]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/fm10k/fm10k_main.c
fm10k: fix possible null pointer deref after kcalloc
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 /* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2016 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28
29 #include "fm10k.h"
30
31 #define DRV_VERSION "0.19.3-k"
32 #define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
33 const char fm10k_driver_version[] = DRV_VERSION;
34 char fm10k_driver_name[] = "fm10k";
35 static const char fm10k_driver_string[] = DRV_SUMMARY;
36 static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION(DRV_SUMMARY);
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46
47 /**
48 * fm10k_init_module - Driver Registration Routine
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53 static int __init fm10k_init_module(void)
54 {
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
58 /* create driver workqueue */
59 fm10k_workqueue = create_workqueue("fm10k");
60
61 fm10k_dbg_init();
62
63 return fm10k_register_pci_driver();
64 }
65 module_init(fm10k_init_module);
66
67 /**
68 * fm10k_exit_module - Driver Exit Cleanup Routine
69 *
70 * fm10k_exit_module is called just before the driver is removed
71 * from memory.
72 **/
73 static void __exit fm10k_exit_module(void)
74 {
75 fm10k_unregister_pci_driver();
76
77 fm10k_dbg_exit();
78
79 /* destroy driver workqueue */
80 flush_workqueue(fm10k_workqueue);
81 destroy_workqueue(fm10k_workqueue);
82 }
83 module_exit(fm10k_exit_module);
84
85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
86 struct fm10k_rx_buffer *bi)
87 {
88 struct page *page = bi->page;
89 dma_addr_t dma;
90
91 /* Only page will be NULL if buffer was consumed */
92 if (likely(page))
93 return true;
94
95 /* alloc new page for storage */
96 page = dev_alloc_page();
97 if (unlikely(!page)) {
98 rx_ring->rx_stats.alloc_failed++;
99 return false;
100 }
101
102 /* map page for use */
103 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
104
105 /* if mapping failed free memory back to system since
106 * there isn't much point in holding memory we can't use
107 */
108 if (dma_mapping_error(rx_ring->dev, dma)) {
109 __free_page(page);
110
111 rx_ring->rx_stats.alloc_failed++;
112 return false;
113 }
114
115 bi->dma = dma;
116 bi->page = page;
117 bi->page_offset = 0;
118
119 return true;
120 }
121
122 /**
123 * fm10k_alloc_rx_buffers - Replace used receive buffers
124 * @rx_ring: ring to place buffers on
125 * @cleaned_count: number of buffers to replace
126 **/
127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
128 {
129 union fm10k_rx_desc *rx_desc;
130 struct fm10k_rx_buffer *bi;
131 u16 i = rx_ring->next_to_use;
132
133 /* nothing to do */
134 if (!cleaned_count)
135 return;
136
137 rx_desc = FM10K_RX_DESC(rx_ring, i);
138 bi = &rx_ring->rx_buffer[i];
139 i -= rx_ring->count;
140
141 do {
142 if (!fm10k_alloc_mapped_page(rx_ring, bi))
143 break;
144
145 /* Refresh the desc even if buffer_addrs didn't change
146 * because each write-back erases this info.
147 */
148 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
149
150 rx_desc++;
151 bi++;
152 i++;
153 if (unlikely(!i)) {
154 rx_desc = FM10K_RX_DESC(rx_ring, 0);
155 bi = rx_ring->rx_buffer;
156 i -= rx_ring->count;
157 }
158
159 /* clear the status bits for the next_to_use descriptor */
160 rx_desc->d.staterr = 0;
161
162 cleaned_count--;
163 } while (cleaned_count);
164
165 i += rx_ring->count;
166
167 if (rx_ring->next_to_use != i) {
168 /* record the next descriptor to use */
169 rx_ring->next_to_use = i;
170
171 /* update next to alloc since we have filled the ring */
172 rx_ring->next_to_alloc = i;
173
174 /* Force memory writes to complete before letting h/w
175 * know there are new descriptors to fetch. (Only
176 * applicable for weak-ordered memory model archs,
177 * such as IA-64).
178 */
179 wmb();
180
181 /* notify hardware of new descriptors */
182 writel(i, rx_ring->tail);
183 }
184 }
185
186 /**
187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
188 * @rx_ring: rx descriptor ring to store buffers on
189 * @old_buff: donor buffer to have page reused
190 *
191 * Synchronizes page for reuse by the interface
192 **/
193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
194 struct fm10k_rx_buffer *old_buff)
195 {
196 struct fm10k_rx_buffer *new_buff;
197 u16 nta = rx_ring->next_to_alloc;
198
199 new_buff = &rx_ring->rx_buffer[nta];
200
201 /* update, and store next to alloc */
202 nta++;
203 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
204
205 /* transfer page from old buffer to new buffer */
206 *new_buff = *old_buff;
207
208 /* sync the buffer for use by the device */
209 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
210 old_buff->page_offset,
211 FM10K_RX_BUFSZ,
212 DMA_FROM_DEVICE);
213 }
214
215 static inline bool fm10k_page_is_reserved(struct page *page)
216 {
217 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
218 }
219
220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
221 struct page *page,
222 unsigned int __maybe_unused truesize)
223 {
224 /* avoid re-using remote pages */
225 if (unlikely(fm10k_page_is_reserved(page)))
226 return false;
227
228 #if (PAGE_SIZE < 8192)
229 /* if we are only owner of page we can reuse it */
230 if (unlikely(page_count(page) != 1))
231 return false;
232
233 /* flip page offset to other buffer */
234 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
235 #else
236 /* move offset up to the next cache line */
237 rx_buffer->page_offset += truesize;
238
239 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
240 return false;
241 #endif
242
243 /* Even if we own the page, we are not allowed to use atomic_set()
244 * This would break get_page_unless_zero() users.
245 */
246 page_ref_inc(page);
247
248 return true;
249 }
250
251 /**
252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
253 * @rx_buffer: buffer containing page to add
254 * @rx_desc: descriptor containing length of buffer written by hardware
255 * @skb: sk_buff to place the data into
256 *
257 * This function will add the data contained in rx_buffer->page to the skb.
258 * This is done either through a direct copy if the data in the buffer is
259 * less than the skb header size, otherwise it will just attach the page as
260 * a frag to the skb.
261 *
262 * The function will then update the page offset if necessary and return
263 * true if the buffer can be reused by the interface.
264 **/
265 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
266 union fm10k_rx_desc *rx_desc,
267 struct sk_buff *skb)
268 {
269 struct page *page = rx_buffer->page;
270 unsigned char *va = page_address(page) + rx_buffer->page_offset;
271 unsigned int size = le16_to_cpu(rx_desc->w.length);
272 #if (PAGE_SIZE < 8192)
273 unsigned int truesize = FM10K_RX_BUFSZ;
274 #else
275 unsigned int truesize = SKB_DATA_ALIGN(size);
276 #endif
277 unsigned int pull_len;
278
279 if (unlikely(skb_is_nonlinear(skb)))
280 goto add_tail_frag;
281
282 if (likely(size <= FM10K_RX_HDR_LEN)) {
283 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
284
285 /* page is not reserved, we can reuse buffer as-is */
286 if (likely(!fm10k_page_is_reserved(page)))
287 return true;
288
289 /* this page cannot be reused so discard it */
290 __free_page(page);
291 return false;
292 }
293
294 /* we need the header to contain the greater of either ETH_HLEN or
295 * 60 bytes if the skb->len is less than 60 for skb_pad.
296 */
297 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
298
299 /* align pull length to size of long to optimize memcpy performance */
300 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
301
302 /* update all of the pointers */
303 va += pull_len;
304 size -= pull_len;
305
306 add_tail_frag:
307 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
308 (unsigned long)va & ~PAGE_MASK, size, truesize);
309
310 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
311 }
312
313 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
314 union fm10k_rx_desc *rx_desc,
315 struct sk_buff *skb)
316 {
317 struct fm10k_rx_buffer *rx_buffer;
318 struct page *page;
319
320 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
321 page = rx_buffer->page;
322 prefetchw(page);
323
324 if (likely(!skb)) {
325 void *page_addr = page_address(page) +
326 rx_buffer->page_offset;
327
328 /* prefetch first cache line of first page */
329 prefetch(page_addr);
330 #if L1_CACHE_BYTES < 128
331 prefetch(page_addr + L1_CACHE_BYTES);
332 #endif
333
334 /* allocate a skb to store the frags */
335 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
336 FM10K_RX_HDR_LEN);
337 if (unlikely(!skb)) {
338 rx_ring->rx_stats.alloc_failed++;
339 return NULL;
340 }
341
342 /* we will be copying header into skb->data in
343 * pskb_may_pull so it is in our interest to prefetch
344 * it now to avoid a possible cache miss
345 */
346 prefetchw(skb->data);
347 }
348
349 /* we are reusing so sync this buffer for CPU use */
350 dma_sync_single_range_for_cpu(rx_ring->dev,
351 rx_buffer->dma,
352 rx_buffer->page_offset,
353 FM10K_RX_BUFSZ,
354 DMA_FROM_DEVICE);
355
356 /* pull page into skb */
357 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
358 /* hand second half of page back to the ring */
359 fm10k_reuse_rx_page(rx_ring, rx_buffer);
360 } else {
361 /* we are not reusing the buffer so unmap it */
362 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
363 PAGE_SIZE, DMA_FROM_DEVICE);
364 }
365
366 /* clear contents of rx_buffer */
367 rx_buffer->page = NULL;
368
369 return skb;
370 }
371
372 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
373 union fm10k_rx_desc *rx_desc,
374 struct sk_buff *skb)
375 {
376 skb_checksum_none_assert(skb);
377
378 /* Rx checksum disabled via ethtool */
379 if (!(ring->netdev->features & NETIF_F_RXCSUM))
380 return;
381
382 /* TCP/UDP checksum error bit is set */
383 if (fm10k_test_staterr(rx_desc,
384 FM10K_RXD_STATUS_L4E |
385 FM10K_RXD_STATUS_L4E2 |
386 FM10K_RXD_STATUS_IPE |
387 FM10K_RXD_STATUS_IPE2)) {
388 ring->rx_stats.csum_err++;
389 return;
390 }
391
392 /* It must be a TCP or UDP packet with a valid checksum */
393 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
394 skb->encapsulation = true;
395 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
396 return;
397
398 skb->ip_summed = CHECKSUM_UNNECESSARY;
399
400 ring->rx_stats.csum_good++;
401 }
402
403 #define FM10K_RSS_L4_TYPES_MASK \
404 (BIT(FM10K_RSSTYPE_IPV4_TCP) | \
405 BIT(FM10K_RSSTYPE_IPV4_UDP) | \
406 BIT(FM10K_RSSTYPE_IPV6_TCP) | \
407 BIT(FM10K_RSSTYPE_IPV6_UDP))
408
409 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
410 union fm10k_rx_desc *rx_desc,
411 struct sk_buff *skb)
412 {
413 u16 rss_type;
414
415 if (!(ring->netdev->features & NETIF_F_RXHASH))
416 return;
417
418 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
419 if (!rss_type)
420 return;
421
422 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
423 (BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
424 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
425 }
426
427 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
428 union fm10k_rx_desc __maybe_unused *rx_desc,
429 struct sk_buff *skb)
430 {
431 struct net_device *dev = rx_ring->netdev;
432 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
433
434 /* check to see if DGLORT belongs to a MACVLAN */
435 if (l2_accel) {
436 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
437
438 idx -= l2_accel->dglort;
439 if (idx < l2_accel->size && l2_accel->macvlan[idx])
440 dev = l2_accel->macvlan[idx];
441 else
442 l2_accel = NULL;
443 }
444
445 skb->protocol = eth_type_trans(skb, dev);
446
447 if (!l2_accel)
448 return;
449
450 /* update MACVLAN statistics */
451 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
452 !!(rx_desc->w.hdr_info &
453 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
454 }
455
456 /**
457 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
458 * @rx_ring: rx descriptor ring packet is being transacted on
459 * @rx_desc: pointer to the EOP Rx descriptor
460 * @skb: pointer to current skb being populated
461 *
462 * This function checks the ring, descriptor, and packet information in
463 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
464 * other fields within the skb.
465 **/
466 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
467 union fm10k_rx_desc *rx_desc,
468 struct sk_buff *skb)
469 {
470 unsigned int len = skb->len;
471
472 fm10k_rx_hash(rx_ring, rx_desc, skb);
473
474 fm10k_rx_checksum(rx_ring, rx_desc, skb);
475
476 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
477
478 skb_record_rx_queue(skb, rx_ring->queue_index);
479
480 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
481
482 if (rx_desc->w.vlan) {
483 u16 vid = le16_to_cpu(rx_desc->w.vlan);
484
485 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
486 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
487 else if (vid & VLAN_PRIO_MASK)
488 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
489 vid & VLAN_PRIO_MASK);
490 }
491
492 fm10k_type_trans(rx_ring, rx_desc, skb);
493
494 return len;
495 }
496
497 /**
498 * fm10k_is_non_eop - process handling of non-EOP buffers
499 * @rx_ring: Rx ring being processed
500 * @rx_desc: Rx descriptor for current buffer
501 *
502 * This function updates next to clean. If the buffer is an EOP buffer
503 * this function exits returning false, otherwise it will place the
504 * sk_buff in the next buffer to be chained and return true indicating
505 * that this is in fact a non-EOP buffer.
506 **/
507 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
508 union fm10k_rx_desc *rx_desc)
509 {
510 u32 ntc = rx_ring->next_to_clean + 1;
511
512 /* fetch, update, and store next to clean */
513 ntc = (ntc < rx_ring->count) ? ntc : 0;
514 rx_ring->next_to_clean = ntc;
515
516 prefetch(FM10K_RX_DESC(rx_ring, ntc));
517
518 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
519 return false;
520
521 return true;
522 }
523
524 /**
525 * fm10k_cleanup_headers - Correct corrupted or empty headers
526 * @rx_ring: rx descriptor ring packet is being transacted on
527 * @rx_desc: pointer to the EOP Rx descriptor
528 * @skb: pointer to current skb being fixed
529 *
530 * Address the case where we are pulling data in on pages only
531 * and as such no data is present in the skb header.
532 *
533 * In addition if skb is not at least 60 bytes we need to pad it so that
534 * it is large enough to qualify as a valid Ethernet frame.
535 *
536 * Returns true if an error was encountered and skb was freed.
537 **/
538 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
539 union fm10k_rx_desc *rx_desc,
540 struct sk_buff *skb)
541 {
542 if (unlikely((fm10k_test_staterr(rx_desc,
543 FM10K_RXD_STATUS_RXE)))) {
544 #define FM10K_TEST_RXD_BIT(rxd, bit) \
545 ((rxd)->w.csum_err & cpu_to_le16(bit))
546 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
547 rx_ring->rx_stats.switch_errors++;
548 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
549 rx_ring->rx_stats.drops++;
550 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
551 rx_ring->rx_stats.pp_errors++;
552 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
553 rx_ring->rx_stats.link_errors++;
554 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
555 rx_ring->rx_stats.length_errors++;
556 dev_kfree_skb_any(skb);
557 rx_ring->rx_stats.errors++;
558 return true;
559 }
560
561 /* if eth_skb_pad returns an error the skb was freed */
562 if (eth_skb_pad(skb))
563 return true;
564
565 return false;
566 }
567
568 /**
569 * fm10k_receive_skb - helper function to handle rx indications
570 * @q_vector: structure containing interrupt and ring information
571 * @skb: packet to send up
572 **/
573 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
574 struct sk_buff *skb)
575 {
576 napi_gro_receive(&q_vector->napi, skb);
577 }
578
579 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
580 struct fm10k_ring *rx_ring,
581 int budget)
582 {
583 struct sk_buff *skb = rx_ring->skb;
584 unsigned int total_bytes = 0, total_packets = 0;
585 u16 cleaned_count = fm10k_desc_unused(rx_ring);
586
587 while (likely(total_packets < budget)) {
588 union fm10k_rx_desc *rx_desc;
589
590 /* return some buffers to hardware, one at a time is too slow */
591 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
592 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
593 cleaned_count = 0;
594 }
595
596 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
597
598 if (!rx_desc->d.staterr)
599 break;
600
601 /* This memory barrier is needed to keep us from reading
602 * any other fields out of the rx_desc until we know the
603 * descriptor has been written back
604 */
605 dma_rmb();
606
607 /* retrieve a buffer from the ring */
608 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
609
610 /* exit if we failed to retrieve a buffer */
611 if (!skb)
612 break;
613
614 cleaned_count++;
615
616 /* fetch next buffer in frame if non-eop */
617 if (fm10k_is_non_eop(rx_ring, rx_desc))
618 continue;
619
620 /* verify the packet layout is correct */
621 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
622 skb = NULL;
623 continue;
624 }
625
626 /* populate checksum, timestamp, VLAN, and protocol */
627 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
628
629 fm10k_receive_skb(q_vector, skb);
630
631 /* reset skb pointer */
632 skb = NULL;
633
634 /* update budget accounting */
635 total_packets++;
636 }
637
638 /* place incomplete frames back on ring for completion */
639 rx_ring->skb = skb;
640
641 u64_stats_update_begin(&rx_ring->syncp);
642 rx_ring->stats.packets += total_packets;
643 rx_ring->stats.bytes += total_bytes;
644 u64_stats_update_end(&rx_ring->syncp);
645 q_vector->rx.total_packets += total_packets;
646 q_vector->rx.total_bytes += total_bytes;
647
648 return total_packets;
649 }
650
651 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
652 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
653 {
654 struct fm10k_intfc *interface = netdev_priv(skb->dev);
655 struct fm10k_vxlan_port *vxlan_port;
656
657 /* we can only offload a vxlan if we recognize it as such */
658 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
659 struct fm10k_vxlan_port, list);
660
661 if (!vxlan_port)
662 return NULL;
663 if (vxlan_port->port != udp_hdr(skb)->dest)
664 return NULL;
665
666 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
667 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
668 }
669
670 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
671 #define NVGRE_TNI htons(0x2000)
672 struct fm10k_nvgre_hdr {
673 __be16 flags;
674 __be16 proto;
675 __be32 tni;
676 };
677
678 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
679 {
680 struct fm10k_nvgre_hdr *nvgre_hdr;
681 int hlen = ip_hdrlen(skb);
682
683 /* currently only IPv4 is supported due to hlen above */
684 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
685 return NULL;
686
687 /* our transport header should be NVGRE */
688 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
689
690 /* verify all reserved flags are 0 */
691 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
692 return NULL;
693
694 /* report start of ethernet header */
695 if (nvgre_hdr->flags & NVGRE_TNI)
696 return (struct ethhdr *)(nvgre_hdr + 1);
697
698 return (struct ethhdr *)(&nvgre_hdr->tni);
699 }
700
701 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
702 {
703 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
704 struct ethhdr *eth_hdr;
705
706 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
707 skb->inner_protocol != htons(ETH_P_TEB))
708 return 0;
709
710 switch (vlan_get_protocol(skb)) {
711 case htons(ETH_P_IP):
712 l4_hdr = ip_hdr(skb)->protocol;
713 break;
714 case htons(ETH_P_IPV6):
715 l4_hdr = ipv6_hdr(skb)->nexthdr;
716 break;
717 default:
718 return 0;
719 }
720
721 switch (l4_hdr) {
722 case IPPROTO_UDP:
723 eth_hdr = fm10k_port_is_vxlan(skb);
724 break;
725 case IPPROTO_GRE:
726 eth_hdr = fm10k_gre_is_nvgre(skb);
727 break;
728 default:
729 return 0;
730 }
731
732 if (!eth_hdr)
733 return 0;
734
735 switch (eth_hdr->h_proto) {
736 case htons(ETH_P_IP):
737 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
738 break;
739 case htons(ETH_P_IPV6):
740 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
741 break;
742 default:
743 return 0;
744 }
745
746 switch (inner_l4_hdr) {
747 case IPPROTO_TCP:
748 inner_l4_hlen = inner_tcp_hdrlen(skb);
749 break;
750 case IPPROTO_UDP:
751 inner_l4_hlen = 8;
752 break;
753 default:
754 return 0;
755 }
756
757 /* The hardware allows tunnel offloads only if the combined inner and
758 * outer header is 184 bytes or less
759 */
760 if (skb_inner_transport_header(skb) + inner_l4_hlen -
761 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
762 return 0;
763
764 return eth_hdr->h_proto;
765 }
766
767 static int fm10k_tso(struct fm10k_ring *tx_ring,
768 struct fm10k_tx_buffer *first)
769 {
770 struct sk_buff *skb = first->skb;
771 struct fm10k_tx_desc *tx_desc;
772 unsigned char *th;
773 u8 hdrlen;
774
775 if (skb->ip_summed != CHECKSUM_PARTIAL)
776 return 0;
777
778 if (!skb_is_gso(skb))
779 return 0;
780
781 /* compute header lengths */
782 if (skb->encapsulation) {
783 if (!fm10k_tx_encap_offload(skb))
784 goto err_vxlan;
785 th = skb_inner_transport_header(skb);
786 } else {
787 th = skb_transport_header(skb);
788 }
789
790 /* compute offset from SOF to transport header and add header len */
791 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
792
793 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
794
795 /* update gso size and bytecount with header size */
796 first->gso_segs = skb_shinfo(skb)->gso_segs;
797 first->bytecount += (first->gso_segs - 1) * hdrlen;
798
799 /* populate Tx descriptor header size and mss */
800 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
801 tx_desc->hdrlen = hdrlen;
802 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
803
804 return 1;
805 err_vxlan:
806 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
807 if (!net_ratelimit())
808 netdev_err(tx_ring->netdev,
809 "TSO requested for unsupported tunnel, disabling offload\n");
810 return -1;
811 }
812
813 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
814 struct fm10k_tx_buffer *first)
815 {
816 struct sk_buff *skb = first->skb;
817 struct fm10k_tx_desc *tx_desc;
818 union {
819 struct iphdr *ipv4;
820 struct ipv6hdr *ipv6;
821 u8 *raw;
822 } network_hdr;
823 __be16 protocol;
824 u8 l4_hdr = 0;
825
826 if (skb->ip_summed != CHECKSUM_PARTIAL)
827 goto no_csum;
828
829 if (skb->encapsulation) {
830 protocol = fm10k_tx_encap_offload(skb);
831 if (!protocol) {
832 if (skb_checksum_help(skb)) {
833 dev_warn(tx_ring->dev,
834 "failed to offload encap csum!\n");
835 tx_ring->tx_stats.csum_err++;
836 }
837 goto no_csum;
838 }
839 network_hdr.raw = skb_inner_network_header(skb);
840 } else {
841 protocol = vlan_get_protocol(skb);
842 network_hdr.raw = skb_network_header(skb);
843 }
844
845 switch (protocol) {
846 case htons(ETH_P_IP):
847 l4_hdr = network_hdr.ipv4->protocol;
848 break;
849 case htons(ETH_P_IPV6):
850 l4_hdr = network_hdr.ipv6->nexthdr;
851 break;
852 default:
853 if (unlikely(net_ratelimit())) {
854 dev_warn(tx_ring->dev,
855 "partial checksum but ip version=%x!\n",
856 protocol);
857 }
858 tx_ring->tx_stats.csum_err++;
859 goto no_csum;
860 }
861
862 switch (l4_hdr) {
863 case IPPROTO_TCP:
864 case IPPROTO_UDP:
865 break;
866 case IPPROTO_GRE:
867 if (skb->encapsulation)
868 break;
869 default:
870 if (unlikely(net_ratelimit())) {
871 dev_warn(tx_ring->dev,
872 "partial checksum but l4 proto=%x!\n",
873 l4_hdr);
874 }
875 tx_ring->tx_stats.csum_err++;
876 goto no_csum;
877 }
878
879 /* update TX checksum flag */
880 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
881 tx_ring->tx_stats.csum_good++;
882
883 no_csum:
884 /* populate Tx descriptor header size and mss */
885 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
886 tx_desc->hdrlen = 0;
887 tx_desc->mss = 0;
888 }
889
890 #define FM10K_SET_FLAG(_input, _flag, _result) \
891 ((_flag <= _result) ? \
892 ((u32)(_input & _flag) * (_result / _flag)) : \
893 ((u32)(_input & _flag) / (_flag / _result)))
894
895 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
896 {
897 /* set type for advanced descriptor with frame checksum insertion */
898 u32 desc_flags = 0;
899
900 /* set checksum offload bits */
901 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
902 FM10K_TXD_FLAG_CSUM);
903
904 return desc_flags;
905 }
906
907 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
908 struct fm10k_tx_desc *tx_desc, u16 i,
909 dma_addr_t dma, unsigned int size, u8 desc_flags)
910 {
911 /* set RS and INT for last frame in a cache line */
912 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
913 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
914
915 /* record values to descriptor */
916 tx_desc->buffer_addr = cpu_to_le64(dma);
917 tx_desc->flags = desc_flags;
918 tx_desc->buflen = cpu_to_le16(size);
919
920 /* return true if we just wrapped the ring */
921 return i == tx_ring->count;
922 }
923
924 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
925 {
926 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
927
928 /* Memory barrier before checking head and tail */
929 smp_mb();
930
931 /* Check again in a case another CPU has just made room available */
932 if (likely(fm10k_desc_unused(tx_ring) < size))
933 return -EBUSY;
934
935 /* A reprieve! - use start_queue because it doesn't call schedule */
936 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
937 ++tx_ring->tx_stats.restart_queue;
938 return 0;
939 }
940
941 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
942 {
943 if (likely(fm10k_desc_unused(tx_ring) >= size))
944 return 0;
945 return __fm10k_maybe_stop_tx(tx_ring, size);
946 }
947
948 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
949 struct fm10k_tx_buffer *first)
950 {
951 struct sk_buff *skb = first->skb;
952 struct fm10k_tx_buffer *tx_buffer;
953 struct fm10k_tx_desc *tx_desc;
954 struct skb_frag_struct *frag;
955 unsigned char *data;
956 dma_addr_t dma;
957 unsigned int data_len, size;
958 u32 tx_flags = first->tx_flags;
959 u16 i = tx_ring->next_to_use;
960 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
961
962 tx_desc = FM10K_TX_DESC(tx_ring, i);
963
964 /* add HW VLAN tag */
965 if (skb_vlan_tag_present(skb))
966 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
967 else
968 tx_desc->vlan = 0;
969
970 size = skb_headlen(skb);
971 data = skb->data;
972
973 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
974
975 data_len = skb->data_len;
976 tx_buffer = first;
977
978 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
979 if (dma_mapping_error(tx_ring->dev, dma))
980 goto dma_error;
981
982 /* record length, and DMA address */
983 dma_unmap_len_set(tx_buffer, len, size);
984 dma_unmap_addr_set(tx_buffer, dma, dma);
985
986 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
987 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
988 FM10K_MAX_DATA_PER_TXD, flags)) {
989 tx_desc = FM10K_TX_DESC(tx_ring, 0);
990 i = 0;
991 }
992
993 dma += FM10K_MAX_DATA_PER_TXD;
994 size -= FM10K_MAX_DATA_PER_TXD;
995 }
996
997 if (likely(!data_len))
998 break;
999
1000 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1001 dma, size, flags)) {
1002 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1003 i = 0;
1004 }
1005
1006 size = skb_frag_size(frag);
1007 data_len -= size;
1008
1009 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1010 DMA_TO_DEVICE);
1011
1012 tx_buffer = &tx_ring->tx_buffer[i];
1013 }
1014
1015 /* write last descriptor with LAST bit set */
1016 flags |= FM10K_TXD_FLAG_LAST;
1017
1018 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1019 i = 0;
1020
1021 /* record bytecount for BQL */
1022 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1023
1024 /* record SW timestamp if HW timestamp is not available */
1025 skb_tx_timestamp(first->skb);
1026
1027 /* Force memory writes to complete before letting h/w know there
1028 * are new descriptors to fetch. (Only applicable for weak-ordered
1029 * memory model archs, such as IA-64).
1030 *
1031 * We also need this memory barrier to make certain all of the
1032 * status bits have been updated before next_to_watch is written.
1033 */
1034 wmb();
1035
1036 /* set next_to_watch value indicating a packet is present */
1037 first->next_to_watch = tx_desc;
1038
1039 tx_ring->next_to_use = i;
1040
1041 /* Make sure there is space in the ring for the next send. */
1042 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1043
1044 /* notify HW of packet */
1045 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1046 writel(i, tx_ring->tail);
1047
1048 /* we need this if more than one processor can write to our tail
1049 * at a time, it synchronizes IO on IA64/Altix systems
1050 */
1051 mmiowb();
1052 }
1053
1054 return;
1055 dma_error:
1056 dev_err(tx_ring->dev, "TX DMA map failed\n");
1057
1058 /* clear dma mappings for failed tx_buffer map */
1059 for (;;) {
1060 tx_buffer = &tx_ring->tx_buffer[i];
1061 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1062 if (tx_buffer == first)
1063 break;
1064 if (i == 0)
1065 i = tx_ring->count;
1066 i--;
1067 }
1068
1069 tx_ring->next_to_use = i;
1070 }
1071
1072 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1073 struct fm10k_ring *tx_ring)
1074 {
1075 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1076 struct fm10k_tx_buffer *first;
1077 unsigned short f;
1078 u32 tx_flags = 0;
1079 int tso;
1080
1081 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1082 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1083 * + 2 desc gap to keep tail from touching head
1084 * otherwise try next time
1085 */
1086 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1087 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1088
1089 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1090 tx_ring->tx_stats.tx_busy++;
1091 return NETDEV_TX_BUSY;
1092 }
1093
1094 /* record the location of the first descriptor for this packet */
1095 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1096 first->skb = skb;
1097 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1098 first->gso_segs = 1;
1099
1100 /* record initial flags and protocol */
1101 first->tx_flags = tx_flags;
1102
1103 tso = fm10k_tso(tx_ring, first);
1104 if (tso < 0)
1105 goto out_drop;
1106 else if (!tso)
1107 fm10k_tx_csum(tx_ring, first);
1108
1109 fm10k_tx_map(tx_ring, first);
1110
1111 return NETDEV_TX_OK;
1112
1113 out_drop:
1114 dev_kfree_skb_any(first->skb);
1115 first->skb = NULL;
1116
1117 return NETDEV_TX_OK;
1118 }
1119
1120 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1121 {
1122 return ring->stats.packets;
1123 }
1124
1125 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1126 {
1127 /* use SW head and tail until we have real hardware */
1128 u32 head = ring->next_to_clean;
1129 u32 tail = ring->next_to_use;
1130
1131 return ((head <= tail) ? tail : tail + ring->count) - head;
1132 }
1133
1134 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1135 {
1136 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1137 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1138 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1139
1140 clear_check_for_tx_hang(tx_ring);
1141
1142 /* Check for a hung queue, but be thorough. This verifies
1143 * that a transmit has been completed since the previous
1144 * check AND there is at least one packet pending. By
1145 * requiring this to fail twice we avoid races with
1146 * clearing the ARMED bit and conditions where we
1147 * run the check_tx_hang logic with a transmit completion
1148 * pending but without time to complete it yet.
1149 */
1150 if (!tx_pending || (tx_done_old != tx_done)) {
1151 /* update completed stats and continue */
1152 tx_ring->tx_stats.tx_done_old = tx_done;
1153 /* reset the countdown */
1154 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1155
1156 return false;
1157 }
1158
1159 /* make sure it is true for two checks in a row */
1160 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1161 }
1162
1163 /**
1164 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1165 * @interface: driver private struct
1166 **/
1167 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1168 {
1169 /* Do the reset outside of interrupt context */
1170 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1171 interface->tx_timeout_count++;
1172 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1173 fm10k_service_event_schedule(interface);
1174 }
1175 }
1176
1177 /**
1178 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1179 * @q_vector: structure containing interrupt and ring information
1180 * @tx_ring: tx ring to clean
1181 * @napi_budget: Used to determine if we are in netpoll
1182 **/
1183 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1184 struct fm10k_ring *tx_ring, int napi_budget)
1185 {
1186 struct fm10k_intfc *interface = q_vector->interface;
1187 struct fm10k_tx_buffer *tx_buffer;
1188 struct fm10k_tx_desc *tx_desc;
1189 unsigned int total_bytes = 0, total_packets = 0;
1190 unsigned int budget = q_vector->tx.work_limit;
1191 unsigned int i = tx_ring->next_to_clean;
1192
1193 if (test_bit(__FM10K_DOWN, &interface->state))
1194 return true;
1195
1196 tx_buffer = &tx_ring->tx_buffer[i];
1197 tx_desc = FM10K_TX_DESC(tx_ring, i);
1198 i -= tx_ring->count;
1199
1200 do {
1201 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1202
1203 /* if next_to_watch is not set then there is no work pending */
1204 if (!eop_desc)
1205 break;
1206
1207 /* prevent any other reads prior to eop_desc */
1208 read_barrier_depends();
1209
1210 /* if DD is not set pending work has not been completed */
1211 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1212 break;
1213
1214 /* clear next_to_watch to prevent false hangs */
1215 tx_buffer->next_to_watch = NULL;
1216
1217 /* update the statistics for this packet */
1218 total_bytes += tx_buffer->bytecount;
1219 total_packets += tx_buffer->gso_segs;
1220
1221 /* free the skb */
1222 napi_consume_skb(tx_buffer->skb, napi_budget);
1223
1224 /* unmap skb header data */
1225 dma_unmap_single(tx_ring->dev,
1226 dma_unmap_addr(tx_buffer, dma),
1227 dma_unmap_len(tx_buffer, len),
1228 DMA_TO_DEVICE);
1229
1230 /* clear tx_buffer data */
1231 tx_buffer->skb = NULL;
1232 dma_unmap_len_set(tx_buffer, len, 0);
1233
1234 /* unmap remaining buffers */
1235 while (tx_desc != eop_desc) {
1236 tx_buffer++;
1237 tx_desc++;
1238 i++;
1239 if (unlikely(!i)) {
1240 i -= tx_ring->count;
1241 tx_buffer = tx_ring->tx_buffer;
1242 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1243 }
1244
1245 /* unmap any remaining paged data */
1246 if (dma_unmap_len(tx_buffer, len)) {
1247 dma_unmap_page(tx_ring->dev,
1248 dma_unmap_addr(tx_buffer, dma),
1249 dma_unmap_len(tx_buffer, len),
1250 DMA_TO_DEVICE);
1251 dma_unmap_len_set(tx_buffer, len, 0);
1252 }
1253 }
1254
1255 /* move us one more past the eop_desc for start of next pkt */
1256 tx_buffer++;
1257 tx_desc++;
1258 i++;
1259 if (unlikely(!i)) {
1260 i -= tx_ring->count;
1261 tx_buffer = tx_ring->tx_buffer;
1262 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1263 }
1264
1265 /* issue prefetch for next Tx descriptor */
1266 prefetch(tx_desc);
1267
1268 /* update budget accounting */
1269 budget--;
1270 } while (likely(budget));
1271
1272 i += tx_ring->count;
1273 tx_ring->next_to_clean = i;
1274 u64_stats_update_begin(&tx_ring->syncp);
1275 tx_ring->stats.bytes += total_bytes;
1276 tx_ring->stats.packets += total_packets;
1277 u64_stats_update_end(&tx_ring->syncp);
1278 q_vector->tx.total_bytes += total_bytes;
1279 q_vector->tx.total_packets += total_packets;
1280
1281 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1282 /* schedule immediate reset if we believe we hung */
1283 struct fm10k_hw *hw = &interface->hw;
1284
1285 netif_err(interface, drv, tx_ring->netdev,
1286 "Detected Tx Unit Hang\n"
1287 " Tx Queue <%d>\n"
1288 " TDH, TDT <%x>, <%x>\n"
1289 " next_to_use <%x>\n"
1290 " next_to_clean <%x>\n",
1291 tx_ring->queue_index,
1292 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1293 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1294 tx_ring->next_to_use, i);
1295
1296 netif_stop_subqueue(tx_ring->netdev,
1297 tx_ring->queue_index);
1298
1299 netif_info(interface, probe, tx_ring->netdev,
1300 "tx hang %d detected on queue %d, resetting interface\n",
1301 interface->tx_timeout_count + 1,
1302 tx_ring->queue_index);
1303
1304 fm10k_tx_timeout_reset(interface);
1305
1306 /* the netdev is about to reset, no point in enabling stuff */
1307 return true;
1308 }
1309
1310 /* notify netdev of completed buffers */
1311 netdev_tx_completed_queue(txring_txq(tx_ring),
1312 total_packets, total_bytes);
1313
1314 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1315 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1316 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1317 /* Make sure that anybody stopping the queue after this
1318 * sees the new next_to_clean.
1319 */
1320 smp_mb();
1321 if (__netif_subqueue_stopped(tx_ring->netdev,
1322 tx_ring->queue_index) &&
1323 !test_bit(__FM10K_DOWN, &interface->state)) {
1324 netif_wake_subqueue(tx_ring->netdev,
1325 tx_ring->queue_index);
1326 ++tx_ring->tx_stats.restart_queue;
1327 }
1328 }
1329
1330 return !!budget;
1331 }
1332
1333 /**
1334 * fm10k_update_itr - update the dynamic ITR value based on packet size
1335 *
1336 * Stores a new ITR value based on strictly on packet size. The
1337 * divisors and thresholds used by this function were determined based
1338 * on theoretical maximum wire speed and testing data, in order to
1339 * minimize response time while increasing bulk throughput.
1340 *
1341 * @ring_container: Container for rings to have ITR updated
1342 **/
1343 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1344 {
1345 unsigned int avg_wire_size, packets, itr_round;
1346
1347 /* Only update ITR if we are using adaptive setting */
1348 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1349 goto clear_counts;
1350
1351 packets = ring_container->total_packets;
1352 if (!packets)
1353 goto clear_counts;
1354
1355 avg_wire_size = ring_container->total_bytes / packets;
1356
1357 /* The following is a crude approximation of:
1358 * wmem_default / (size + overhead) = desired_pkts_per_int
1359 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1360 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1361 *
1362 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1363 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1364 * formula down to
1365 *
1366 * (34 * (size + 24)) / (size + 640) = ITR
1367 *
1368 * We first do some math on the packet size and then finally bitshift
1369 * by 8 after rounding up. We also have to account for PCIe link speed
1370 * difference as ITR scales based on this.
1371 */
1372 if (avg_wire_size <= 360) {
1373 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1374 avg_wire_size *= 8;
1375 avg_wire_size += 376;
1376 } else if (avg_wire_size <= 1152) {
1377 /* 77K ints/sec to 45K ints/sec */
1378 avg_wire_size *= 3;
1379 avg_wire_size += 2176;
1380 } else if (avg_wire_size <= 1920) {
1381 /* 45K ints/sec to 38K ints/sec */
1382 avg_wire_size += 4480;
1383 } else {
1384 /* plateau at a limit of 38K ints/sec */
1385 avg_wire_size = 6656;
1386 }
1387
1388 /* Perform final bitshift for division after rounding up to ensure
1389 * that the calculation will never get below a 1. The bit shift
1390 * accounts for changes in the ITR due to PCIe link speed.
1391 */
1392 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1393 avg_wire_size += BIT(itr_round) - 1;
1394 avg_wire_size >>= itr_round;
1395
1396 /* write back value and retain adaptive flag */
1397 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1398
1399 clear_counts:
1400 ring_container->total_bytes = 0;
1401 ring_container->total_packets = 0;
1402 }
1403
1404 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1405 {
1406 /* Enable auto-mask and clear the current mask */
1407 u32 itr = FM10K_ITR_ENABLE;
1408
1409 /* Update Tx ITR */
1410 fm10k_update_itr(&q_vector->tx);
1411
1412 /* Update Rx ITR */
1413 fm10k_update_itr(&q_vector->rx);
1414
1415 /* Store Tx itr in timer slot 0 */
1416 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1417
1418 /* Shift Rx itr to timer slot 1 */
1419 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1420
1421 /* Write the final value to the ITR register */
1422 writel(itr, q_vector->itr);
1423 }
1424
1425 static int fm10k_poll(struct napi_struct *napi, int budget)
1426 {
1427 struct fm10k_q_vector *q_vector =
1428 container_of(napi, struct fm10k_q_vector, napi);
1429 struct fm10k_ring *ring;
1430 int per_ring_budget, work_done = 0;
1431 bool clean_complete = true;
1432
1433 fm10k_for_each_ring(ring, q_vector->tx) {
1434 if (!fm10k_clean_tx_irq(q_vector, ring, budget))
1435 clean_complete = false;
1436 }
1437
1438 /* Handle case where we are called by netpoll with a budget of 0 */
1439 if (budget <= 0)
1440 return budget;
1441
1442 /* attempt to distribute budget to each queue fairly, but don't
1443 * allow the budget to go below 1 because we'll exit polling
1444 */
1445 if (q_vector->rx.count > 1)
1446 per_ring_budget = max(budget / q_vector->rx.count, 1);
1447 else
1448 per_ring_budget = budget;
1449
1450 fm10k_for_each_ring(ring, q_vector->rx) {
1451 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1452
1453 work_done += work;
1454 if (work >= per_ring_budget)
1455 clean_complete = false;
1456 }
1457
1458 /* If all work not completed, return budget and keep polling */
1459 if (!clean_complete)
1460 return budget;
1461
1462 /* all work done, exit the polling mode */
1463 napi_complete_done(napi, work_done);
1464
1465 /* re-enable the q_vector */
1466 fm10k_qv_enable(q_vector);
1467
1468 return 0;
1469 }
1470
1471 /**
1472 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1473 * @interface: board private structure to initialize
1474 *
1475 * When QoS (Quality of Service) is enabled, allocate queues for
1476 * each traffic class. If multiqueue isn't available,then abort QoS
1477 * initialization.
1478 *
1479 * This function handles all combinations of Qos and RSS.
1480 *
1481 **/
1482 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1483 {
1484 struct net_device *dev = interface->netdev;
1485 struct fm10k_ring_feature *f;
1486 int rss_i, i;
1487 int pcs;
1488
1489 /* Map queue offset and counts onto allocated tx queues */
1490 pcs = netdev_get_num_tc(dev);
1491
1492 if (pcs <= 1)
1493 return false;
1494
1495 /* set QoS mask and indices */
1496 f = &interface->ring_feature[RING_F_QOS];
1497 f->indices = pcs;
1498 f->mask = BIT(fls(pcs - 1)) - 1;
1499
1500 /* determine the upper limit for our current DCB mode */
1501 rss_i = interface->hw.mac.max_queues / pcs;
1502 rss_i = BIT(fls(rss_i) - 1);
1503
1504 /* set RSS mask and indices */
1505 f = &interface->ring_feature[RING_F_RSS];
1506 rss_i = min_t(u16, rss_i, f->limit);
1507 f->indices = rss_i;
1508 f->mask = BIT(fls(rss_i - 1)) - 1;
1509
1510 /* configure pause class to queue mapping */
1511 for (i = 0; i < pcs; i++)
1512 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1513
1514 interface->num_rx_queues = rss_i * pcs;
1515 interface->num_tx_queues = rss_i * pcs;
1516
1517 return true;
1518 }
1519
1520 /**
1521 * fm10k_set_rss_queues: Allocate queues for RSS
1522 * @interface: board private structure to initialize
1523 *
1524 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1525 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1526 *
1527 **/
1528 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1529 {
1530 struct fm10k_ring_feature *f;
1531 u16 rss_i;
1532
1533 f = &interface->ring_feature[RING_F_RSS];
1534 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1535
1536 /* record indices and power of 2 mask for RSS */
1537 f->indices = rss_i;
1538 f->mask = BIT(fls(rss_i - 1)) - 1;
1539
1540 interface->num_rx_queues = rss_i;
1541 interface->num_tx_queues = rss_i;
1542
1543 return true;
1544 }
1545
1546 /**
1547 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1548 * @interface: board private structure to initialize
1549 *
1550 * This is the top level queue allocation routine. The order here is very
1551 * important, starting with the "most" number of features turned on at once,
1552 * and ending with the smallest set of features. This way large combinations
1553 * can be allocated if they're turned on, and smaller combinations are the
1554 * fallthrough conditions.
1555 *
1556 **/
1557 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1558 {
1559 /* Attempt to setup QoS and RSS first */
1560 if (fm10k_set_qos_queues(interface))
1561 return;
1562
1563 /* If we don't have QoS, just fallback to only RSS. */
1564 fm10k_set_rss_queues(interface);
1565 }
1566
1567 /**
1568 * fm10k_reset_num_queues - Reset the number of queues to zero
1569 * @interface: board private structure
1570 *
1571 * This function should be called whenever we need to reset the number of
1572 * queues after an error condition.
1573 */
1574 static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
1575 {
1576 interface->num_tx_queues = 0;
1577 interface->num_rx_queues = 0;
1578 interface->num_q_vectors = 0;
1579 }
1580
1581 /**
1582 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1583 * @interface: board private structure to initialize
1584 * @v_count: q_vectors allocated on interface, used for ring interleaving
1585 * @v_idx: index of vector in interface struct
1586 * @txr_count: total number of Tx rings to allocate
1587 * @txr_idx: index of first Tx ring to allocate
1588 * @rxr_count: total number of Rx rings to allocate
1589 * @rxr_idx: index of first Rx ring to allocate
1590 *
1591 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1592 **/
1593 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1594 unsigned int v_count, unsigned int v_idx,
1595 unsigned int txr_count, unsigned int txr_idx,
1596 unsigned int rxr_count, unsigned int rxr_idx)
1597 {
1598 struct fm10k_q_vector *q_vector;
1599 struct fm10k_ring *ring;
1600 int ring_count, size;
1601
1602 ring_count = txr_count + rxr_count;
1603 size = sizeof(struct fm10k_q_vector) +
1604 (sizeof(struct fm10k_ring) * ring_count);
1605
1606 /* allocate q_vector and rings */
1607 q_vector = kzalloc(size, GFP_KERNEL);
1608 if (!q_vector)
1609 return -ENOMEM;
1610
1611 /* initialize NAPI */
1612 netif_napi_add(interface->netdev, &q_vector->napi,
1613 fm10k_poll, NAPI_POLL_WEIGHT);
1614
1615 /* tie q_vector and interface together */
1616 interface->q_vector[v_idx] = q_vector;
1617 q_vector->interface = interface;
1618 q_vector->v_idx = v_idx;
1619
1620 /* initialize pointer to rings */
1621 ring = q_vector->ring;
1622
1623 /* save Tx ring container info */
1624 q_vector->tx.ring = ring;
1625 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1626 q_vector->tx.itr = interface->tx_itr;
1627 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1628 q_vector->tx.count = txr_count;
1629
1630 while (txr_count) {
1631 /* assign generic ring traits */
1632 ring->dev = &interface->pdev->dev;
1633 ring->netdev = interface->netdev;
1634
1635 /* configure backlink on ring */
1636 ring->q_vector = q_vector;
1637
1638 /* apply Tx specific ring traits */
1639 ring->count = interface->tx_ring_count;
1640 ring->queue_index = txr_idx;
1641
1642 /* assign ring to interface */
1643 interface->tx_ring[txr_idx] = ring;
1644
1645 /* update count and index */
1646 txr_count--;
1647 txr_idx += v_count;
1648
1649 /* push pointer to next ring */
1650 ring++;
1651 }
1652
1653 /* save Rx ring container info */
1654 q_vector->rx.ring = ring;
1655 q_vector->rx.itr = interface->rx_itr;
1656 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1657 q_vector->rx.count = rxr_count;
1658
1659 while (rxr_count) {
1660 /* assign generic ring traits */
1661 ring->dev = &interface->pdev->dev;
1662 ring->netdev = interface->netdev;
1663 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1664
1665 /* configure backlink on ring */
1666 ring->q_vector = q_vector;
1667
1668 /* apply Rx specific ring traits */
1669 ring->count = interface->rx_ring_count;
1670 ring->queue_index = rxr_idx;
1671
1672 /* assign ring to interface */
1673 interface->rx_ring[rxr_idx] = ring;
1674
1675 /* update count and index */
1676 rxr_count--;
1677 rxr_idx += v_count;
1678
1679 /* push pointer to next ring */
1680 ring++;
1681 }
1682
1683 fm10k_dbg_q_vector_init(q_vector);
1684
1685 return 0;
1686 }
1687
1688 /**
1689 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1690 * @interface: board private structure to initialize
1691 * @v_idx: Index of vector to be freed
1692 *
1693 * This function frees the memory allocated to the q_vector. In addition if
1694 * NAPI is enabled it will delete any references to the NAPI struct prior
1695 * to freeing the q_vector.
1696 **/
1697 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1698 {
1699 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1700 struct fm10k_ring *ring;
1701
1702 fm10k_dbg_q_vector_exit(q_vector);
1703
1704 fm10k_for_each_ring(ring, q_vector->tx)
1705 interface->tx_ring[ring->queue_index] = NULL;
1706
1707 fm10k_for_each_ring(ring, q_vector->rx)
1708 interface->rx_ring[ring->queue_index] = NULL;
1709
1710 interface->q_vector[v_idx] = NULL;
1711 netif_napi_del(&q_vector->napi);
1712 kfree_rcu(q_vector, rcu);
1713 }
1714
1715 /**
1716 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1717 * @interface: board private structure to initialize
1718 *
1719 * We allocate one q_vector per queue interrupt. If allocation fails we
1720 * return -ENOMEM.
1721 **/
1722 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1723 {
1724 unsigned int q_vectors = interface->num_q_vectors;
1725 unsigned int rxr_remaining = interface->num_rx_queues;
1726 unsigned int txr_remaining = interface->num_tx_queues;
1727 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1728 int err;
1729
1730 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1731 for (; rxr_remaining; v_idx++) {
1732 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1733 0, 0, 1, rxr_idx);
1734 if (err)
1735 goto err_out;
1736
1737 /* update counts and index */
1738 rxr_remaining--;
1739 rxr_idx++;
1740 }
1741 }
1742
1743 for (; v_idx < q_vectors; v_idx++) {
1744 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1745 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1746
1747 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1748 tqpv, txr_idx,
1749 rqpv, rxr_idx);
1750
1751 if (err)
1752 goto err_out;
1753
1754 /* update counts and index */
1755 rxr_remaining -= rqpv;
1756 txr_remaining -= tqpv;
1757 rxr_idx++;
1758 txr_idx++;
1759 }
1760
1761 return 0;
1762
1763 err_out:
1764 fm10k_reset_num_queues(interface);
1765
1766 while (v_idx--)
1767 fm10k_free_q_vector(interface, v_idx);
1768
1769 return -ENOMEM;
1770 }
1771
1772 /**
1773 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1774 * @interface: board private structure to initialize
1775 *
1776 * This function frees the memory allocated to the q_vectors. In addition if
1777 * NAPI is enabled it will delete any references to the NAPI struct prior
1778 * to freeing the q_vector.
1779 **/
1780 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1781 {
1782 int v_idx = interface->num_q_vectors;
1783
1784 fm10k_reset_num_queues(interface);
1785
1786 while (v_idx--)
1787 fm10k_free_q_vector(interface, v_idx);
1788 }
1789
1790 /**
1791 * f10k_reset_msix_capability - reset MSI-X capability
1792 * @interface: board private structure to initialize
1793 *
1794 * Reset the MSI-X capability back to its starting state
1795 **/
1796 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1797 {
1798 pci_disable_msix(interface->pdev);
1799 kfree(interface->msix_entries);
1800 interface->msix_entries = NULL;
1801 }
1802
1803 /**
1804 * f10k_init_msix_capability - configure MSI-X capability
1805 * @interface: board private structure to initialize
1806 *
1807 * Attempt to configure the interrupts using the best available
1808 * capabilities of the hardware and the kernel.
1809 **/
1810 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1811 {
1812 struct fm10k_hw *hw = &interface->hw;
1813 int v_budget, vector;
1814
1815 /* It's easy to be greedy for MSI-X vectors, but it really
1816 * doesn't do us much good if we have a lot more vectors
1817 * than CPU's. So let's be conservative and only ask for
1818 * (roughly) the same number of vectors as there are CPU's.
1819 * the default is to use pairs of vectors
1820 */
1821 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1822 v_budget = min_t(u16, v_budget, num_online_cpus());
1823
1824 /* account for vectors not related to queues */
1825 v_budget += NON_Q_VECTORS(hw);
1826
1827 /* At the same time, hardware can only support a maximum of
1828 * hw.mac->max_msix_vectors vectors. With features
1829 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1830 * descriptor queues supported by our device. Thus, we cap it off in
1831 * those rare cases where the cpu count also exceeds our vector limit.
1832 */
1833 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1834
1835 /* A failure in MSI-X entry allocation is fatal. */
1836 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1837 GFP_KERNEL);
1838 if (!interface->msix_entries)
1839 return -ENOMEM;
1840
1841 /* populate entry values */
1842 for (vector = 0; vector < v_budget; vector++)
1843 interface->msix_entries[vector].entry = vector;
1844
1845 /* Attempt to enable MSI-X with requested value */
1846 v_budget = pci_enable_msix_range(interface->pdev,
1847 interface->msix_entries,
1848 MIN_MSIX_COUNT(hw),
1849 v_budget);
1850 if (v_budget < 0) {
1851 kfree(interface->msix_entries);
1852 interface->msix_entries = NULL;
1853 return -ENOMEM;
1854 }
1855
1856 /* record the number of queues available for q_vectors */
1857 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1858
1859 return 0;
1860 }
1861
1862 /**
1863 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1864 * @interface: Interface structure continaining rings and devices
1865 *
1866 * Cache the descriptor ring offsets for Qos
1867 **/
1868 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1869 {
1870 struct net_device *dev = interface->netdev;
1871 int pc, offset, rss_i, i, q_idx;
1872 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1873 u8 num_pcs = netdev_get_num_tc(dev);
1874
1875 if (num_pcs <= 1)
1876 return false;
1877
1878 rss_i = interface->ring_feature[RING_F_RSS].indices;
1879
1880 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1881 q_idx = pc;
1882 for (i = 0; i < rss_i; i++) {
1883 interface->tx_ring[offset + i]->reg_idx = q_idx;
1884 interface->tx_ring[offset + i]->qos_pc = pc;
1885 interface->rx_ring[offset + i]->reg_idx = q_idx;
1886 interface->rx_ring[offset + i]->qos_pc = pc;
1887 q_idx += pc_stride;
1888 }
1889 }
1890
1891 return true;
1892 }
1893
1894 /**
1895 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1896 * @interface: Interface structure continaining rings and devices
1897 *
1898 * Cache the descriptor ring offsets for RSS
1899 **/
1900 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1901 {
1902 int i;
1903
1904 for (i = 0; i < interface->num_rx_queues; i++)
1905 interface->rx_ring[i]->reg_idx = i;
1906
1907 for (i = 0; i < interface->num_tx_queues; i++)
1908 interface->tx_ring[i]->reg_idx = i;
1909 }
1910
1911 /**
1912 * fm10k_assign_rings - Map rings to network devices
1913 * @interface: Interface structure containing rings and devices
1914 *
1915 * This function is meant to go though and configure both the network
1916 * devices so that they contain rings, and configure the rings so that
1917 * they function with their network devices.
1918 **/
1919 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1920 {
1921 if (fm10k_cache_ring_qos(interface))
1922 return;
1923
1924 fm10k_cache_ring_rss(interface);
1925 }
1926
1927 static void fm10k_init_reta(struct fm10k_intfc *interface)
1928 {
1929 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1930 u32 reta;
1931
1932 /* If the Rx flow indirection table has been configured manually, we
1933 * need to maintain it when possible.
1934 */
1935 if (netif_is_rxfh_configured(interface->netdev)) {
1936 for (i = FM10K_RETA_SIZE; i--;) {
1937 reta = interface->reta[i];
1938 if ((((reta << 24) >> 24) < rss_i) &&
1939 (((reta << 16) >> 24) < rss_i) &&
1940 (((reta << 8) >> 24) < rss_i) &&
1941 (((reta) >> 24) < rss_i))
1942 continue;
1943
1944 /* this should never happen */
1945 dev_err(&interface->pdev->dev,
1946 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1947 goto repopulate_reta;
1948 }
1949
1950 /* do nothing if all of the elements are in bounds */
1951 return;
1952 }
1953
1954 repopulate_reta:
1955 fm10k_write_reta(interface, NULL);
1956 }
1957
1958 /**
1959 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1960 * @interface: board private structure to initialize
1961 *
1962 * We determine which queueing scheme to use based on...
1963 * - Hardware queue count (num_*_queues)
1964 * - defined by miscellaneous hardware support/features (RSS, etc.)
1965 **/
1966 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1967 {
1968 int err;
1969
1970 /* Number of supported queues */
1971 fm10k_set_num_queues(interface);
1972
1973 /* Configure MSI-X capability */
1974 err = fm10k_init_msix_capability(interface);
1975 if (err) {
1976 dev_err(&interface->pdev->dev,
1977 "Unable to initialize MSI-X capability\n");
1978 goto err_init_msix;
1979 }
1980
1981 /* Allocate memory for queues */
1982 err = fm10k_alloc_q_vectors(interface);
1983 if (err) {
1984 dev_err(&interface->pdev->dev,
1985 "Unable to allocate queue vectors\n");
1986 goto err_alloc_q_vectors;
1987 }
1988
1989 /* Map rings to devices, and map devices to physical queues */
1990 fm10k_assign_rings(interface);
1991
1992 /* Initialize RSS redirection table */
1993 fm10k_init_reta(interface);
1994
1995 return 0;
1996
1997 err_alloc_q_vectors:
1998 fm10k_reset_msix_capability(interface);
1999 err_init_msix:
2000 fm10k_reset_num_queues(interface);
2001 return err;
2002 }
2003
2004 /**
2005 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2006 * @interface: board private structure to clear queueing scheme on
2007 *
2008 * We go through and clear queueing specific resources and reset the structure
2009 * to pre-load conditions
2010 **/
2011 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2012 {
2013 fm10k_free_q_vectors(interface);
2014 fm10k_reset_msix_capability(interface);
2015 }