]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/intel/fm10k/fm10k_main.c
Merge tag 'mmc-v4.15-2' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2017 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28
29 #include "fm10k.h"
30
31 #define DRV_VERSION "0.22.1-k"
32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
33 const char fm10k_driver_version[] = DRV_VERSION;
34 char fm10k_driver_name[] = "fm10k";
35 static const char fm10k_driver_string[] = DRV_SUMMARY;
36 static const char fm10k_copyright[] =
37 "Copyright(c) 2013 - 2017 Intel Corporation.";
38
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION(DRV_SUMMARY);
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46
47 /**
48 * fm10k_init_module - Driver Registration Routine
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53 static int __init fm10k_init_module(void)
54 {
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
58 /* create driver workqueue */
59 fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
60 fm10k_driver_name);
61
62 fm10k_dbg_init();
63
64 return fm10k_register_pci_driver();
65 }
66 module_init(fm10k_init_module);
67
68 /**
69 * fm10k_exit_module - Driver Exit Cleanup Routine
70 *
71 * fm10k_exit_module is called just before the driver is removed
72 * from memory.
73 **/
74 static void __exit fm10k_exit_module(void)
75 {
76 fm10k_unregister_pci_driver();
77
78 fm10k_dbg_exit();
79
80 /* destroy driver workqueue */
81 destroy_workqueue(fm10k_workqueue);
82 }
83 module_exit(fm10k_exit_module);
84
85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
86 struct fm10k_rx_buffer *bi)
87 {
88 struct page *page = bi->page;
89 dma_addr_t dma;
90
91 /* Only page will be NULL if buffer was consumed */
92 if (likely(page))
93 return true;
94
95 /* alloc new page for storage */
96 page = dev_alloc_page();
97 if (unlikely(!page)) {
98 rx_ring->rx_stats.alloc_failed++;
99 return false;
100 }
101
102 /* map page for use */
103 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
104
105 /* if mapping failed free memory back to system since
106 * there isn't much point in holding memory we can't use
107 */
108 if (dma_mapping_error(rx_ring->dev, dma)) {
109 __free_page(page);
110
111 rx_ring->rx_stats.alloc_failed++;
112 return false;
113 }
114
115 bi->dma = dma;
116 bi->page = page;
117 bi->page_offset = 0;
118
119 return true;
120 }
121
122 /**
123 * fm10k_alloc_rx_buffers - Replace used receive buffers
124 * @rx_ring: ring to place buffers on
125 * @cleaned_count: number of buffers to replace
126 **/
127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
128 {
129 union fm10k_rx_desc *rx_desc;
130 struct fm10k_rx_buffer *bi;
131 u16 i = rx_ring->next_to_use;
132
133 /* nothing to do */
134 if (!cleaned_count)
135 return;
136
137 rx_desc = FM10K_RX_DESC(rx_ring, i);
138 bi = &rx_ring->rx_buffer[i];
139 i -= rx_ring->count;
140
141 do {
142 if (!fm10k_alloc_mapped_page(rx_ring, bi))
143 break;
144
145 /* Refresh the desc even if buffer_addrs didn't change
146 * because each write-back erases this info.
147 */
148 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
149
150 rx_desc++;
151 bi++;
152 i++;
153 if (unlikely(!i)) {
154 rx_desc = FM10K_RX_DESC(rx_ring, 0);
155 bi = rx_ring->rx_buffer;
156 i -= rx_ring->count;
157 }
158
159 /* clear the status bits for the next_to_use descriptor */
160 rx_desc->d.staterr = 0;
161
162 cleaned_count--;
163 } while (cleaned_count);
164
165 i += rx_ring->count;
166
167 if (rx_ring->next_to_use != i) {
168 /* record the next descriptor to use */
169 rx_ring->next_to_use = i;
170
171 /* update next to alloc since we have filled the ring */
172 rx_ring->next_to_alloc = i;
173
174 /* Force memory writes to complete before letting h/w
175 * know there are new descriptors to fetch. (Only
176 * applicable for weak-ordered memory model archs,
177 * such as IA-64).
178 */
179 wmb();
180
181 /* notify hardware of new descriptors */
182 writel(i, rx_ring->tail);
183 }
184 }
185
186 /**
187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
188 * @rx_ring: rx descriptor ring to store buffers on
189 * @old_buff: donor buffer to have page reused
190 *
191 * Synchronizes page for reuse by the interface
192 **/
193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
194 struct fm10k_rx_buffer *old_buff)
195 {
196 struct fm10k_rx_buffer *new_buff;
197 u16 nta = rx_ring->next_to_alloc;
198
199 new_buff = &rx_ring->rx_buffer[nta];
200
201 /* update, and store next to alloc */
202 nta++;
203 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
204
205 /* transfer page from old buffer to new buffer */
206 *new_buff = *old_buff;
207
208 /* sync the buffer for use by the device */
209 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
210 old_buff->page_offset,
211 FM10K_RX_BUFSZ,
212 DMA_FROM_DEVICE);
213 }
214
215 static inline bool fm10k_page_is_reserved(struct page *page)
216 {
217 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
218 }
219
220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
221 struct page *page,
222 unsigned int __maybe_unused truesize)
223 {
224 /* avoid re-using remote pages */
225 if (unlikely(fm10k_page_is_reserved(page)))
226 return false;
227
228 #if (PAGE_SIZE < 8192)
229 /* if we are only owner of page we can reuse it */
230 if (unlikely(page_count(page) != 1))
231 return false;
232
233 /* flip page offset to other buffer */
234 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
235 #else
236 /* move offset up to the next cache line */
237 rx_buffer->page_offset += truesize;
238
239 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
240 return false;
241 #endif
242
243 /* Even if we own the page, we are not allowed to use atomic_set()
244 * This would break get_page_unless_zero() users.
245 */
246 page_ref_inc(page);
247
248 return true;
249 }
250
251 /**
252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
253 * @rx_buffer: buffer containing page to add
254 * @size: packet size from rx_desc
255 * @rx_desc: descriptor containing length of buffer written by hardware
256 * @skb: sk_buff to place the data into
257 *
258 * This function will add the data contained in rx_buffer->page to the skb.
259 * This is done either through a direct copy if the data in the buffer is
260 * less than the skb header size, otherwise it will just attach the page as
261 * a frag to the skb.
262 *
263 * The function will then update the page offset if necessary and return
264 * true if the buffer can be reused by the interface.
265 **/
266 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
267 unsigned int size,
268 union fm10k_rx_desc *rx_desc,
269 struct sk_buff *skb)
270 {
271 struct page *page = rx_buffer->page;
272 unsigned char *va = page_address(page) + rx_buffer->page_offset;
273 #if (PAGE_SIZE < 8192)
274 unsigned int truesize = FM10K_RX_BUFSZ;
275 #else
276 unsigned int truesize = ALIGN(size, 512);
277 #endif
278 unsigned int pull_len;
279
280 if (unlikely(skb_is_nonlinear(skb)))
281 goto add_tail_frag;
282
283 if (likely(size <= FM10K_RX_HDR_LEN)) {
284 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
285
286 /* page is not reserved, we can reuse buffer as-is */
287 if (likely(!fm10k_page_is_reserved(page)))
288 return true;
289
290 /* this page cannot be reused so discard it */
291 __free_page(page);
292 return false;
293 }
294
295 /* we need the header to contain the greater of either ETH_HLEN or
296 * 60 bytes if the skb->len is less than 60 for skb_pad.
297 */
298 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
299
300 /* align pull length to size of long to optimize memcpy performance */
301 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
302
303 /* update all of the pointers */
304 va += pull_len;
305 size -= pull_len;
306
307 add_tail_frag:
308 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
309 (unsigned long)va & ~PAGE_MASK, size, truesize);
310
311 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
312 }
313
314 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
315 union fm10k_rx_desc *rx_desc,
316 struct sk_buff *skb)
317 {
318 unsigned int size = le16_to_cpu(rx_desc->w.length);
319 struct fm10k_rx_buffer *rx_buffer;
320 struct page *page;
321
322 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
323 page = rx_buffer->page;
324 prefetchw(page);
325
326 if (likely(!skb)) {
327 void *page_addr = page_address(page) +
328 rx_buffer->page_offset;
329
330 /* prefetch first cache line of first page */
331 prefetch(page_addr);
332 #if L1_CACHE_BYTES < 128
333 prefetch(page_addr + L1_CACHE_BYTES);
334 #endif
335
336 /* allocate a skb to store the frags */
337 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
338 FM10K_RX_HDR_LEN);
339 if (unlikely(!skb)) {
340 rx_ring->rx_stats.alloc_failed++;
341 return NULL;
342 }
343
344 /* we will be copying header into skb->data in
345 * pskb_may_pull so it is in our interest to prefetch
346 * it now to avoid a possible cache miss
347 */
348 prefetchw(skb->data);
349 }
350
351 /* we are reusing so sync this buffer for CPU use */
352 dma_sync_single_range_for_cpu(rx_ring->dev,
353 rx_buffer->dma,
354 rx_buffer->page_offset,
355 size,
356 DMA_FROM_DEVICE);
357
358 /* pull page into skb */
359 if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
360 /* hand second half of page back to the ring */
361 fm10k_reuse_rx_page(rx_ring, rx_buffer);
362 } else {
363 /* we are not reusing the buffer so unmap it */
364 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
365 PAGE_SIZE, DMA_FROM_DEVICE);
366 }
367
368 /* clear contents of rx_buffer */
369 rx_buffer->page = NULL;
370
371 return skb;
372 }
373
374 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
375 union fm10k_rx_desc *rx_desc,
376 struct sk_buff *skb)
377 {
378 skb_checksum_none_assert(skb);
379
380 /* Rx checksum disabled via ethtool */
381 if (!(ring->netdev->features & NETIF_F_RXCSUM))
382 return;
383
384 /* TCP/UDP checksum error bit is set */
385 if (fm10k_test_staterr(rx_desc,
386 FM10K_RXD_STATUS_L4E |
387 FM10K_RXD_STATUS_L4E2 |
388 FM10K_RXD_STATUS_IPE |
389 FM10K_RXD_STATUS_IPE2)) {
390 ring->rx_stats.csum_err++;
391 return;
392 }
393
394 /* It must be a TCP or UDP packet with a valid checksum */
395 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
396 skb->encapsulation = true;
397 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
398 return;
399
400 skb->ip_summed = CHECKSUM_UNNECESSARY;
401
402 ring->rx_stats.csum_good++;
403 }
404
405 #define FM10K_RSS_L4_TYPES_MASK \
406 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
407 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
408 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
409 BIT(FM10K_RSSTYPE_IPV6_UDP))
410
411 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
412 union fm10k_rx_desc *rx_desc,
413 struct sk_buff *skb)
414 {
415 u16 rss_type;
416
417 if (!(ring->netdev->features & NETIF_F_RXHASH))
418 return;
419
420 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
421 if (!rss_type)
422 return;
423
424 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
425 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
426 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
427 }
428
429 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
430 union fm10k_rx_desc __maybe_unused *rx_desc,
431 struct sk_buff *skb)
432 {
433 struct net_device *dev = rx_ring->netdev;
434 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
435
436 /* check to see if DGLORT belongs to a MACVLAN */
437 if (l2_accel) {
438 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
439
440 idx -= l2_accel->dglort;
441 if (idx < l2_accel->size && l2_accel->macvlan[idx])
442 dev = l2_accel->macvlan[idx];
443 else
444 l2_accel = NULL;
445 }
446
447 skb->protocol = eth_type_trans(skb, dev);
448
449 if (!l2_accel)
450 return;
451
452 /* update MACVLAN statistics */
453 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
454 !!(rx_desc->w.hdr_info &
455 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
456 }
457
458 /**
459 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
460 * @rx_ring: rx descriptor ring packet is being transacted on
461 * @rx_desc: pointer to the EOP Rx descriptor
462 * @skb: pointer to current skb being populated
463 *
464 * This function checks the ring, descriptor, and packet information in
465 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
466 * other fields within the skb.
467 **/
468 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
469 union fm10k_rx_desc *rx_desc,
470 struct sk_buff *skb)
471 {
472 unsigned int len = skb->len;
473
474 fm10k_rx_hash(rx_ring, rx_desc, skb);
475
476 fm10k_rx_checksum(rx_ring, rx_desc, skb);
477
478 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
479
480 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
481
482 skb_record_rx_queue(skb, rx_ring->queue_index);
483
484 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
485
486 if (rx_desc->w.vlan) {
487 u16 vid = le16_to_cpu(rx_desc->w.vlan);
488
489 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
490 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
491 else if (vid & VLAN_PRIO_MASK)
492 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
493 vid & VLAN_PRIO_MASK);
494 }
495
496 fm10k_type_trans(rx_ring, rx_desc, skb);
497
498 return len;
499 }
500
501 /**
502 * fm10k_is_non_eop - process handling of non-EOP buffers
503 * @rx_ring: Rx ring being processed
504 * @rx_desc: Rx descriptor for current buffer
505 *
506 * This function updates next to clean. If the buffer is an EOP buffer
507 * this function exits returning false, otherwise it will place the
508 * sk_buff in the next buffer to be chained and return true indicating
509 * that this is in fact a non-EOP buffer.
510 **/
511 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
512 union fm10k_rx_desc *rx_desc)
513 {
514 u32 ntc = rx_ring->next_to_clean + 1;
515
516 /* fetch, update, and store next to clean */
517 ntc = (ntc < rx_ring->count) ? ntc : 0;
518 rx_ring->next_to_clean = ntc;
519
520 prefetch(FM10K_RX_DESC(rx_ring, ntc));
521
522 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
523 return false;
524
525 return true;
526 }
527
528 /**
529 * fm10k_cleanup_headers - Correct corrupted or empty headers
530 * @rx_ring: rx descriptor ring packet is being transacted on
531 * @rx_desc: pointer to the EOP Rx descriptor
532 * @skb: pointer to current skb being fixed
533 *
534 * Address the case where we are pulling data in on pages only
535 * and as such no data is present in the skb header.
536 *
537 * In addition if skb is not at least 60 bytes we need to pad it so that
538 * it is large enough to qualify as a valid Ethernet frame.
539 *
540 * Returns true if an error was encountered and skb was freed.
541 **/
542 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
543 union fm10k_rx_desc *rx_desc,
544 struct sk_buff *skb)
545 {
546 if (unlikely((fm10k_test_staterr(rx_desc,
547 FM10K_RXD_STATUS_RXE)))) {
548 #define FM10K_TEST_RXD_BIT(rxd, bit) \
549 ((rxd)->w.csum_err & cpu_to_le16(bit))
550 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
551 rx_ring->rx_stats.switch_errors++;
552 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
553 rx_ring->rx_stats.drops++;
554 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
555 rx_ring->rx_stats.pp_errors++;
556 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
557 rx_ring->rx_stats.link_errors++;
558 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
559 rx_ring->rx_stats.length_errors++;
560 dev_kfree_skb_any(skb);
561 rx_ring->rx_stats.errors++;
562 return true;
563 }
564
565 /* if eth_skb_pad returns an error the skb was freed */
566 if (eth_skb_pad(skb))
567 return true;
568
569 return false;
570 }
571
572 /**
573 * fm10k_receive_skb - helper function to handle rx indications
574 * @q_vector: structure containing interrupt and ring information
575 * @skb: packet to send up
576 **/
577 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
578 struct sk_buff *skb)
579 {
580 napi_gro_receive(&q_vector->napi, skb);
581 }
582
583 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
584 struct fm10k_ring *rx_ring,
585 int budget)
586 {
587 struct sk_buff *skb = rx_ring->skb;
588 unsigned int total_bytes = 0, total_packets = 0;
589 u16 cleaned_count = fm10k_desc_unused(rx_ring);
590
591 while (likely(total_packets < budget)) {
592 union fm10k_rx_desc *rx_desc;
593
594 /* return some buffers to hardware, one at a time is too slow */
595 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
596 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
597 cleaned_count = 0;
598 }
599
600 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
601
602 if (!rx_desc->d.staterr)
603 break;
604
605 /* This memory barrier is needed to keep us from reading
606 * any other fields out of the rx_desc until we know the
607 * descriptor has been written back
608 */
609 dma_rmb();
610
611 /* retrieve a buffer from the ring */
612 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
613
614 /* exit if we failed to retrieve a buffer */
615 if (!skb)
616 break;
617
618 cleaned_count++;
619
620 /* fetch next buffer in frame if non-eop */
621 if (fm10k_is_non_eop(rx_ring, rx_desc))
622 continue;
623
624 /* verify the packet layout is correct */
625 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
626 skb = NULL;
627 continue;
628 }
629
630 /* populate checksum, timestamp, VLAN, and protocol */
631 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
632
633 fm10k_receive_skb(q_vector, skb);
634
635 /* reset skb pointer */
636 skb = NULL;
637
638 /* update budget accounting */
639 total_packets++;
640 }
641
642 /* place incomplete frames back on ring for completion */
643 rx_ring->skb = skb;
644
645 u64_stats_update_begin(&rx_ring->syncp);
646 rx_ring->stats.packets += total_packets;
647 rx_ring->stats.bytes += total_bytes;
648 u64_stats_update_end(&rx_ring->syncp);
649 q_vector->rx.total_packets += total_packets;
650 q_vector->rx.total_bytes += total_bytes;
651
652 return total_packets;
653 }
654
655 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
656 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
657 {
658 struct fm10k_intfc *interface = netdev_priv(skb->dev);
659 struct fm10k_udp_port *vxlan_port;
660
661 /* we can only offload a vxlan if we recognize it as such */
662 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
663 struct fm10k_udp_port, list);
664
665 if (!vxlan_port)
666 return NULL;
667 if (vxlan_port->port != udp_hdr(skb)->dest)
668 return NULL;
669
670 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
671 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
672 }
673
674 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
675 #define NVGRE_TNI htons(0x2000)
676 struct fm10k_nvgre_hdr {
677 __be16 flags;
678 __be16 proto;
679 __be32 tni;
680 };
681
682 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
683 {
684 struct fm10k_nvgre_hdr *nvgre_hdr;
685 int hlen = ip_hdrlen(skb);
686
687 /* currently only IPv4 is supported due to hlen above */
688 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
689 return NULL;
690
691 /* our transport header should be NVGRE */
692 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
693
694 /* verify all reserved flags are 0 */
695 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
696 return NULL;
697
698 /* report start of ethernet header */
699 if (nvgre_hdr->flags & NVGRE_TNI)
700 return (struct ethhdr *)(nvgre_hdr + 1);
701
702 return (struct ethhdr *)(&nvgre_hdr->tni);
703 }
704
705 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
706 {
707 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
708 struct ethhdr *eth_hdr;
709
710 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
711 skb->inner_protocol != htons(ETH_P_TEB))
712 return 0;
713
714 switch (vlan_get_protocol(skb)) {
715 case htons(ETH_P_IP):
716 l4_hdr = ip_hdr(skb)->protocol;
717 break;
718 case htons(ETH_P_IPV6):
719 l4_hdr = ipv6_hdr(skb)->nexthdr;
720 break;
721 default:
722 return 0;
723 }
724
725 switch (l4_hdr) {
726 case IPPROTO_UDP:
727 eth_hdr = fm10k_port_is_vxlan(skb);
728 break;
729 case IPPROTO_GRE:
730 eth_hdr = fm10k_gre_is_nvgre(skb);
731 break;
732 default:
733 return 0;
734 }
735
736 if (!eth_hdr)
737 return 0;
738
739 switch (eth_hdr->h_proto) {
740 case htons(ETH_P_IP):
741 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
742 break;
743 case htons(ETH_P_IPV6):
744 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
745 break;
746 default:
747 return 0;
748 }
749
750 switch (inner_l4_hdr) {
751 case IPPROTO_TCP:
752 inner_l4_hlen = inner_tcp_hdrlen(skb);
753 break;
754 case IPPROTO_UDP:
755 inner_l4_hlen = 8;
756 break;
757 default:
758 return 0;
759 }
760
761 /* The hardware allows tunnel offloads only if the combined inner and
762 * outer header is 184 bytes or less
763 */
764 if (skb_inner_transport_header(skb) + inner_l4_hlen -
765 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
766 return 0;
767
768 return eth_hdr->h_proto;
769 }
770
771 static int fm10k_tso(struct fm10k_ring *tx_ring,
772 struct fm10k_tx_buffer *first)
773 {
774 struct sk_buff *skb = first->skb;
775 struct fm10k_tx_desc *tx_desc;
776 unsigned char *th;
777 u8 hdrlen;
778
779 if (skb->ip_summed != CHECKSUM_PARTIAL)
780 return 0;
781
782 if (!skb_is_gso(skb))
783 return 0;
784
785 /* compute header lengths */
786 if (skb->encapsulation) {
787 if (!fm10k_tx_encap_offload(skb))
788 goto err_vxlan;
789 th = skb_inner_transport_header(skb);
790 } else {
791 th = skb_transport_header(skb);
792 }
793
794 /* compute offset from SOF to transport header and add header len */
795 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
796
797 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
798
799 /* update gso size and bytecount with header size */
800 first->gso_segs = skb_shinfo(skb)->gso_segs;
801 first->bytecount += (first->gso_segs - 1) * hdrlen;
802
803 /* populate Tx descriptor header size and mss */
804 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
805 tx_desc->hdrlen = hdrlen;
806 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
807
808 return 1;
809
810 err_vxlan:
811 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
812 if (net_ratelimit())
813 netdev_err(tx_ring->netdev,
814 "TSO requested for unsupported tunnel, disabling offload\n");
815 return -1;
816 }
817
818 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
819 struct fm10k_tx_buffer *first)
820 {
821 struct sk_buff *skb = first->skb;
822 struct fm10k_tx_desc *tx_desc;
823 union {
824 struct iphdr *ipv4;
825 struct ipv6hdr *ipv6;
826 u8 *raw;
827 } network_hdr;
828 u8 *transport_hdr;
829 __be16 frag_off;
830 __be16 protocol;
831 u8 l4_hdr = 0;
832
833 if (skb->ip_summed != CHECKSUM_PARTIAL)
834 goto no_csum;
835
836 if (skb->encapsulation) {
837 protocol = fm10k_tx_encap_offload(skb);
838 if (!protocol) {
839 if (skb_checksum_help(skb)) {
840 dev_warn(tx_ring->dev,
841 "failed to offload encap csum!\n");
842 tx_ring->tx_stats.csum_err++;
843 }
844 goto no_csum;
845 }
846 network_hdr.raw = skb_inner_network_header(skb);
847 transport_hdr = skb_inner_transport_header(skb);
848 } else {
849 protocol = vlan_get_protocol(skb);
850 network_hdr.raw = skb_network_header(skb);
851 transport_hdr = skb_transport_header(skb);
852 }
853
854 switch (protocol) {
855 case htons(ETH_P_IP):
856 l4_hdr = network_hdr.ipv4->protocol;
857 break;
858 case htons(ETH_P_IPV6):
859 l4_hdr = network_hdr.ipv6->nexthdr;
860 if (likely((transport_hdr - network_hdr.raw) ==
861 sizeof(struct ipv6hdr)))
862 break;
863 ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
864 sizeof(struct ipv6hdr),
865 &l4_hdr, &frag_off);
866 if (unlikely(frag_off))
867 l4_hdr = NEXTHDR_FRAGMENT;
868 break;
869 default:
870 break;
871 }
872
873 switch (l4_hdr) {
874 case IPPROTO_TCP:
875 case IPPROTO_UDP:
876 break;
877 case IPPROTO_GRE:
878 if (skb->encapsulation)
879 break;
880 /* fall through */
881 default:
882 if (unlikely(net_ratelimit())) {
883 dev_warn(tx_ring->dev,
884 "partial checksum, version=%d l4 proto=%x\n",
885 protocol, l4_hdr);
886 }
887 skb_checksum_help(skb);
888 tx_ring->tx_stats.csum_err++;
889 goto no_csum;
890 }
891
892 /* update TX checksum flag */
893 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
894 tx_ring->tx_stats.csum_good++;
895
896 no_csum:
897 /* populate Tx descriptor header size and mss */
898 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
899 tx_desc->hdrlen = 0;
900 tx_desc->mss = 0;
901 }
902
903 #define FM10K_SET_FLAG(_input, _flag, _result) \
904 ((_flag <= _result) ? \
905 ((u32)(_input & _flag) * (_result / _flag)) : \
906 ((u32)(_input & _flag) / (_flag / _result)))
907
908 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
909 {
910 /* set type for advanced descriptor with frame checksum insertion */
911 u32 desc_flags = 0;
912
913 /* set checksum offload bits */
914 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
915 FM10K_TXD_FLAG_CSUM);
916
917 return desc_flags;
918 }
919
920 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
921 struct fm10k_tx_desc *tx_desc, u16 i,
922 dma_addr_t dma, unsigned int size, u8 desc_flags)
923 {
924 /* set RS and INT for last frame in a cache line */
925 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
926 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
927
928 /* record values to descriptor */
929 tx_desc->buffer_addr = cpu_to_le64(dma);
930 tx_desc->flags = desc_flags;
931 tx_desc->buflen = cpu_to_le16(size);
932
933 /* return true if we just wrapped the ring */
934 return i == tx_ring->count;
935 }
936
937 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
938 {
939 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
940
941 /* Memory barrier before checking head and tail */
942 smp_mb();
943
944 /* Check again in a case another CPU has just made room available */
945 if (likely(fm10k_desc_unused(tx_ring) < size))
946 return -EBUSY;
947
948 /* A reprieve! - use start_queue because it doesn't call schedule */
949 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
950 ++tx_ring->tx_stats.restart_queue;
951 return 0;
952 }
953
954 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
955 {
956 if (likely(fm10k_desc_unused(tx_ring) >= size))
957 return 0;
958 return __fm10k_maybe_stop_tx(tx_ring, size);
959 }
960
961 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
962 struct fm10k_tx_buffer *first)
963 {
964 struct sk_buff *skb = first->skb;
965 struct fm10k_tx_buffer *tx_buffer;
966 struct fm10k_tx_desc *tx_desc;
967 struct skb_frag_struct *frag;
968 unsigned char *data;
969 dma_addr_t dma;
970 unsigned int data_len, size;
971 u32 tx_flags = first->tx_flags;
972 u16 i = tx_ring->next_to_use;
973 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
974
975 tx_desc = FM10K_TX_DESC(tx_ring, i);
976
977 /* add HW VLAN tag */
978 if (skb_vlan_tag_present(skb))
979 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
980 else
981 tx_desc->vlan = 0;
982
983 size = skb_headlen(skb);
984 data = skb->data;
985
986 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
987
988 data_len = skb->data_len;
989 tx_buffer = first;
990
991 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
992 if (dma_mapping_error(tx_ring->dev, dma))
993 goto dma_error;
994
995 /* record length, and DMA address */
996 dma_unmap_len_set(tx_buffer, len, size);
997 dma_unmap_addr_set(tx_buffer, dma, dma);
998
999 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1000 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1001 FM10K_MAX_DATA_PER_TXD, flags)) {
1002 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1003 i = 0;
1004 }
1005
1006 dma += FM10K_MAX_DATA_PER_TXD;
1007 size -= FM10K_MAX_DATA_PER_TXD;
1008 }
1009
1010 if (likely(!data_len))
1011 break;
1012
1013 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1014 dma, size, flags)) {
1015 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1016 i = 0;
1017 }
1018
1019 size = skb_frag_size(frag);
1020 data_len -= size;
1021
1022 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1023 DMA_TO_DEVICE);
1024
1025 tx_buffer = &tx_ring->tx_buffer[i];
1026 }
1027
1028 /* write last descriptor with LAST bit set */
1029 flags |= FM10K_TXD_FLAG_LAST;
1030
1031 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1032 i = 0;
1033
1034 /* record bytecount for BQL */
1035 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1036
1037 /* record SW timestamp if HW timestamp is not available */
1038 skb_tx_timestamp(first->skb);
1039
1040 /* Force memory writes to complete before letting h/w know there
1041 * are new descriptors to fetch. (Only applicable for weak-ordered
1042 * memory model archs, such as IA-64).
1043 *
1044 * We also need this memory barrier to make certain all of the
1045 * status bits have been updated before next_to_watch is written.
1046 */
1047 wmb();
1048
1049 /* set next_to_watch value indicating a packet is present */
1050 first->next_to_watch = tx_desc;
1051
1052 tx_ring->next_to_use = i;
1053
1054 /* Make sure there is space in the ring for the next send. */
1055 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1056
1057 /* notify HW of packet */
1058 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1059 writel(i, tx_ring->tail);
1060
1061 /* we need this if more than one processor can write to our tail
1062 * at a time, it synchronizes IO on IA64/Altix systems
1063 */
1064 mmiowb();
1065 }
1066
1067 return;
1068 dma_error:
1069 dev_err(tx_ring->dev, "TX DMA map failed\n");
1070
1071 /* clear dma mappings for failed tx_buffer map */
1072 for (;;) {
1073 tx_buffer = &tx_ring->tx_buffer[i];
1074 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1075 if (tx_buffer == first)
1076 break;
1077 if (i == 0)
1078 i = tx_ring->count;
1079 i--;
1080 }
1081
1082 tx_ring->next_to_use = i;
1083 }
1084
1085 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1086 struct fm10k_ring *tx_ring)
1087 {
1088 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1089 struct fm10k_tx_buffer *first;
1090 unsigned short f;
1091 u32 tx_flags = 0;
1092 int tso;
1093
1094 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1095 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1096 * + 2 desc gap to keep tail from touching head
1097 * otherwise try next time
1098 */
1099 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1100 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1101
1102 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1103 tx_ring->tx_stats.tx_busy++;
1104 return NETDEV_TX_BUSY;
1105 }
1106
1107 /* record the location of the first descriptor for this packet */
1108 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1109 first->skb = skb;
1110 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1111 first->gso_segs = 1;
1112
1113 /* record initial flags and protocol */
1114 first->tx_flags = tx_flags;
1115
1116 tso = fm10k_tso(tx_ring, first);
1117 if (tso < 0)
1118 goto out_drop;
1119 else if (!tso)
1120 fm10k_tx_csum(tx_ring, first);
1121
1122 fm10k_tx_map(tx_ring, first);
1123
1124 return NETDEV_TX_OK;
1125
1126 out_drop:
1127 dev_kfree_skb_any(first->skb);
1128 first->skb = NULL;
1129
1130 return NETDEV_TX_OK;
1131 }
1132
1133 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1134 {
1135 return ring->stats.packets;
1136 }
1137
1138 /**
1139 * fm10k_get_tx_pending - how many Tx descriptors not processed
1140 * @ring: the ring structure
1141 * @in_sw: is tx_pending being checked in SW or in HW?
1142 */
1143 u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
1144 {
1145 struct fm10k_intfc *interface = ring->q_vector->interface;
1146 struct fm10k_hw *hw = &interface->hw;
1147 u32 head, tail;
1148
1149 if (likely(in_sw)) {
1150 head = ring->next_to_clean;
1151 tail = ring->next_to_use;
1152 } else {
1153 head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
1154 tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
1155 }
1156
1157 return ((head <= tail) ? tail : tail + ring->count) - head;
1158 }
1159
1160 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1161 {
1162 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1163 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1164 u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
1165
1166 clear_check_for_tx_hang(tx_ring);
1167
1168 /* Check for a hung queue, but be thorough. This verifies
1169 * that a transmit has been completed since the previous
1170 * check AND there is at least one packet pending. By
1171 * requiring this to fail twice we avoid races with
1172 * clearing the ARMED bit and conditions where we
1173 * run the check_tx_hang logic with a transmit completion
1174 * pending but without time to complete it yet.
1175 */
1176 if (!tx_pending || (tx_done_old != tx_done)) {
1177 /* update completed stats and continue */
1178 tx_ring->tx_stats.tx_done_old = tx_done;
1179 /* reset the countdown */
1180 clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1181
1182 return false;
1183 }
1184
1185 /* make sure it is true for two checks in a row */
1186 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
1187 }
1188
1189 /**
1190 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1191 * @interface: driver private struct
1192 **/
1193 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1194 {
1195 /* Do the reset outside of interrupt context */
1196 if (!test_bit(__FM10K_DOWN, interface->state)) {
1197 interface->tx_timeout_count++;
1198 set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
1199 fm10k_service_event_schedule(interface);
1200 }
1201 }
1202
1203 /**
1204 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1205 * @q_vector: structure containing interrupt and ring information
1206 * @tx_ring: tx ring to clean
1207 * @napi_budget: Used to determine if we are in netpoll
1208 **/
1209 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1210 struct fm10k_ring *tx_ring, int napi_budget)
1211 {
1212 struct fm10k_intfc *interface = q_vector->interface;
1213 struct fm10k_tx_buffer *tx_buffer;
1214 struct fm10k_tx_desc *tx_desc;
1215 unsigned int total_bytes = 0, total_packets = 0;
1216 unsigned int budget = q_vector->tx.work_limit;
1217 unsigned int i = tx_ring->next_to_clean;
1218
1219 if (test_bit(__FM10K_DOWN, interface->state))
1220 return true;
1221
1222 tx_buffer = &tx_ring->tx_buffer[i];
1223 tx_desc = FM10K_TX_DESC(tx_ring, i);
1224 i -= tx_ring->count;
1225
1226 do {
1227 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1228
1229 /* if next_to_watch is not set then there is no work pending */
1230 if (!eop_desc)
1231 break;
1232
1233 /* prevent any other reads prior to eop_desc */
1234 smp_rmb();
1235
1236 /* if DD is not set pending work has not been completed */
1237 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1238 break;
1239
1240 /* clear next_to_watch to prevent false hangs */
1241 tx_buffer->next_to_watch = NULL;
1242
1243 /* update the statistics for this packet */
1244 total_bytes += tx_buffer->bytecount;
1245 total_packets += tx_buffer->gso_segs;
1246
1247 /* free the skb */
1248 napi_consume_skb(tx_buffer->skb, napi_budget);
1249
1250 /* unmap skb header data */
1251 dma_unmap_single(tx_ring->dev,
1252 dma_unmap_addr(tx_buffer, dma),
1253 dma_unmap_len(tx_buffer, len),
1254 DMA_TO_DEVICE);
1255
1256 /* clear tx_buffer data */
1257 tx_buffer->skb = NULL;
1258 dma_unmap_len_set(tx_buffer, len, 0);
1259
1260 /* unmap remaining buffers */
1261 while (tx_desc != eop_desc) {
1262 tx_buffer++;
1263 tx_desc++;
1264 i++;
1265 if (unlikely(!i)) {
1266 i -= tx_ring->count;
1267 tx_buffer = tx_ring->tx_buffer;
1268 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1269 }
1270
1271 /* unmap any remaining paged data */
1272 if (dma_unmap_len(tx_buffer, len)) {
1273 dma_unmap_page(tx_ring->dev,
1274 dma_unmap_addr(tx_buffer, dma),
1275 dma_unmap_len(tx_buffer, len),
1276 DMA_TO_DEVICE);
1277 dma_unmap_len_set(tx_buffer, len, 0);
1278 }
1279 }
1280
1281 /* move us one more past the eop_desc for start of next pkt */
1282 tx_buffer++;
1283 tx_desc++;
1284 i++;
1285 if (unlikely(!i)) {
1286 i -= tx_ring->count;
1287 tx_buffer = tx_ring->tx_buffer;
1288 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1289 }
1290
1291 /* issue prefetch for next Tx descriptor */
1292 prefetch(tx_desc);
1293
1294 /* update budget accounting */
1295 budget--;
1296 } while (likely(budget));
1297
1298 i += tx_ring->count;
1299 tx_ring->next_to_clean = i;
1300 u64_stats_update_begin(&tx_ring->syncp);
1301 tx_ring->stats.bytes += total_bytes;
1302 tx_ring->stats.packets += total_packets;
1303 u64_stats_update_end(&tx_ring->syncp);
1304 q_vector->tx.total_bytes += total_bytes;
1305 q_vector->tx.total_packets += total_packets;
1306
1307 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1308 /* schedule immediate reset if we believe we hung */
1309 struct fm10k_hw *hw = &interface->hw;
1310
1311 netif_err(interface, drv, tx_ring->netdev,
1312 "Detected Tx Unit Hang\n"
1313 " Tx Queue <%d>\n"
1314 " TDH, TDT <%x>, <%x>\n"
1315 " next_to_use <%x>\n"
1316 " next_to_clean <%x>\n",
1317 tx_ring->queue_index,
1318 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1319 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1320 tx_ring->next_to_use, i);
1321
1322 netif_stop_subqueue(tx_ring->netdev,
1323 tx_ring->queue_index);
1324
1325 netif_info(interface, probe, tx_ring->netdev,
1326 "tx hang %d detected on queue %d, resetting interface\n",
1327 interface->tx_timeout_count + 1,
1328 tx_ring->queue_index);
1329
1330 fm10k_tx_timeout_reset(interface);
1331
1332 /* the netdev is about to reset, no point in enabling stuff */
1333 return true;
1334 }
1335
1336 /* notify netdev of completed buffers */
1337 netdev_tx_completed_queue(txring_txq(tx_ring),
1338 total_packets, total_bytes);
1339
1340 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1341 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1342 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1343 /* Make sure that anybody stopping the queue after this
1344 * sees the new next_to_clean.
1345 */
1346 smp_mb();
1347 if (__netif_subqueue_stopped(tx_ring->netdev,
1348 tx_ring->queue_index) &&
1349 !test_bit(__FM10K_DOWN, interface->state)) {
1350 netif_wake_subqueue(tx_ring->netdev,
1351 tx_ring->queue_index);
1352 ++tx_ring->tx_stats.restart_queue;
1353 }
1354 }
1355
1356 return !!budget;
1357 }
1358
1359 /**
1360 * fm10k_update_itr - update the dynamic ITR value based on packet size
1361 *
1362 * Stores a new ITR value based on strictly on packet size. The
1363 * divisors and thresholds used by this function were determined based
1364 * on theoretical maximum wire speed and testing data, in order to
1365 * minimize response time while increasing bulk throughput.
1366 *
1367 * @ring_container: Container for rings to have ITR updated
1368 **/
1369 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1370 {
1371 unsigned int avg_wire_size, packets, itr_round;
1372
1373 /* Only update ITR if we are using adaptive setting */
1374 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1375 goto clear_counts;
1376
1377 packets = ring_container->total_packets;
1378 if (!packets)
1379 goto clear_counts;
1380
1381 avg_wire_size = ring_container->total_bytes / packets;
1382
1383 /* The following is a crude approximation of:
1384 * wmem_default / (size + overhead) = desired_pkts_per_int
1385 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1386 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1387 *
1388 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1389 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1390 * formula down to
1391 *
1392 * (34 * (size + 24)) / (size + 640) = ITR
1393 *
1394 * We first do some math on the packet size and then finally bitshift
1395 * by 8 after rounding up. We also have to account for PCIe link speed
1396 * difference as ITR scales based on this.
1397 */
1398 if (avg_wire_size <= 360) {
1399 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1400 avg_wire_size *= 8;
1401 avg_wire_size += 376;
1402 } else if (avg_wire_size <= 1152) {
1403 /* 77K ints/sec to 45K ints/sec */
1404 avg_wire_size *= 3;
1405 avg_wire_size += 2176;
1406 } else if (avg_wire_size <= 1920) {
1407 /* 45K ints/sec to 38K ints/sec */
1408 avg_wire_size += 4480;
1409 } else {
1410 /* plateau at a limit of 38K ints/sec */
1411 avg_wire_size = 6656;
1412 }
1413
1414 /* Perform final bitshift for division after rounding up to ensure
1415 * that the calculation will never get below a 1. The bit shift
1416 * accounts for changes in the ITR due to PCIe link speed.
1417 */
1418 itr_round = READ_ONCE(ring_container->itr_scale) + 8;
1419 avg_wire_size += BIT(itr_round) - 1;
1420 avg_wire_size >>= itr_round;
1421
1422 /* write back value and retain adaptive flag */
1423 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1424
1425 clear_counts:
1426 ring_container->total_bytes = 0;
1427 ring_container->total_packets = 0;
1428 }
1429
1430 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1431 {
1432 /* Enable auto-mask and clear the current mask */
1433 u32 itr = FM10K_ITR_ENABLE;
1434
1435 /* Update Tx ITR */
1436 fm10k_update_itr(&q_vector->tx);
1437
1438 /* Update Rx ITR */
1439 fm10k_update_itr(&q_vector->rx);
1440
1441 /* Store Tx itr in timer slot 0 */
1442 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1443
1444 /* Shift Rx itr to timer slot 1 */
1445 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1446
1447 /* Write the final value to the ITR register */
1448 writel(itr, q_vector->itr);
1449 }
1450
1451 static int fm10k_poll(struct napi_struct *napi, int budget)
1452 {
1453 struct fm10k_q_vector *q_vector =
1454 container_of(napi, struct fm10k_q_vector, napi);
1455 struct fm10k_ring *ring;
1456 int per_ring_budget, work_done = 0;
1457 bool clean_complete = true;
1458
1459 fm10k_for_each_ring(ring, q_vector->tx) {
1460 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1461 clean_complete = false;
1462 }
1463
1464 /* Handle case where we are called by netpoll with a budget of 0 */
1465 if (budget <= 0)
1466 return budget;
1467
1468 /* attempt to distribute budget to each queue fairly, but don't
1469 * allow the budget to go below 1 because we'll exit polling
1470 */
1471 if (q_vector->rx.count > 1)
1472 per_ring_budget = max(budget / q_vector->rx.count, 1);
1473 else
1474 per_ring_budget = budget;
1475
1476 fm10k_for_each_ring(ring, q_vector->rx) {
1477 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1478
1479 work_done += work;
1480 if (work >= per_ring_budget)
1481 clean_complete = false;
1482 }
1483
1484 /* If all work not completed, return budget and keep polling */
1485 if (!clean_complete)
1486 return budget;
1487
1488 /* all work done, exit the polling mode */
1489 napi_complete_done(napi, work_done);
1490
1491 /* re-enable the q_vector */
1492 fm10k_qv_enable(q_vector);
1493
1494 return min(work_done, budget - 1);
1495 }
1496
1497 /**
1498 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1499 * @interface: board private structure to initialize
1500 *
1501 * When QoS (Quality of Service) is enabled, allocate queues for
1502 * each traffic class. If multiqueue isn't available,then abort QoS
1503 * initialization.
1504 *
1505 * This function handles all combinations of Qos and RSS.
1506 *
1507 **/
1508 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1509 {
1510 struct net_device *dev = interface->netdev;
1511 struct fm10k_ring_feature *f;
1512 int rss_i, i;
1513 int pcs;
1514
1515 /* Map queue offset and counts onto allocated tx queues */
1516 pcs = netdev_get_num_tc(dev);
1517
1518 if (pcs <= 1)
1519 return false;
1520
1521 /* set QoS mask and indices */
1522 f = &interface->ring_feature[RING_F_QOS];
1523 f->indices = pcs;
1524 f->mask = BIT(fls(pcs - 1)) - 1;
1525
1526 /* determine the upper limit for our current DCB mode */
1527 rss_i = interface->hw.mac.max_queues / pcs;
1528 rss_i = BIT(fls(rss_i) - 1);
1529
1530 /* set RSS mask and indices */
1531 f = &interface->ring_feature[RING_F_RSS];
1532 rss_i = min_t(u16, rss_i, f->limit);
1533 f->indices = rss_i;
1534 f->mask = BIT(fls(rss_i - 1)) - 1;
1535
1536 /* configure pause class to queue mapping */
1537 for (i = 0; i < pcs; i++)
1538 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1539
1540 interface->num_rx_queues = rss_i * pcs;
1541 interface->num_tx_queues = rss_i * pcs;
1542
1543 return true;
1544 }
1545
1546 /**
1547 * fm10k_set_rss_queues: Allocate queues for RSS
1548 * @interface: board private structure to initialize
1549 *
1550 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1551 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1552 *
1553 **/
1554 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1555 {
1556 struct fm10k_ring_feature *f;
1557 u16 rss_i;
1558
1559 f = &interface->ring_feature[RING_F_RSS];
1560 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1561
1562 /* record indices and power of 2 mask for RSS */
1563 f->indices = rss_i;
1564 f->mask = BIT(fls(rss_i - 1)) - 1;
1565
1566 interface->num_rx_queues = rss_i;
1567 interface->num_tx_queues = rss_i;
1568
1569 return true;
1570 }
1571
1572 /**
1573 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1574 * @interface: board private structure to initialize
1575 *
1576 * This is the top level queue allocation routine. The order here is very
1577 * important, starting with the "most" number of features turned on at once,
1578 * and ending with the smallest set of features. This way large combinations
1579 * can be allocated if they're turned on, and smaller combinations are the
1580 * fallthrough conditions.
1581 *
1582 **/
1583 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1584 {
1585 /* Attempt to setup QoS and RSS first */
1586 if (fm10k_set_qos_queues(interface))
1587 return;
1588
1589 /* If we don't have QoS, just fallback to only RSS. */
1590 fm10k_set_rss_queues(interface);
1591 }
1592
1593 /**
1594 * fm10k_reset_num_queues - Reset the number of queues to zero
1595 * @interface: board private structure
1596 *
1597 * This function should be called whenever we need to reset the number of
1598 * queues after an error condition.
1599 */
1600 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1601 {
1602 interface->num_tx_queues = 0;
1603 interface->num_rx_queues = 0;
1604 interface->num_q_vectors = 0;
1605 }
1606
1607 /**
1608 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1609 * @interface: board private structure to initialize
1610 * @v_count: q_vectors allocated on interface, used for ring interleaving
1611 * @v_idx: index of vector in interface struct
1612 * @txr_count: total number of Tx rings to allocate
1613 * @txr_idx: index of first Tx ring to allocate
1614 * @rxr_count: total number of Rx rings to allocate
1615 * @rxr_idx: index of first Rx ring to allocate
1616 *
1617 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1618 **/
1619 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1620 unsigned int v_count, unsigned int v_idx,
1621 unsigned int txr_count, unsigned int txr_idx,
1622 unsigned int rxr_count, unsigned int rxr_idx)
1623 {
1624 struct fm10k_q_vector *q_vector;
1625 struct fm10k_ring *ring;
1626 int ring_count, size;
1627
1628 ring_count = txr_count + rxr_count;
1629 size = sizeof(struct fm10k_q_vector) +
1630 (sizeof(struct fm10k_ring) * ring_count);
1631
1632 /* allocate q_vector and rings */
1633 q_vector = kzalloc(size, GFP_KERNEL);
1634 if (!q_vector)
1635 return -ENOMEM;
1636
1637 /* initialize NAPI */
1638 netif_napi_add(interface->netdev, &q_vector->napi,
1639 fm10k_poll, NAPI_POLL_WEIGHT);
1640
1641 /* tie q_vector and interface together */
1642 interface->q_vector[v_idx] = q_vector;
1643 q_vector->interface = interface;
1644 q_vector->v_idx = v_idx;
1645
1646 /* initialize pointer to rings */
1647 ring = q_vector->ring;
1648
1649 /* save Tx ring container info */
1650 q_vector->tx.ring = ring;
1651 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1652 q_vector->tx.itr = interface->tx_itr;
1653 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1654 q_vector->tx.count = txr_count;
1655
1656 while (txr_count) {
1657 /* assign generic ring traits */
1658 ring->dev = &interface->pdev->dev;
1659 ring->netdev = interface->netdev;
1660
1661 /* configure backlink on ring */
1662 ring->q_vector = q_vector;
1663
1664 /* apply Tx specific ring traits */
1665 ring->count = interface->tx_ring_count;
1666 ring->queue_index = txr_idx;
1667
1668 /* assign ring to interface */
1669 interface->tx_ring[txr_idx] = ring;
1670
1671 /* update count and index */
1672 txr_count--;
1673 txr_idx += v_count;
1674
1675 /* push pointer to next ring */
1676 ring++;
1677 }
1678
1679 /* save Rx ring container info */
1680 q_vector->rx.ring = ring;
1681 q_vector->rx.itr = interface->rx_itr;
1682 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1683 q_vector->rx.count = rxr_count;
1684
1685 while (rxr_count) {
1686 /* assign generic ring traits */
1687 ring->dev = &interface->pdev->dev;
1688 ring->netdev = interface->netdev;
1689 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1690
1691 /* configure backlink on ring */
1692 ring->q_vector = q_vector;
1693
1694 /* apply Rx specific ring traits */
1695 ring->count = interface->rx_ring_count;
1696 ring->queue_index = rxr_idx;
1697
1698 /* assign ring to interface */
1699 interface->rx_ring[rxr_idx] = ring;
1700
1701 /* update count and index */
1702 rxr_count--;
1703 rxr_idx += v_count;
1704
1705 /* push pointer to next ring */
1706 ring++;
1707 }
1708
1709 fm10k_dbg_q_vector_init(q_vector);
1710
1711 return 0;
1712 }
1713
1714 /**
1715 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1716 * @interface: board private structure to initialize
1717 * @v_idx: Index of vector to be freed
1718 *
1719 * This function frees the memory allocated to the q_vector. In addition if
1720 * NAPI is enabled it will delete any references to the NAPI struct prior
1721 * to freeing the q_vector.
1722 **/
1723 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1724 {
1725 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1726 struct fm10k_ring *ring;
1727
1728 fm10k_dbg_q_vector_exit(q_vector);
1729
1730 fm10k_for_each_ring(ring, q_vector->tx)
1731 interface->tx_ring[ring->queue_index] = NULL;
1732
1733 fm10k_for_each_ring(ring, q_vector->rx)
1734 interface->rx_ring[ring->queue_index] = NULL;
1735
1736 interface->q_vector[v_idx] = NULL;
1737 netif_napi_del(&q_vector->napi);
1738 kfree_rcu(q_vector, rcu);
1739 }
1740
1741 /**
1742 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1743 * @interface: board private structure to initialize
1744 *
1745 * We allocate one q_vector per queue interrupt. If allocation fails we
1746 * return -ENOMEM.
1747 **/
1748 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1749 {
1750 unsigned int q_vectors = interface->num_q_vectors;
1751 unsigned int rxr_remaining = interface->num_rx_queues;
1752 unsigned int txr_remaining = interface->num_tx_queues;
1753 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1754 int err;
1755
1756 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1757 for (; rxr_remaining; v_idx++) {
1758 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1759 0, 0, 1, rxr_idx);
1760 if (err)
1761 goto err_out;
1762
1763 /* update counts and index */
1764 rxr_remaining--;
1765 rxr_idx++;
1766 }
1767 }
1768
1769 for (; v_idx < q_vectors; v_idx++) {
1770 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1771 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1772
1773 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1774 tqpv, txr_idx,
1775 rqpv, rxr_idx);
1776
1777 if (err)
1778 goto err_out;
1779
1780 /* update counts and index */
1781 rxr_remaining -= rqpv;
1782 txr_remaining -= tqpv;
1783 rxr_idx++;
1784 txr_idx++;
1785 }
1786
1787 return 0;
1788
1789 err_out:
1790 fm10k_reset_num_queues(interface);
1791
1792 while (v_idx--)
1793 fm10k_free_q_vector(interface, v_idx);
1794
1795 return -ENOMEM;
1796 }
1797
1798 /**
1799 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1800 * @interface: board private structure to initialize
1801 *
1802 * This function frees the memory allocated to the q_vectors. In addition if
1803 * NAPI is enabled it will delete any references to the NAPI struct prior
1804 * to freeing the q_vector.
1805 **/
1806 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1807 {
1808 int v_idx = interface->num_q_vectors;
1809
1810 fm10k_reset_num_queues(interface);
1811
1812 while (v_idx--)
1813 fm10k_free_q_vector(interface, v_idx);
1814 }
1815
1816 /**
1817 * f10k_reset_msix_capability - reset MSI-X capability
1818 * @interface: board private structure to initialize
1819 *
1820 * Reset the MSI-X capability back to its starting state
1821 **/
1822 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1823 {
1824 pci_disable_msix(interface->pdev);
1825 kfree(interface->msix_entries);
1826 interface->msix_entries = NULL;
1827 }
1828
1829 /**
1830 * f10k_init_msix_capability - configure MSI-X capability
1831 * @interface: board private structure to initialize
1832 *
1833 * Attempt to configure the interrupts using the best available
1834 * capabilities of the hardware and the kernel.
1835 **/
1836 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1837 {
1838 struct fm10k_hw *hw = &interface->hw;
1839 int v_budget, vector;
1840
1841 /* It's easy to be greedy for MSI-X vectors, but it really
1842 * doesn't do us much good if we have a lot more vectors
1843 * than CPU's. So let's be conservative and only ask for
1844 * (roughly) the same number of vectors as there are CPU's.
1845 * the default is to use pairs of vectors
1846 */
1847 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1848 v_budget = min_t(u16, v_budget, num_online_cpus());
1849
1850 /* account for vectors not related to queues */
1851 v_budget += NON_Q_VECTORS(hw);
1852
1853 /* At the same time, hardware can only support a maximum of
1854 * hw.mac->max_msix_vectors vectors. With features
1855 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1856 * descriptor queues supported by our device. Thus, we cap it off in
1857 * those rare cases where the cpu count also exceeds our vector limit.
1858 */
1859 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1860
1861 /* A failure in MSI-X entry allocation is fatal. */
1862 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1863 GFP_KERNEL);
1864 if (!interface->msix_entries)
1865 return -ENOMEM;
1866
1867 /* populate entry values */
1868 for (vector = 0; vector < v_budget; vector++)
1869 interface->msix_entries[vector].entry = vector;
1870
1871 /* Attempt to enable MSI-X with requested value */
1872 v_budget = pci_enable_msix_range(interface->pdev,
1873 interface->msix_entries,
1874 MIN_MSIX_COUNT(hw),
1875 v_budget);
1876 if (v_budget < 0) {
1877 kfree(interface->msix_entries);
1878 interface->msix_entries = NULL;
1879 return v_budget;
1880 }
1881
1882 /* record the number of queues available for q_vectors */
1883 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1884
1885 return 0;
1886 }
1887
1888 /**
1889 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1890 * @interface: Interface structure continaining rings and devices
1891 *
1892 * Cache the descriptor ring offsets for Qos
1893 **/
1894 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1895 {
1896 struct net_device *dev = interface->netdev;
1897 int pc, offset, rss_i, i, q_idx;
1898 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1899 u8 num_pcs = netdev_get_num_tc(dev);
1900
1901 if (num_pcs <= 1)
1902 return false;
1903
1904 rss_i = interface->ring_feature[RING_F_RSS].indices;
1905
1906 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1907 q_idx = pc;
1908 for (i = 0; i < rss_i; i++) {
1909 interface->tx_ring[offset + i]->reg_idx = q_idx;
1910 interface->tx_ring[offset + i]->qos_pc = pc;
1911 interface->rx_ring[offset + i]->reg_idx = q_idx;
1912 interface->rx_ring[offset + i]->qos_pc = pc;
1913 q_idx += pc_stride;
1914 }
1915 }
1916
1917 return true;
1918 }
1919
1920 /**
1921 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1922 * @interface: Interface structure continaining rings and devices
1923 *
1924 * Cache the descriptor ring offsets for RSS
1925 **/
1926 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1927 {
1928 int i;
1929
1930 for (i = 0; i < interface->num_rx_queues; i++)
1931 interface->rx_ring[i]->reg_idx = i;
1932
1933 for (i = 0; i < interface->num_tx_queues; i++)
1934 interface->tx_ring[i]->reg_idx = i;
1935 }
1936
1937 /**
1938 * fm10k_assign_rings - Map rings to network devices
1939 * @interface: Interface structure containing rings and devices
1940 *
1941 * This function is meant to go though and configure both the network
1942 * devices so that they contain rings, and configure the rings so that
1943 * they function with their network devices.
1944 **/
1945 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1946 {
1947 if (fm10k_cache_ring_qos(interface))
1948 return;
1949
1950 fm10k_cache_ring_rss(interface);
1951 }
1952
1953 static void fm10k_init_reta(struct fm10k_intfc *interface)
1954 {
1955 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1956 u32 reta;
1957
1958 /* If the Rx flow indirection table has been configured manually, we
1959 * need to maintain it when possible.
1960 */
1961 if (netif_is_rxfh_configured(interface->netdev)) {
1962 for (i = FM10K_RETA_SIZE; i--;) {
1963 reta = interface->reta[i];
1964 if ((((reta << 24) >> 24) < rss_i) &&
1965 (((reta << 16) >> 24) < rss_i) &&
1966 (((reta << 8) >> 24) < rss_i) &&
1967 (((reta) >> 24) < rss_i))
1968 continue;
1969
1970 /* this should never happen */
1971 dev_err(&interface->pdev->dev,
1972 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1973 goto repopulate_reta;
1974 }
1975
1976 /* do nothing if all of the elements are in bounds */
1977 return;
1978 }
1979
1980 repopulate_reta:
1981 fm10k_write_reta(interface, NULL);
1982 }
1983
1984 /**
1985 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1986 * @interface: board private structure to initialize
1987 *
1988 * We determine which queueing scheme to use based on...
1989 * - Hardware queue count (num_*_queues)
1990 * - defined by miscellaneous hardware support/features (RSS, etc.)
1991 **/
1992 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1993 {
1994 int err;
1995
1996 /* Number of supported queues */
1997 fm10k_set_num_queues(interface);
1998
1999 /* Configure MSI-X capability */
2000 err = fm10k_init_msix_capability(interface);
2001 if (err) {
2002 dev_err(&interface->pdev->dev,
2003 "Unable to initialize MSI-X capability\n");
2004 goto err_init_msix;
2005 }
2006
2007 /* Allocate memory for queues */
2008 err = fm10k_alloc_q_vectors(interface);
2009 if (err) {
2010 dev_err(&interface->pdev->dev,
2011 "Unable to allocate queue vectors\n");
2012 goto err_alloc_q_vectors;
2013 }
2014
2015 /* Map rings to devices, and map devices to physical queues */
2016 fm10k_assign_rings(interface);
2017
2018 /* Initialize RSS redirection table */
2019 fm10k_init_reta(interface);
2020
2021 return 0;
2022
2023 err_alloc_q_vectors:
2024 fm10k_reset_msix_capability(interface);
2025 err_init_msix:
2026 fm10k_reset_num_queues(interface);
2027 return err;
2028 }
2029
2030 /**
2031 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2032 * @interface: board private structure to clear queueing scheme on
2033 *
2034 * We go through and clear queueing specific resources and reset the structure
2035 * to pre-load conditions
2036 **/
2037 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2038 {
2039 fm10k_free_q_vectors(interface);
2040 fm10k_reset_msix_capability(interface);
2041 }