]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/fm10k/fm10k_main.c
slip: Fix use-after-free Read in slip_open
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2019 Intel Corporation. */
3
4 #include <linux/types.h>
5 #include <linux/module.h>
6 #include <net/ipv6.h>
7 #include <net/ip.h>
8 #include <net/tcp.h>
9 #include <linux/if_macvlan.h>
10 #include <linux/prefetch.h>
11
12 #include "fm10k.h"
13
14 #define DRV_VERSION "0.26.1-k"
15 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
16 const char fm10k_driver_version[] = DRV_VERSION;
17 char fm10k_driver_name[] = "fm10k";
18 static const char fm10k_driver_string[] = DRV_SUMMARY;
19 static const char fm10k_copyright[] =
20 "Copyright(c) 2013 - 2019 Intel Corporation.";
21
22 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
23 MODULE_DESCRIPTION(DRV_SUMMARY);
24 MODULE_LICENSE("GPL v2");
25 MODULE_VERSION(DRV_VERSION);
26
27 /* single workqueue for entire fm10k driver */
28 struct workqueue_struct *fm10k_workqueue;
29
30 /**
31 * fm10k_init_module - Driver Registration Routine
32 *
33 * fm10k_init_module is the first routine called when the driver is
34 * loaded. All it does is register with the PCI subsystem.
35 **/
36 static int __init fm10k_init_module(void)
37 {
38 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
39 pr_info("%s\n", fm10k_copyright);
40
41 /* create driver workqueue */
42 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
43 fm10k_driver_name);
44 if (!fm10k_workqueue)
45 return -ENOMEM;
46
47 fm10k_dbg_init();
48
49 return fm10k_register_pci_driver();
50 }
51 module_init(fm10k_init_module);
52
53 /**
54 * fm10k_exit_module - Driver Exit Cleanup Routine
55 *
56 * fm10k_exit_module is called just before the driver is removed
57 * from memory.
58 **/
59 static void __exit fm10k_exit_module(void)
60 {
61 fm10k_unregister_pci_driver();
62
63 fm10k_dbg_exit();
64
65 /* destroy driver workqueue */
66 destroy_workqueue(fm10k_workqueue);
67 }
68 module_exit(fm10k_exit_module);
69
70 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
71 struct fm10k_rx_buffer *bi)
72 {
73 struct page *page = bi->page;
74 dma_addr_t dma;
75
76 /* Only page will be NULL if buffer was consumed */
77 if (likely(page))
78 return true;
79
80 /* alloc new page for storage */
81 page = dev_alloc_page();
82 if (unlikely(!page)) {
83 rx_ring->rx_stats.alloc_failed++;
84 return false;
85 }
86
87 /* map page for use */
88 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
89
90 /* if mapping failed free memory back to system since
91 * there isn't much point in holding memory we can't use
92 */
93 if (dma_mapping_error(rx_ring->dev, dma)) {
94 __free_page(page);
95
96 rx_ring->rx_stats.alloc_failed++;
97 return false;
98 }
99
100 bi->dma = dma;
101 bi->page = page;
102 bi->page_offset = 0;
103
104 return true;
105 }
106
107 /**
108 * fm10k_alloc_rx_buffers - Replace used receive buffers
109 * @rx_ring: ring to place buffers on
110 * @cleaned_count: number of buffers to replace
111 **/
112 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
113 {
114 union fm10k_rx_desc *rx_desc;
115 struct fm10k_rx_buffer *bi;
116 u16 i = rx_ring->next_to_use;
117
118 /* nothing to do */
119 if (!cleaned_count)
120 return;
121
122 rx_desc = FM10K_RX_DESC(rx_ring, i);
123 bi = &rx_ring->rx_buffer[i];
124 i -= rx_ring->count;
125
126 do {
127 if (!fm10k_alloc_mapped_page(rx_ring, bi))
128 break;
129
130 /* Refresh the desc even if buffer_addrs didn't change
131 * because each write-back erases this info.
132 */
133 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
134
135 rx_desc++;
136 bi++;
137 i++;
138 if (unlikely(!i)) {
139 rx_desc = FM10K_RX_DESC(rx_ring, 0);
140 bi = rx_ring->rx_buffer;
141 i -= rx_ring->count;
142 }
143
144 /* clear the status bits for the next_to_use descriptor */
145 rx_desc->d.staterr = 0;
146
147 cleaned_count--;
148 } while (cleaned_count);
149
150 i += rx_ring->count;
151
152 if (rx_ring->next_to_use != i) {
153 /* record the next descriptor to use */
154 rx_ring->next_to_use = i;
155
156 /* update next to alloc since we have filled the ring */
157 rx_ring->next_to_alloc = i;
158
159 /* Force memory writes to complete before letting h/w
160 * know there are new descriptors to fetch. (Only
161 * applicable for weak-ordered memory model archs,
162 * such as IA-64).
163 */
164 wmb();
165
166 /* notify hardware of new descriptors */
167 writel(i, rx_ring->tail);
168 }
169 }
170
171 /**
172 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
173 * @rx_ring: rx descriptor ring to store buffers on
174 * @old_buff: donor buffer to have page reused
175 *
176 * Synchronizes page for reuse by the interface
177 **/
178 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
179 struct fm10k_rx_buffer *old_buff)
180 {
181 struct fm10k_rx_buffer *new_buff;
182 u16 nta = rx_ring->next_to_alloc;
183
184 new_buff = &rx_ring->rx_buffer[nta];
185
186 /* update, and store next to alloc */
187 nta++;
188 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
189
190 /* transfer page from old buffer to new buffer */
191 *new_buff = *old_buff;
192
193 /* sync the buffer for use by the device */
194 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
195 old_buff->page_offset,
196 FM10K_RX_BUFSZ,
197 DMA_FROM_DEVICE);
198 }
199
200 static inline bool fm10k_page_is_reserved(struct page *page)
201 {
202 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
203 }
204
205 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
206 struct page *page,
207 unsigned int __maybe_unused truesize)
208 {
209 /* avoid re-using remote pages */
210 if (unlikely(fm10k_page_is_reserved(page)))
211 return false;
212
213 #if (PAGE_SIZE < 8192)
214 /* if we are only owner of page we can reuse it */
215 if (unlikely(page_count(page) != 1))
216 return false;
217
218 /* flip page offset to other buffer */
219 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
220 #else
221 /* move offset up to the next cache line */
222 rx_buffer->page_offset += truesize;
223
224 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
225 return false;
226 #endif
227
228 /* Even if we own the page, we are not allowed to use atomic_set()
229 * This would break get_page_unless_zero() users.
230 */
231 page_ref_inc(page);
232
233 return true;
234 }
235
236 /**
237 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
238 * @rx_buffer: buffer containing page to add
239 * @size: packet size from rx_desc
240 * @rx_desc: descriptor containing length of buffer written by hardware
241 * @skb: sk_buff to place the data into
242 *
243 * This function will add the data contained in rx_buffer->page to the skb.
244 * This is done either through a direct copy if the data in the buffer is
245 * less than the skb header size, otherwise it will just attach the page as
246 * a frag to the skb.
247 *
248 * The function will then update the page offset if necessary and return
249 * true if the buffer can be reused by the interface.
250 **/
251 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
252 unsigned int size,
253 union fm10k_rx_desc *rx_desc,
254 struct sk_buff *skb)
255 {
256 struct page *page = rx_buffer->page;
257 unsigned char *va = page_address(page) + rx_buffer->page_offset;
258 #if (PAGE_SIZE < 8192)
259 unsigned int truesize = FM10K_RX_BUFSZ;
260 #else
261 unsigned int truesize = ALIGN(size, 512);
262 #endif
263 unsigned int pull_len;
264
265 if (unlikely(skb_is_nonlinear(skb)))
266 goto add_tail_frag;
267
268 if (likely(size <= FM10K_RX_HDR_LEN)) {
269 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
270
271 /* page is not reserved, we can reuse buffer as-is */
272 if (likely(!fm10k_page_is_reserved(page)))
273 return true;
274
275 /* this page cannot be reused so discard it */
276 __free_page(page);
277 return false;
278 }
279
280 /* we need the header to contain the greater of either ETH_HLEN or
281 * 60 bytes if the skb->len is less than 60 for skb_pad.
282 */
283 pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
284
285 /* align pull length to size of long to optimize memcpy performance */
286 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
287
288 /* update all of the pointers */
289 va += pull_len;
290 size -= pull_len;
291
292 add_tail_frag:
293 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
294 (unsigned long)va & ~PAGE_MASK, size, truesize);
295
296 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
297 }
298
299 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
300 union fm10k_rx_desc *rx_desc,
301 struct sk_buff *skb)
302 {
303 unsigned int size = le16_to_cpu(rx_desc->w.length);
304 struct fm10k_rx_buffer *rx_buffer;
305 struct page *page;
306
307 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
308 page = rx_buffer->page;
309 prefetchw(page);
310
311 if (likely(!skb)) {
312 void *page_addr = page_address(page) +
313 rx_buffer->page_offset;
314
315 /* prefetch first cache line of first page */
316 prefetch(page_addr);
317 #if L1_CACHE_BYTES < 128
318 prefetch((void *)((u8 *)page_addr + L1_CACHE_BYTES));
319 #endif
320
321 /* allocate a skb to store the frags */
322 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
323 FM10K_RX_HDR_LEN);
324 if (unlikely(!skb)) {
325 rx_ring->rx_stats.alloc_failed++;
326 return NULL;
327 }
328
329 /* we will be copying header into skb->data in
330 * pskb_may_pull so it is in our interest to prefetch
331 * it now to avoid a possible cache miss
332 */
333 prefetchw(skb->data);
334 }
335
336 /* we are reusing so sync this buffer for CPU use */
337 dma_sync_single_range_for_cpu(rx_ring->dev,
338 rx_buffer->dma,
339 rx_buffer->page_offset,
340 size,
341 DMA_FROM_DEVICE);
342
343 /* pull page into skb */
344 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
345 /* hand second half of page back to the ring */
346 fm10k_reuse_rx_page(rx_ring, rx_buffer);
347 } else {
348 /* we are not reusing the buffer so unmap it */
349 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
350 PAGE_SIZE, DMA_FROM_DEVICE);
351 }
352
353 /* clear contents of rx_buffer */
354 rx_buffer->page = NULL;
355
356 return skb;
357 }
358
359 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
360 union fm10k_rx_desc *rx_desc,
361 struct sk_buff *skb)
362 {
363 skb_checksum_none_assert(skb);
364
365 /* Rx checksum disabled via ethtool */
366 if (!(ring->netdev->features & NETIF_F_RXCSUM))
367 return;
368
369 /* TCP/UDP checksum error bit is set */
370 if (fm10k_test_staterr(rx_desc,
371 FM10K_RXD_STATUS_L4E |
372 FM10K_RXD_STATUS_L4E2 |
373 FM10K_RXD_STATUS_IPE |
374 FM10K_RXD_STATUS_IPE2)) {
375 ring->rx_stats.csum_err++;
376 return;
377 }
378
379 /* It must be a TCP or UDP packet with a valid checksum */
380 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
381 skb->encapsulation = true;
382 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
383 return;
384
385 skb->ip_summed = CHECKSUM_UNNECESSARY;
386
387 ring->rx_stats.csum_good++;
388 }
389
390 #define FM10K_RSS_L4_TYPES_MASK \
391 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
392 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
393 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
394 BIT(FM10K_RSSTYPE_IPV6_UDP))
395
396 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
397 union fm10k_rx_desc *rx_desc,
398 struct sk_buff *skb)
399 {
400 u16 rss_type;
401
402 if (!(ring->netdev->features & NETIF_F_RXHASH))
403 return;
404
405 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
406 if (!rss_type)
407 return;
408
409 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
410 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
411 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
412 }
413
414 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
415 union fm10k_rx_desc __maybe_unused *rx_desc,
416 struct sk_buff *skb)
417 {
418 struct net_device *dev = rx_ring->netdev;
419 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
420
421 /* check to see if DGLORT belongs to a MACVLAN */
422 if (l2_accel) {
423 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
424
425 idx -= l2_accel->dglort;
426 if (idx < l2_accel->size && l2_accel->macvlan[idx])
427 dev = l2_accel->macvlan[idx];
428 else
429 l2_accel = NULL;
430 }
431
432 /* Record Rx queue, or update macvlan statistics */
433 if (!l2_accel)
434 skb_record_rx_queue(skb, rx_ring->queue_index);
435 else
436 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
437 false);
438
439 skb->protocol = eth_type_trans(skb, dev);
440 }
441
442 /**
443 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
444 * @rx_ring: rx descriptor ring packet is being transacted on
445 * @rx_desc: pointer to the EOP Rx descriptor
446 * @skb: pointer to current skb being populated
447 *
448 * This function checks the ring, descriptor, and packet information in
449 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
450 * other fields within the skb.
451 **/
452 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
453 union fm10k_rx_desc *rx_desc,
454 struct sk_buff *skb)
455 {
456 unsigned int len = skb->len;
457
458 fm10k_rx_hash(rx_ring, rx_desc, skb);
459
460 fm10k_rx_checksum(rx_ring, rx_desc, skb);
461
462 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
463
464 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
465
466 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
467
468 if (rx_desc->w.vlan) {
469 u16 vid = le16_to_cpu(rx_desc->w.vlan);
470
471 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
472 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
473 else if (vid & VLAN_PRIO_MASK)
474 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
475 vid & VLAN_PRIO_MASK);
476 }
477
478 fm10k_type_trans(rx_ring, rx_desc, skb);
479
480 return len;
481 }
482
483 /**
484 * fm10k_is_non_eop - process handling of non-EOP buffers
485 * @rx_ring: Rx ring being processed
486 * @rx_desc: Rx descriptor for current buffer
487 *
488 * This function updates next to clean. If the buffer is an EOP buffer
489 * this function exits returning false, otherwise it will place the
490 * sk_buff in the next buffer to be chained and return true indicating
491 * that this is in fact a non-EOP buffer.
492 **/
493 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
494 union fm10k_rx_desc *rx_desc)
495 {
496 u32 ntc = rx_ring->next_to_clean + 1;
497
498 /* fetch, update, and store next to clean */
499 ntc = (ntc < rx_ring->count) ? ntc : 0;
500 rx_ring->next_to_clean = ntc;
501
502 prefetch(FM10K_RX_DESC(rx_ring, ntc));
503
504 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
505 return false;
506
507 return true;
508 }
509
510 /**
511 * fm10k_cleanup_headers - Correct corrupted or empty headers
512 * @rx_ring: rx descriptor ring packet is being transacted on
513 * @rx_desc: pointer to the EOP Rx descriptor
514 * @skb: pointer to current skb being fixed
515 *
516 * Address the case where we are pulling data in on pages only
517 * and as such no data is present in the skb header.
518 *
519 * In addition if skb is not at least 60 bytes we need to pad it so that
520 * it is large enough to qualify as a valid Ethernet frame.
521 *
522 * Returns true if an error was encountered and skb was freed.
523 **/
524 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
525 union fm10k_rx_desc *rx_desc,
526 struct sk_buff *skb)
527 {
528 if (unlikely((fm10k_test_staterr(rx_desc,
529 FM10K_RXD_STATUS_RXE)))) {
530 #define FM10K_TEST_RXD_BIT(rxd, bit) \
531 ((rxd)->w.csum_err & cpu_to_le16(bit))
532 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
533 rx_ring->rx_stats.switch_errors++;
534 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
535 rx_ring->rx_stats.drops++;
536 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
537 rx_ring->rx_stats.pp_errors++;
538 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
539 rx_ring->rx_stats.link_errors++;
540 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
541 rx_ring->rx_stats.length_errors++;
542 dev_kfree_skb_any(skb);
543 rx_ring->rx_stats.errors++;
544 return true;
545 }
546
547 /* if eth_skb_pad returns an error the skb was freed */
548 if (eth_skb_pad(skb))
549 return true;
550
551 return false;
552 }
553
554 /**
555 * fm10k_receive_skb - helper function to handle rx indications
556 * @q_vector: structure containing interrupt and ring information
557 * @skb: packet to send up
558 **/
559 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
560 struct sk_buff *skb)
561 {
562 napi_gro_receive(&q_vector->napi, skb);
563 }
564
565 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
566 struct fm10k_ring *rx_ring,
567 int budget)
568 {
569 struct sk_buff *skb = rx_ring->skb;
570 unsigned int total_bytes = 0, total_packets = 0;
571 u16 cleaned_count = fm10k_desc_unused(rx_ring);
572
573 while (likely(total_packets < budget)) {
574 union fm10k_rx_desc *rx_desc;
575
576 /* return some buffers to hardware, one at a time is too slow */
577 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
578 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
579 cleaned_count = 0;
580 }
581
582 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
583
584 if (!rx_desc->d.staterr)
585 break;
586
587 /* This memory barrier is needed to keep us from reading
588 * any other fields out of the rx_desc until we know the
589 * descriptor has been written back
590 */
591 dma_rmb();
592
593 /* retrieve a buffer from the ring */
594 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
595
596 /* exit if we failed to retrieve a buffer */
597 if (!skb)
598 break;
599
600 cleaned_count++;
601
602 /* fetch next buffer in frame if non-eop */
603 if (fm10k_is_non_eop(rx_ring, rx_desc))
604 continue;
605
606 /* verify the packet layout is correct */
607 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
608 skb = NULL;
609 continue;
610 }
611
612 /* populate checksum, timestamp, VLAN, and protocol */
613 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
614
615 fm10k_receive_skb(q_vector, skb);
616
617 /* reset skb pointer */
618 skb = NULL;
619
620 /* update budget accounting */
621 total_packets++;
622 }
623
624 /* place incomplete frames back on ring for completion */
625 rx_ring->skb = skb;
626
627 u64_stats_update_begin(&rx_ring->syncp);
628 rx_ring->stats.packets += total_packets;
629 rx_ring->stats.bytes += total_bytes;
630 u64_stats_update_end(&rx_ring->syncp);
631 q_vector->rx.total_packets += total_packets;
632 q_vector->rx.total_bytes += total_bytes;
633
634 return total_packets;
635 }
636
637 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
638 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
639 {
640 struct fm10k_intfc *interface = netdev_priv(skb->dev);
641 struct fm10k_udp_port *vxlan_port;
642
643 /* we can only offload a vxlan if we recognize it as such */
644 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
645 struct fm10k_udp_port, list);
646
647 if (!vxlan_port)
648 return NULL;
649 if (vxlan_port->port != udp_hdr(skb)->dest)
650 return NULL;
651
652 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
653 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
654 }
655
656 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
657 #define NVGRE_TNI htons(0x2000)
658 struct fm10k_nvgre_hdr {
659 __be16 flags;
660 __be16 proto;
661 __be32 tni;
662 };
663
664 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
665 {
666 struct fm10k_nvgre_hdr *nvgre_hdr;
667 int hlen = ip_hdrlen(skb);
668
669 /* currently only IPv4 is supported due to hlen above */
670 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
671 return NULL;
672
673 /* our transport header should be NVGRE */
674 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
675
676 /* verify all reserved flags are 0 */
677 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
678 return NULL;
679
680 /* report start of ethernet header */
681 if (nvgre_hdr->flags & NVGRE_TNI)
682 return (struct ethhdr *)(nvgre_hdr + 1);
683
684 return (struct ethhdr *)(&nvgre_hdr->tni);
685 }
686
687 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
688 {
689 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
690 struct ethhdr *eth_hdr;
691
692 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
693 skb->inner_protocol != htons(ETH_P_TEB))
694 return 0;
695
696 switch (vlan_get_protocol(skb)) {
697 case htons(ETH_P_IP):
698 l4_hdr = ip_hdr(skb)->protocol;
699 break;
700 case htons(ETH_P_IPV6):
701 l4_hdr = ipv6_hdr(skb)->nexthdr;
702 break;
703 default:
704 return 0;
705 }
706
707 switch (l4_hdr) {
708 case IPPROTO_UDP:
709 eth_hdr = fm10k_port_is_vxlan(skb);
710 break;
711 case IPPROTO_GRE:
712 eth_hdr = fm10k_gre_is_nvgre(skb);
713 break;
714 default:
715 return 0;
716 }
717
718 if (!eth_hdr)
719 return 0;
720
721 switch (eth_hdr->h_proto) {
722 case htons(ETH_P_IP):
723 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
724 break;
725 case htons(ETH_P_IPV6):
726 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
727 break;
728 default:
729 return 0;
730 }
731
732 switch (inner_l4_hdr) {
733 case IPPROTO_TCP:
734 inner_l4_hlen = inner_tcp_hdrlen(skb);
735 break;
736 case IPPROTO_UDP:
737 inner_l4_hlen = 8;
738 break;
739 default:
740 return 0;
741 }
742
743 /* The hardware allows tunnel offloads only if the combined inner and
744 * outer header is 184 bytes or less
745 */
746 if (skb_inner_transport_header(skb) + inner_l4_hlen -
747 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
748 return 0;
749
750 return eth_hdr->h_proto;
751 }
752
753 static int fm10k_tso(struct fm10k_ring *tx_ring,
754 struct fm10k_tx_buffer *first)
755 {
756 struct sk_buff *skb = first->skb;
757 struct fm10k_tx_desc *tx_desc;
758 unsigned char *th;
759 u8 hdrlen;
760
761 if (skb->ip_summed != CHECKSUM_PARTIAL)
762 return 0;
763
764 if (!skb_is_gso(skb))
765 return 0;
766
767 /* compute header lengths */
768 if (skb->encapsulation) {
769 if (!fm10k_tx_encap_offload(skb))
770 goto err_vxlan;
771 th = skb_inner_transport_header(skb);
772 } else {
773 th = skb_transport_header(skb);
774 }
775
776 /* compute offset from SOF to transport header and add header len */
777 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
778
779 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
780
781 /* update gso size and bytecount with header size */
782 first->gso_segs = skb_shinfo(skb)->gso_segs;
783 first->bytecount += (first->gso_segs - 1) * hdrlen;
784
785 /* populate Tx descriptor header size and mss */
786 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
787 tx_desc->hdrlen = hdrlen;
788 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
789
790 return 1;
791
792 err_vxlan:
793 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
794 if (net_ratelimit())
795 netdev_err(tx_ring->netdev,
796 "TSO requested for unsupported tunnel, disabling offload\n");
797 return -1;
798 }
799
800 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
801 struct fm10k_tx_buffer *first)
802 {
803 struct sk_buff *skb = first->skb;
804 struct fm10k_tx_desc *tx_desc;
805 union {
806 struct iphdr *ipv4;
807 struct ipv6hdr *ipv6;
808 u8 *raw;
809 } network_hdr;
810 u8 *transport_hdr;
811 __be16 frag_off;
812 __be16 protocol;
813 u8 l4_hdr = 0;
814
815 if (skb->ip_summed != CHECKSUM_PARTIAL)
816 goto no_csum;
817
818 if (skb->encapsulation) {
819 protocol = fm10k_tx_encap_offload(skb);
820 if (!protocol) {
821 if (skb_checksum_help(skb)) {
822 dev_warn(tx_ring->dev,
823 "failed to offload encap csum!\n");
824 tx_ring->tx_stats.csum_err++;
825 }
826 goto no_csum;
827 }
828 network_hdr.raw = skb_inner_network_header(skb);
829 transport_hdr = skb_inner_transport_header(skb);
830 } else {
831 protocol = vlan_get_protocol(skb);
832 network_hdr.raw = skb_network_header(skb);
833 transport_hdr = skb_transport_header(skb);
834 }
835
836 switch (protocol) {
837 case htons(ETH_P_IP):
838 l4_hdr = network_hdr.ipv4->protocol;
839 break;
840 case htons(ETH_P_IPV6):
841 l4_hdr = network_hdr.ipv6->nexthdr;
842 if (likely((transport_hdr - network_hdr.raw) ==
843 sizeof(struct ipv6hdr)))
844 break;
845 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
846 sizeof(struct ipv6hdr),
847 &l4_hdr, &frag_off);
848 if (unlikely(frag_off))
849 l4_hdr = NEXTHDR_FRAGMENT;
850 break;
851 default:
852 break;
853 }
854
855 switch (l4_hdr) {
856 case IPPROTO_TCP:
857 case IPPROTO_UDP:
858 break;
859 case IPPROTO_GRE:
860 if (skb->encapsulation)
861 break;
862 /* fall through */
863 default:
864 if (unlikely(net_ratelimit())) {
865 dev_warn(tx_ring->dev,
866 "partial checksum, version=%d l4 proto=%x\n",
867 protocol, l4_hdr);
868 }
869 skb_checksum_help(skb);
870 tx_ring->tx_stats.csum_err++;
871 goto no_csum;
872 }
873
874 /* update TX checksum flag */
875 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
876 tx_ring->tx_stats.csum_good++;
877
878 no_csum:
879 /* populate Tx descriptor header size and mss */
880 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
881 tx_desc->hdrlen = 0;
882 tx_desc->mss = 0;
883 }
884
885 #define FM10K_SET_FLAG(_input, _flag, _result) \
886 ((_flag <= _result) ? \
887 ((u32)(_input & _flag) * (_result / _flag)) : \
888 ((u32)(_input & _flag) / (_flag / _result)))
889
890 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
891 {
892 /* set type for advanced descriptor with frame checksum insertion */
893 u32 desc_flags = 0;
894
895 /* set checksum offload bits */
896 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
897 FM10K_TXD_FLAG_CSUM);
898
899 return desc_flags;
900 }
901
902 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
903 struct fm10k_tx_desc *tx_desc, u16 i,
904 dma_addr_t dma, unsigned int size, u8 desc_flags)
905 {
906 /* set RS and INT for last frame in a cache line */
907 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
908 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
909
910 /* record values to descriptor */
911 tx_desc->buffer_addr = cpu_to_le64(dma);
912 tx_desc->flags = desc_flags;
913 tx_desc->buflen = cpu_to_le16(size);
914
915 /* return true if we just wrapped the ring */
916 return i == tx_ring->count;
917 }
918
919 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
920 {
921 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
922
923 /* Memory barrier before checking head and tail */
924 smp_mb();
925
926 /* Check again in a case another CPU has just made room available */
927 if (likely(fm10k_desc_unused(tx_ring) < size))
928 return -EBUSY;
929
930 /* A reprieve! - use start_queue because it doesn't call schedule */
931 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
932 ++tx_ring->tx_stats.restart_queue;
933 return 0;
934 }
935
936 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
937 {
938 if (likely(fm10k_desc_unused(tx_ring) >= size))
939 return 0;
940 return __fm10k_maybe_stop_tx(tx_ring, size);
941 }
942
943 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
944 struct fm10k_tx_buffer *first)
945 {
946 struct sk_buff *skb = first->skb;
947 struct fm10k_tx_buffer *tx_buffer;
948 struct fm10k_tx_desc *tx_desc;
949 skb_frag_t *frag;
950 unsigned char *data;
951 dma_addr_t dma;
952 unsigned int data_len, size;
953 u32 tx_flags = first->tx_flags;
954 u16 i = tx_ring->next_to_use;
955 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
956
957 tx_desc = FM10K_TX_DESC(tx_ring, i);
958
959 /* add HW VLAN tag */
960 if (skb_vlan_tag_present(skb))
961 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
962 else
963 tx_desc->vlan = 0;
964
965 size = skb_headlen(skb);
966 data = skb->data;
967
968 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
969
970 data_len = skb->data_len;
971 tx_buffer = first;
972
973 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
974 if (dma_mapping_error(tx_ring->dev, dma))
975 goto dma_error;
976
977 /* record length, and DMA address */
978 dma_unmap_len_set(tx_buffer, len, size);
979 dma_unmap_addr_set(tx_buffer, dma, dma);
980
981 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
982 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
983 FM10K_MAX_DATA_PER_TXD, flags)) {
984 tx_desc = FM10K_TX_DESC(tx_ring, 0);
985 i = 0;
986 }
987
988 dma += FM10K_MAX_DATA_PER_TXD;
989 size -= FM10K_MAX_DATA_PER_TXD;
990 }
991
992 if (likely(!data_len))
993 break;
994
995 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
996 dma, size, flags)) {
997 tx_desc = FM10K_TX_DESC(tx_ring, 0);
998 i = 0;
999 }
1000
1001 size = skb_frag_size(frag);
1002 data_len -= size;
1003
1004 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1005 DMA_TO_DEVICE);
1006
1007 tx_buffer = &tx_ring->tx_buffer[i];
1008 }
1009
1010 /* write last descriptor with LAST bit set */
1011 flags |= FM10K_TXD_FLAG_LAST;
1012
1013 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1014 i = 0;
1015
1016 /* record bytecount for BQL */
1017 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1018
1019 /* record SW timestamp if HW timestamp is not available */
1020 skb_tx_timestamp(first->skb);
1021
1022 /* Force memory writes to complete before letting h/w know there
1023 * are new descriptors to fetch. (Only applicable for weak-ordered
1024 * memory model archs, such as IA-64).
1025 *
1026 * We also need this memory barrier to make certain all of the
1027 * status bits have been updated before next_to_watch is written.
1028 */
1029 wmb();
1030
1031 /* set next_to_watch value indicating a packet is present */
1032 first->next_to_watch = tx_desc;
1033
1034 tx_ring->next_to_use = i;
1035
1036 /* Make sure there is space in the ring for the next send. */
1037 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1038
1039 /* notify HW of packet */
1040 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1041 writel(i, tx_ring->tail);
1042 }
1043
1044 return;
1045 dma_error:
1046 dev_err(tx_ring->dev, "TX DMA map failed\n");
1047
1048 /* clear dma mappings for failed tx_buffer map */
1049 for (;;) {
1050 tx_buffer = &tx_ring->tx_buffer[i];
1051 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1052 if (tx_buffer == first)
1053 break;
1054 if (i == 0)
1055 i = tx_ring->count;
1056 i--;
1057 }
1058
1059 tx_ring->next_to_use = i;
1060 }
1061
1062 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1063 struct fm10k_ring *tx_ring)
1064 {
1065 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1066 struct fm10k_tx_buffer *first;
1067 unsigned short f;
1068 u32 tx_flags = 0;
1069 int tso;
1070
1071 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1072 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1073 * + 2 desc gap to keep tail from touching head
1074 * otherwise try next time
1075 */
1076 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
1077 skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1078
1079 count += TXD_USE_COUNT(skb_frag_size(frag));
1080 }
1081
1082 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1083 tx_ring->tx_stats.tx_busy++;
1084 return NETDEV_TX_BUSY;
1085 }
1086
1087 /* record the location of the first descriptor for this packet */
1088 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1089 first->skb = skb;
1090 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1091 first->gso_segs = 1;
1092
1093 /* record initial flags and protocol */
1094 first->tx_flags = tx_flags;
1095
1096 tso = fm10k_tso(tx_ring, first);
1097 if (tso < 0)
1098 goto out_drop;
1099 else if (!tso)
1100 fm10k_tx_csum(tx_ring, first);
1101
1102 fm10k_tx_map(tx_ring, first);
1103
1104 return NETDEV_TX_OK;
1105
1106 out_drop:
1107 dev_kfree_skb_any(first->skb);
1108 first->skb = NULL;
1109
1110 return NETDEV_TX_OK;
1111 }
1112
1113 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1114 {
1115 return ring->stats.packets;
1116 }
1117
1118 /**
1119 * fm10k_get_tx_pending - how many Tx descriptors not processed
1120 * @ring: the ring structure
1121 * @in_sw: is tx_pending being checked in SW or in HW?
1122 */
1123 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1124 {
1125 struct fm10k_intfc *interface = ring->q_vector->interface;
1126 struct fm10k_hw *hw = &interface->hw;
1127 u32 head, tail;
1128
1129 if (likely(in_sw)) {
1130 head = ring->next_to_clean;
1131 tail = ring->next_to_use;
1132 } else {
1133 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1134 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1135 }
1136
1137 return ((head <= tail) ? tail : tail + ring->count) - head;
1138 }
1139
1140 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1141 {
1142 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1143 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1144 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1145
1146 clear_check_for_tx_hang(tx_ring);
1147
1148 /* Check for a hung queue, but be thorough. This verifies
1149 * that a transmit has been completed since the previous
1150 * check AND there is at least one packet pending. By
1151 * requiring this to fail twice we avoid races with
1152 * clearing the ARMED bit and conditions where we
1153 * run the check_tx_hang logic with a transmit completion
1154 * pending but without time to complete it yet.
1155 */
1156 if (!tx_pending || (tx_done_old != tx_done)) {
1157 /* update completed stats and continue */
1158 tx_ring->tx_stats.tx_done_old = tx_done;
1159 /* reset the countdown */
1160 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1161
1162 return false;
1163 }
1164
1165 /* make sure it is true for two checks in a row */
1166 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1167 }
1168
1169 /**
1170 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1171 * @interface: driver private struct
1172 **/
1173 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1174 {
1175 /* Do the reset outside of interrupt context */
1176 if (!test_bit(__FM10K_DOWN, interface->state)) {
1177 interface->tx_timeout_count++;
1178 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1179 fm10k_service_event_schedule(interface);
1180 }
1181 }
1182
1183 /**
1184 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1185 * @q_vector: structure containing interrupt and ring information
1186 * @tx_ring: tx ring to clean
1187 * @napi_budget: Used to determine if we are in netpoll
1188 **/
1189 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1190 struct fm10k_ring *tx_ring, int napi_budget)
1191 {
1192 struct fm10k_intfc *interface = q_vector->interface;
1193 struct fm10k_tx_buffer *tx_buffer;
1194 struct fm10k_tx_desc *tx_desc;
1195 unsigned int total_bytes = 0, total_packets = 0;
1196 unsigned int budget = q_vector->tx.work_limit;
1197 unsigned int i = tx_ring->next_to_clean;
1198
1199 if (test_bit(__FM10K_DOWN, interface->state))
1200 return true;
1201
1202 tx_buffer = &tx_ring->tx_buffer[i];
1203 tx_desc = FM10K_TX_DESC(tx_ring, i);
1204 i -= tx_ring->count;
1205
1206 do {
1207 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1208
1209 /* if next_to_watch is not set then there is no work pending */
1210 if (!eop_desc)
1211 break;
1212
1213 /* prevent any other reads prior to eop_desc */
1214 smp_rmb();
1215
1216 /* if DD is not set pending work has not been completed */
1217 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1218 break;
1219
1220 /* clear next_to_watch to prevent false hangs */
1221 tx_buffer->next_to_watch = NULL;
1222
1223 /* update the statistics for this packet */
1224 total_bytes += tx_buffer->bytecount;
1225 total_packets += tx_buffer->gso_segs;
1226
1227 /* free the skb */
1228 napi_consume_skb(tx_buffer->skb, napi_budget);
1229
1230 /* unmap skb header data */
1231 dma_unmap_single(tx_ring->dev,
1232 dma_unmap_addr(tx_buffer, dma),
1233 dma_unmap_len(tx_buffer, len),
1234 DMA_TO_DEVICE);
1235
1236 /* clear tx_buffer data */
1237 tx_buffer->skb = NULL;
1238 dma_unmap_len_set(tx_buffer, len, 0);
1239
1240 /* unmap remaining buffers */
1241 while (tx_desc != eop_desc) {
1242 tx_buffer++;
1243 tx_desc++;
1244 i++;
1245 if (unlikely(!i)) {
1246 i -= tx_ring->count;
1247 tx_buffer = tx_ring->tx_buffer;
1248 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1249 }
1250
1251 /* unmap any remaining paged data */
1252 if (dma_unmap_len(tx_buffer, len)) {
1253 dma_unmap_page(tx_ring->dev,
1254 dma_unmap_addr(tx_buffer, dma),
1255 dma_unmap_len(tx_buffer, len),
1256 DMA_TO_DEVICE);
1257 dma_unmap_len_set(tx_buffer, len, 0);
1258 }
1259 }
1260
1261 /* move us one more past the eop_desc for start of next pkt */
1262 tx_buffer++;
1263 tx_desc++;
1264 i++;
1265 if (unlikely(!i)) {
1266 i -= tx_ring->count;
1267 tx_buffer = tx_ring->tx_buffer;
1268 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269 }
1270
1271 /* issue prefetch for next Tx descriptor */
1272 prefetch(tx_desc);
1273
1274 /* update budget accounting */
1275 budget--;
1276 } while (likely(budget));
1277
1278 i += tx_ring->count;
1279 tx_ring->next_to_clean = i;
1280 u64_stats_update_begin(&tx_ring->syncp);
1281 tx_ring->stats.bytes += total_bytes;
1282 tx_ring->stats.packets += total_packets;
1283 u64_stats_update_end(&tx_ring->syncp);
1284 q_vector->tx.total_bytes += total_bytes;
1285 q_vector->tx.total_packets += total_packets;
1286
1287 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1288 /* schedule immediate reset if we believe we hung */
1289 struct fm10k_hw *hw = &interface->hw;
1290
1291 netif_err(interface, drv, tx_ring->netdev,
1292 "Detected Tx Unit Hang\n"
1293 " Tx Queue <%d>\n"
1294 " TDH, TDT <%x>, <%x>\n"
1295 " next_to_use <%x>\n"
1296 " next_to_clean <%x>\n",
1297 tx_ring->queue_index,
1298 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1299 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1300 tx_ring->next_to_use, i);
1301
1302 netif_stop_subqueue(tx_ring->netdev,
1303 tx_ring->queue_index);
1304
1305 netif_info(interface, probe, tx_ring->netdev,
1306 "tx hang %d detected on queue %d, resetting interface\n",
1307 interface->tx_timeout_count + 1,
1308 tx_ring->queue_index);
1309
1310 fm10k_tx_timeout_reset(interface);
1311
1312 /* the netdev is about to reset, no point in enabling stuff */
1313 return true;
1314 }
1315
1316 /* notify netdev of completed buffers */
1317 netdev_tx_completed_queue(txring_txq(tx_ring),
1318 total_packets, total_bytes);
1319
1320 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1321 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1322 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1323 /* Make sure that anybody stopping the queue after this
1324 * sees the new next_to_clean.
1325 */
1326 smp_mb();
1327 if (__netif_subqueue_stopped(tx_ring->netdev,
1328 tx_ring->queue_index) &&
1329 !test_bit(__FM10K_DOWN, interface->state)) {
1330 netif_wake_subqueue(tx_ring->netdev,
1331 tx_ring->queue_index);
1332 ++tx_ring->tx_stats.restart_queue;
1333 }
1334 }
1335
1336 return !!budget;
1337 }
1338
1339 /**
1340 * fm10k_update_itr - update the dynamic ITR value based on packet size
1341 *
1342 * Stores a new ITR value based on strictly on packet size. The
1343 * divisors and thresholds used by this function were determined based
1344 * on theoretical maximum wire speed and testing data, in order to
1345 * minimize response time while increasing bulk throughput.
1346 *
1347 * @ring_container: Container for rings to have ITR updated
1348 **/
1349 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1350 {
1351 unsigned int avg_wire_size, packets, itr_round;
1352
1353 /* Only update ITR if we are using adaptive setting */
1354 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1355 goto clear_counts;
1356
1357 packets = ring_container->total_packets;
1358 if (!packets)
1359 goto clear_counts;
1360
1361 avg_wire_size = ring_container->total_bytes / packets;
1362
1363 /* The following is a crude approximation of:
1364 * wmem_default / (size + overhead) = desired_pkts_per_int
1365 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1366 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1367 *
1368 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1369 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1370 * formula down to
1371 *
1372 * (34 * (size + 24)) / (size + 640) = ITR
1373 *
1374 * We first do some math on the packet size and then finally bitshift
1375 * by 8 after rounding up. We also have to account for PCIe link speed
1376 * difference as ITR scales based on this.
1377 */
1378 if (avg_wire_size <= 360) {
1379 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1380 avg_wire_size *= 8;
1381 avg_wire_size += 376;
1382 } else if (avg_wire_size <= 1152) {
1383 /* 77K ints/sec to 45K ints/sec */
1384 avg_wire_size *= 3;
1385 avg_wire_size += 2176;
1386 } else if (avg_wire_size <= 1920) {
1387 /* 45K ints/sec to 38K ints/sec */
1388 avg_wire_size += 4480;
1389 } else {
1390 /* plateau at a limit of 38K ints/sec */
1391 avg_wire_size = 6656;
1392 }
1393
1394 /* Perform final bitshift for division after rounding up to ensure
1395 * that the calculation will never get below a 1. The bit shift
1396 * accounts for changes in the ITR due to PCIe link speed.
1397 */
1398 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1399 avg_wire_size += BIT(itr_round) - 1;
1400 avg_wire_size >>= itr_round;
1401
1402 /* write back value and retain adaptive flag */
1403 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1404
1405 clear_counts:
1406 ring_container->total_bytes = 0;
1407 ring_container->total_packets = 0;
1408 }
1409
1410 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1411 {
1412 /* Enable auto-mask and clear the current mask */
1413 u32 itr = FM10K_ITR_ENABLE;
1414
1415 /* Update Tx ITR */
1416 fm10k_update_itr(&q_vector->tx);
1417
1418 /* Update Rx ITR */
1419 fm10k_update_itr(&q_vector->rx);
1420
1421 /* Store Tx itr in timer slot 0 */
1422 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1423
1424 /* Shift Rx itr to timer slot 1 */
1425 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1426
1427 /* Write the final value to the ITR register */
1428 writel(itr, q_vector->itr);
1429 }
1430
1431 static int fm10k_poll(struct napi_struct *napi, int budget)
1432 {
1433 struct fm10k_q_vector *q_vector =
1434 container_of(napi, struct fm10k_q_vector, napi);
1435 struct fm10k_ring *ring;
1436 int per_ring_budget, work_done = 0;
1437 bool clean_complete = true;
1438
1439 fm10k_for_each_ring(ring, q_vector->tx) {
1440 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1441 clean_complete = false;
1442 }
1443
1444 /* Handle case where we are called by netpoll with a budget of 0 */
1445 if (budget <= 0)
1446 return budget;
1447
1448 /* attempt to distribute budget to each queue fairly, but don't
1449 * allow the budget to go below 1 because we'll exit polling
1450 */
1451 if (q_vector->rx.count > 1)
1452 per_ring_budget = max(budget / q_vector->rx.count, 1);
1453 else
1454 per_ring_budget = budget;
1455
1456 fm10k_for_each_ring(ring, q_vector->rx) {
1457 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1458
1459 work_done += work;
1460 if (work >= per_ring_budget)
1461 clean_complete = false;
1462 }
1463
1464 /* If all work not completed, return budget and keep polling */
1465 if (!clean_complete)
1466 return budget;
1467
1468 /* Exit the polling mode, but don't re-enable interrupts if stack might
1469 * poll us due to busy-polling
1470 */
1471 if (likely(napi_complete_done(napi, work_done)))
1472 fm10k_qv_enable(q_vector);
1473
1474 return min(work_done, budget - 1);
1475 }
1476
1477 /**
1478 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1479 * @interface: board private structure to initialize
1480 *
1481 * When QoS (Quality of Service) is enabled, allocate queues for
1482 * each traffic class. If multiqueue isn't available,then abort QoS
1483 * initialization.
1484 *
1485 * This function handles all combinations of Qos and RSS.
1486 *
1487 **/
1488 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1489 {
1490 struct net_device *dev = interface->netdev;
1491 struct fm10k_ring_feature *f;
1492 int rss_i, i;
1493 int pcs;
1494
1495 /* Map queue offset and counts onto allocated tx queues */
1496 pcs = netdev_get_num_tc(dev);
1497
1498 if (pcs <= 1)
1499 return false;
1500
1501 /* set QoS mask and indices */
1502 f = &interface->ring_feature[RING_F_QOS];
1503 f->indices = pcs;
1504 f->mask = BIT(fls(pcs - 1)) - 1;
1505
1506 /* determine the upper limit for our current DCB mode */
1507 rss_i = interface->hw.mac.max_queues / pcs;
1508 rss_i = BIT(fls(rss_i) - 1);
1509
1510 /* set RSS mask and indices */
1511 f = &interface->ring_feature[RING_F_RSS];
1512 rss_i = min_t(u16, rss_i, f->limit);
1513 f->indices = rss_i;
1514 f->mask = BIT(fls(rss_i - 1)) - 1;
1515
1516 /* configure pause class to queue mapping */
1517 for (i = 0; i < pcs; i++)
1518 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1519
1520 interface->num_rx_queues = rss_i * pcs;
1521 interface->num_tx_queues = rss_i * pcs;
1522
1523 return true;
1524 }
1525
1526 /**
1527 * fm10k_set_rss_queues: Allocate queues for RSS
1528 * @interface: board private structure to initialize
1529 *
1530 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1531 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1532 *
1533 **/
1534 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1535 {
1536 struct fm10k_ring_feature *f;
1537 u16 rss_i;
1538
1539 f = &interface->ring_feature[RING_F_RSS];
1540 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1541
1542 /* record indices and power of 2 mask for RSS */
1543 f->indices = rss_i;
1544 f->mask = BIT(fls(rss_i - 1)) - 1;
1545
1546 interface->num_rx_queues = rss_i;
1547 interface->num_tx_queues = rss_i;
1548
1549 return true;
1550 }
1551
1552 /**
1553 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1554 * @interface: board private structure to initialize
1555 *
1556 * This is the top level queue allocation routine. The order here is very
1557 * important, starting with the "most" number of features turned on at once,
1558 * and ending with the smallest set of features. This way large combinations
1559 * can be allocated if they're turned on, and smaller combinations are the
1560 * fallthrough conditions.
1561 *
1562 **/
1563 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1564 {
1565 /* Attempt to setup QoS and RSS first */
1566 if (fm10k_set_qos_queues(interface))
1567 return;
1568
1569 /* If we don't have QoS, just fallback to only RSS. */
1570 fm10k_set_rss_queues(interface);
1571 }
1572
1573 /**
1574 * fm10k_reset_num_queues - Reset the number of queues to zero
1575 * @interface: board private structure
1576 *
1577 * This function should be called whenever we need to reset the number of
1578 * queues after an error condition.
1579 */
1580 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1581 {
1582 interface->num_tx_queues = 0;
1583 interface->num_rx_queues = 0;
1584 interface->num_q_vectors = 0;
1585 }
1586
1587 /**
1588 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1589 * @interface: board private structure to initialize
1590 * @v_count: q_vectors allocated on interface, used for ring interleaving
1591 * @v_idx: index of vector in interface struct
1592 * @txr_count: total number of Tx rings to allocate
1593 * @txr_idx: index of first Tx ring to allocate
1594 * @rxr_count: total number of Rx rings to allocate
1595 * @rxr_idx: index of first Rx ring to allocate
1596 *
1597 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1598 **/
1599 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1600 unsigned int v_count, unsigned int v_idx,
1601 unsigned int txr_count, unsigned int txr_idx,
1602 unsigned int rxr_count, unsigned int rxr_idx)
1603 {
1604 struct fm10k_q_vector *q_vector;
1605 struct fm10k_ring *ring;
1606 int ring_count;
1607
1608 ring_count = txr_count + rxr_count;
1609
1610 /* allocate q_vector and rings */
1611 q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
1612 if (!q_vector)
1613 return -ENOMEM;
1614
1615 /* initialize NAPI */
1616 netif_napi_add(interface->netdev, &q_vector->napi,
1617 fm10k_poll, NAPI_POLL_WEIGHT);
1618
1619 /* tie q_vector and interface together */
1620 interface->q_vector[v_idx] = q_vector;
1621 q_vector->interface = interface;
1622 q_vector->v_idx = v_idx;
1623
1624 /* initialize pointer to rings */
1625 ring = q_vector->ring;
1626
1627 /* save Tx ring container info */
1628 q_vector->tx.ring = ring;
1629 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630 q_vector->tx.itr = interface->tx_itr;
1631 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632 q_vector->tx.count = txr_count;
1633
1634 while (txr_count) {
1635 /* assign generic ring traits */
1636 ring->dev = &interface->pdev->dev;
1637 ring->netdev = interface->netdev;
1638
1639 /* configure backlink on ring */
1640 ring->q_vector = q_vector;
1641
1642 /* apply Tx specific ring traits */
1643 ring->count = interface->tx_ring_count;
1644 ring->queue_index = txr_idx;
1645
1646 /* assign ring to interface */
1647 interface->tx_ring[txr_idx] = ring;
1648
1649 /* update count and index */
1650 txr_count--;
1651 txr_idx += v_count;
1652
1653 /* push pointer to next ring */
1654 ring++;
1655 }
1656
1657 /* save Rx ring container info */
1658 q_vector->rx.ring = ring;
1659 q_vector->rx.itr = interface->rx_itr;
1660 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661 q_vector->rx.count = rxr_count;
1662
1663 while (rxr_count) {
1664 /* assign generic ring traits */
1665 ring->dev = &interface->pdev->dev;
1666 ring->netdev = interface->netdev;
1667 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668
1669 /* configure backlink on ring */
1670 ring->q_vector = q_vector;
1671
1672 /* apply Rx specific ring traits */
1673 ring->count = interface->rx_ring_count;
1674 ring->queue_index = rxr_idx;
1675
1676 /* assign ring to interface */
1677 interface->rx_ring[rxr_idx] = ring;
1678
1679 /* update count and index */
1680 rxr_count--;
1681 rxr_idx += v_count;
1682
1683 /* push pointer to next ring */
1684 ring++;
1685 }
1686
1687 fm10k_dbg_q_vector_init(q_vector);
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694 * @interface: board private structure to initialize
1695 * @v_idx: Index of vector to be freed
1696 *
1697 * This function frees the memory allocated to the q_vector. In addition if
1698 * NAPI is enabled it will delete any references to the NAPI struct prior
1699 * to freeing the q_vector.
1700 **/
1701 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702 {
1703 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704 struct fm10k_ring *ring;
1705
1706 fm10k_dbg_q_vector_exit(q_vector);
1707
1708 fm10k_for_each_ring(ring, q_vector->tx)
1709 interface->tx_ring[ring->queue_index] = NULL;
1710
1711 fm10k_for_each_ring(ring, q_vector->rx)
1712 interface->rx_ring[ring->queue_index] = NULL;
1713
1714 interface->q_vector[v_idx] = NULL;
1715 netif_napi_del(&q_vector->napi);
1716 kfree_rcu(q_vector, rcu);
1717 }
1718
1719 /**
1720 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721 * @interface: board private structure to initialize
1722 *
1723 * We allocate one q_vector per queue interrupt. If allocation fails we
1724 * return -ENOMEM.
1725 **/
1726 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727 {
1728 unsigned int q_vectors = interface->num_q_vectors;
1729 unsigned int rxr_remaining = interface->num_rx_queues;
1730 unsigned int txr_remaining = interface->num_tx_queues;
1731 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732 int err;
1733
1734 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735 for (; rxr_remaining; v_idx++) {
1736 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737 0, 0, 1, rxr_idx);
1738 if (err)
1739 goto err_out;
1740
1741 /* update counts and index */
1742 rxr_remaining--;
1743 rxr_idx++;
1744 }
1745 }
1746
1747 for (; v_idx < q_vectors; v_idx++) {
1748 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750
1751 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752 tqpv, txr_idx,
1753 rqpv, rxr_idx);
1754
1755 if (err)
1756 goto err_out;
1757
1758 /* update counts and index */
1759 rxr_remaining -= rqpv;
1760 txr_remaining -= tqpv;
1761 rxr_idx++;
1762 txr_idx++;
1763 }
1764
1765 return 0;
1766
1767 err_out:
1768 fm10k_reset_num_queues(interface);
1769
1770 while (v_idx--)
1771 fm10k_free_q_vector(interface, v_idx);
1772
1773 return -ENOMEM;
1774 }
1775
1776 /**
1777 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1778 * @interface: board private structure to initialize
1779 *
1780 * This function frees the memory allocated to the q_vectors. In addition if
1781 * NAPI is enabled it will delete any references to the NAPI struct prior
1782 * to freeing the q_vector.
1783 **/
1784 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1785 {
1786 int v_idx = interface->num_q_vectors;
1787
1788 fm10k_reset_num_queues(interface);
1789
1790 while (v_idx--)
1791 fm10k_free_q_vector(interface, v_idx);
1792 }
1793
1794 /**
1795 * f10k_reset_msix_capability - reset MSI-X capability
1796 * @interface: board private structure to initialize
1797 *
1798 * Reset the MSI-X capability back to its starting state
1799 **/
1800 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1801 {
1802 pci_disable_msix(interface->pdev);
1803 kfree(interface->msix_entries);
1804 interface->msix_entries = NULL;
1805 }
1806
1807 /**
1808 * f10k_init_msix_capability - configure MSI-X capability
1809 * @interface: board private structure to initialize
1810 *
1811 * Attempt to configure the interrupts using the best available
1812 * capabilities of the hardware and the kernel.
1813 **/
1814 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1815 {
1816 struct fm10k_hw *hw = &interface->hw;
1817 int v_budget, vector;
1818
1819 /* It's easy to be greedy for MSI-X vectors, but it really
1820 * doesn't do us much good if we have a lot more vectors
1821 * than CPU's. So let's be conservative and only ask for
1822 * (roughly) the same number of vectors as there are CPU's.
1823 * the default is to use pairs of vectors
1824 */
1825 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1826 v_budget = min_t(u16, v_budget, num_online_cpus());
1827
1828 /* account for vectors not related to queues */
1829 v_budget += NON_Q_VECTORS;
1830
1831 /* At the same time, hardware can only support a maximum of
1832 * hw.mac->max_msix_vectors vectors. With features
1833 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1834 * descriptor queues supported by our device. Thus, we cap it off in
1835 * those rare cases where the cpu count also exceeds our vector limit.
1836 */
1837 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1838
1839 /* A failure in MSI-X entry allocation is fatal. */
1840 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1841 GFP_KERNEL);
1842 if (!interface->msix_entries)
1843 return -ENOMEM;
1844
1845 /* populate entry values */
1846 for (vector = 0; vector < v_budget; vector++)
1847 interface->msix_entries[vector].entry = vector;
1848
1849 /* Attempt to enable MSI-X with requested value */
1850 v_budget = pci_enable_msix_range(interface->pdev,
1851 interface->msix_entries,
1852 MIN_MSIX_COUNT(hw),
1853 v_budget);
1854 if (v_budget < 0) {
1855 kfree(interface->msix_entries);
1856 interface->msix_entries = NULL;
1857 return v_budget;
1858 }
1859
1860 /* record the number of queues available for q_vectors */
1861 interface->num_q_vectors = v_budget - NON_Q_VECTORS;
1862
1863 return 0;
1864 }
1865
1866 /**
1867 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1868 * @interface: Interface structure continaining rings and devices
1869 *
1870 * Cache the descriptor ring offsets for Qos
1871 **/
1872 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1873 {
1874 struct net_device *dev = interface->netdev;
1875 int pc, offset, rss_i, i;
1876 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1877 u8 num_pcs = netdev_get_num_tc(dev);
1878
1879 if (num_pcs <= 1)
1880 return false;
1881
1882 rss_i = interface->ring_feature[RING_F_RSS].indices;
1883
1884 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1885 int q_idx = pc;
1886
1887 for (i = 0; i < rss_i; i++) {
1888 interface->tx_ring[offset + i]->reg_idx = q_idx;
1889 interface->tx_ring[offset + i]->qos_pc = pc;
1890 interface->rx_ring[offset + i]->reg_idx = q_idx;
1891 interface->rx_ring[offset + i]->qos_pc = pc;
1892 q_idx += pc_stride;
1893 }
1894 }
1895
1896 return true;
1897 }
1898
1899 /**
1900 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1901 * @interface: Interface structure continaining rings and devices
1902 *
1903 * Cache the descriptor ring offsets for RSS
1904 **/
1905 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1906 {
1907 int i;
1908
1909 for (i = 0; i < interface->num_rx_queues; i++)
1910 interface->rx_ring[i]->reg_idx = i;
1911
1912 for (i = 0; i < interface->num_tx_queues; i++)
1913 interface->tx_ring[i]->reg_idx = i;
1914 }
1915
1916 /**
1917 * fm10k_assign_rings - Map rings to network devices
1918 * @interface: Interface structure containing rings and devices
1919 *
1920 * This function is meant to go though and configure both the network
1921 * devices so that they contain rings, and configure the rings so that
1922 * they function with their network devices.
1923 **/
1924 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1925 {
1926 if (fm10k_cache_ring_qos(interface))
1927 return;
1928
1929 fm10k_cache_ring_rss(interface);
1930 }
1931
1932 static void fm10k_init_reta(struct fm10k_intfc *interface)
1933 {
1934 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1935 u32 reta;
1936
1937 /* If the Rx flow indirection table has been configured manually, we
1938 * need to maintain it when possible.
1939 */
1940 if (netif_is_rxfh_configured(interface->netdev)) {
1941 for (i = FM10K_RETA_SIZE; i--;) {
1942 reta = interface->reta[i];
1943 if ((((reta << 24) >> 24) < rss_i) &&
1944 (((reta << 16) >> 24) < rss_i) &&
1945 (((reta << 8) >> 24) < rss_i) &&
1946 (((reta) >> 24) < rss_i))
1947 continue;
1948
1949 /* this should never happen */
1950 dev_err(&interface->pdev->dev,
1951 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1952 goto repopulate_reta;
1953 }
1954
1955 /* do nothing if all of the elements are in bounds */
1956 return;
1957 }
1958
1959 repopulate_reta:
1960 fm10k_write_reta(interface, NULL);
1961 }
1962
1963 /**
1964 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1965 * @interface: board private structure to initialize
1966 *
1967 * We determine which queueing scheme to use based on...
1968 * - Hardware queue count (num_*_queues)
1969 * - defined by miscellaneous hardware support/features (RSS, etc.)
1970 **/
1971 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1972 {
1973 int err;
1974
1975 /* Number of supported queues */
1976 fm10k_set_num_queues(interface);
1977
1978 /* Configure MSI-X capability */
1979 err = fm10k_init_msix_capability(interface);
1980 if (err) {
1981 dev_err(&interface->pdev->dev,
1982 "Unable to initialize MSI-X capability\n");
1983 goto err_init_msix;
1984 }
1985
1986 /* Allocate memory for queues */
1987 err = fm10k_alloc_q_vectors(interface);
1988 if (err) {
1989 dev_err(&interface->pdev->dev,
1990 "Unable to allocate queue vectors\n");
1991 goto err_alloc_q_vectors;
1992 }
1993
1994 /* Map rings to devices, and map devices to physical queues */
1995 fm10k_assign_rings(interface);
1996
1997 /* Initialize RSS redirection table */
1998 fm10k_init_reta(interface);
1999
2000 return 0;
2001
2002 err_alloc_q_vectors:
2003 fm10k_reset_msix_capability(interface);
2004 err_init_msix:
2005 fm10k_reset_num_queues(interface);
2006 return err;
2007 }
2008
2009 /**
2010 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2011 * @interface: board private structure to clear queueing scheme on
2012 *
2013 * We go through and clear queueing specific resources and reset the structure
2014 * to pre-load conditions
2015 **/
2016 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2017 {
2018 fm10k_free_q_vectors(interface);
2019 fm10k_reset_msix_capability(interface);
2020 }