]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/intel/fm10k/fm10k_netdev.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / fm10k / fm10k_netdev.c
1 /* Intel(R) Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2017 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21 #include "fm10k.h"
22 #include <linux/vmalloc.h>
23 #include <net/udp_tunnel.h>
24
25 /**
26 * fm10k_setup_tx_resources - allocate Tx resources (Descriptors)
27 * @tx_ring: tx descriptor ring (for a specific queue) to setup
28 *
29 * Return 0 on success, negative on failure
30 **/
31 int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring)
32 {
33 struct device *dev = tx_ring->dev;
34 int size;
35
36 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
37
38 tx_ring->tx_buffer = vzalloc(size);
39 if (!tx_ring->tx_buffer)
40 goto err;
41
42 u64_stats_init(&tx_ring->syncp);
43
44 /* round up to nearest 4K */
45 tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc);
46 tx_ring->size = ALIGN(tx_ring->size, 4096);
47
48 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
49 &tx_ring->dma, GFP_KERNEL);
50 if (!tx_ring->desc)
51 goto err;
52
53 return 0;
54
55 err:
56 vfree(tx_ring->tx_buffer);
57 tx_ring->tx_buffer = NULL;
58 return -ENOMEM;
59 }
60
61 /**
62 * fm10k_setup_all_tx_resources - allocate all queues Tx resources
63 * @interface: board private structure
64 *
65 * If this function returns with an error, then it's possible one or
66 * more of the rings is populated (while the rest are not). It is the
67 * callers duty to clean those orphaned rings.
68 *
69 * Return 0 on success, negative on failure
70 **/
71 static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface)
72 {
73 int i, err = 0;
74
75 for (i = 0; i < interface->num_tx_queues; i++) {
76 err = fm10k_setup_tx_resources(interface->tx_ring[i]);
77 if (!err)
78 continue;
79
80 netif_err(interface, probe, interface->netdev,
81 "Allocation for Tx Queue %u failed\n", i);
82 goto err_setup_tx;
83 }
84
85 return 0;
86 err_setup_tx:
87 /* rewind the index freeing the rings as we go */
88 while (i--)
89 fm10k_free_tx_resources(interface->tx_ring[i]);
90 return err;
91 }
92
93 /**
94 * fm10k_setup_rx_resources - allocate Rx resources (Descriptors)
95 * @rx_ring: rx descriptor ring (for a specific queue) to setup
96 *
97 * Returns 0 on success, negative on failure
98 **/
99 int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring)
100 {
101 struct device *dev = rx_ring->dev;
102 int size;
103
104 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
105
106 rx_ring->rx_buffer = vzalloc(size);
107 if (!rx_ring->rx_buffer)
108 goto err;
109
110 u64_stats_init(&rx_ring->syncp);
111
112 /* Round up to nearest 4K */
113 rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc);
114 rx_ring->size = ALIGN(rx_ring->size, 4096);
115
116 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
117 &rx_ring->dma, GFP_KERNEL);
118 if (!rx_ring->desc)
119 goto err;
120
121 return 0;
122 err:
123 vfree(rx_ring->rx_buffer);
124 rx_ring->rx_buffer = NULL;
125 return -ENOMEM;
126 }
127
128 /**
129 * fm10k_setup_all_rx_resources - allocate all queues Rx resources
130 * @interface: board private structure
131 *
132 * If this function returns with an error, then it's possible one or
133 * more of the rings is populated (while the rest are not). It is the
134 * callers duty to clean those orphaned rings.
135 *
136 * Return 0 on success, negative on failure
137 **/
138 static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface)
139 {
140 int i, err = 0;
141
142 for (i = 0; i < interface->num_rx_queues; i++) {
143 err = fm10k_setup_rx_resources(interface->rx_ring[i]);
144 if (!err)
145 continue;
146
147 netif_err(interface, probe, interface->netdev,
148 "Allocation for Rx Queue %u failed\n", i);
149 goto err_setup_rx;
150 }
151
152 return 0;
153 err_setup_rx:
154 /* rewind the index freeing the rings as we go */
155 while (i--)
156 fm10k_free_rx_resources(interface->rx_ring[i]);
157 return err;
158 }
159
160 void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring,
161 struct fm10k_tx_buffer *tx_buffer)
162 {
163 if (tx_buffer->skb) {
164 dev_kfree_skb_any(tx_buffer->skb);
165 if (dma_unmap_len(tx_buffer, len))
166 dma_unmap_single(ring->dev,
167 dma_unmap_addr(tx_buffer, dma),
168 dma_unmap_len(tx_buffer, len),
169 DMA_TO_DEVICE);
170 } else if (dma_unmap_len(tx_buffer, len)) {
171 dma_unmap_page(ring->dev,
172 dma_unmap_addr(tx_buffer, dma),
173 dma_unmap_len(tx_buffer, len),
174 DMA_TO_DEVICE);
175 }
176 tx_buffer->next_to_watch = NULL;
177 tx_buffer->skb = NULL;
178 dma_unmap_len_set(tx_buffer, len, 0);
179 /* tx_buffer must be completely set up in the transmit path */
180 }
181
182 /**
183 * fm10k_clean_tx_ring - Free Tx Buffers
184 * @tx_ring: ring to be cleaned
185 **/
186 static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring)
187 {
188 struct fm10k_tx_buffer *tx_buffer;
189 unsigned long size;
190 u16 i;
191
192 /* ring already cleared, nothing to do */
193 if (!tx_ring->tx_buffer)
194 return;
195
196 /* Free all the Tx ring sk_buffs */
197 for (i = 0; i < tx_ring->count; i++) {
198 tx_buffer = &tx_ring->tx_buffer[i];
199 fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
200 }
201
202 /* reset BQL values */
203 netdev_tx_reset_queue(txring_txq(tx_ring));
204
205 size = sizeof(struct fm10k_tx_buffer) * tx_ring->count;
206 memset(tx_ring->tx_buffer, 0, size);
207
208 /* Zero out the descriptor ring */
209 memset(tx_ring->desc, 0, tx_ring->size);
210 }
211
212 /**
213 * fm10k_free_tx_resources - Free Tx Resources per Queue
214 * @tx_ring: Tx descriptor ring for a specific queue
215 *
216 * Free all transmit software resources
217 **/
218 void fm10k_free_tx_resources(struct fm10k_ring *tx_ring)
219 {
220 fm10k_clean_tx_ring(tx_ring);
221
222 vfree(tx_ring->tx_buffer);
223 tx_ring->tx_buffer = NULL;
224
225 /* if not set, then don't free */
226 if (!tx_ring->desc)
227 return;
228
229 dma_free_coherent(tx_ring->dev, tx_ring->size,
230 tx_ring->desc, tx_ring->dma);
231 tx_ring->desc = NULL;
232 }
233
234 /**
235 * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues
236 * @interface: board private structure
237 **/
238 void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface)
239 {
240 int i;
241
242 for (i = 0; i < interface->num_tx_queues; i++)
243 fm10k_clean_tx_ring(interface->tx_ring[i]);
244 }
245
246 /**
247 * fm10k_free_all_tx_resources - Free Tx Resources for All Queues
248 * @interface: board private structure
249 *
250 * Free all transmit software resources
251 **/
252 static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface)
253 {
254 int i = interface->num_tx_queues;
255
256 while (i--)
257 fm10k_free_tx_resources(interface->tx_ring[i]);
258 }
259
260 /**
261 * fm10k_clean_rx_ring - Free Rx Buffers per Queue
262 * @rx_ring: ring to free buffers from
263 **/
264 static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring)
265 {
266 unsigned long size;
267 u16 i;
268
269 if (!rx_ring->rx_buffer)
270 return;
271
272 if (rx_ring->skb)
273 dev_kfree_skb(rx_ring->skb);
274 rx_ring->skb = NULL;
275
276 /* Free all the Rx ring sk_buffs */
277 for (i = 0; i < rx_ring->count; i++) {
278 struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i];
279 /* clean-up will only set page pointer to NULL */
280 if (!buffer->page)
281 continue;
282
283 dma_unmap_page(rx_ring->dev, buffer->dma,
284 PAGE_SIZE, DMA_FROM_DEVICE);
285 __free_page(buffer->page);
286
287 buffer->page = NULL;
288 }
289
290 size = sizeof(struct fm10k_rx_buffer) * rx_ring->count;
291 memset(rx_ring->rx_buffer, 0, size);
292
293 /* Zero out the descriptor ring */
294 memset(rx_ring->desc, 0, rx_ring->size);
295
296 rx_ring->next_to_alloc = 0;
297 rx_ring->next_to_clean = 0;
298 rx_ring->next_to_use = 0;
299 }
300
301 /**
302 * fm10k_free_rx_resources - Free Rx Resources
303 * @rx_ring: ring to clean the resources from
304 *
305 * Free all receive software resources
306 **/
307 void fm10k_free_rx_resources(struct fm10k_ring *rx_ring)
308 {
309 fm10k_clean_rx_ring(rx_ring);
310
311 vfree(rx_ring->rx_buffer);
312 rx_ring->rx_buffer = NULL;
313
314 /* if not set, then don't free */
315 if (!rx_ring->desc)
316 return;
317
318 dma_free_coherent(rx_ring->dev, rx_ring->size,
319 rx_ring->desc, rx_ring->dma);
320
321 rx_ring->desc = NULL;
322 }
323
324 /**
325 * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues
326 * @interface: board private structure
327 **/
328 void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface)
329 {
330 int i;
331
332 for (i = 0; i < interface->num_rx_queues; i++)
333 fm10k_clean_rx_ring(interface->rx_ring[i]);
334 }
335
336 /**
337 * fm10k_free_all_rx_resources - Free Rx Resources for All Queues
338 * @interface: board private structure
339 *
340 * Free all receive software resources
341 **/
342 static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface)
343 {
344 int i = interface->num_rx_queues;
345
346 while (i--)
347 fm10k_free_rx_resources(interface->rx_ring[i]);
348 }
349
350 /**
351 * fm10k_request_glort_range - Request GLORTs for use in configuring rules
352 * @interface: board private structure
353 *
354 * This function allocates a range of glorts for this interface to use.
355 **/
356 static void fm10k_request_glort_range(struct fm10k_intfc *interface)
357 {
358 struct fm10k_hw *hw = &interface->hw;
359 u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT;
360
361 /* establish GLORT base */
362 interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE;
363 interface->glort_count = 0;
364
365 /* nothing we can do until mask is allocated */
366 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
367 return;
368
369 /* we support 3 possible GLORT configurations.
370 * 1: VFs consume all but the last 1
371 * 2: VFs and PF split glorts with possible gap between
372 * 3: VFs allocated first 64, all others belong to PF
373 */
374 if (mask <= hw->iov.total_vfs) {
375 interface->glort_count = 1;
376 interface->glort += mask;
377 } else if (mask < 64) {
378 interface->glort_count = (mask + 1) / 2;
379 interface->glort += interface->glort_count;
380 } else {
381 interface->glort_count = mask - 63;
382 interface->glort += 64;
383 }
384 }
385
386 /**
387 * fm10k_free_udp_port_info
388 * @interface: board private structure
389 *
390 * This function frees both geneve_port and vxlan_port structures
391 **/
392 static void fm10k_free_udp_port_info(struct fm10k_intfc *interface)
393 {
394 struct fm10k_udp_port *port;
395
396 /* flush all entries from vxlan list */
397 port = list_first_entry_or_null(&interface->vxlan_port,
398 struct fm10k_udp_port, list);
399 while (port) {
400 list_del(&port->list);
401 kfree(port);
402 port = list_first_entry_or_null(&interface->vxlan_port,
403 struct fm10k_udp_port,
404 list);
405 }
406
407 /* flush all entries from geneve list */
408 port = list_first_entry_or_null(&interface->geneve_port,
409 struct fm10k_udp_port, list);
410 while (port) {
411 list_del(&port->list);
412 kfree(port);
413 port = list_first_entry_or_null(&interface->vxlan_port,
414 struct fm10k_udp_port,
415 list);
416 }
417 }
418
419 /**
420 * fm10k_restore_udp_port_info
421 * @interface: board private structure
422 *
423 * This function restores the value in the tunnel_cfg register(s) after reset
424 **/
425 static void fm10k_restore_udp_port_info(struct fm10k_intfc *interface)
426 {
427 struct fm10k_hw *hw = &interface->hw;
428 struct fm10k_udp_port *port;
429
430 /* only the PF supports configuring tunnels */
431 if (hw->mac.type != fm10k_mac_pf)
432 return;
433
434 port = list_first_entry_or_null(&interface->vxlan_port,
435 struct fm10k_udp_port, list);
436
437 /* restore tunnel configuration register */
438 fm10k_write_reg(hw, FM10K_TUNNEL_CFG,
439 (port ? ntohs(port->port) : 0) |
440 (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT));
441
442 port = list_first_entry_or_null(&interface->geneve_port,
443 struct fm10k_udp_port, list);
444
445 /* restore Geneve tunnel configuration register */
446 fm10k_write_reg(hw, FM10K_TUNNEL_CFG_GENEVE,
447 (port ? ntohs(port->port) : 0));
448 }
449
450 static struct fm10k_udp_port *
451 fm10k_remove_tunnel_port(struct list_head *ports,
452 struct udp_tunnel_info *ti)
453 {
454 struct fm10k_udp_port *port;
455
456 list_for_each_entry(port, ports, list) {
457 if ((port->port == ti->port) &&
458 (port->sa_family == ti->sa_family)) {
459 list_del(&port->list);
460 return port;
461 }
462 }
463
464 return NULL;
465 }
466
467 static void fm10k_insert_tunnel_port(struct list_head *ports,
468 struct udp_tunnel_info *ti)
469 {
470 struct fm10k_udp_port *port;
471
472 /* remove existing port entry from the list so that the newest items
473 * are always at the tail of the list.
474 */
475 port = fm10k_remove_tunnel_port(ports, ti);
476 if (!port) {
477 port = kmalloc(sizeof(*port), GFP_ATOMIC);
478 if (!port)
479 return;
480 port->port = ti->port;
481 port->sa_family = ti->sa_family;
482 }
483
484 list_add_tail(&port->list, ports);
485 }
486
487 /**
488 * fm10k_udp_tunnel_add
489 * @netdev: network interface device structure
490 * @ti: Tunnel endpoint information
491 *
492 * This function is called when a new UDP tunnel port has been added.
493 * Due to hardware restrictions, only one port per type can be offloaded at
494 * once.
495 **/
496 static void fm10k_udp_tunnel_add(struct net_device *dev,
497 struct udp_tunnel_info *ti)
498 {
499 struct fm10k_intfc *interface = netdev_priv(dev);
500
501 /* only the PF supports configuring tunnels */
502 if (interface->hw.mac.type != fm10k_mac_pf)
503 return;
504
505 switch (ti->type) {
506 case UDP_TUNNEL_TYPE_VXLAN:
507 fm10k_insert_tunnel_port(&interface->vxlan_port, ti);
508 break;
509 case UDP_TUNNEL_TYPE_GENEVE:
510 fm10k_insert_tunnel_port(&interface->geneve_port, ti);
511 break;
512 default:
513 return;
514 }
515
516 fm10k_restore_udp_port_info(interface);
517 }
518
519 /**
520 * fm10k_udp_tunnel_del
521 * @netdev: network interface device structure
522 * @ti: Tunnel endpoint information
523 *
524 * This function is called when a new UDP tunnel port is deleted. The freed
525 * port will be removed from the list, then we reprogram the offloaded port
526 * based on the head of the list.
527 **/
528 static void fm10k_udp_tunnel_del(struct net_device *dev,
529 struct udp_tunnel_info *ti)
530 {
531 struct fm10k_intfc *interface = netdev_priv(dev);
532 struct fm10k_udp_port *port = NULL;
533
534 if (interface->hw.mac.type != fm10k_mac_pf)
535 return;
536
537 switch (ti->type) {
538 case UDP_TUNNEL_TYPE_VXLAN:
539 port = fm10k_remove_tunnel_port(&interface->vxlan_port, ti);
540 break;
541 case UDP_TUNNEL_TYPE_GENEVE:
542 port = fm10k_remove_tunnel_port(&interface->geneve_port, ti);
543 break;
544 default:
545 return;
546 }
547
548 /* if we did remove a port we need to free its memory */
549 kfree(port);
550
551 fm10k_restore_udp_port_info(interface);
552 }
553
554 /**
555 * fm10k_open - Called when a network interface is made active
556 * @netdev: network interface device structure
557 *
558 * Returns 0 on success, negative value on failure
559 *
560 * The open entry point is called when a network interface is made
561 * active by the system (IFF_UP). At this point all resources needed
562 * for transmit and receive operations are allocated, the interrupt
563 * handler is registered with the OS, the watchdog timer is started,
564 * and the stack is notified that the interface is ready.
565 **/
566 int fm10k_open(struct net_device *netdev)
567 {
568 struct fm10k_intfc *interface = netdev_priv(netdev);
569 int err;
570
571 /* allocate transmit descriptors */
572 err = fm10k_setup_all_tx_resources(interface);
573 if (err)
574 goto err_setup_tx;
575
576 /* allocate receive descriptors */
577 err = fm10k_setup_all_rx_resources(interface);
578 if (err)
579 goto err_setup_rx;
580
581 /* allocate interrupt resources */
582 err = fm10k_qv_request_irq(interface);
583 if (err)
584 goto err_req_irq;
585
586 /* setup GLORT assignment for this port */
587 fm10k_request_glort_range(interface);
588
589 /* Notify the stack of the actual queue counts */
590 err = netif_set_real_num_tx_queues(netdev,
591 interface->num_tx_queues);
592 if (err)
593 goto err_set_queues;
594
595 err = netif_set_real_num_rx_queues(netdev,
596 interface->num_rx_queues);
597 if (err)
598 goto err_set_queues;
599
600 udp_tunnel_get_rx_info(netdev);
601
602 fm10k_up(interface);
603
604 return 0;
605
606 err_set_queues:
607 fm10k_qv_free_irq(interface);
608 err_req_irq:
609 fm10k_free_all_rx_resources(interface);
610 err_setup_rx:
611 fm10k_free_all_tx_resources(interface);
612 err_setup_tx:
613 return err;
614 }
615
616 /**
617 * fm10k_close - Disables a network interface
618 * @netdev: network interface device structure
619 *
620 * Returns 0, this is not allowed to fail
621 *
622 * The close entry point is called when an interface is de-activated
623 * by the OS. The hardware is still under the drivers control, but
624 * needs to be disabled. A global MAC reset is issued to stop the
625 * hardware, and all transmit and receive resources are freed.
626 **/
627 int fm10k_close(struct net_device *netdev)
628 {
629 struct fm10k_intfc *interface = netdev_priv(netdev);
630
631 fm10k_down(interface);
632
633 fm10k_qv_free_irq(interface);
634
635 fm10k_free_udp_port_info(interface);
636
637 fm10k_free_all_tx_resources(interface);
638 fm10k_free_all_rx_resources(interface);
639
640 return 0;
641 }
642
643 static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev)
644 {
645 struct fm10k_intfc *interface = netdev_priv(dev);
646 int num_tx_queues = READ_ONCE(interface->num_tx_queues);
647 unsigned int r_idx = skb->queue_mapping;
648 int err;
649
650 if (!num_tx_queues)
651 return NETDEV_TX_BUSY;
652
653 if ((skb->protocol == htons(ETH_P_8021Q)) &&
654 !skb_vlan_tag_present(skb)) {
655 /* FM10K only supports hardware tagging, any tags in frame
656 * are considered 2nd level or "outer" tags
657 */
658 struct vlan_hdr *vhdr;
659 __be16 proto;
660
661 /* make sure skb is not shared */
662 skb = skb_share_check(skb, GFP_ATOMIC);
663 if (!skb)
664 return NETDEV_TX_OK;
665
666 /* make sure there is enough room to move the ethernet header */
667 if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN)))
668 return NETDEV_TX_OK;
669
670 /* verify the skb head is not shared */
671 err = skb_cow_head(skb, 0);
672 if (err) {
673 dev_kfree_skb(skb);
674 return NETDEV_TX_OK;
675 }
676
677 /* locate VLAN header */
678 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
679
680 /* pull the 2 key pieces of data out of it */
681 __vlan_hwaccel_put_tag(skb,
682 htons(ETH_P_8021Q),
683 ntohs(vhdr->h_vlan_TCI));
684 proto = vhdr->h_vlan_encapsulated_proto;
685 skb->protocol = (ntohs(proto) >= 1536) ? proto :
686 htons(ETH_P_802_2);
687
688 /* squash it by moving the ethernet addresses up 4 bytes */
689 memmove(skb->data + VLAN_HLEN, skb->data, 12);
690 __skb_pull(skb, VLAN_HLEN);
691 skb_reset_mac_header(skb);
692 }
693
694 /* The minimum packet size for a single buffer is 17B so pad the skb
695 * in order to meet this minimum size requirement.
696 */
697 if (unlikely(skb->len < 17)) {
698 int pad_len = 17 - skb->len;
699
700 if (skb_pad(skb, pad_len))
701 return NETDEV_TX_OK;
702 __skb_put(skb, pad_len);
703 }
704
705 if (r_idx >= num_tx_queues)
706 r_idx %= num_tx_queues;
707
708 err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]);
709
710 return err;
711 }
712
713 /**
714 * fm10k_tx_timeout - Respond to a Tx Hang
715 * @netdev: network interface device structure
716 **/
717 static void fm10k_tx_timeout(struct net_device *netdev)
718 {
719 struct fm10k_intfc *interface = netdev_priv(netdev);
720 bool real_tx_hang = false;
721 int i;
722
723 #define TX_TIMEO_LIMIT 16000
724 for (i = 0; i < interface->num_tx_queues; i++) {
725 struct fm10k_ring *tx_ring = interface->tx_ring[i];
726
727 if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring))
728 real_tx_hang = true;
729 }
730
731 if (real_tx_hang) {
732 fm10k_tx_timeout_reset(interface);
733 } else {
734 netif_info(interface, drv, netdev,
735 "Fake Tx hang detected with timeout of %d seconds\n",
736 netdev->watchdog_timeo / HZ);
737
738 /* fake Tx hang - increase the kernel timeout */
739 if (netdev->watchdog_timeo < TX_TIMEO_LIMIT)
740 netdev->watchdog_timeo *= 2;
741 }
742 }
743
744 /**
745 * fm10k_host_mbx_ready - Check PF interface's mailbox readiness
746 * @interface: board private structure
747 *
748 * This function checks if the PF interface's mailbox is ready before queueing
749 * mailbox messages for transmission. This will prevent filling the TX mailbox
750 * queue when the receiver is not ready. VF interfaces are exempt from this
751 * check since it will block all PF-VF mailbox messages from being sent from
752 * the VF to the PF at initialization.
753 **/
754 static bool fm10k_host_mbx_ready(struct fm10k_intfc *interface)
755 {
756 struct fm10k_hw *hw = &interface->hw;
757
758 return (hw->mac.type == fm10k_mac_vf || interface->host_ready);
759 }
760
761 /**
762 * fm10k_queue_vlan_request - Queue a VLAN update request
763 * @interface: the fm10k interface structure
764 * @vid: the VLAN vid
765 * @vsi: VSI index number
766 * @set: whether to set or clear
767 *
768 * This function queues up a VLAN update. For VFs, this must be sent to the
769 * managing PF over the mailbox. For PFs, we'll use the same handling so that
770 * it's similar to the VF. This avoids storming the PF<->VF mailbox with too
771 * many VLAN updates during reset.
772 */
773 int fm10k_queue_vlan_request(struct fm10k_intfc *interface,
774 u32 vid, u8 vsi, bool set)
775 {
776 struct fm10k_macvlan_request *request;
777 unsigned long flags;
778
779 /* This must be atomic since we may be called while the netdev
780 * addr_list_lock is held
781 */
782 request = kzalloc(sizeof(*request), GFP_ATOMIC);
783 if (!request)
784 return -ENOMEM;
785
786 request->type = FM10K_VLAN_REQUEST;
787 request->vlan.vid = vid;
788 request->vlan.vsi = vsi;
789 request->set = set;
790
791 spin_lock_irqsave(&interface->macvlan_lock, flags);
792 list_add_tail(&request->list, &interface->macvlan_requests);
793 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
794
795 fm10k_macvlan_schedule(interface);
796
797 return 0;
798 }
799
800 /**
801 * fm10k_queue_mac_request - Queue a MAC update request
802 * @interface: the fm10k interface structure
803 * @glort: the target glort for this update
804 * @addr: the address to update
805 * @vid: the vid to update
806 * @sync: whether to add or remove
807 *
808 * This function queues up a MAC request for sending to the switch manager.
809 * A separate thread monitors the queue and sends updates to the switch
810 * manager. Return 0 on success, and negative error code on failure.
811 **/
812 int fm10k_queue_mac_request(struct fm10k_intfc *interface, u16 glort,
813 const unsigned char *addr, u16 vid, bool set)
814 {
815 struct fm10k_macvlan_request *request;
816 unsigned long flags;
817
818 /* This must be atomic since we may be called while the netdev
819 * addr_list_lock is held
820 */
821 request = kzalloc(sizeof(*request), GFP_ATOMIC);
822 if (!request)
823 return -ENOMEM;
824
825 if (is_multicast_ether_addr(addr))
826 request->type = FM10K_MC_MAC_REQUEST;
827 else
828 request->type = FM10K_UC_MAC_REQUEST;
829
830 ether_addr_copy(request->mac.addr, addr);
831 request->mac.glort = glort;
832 request->mac.vid = vid;
833 request->set = set;
834
835 spin_lock_irqsave(&interface->macvlan_lock, flags);
836 list_add_tail(&request->list, &interface->macvlan_requests);
837 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
838
839 fm10k_macvlan_schedule(interface);
840
841 return 0;
842 }
843
844 /**
845 * fm10k_clear_macvlan_queue - Cancel pending updates for a given glort
846 * @interface: the fm10k interface structure
847 * @glort: the target glort to clear
848 * @vlans: true to clear VLAN messages, false to ignore them
849 *
850 * Cancel any outstanding MAC/VLAN requests for a given glort. This is
851 * expected to be called when a logical port goes down.
852 **/
853 void fm10k_clear_macvlan_queue(struct fm10k_intfc *interface,
854 u16 glort, bool vlans)
855
856 {
857 struct fm10k_macvlan_request *r, *tmp;
858 unsigned long flags;
859
860 spin_lock_irqsave(&interface->macvlan_lock, flags);
861
862 /* Free any outstanding MAC/VLAN requests for this interface */
863 list_for_each_entry_safe(r, tmp, &interface->macvlan_requests, list) {
864 switch (r->type) {
865 case FM10K_MC_MAC_REQUEST:
866 case FM10K_UC_MAC_REQUEST:
867 /* Don't free requests for other interfaces */
868 if (r->mac.glort != glort)
869 break;
870 /* fall through */
871 case FM10K_VLAN_REQUEST:
872 if (vlans) {
873 list_del(&r->list);
874 kfree(r);
875 }
876 break;
877 }
878 }
879
880 spin_unlock_irqrestore(&interface->macvlan_lock, flags);
881 }
882
883 static int fm10k_uc_vlan_unsync(struct net_device *netdev,
884 const unsigned char *uc_addr)
885 {
886 struct fm10k_intfc *interface = netdev_priv(netdev);
887 u16 glort = interface->glort;
888 u16 vid = interface->vid;
889 bool set = !!(vid / VLAN_N_VID);
890 int err = -EHOSTDOWN;
891
892 /* drop any leading bits on the VLAN ID */
893 vid &= VLAN_N_VID - 1;
894
895 err = fm10k_queue_mac_request(interface, glort, uc_addr, vid, set);
896 if (err)
897 return err;
898
899 /* return non-zero value as we are only doing a partial sync/unsync */
900 return 1;
901 }
902
903 static int fm10k_mc_vlan_unsync(struct net_device *netdev,
904 const unsigned char *mc_addr)
905 {
906 struct fm10k_intfc *interface = netdev_priv(netdev);
907 u16 glort = interface->glort;
908 u16 vid = interface->vid;
909 bool set = !!(vid / VLAN_N_VID);
910 int err = -EHOSTDOWN;
911
912 /* drop any leading bits on the VLAN ID */
913 vid &= VLAN_N_VID - 1;
914
915 err = fm10k_queue_mac_request(interface, glort, mc_addr, vid, set);
916 if (err)
917 return err;
918
919 /* return non-zero value as we are only doing a partial sync/unsync */
920 return 1;
921 }
922
923 static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set)
924 {
925 struct fm10k_intfc *interface = netdev_priv(netdev);
926 struct fm10k_hw *hw = &interface->hw;
927 s32 err;
928 int i;
929
930 /* updates do not apply to VLAN 0 */
931 if (!vid)
932 return 0;
933
934 if (vid >= VLAN_N_VID)
935 return -EINVAL;
936
937 /* Verify that we have permission to add VLANs. If this is a request
938 * to remove a VLAN, we still want to allow the user to remove the
939 * VLAN device. In that case, we need to clear the bit in the
940 * active_vlans bitmask.
941 */
942 if (set && hw->mac.vlan_override)
943 return -EACCES;
944
945 /* update active_vlans bitmask */
946 set_bit(vid, interface->active_vlans);
947 if (!set)
948 clear_bit(vid, interface->active_vlans);
949
950 /* disable the default VLAN ID on ring if we have an active VLAN */
951 for (i = 0; i < interface->num_rx_queues; i++) {
952 struct fm10k_ring *rx_ring = interface->rx_ring[i];
953 u16 rx_vid = rx_ring->vid & (VLAN_N_VID - 1);
954
955 if (test_bit(rx_vid, interface->active_vlans))
956 rx_ring->vid |= FM10K_VLAN_CLEAR;
957 else
958 rx_ring->vid &= ~FM10K_VLAN_CLEAR;
959 }
960
961 /* If our VLAN has been overridden, there is no reason to send VLAN
962 * removal requests as they will be silently ignored.
963 */
964 if (hw->mac.vlan_override)
965 return 0;
966
967 /* Do not remove default VLAN ID related entries from VLAN and MAC
968 * tables
969 */
970 if (!set && vid == hw->mac.default_vid)
971 return 0;
972
973 /* Do not throw an error if the interface is down. We will sync once
974 * we come up
975 */
976 if (test_bit(__FM10K_DOWN, interface->state))
977 return 0;
978
979 fm10k_mbx_lock(interface);
980
981 /* only need to update the VLAN if not in promiscuous mode */
982 if (!(netdev->flags & IFF_PROMISC)) {
983 err = fm10k_queue_vlan_request(interface, vid, 0, set);
984 if (err)
985 goto err_out;
986 }
987
988 /* Update our base MAC address */
989 err = fm10k_queue_mac_request(interface, interface->glort,
990 hw->mac.addr, vid, set);
991 if (err)
992 goto err_out;
993
994 /* set VLAN ID prior to syncing/unsyncing the VLAN */
995 interface->vid = vid + (set ? VLAN_N_VID : 0);
996
997 /* Update the unicast and multicast address list to add/drop VLAN */
998 __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync);
999 __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync);
1000
1001 err_out:
1002 fm10k_mbx_unlock(interface);
1003
1004 return err;
1005 }
1006
1007 static int fm10k_vlan_rx_add_vid(struct net_device *netdev,
1008 __always_unused __be16 proto, u16 vid)
1009 {
1010 /* update VLAN and address table based on changes */
1011 return fm10k_update_vid(netdev, vid, true);
1012 }
1013
1014 static int fm10k_vlan_rx_kill_vid(struct net_device *netdev,
1015 __always_unused __be16 proto, u16 vid)
1016 {
1017 /* update VLAN and address table based on changes */
1018 return fm10k_update_vid(netdev, vid, false);
1019 }
1020
1021 static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid)
1022 {
1023 struct fm10k_hw *hw = &interface->hw;
1024 u16 default_vid = hw->mac.default_vid;
1025 u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID;
1026
1027 vid = find_next_bit(interface->active_vlans, vid_limit, ++vid);
1028
1029 return vid;
1030 }
1031
1032 static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface)
1033 {
1034 u32 vid, prev_vid;
1035
1036 /* loop through and find any gaps in the table */
1037 for (vid = 0, prev_vid = 0;
1038 prev_vid < VLAN_N_VID;
1039 prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) {
1040 if (prev_vid == vid)
1041 continue;
1042
1043 /* send request to clear multiple bits at a time */
1044 prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT;
1045 fm10k_queue_vlan_request(interface, prev_vid, 0, false);
1046 }
1047 }
1048
1049 static int __fm10k_uc_sync(struct net_device *dev,
1050 const unsigned char *addr, bool sync)
1051 {
1052 struct fm10k_intfc *interface = netdev_priv(dev);
1053 struct fm10k_hw *hw = &interface->hw;
1054 u16 vid, glort = interface->glort;
1055 s32 err;
1056
1057 if (!is_valid_ether_addr(addr))
1058 return -EADDRNOTAVAIL;
1059
1060 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
1061 vid < VLAN_N_VID;
1062 vid = fm10k_find_next_vlan(interface, vid)) {
1063 err = fm10k_queue_mac_request(interface, glort,
1064 addr, vid, sync);
1065 if (err)
1066 return err;
1067 }
1068
1069 return 0;
1070 }
1071
1072 static int fm10k_uc_sync(struct net_device *dev,
1073 const unsigned char *addr)
1074 {
1075 return __fm10k_uc_sync(dev, addr, true);
1076 }
1077
1078 static int fm10k_uc_unsync(struct net_device *dev,
1079 const unsigned char *addr)
1080 {
1081 return __fm10k_uc_sync(dev, addr, false);
1082 }
1083
1084 static int fm10k_set_mac(struct net_device *dev, void *p)
1085 {
1086 struct fm10k_intfc *interface = netdev_priv(dev);
1087 struct fm10k_hw *hw = &interface->hw;
1088 struct sockaddr *addr = p;
1089 s32 err = 0;
1090
1091 if (!is_valid_ether_addr(addr->sa_data))
1092 return -EADDRNOTAVAIL;
1093
1094 if (dev->flags & IFF_UP) {
1095 /* setting MAC address requires mailbox */
1096 fm10k_mbx_lock(interface);
1097
1098 err = fm10k_uc_sync(dev, addr->sa_data);
1099 if (!err)
1100 fm10k_uc_unsync(dev, hw->mac.addr);
1101
1102 fm10k_mbx_unlock(interface);
1103 }
1104
1105 if (!err) {
1106 ether_addr_copy(dev->dev_addr, addr->sa_data);
1107 ether_addr_copy(hw->mac.addr, addr->sa_data);
1108 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
1109 }
1110
1111 /* if we had a mailbox error suggest trying again */
1112 return err ? -EAGAIN : 0;
1113 }
1114
1115 static int __fm10k_mc_sync(struct net_device *dev,
1116 const unsigned char *addr, bool sync)
1117 {
1118 struct fm10k_intfc *interface = netdev_priv(dev);
1119 struct fm10k_hw *hw = &interface->hw;
1120 u16 vid, glort = interface->glort;
1121 s32 err;
1122
1123 if (!is_multicast_ether_addr(addr))
1124 return -EADDRNOTAVAIL;
1125
1126 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
1127 vid < VLAN_N_VID;
1128 vid = fm10k_find_next_vlan(interface, vid)) {
1129 err = fm10k_queue_mac_request(interface, glort,
1130 addr, vid, sync);
1131 if (err)
1132 return err;
1133 }
1134
1135 return 0;
1136 }
1137
1138 static int fm10k_mc_sync(struct net_device *dev,
1139 const unsigned char *addr)
1140 {
1141 return __fm10k_mc_sync(dev, addr, true);
1142 }
1143
1144 static int fm10k_mc_unsync(struct net_device *dev,
1145 const unsigned char *addr)
1146 {
1147 return __fm10k_mc_sync(dev, addr, false);
1148 }
1149
1150 static void fm10k_set_rx_mode(struct net_device *dev)
1151 {
1152 struct fm10k_intfc *interface = netdev_priv(dev);
1153 struct fm10k_hw *hw = &interface->hw;
1154 int xcast_mode;
1155
1156 /* no need to update the harwdare if we are not running */
1157 if (!(dev->flags & IFF_UP))
1158 return;
1159
1160 /* determine new mode based on flags */
1161 xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC :
1162 (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI :
1163 (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ?
1164 FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE;
1165
1166 fm10k_mbx_lock(interface);
1167
1168 /* update xcast mode first, but only if it changed */
1169 if (interface->xcast_mode != xcast_mode) {
1170 /* update VLAN table */
1171 if (xcast_mode == FM10K_XCAST_MODE_PROMISC)
1172 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL,
1173 0, true);
1174 if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC)
1175 fm10k_clear_unused_vlans(interface);
1176
1177 /* update xcast mode if host's mailbox is ready */
1178 if (fm10k_host_mbx_ready(interface))
1179 hw->mac.ops.update_xcast_mode(hw, interface->glort,
1180 xcast_mode);
1181
1182 /* record updated xcast mode state */
1183 interface->xcast_mode = xcast_mode;
1184 }
1185
1186 /* synchronize all of the addresses */
1187 __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync);
1188 __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync);
1189
1190 fm10k_mbx_unlock(interface);
1191 }
1192
1193 void fm10k_restore_rx_state(struct fm10k_intfc *interface)
1194 {
1195 struct net_device *netdev = interface->netdev;
1196 struct fm10k_hw *hw = &interface->hw;
1197 int xcast_mode;
1198 u16 vid, glort;
1199
1200 /* record glort for this interface */
1201 glort = interface->glort;
1202
1203 /* convert interface flags to xcast mode */
1204 if (netdev->flags & IFF_PROMISC)
1205 xcast_mode = FM10K_XCAST_MODE_PROMISC;
1206 else if (netdev->flags & IFF_ALLMULTI)
1207 xcast_mode = FM10K_XCAST_MODE_ALLMULTI;
1208 else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST))
1209 xcast_mode = FM10K_XCAST_MODE_MULTI;
1210 else
1211 xcast_mode = FM10K_XCAST_MODE_NONE;
1212
1213 fm10k_mbx_lock(interface);
1214
1215 /* Enable logical port if host's mailbox is ready */
1216 if (fm10k_host_mbx_ready(interface))
1217 hw->mac.ops.update_lport_state(hw, glort,
1218 interface->glort_count, true);
1219
1220 /* update VLAN table */
1221 fm10k_queue_vlan_request(interface, FM10K_VLAN_ALL, 0,
1222 xcast_mode == FM10K_XCAST_MODE_PROMISC);
1223
1224 /* Add filter for VLAN 0 */
1225 fm10k_queue_vlan_request(interface, 0, 0, true);
1226
1227 /* update table with current entries */
1228 for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 1;
1229 vid < VLAN_N_VID;
1230 vid = fm10k_find_next_vlan(interface, vid)) {
1231 fm10k_queue_vlan_request(interface, vid, 0, true);
1232
1233 fm10k_queue_mac_request(interface, glort,
1234 hw->mac.addr, vid, true);
1235 }
1236
1237 /* update xcast mode before synchronizing addresses if host's mailbox
1238 * is ready
1239 */
1240 if (fm10k_host_mbx_ready(interface))
1241 hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode);
1242
1243 /* synchronize all of the addresses */
1244 __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync);
1245 __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync);
1246
1247 fm10k_mbx_unlock(interface);
1248
1249 /* record updated xcast mode state */
1250 interface->xcast_mode = xcast_mode;
1251
1252 /* Restore tunnel configuration */
1253 fm10k_restore_udp_port_info(interface);
1254 }
1255
1256 void fm10k_reset_rx_state(struct fm10k_intfc *interface)
1257 {
1258 struct net_device *netdev = interface->netdev;
1259 struct fm10k_hw *hw = &interface->hw;
1260
1261 /* Wait for MAC/VLAN work to finish */
1262 while (test_bit(__FM10K_MACVLAN_SCHED, interface->state))
1263 usleep_range(1000, 2000);
1264
1265 /* Cancel pending MAC/VLAN requests */
1266 fm10k_clear_macvlan_queue(interface, interface->glort, true);
1267
1268 fm10k_mbx_lock(interface);
1269
1270 /* clear the logical port state on lower device if host's mailbox is
1271 * ready
1272 */
1273 if (fm10k_host_mbx_ready(interface))
1274 hw->mac.ops.update_lport_state(hw, interface->glort,
1275 interface->glort_count, false);
1276
1277 fm10k_mbx_unlock(interface);
1278
1279 /* reset flags to default state */
1280 interface->xcast_mode = FM10K_XCAST_MODE_NONE;
1281
1282 /* clear the sync flag since the lport has been dropped */
1283 __dev_uc_unsync(netdev, NULL);
1284 __dev_mc_unsync(netdev, NULL);
1285 }
1286
1287 /**
1288 * fm10k_get_stats64 - Get System Network Statistics
1289 * @netdev: network interface device structure
1290 * @stats: storage space for 64bit statistics
1291 *
1292 * Obtain 64bit statistics in a way that is safe for both 32bit and 64bit
1293 * architectures.
1294 */
1295 static void fm10k_get_stats64(struct net_device *netdev,
1296 struct rtnl_link_stats64 *stats)
1297 {
1298 struct fm10k_intfc *interface = netdev_priv(netdev);
1299 struct fm10k_ring *ring;
1300 unsigned int start, i;
1301 u64 bytes, packets;
1302
1303 rcu_read_lock();
1304
1305 for (i = 0; i < interface->num_rx_queues; i++) {
1306 ring = READ_ONCE(interface->rx_ring[i]);
1307
1308 if (!ring)
1309 continue;
1310
1311 do {
1312 start = u64_stats_fetch_begin_irq(&ring->syncp);
1313 packets = ring->stats.packets;
1314 bytes = ring->stats.bytes;
1315 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1316
1317 stats->rx_packets += packets;
1318 stats->rx_bytes += bytes;
1319 }
1320
1321 for (i = 0; i < interface->num_tx_queues; i++) {
1322 ring = READ_ONCE(interface->tx_ring[i]);
1323
1324 if (!ring)
1325 continue;
1326
1327 do {
1328 start = u64_stats_fetch_begin_irq(&ring->syncp);
1329 packets = ring->stats.packets;
1330 bytes = ring->stats.bytes;
1331 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
1332
1333 stats->tx_packets += packets;
1334 stats->tx_bytes += bytes;
1335 }
1336
1337 rcu_read_unlock();
1338
1339 /* following stats updated by fm10k_service_task() */
1340 stats->rx_missed_errors = netdev->stats.rx_missed_errors;
1341 }
1342
1343 int fm10k_setup_tc(struct net_device *dev, u8 tc)
1344 {
1345 struct fm10k_intfc *interface = netdev_priv(dev);
1346 int err;
1347
1348 /* Currently only the PF supports priority classes */
1349 if (tc && (interface->hw.mac.type != fm10k_mac_pf))
1350 return -EINVAL;
1351
1352 /* Hardware supports up to 8 traffic classes */
1353 if (tc > 8)
1354 return -EINVAL;
1355
1356 /* Hardware has to reinitialize queues to match packet
1357 * buffer alignment. Unfortunately, the hardware is not
1358 * flexible enough to do this dynamically.
1359 */
1360 if (netif_running(dev))
1361 fm10k_close(dev);
1362
1363 fm10k_mbx_free_irq(interface);
1364
1365 fm10k_clear_queueing_scheme(interface);
1366
1367 /* we expect the prio_tc map to be repopulated later */
1368 netdev_reset_tc(dev);
1369 netdev_set_num_tc(dev, tc);
1370
1371 err = fm10k_init_queueing_scheme(interface);
1372 if (err)
1373 goto err_queueing_scheme;
1374
1375 err = fm10k_mbx_request_irq(interface);
1376 if (err)
1377 goto err_mbx_irq;
1378
1379 err = netif_running(dev) ? fm10k_open(dev) : 0;
1380 if (err)
1381 goto err_open;
1382
1383 /* flag to indicate SWPRI has yet to be updated */
1384 set_bit(FM10K_FLAG_SWPRI_CONFIG, interface->flags);
1385
1386 return 0;
1387 err_open:
1388 fm10k_mbx_free_irq(interface);
1389 err_mbx_irq:
1390 fm10k_clear_queueing_scheme(interface);
1391 err_queueing_scheme:
1392 netif_device_detach(dev);
1393
1394 return err;
1395 }
1396
1397 static int __fm10k_setup_tc(struct net_device *dev, enum tc_setup_type type,
1398 void *type_data)
1399 {
1400 struct tc_mqprio_qopt *mqprio = type_data;
1401
1402 if (type != TC_SETUP_QDISC_MQPRIO)
1403 return -EOPNOTSUPP;
1404
1405 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
1406
1407 return fm10k_setup_tc(dev, mqprio->num_tc);
1408 }
1409
1410 static void fm10k_assign_l2_accel(struct fm10k_intfc *interface,
1411 struct fm10k_l2_accel *l2_accel)
1412 {
1413 struct fm10k_ring *ring;
1414 int i;
1415
1416 for (i = 0; i < interface->num_rx_queues; i++) {
1417 ring = interface->rx_ring[i];
1418 rcu_assign_pointer(ring->l2_accel, l2_accel);
1419 }
1420
1421 interface->l2_accel = l2_accel;
1422 }
1423
1424 static void *fm10k_dfwd_add_station(struct net_device *dev,
1425 struct net_device *sdev)
1426 {
1427 struct fm10k_intfc *interface = netdev_priv(dev);
1428 struct fm10k_l2_accel *l2_accel = interface->l2_accel;
1429 struct fm10k_l2_accel *old_l2_accel = NULL;
1430 struct fm10k_dglort_cfg dglort = { 0 };
1431 struct fm10k_hw *hw = &interface->hw;
1432 int size = 0, i;
1433 u16 glort;
1434
1435 /* allocate l2 accel structure if it is not available */
1436 if (!l2_accel) {
1437 /* verify there is enough free GLORTs to support l2_accel */
1438 if (interface->glort_count < 7)
1439 return ERR_PTR(-EBUSY);
1440
1441 size = offsetof(struct fm10k_l2_accel, macvlan[7]);
1442 l2_accel = kzalloc(size, GFP_KERNEL);
1443 if (!l2_accel)
1444 return ERR_PTR(-ENOMEM);
1445
1446 l2_accel->size = 7;
1447 l2_accel->dglort = interface->glort;
1448
1449 /* update pointers */
1450 fm10k_assign_l2_accel(interface, l2_accel);
1451 /* do not expand if we are at our limit */
1452 } else if ((l2_accel->count == FM10K_MAX_STATIONS) ||
1453 (l2_accel->count == (interface->glort_count - 1))) {
1454 return ERR_PTR(-EBUSY);
1455 /* expand if we have hit the size limit */
1456 } else if (l2_accel->count == l2_accel->size) {
1457 old_l2_accel = l2_accel;
1458 size = offsetof(struct fm10k_l2_accel,
1459 macvlan[(l2_accel->size * 2) + 1]);
1460 l2_accel = kzalloc(size, GFP_KERNEL);
1461 if (!l2_accel)
1462 return ERR_PTR(-ENOMEM);
1463
1464 memcpy(l2_accel, old_l2_accel,
1465 offsetof(struct fm10k_l2_accel,
1466 macvlan[old_l2_accel->size]));
1467
1468 l2_accel->size = (old_l2_accel->size * 2) + 1;
1469
1470 /* update pointers */
1471 fm10k_assign_l2_accel(interface, l2_accel);
1472 kfree_rcu(old_l2_accel, rcu);
1473 }
1474
1475 /* add macvlan to accel table, and record GLORT for position */
1476 for (i = 0; i < l2_accel->size; i++) {
1477 if (!l2_accel->macvlan[i])
1478 break;
1479 }
1480
1481 /* record station */
1482 l2_accel->macvlan[i] = sdev;
1483 l2_accel->count++;
1484
1485 /* configure default DGLORT mapping for RSS/DCB */
1486 dglort.idx = fm10k_dglort_pf_rss;
1487 dglort.inner_rss = 1;
1488 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1489 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1490 dglort.glort = interface->glort;
1491 dglort.shared_l = fls(l2_accel->size);
1492 hw->mac.ops.configure_dglort_map(hw, &dglort);
1493
1494 /* Add rules for this specific dglort to the switch */
1495 fm10k_mbx_lock(interface);
1496
1497 glort = l2_accel->dglort + 1 + i;
1498
1499 if (fm10k_host_mbx_ready(interface)) {
1500 hw->mac.ops.update_xcast_mode(hw, glort,
1501 FM10K_XCAST_MODE_MULTI);
1502 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1503 0, true);
1504 }
1505
1506 fm10k_mbx_unlock(interface);
1507
1508 return sdev;
1509 }
1510
1511 static void fm10k_dfwd_del_station(struct net_device *dev, void *priv)
1512 {
1513 struct fm10k_intfc *interface = netdev_priv(dev);
1514 struct fm10k_l2_accel *l2_accel = READ_ONCE(interface->l2_accel);
1515 struct fm10k_dglort_cfg dglort = { 0 };
1516 struct fm10k_hw *hw = &interface->hw;
1517 struct net_device *sdev = priv;
1518 int i;
1519 u16 glort;
1520
1521 if (!l2_accel)
1522 return;
1523
1524 /* search table for matching interface */
1525 for (i = 0; i < l2_accel->size; i++) {
1526 if (l2_accel->macvlan[i] == sdev)
1527 break;
1528 }
1529
1530 /* exit if macvlan not found */
1531 if (i == l2_accel->size)
1532 return;
1533
1534 /* Remove any rules specific to this dglort */
1535 fm10k_mbx_lock(interface);
1536
1537 glort = l2_accel->dglort + 1 + i;
1538
1539 if (fm10k_host_mbx_ready(interface)) {
1540 hw->mac.ops.update_xcast_mode(hw, glort,
1541 FM10K_XCAST_MODE_NONE);
1542 fm10k_queue_mac_request(interface, glort, sdev->dev_addr,
1543 0, false);
1544 }
1545
1546 fm10k_mbx_unlock(interface);
1547
1548 /* record removal */
1549 l2_accel->macvlan[i] = NULL;
1550 l2_accel->count--;
1551
1552 /* configure default DGLORT mapping for RSS/DCB */
1553 dglort.idx = fm10k_dglort_pf_rss;
1554 dglort.inner_rss = 1;
1555 dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask);
1556 dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask);
1557 dglort.glort = interface->glort;
1558 dglort.shared_l = fls(l2_accel->size);
1559 hw->mac.ops.configure_dglort_map(hw, &dglort);
1560
1561 /* If table is empty remove it */
1562 if (l2_accel->count == 0) {
1563 fm10k_assign_l2_accel(interface, NULL);
1564 kfree_rcu(l2_accel, rcu);
1565 }
1566 }
1567
1568 static netdev_features_t fm10k_features_check(struct sk_buff *skb,
1569 struct net_device *dev,
1570 netdev_features_t features)
1571 {
1572 if (!skb->encapsulation || fm10k_tx_encap_offload(skb))
1573 return features;
1574
1575 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
1576 }
1577
1578 static const struct net_device_ops fm10k_netdev_ops = {
1579 .ndo_open = fm10k_open,
1580 .ndo_stop = fm10k_close,
1581 .ndo_validate_addr = eth_validate_addr,
1582 .ndo_start_xmit = fm10k_xmit_frame,
1583 .ndo_set_mac_address = fm10k_set_mac,
1584 .ndo_tx_timeout = fm10k_tx_timeout,
1585 .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid,
1586 .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid,
1587 .ndo_set_rx_mode = fm10k_set_rx_mode,
1588 .ndo_get_stats64 = fm10k_get_stats64,
1589 .ndo_setup_tc = __fm10k_setup_tc,
1590 .ndo_set_vf_mac = fm10k_ndo_set_vf_mac,
1591 .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan,
1592 .ndo_set_vf_rate = fm10k_ndo_set_vf_bw,
1593 .ndo_get_vf_config = fm10k_ndo_get_vf_config,
1594 .ndo_udp_tunnel_add = fm10k_udp_tunnel_add,
1595 .ndo_udp_tunnel_del = fm10k_udp_tunnel_del,
1596 .ndo_dfwd_add_station = fm10k_dfwd_add_station,
1597 .ndo_dfwd_del_station = fm10k_dfwd_del_station,
1598 #ifdef CONFIG_NET_POLL_CONTROLLER
1599 .ndo_poll_controller = fm10k_netpoll,
1600 #endif
1601 .ndo_features_check = fm10k_features_check,
1602 };
1603
1604 #define DEFAULT_DEBUG_LEVEL_SHIFT 3
1605
1606 struct net_device *fm10k_alloc_netdev(const struct fm10k_info *info)
1607 {
1608 netdev_features_t hw_features;
1609 struct fm10k_intfc *interface;
1610 struct net_device *dev;
1611
1612 dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES);
1613 if (!dev)
1614 return NULL;
1615
1616 /* set net device and ethtool ops */
1617 dev->netdev_ops = &fm10k_netdev_ops;
1618 fm10k_set_ethtool_ops(dev);
1619
1620 /* configure default debug level */
1621 interface = netdev_priv(dev);
1622 interface->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
1623
1624 /* configure default features */
1625 dev->features |= NETIF_F_IP_CSUM |
1626 NETIF_F_IPV6_CSUM |
1627 NETIF_F_SG |
1628 NETIF_F_TSO |
1629 NETIF_F_TSO6 |
1630 NETIF_F_TSO_ECN |
1631 NETIF_F_RXHASH |
1632 NETIF_F_RXCSUM;
1633
1634 /* Only the PF can support VXLAN and NVGRE tunnel offloads */
1635 if (info->mac == fm10k_mac_pf) {
1636 dev->hw_enc_features = NETIF_F_IP_CSUM |
1637 NETIF_F_TSO |
1638 NETIF_F_TSO6 |
1639 NETIF_F_TSO_ECN |
1640 NETIF_F_GSO_UDP_TUNNEL |
1641 NETIF_F_IPV6_CSUM |
1642 NETIF_F_SG;
1643
1644 dev->features |= NETIF_F_GSO_UDP_TUNNEL;
1645 }
1646
1647 /* all features defined to this point should be changeable */
1648 hw_features = dev->features;
1649
1650 /* allow user to enable L2 forwarding acceleration */
1651 hw_features |= NETIF_F_HW_L2FW_DOFFLOAD;
1652
1653 /* configure VLAN features */
1654 dev->vlan_features |= dev->features;
1655
1656 /* we want to leave these both on as we cannot disable VLAN tag
1657 * insertion or stripping on the hardware since it is contained
1658 * in the FTAG and not in the frame itself.
1659 */
1660 dev->features |= NETIF_F_HW_VLAN_CTAG_TX |
1661 NETIF_F_HW_VLAN_CTAG_RX |
1662 NETIF_F_HW_VLAN_CTAG_FILTER;
1663
1664 dev->priv_flags |= IFF_UNICAST_FLT;
1665
1666 dev->hw_features |= hw_features;
1667
1668 /* MTU range: 68 - 15342 */
1669 dev->min_mtu = ETH_MIN_MTU;
1670 dev->max_mtu = FM10K_MAX_JUMBO_FRAME_SIZE;
1671
1672 return dev;
1673 }