]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/fm10k/fm10k_main.c
Merge branch 'parisc-4.6-2' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / fm10k / fm10k_main.c
1 /* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include <linux/types.h>
22 #include <linux/module.h>
23 #include <net/ipv6.h>
24 #include <net/ip.h>
25 #include <net/tcp.h>
26 #include <linux/if_macvlan.h>
27 #include <linux/prefetch.h>
28
29 #include "fm10k.h"
30
31 #define DRV_VERSION "0.19.3-k"
32 const char fm10k_driver_version[] = DRV_VERSION;
33 char fm10k_driver_name[] = "fm10k";
34 static const char fm10k_driver_string[] =
35 "Intel(R) Ethernet Switch Host Interface Driver";
36 static const char fm10k_copyright[] =
37 "Copyright (c) 2013 Intel Corporation.";
38
39 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
40 MODULE_DESCRIPTION("Intel(R) Ethernet Switch Host Interface Driver");
41 MODULE_LICENSE("GPL");
42 MODULE_VERSION(DRV_VERSION);
43
44 /* single workqueue for entire fm10k driver */
45 struct workqueue_struct *fm10k_workqueue;
46
47 /**
48 * fm10k_init_module - Driver Registration Routine
49 *
50 * fm10k_init_module is the first routine called when the driver is
51 * loaded. All it does is register with the PCI subsystem.
52 **/
53 static int __init fm10k_init_module(void)
54 {
55 pr_info("%s - version %s\n", fm10k_driver_string, fm10k_driver_version);
56 pr_info("%s\n", fm10k_copyright);
57
58 /* create driver workqueue */
59 fm10k_workqueue = create_workqueue("fm10k");
60
61 fm10k_dbg_init();
62
63 return fm10k_register_pci_driver();
64 }
65 module_init(fm10k_init_module);
66
67 /**
68 * fm10k_exit_module - Driver Exit Cleanup Routine
69 *
70 * fm10k_exit_module is called just before the driver is removed
71 * from memory.
72 **/
73 static void __exit fm10k_exit_module(void)
74 {
75 fm10k_unregister_pci_driver();
76
77 fm10k_dbg_exit();
78
79 /* destroy driver workqueue */
80 flush_workqueue(fm10k_workqueue);
81 destroy_workqueue(fm10k_workqueue);
82 }
83 module_exit(fm10k_exit_module);
84
85 static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
86 struct fm10k_rx_buffer *bi)
87 {
88 struct page *page = bi->page;
89 dma_addr_t dma;
90
91 /* Only page will be NULL if buffer was consumed */
92 if (likely(page))
93 return true;
94
95 /* alloc new page for storage */
96 page = dev_alloc_page();
97 if (unlikely(!page)) {
98 rx_ring->rx_stats.alloc_failed++;
99 return false;
100 }
101
102 /* map page for use */
103 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
104
105 /* if mapping failed free memory back to system since
106 * there isn't much point in holding memory we can't use
107 */
108 if (dma_mapping_error(rx_ring->dev, dma)) {
109 __free_page(page);
110
111 rx_ring->rx_stats.alloc_failed++;
112 return false;
113 }
114
115 bi->dma = dma;
116 bi->page = page;
117 bi->page_offset = 0;
118
119 return true;
120 }
121
122 /**
123 * fm10k_alloc_rx_buffers - Replace used receive buffers
124 * @rx_ring: ring to place buffers on
125 * @cleaned_count: number of buffers to replace
126 **/
127 void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
128 {
129 union fm10k_rx_desc *rx_desc;
130 struct fm10k_rx_buffer *bi;
131 u16 i = rx_ring->next_to_use;
132
133 /* nothing to do */
134 if (!cleaned_count)
135 return;
136
137 rx_desc = FM10K_RX_DESC(rx_ring, i);
138 bi = &rx_ring->rx_buffer[i];
139 i -= rx_ring->count;
140
141 do {
142 if (!fm10k_alloc_mapped_page(rx_ring, bi))
143 break;
144
145 /* Refresh the desc even if buffer_addrs didn't change
146 * because each write-back erases this info.
147 */
148 rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
149
150 rx_desc++;
151 bi++;
152 i++;
153 if (unlikely(!i)) {
154 rx_desc = FM10K_RX_DESC(rx_ring, 0);
155 bi = rx_ring->rx_buffer;
156 i -= rx_ring->count;
157 }
158
159 /* clear the status bits for the next_to_use descriptor */
160 rx_desc->d.staterr = 0;
161
162 cleaned_count--;
163 } while (cleaned_count);
164
165 i += rx_ring->count;
166
167 if (rx_ring->next_to_use != i) {
168 /* record the next descriptor to use */
169 rx_ring->next_to_use = i;
170
171 /* update next to alloc since we have filled the ring */
172 rx_ring->next_to_alloc = i;
173
174 /* Force memory writes to complete before letting h/w
175 * know there are new descriptors to fetch. (Only
176 * applicable for weak-ordered memory model archs,
177 * such as IA-64).
178 */
179 wmb();
180
181 /* notify hardware of new descriptors */
182 writel(i, rx_ring->tail);
183 }
184 }
185
186 /**
187 * fm10k_reuse_rx_page - page flip buffer and store it back on the ring
188 * @rx_ring: rx descriptor ring to store buffers on
189 * @old_buff: donor buffer to have page reused
190 *
191 * Synchronizes page for reuse by the interface
192 **/
193 static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
194 struct fm10k_rx_buffer *old_buff)
195 {
196 struct fm10k_rx_buffer *new_buff;
197 u16 nta = rx_ring->next_to_alloc;
198
199 new_buff = &rx_ring->rx_buffer[nta];
200
201 /* update, and store next to alloc */
202 nta++;
203 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
204
205 /* transfer page from old buffer to new buffer */
206 *new_buff = *old_buff;
207
208 /* sync the buffer for use by the device */
209 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
210 old_buff->page_offset,
211 FM10K_RX_BUFSZ,
212 DMA_FROM_DEVICE);
213 }
214
215 static inline bool fm10k_page_is_reserved(struct page *page)
216 {
217 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
218 }
219
220 static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
221 struct page *page,
222 unsigned int __maybe_unused truesize)
223 {
224 /* avoid re-using remote pages */
225 if (unlikely(fm10k_page_is_reserved(page)))
226 return false;
227
228 #if (PAGE_SIZE < 8192)
229 /* if we are only owner of page we can reuse it */
230 if (unlikely(page_count(page) != 1))
231 return false;
232
233 /* flip page offset to other buffer */
234 rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
235 #else
236 /* move offset up to the next cache line */
237 rx_buffer->page_offset += truesize;
238
239 if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
240 return false;
241 #endif
242
243 /* Even if we own the page, we are not allowed to use atomic_set()
244 * This would break get_page_unless_zero() users.
245 */
246 page_ref_inc(page);
247
248 return true;
249 }
250
251 /**
252 * fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
253 * @rx_buffer: buffer containing page to add
254 * @rx_desc: descriptor containing length of buffer written by hardware
255 * @skb: sk_buff to place the data into
256 *
257 * This function will add the data contained in rx_buffer->page to the skb.
258 * This is done either through a direct copy if the data in the buffer is
259 * less than the skb header size, otherwise it will just attach the page as
260 * a frag to the skb.
261 *
262 * The function will then update the page offset if necessary and return
263 * true if the buffer can be reused by the interface.
264 **/
265 static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
266 union fm10k_rx_desc *rx_desc,
267 struct sk_buff *skb)
268 {
269 struct page *page = rx_buffer->page;
270 unsigned char *va = page_address(page) + rx_buffer->page_offset;
271 unsigned int size = le16_to_cpu(rx_desc->w.length);
272 #if (PAGE_SIZE < 8192)
273 unsigned int truesize = FM10K_RX_BUFSZ;
274 #else
275 unsigned int truesize = SKB_DATA_ALIGN(size);
276 #endif
277 unsigned int pull_len;
278
279 if (unlikely(skb_is_nonlinear(skb)))
280 goto add_tail_frag;
281
282 if (likely(size <= FM10K_RX_HDR_LEN)) {
283 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
284
285 /* page is not reserved, we can reuse buffer as-is */
286 if (likely(!fm10k_page_is_reserved(page)))
287 return true;
288
289 /* this page cannot be reused so discard it */
290 __free_page(page);
291 return false;
292 }
293
294 /* we need the header to contain the greater of either ETH_HLEN or
295 * 60 bytes if the skb->len is less than 60 for skb_pad.
296 */
297 pull_len = eth_get_headlen(va, FM10K_RX_HDR_LEN);
298
299 /* align pull length to size of long to optimize memcpy performance */
300 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
301
302 /* update all of the pointers */
303 va += pull_len;
304 size -= pull_len;
305
306 add_tail_frag:
307 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
308 (unsigned long)va & ~PAGE_MASK, size, truesize);
309
310 return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
311 }
312
313 static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
314 union fm10k_rx_desc *rx_desc,
315 struct sk_buff *skb)
316 {
317 struct fm10k_rx_buffer *rx_buffer;
318 struct page *page;
319
320 rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
321 page = rx_buffer->page;
322 prefetchw(page);
323
324 if (likely(!skb)) {
325 void *page_addr = page_address(page) +
326 rx_buffer->page_offset;
327
328 /* prefetch first cache line of first page */
329 prefetch(page_addr);
330 #if L1_CACHE_BYTES < 128
331 prefetch(page_addr + L1_CACHE_BYTES);
332 #endif
333
334 /* allocate a skb to store the frags */
335 skb = napi_alloc_skb(&rx_ring->q_vector->napi,
336 FM10K_RX_HDR_LEN);
337 if (unlikely(!skb)) {
338 rx_ring->rx_stats.alloc_failed++;
339 return NULL;
340 }
341
342 /* we will be copying header into skb->data in
343 * pskb_may_pull so it is in our interest to prefetch
344 * it now to avoid a possible cache miss
345 */
346 prefetchw(skb->data);
347 }
348
349 /* we are reusing so sync this buffer for CPU use */
350 dma_sync_single_range_for_cpu(rx_ring->dev,
351 rx_buffer->dma,
352 rx_buffer->page_offset,
353 FM10K_RX_BUFSZ,
354 DMA_FROM_DEVICE);
355
356 /* pull page into skb */
357 if (fm10k_add_rx_frag(rx_buffer, rx_desc, skb)) {
358 /* hand second half of page back to the ring */
359 fm10k_reuse_rx_page(rx_ring, rx_buffer);
360 } else {
361 /* we are not reusing the buffer so unmap it */
362 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
363 PAGE_SIZE, DMA_FROM_DEVICE);
364 }
365
366 /* clear contents of rx_buffer */
367 rx_buffer->page = NULL;
368
369 return skb;
370 }
371
372 static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
373 union fm10k_rx_desc *rx_desc,
374 struct sk_buff *skb)
375 {
376 skb_checksum_none_assert(skb);
377
378 /* Rx checksum disabled via ethtool */
379 if (!(ring->netdev->features & NETIF_F_RXCSUM))
380 return;
381
382 /* TCP/UDP checksum error bit is set */
383 if (fm10k_test_staterr(rx_desc,
384 FM10K_RXD_STATUS_L4E |
385 FM10K_RXD_STATUS_L4E2 |
386 FM10K_RXD_STATUS_IPE |
387 FM10K_RXD_STATUS_IPE2)) {
388 ring->rx_stats.csum_err++;
389 return;
390 }
391
392 /* It must be a TCP or UDP packet with a valid checksum */
393 if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
394 skb->encapsulation = true;
395 else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
396 return;
397
398 skb->ip_summed = CHECKSUM_UNNECESSARY;
399
400 ring->rx_stats.csum_good++;
401 }
402
403 #define FM10K_RSS_L4_TYPES_MASK \
404 ((1ul << FM10K_RSSTYPE_IPV4_TCP) | \
405 (1ul << FM10K_RSSTYPE_IPV4_UDP) | \
406 (1ul << FM10K_RSSTYPE_IPV6_TCP) | \
407 (1ul << FM10K_RSSTYPE_IPV6_UDP))
408
409 static inline void fm10k_rx_hash(struct fm10k_ring *ring,
410 union fm10k_rx_desc *rx_desc,
411 struct sk_buff *skb)
412 {
413 u16 rss_type;
414
415 if (!(ring->netdev->features & NETIF_F_RXHASH))
416 return;
417
418 rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
419 if (!rss_type)
420 return;
421
422 skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
423 (FM10K_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
424 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
425 }
426
427 static void fm10k_rx_hwtstamp(struct fm10k_ring *rx_ring,
428 union fm10k_rx_desc *rx_desc,
429 struct sk_buff *skb)
430 {
431 struct fm10k_intfc *interface = rx_ring->q_vector->interface;
432
433 FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
434
435 if (unlikely(interface->flags & FM10K_FLAG_RX_TS_ENABLED))
436 fm10k_systime_to_hwtstamp(interface, skb_hwtstamps(skb),
437 le64_to_cpu(rx_desc->q.timestamp));
438 }
439
440 static void fm10k_type_trans(struct fm10k_ring *rx_ring,
441 union fm10k_rx_desc __maybe_unused *rx_desc,
442 struct sk_buff *skb)
443 {
444 struct net_device *dev = rx_ring->netdev;
445 struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
446
447 /* check to see if DGLORT belongs to a MACVLAN */
448 if (l2_accel) {
449 u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
450
451 idx -= l2_accel->dglort;
452 if (idx < l2_accel->size && l2_accel->macvlan[idx])
453 dev = l2_accel->macvlan[idx];
454 else
455 l2_accel = NULL;
456 }
457
458 skb->protocol = eth_type_trans(skb, dev);
459
460 if (!l2_accel)
461 return;
462
463 /* update MACVLAN statistics */
464 macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, 1,
465 !!(rx_desc->w.hdr_info &
466 cpu_to_le16(FM10K_RXD_HDR_INFO_XC_MASK)));
467 }
468
469 /**
470 * fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
471 * @rx_ring: rx descriptor ring packet is being transacted on
472 * @rx_desc: pointer to the EOP Rx descriptor
473 * @skb: pointer to current skb being populated
474 *
475 * This function checks the ring, descriptor, and packet information in
476 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
477 * other fields within the skb.
478 **/
479 static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
480 union fm10k_rx_desc *rx_desc,
481 struct sk_buff *skb)
482 {
483 unsigned int len = skb->len;
484
485 fm10k_rx_hash(rx_ring, rx_desc, skb);
486
487 fm10k_rx_checksum(rx_ring, rx_desc, skb);
488
489 fm10k_rx_hwtstamp(rx_ring, rx_desc, skb);
490
491 FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
492
493 skb_record_rx_queue(skb, rx_ring->queue_index);
494
495 FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
496
497 if (rx_desc->w.vlan) {
498 u16 vid = le16_to_cpu(rx_desc->w.vlan);
499
500 if ((vid & VLAN_VID_MASK) != rx_ring->vid)
501 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
502 else if (vid & VLAN_PRIO_MASK)
503 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
504 vid & VLAN_PRIO_MASK);
505 }
506
507 fm10k_type_trans(rx_ring, rx_desc, skb);
508
509 return len;
510 }
511
512 /**
513 * fm10k_is_non_eop - process handling of non-EOP buffers
514 * @rx_ring: Rx ring being processed
515 * @rx_desc: Rx descriptor for current buffer
516 *
517 * This function updates next to clean. If the buffer is an EOP buffer
518 * this function exits returning false, otherwise it will place the
519 * sk_buff in the next buffer to be chained and return true indicating
520 * that this is in fact a non-EOP buffer.
521 **/
522 static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
523 union fm10k_rx_desc *rx_desc)
524 {
525 u32 ntc = rx_ring->next_to_clean + 1;
526
527 /* fetch, update, and store next to clean */
528 ntc = (ntc < rx_ring->count) ? ntc : 0;
529 rx_ring->next_to_clean = ntc;
530
531 prefetch(FM10K_RX_DESC(rx_ring, ntc));
532
533 if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
534 return false;
535
536 return true;
537 }
538
539 /**
540 * fm10k_cleanup_headers - Correct corrupted or empty headers
541 * @rx_ring: rx descriptor ring packet is being transacted on
542 * @rx_desc: pointer to the EOP Rx descriptor
543 * @skb: pointer to current skb being fixed
544 *
545 * Address the case where we are pulling data in on pages only
546 * and as such no data is present in the skb header.
547 *
548 * In addition if skb is not at least 60 bytes we need to pad it so that
549 * it is large enough to qualify as a valid Ethernet frame.
550 *
551 * Returns true if an error was encountered and skb was freed.
552 **/
553 static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
554 union fm10k_rx_desc *rx_desc,
555 struct sk_buff *skb)
556 {
557 if (unlikely((fm10k_test_staterr(rx_desc,
558 FM10K_RXD_STATUS_RXE)))) {
559 #define FM10K_TEST_RXD_BIT(rxd, bit) \
560 ((rxd)->w.csum_err & cpu_to_le16(bit))
561 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
562 rx_ring->rx_stats.switch_errors++;
563 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
564 rx_ring->rx_stats.drops++;
565 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
566 rx_ring->rx_stats.pp_errors++;
567 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
568 rx_ring->rx_stats.link_errors++;
569 if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
570 rx_ring->rx_stats.length_errors++;
571 dev_kfree_skb_any(skb);
572 rx_ring->rx_stats.errors++;
573 return true;
574 }
575
576 /* if eth_skb_pad returns an error the skb was freed */
577 if (eth_skb_pad(skb))
578 return true;
579
580 return false;
581 }
582
583 /**
584 * fm10k_receive_skb - helper function to handle rx indications
585 * @q_vector: structure containing interrupt and ring information
586 * @skb: packet to send up
587 **/
588 static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
589 struct sk_buff *skb)
590 {
591 napi_gro_receive(&q_vector->napi, skb);
592 }
593
594 static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
595 struct fm10k_ring *rx_ring,
596 int budget)
597 {
598 struct sk_buff *skb = rx_ring->skb;
599 unsigned int total_bytes = 0, total_packets = 0;
600 u16 cleaned_count = fm10k_desc_unused(rx_ring);
601
602 while (likely(total_packets < budget)) {
603 union fm10k_rx_desc *rx_desc;
604
605 /* return some buffers to hardware, one at a time is too slow */
606 if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
607 fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
608 cleaned_count = 0;
609 }
610
611 rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
612
613 if (!rx_desc->d.staterr)
614 break;
615
616 /* This memory barrier is needed to keep us from reading
617 * any other fields out of the rx_desc until we know the
618 * descriptor has been written back
619 */
620 dma_rmb();
621
622 /* retrieve a buffer from the ring */
623 skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
624
625 /* exit if we failed to retrieve a buffer */
626 if (!skb)
627 break;
628
629 cleaned_count++;
630
631 /* fetch next buffer in frame if non-eop */
632 if (fm10k_is_non_eop(rx_ring, rx_desc))
633 continue;
634
635 /* verify the packet layout is correct */
636 if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
637 skb = NULL;
638 continue;
639 }
640
641 /* populate checksum, timestamp, VLAN, and protocol */
642 total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
643
644 fm10k_receive_skb(q_vector, skb);
645
646 /* reset skb pointer */
647 skb = NULL;
648
649 /* update budget accounting */
650 total_packets++;
651 }
652
653 /* place incomplete frames back on ring for completion */
654 rx_ring->skb = skb;
655
656 u64_stats_update_begin(&rx_ring->syncp);
657 rx_ring->stats.packets += total_packets;
658 rx_ring->stats.bytes += total_bytes;
659 u64_stats_update_end(&rx_ring->syncp);
660 q_vector->rx.total_packets += total_packets;
661 q_vector->rx.total_bytes += total_bytes;
662
663 return total_packets;
664 }
665
666 #define VXLAN_HLEN (sizeof(struct udphdr) + 8)
667 static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
668 {
669 struct fm10k_intfc *interface = netdev_priv(skb->dev);
670 struct fm10k_vxlan_port *vxlan_port;
671
672 /* we can only offload a vxlan if we recognize it as such */
673 vxlan_port = list_first_entry_or_null(&interface->vxlan_port,
674 struct fm10k_vxlan_port, list);
675
676 if (!vxlan_port)
677 return NULL;
678 if (vxlan_port->port != udp_hdr(skb)->dest)
679 return NULL;
680
681 /* return offset of udp_hdr plus 8 bytes for VXLAN header */
682 return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
683 }
684
685 #define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
686 #define NVGRE_TNI htons(0x2000)
687 struct fm10k_nvgre_hdr {
688 __be16 flags;
689 __be16 proto;
690 __be32 tni;
691 };
692
693 static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
694 {
695 struct fm10k_nvgre_hdr *nvgre_hdr;
696 int hlen = ip_hdrlen(skb);
697
698 /* currently only IPv4 is supported due to hlen above */
699 if (vlan_get_protocol(skb) != htons(ETH_P_IP))
700 return NULL;
701
702 /* our transport header should be NVGRE */
703 nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
704
705 /* verify all reserved flags are 0 */
706 if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
707 return NULL;
708
709 /* report start of ethernet header */
710 if (nvgre_hdr->flags & NVGRE_TNI)
711 return (struct ethhdr *)(nvgre_hdr + 1);
712
713 return (struct ethhdr *)(&nvgre_hdr->tni);
714 }
715
716 __be16 fm10k_tx_encap_offload(struct sk_buff *skb)
717 {
718 u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
719 struct ethhdr *eth_hdr;
720
721 if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
722 skb->inner_protocol != htons(ETH_P_TEB))
723 return 0;
724
725 switch (vlan_get_protocol(skb)) {
726 case htons(ETH_P_IP):
727 l4_hdr = ip_hdr(skb)->protocol;
728 break;
729 case htons(ETH_P_IPV6):
730 l4_hdr = ipv6_hdr(skb)->nexthdr;
731 break;
732 default:
733 return 0;
734 }
735
736 switch (l4_hdr) {
737 case IPPROTO_UDP:
738 eth_hdr = fm10k_port_is_vxlan(skb);
739 break;
740 case IPPROTO_GRE:
741 eth_hdr = fm10k_gre_is_nvgre(skb);
742 break;
743 default:
744 return 0;
745 }
746
747 if (!eth_hdr)
748 return 0;
749
750 switch (eth_hdr->h_proto) {
751 case htons(ETH_P_IP):
752 inner_l4_hdr = inner_ip_hdr(skb)->protocol;
753 break;
754 case htons(ETH_P_IPV6):
755 inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
756 break;
757 default:
758 return 0;
759 }
760
761 switch (inner_l4_hdr) {
762 case IPPROTO_TCP:
763 inner_l4_hlen = inner_tcp_hdrlen(skb);
764 break;
765 case IPPROTO_UDP:
766 inner_l4_hlen = 8;
767 break;
768 default:
769 return 0;
770 }
771
772 /* The hardware allows tunnel offloads only if the combined inner and
773 * outer header is 184 bytes or less
774 */
775 if (skb_inner_transport_header(skb) + inner_l4_hlen -
776 skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
777 return 0;
778
779 return eth_hdr->h_proto;
780 }
781
782 static int fm10k_tso(struct fm10k_ring *tx_ring,
783 struct fm10k_tx_buffer *first)
784 {
785 struct sk_buff *skb = first->skb;
786 struct fm10k_tx_desc *tx_desc;
787 unsigned char *th;
788 u8 hdrlen;
789
790 if (skb->ip_summed != CHECKSUM_PARTIAL)
791 return 0;
792
793 if (!skb_is_gso(skb))
794 return 0;
795
796 /* compute header lengths */
797 if (skb->encapsulation) {
798 if (!fm10k_tx_encap_offload(skb))
799 goto err_vxlan;
800 th = skb_inner_transport_header(skb);
801 } else {
802 th = skb_transport_header(skb);
803 }
804
805 /* compute offset from SOF to transport header and add header len */
806 hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
807
808 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
809
810 /* update gso size and bytecount with header size */
811 first->gso_segs = skb_shinfo(skb)->gso_segs;
812 first->bytecount += (first->gso_segs - 1) * hdrlen;
813
814 /* populate Tx descriptor header size and mss */
815 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
816 tx_desc->hdrlen = hdrlen;
817 tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
818
819 return 1;
820 err_vxlan:
821 tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
822 if (!net_ratelimit())
823 netdev_err(tx_ring->netdev,
824 "TSO requested for unsupported tunnel, disabling offload\n");
825 return -1;
826 }
827
828 static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
829 struct fm10k_tx_buffer *first)
830 {
831 struct sk_buff *skb = first->skb;
832 struct fm10k_tx_desc *tx_desc;
833 union {
834 struct iphdr *ipv4;
835 struct ipv6hdr *ipv6;
836 u8 *raw;
837 } network_hdr;
838 __be16 protocol;
839 u8 l4_hdr = 0;
840
841 if (skb->ip_summed != CHECKSUM_PARTIAL)
842 goto no_csum;
843
844 if (skb->encapsulation) {
845 protocol = fm10k_tx_encap_offload(skb);
846 if (!protocol) {
847 if (skb_checksum_help(skb)) {
848 dev_warn(tx_ring->dev,
849 "failed to offload encap csum!\n");
850 tx_ring->tx_stats.csum_err++;
851 }
852 goto no_csum;
853 }
854 network_hdr.raw = skb_inner_network_header(skb);
855 } else {
856 protocol = vlan_get_protocol(skb);
857 network_hdr.raw = skb_network_header(skb);
858 }
859
860 switch (protocol) {
861 case htons(ETH_P_IP):
862 l4_hdr = network_hdr.ipv4->protocol;
863 break;
864 case htons(ETH_P_IPV6):
865 l4_hdr = network_hdr.ipv6->nexthdr;
866 break;
867 default:
868 if (unlikely(net_ratelimit())) {
869 dev_warn(tx_ring->dev,
870 "partial checksum but ip version=%x!\n",
871 protocol);
872 }
873 tx_ring->tx_stats.csum_err++;
874 goto no_csum;
875 }
876
877 switch (l4_hdr) {
878 case IPPROTO_TCP:
879 case IPPROTO_UDP:
880 break;
881 case IPPROTO_GRE:
882 if (skb->encapsulation)
883 break;
884 default:
885 if (unlikely(net_ratelimit())) {
886 dev_warn(tx_ring->dev,
887 "partial checksum but l4 proto=%x!\n",
888 l4_hdr);
889 }
890 tx_ring->tx_stats.csum_err++;
891 goto no_csum;
892 }
893
894 /* update TX checksum flag */
895 first->tx_flags |= FM10K_TX_FLAGS_CSUM;
896 tx_ring->tx_stats.csum_good++;
897
898 no_csum:
899 /* populate Tx descriptor header size and mss */
900 tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
901 tx_desc->hdrlen = 0;
902 tx_desc->mss = 0;
903 }
904
905 #define FM10K_SET_FLAG(_input, _flag, _result) \
906 ((_flag <= _result) ? \
907 ((u32)(_input & _flag) * (_result / _flag)) : \
908 ((u32)(_input & _flag) / (_flag / _result)))
909
910 static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
911 {
912 /* set type for advanced descriptor with frame checksum insertion */
913 u32 desc_flags = 0;
914
915 /* set timestamping bits */
916 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
917 likely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
918 desc_flags |= FM10K_TXD_FLAG_TIME;
919
920 /* set checksum offload bits */
921 desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
922 FM10K_TXD_FLAG_CSUM);
923
924 return desc_flags;
925 }
926
927 static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
928 struct fm10k_tx_desc *tx_desc, u16 i,
929 dma_addr_t dma, unsigned int size, u8 desc_flags)
930 {
931 /* set RS and INT for last frame in a cache line */
932 if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
933 desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
934
935 /* record values to descriptor */
936 tx_desc->buffer_addr = cpu_to_le64(dma);
937 tx_desc->flags = desc_flags;
938 tx_desc->buflen = cpu_to_le16(size);
939
940 /* return true if we just wrapped the ring */
941 return i == tx_ring->count;
942 }
943
944 static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
945 {
946 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
947
948 /* Memory barrier before checking head and tail */
949 smp_mb();
950
951 /* Check again in a case another CPU has just made room available */
952 if (likely(fm10k_desc_unused(tx_ring) < size))
953 return -EBUSY;
954
955 /* A reprieve! - use start_queue because it doesn't call schedule */
956 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
957 ++tx_ring->tx_stats.restart_queue;
958 return 0;
959 }
960
961 static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
962 {
963 if (likely(fm10k_desc_unused(tx_ring) >= size))
964 return 0;
965 return __fm10k_maybe_stop_tx(tx_ring, size);
966 }
967
968 static void fm10k_tx_map(struct fm10k_ring *tx_ring,
969 struct fm10k_tx_buffer *first)
970 {
971 struct sk_buff *skb = first->skb;
972 struct fm10k_tx_buffer *tx_buffer;
973 struct fm10k_tx_desc *tx_desc;
974 struct skb_frag_struct *frag;
975 unsigned char *data;
976 dma_addr_t dma;
977 unsigned int data_len, size;
978 u32 tx_flags = first->tx_flags;
979 u16 i = tx_ring->next_to_use;
980 u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
981
982 tx_desc = FM10K_TX_DESC(tx_ring, i);
983
984 /* add HW VLAN tag */
985 if (skb_vlan_tag_present(skb))
986 tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
987 else
988 tx_desc->vlan = 0;
989
990 size = skb_headlen(skb);
991 data = skb->data;
992
993 dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
994
995 data_len = skb->data_len;
996 tx_buffer = first;
997
998 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
999 if (dma_mapping_error(tx_ring->dev, dma))
1000 goto dma_error;
1001
1002 /* record length, and DMA address */
1003 dma_unmap_len_set(tx_buffer, len, size);
1004 dma_unmap_addr_set(tx_buffer, dma, dma);
1005
1006 while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
1007 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
1008 FM10K_MAX_DATA_PER_TXD, flags)) {
1009 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1010 i = 0;
1011 }
1012
1013 dma += FM10K_MAX_DATA_PER_TXD;
1014 size -= FM10K_MAX_DATA_PER_TXD;
1015 }
1016
1017 if (likely(!data_len))
1018 break;
1019
1020 if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
1021 dma, size, flags)) {
1022 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1023 i = 0;
1024 }
1025
1026 size = skb_frag_size(frag);
1027 data_len -= size;
1028
1029 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1030 DMA_TO_DEVICE);
1031
1032 tx_buffer = &tx_ring->tx_buffer[i];
1033 }
1034
1035 /* write last descriptor with LAST bit set */
1036 flags |= FM10K_TXD_FLAG_LAST;
1037
1038 if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
1039 i = 0;
1040
1041 /* record bytecount for BQL */
1042 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1043
1044 /* record SW timestamp if HW timestamp is not available */
1045 skb_tx_timestamp(first->skb);
1046
1047 /* Force memory writes to complete before letting h/w know there
1048 * are new descriptors to fetch. (Only applicable for weak-ordered
1049 * memory model archs, such as IA-64).
1050 *
1051 * We also need this memory barrier to make certain all of the
1052 * status bits have been updated before next_to_watch is written.
1053 */
1054 wmb();
1055
1056 /* set next_to_watch value indicating a packet is present */
1057 first->next_to_watch = tx_desc;
1058
1059 tx_ring->next_to_use = i;
1060
1061 /* Make sure there is space in the ring for the next send. */
1062 fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
1063
1064 /* notify HW of packet */
1065 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
1066 writel(i, tx_ring->tail);
1067
1068 /* we need this if more than one processor can write to our tail
1069 * at a time, it synchronizes IO on IA64/Altix systems
1070 */
1071 mmiowb();
1072 }
1073
1074 return;
1075 dma_error:
1076 dev_err(tx_ring->dev, "TX DMA map failed\n");
1077
1078 /* clear dma mappings for failed tx_buffer map */
1079 for (;;) {
1080 tx_buffer = &tx_ring->tx_buffer[i];
1081 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
1082 if (tx_buffer == first)
1083 break;
1084 if (i == 0)
1085 i = tx_ring->count;
1086 i--;
1087 }
1088
1089 tx_ring->next_to_use = i;
1090 }
1091
1092 netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
1093 struct fm10k_ring *tx_ring)
1094 {
1095 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1096 struct fm10k_tx_buffer *first;
1097 unsigned short f;
1098 u32 tx_flags = 0;
1099 int tso;
1100
1101 /* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
1102 * + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
1103 * + 2 desc gap to keep tail from touching head
1104 * otherwise try next time
1105 */
1106 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1107 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1108
1109 if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
1110 tx_ring->tx_stats.tx_busy++;
1111 return NETDEV_TX_BUSY;
1112 }
1113
1114 /* record the location of the first descriptor for this packet */
1115 first = &tx_ring->tx_buffer[tx_ring->next_to_use];
1116 first->skb = skb;
1117 first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
1118 first->gso_segs = 1;
1119
1120 /* record initial flags and protocol */
1121 first->tx_flags = tx_flags;
1122
1123 tso = fm10k_tso(tx_ring, first);
1124 if (tso < 0)
1125 goto out_drop;
1126 else if (!tso)
1127 fm10k_tx_csum(tx_ring, first);
1128
1129 fm10k_tx_map(tx_ring, first);
1130
1131 return NETDEV_TX_OK;
1132
1133 out_drop:
1134 dev_kfree_skb_any(first->skb);
1135 first->skb = NULL;
1136
1137 return NETDEV_TX_OK;
1138 }
1139
1140 static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
1141 {
1142 return ring->stats.packets;
1143 }
1144
1145 static u64 fm10k_get_tx_pending(struct fm10k_ring *ring)
1146 {
1147 /* use SW head and tail until we have real hardware */
1148 u32 head = ring->next_to_clean;
1149 u32 tail = ring->next_to_use;
1150
1151 return ((head <= tail) ? tail : tail + ring->count) - head;
1152 }
1153
1154 bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
1155 {
1156 u32 tx_done = fm10k_get_tx_completed(tx_ring);
1157 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
1158 u32 tx_pending = fm10k_get_tx_pending(tx_ring);
1159
1160 clear_check_for_tx_hang(tx_ring);
1161
1162 /* Check for a hung queue, but be thorough. This verifies
1163 * that a transmit has been completed since the previous
1164 * check AND there is at least one packet pending. By
1165 * requiring this to fail twice we avoid races with
1166 * clearing the ARMED bit and conditions where we
1167 * run the check_tx_hang logic with a transmit completion
1168 * pending but without time to complete it yet.
1169 */
1170 if (!tx_pending || (tx_done_old != tx_done)) {
1171 /* update completed stats and continue */
1172 tx_ring->tx_stats.tx_done_old = tx_done;
1173 /* reset the countdown */
1174 clear_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1175
1176 return false;
1177 }
1178
1179 /* make sure it is true for two checks in a row */
1180 return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, &tx_ring->state);
1181 }
1182
1183 /**
1184 * fm10k_tx_timeout_reset - initiate reset due to Tx timeout
1185 * @interface: driver private struct
1186 **/
1187 void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
1188 {
1189 /* Do the reset outside of interrupt context */
1190 if (!test_bit(__FM10K_DOWN, &interface->state)) {
1191 interface->tx_timeout_count++;
1192 interface->flags |= FM10K_FLAG_RESET_REQUESTED;
1193 fm10k_service_event_schedule(interface);
1194 }
1195 }
1196
1197 /**
1198 * fm10k_clean_tx_irq - Reclaim resources after transmit completes
1199 * @q_vector: structure containing interrupt and ring information
1200 * @tx_ring: tx ring to clean
1201 **/
1202 static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
1203 struct fm10k_ring *tx_ring)
1204 {
1205 struct fm10k_intfc *interface = q_vector->interface;
1206 struct fm10k_tx_buffer *tx_buffer;
1207 struct fm10k_tx_desc *tx_desc;
1208 unsigned int total_bytes = 0, total_packets = 0;
1209 unsigned int budget = q_vector->tx.work_limit;
1210 unsigned int i = tx_ring->next_to_clean;
1211
1212 if (test_bit(__FM10K_DOWN, &interface->state))
1213 return true;
1214
1215 tx_buffer = &tx_ring->tx_buffer[i];
1216 tx_desc = FM10K_TX_DESC(tx_ring, i);
1217 i -= tx_ring->count;
1218
1219 do {
1220 struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
1221
1222 /* if next_to_watch is not set then there is no work pending */
1223 if (!eop_desc)
1224 break;
1225
1226 /* prevent any other reads prior to eop_desc */
1227 read_barrier_depends();
1228
1229 /* if DD is not set pending work has not been completed */
1230 if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
1231 break;
1232
1233 /* clear next_to_watch to prevent false hangs */
1234 tx_buffer->next_to_watch = NULL;
1235
1236 /* update the statistics for this packet */
1237 total_bytes += tx_buffer->bytecount;
1238 total_packets += tx_buffer->gso_segs;
1239
1240 /* free the skb */
1241 dev_consume_skb_any(tx_buffer->skb);
1242
1243 /* unmap skb header data */
1244 dma_unmap_single(tx_ring->dev,
1245 dma_unmap_addr(tx_buffer, dma),
1246 dma_unmap_len(tx_buffer, len),
1247 DMA_TO_DEVICE);
1248
1249 /* clear tx_buffer data */
1250 tx_buffer->skb = NULL;
1251 dma_unmap_len_set(tx_buffer, len, 0);
1252
1253 /* unmap remaining buffers */
1254 while (tx_desc != eop_desc) {
1255 tx_buffer++;
1256 tx_desc++;
1257 i++;
1258 if (unlikely(!i)) {
1259 i -= tx_ring->count;
1260 tx_buffer = tx_ring->tx_buffer;
1261 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1262 }
1263
1264 /* unmap any remaining paged data */
1265 if (dma_unmap_len(tx_buffer, len)) {
1266 dma_unmap_page(tx_ring->dev,
1267 dma_unmap_addr(tx_buffer, dma),
1268 dma_unmap_len(tx_buffer, len),
1269 DMA_TO_DEVICE);
1270 dma_unmap_len_set(tx_buffer, len, 0);
1271 }
1272 }
1273
1274 /* move us one more past the eop_desc for start of next pkt */
1275 tx_buffer++;
1276 tx_desc++;
1277 i++;
1278 if (unlikely(!i)) {
1279 i -= tx_ring->count;
1280 tx_buffer = tx_ring->tx_buffer;
1281 tx_desc = FM10K_TX_DESC(tx_ring, 0);
1282 }
1283
1284 /* issue prefetch for next Tx descriptor */
1285 prefetch(tx_desc);
1286
1287 /* update budget accounting */
1288 budget--;
1289 } while (likely(budget));
1290
1291 i += tx_ring->count;
1292 tx_ring->next_to_clean = i;
1293 u64_stats_update_begin(&tx_ring->syncp);
1294 tx_ring->stats.bytes += total_bytes;
1295 tx_ring->stats.packets += total_packets;
1296 u64_stats_update_end(&tx_ring->syncp);
1297 q_vector->tx.total_bytes += total_bytes;
1298 q_vector->tx.total_packets += total_packets;
1299
1300 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
1301 /* schedule immediate reset if we believe we hung */
1302 struct fm10k_hw *hw = &interface->hw;
1303
1304 netif_err(interface, drv, tx_ring->netdev,
1305 "Detected Tx Unit Hang\n"
1306 " Tx Queue <%d>\n"
1307 " TDH, TDT <%x>, <%x>\n"
1308 " next_to_use <%x>\n"
1309 " next_to_clean <%x>\n",
1310 tx_ring->queue_index,
1311 fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
1312 fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
1313 tx_ring->next_to_use, i);
1314
1315 netif_stop_subqueue(tx_ring->netdev,
1316 tx_ring->queue_index);
1317
1318 netif_info(interface, probe, tx_ring->netdev,
1319 "tx hang %d detected on queue %d, resetting interface\n",
1320 interface->tx_timeout_count + 1,
1321 tx_ring->queue_index);
1322
1323 fm10k_tx_timeout_reset(interface);
1324
1325 /* the netdev is about to reset, no point in enabling stuff */
1326 return true;
1327 }
1328
1329 /* notify netdev of completed buffers */
1330 netdev_tx_completed_queue(txring_txq(tx_ring),
1331 total_packets, total_bytes);
1332
1333 #define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
1334 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1335 (fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
1336 /* Make sure that anybody stopping the queue after this
1337 * sees the new next_to_clean.
1338 */
1339 smp_mb();
1340 if (__netif_subqueue_stopped(tx_ring->netdev,
1341 tx_ring->queue_index) &&
1342 !test_bit(__FM10K_DOWN, &interface->state)) {
1343 netif_wake_subqueue(tx_ring->netdev,
1344 tx_ring->queue_index);
1345 ++tx_ring->tx_stats.restart_queue;
1346 }
1347 }
1348
1349 return !!budget;
1350 }
1351
1352 /**
1353 * fm10k_update_itr - update the dynamic ITR value based on packet size
1354 *
1355 * Stores a new ITR value based on strictly on packet size. The
1356 * divisors and thresholds used by this function were determined based
1357 * on theoretical maximum wire speed and testing data, in order to
1358 * minimize response time while increasing bulk throughput.
1359 *
1360 * @ring_container: Container for rings to have ITR updated
1361 **/
1362 static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
1363 {
1364 unsigned int avg_wire_size, packets, itr_round;
1365
1366 /* Only update ITR if we are using adaptive setting */
1367 if (!ITR_IS_ADAPTIVE(ring_container->itr))
1368 goto clear_counts;
1369
1370 packets = ring_container->total_packets;
1371 if (!packets)
1372 goto clear_counts;
1373
1374 avg_wire_size = ring_container->total_bytes / packets;
1375
1376 /* The following is a crude approximation of:
1377 * wmem_default / (size + overhead) = desired_pkts_per_int
1378 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1379 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1380 *
1381 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1382 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1383 * formula down to
1384 *
1385 * (34 * (size + 24)) / (size + 640) = ITR
1386 *
1387 * We first do some math on the packet size and then finally bitshift
1388 * by 8 after rounding up. We also have to account for PCIe link speed
1389 * difference as ITR scales based on this.
1390 */
1391 if (avg_wire_size <= 360) {
1392 /* Start at 250K ints/sec and gradually drop to 77K ints/sec */
1393 avg_wire_size *= 8;
1394 avg_wire_size += 376;
1395 } else if (avg_wire_size <= 1152) {
1396 /* 77K ints/sec to 45K ints/sec */
1397 avg_wire_size *= 3;
1398 avg_wire_size += 2176;
1399 } else if (avg_wire_size <= 1920) {
1400 /* 45K ints/sec to 38K ints/sec */
1401 avg_wire_size += 4480;
1402 } else {
1403 /* plateau at a limit of 38K ints/sec */
1404 avg_wire_size = 6656;
1405 }
1406
1407 /* Perform final bitshift for division after rounding up to ensure
1408 * that the calculation will never get below a 1. The bit shift
1409 * accounts for changes in the ITR due to PCIe link speed.
1410 */
1411 itr_round = ACCESS_ONCE(ring_container->itr_scale) + 8;
1412 avg_wire_size += (1 << itr_round) - 1;
1413 avg_wire_size >>= itr_round;
1414
1415 /* write back value and retain adaptive flag */
1416 ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
1417
1418 clear_counts:
1419 ring_container->total_bytes = 0;
1420 ring_container->total_packets = 0;
1421 }
1422
1423 static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
1424 {
1425 /* Enable auto-mask and clear the current mask */
1426 u32 itr = FM10K_ITR_ENABLE;
1427
1428 /* Update Tx ITR */
1429 fm10k_update_itr(&q_vector->tx);
1430
1431 /* Update Rx ITR */
1432 fm10k_update_itr(&q_vector->rx);
1433
1434 /* Store Tx itr in timer slot 0 */
1435 itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
1436
1437 /* Shift Rx itr to timer slot 1 */
1438 itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
1439
1440 /* Write the final value to the ITR register */
1441 writel(itr, q_vector->itr);
1442 }
1443
1444 static int fm10k_poll(struct napi_struct *napi, int budget)
1445 {
1446 struct fm10k_q_vector *q_vector =
1447 container_of(napi, struct fm10k_q_vector, napi);
1448 struct fm10k_ring *ring;
1449 int per_ring_budget, work_done = 0;
1450 bool clean_complete = true;
1451
1452 fm10k_for_each_ring(ring, q_vector->tx)
1453 clean_complete &= fm10k_clean_tx_irq(q_vector, ring);
1454
1455 /* Handle case where we are called by netpoll with a budget of 0 */
1456 if (budget <= 0)
1457 return budget;
1458
1459 /* attempt to distribute budget to each queue fairly, but don't
1460 * allow the budget to go below 1 because we'll exit polling
1461 */
1462 if (q_vector->rx.count > 1)
1463 per_ring_budget = max(budget / q_vector->rx.count, 1);
1464 else
1465 per_ring_budget = budget;
1466
1467 fm10k_for_each_ring(ring, q_vector->rx) {
1468 int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
1469
1470 work_done += work;
1471 clean_complete &= !!(work < per_ring_budget);
1472 }
1473
1474 /* If all work not completed, return budget and keep polling */
1475 if (!clean_complete)
1476 return budget;
1477
1478 /* all work done, exit the polling mode */
1479 napi_complete_done(napi, work_done);
1480
1481 /* re-enable the q_vector */
1482 fm10k_qv_enable(q_vector);
1483
1484 return 0;
1485 }
1486
1487 /**
1488 * fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
1489 * @interface: board private structure to initialize
1490 *
1491 * When QoS (Quality of Service) is enabled, allocate queues for
1492 * each traffic class. If multiqueue isn't available,then abort QoS
1493 * initialization.
1494 *
1495 * This function handles all combinations of Qos and RSS.
1496 *
1497 **/
1498 static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
1499 {
1500 struct net_device *dev = interface->netdev;
1501 struct fm10k_ring_feature *f;
1502 int rss_i, i;
1503 int pcs;
1504
1505 /* Map queue offset and counts onto allocated tx queues */
1506 pcs = netdev_get_num_tc(dev);
1507
1508 if (pcs <= 1)
1509 return false;
1510
1511 /* set QoS mask and indices */
1512 f = &interface->ring_feature[RING_F_QOS];
1513 f->indices = pcs;
1514 f->mask = (1 << fls(pcs - 1)) - 1;
1515
1516 /* determine the upper limit for our current DCB mode */
1517 rss_i = interface->hw.mac.max_queues / pcs;
1518 rss_i = 1 << (fls(rss_i) - 1);
1519
1520 /* set RSS mask and indices */
1521 f = &interface->ring_feature[RING_F_RSS];
1522 rss_i = min_t(u16, rss_i, f->limit);
1523 f->indices = rss_i;
1524 f->mask = (1 << fls(rss_i - 1)) - 1;
1525
1526 /* configure pause class to queue mapping */
1527 for (i = 0; i < pcs; i++)
1528 netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
1529
1530 interface->num_rx_queues = rss_i * pcs;
1531 interface->num_tx_queues = rss_i * pcs;
1532
1533 return true;
1534 }
1535
1536 /**
1537 * fm10k_set_rss_queues: Allocate queues for RSS
1538 * @interface: board private structure to initialize
1539 *
1540 * This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
1541 * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1542 *
1543 **/
1544 static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
1545 {
1546 struct fm10k_ring_feature *f;
1547 u16 rss_i;
1548
1549 f = &interface->ring_feature[RING_F_RSS];
1550 rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
1551
1552 /* record indices and power of 2 mask for RSS */
1553 f->indices = rss_i;
1554 f->mask = (1 << fls(rss_i - 1)) - 1;
1555
1556 interface->num_rx_queues = rss_i;
1557 interface->num_tx_queues = rss_i;
1558
1559 return true;
1560 }
1561
1562 /**
1563 * fm10k_set_num_queues: Allocate queues for device, feature dependent
1564 * @interface: board private structure to initialize
1565 *
1566 * This is the top level queue allocation routine. The order here is very
1567 * important, starting with the "most" number of features turned on at once,
1568 * and ending with the smallest set of features. This way large combinations
1569 * can be allocated if they're turned on, and smaller combinations are the
1570 * fallthrough conditions.
1571 *
1572 **/
1573 static void fm10k_set_num_queues(struct fm10k_intfc *interface)
1574 {
1575 /* Start with base case */
1576 interface->num_rx_queues = 1;
1577 interface->num_tx_queues = 1;
1578
1579 if (fm10k_set_qos_queues(interface))
1580 return;
1581
1582 fm10k_set_rss_queues(interface);
1583 }
1584
1585 /**
1586 * fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
1587 * @interface: board private structure to initialize
1588 * @v_count: q_vectors allocated on interface, used for ring interleaving
1589 * @v_idx: index of vector in interface struct
1590 * @txr_count: total number of Tx rings to allocate
1591 * @txr_idx: index of first Tx ring to allocate
1592 * @rxr_count: total number of Rx rings to allocate
1593 * @rxr_idx: index of first Rx ring to allocate
1594 *
1595 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1596 **/
1597 static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
1598 unsigned int v_count, unsigned int v_idx,
1599 unsigned int txr_count, unsigned int txr_idx,
1600 unsigned int rxr_count, unsigned int rxr_idx)
1601 {
1602 struct fm10k_q_vector *q_vector;
1603 struct fm10k_ring *ring;
1604 int ring_count, size;
1605
1606 ring_count = txr_count + rxr_count;
1607 size = sizeof(struct fm10k_q_vector) +
1608 (sizeof(struct fm10k_ring) * ring_count);
1609
1610 /* allocate q_vector and rings */
1611 q_vector = kzalloc(size, GFP_KERNEL);
1612 if (!q_vector)
1613 return -ENOMEM;
1614
1615 /* initialize NAPI */
1616 netif_napi_add(interface->netdev, &q_vector->napi,
1617 fm10k_poll, NAPI_POLL_WEIGHT);
1618
1619 /* tie q_vector and interface together */
1620 interface->q_vector[v_idx] = q_vector;
1621 q_vector->interface = interface;
1622 q_vector->v_idx = v_idx;
1623
1624 /* initialize pointer to rings */
1625 ring = q_vector->ring;
1626
1627 /* save Tx ring container info */
1628 q_vector->tx.ring = ring;
1629 q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
1630 q_vector->tx.itr = interface->tx_itr;
1631 q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
1632 q_vector->tx.count = txr_count;
1633
1634 while (txr_count) {
1635 /* assign generic ring traits */
1636 ring->dev = &interface->pdev->dev;
1637 ring->netdev = interface->netdev;
1638
1639 /* configure backlink on ring */
1640 ring->q_vector = q_vector;
1641
1642 /* apply Tx specific ring traits */
1643 ring->count = interface->tx_ring_count;
1644 ring->queue_index = txr_idx;
1645
1646 /* assign ring to interface */
1647 interface->tx_ring[txr_idx] = ring;
1648
1649 /* update count and index */
1650 txr_count--;
1651 txr_idx += v_count;
1652
1653 /* push pointer to next ring */
1654 ring++;
1655 }
1656
1657 /* save Rx ring container info */
1658 q_vector->rx.ring = ring;
1659 q_vector->rx.itr = interface->rx_itr;
1660 q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
1661 q_vector->rx.count = rxr_count;
1662
1663 while (rxr_count) {
1664 /* assign generic ring traits */
1665 ring->dev = &interface->pdev->dev;
1666 ring->netdev = interface->netdev;
1667 rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
1668
1669 /* configure backlink on ring */
1670 ring->q_vector = q_vector;
1671
1672 /* apply Rx specific ring traits */
1673 ring->count = interface->rx_ring_count;
1674 ring->queue_index = rxr_idx;
1675
1676 /* assign ring to interface */
1677 interface->rx_ring[rxr_idx] = ring;
1678
1679 /* update count and index */
1680 rxr_count--;
1681 rxr_idx += v_count;
1682
1683 /* push pointer to next ring */
1684 ring++;
1685 }
1686
1687 fm10k_dbg_q_vector_init(q_vector);
1688
1689 return 0;
1690 }
1691
1692 /**
1693 * fm10k_free_q_vector - Free memory allocated for specific interrupt vector
1694 * @interface: board private structure to initialize
1695 * @v_idx: Index of vector to be freed
1696 *
1697 * This function frees the memory allocated to the q_vector. In addition if
1698 * NAPI is enabled it will delete any references to the NAPI struct prior
1699 * to freeing the q_vector.
1700 **/
1701 static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
1702 {
1703 struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
1704 struct fm10k_ring *ring;
1705
1706 fm10k_dbg_q_vector_exit(q_vector);
1707
1708 fm10k_for_each_ring(ring, q_vector->tx)
1709 interface->tx_ring[ring->queue_index] = NULL;
1710
1711 fm10k_for_each_ring(ring, q_vector->rx)
1712 interface->rx_ring[ring->queue_index] = NULL;
1713
1714 interface->q_vector[v_idx] = NULL;
1715 netif_napi_del(&q_vector->napi);
1716 kfree_rcu(q_vector, rcu);
1717 }
1718
1719 /**
1720 * fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
1721 * @interface: board private structure to initialize
1722 *
1723 * We allocate one q_vector per queue interrupt. If allocation fails we
1724 * return -ENOMEM.
1725 **/
1726 static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
1727 {
1728 unsigned int q_vectors = interface->num_q_vectors;
1729 unsigned int rxr_remaining = interface->num_rx_queues;
1730 unsigned int txr_remaining = interface->num_tx_queues;
1731 unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1732 int err;
1733
1734 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1735 for (; rxr_remaining; v_idx++) {
1736 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1737 0, 0, 1, rxr_idx);
1738 if (err)
1739 goto err_out;
1740
1741 /* update counts and index */
1742 rxr_remaining--;
1743 rxr_idx++;
1744 }
1745 }
1746
1747 for (; v_idx < q_vectors; v_idx++) {
1748 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1749 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1750
1751 err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
1752 tqpv, txr_idx,
1753 rqpv, rxr_idx);
1754
1755 if (err)
1756 goto err_out;
1757
1758 /* update counts and index */
1759 rxr_remaining -= rqpv;
1760 txr_remaining -= tqpv;
1761 rxr_idx++;
1762 txr_idx++;
1763 }
1764
1765 return 0;
1766
1767 err_out:
1768 interface->num_tx_queues = 0;
1769 interface->num_rx_queues = 0;
1770 interface->num_q_vectors = 0;
1771
1772 while (v_idx--)
1773 fm10k_free_q_vector(interface, v_idx);
1774
1775 return -ENOMEM;
1776 }
1777
1778 /**
1779 * fm10k_free_q_vectors - Free memory allocated for interrupt vectors
1780 * @interface: board private structure to initialize
1781 *
1782 * This function frees the memory allocated to the q_vectors. In addition if
1783 * NAPI is enabled it will delete any references to the NAPI struct prior
1784 * to freeing the q_vector.
1785 **/
1786 static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
1787 {
1788 int v_idx = interface->num_q_vectors;
1789
1790 interface->num_tx_queues = 0;
1791 interface->num_rx_queues = 0;
1792 interface->num_q_vectors = 0;
1793
1794 while (v_idx--)
1795 fm10k_free_q_vector(interface, v_idx);
1796 }
1797
1798 /**
1799 * f10k_reset_msix_capability - reset MSI-X capability
1800 * @interface: board private structure to initialize
1801 *
1802 * Reset the MSI-X capability back to its starting state
1803 **/
1804 static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
1805 {
1806 pci_disable_msix(interface->pdev);
1807 kfree(interface->msix_entries);
1808 interface->msix_entries = NULL;
1809 }
1810
1811 /**
1812 * f10k_init_msix_capability - configure MSI-X capability
1813 * @interface: board private structure to initialize
1814 *
1815 * Attempt to configure the interrupts using the best available
1816 * capabilities of the hardware and the kernel.
1817 **/
1818 static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
1819 {
1820 struct fm10k_hw *hw = &interface->hw;
1821 int v_budget, vector;
1822
1823 /* It's easy to be greedy for MSI-X vectors, but it really
1824 * doesn't do us much good if we have a lot more vectors
1825 * than CPU's. So let's be conservative and only ask for
1826 * (roughly) the same number of vectors as there are CPU's.
1827 * the default is to use pairs of vectors
1828 */
1829 v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
1830 v_budget = min_t(u16, v_budget, num_online_cpus());
1831
1832 /* account for vectors not related to queues */
1833 v_budget += NON_Q_VECTORS(hw);
1834
1835 /* At the same time, hardware can only support a maximum of
1836 * hw.mac->max_msix_vectors vectors. With features
1837 * such as RSS and VMDq, we can easily surpass the number of Rx and Tx
1838 * descriptor queues supported by our device. Thus, we cap it off in
1839 * those rare cases where the cpu count also exceeds our vector limit.
1840 */
1841 v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
1842
1843 /* A failure in MSI-X entry allocation is fatal. */
1844 interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
1845 GFP_KERNEL);
1846 if (!interface->msix_entries)
1847 return -ENOMEM;
1848
1849 /* populate entry values */
1850 for (vector = 0; vector < v_budget; vector++)
1851 interface->msix_entries[vector].entry = vector;
1852
1853 /* Attempt to enable MSI-X with requested value */
1854 v_budget = pci_enable_msix_range(interface->pdev,
1855 interface->msix_entries,
1856 MIN_MSIX_COUNT(hw),
1857 v_budget);
1858 if (v_budget < 0) {
1859 kfree(interface->msix_entries);
1860 interface->msix_entries = NULL;
1861 return -ENOMEM;
1862 }
1863
1864 /* record the number of queues available for q_vectors */
1865 interface->num_q_vectors = v_budget - NON_Q_VECTORS(hw);
1866
1867 return 0;
1868 }
1869
1870 /**
1871 * fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
1872 * @interface: Interface structure continaining rings and devices
1873 *
1874 * Cache the descriptor ring offsets for Qos
1875 **/
1876 static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
1877 {
1878 struct net_device *dev = interface->netdev;
1879 int pc, offset, rss_i, i, q_idx;
1880 u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
1881 u8 num_pcs = netdev_get_num_tc(dev);
1882
1883 if (num_pcs <= 1)
1884 return false;
1885
1886 rss_i = interface->ring_feature[RING_F_RSS].indices;
1887
1888 for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
1889 q_idx = pc;
1890 for (i = 0; i < rss_i; i++) {
1891 interface->tx_ring[offset + i]->reg_idx = q_idx;
1892 interface->tx_ring[offset + i]->qos_pc = pc;
1893 interface->rx_ring[offset + i]->reg_idx = q_idx;
1894 interface->rx_ring[offset + i]->qos_pc = pc;
1895 q_idx += pc_stride;
1896 }
1897 }
1898
1899 return true;
1900 }
1901
1902 /**
1903 * fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
1904 * @interface: Interface structure continaining rings and devices
1905 *
1906 * Cache the descriptor ring offsets for RSS
1907 **/
1908 static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
1909 {
1910 int i;
1911
1912 for (i = 0; i < interface->num_rx_queues; i++)
1913 interface->rx_ring[i]->reg_idx = i;
1914
1915 for (i = 0; i < interface->num_tx_queues; i++)
1916 interface->tx_ring[i]->reg_idx = i;
1917 }
1918
1919 /**
1920 * fm10k_assign_rings - Map rings to network devices
1921 * @interface: Interface structure containing rings and devices
1922 *
1923 * This function is meant to go though and configure both the network
1924 * devices so that they contain rings, and configure the rings so that
1925 * they function with their network devices.
1926 **/
1927 static void fm10k_assign_rings(struct fm10k_intfc *interface)
1928 {
1929 if (fm10k_cache_ring_qos(interface))
1930 return;
1931
1932 fm10k_cache_ring_rss(interface);
1933 }
1934
1935 static void fm10k_init_reta(struct fm10k_intfc *interface)
1936 {
1937 u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
1938 u32 reta, base;
1939
1940 /* If the Rx flow indirection table has been configured manually, we
1941 * need to maintain it when possible.
1942 */
1943 if (netif_is_rxfh_configured(interface->netdev)) {
1944 for (i = FM10K_RETA_SIZE; i--;) {
1945 reta = interface->reta[i];
1946 if ((((reta << 24) >> 24) < rss_i) &&
1947 (((reta << 16) >> 24) < rss_i) &&
1948 (((reta << 8) >> 24) < rss_i) &&
1949 (((reta) >> 24) < rss_i))
1950 continue;
1951
1952 /* this should never happen */
1953 dev_err(&interface->pdev->dev,
1954 "RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
1955 goto repopulate_reta;
1956 }
1957
1958 /* do nothing if all of the elements are in bounds */
1959 return;
1960 }
1961
1962 repopulate_reta:
1963 /* Populate the redirection table 4 entries at a time. To do this
1964 * we are generating the results for n and n+2 and then interleaving
1965 * those with the results with n+1 and n+3.
1966 */
1967 for (i = FM10K_RETA_SIZE; i--;) {
1968 /* first pass generates n and n+2 */
1969 base = ((i * 0x00040004) + 0x00020000) * rss_i;
1970 reta = (base & 0x3F803F80) >> 7;
1971
1972 /* second pass generates n+1 and n+3 */
1973 base += 0x00010001 * rss_i;
1974 reta |= (base & 0x3F803F80) << 1;
1975
1976 interface->reta[i] = reta;
1977 }
1978 }
1979
1980 /**
1981 * fm10k_init_queueing_scheme - Determine proper queueing scheme
1982 * @interface: board private structure to initialize
1983 *
1984 * We determine which queueing scheme to use based on...
1985 * - Hardware queue count (num_*_queues)
1986 * - defined by miscellaneous hardware support/features (RSS, etc.)
1987 **/
1988 int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
1989 {
1990 int err;
1991
1992 /* Number of supported queues */
1993 fm10k_set_num_queues(interface);
1994
1995 /* Configure MSI-X capability */
1996 err = fm10k_init_msix_capability(interface);
1997 if (err) {
1998 dev_err(&interface->pdev->dev,
1999 "Unable to initialize MSI-X capability\n");
2000 return err;
2001 }
2002
2003 /* Allocate memory for queues */
2004 err = fm10k_alloc_q_vectors(interface);
2005 if (err) {
2006 fm10k_reset_msix_capability(interface);
2007 return err;
2008 }
2009
2010 /* Map rings to devices, and map devices to physical queues */
2011 fm10k_assign_rings(interface);
2012
2013 /* Initialize RSS redirection table */
2014 fm10k_init_reta(interface);
2015
2016 return 0;
2017 }
2018
2019 /**
2020 * fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
2021 * @interface: board private structure to clear queueing scheme on
2022 *
2023 * We go through and clear queueing specific resources and reset the structure
2024 * to pre-load conditions
2025 **/
2026 void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
2027 {
2028 fm10k_free_q_vectors(interface);
2029 fm10k_reset_msix_capability(interface);
2030 }