750 * see if they have relinquished the resources yet.
1751 */
1752 udelay(usec_interval);
1753 ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1754 if (ret_val)
1755 break;
1756 if (phy_status & BMSR_LSTATUS)
1757 break;
1758 if (usec_interval >= 1000)
1759 mdelay(usec_interval/1000);
1760 else
1761 udelay(usec_interval);
1762 }
1763
1764 *success = (i < iterations);
1765
1766 return ret_val;
1767 }
1768
1769 /**
1770 * e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1771 * @hw: pointer to the HW structure
1772 *
1773 * Reads the PHY specific status register to retrieve the cable length
1774 * information. The cable length is determined by averaging the minimum and
1775 * maximum values to get the "average" cable length. The m88 PHY has four
1776 * possible cable length values, which are:
1777 * Register Value Cable Length
1778 * 0 < 50 meters
1779 * 1 50 - 80 meters
1780 * 2 80 - 110 meters
1781 * 3 110 - 140 meters
1782 * 4 > 140 meters
1783 **/
1784 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1785 {
1786 struct e1000_phy_info *phy = &hw->phy;
1787 s32 ret_val;
1788 u16 phy_data, index;
1789
1790 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1791 if (ret_val)
1792 return ret_val;
1793
1794 index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1795 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1796
1797 if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1798 return -E1000_ERR_PHY;
1799
1800 phy->min_cable_length = e1000_m88_cable_length_table[index];
1801 phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1802
1803 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1804
1805 return 0;
1806 }
1807
1808 /**
1809 * e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1810 * @hw: pointer to the HW structure
1811 *
1812 * The automatic gain control (agc) normalizes the amplitude of the
1813 * received signal, adjusting for the attenuation produced by the
1814 * cable. By reading the AGC registers, which represent the
1815 * combination of coarse and fine gain value, the value can be put
1816 * into a lookup table to obtain the approximate cable length
1817 * for each channel.
1818 **/
1819 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1820 {
1821 struct e1000_phy_info *phy = &hw->phy;
1822 s32 ret_val;
1823 u16 phy_data, i, agc_value = 0;
1824 u16 cur_agc_index, max_agc_index = 0;
1825 u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1826 static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1827 IGP02E1000_PHY_AGC_A,
1828 IGP02E1000_PHY_AGC_B,
1829 IGP02E1000_PHY_AGC_C,
1830 IGP02E1000_PHY_AGC_D
1831 };
1832
1833 /* Read the AGC registers for all channels */
1834 for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1835 ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1836 if (ret_val)
1837 return ret_val;
1838
1839 /* Getting bits 15:9, which represent the combination of
1840 * coarse and fine gain values. The result is a number
1841 * that can be put into the lookup table to obtain the
1842 * approximate cable length.
1843 */
1844 cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1845 IGP02E1000_AGC_LENGTH_MASK);
1846
1847 /* Array index bound check. */
1848 if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1849 (cur_agc_index == 0))
1850 return -E1000_ERR_PHY;
1851
1852 /* Remove min & max AGC values from calculation. */
1853 if (e1000_igp_2_cable_length_table[min_agc_index] >
1854 e1000_igp_2_cable_length_table[cur_agc_index])
1855 min_agc_index = cur_agc_index;
1856 if (e1000_igp_2_cable_length_table[max_agc_index] <
1857 e1000_igp_2_cable_length_table[cur_agc_index])
1858 max_agc_index = cur_agc_index;
1859
1860 agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1861 }
1862
1863 agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1864 e1000_igp_2_cable_length_table[max_agc_index]);
1865 agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1866
1867 /* Calculate cable length with the error range of +/- 10 meters. */
1868 phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1869 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1870 phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1871
1872 phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1873
1874 return 0;
1875 }
1876
1877 /**
1878 * e1000e_get_phy_info_m88 - Retrieve PHY information
1879 * @hw: pointer to the HW structure
1880 *
1881 * Valid for only copper links. Read the PHY status register (sticky read)
1882 * to verify that link is up. Read the PHY special control register to
1883 * determine the polarity and 10base-T extended distance. Read the PHY
1884 * special status register to determine MDI/MDIx and current speed. If
1885 * speed is 1000, then determine cable length, local and remote receiver.
1886 **/
1887 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1888 {
1889 struct e1000_phy_info *phy = &hw->phy;
1890 s32 ret_val;
1891 u16 phy_data;
1892 bool link;
1893
1894 if (phy->media_type != e1000_media_type_copper) {
1895 e_dbg("Phy info is only valid for copper media\n");
1896 return -E1000_ERR_CONFIG;
1897 }
1898
1899 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1900 if (ret_val)
1901 return ret_val;
1902
1903 if (!link) {
1904 e_dbg("Phy info is only valid if link is up\n");
1905 return -E1000_ERR_CONFIG;
1906 }
1907
1908 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1909 if (ret_val)
1910 return ret_val;
1911
1912 phy->polarity_correction = !!(phy_data &
1913 M88E1000_PSCR_POLARITY_REVERSAL);
1914
1915 ret_val = e1000_check_polarity_m88(hw);
1916 if (ret_val)
1917 return ret_val;
1918
1919 ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1920 if (ret_val)
1921 return ret_val;
1922
1923 phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1924
1925 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1926 ret_val = hw->phy.ops.get_cable_length(hw);
1927 if (ret_val)
1928 return ret_val;
1929
1930 ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1931 if (ret_val)
1932 return ret_val;
1933
1934 phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1935 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1936
1937 phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1938 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1939 } else {
1940 /* Set values to "undefined" */
1941 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1942 phy->local_rx = e1000_1000t_rx_status_undefined;
1943 phy->remote_rx = e1000_1000t_rx_status_undefined;
1944 }
1945
1946 return ret_val;
1947 }
1948
1949 /**
1950 * e1000e_get_phy_info_igp - Retrieve igp PHY information
1951 * @hw: pointer to the HW structure
1952 *
1953 * Read PHY status to determine if link is up. If link is up, then
1954 * set/determine 10base-T extended distance and polarity correction. Read
1955 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1956 * determine on the cable length, local and remote receiver.
1957 **/
1958 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1959 {
1960 struct e1000_phy_info *phy = &hw->phy;
1961 s32 ret_val;
1962 u16 data;
1963 bool link;
1964
1965 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1966 if (ret_val)
1967 return ret_val;
1968
1969 if (!link) {
1970 e_dbg("Phy info is only valid if link is up\n");
1971 return -E1000_ERR_CONFIG;
1972 }
1973
1974 phy->polarity_correction = true;
1975
1976 ret_val = e1000_check_polarity_igp(hw);
1977 if (ret_val)
1978 return ret_val;
1979
1980 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1981 if (ret_val)
1982 return ret_val;
1983
1984 phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1985
1986 if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1987 IGP01E1000_PSSR_SPEED_1000MBPS) {
1988 ret_val = phy->ops.get_cable_length(hw);
1989 if (ret_val)
1990 return ret_val;
1991
1992 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
1993 if (ret_val)
1994 return ret_val;
1995
1996 phy->local_rx = (data & LPA_1000LOCALRXOK)
1997 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1998
1999 phy->remote_rx = (data & LPA_1000REMRXOK)
2000 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2001 } else {
2002 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2003 phy->local_rx = e1000_1000t_rx_status_undefined;
2004 phy->remote_rx = e1000_1000t_rx_status_undefined;
2005 }
2006
2007 return ret_val;
2008 }
2009
2010 /**
2011 * e1000_get_phy_info_ife - Retrieves various IFE PHY states
2012 * @hw: pointer to the HW structure
2013 *
2014 * Populates "phy" structure with various feature states.
2015 **/
2016 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2017 {
2018 struct e1000_phy_info *phy = &hw->phy;
2019 s32 ret_val;
2020 u16 data;
2021 bool link;
2022
2023 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2024 if (ret_val)
2025 return ret_val;
2026
2027 if (!link) {
2028 e_dbg("Phy info is only valid if link is up\n");
2029 return -E1000_ERR_CONFIG;
2030 }
2031
2032 ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2033 if (ret_val)
2034 return ret_val;
2035 phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2036
2037 if (phy->polarity_correction) {
2038 ret_val = e1000_check_polarity_ife(hw);
2039 if (ret_val)
2040 return ret_val;
2041 } else {
2042 /* Polarity is forced */
2043 phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2044 ? e1000_rev_polarity_reversed
2045 : e1000_rev_polarity_normal);
2046 }
2047
2048 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2049 if (ret_val)
2050 return ret_val;
2051
2052 phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2053
2054 /* The following parameters are undefined for 10/100 operation. */
2055 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2056 phy->local_rx = e1000_1000t_rx_status_undefined;
2057 phy->remote_rx = e1000_1000t_rx_status_undefined;
2058
2059 return 0;
2060 }
2061
2062 /**
2063 * e1000e_phy_sw_reset - PHY software reset
2064 * @hw: pointer to the HW structure
2065 *
2066 * Does a software reset of the PHY by reading the PHY control register and
2067 * setting/write the control register reset bit to the PHY.
2068 **/
2069 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2070 {
2071 s32 ret_val;
2072 u16 phy_ctrl;
2073
2074 ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2075 if (ret_val)
2076 return ret_val;
2077
2078 phy_ctrl |= BMCR_RESET;
2079 ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2080 if (ret_val)
2081 return ret_val;
2082
2083 udelay(1);
2084
2085 return ret_val;
2086 }
2087
2088 /**
2089 * e1000e_phy_hw_reset_generic - PHY hardware reset
2090 * @hw: pointer to the HW structure
2091 *
2092 * Verify the reset block is not blocking us from resetting. Acquire
2093 * semaphore (if necessary) and read/set/write the device control reset
2094 * bit in the PHY. Wait the appropriate delay time for the device to
2095 * reset and release the semaphore (if necessary).
2096 **/
2097 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2098 {
2099 struct e1000_phy_info *phy = &hw->phy;
2100 s32 ret_val;
2101 u32 ctrl;
2102
2103 if (phy->ops.check_reset_block) {
2104 ret_val = phy->ops.check_reset_block(hw);
2105 if (ret_val)
2106 return 0;
2107 }
2108
2109 ret_val = phy->ops.acquire(hw);
2110 if (ret_val)
2111 return ret_val;
2112
2113 ctrl = er32(CTRL);
2114 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2115 e1e_flush();
2116
2117 udelay(phy->reset_delay_us);
2118
2119 ew32(CTRL, ctrl);
2120 e1e_flush();
2121
2122 udelay(150);
2123
2124 phy->ops.release(hw);
2125
2126 return phy->ops.get_cfg_done(hw);
2127 }
2128
2129 /**
2130 * e1000e_get_cfg_done_generic - Generic configuration done
2131 * @hw: pointer to the HW structure
2132 *
2133 * Generic function to wait 10 milli-seconds for configuration to complete
2134 * and return success.
2135 **/
2136 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2137 {
2138 mdelay(10);
2139
2140 return 0;
2141 }
2142
2143 /**
2144 * e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2145 * @hw: pointer to the HW structure
2146 *
2147 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2148 **/
2149 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2150 {
2151 e_dbg("Running IGP 3 PHY init script\n");
2152
2153 /* PHY init IGP 3 */
2154 /* Enable rise/fall, 10-mode work in class-A */
2155 e1e_wphy(hw, 0x2F5B, 0x9018);
2156 /* Remove all caps from Replica path filter */
2157 e1e_wphy(hw, 0x2F52, 0x0000);
2158 /* Bias trimming for ADC, AFE and Driver (Default) */
2159 e1e_wphy(hw, 0x2FB1, 0x8B24);
2160 /* Increase Hybrid poly bias */
2161 e1e_wphy(hw, 0x2FB2, 0xF8F0);
2162 /* Add 4% to Tx amplitude in Gig mode */
2163 e1e_wphy(hw, 0x2010, 0x10B0);
2164 /* Disable trimming (TTT) */
2165 e1e_wphy(hw, 0x2011, 0x0000);
2166 /* Poly DC correction to 94.6% + 2% for all channels */
2167 e1e_wphy(hw, 0x20DD, 0x249A);
2168 /* ABS DC correction to 95.9% */
2169 e1e_wphy(hw, 0x20DE, 0x00D3);
2170 /* BG temp curve trim */
2171 e1e_wphy(hw, 0x28B4, 0x04CE);
2172 /* Increasing ADC OPAMP stage 1 currents to max */
2173 e1e_wphy(hw, 0x2F70, 0x29E4);
2174 /* Force 1000 ( required for enabling PHY regs configuration) */
2175 e1e_wphy(hw, 0x0000, 0x0140);
2176 /* Set upd_freq to 6 */
2177 e1e_wphy(hw, 0x1F30, 0x1606);
2178 /* Disable NPDFE */
2179 e1e_wphy(hw, 0x1F31, 0xB814);
2180 /* Disable adaptive fixed FFE (Default) */
2181 e1e_wphy(hw, 0x1F35, 0x002A);
2182 /* Enable FFE hysteresis */
2183 e1e_wphy(hw, 0x1F3E, 0x0067);
2184 /* Fixed FFE for short cable lengths */
2185 e1e_wphy(hw, 0x1F54, 0x0065);
2186 /* Fixed FFE for medium cable lengths */
2187 e1e_wphy(hw, 0x1F55, 0x002A);
2188 /* Fixed FFE for long cable lengths */
2189 e1e_wphy(hw, 0x1F56, 0x002A);
2190 /* Enable Adaptive Clip Threshold */
2191 e1e_wphy(hw, 0x1F72, 0x3FB0);
2192 /* AHT reset limit to 1 */
2193 e1e_wphy(hw, 0x1F76, 0xC0FF);
2194 /* Set AHT master delay to 127 msec */
2195 e1e_wphy(hw, 0x1F77, 0x1DEC);
2196 /* Set scan bits for AHT */
2197 e1e_wphy(hw, 0x1F78, 0xF9EF);
2198 /* Set AHT Preset bits */
2199 e1e_wphy(hw, 0x1F79, 0x0210);
2200 /* Change integ_factor of channel A to 3 */
2201 e1e_wphy(hw, 0x1895, 0x0003);
2202 /* Change prop_factor of channels BCD to 8 */
2203 e1e_wphy(hw, 0x1796, 0x0008);
2204 /* Change cg_icount + enable integbp for channels BCD */
2205 e1e_wphy(hw, 0x1798, 0xD008);
2206 /* Change cg_icount + enable integbp + change prop_factor_master
2207 * to 8 for channel A
2208 */
2209 e1e_wphy(hw, 0x1898, 0xD918);
2210 /* Disable AHT in Slave mode on channel A */
2211 e1e_wphy(hw, 0x187A, 0x0800);
2212 /* Enable LPLU and disable AN to 1000 in non-D0a states,
2213 * Enable SPD+B2B
2214 */
2215 e1e_wphy(hw, 0x0019, 0x008D);
2216 /* Enable restart AN on an1000_dis change */
2217 e1e_wphy(hw, 0x001B, 0x2080);
2218 /* Enable wh_fifo read clock in 10/100 modes */
2219 e1e_wphy(hw, 0x0014, 0x0045);
2220 /* Restart AN, Speed selection is 1000 */
2221 e1e_wphy(hw, 0x0000, 0x1340);
2222
2223 return 0;
2224 }
2225
2226 /**
2227 * e1000e_get_phy_type_from_id - Get PHY type from id
2228 * @phy_id: phy_id read from the phy
2229 *
2230 * Returns the phy type from the id.
2231 **/
2232 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2233 {
2234 enum e1000_phy_type phy_type = e1000_phy_unknown;
2235
2236 switch (phy_id) {
2237 case M88E1000_I_PHY_ID:
2238 case M88E1000_E_PHY_ID:
2239 case M88E1111_I_PHY_ID:
2240 case M88E1011_I_PHY_ID:
2241 phy_type = e1000_phy_m88;
2242 break;
2243 case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2244 phy_type = e1000_phy_igp_2;
2245 break;
2246 case GG82563_E_PHY_ID:
2247 phy_type = e1000_phy_gg82563;
2248 break;
2249 case IGP03E1000_E_PHY_ID:
2250 phy_type = e1000_phy_igp_3;
2251 break;
2252 case IFE_E_PHY_ID:
2253 case IFE_PLUS_E_PHY_ID:
2254 case IFE_C_E_PHY_ID:
2255 phy_type = e1000_phy_ife;
2256 break;
2257 case BME1000_E_PHY_ID:
2258 case BME1000_E_PHY_ID_R2:
2259 phy_type = e1000_phy_bm;
2260 break;
2261 case I82578_E_PHY_ID:
2262 phy_type = e1000_phy_82578;
2263 break;
2264 case I82577_E_PHY_ID:
2265 phy_type = e1000_phy_82577;
2266 break;
2267 case I82579_E_PHY_ID:
2268 phy_type = e1000_phy_82579;
2269 break;
2270 case I217_E_PHY_ID:
2271 phy_type = e1000_phy_i217;
2272 break;
2273 default:
2274 phy_type = e1000_phy_unknown;
2275 break;
2276 }
2277 return phy_type;
2278 }
2279
2280 /**
2281 * e1000e_determine_phy_address - Determines PHY address.
2282 * @hw: pointer to the HW structure
2283 *
2284 * This uses a trial and error method to loop through possible PHY
2285 * addresses. It tests each by reading the PHY ID registers and
2286 * checking for a match.
2287 **/
2288 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2289 {
2290 u32 phy_addr = 0;
2291 u32 i;
2292 enum e1000_phy_type phy_type = e1000_phy_unknown;
2293
2294 hw->phy.id = phy_type;
2295
2296 for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2297 hw->phy.addr = phy_addr;
2298 i = 0;
2299
2300 do {
2301 e1000e_get_phy_id(hw);
2302 phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2303
2304 /* If phy_type is valid, break - we found our
2305 * PHY address
2306 */
2307 if (phy_type != e1000_phy_unknown)
2308 return 0;
2309
2310 usleep_range(1000, 2000);
2311 i++;
2312 } while (i < 10);
2313 }
2314
2315 return -E1000_ERR_PHY_TYPE;
2316 }
2317
2318 /**
2319 * e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2320 * @page: page to access
2321 *
2322 * Returns the phy address for the page requested.
2323 **/
2324 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2325 {
2326 u32 phy_addr = 2;
2327
2328 if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2329 phy_addr = 1;
2330
2331 return phy_addr;
2332 }
2333
2334 /**
2335 * e1000e_write_phy_reg_bm - Write BM PHY register
2336 * @hw: pointer to the HW structure
2337 * @offset: register offset to write to
2338 * @data: data to write at register offset
2339 *
2340 * Acquires semaphore, if necessary, then writes the data to PHY register
2341 * at the offset. Release any acquired semaphores before exiting.
2342 **/
2343 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2344 {
2345 s32 ret_val;
2346 u32 page = offset >> IGP_PAGE_SHIFT;
2347
2348 ret_val = hw->phy.ops.acquire(hw);
2349 if (ret_val)
2350 return ret_val;
2351
2352 /* Page 800 works differently than the rest so it has its own func */
2353 if (page == BM_WUC_PAGE) {
2354 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2355 false, false);
2356 goto release;
2357 }
2358
2359 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2360
2361 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2362 u32 page_shift, page_select;
2363
2364 /* Page select is register 31 for phy address 1 and 22 for
2365 * phy address 2 and 3. Page select is shifted only for
2366 * phy address 1.
2367 */
2368 if (hw->phy.addr == 1) {
2369 page_shift = IGP_PAGE_SHIFT;
2370 page_select = IGP01E1000_PHY_PAGE_SELECT;
2371 } else {
2372 page_shift = 0;
2373 page_select = BM_PHY_PAGE_SELECT;
2374 }
2375
2376 /* Page is shifted left, PHY expects (page x 32) */
2377 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2378 (page << page_shift));
2379 if (ret_val)
2380 goto release;
2381 }
2382
2383 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2384 data);
2385
2386 release:
2387 hw->phy.ops.release(hw);
2388 return ret_val;
2389 }
2390
2391 /**
2392 * e1000e_read_phy_reg_bm - Read BM PHY register
2393 * @hw: pointer to the HW structure
2394 * @offset: register offset to be read
2395 * @data: pointer to the read data
2396 *
2397 * Acquires semaphore, if necessary, then reads the PHY register at offset
2398 * and storing the retrieved information in data. Release any acquired
2399 * semaphores before exiting.
2400 **/
2401 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2402 {
2403 s32 ret_val;
2404 u32 page = offset >> IGP_PAGE_SHIFT;
2405
2406 ret_val = hw->phy.ops.acquire(hw);
2407 if (ret_val)
2408 return ret_val;
2409
2410 /* Page 800 works differently than the rest so it has its own func */
2411 if (page == BM_WUC_PAGE) {
2412 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2413 true, false);
2414 goto release;
2415 }
2416
2417 hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2418
2419 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2420 u32 page_shift, page_select;
2421
2422 /* Page select is register 31 for phy address 1 and 22 for
2423 * phy address 2 and 3. Page select is shifted only for
2424 * phy address 1.
2425 */
2426 if (hw->phy.addr == 1) {
2427 page_shift = IGP_PAGE_SHIFT;
2428 page_select = IGP01E1000_PHY_PAGE_SELECT;
2429 } else {
2430 page_shift = 0;
2431 page_select = BM_PHY_PAGE_SELECT;
2432 }
2433
2434 /* Page is shifted left, PHY expects (page x 32) */
2435 ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2436 (page << page_shift));
2437 if (ret_val)
2438 goto release;
2439 }
2440
2441 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2442 data);
2443 release:
2444 hw->phy.ops.release(hw);
2445 return ret_val;
2446 }
2447
2448 /**
2449 * e1000e_read_phy_reg_bm2 - Read BM PHY register
2450 * @hw: pointer to the HW structure
2451 * @offset: register offset to be read
2452 * @data: pointer to the read data
2453 *
2454 * Acquires semaphore, if necessary, then reads the PHY register at offset
2455 * and storing the retrieved information in data. Release any acquired
2456 * semaphores before exiting.
2457 **/
2458 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2459 {
2460 s32 ret_val;
2461 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2462
2463 ret_val = hw->phy.ops.acquire(hw);
2464 if (ret_val)
2465 return ret_val;
2466
2467 /* Page 800 works differently than the rest so it has its own func */
2468 if (page == BM_WUC_PAGE) {
2469 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2470 true, false);
2471 goto release;
2472 }
2473
2474 hw->phy.addr = 1;
2475
2476 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2477 /* Page is shifted left, PHY expects (page x 32) */
2478 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2479 page);
2480
2481 if (ret_val)
2482 goto release;
2483 }
2484
2485 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2486 data);
2487 release:
2488 hw->phy.ops.release(hw);
2489 return ret_val;
2490 }
2491
2492 /**
2493 * e1000e_write_phy_reg_bm2 - Write BM PHY register
2494 * @hw: pointer to the HW structure
2495 * @offset: register offset to write to
2496 * @data: data to write at register offset
2497 *
2498 * Acquires semaphore, if necessary, then writes the data to PHY register
2499 * at the offset. Release any acquired semaphores before exiting.
2500 **/
2501 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2502 {
2503 s32 ret_val;
2504 u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2505
2506 ret_val = hw->phy.ops.acquire(hw);
2507 if (ret_val)
2508 return ret_val;
2509
2510 /* Page 800 works differently than the rest so it has its own func */
2511 if (page == BM_WUC_PAGE) {
2512 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2513 false, false);
2514 goto release;
2515 }
2516
2517 hw->phy.addr = 1;
2518
2519 if (offset > MAX_PHY_MULTI_PAGE_REG) {
2520 /* Page is shifted left, PHY expects (page x 32) */
2521 ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2522 page);
2523
2524 if (ret_val)
2525 goto release;
2526 }
2527
2528 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2529 data);
2530
2531 release:
2532 hw->phy.ops.release(hw);
2533 return ret_val;
2534 }
2535
2536 /**
2537 * e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2538 * @hw: pointer to the HW structure
2539 * @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2540 *
2541 * Assumes semaphore already acquired and phy_reg points to a valid memory
2542 * address to store contents of the BM_WUC_ENABLE_REG register.
2543 **/
2544 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2545 {
2546 s32 ret_val;
2547 u16 temp;
2548
2549 /* All page select, port ctrl and wakeup registers use phy address 1 */
2550 hw->phy.addr = 1;
2551
2552 /* Select Port Control Registers page */
2553 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2554 if (ret_val) {
2555 e_dbg("Could not set Port Control page\n");
2556 return ret_val;
2557 }
2558
2559 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2560 if (ret_val) {
2561 e_dbg("Could not read PHY register %d.%d\n",
2562 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2563 return ret_val;
2564 }
2565
2566 /* Enable both PHY wakeup mode and Wakeup register page writes.
2567 * Prevent a power state change by disabling ME and Host PHY wakeup.
2568 */
2569 temp = *phy_reg;
2570 temp |= BM_WUC_ENABLE_BIT;
2571 temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2572
2573 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2574 if (ret_val) {
2575 e_dbg("Could not write PHY register %d.%d\n",
2576 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2577 return ret_val;
2578 }
2579
2580 /* Select Host Wakeup Registers page - caller now able to write
2581 * registers on the Wakeup registers page
2582 */
2583 return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2584 }
2585
2586 /**
2587 * e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2588 * @hw: pointer to the HW structure
2589 * @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2590 *
2591 * Restore BM_WUC_ENABLE_REG to its original value.
2592 *
2593 * Assumes semaphore already acquired and *phy_reg is the contents of the
2594 * BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2595 * caller.
2596 **/
2597 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2598 {
2599 s32 ret_val;
2600
2601 /* Select Port Control Registers page */
2602 ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2603 if (ret_val) {
2604 e_dbg("Could not set Port Control page\n");
2605 return ret_val;
2606 }
2607
2608 /* Restore 769.17 to its original value */
2609 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2610 if (ret_val)
2611 e_dbg("Could not restore PHY register %d.%d\n",
2612 BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2613
2614 return ret_val;
2615 }
2616
2617 /**
2618 * e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2619 * @hw: pointer to the HW structure
2620 * @offset: register offset to be read or written
2621 * @data: pointer to the data to read or write
2622 * @read: determines if operation is read or write
2623 * @page_set: BM_WUC_PAGE already set and access enabled
2624 *
2625 * Read the PHY register at offset and store the retrieved information in
2626 * data, or write data to PHY register at offset. Note the procedure to
2627 * access the PHY wakeup registers is different than reading the other PHY
2628 * registers. It works as such:
2629 * 1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2630 * 2) Set page to 800 for host (801 if we were manageability)
2631 * 3) Write the address using the address opcode (0x11)
2632 * 4) Read or write the data using the data opcode (0x12)
2633 * 5) Restore 769.17.2 to its original value
2634 *
2635 * Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2636 * step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2637 *
2638 * Assumes semaphore is already acquired. When page_set==true, assumes
2639 * the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2640 * is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2641 **/
2642 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2643 u16 *data, bool read, bool page_set)
2644 {
2645 s32 ret_val;
2646 u16 reg = BM_PHY_REG_NUM(offset);
2647 u16 page = BM_PHY_REG_PAGE(offset);
2648 u16 phy_reg = 0;
2649
2650 /* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2651 if ((hw->mac.type == e1000_pchlan) &&
2652 (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2653 e_dbg("Attempting to access page %d while gig enabled.\n",
2654 page);
2655
2656 if (!page_set) {
2657 /* Enable access to PHY wakeup registers */
2658 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2659 if (ret_val) {
2660 e_dbg("Could not enable PHY wakeup reg access\n");
2661 return ret_val;
2662 }
2663 }
2664
2665 e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2666
2667 /* Write the Wakeup register page offset value using opcode 0x11 */
2668 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2669 if (ret_val) {
2670 e_dbg("Could not write address opcode to page %d\n", page);
2671 return ret_val;
2672 }
2673
2674 if (read) {
2675 /* Read the Wakeup register page value using opcode 0x12 */
2676 ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2677 data);
2678 } else {
2679 /* Write the Wakeup register page value using opcode 0x12 */
2680 ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2681 *data);
2682 }
2683
2684 if (ret_val) {
2685 e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2686 return ret_val;
2687 }
2688
2689 if (!page_set)
2690 ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2691
2692 return ret_val;
2693 }
2694
2695 /**
2696 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2697 * @hw: pointer to the HW structure
2698 *
2699 * In the case of a PHY power down to save power, or to turn off link during a
2700 * driver unload, or wake on lan is not enabled, restore the link to previous
2701 * settings.
2702 **/
2703 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2704 {
2705 u16 mii_reg = 0;
2706
2707 /* The PHY will retain its settings across a power down/up cycle */
2708 e1e_rphy(hw, MII_BMCR, &mii_reg);
2709 mii_reg &= ~BMCR_PDOWN;
2710 e1e_wphy(hw, MII_BMCR, mii_reg);
2711 }
2712
2713 /**
2714 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2715 * @hw: pointer to the HW structure
2716 *
2717 * In the case of a PHY power down to save power, or to turn off link during a
2718 * driver unload, or wake on lan is not enabled, restore the link to previous
2719 * settings.
2720 **/
2721 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2722 {
2723 u16 mii_reg = 0;
2724
2725 /* The PHY will retain its settings across a power down/up cycle */
2726 e1e_rphy(hw, MII_BMCR, &mii_reg);
2727 mii_reg |= BMCR_PDOWN;
2728 e1e_wphy(hw, MII_BMCR, mii_reg);
2729 usleep_range(1000, 2000);
2730 }
2731
2732 /**
2733 * __e1000_read_phy_reg_hv - Read HV PHY register
2734 * @hw: pointer to the HW structure
2735 * @offset: register offset to be read
2736 * @data: pointer to the read data
2737 * @locked: semaphore has already been acquired or not
2738 *
2739 * Acquires semaphore, if necessary, then reads the PHY register at offset
2740 * and stores the retrieved information in data. Release any acquired
2741 * semaphore before exiting.
2742 **/
2743 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2744 bool locked, bool page_set)
2745 {
2746 s32 ret_val;
2747 u16 page = BM_PHY_REG_PAGE(offset);
2748 u16 reg = BM_PHY_REG_NUM(offset);
2749 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2750
2751 if (!locked) {
2752 ret_val = hw->phy.ops.acquire(hw);
2753 if (ret_val)
2754 return ret_val;
2755 }
2756
2757 /* Page 800 works differently than the rest so it has its own func */
2758 if (page == BM_WUC_PAGE) {
2759 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2760 true, page_set);
2761 goto out;
2762 }
2763
2764 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2765 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2766 data, true);
2767 goto out;
2768 }
2769
2770 if (!page_set) {
2771 if (page == HV_INTC_FC_PAGE_START)
2772 page = 0;
2773
2774 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2775 /* Page is shifted left, PHY expects (page x 32) */
2776 ret_val = e1000_set_page_igp(hw,
2777 (page << IGP_PAGE_SHIFT));
2778
2779 hw->phy.addr = phy_addr;
2780
2781 if (ret_val)
2782 goto out;
2783 }
2784 }
2785
2786 e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2787 page << IGP_PAGE_SHIFT, reg);
2788
2789 ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2790 out:
2791 if (!locked)
2792 hw->phy.ops.release(hw);
2793
2794 return ret_val;
2795 }
2796
2797 /**
2798 * e1000_read_phy_reg_hv - Read HV PHY register
2799 * @hw: pointer to the HW structure
2800 * @offset: register offset to be read
2801 * @data: pointer to the read data
2802 *
2803 * Acquires semaphore then reads the PHY register at offset and stores
2804 * the retrieved information in data. Release the acquired semaphore
2805 * before exiting.
2806 **/
2807 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2808 {
2809 return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2810 }
2811
2812 /**
2813 * e1000_read_phy_reg_hv_locked - Read HV PHY register
2814 * @hw: pointer to the HW structure
2815 * @offset: register offset to be read
2816 * @data: pointer to the read data
2817 *
2818 * Reads the PHY register at offset and stores the retrieved information
2819 * in data. Assumes semaphore already acquired.
2820 **/
2821 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2822 {
2823 return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2824 }
2825
2826 /**
2827 * e1000_read_phy_reg_page_hv - Read HV PHY register
2828 * @hw: pointer to the HW structure
2829 * @offset: register offset to write to
2830 * @data: data to write at register offset
2831 *
2832 * Reads the PHY register at offset and stores the retrieved information
2833 * in data. Assumes semaphore already acquired and page already set.
2834 **/
2835 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2836 {
2837 return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2838 }
2839
2840 /**
2841 * __e1000_write_phy_reg_hv - Write HV PHY register
2842 * @hw: pointer to the HW structure
2843 * @offset: register offset to write to
2844 * @data: data to write at register offset
2845 * @locked: semaphore has already been acquired or not
2846 *
2847 * Acquires semaphore, if necessary, then writes the data to PHY register
2848 * at the offset. Release any acquired semaphores before exiting.
2849 **/
2850 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2851 bool locked, bool page_set)
2852 {
2853 s32 ret_val;
2854 u16 page = BM_PHY_REG_PAGE(offset);
2855 u16 reg = BM_PHY_REG_NUM(offset);
2856 u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2857
2858 if (!locked) {
2859 ret_val = hw->phy.ops.acquire(hw);
2860 if (ret_val)
2861 return ret_val;
2862 }
2863
2864 /* Page 800 works differently than the rest so it has its own func */
2865 if (page == BM_WUC_PAGE) {
2866 ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2867 false, page_set);
2868 goto out;
2869 }
2870
2871 if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2872 ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2873 &data, false);
2874 goto out;
2875 }
2876
2877 if (!page_set) {
2878 if (page == HV_INTC_FC_PAGE_START)
2879 page = 0;
2880
2881 /* Workaround MDIO accesses being disabled after entering IEEE
2882 * Power Down (when bit 11 of the PHY Control register is set)
2883 */
2884 if ((hw->phy.type == e1000_phy_82578) &&
2885 (hw->phy.revision >= 1) &&
2886 (hw->phy.addr == 2) &&
2887 !(MAX_PHY_REG_ADDRESS & reg) && (data & (1 << 11))) {
2888 u16 data2 = 0x7EFF;
2889 ret_val = e1000_access_phy_debug_regs_hv(hw,
2890 (1 << 6) | 0x3,
2891 &data2, false);
2892 if (ret_val)
2893 goto out;
2894 }
2895
2896 if (reg > MAX_PHY_MULTI_PAGE_REG) {
2897 /* Page is shifted left, PHY expects (page x 32) */
2898 ret_val = e1000_set_page_igp(hw,
2899 (page << IGP_PAGE_SHIFT));
2900
2901 hw->phy.addr = phy_addr;
2902
2903 if (ret_val)
2904 goto out;
2905 }
2906 }
2907
2908 e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2909 page << IGP_PAGE_SHIFT, reg);
2910
2911 ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2912 data);
2913
2914 out:
2915 if (!locked)
2916 hw->phy.ops.release(hw);
2917
2918 return ret_val;
2919 }
2920
2921 /**
2922 * e1000_write_phy_reg_hv - Write HV PHY register
2923 * @hw: pointer to the HW structure
2924 * @offset: register offset to write to
2925 * @data: data to write at register offset
2926 *
2927 * Acquires semaphore then writes the data to PHY register at the offset.
2928 * Release the acquired semaphores before exiting.
2929 **/
2930 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2931 {
2932 return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2933 }
2934
2935 /**
2936 * e1000_write_phy_reg_hv_locked - Write HV PHY register
2937 * @hw: pointer to the HW structure
2938 * @offset: register offset to write to
2939 * @data: data to write at register offset
2940 *
2941 * Writes the data to PHY register at the offset. Assumes semaphore
2942 * already acquired.
2943 **/
2944 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2945 {
2946 return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2947 }
2948
2949 /**
2950 * e1000_write_phy_reg_page_hv - Write HV PHY register
2951 * @hw: pointer to the HW structure
2952 * @offset: register offset to write to
2953 * @data: data to write at register offset
2954 *
2955 * Writes the data to PHY register at the offset. Assumes semaphore
2956 * already acquired and page already set.
2957 **/
2958 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2959 {
2960 return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2961 }
2962
2963 /**
2964 * e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2965 * @page: page to be accessed
2966 **/
2967 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2968 {
2969 u32 phy_addr = 2;
2970
2971 if (page >= HV_INTC_FC_PAGE_START)
2972 phy_addr = 1;
2973
2974 return phy_addr;
2975 }
2976
2977 /**
2978 * e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2979 * @hw: pointer to the HW structure
2980 * @offset: register offset to be read or written
2981 * @data: pointer to the data to be read or written
2982 * @read: determines if operation is read or write
2983 *
2984 * Reads the PHY register at offset and stores the retreived information
2985 * in data. Assumes semaphore already acquired. Note that the procedure
2986 * to access these regs uses the address port and data port to read/write.
2987 * These accesses done with PHY address 2 and without using pages.
2988 **/
2989 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
2990 u16 *data, bool read)
2991 {
2992 s32 ret_val;
2993 u32 addr_reg;
2994 u32 data_reg;
2995
2996 /* This takes care of the difference with desktop vs mobile phy */
2997 addr_reg = ((hw->phy.type == e1000_phy_82578) ?
2998 I82578_ADDR_REG : I82577_ADDR_REG);
2999 data_reg = addr_reg + 1;
3000
3001 /* All operations in this function are phy address 2 */
3002 hw->phy.addr = 2;
3003
3004 /* masking with 0x3F to remove the page from offset */
3005 ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3006 if (ret_val) {
3007 e_dbg("Could not write the Address Offset port register\n");
3008 return ret_val;
3009 }
3010
3011 /* Read or write the data value next */
3012 if (read)
3013 ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3014 else
3015 ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3016
3017 if (ret_val)
3018 e_dbg("Could not access the Data port register\n");
3019
3020 return ret_val;
3021 }
3022
3023 /**
3024 * e1000_link_stall_workaround_hv - Si workaround
3025 * @hw: pointer to the HW structure
3026 *
3027 * This function works around a Si bug where the link partner can get
3028 * a link up indication before the PHY does. If small packets are sent
3029 * by the link partner they can be placed in the packet buffer without
3030 * being properly accounted for by the PHY and will stall preventing
3031 * further packets from being received. The workaround is to clear the
3032 * packet buffer after the PHY detects link up.
3033 **/
3034 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3035 {
3036 s32 ret_val = 0;
3037 u16 data;
3038
3039 if (hw->phy.type != e1000_phy_82578)
3040 return 0;
3041
3042 /* Do not apply workaround if in PHY loopback bit 14 set */
3043 e1e_rphy(hw, MII_BMCR, &data);
3044 if (data & BMCR_LOOPBACK)
3045 return 0;
3046
3047 /* check if link is up and at 1Gbps */
3048 ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3049 if (ret_val)
3050 return ret_val;
3051
3052 data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3053 BM_CS_STATUS_SPEED_MASK);
3054
3055 if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3056 BM_CS_STATUS_SPEED_1000))
3057 return 0;
3058
3059 msleep(200);
3060
3061 /* flush the packets in the fifo buffer */
3062 ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3063 (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3064 HV_MUX_DATA_CTRL_FORCE_SPEED));
3065 if (ret_val)
3066 return ret_val;
3067
3068 return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3069 }
3070
3071 /**
3072 * e1000_check_polarity_82577 - Checks the polarity.
3073 * @hw: pointer to the HW structure
3074 *
3075 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3076 *
3077 * Polarity is determined based on the PHY specific status register.
3078 **/
3079 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3080 {
3081 struct e1000_phy_info *phy = &hw->phy;
3082 s32 ret_val;
3083 u16 data;
3084
3085 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3086
3087 if (!ret_val)
3088 phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3089 ? e1000_rev_polarity_reversed
3090 : e1000_rev_polarity_normal);
3091
3092 return ret_val;
3093 }
3094
3095 /**
3096 * e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3097 * @hw: pointer to the HW structure
3098 *
3099 * Calls the PHY setup function to force speed and duplex.
3100 **/
3101 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3102 {
3103 struct e1000_phy_info *phy = &hw->phy;
3104 s32 ret_val;
3105 u16 phy_data;
3106 bool link;
3107
3108 ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3109 if (ret_val)
3110 return ret_val;
3111
3112 e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3113
3114 ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3115 if (ret_val)
3116 return ret_val;
3117
3118 udelay(1);
3119
3120 if (phy->autoneg_wait_to_complete) {
3121 e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3122
3123 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3124 100000, &link);
3125 if (ret_val)
3126 return ret_val;
3127
3128 if (!link)
3129 e_dbg("Link taking longer than expected.\n");
3130
3131 /* Try once more */
3132 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3133 100000, &link);
3134 }
3135
3136 return ret_val;
3137 }
3138
3139 /**
3140 * e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3141 * @hw: pointer to the HW structure
3142 *
3143 * Read PHY status to determine if link is up. If link is up, then
3144 * set/determine 10base-T extended distance and polarity correction. Read
3145 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
3146 * determine on the cable length, local and remote receiver.
3147 **/
3148 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3149 {
3150 struct e1000_phy_info *phy = &hw->phy;
3151 s32 ret_val;
3152 u16 data;
3153 bool link;
3154
3155 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3156 if (ret_val)
3157 return ret_val;
3158
3159 if (!link) {
3160 e_dbg("Phy info is only valid if link is up\n");
3161 return -E1000_ERR_CONFIG;
3162 }
3163
3164 phy->polarity_correction = true;
3165
3166 ret_val = e1000_check_polarity_82577(hw);
3167 if (ret_val)
3168 return ret_val;
3169
3170 ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3171 if (ret_val)
3172 return ret_val;
3173
3174 phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3175
3176 if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3177 I82577_PHY_STATUS2_SPEED_1000MBPS) {
3178 ret_val = hw->phy.ops.get_cable_length(hw);
3179 if (ret_val)
3180 return ret_val;
3181
3182 ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3183 if (ret_val)
3184 return ret_val;
3185
3186 phy->local_rx = (data & LPA_1000LOCALRXOK)
3187 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3188
3189 phy->remote_rx = (data & LPA_1000REMRXOK)
3190 ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3191 } else {
3192 phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3193 phy->local_rx = e1000_1000t_rx_status_undefined;
3194 phy->remote_rx = e1000_1000t_rx_status_undefined;
3195 }
3196
3197 return 0;
3198 }
3199
3200 /**
3201 * e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3202 * @hw: pointer to the HW structure
3203 *
3204 * Reads the diagnostic status register and verifies result is valid before
3205 * placing it in the phy_cable_length field.
3206 **/
3207 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3208 {
3209 struct e1000_phy_info *phy = &hw->phy;
3210 s32 ret_val;
3211 u16 phy_data, length;
3212
3213 ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3214 if (ret_val)
3215 return ret_val;
3216
3217 length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3218 I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3219
3220 if (length == E1000_CABLE_LENGTH_UNDEFINED)
3221 return -E1000_ERR_PHY;
3222
3223 phy->cable_length = length;
3224
3225 return 0;
3226 }