]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/i40e/i40e_main.c
Merge remote-tracking branches 'asoc/topic/cs35l32', 'asoc/topic/cs35l34', 'asoc...
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_main.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2017 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/etherdevice.h>
28 #include <linux/of_net.h>
29 #include <linux/pci.h>
30 #include <linux/bpf.h>
31
32 /* Local includes */
33 #include "i40e.h"
34 #include "i40e_diag.h"
35 #include <net/udp_tunnel.h>
36 /* All i40e tracepoints are defined by the include below, which
37 * must be included exactly once across the whole kernel with
38 * CREATE_TRACE_POINTS defined
39 */
40 #define CREATE_TRACE_POINTS
41 #include "i40e_trace.h"
42
43 const char i40e_driver_name[] = "i40e";
44 static const char i40e_driver_string[] =
45 "Intel(R) Ethernet Connection XL710 Network Driver";
46
47 #define DRV_KERN "-k"
48
49 #define DRV_VERSION_MAJOR 2
50 #define DRV_VERSION_MINOR 1
51 #define DRV_VERSION_BUILD 14
52 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
53 __stringify(DRV_VERSION_MINOR) "." \
54 __stringify(DRV_VERSION_BUILD) DRV_KERN
55 const char i40e_driver_version_str[] = DRV_VERSION;
56 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation.";
57
58 /* a bit of forward declarations */
59 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi);
60 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired);
61 static int i40e_add_vsi(struct i40e_vsi *vsi);
62 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi);
63 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit);
64 static int i40e_setup_misc_vector(struct i40e_pf *pf);
65 static void i40e_determine_queue_usage(struct i40e_pf *pf);
66 static int i40e_setup_pf_filter_control(struct i40e_pf *pf);
67 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired);
68 static int i40e_reset(struct i40e_pf *pf);
69 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired);
70 static void i40e_fdir_sb_setup(struct i40e_pf *pf);
71 static int i40e_veb_get_bw_info(struct i40e_veb *veb);
72 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
73 struct i40e_cloud_filter *filter,
74 bool add);
75 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
76 struct i40e_cloud_filter *filter,
77 bool add);
78 static int i40e_get_capabilities(struct i40e_pf *pf,
79 enum i40e_admin_queue_opc list_type);
80
81
82 /* i40e_pci_tbl - PCI Device ID Table
83 *
84 * Last entry must be all 0s
85 *
86 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
87 * Class, Class Mask, private data (not used) }
88 */
89 static const struct pci_device_id i40e_pci_tbl[] = {
90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0},
91 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0},
92 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0},
93 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0},
94 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0},
95 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0},
96 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0},
97 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0},
98 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0},
99 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0},
100 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0},
101 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0},
102 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0},
103 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0},
104 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0},
105 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0},
106 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0},
107 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0},
108 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0},
109 /* required last entry */
110 {0, }
111 };
112 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl);
113
114 #define I40E_MAX_VF_COUNT 128
115 static int debug = -1;
116 module_param(debug, uint, 0);
117 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)");
118
119 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
120 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver");
121 MODULE_LICENSE("GPL");
122 MODULE_VERSION(DRV_VERSION);
123
124 static struct workqueue_struct *i40e_wq;
125
126 /**
127 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code
128 * @hw: pointer to the HW structure
129 * @mem: ptr to mem struct to fill out
130 * @size: size of memory requested
131 * @alignment: what to align the allocation to
132 **/
133 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem,
134 u64 size, u32 alignment)
135 {
136 struct i40e_pf *pf = (struct i40e_pf *)hw->back;
137
138 mem->size = ALIGN(size, alignment);
139 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size,
140 &mem->pa, GFP_KERNEL);
141 if (!mem->va)
142 return -ENOMEM;
143
144 return 0;
145 }
146
147 /**
148 * i40e_free_dma_mem_d - OS specific memory free for shared code
149 * @hw: pointer to the HW structure
150 * @mem: ptr to mem struct to free
151 **/
152 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem)
153 {
154 struct i40e_pf *pf = (struct i40e_pf *)hw->back;
155
156 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa);
157 mem->va = NULL;
158 mem->pa = 0;
159 mem->size = 0;
160
161 return 0;
162 }
163
164 /**
165 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code
166 * @hw: pointer to the HW structure
167 * @mem: ptr to mem struct to fill out
168 * @size: size of memory requested
169 **/
170 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem,
171 u32 size)
172 {
173 mem->size = size;
174 mem->va = kzalloc(size, GFP_KERNEL);
175
176 if (!mem->va)
177 return -ENOMEM;
178
179 return 0;
180 }
181
182 /**
183 * i40e_free_virt_mem_d - OS specific memory free for shared code
184 * @hw: pointer to the HW structure
185 * @mem: ptr to mem struct to free
186 **/
187 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem)
188 {
189 /* it's ok to kfree a NULL pointer */
190 kfree(mem->va);
191 mem->va = NULL;
192 mem->size = 0;
193
194 return 0;
195 }
196
197 /**
198 * i40e_get_lump - find a lump of free generic resource
199 * @pf: board private structure
200 * @pile: the pile of resource to search
201 * @needed: the number of items needed
202 * @id: an owner id to stick on the items assigned
203 *
204 * Returns the base item index of the lump, or negative for error
205 *
206 * The search_hint trick and lack of advanced fit-finding only work
207 * because we're highly likely to have all the same size lump requests.
208 * Linear search time and any fragmentation should be minimal.
209 **/
210 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile,
211 u16 needed, u16 id)
212 {
213 int ret = -ENOMEM;
214 int i, j;
215
216 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) {
217 dev_info(&pf->pdev->dev,
218 "param err: pile=%p needed=%d id=0x%04x\n",
219 pile, needed, id);
220 return -EINVAL;
221 }
222
223 /* start the linear search with an imperfect hint */
224 i = pile->search_hint;
225 while (i < pile->num_entries) {
226 /* skip already allocated entries */
227 if (pile->list[i] & I40E_PILE_VALID_BIT) {
228 i++;
229 continue;
230 }
231
232 /* do we have enough in this lump? */
233 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) {
234 if (pile->list[i+j] & I40E_PILE_VALID_BIT)
235 break;
236 }
237
238 if (j == needed) {
239 /* there was enough, so assign it to the requestor */
240 for (j = 0; j < needed; j++)
241 pile->list[i+j] = id | I40E_PILE_VALID_BIT;
242 ret = i;
243 pile->search_hint = i + j;
244 break;
245 }
246
247 /* not enough, so skip over it and continue looking */
248 i += j;
249 }
250
251 return ret;
252 }
253
254 /**
255 * i40e_put_lump - return a lump of generic resource
256 * @pile: the pile of resource to search
257 * @index: the base item index
258 * @id: the owner id of the items assigned
259 *
260 * Returns the count of items in the lump
261 **/
262 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id)
263 {
264 int valid_id = (id | I40E_PILE_VALID_BIT);
265 int count = 0;
266 int i;
267
268 if (!pile || index >= pile->num_entries)
269 return -EINVAL;
270
271 for (i = index;
272 i < pile->num_entries && pile->list[i] == valid_id;
273 i++) {
274 pile->list[i] = 0;
275 count++;
276 }
277
278 if (count && index < pile->search_hint)
279 pile->search_hint = index;
280
281 return count;
282 }
283
284 /**
285 * i40e_find_vsi_from_id - searches for the vsi with the given id
286 * @pf - the pf structure to search for the vsi
287 * @id - id of the vsi it is searching for
288 **/
289 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id)
290 {
291 int i;
292
293 for (i = 0; i < pf->num_alloc_vsi; i++)
294 if (pf->vsi[i] && (pf->vsi[i]->id == id))
295 return pf->vsi[i];
296
297 return NULL;
298 }
299
300 /**
301 * i40e_service_event_schedule - Schedule the service task to wake up
302 * @pf: board private structure
303 *
304 * If not already scheduled, this puts the task into the work queue
305 **/
306 void i40e_service_event_schedule(struct i40e_pf *pf)
307 {
308 if (!test_bit(__I40E_DOWN, pf->state) &&
309 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
310 queue_work(i40e_wq, &pf->service_task);
311 }
312
313 /**
314 * i40e_tx_timeout - Respond to a Tx Hang
315 * @netdev: network interface device structure
316 *
317 * If any port has noticed a Tx timeout, it is likely that the whole
318 * device is munged, not just the one netdev port, so go for the full
319 * reset.
320 **/
321 static void i40e_tx_timeout(struct net_device *netdev)
322 {
323 struct i40e_netdev_priv *np = netdev_priv(netdev);
324 struct i40e_vsi *vsi = np->vsi;
325 struct i40e_pf *pf = vsi->back;
326 struct i40e_ring *tx_ring = NULL;
327 unsigned int i, hung_queue = 0;
328 u32 head, val;
329
330 pf->tx_timeout_count++;
331
332 /* find the stopped queue the same way the stack does */
333 for (i = 0; i < netdev->num_tx_queues; i++) {
334 struct netdev_queue *q;
335 unsigned long trans_start;
336
337 q = netdev_get_tx_queue(netdev, i);
338 trans_start = q->trans_start;
339 if (netif_xmit_stopped(q) &&
340 time_after(jiffies,
341 (trans_start + netdev->watchdog_timeo))) {
342 hung_queue = i;
343 break;
344 }
345 }
346
347 if (i == netdev->num_tx_queues) {
348 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
349 } else {
350 /* now that we have an index, find the tx_ring struct */
351 for (i = 0; i < vsi->num_queue_pairs; i++) {
352 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
353 if (hung_queue ==
354 vsi->tx_rings[i]->queue_index) {
355 tx_ring = vsi->tx_rings[i];
356 break;
357 }
358 }
359 }
360 }
361
362 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20)))
363 pf->tx_timeout_recovery_level = 1; /* reset after some time */
364 else if (time_before(jiffies,
365 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo)))
366 return; /* don't do any new action before the next timeout */
367
368 if (tx_ring) {
369 head = i40e_get_head(tx_ring);
370 /* Read interrupt register */
371 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
372 val = rd32(&pf->hw,
373 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
374 tx_ring->vsi->base_vector - 1));
375 else
376 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
377
378 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
379 vsi->seid, hung_queue, tx_ring->next_to_clean,
380 head, tx_ring->next_to_use,
381 readl(tx_ring->tail), val);
382 }
383
384 pf->tx_timeout_last_recovery = jiffies;
385 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
386 pf->tx_timeout_recovery_level, hung_queue);
387
388 switch (pf->tx_timeout_recovery_level) {
389 case 1:
390 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
391 break;
392 case 2:
393 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
394 break;
395 case 3:
396 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
397 break;
398 default:
399 netdev_err(netdev, "tx_timeout recovery unsuccessful\n");
400 break;
401 }
402
403 i40e_service_event_schedule(pf);
404 pf->tx_timeout_recovery_level++;
405 }
406
407 /**
408 * i40e_get_vsi_stats_struct - Get System Network Statistics
409 * @vsi: the VSI we care about
410 *
411 * Returns the address of the device statistics structure.
412 * The statistics are actually updated from the service task.
413 **/
414 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi)
415 {
416 return &vsi->net_stats;
417 }
418
419 /**
420 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring
421 * @ring: Tx ring to get statistics from
422 * @stats: statistics entry to be updated
423 **/
424 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring,
425 struct rtnl_link_stats64 *stats)
426 {
427 u64 bytes, packets;
428 unsigned int start;
429
430 do {
431 start = u64_stats_fetch_begin_irq(&ring->syncp);
432 packets = ring->stats.packets;
433 bytes = ring->stats.bytes;
434 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
435
436 stats->tx_packets += packets;
437 stats->tx_bytes += bytes;
438 }
439
440 /**
441 * i40e_get_netdev_stats_struct - Get statistics for netdev interface
442 * @netdev: network interface device structure
443 *
444 * Returns the address of the device statistics structure.
445 * The statistics are actually updated from the service task.
446 **/
447 static void i40e_get_netdev_stats_struct(struct net_device *netdev,
448 struct rtnl_link_stats64 *stats)
449 {
450 struct i40e_netdev_priv *np = netdev_priv(netdev);
451 struct i40e_ring *tx_ring, *rx_ring;
452 struct i40e_vsi *vsi = np->vsi;
453 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi);
454 int i;
455
456 if (test_bit(__I40E_VSI_DOWN, vsi->state))
457 return;
458
459 if (!vsi->tx_rings)
460 return;
461
462 rcu_read_lock();
463 for (i = 0; i < vsi->num_queue_pairs; i++) {
464 u64 bytes, packets;
465 unsigned int start;
466
467 tx_ring = READ_ONCE(vsi->tx_rings[i]);
468 if (!tx_ring)
469 continue;
470 i40e_get_netdev_stats_struct_tx(tx_ring, stats);
471
472 rx_ring = &tx_ring[1];
473
474 do {
475 start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
476 packets = rx_ring->stats.packets;
477 bytes = rx_ring->stats.bytes;
478 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
479
480 stats->rx_packets += packets;
481 stats->rx_bytes += bytes;
482
483 if (i40e_enabled_xdp_vsi(vsi))
484 i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats);
485 }
486 rcu_read_unlock();
487
488 /* following stats updated by i40e_watchdog_subtask() */
489 stats->multicast = vsi_stats->multicast;
490 stats->tx_errors = vsi_stats->tx_errors;
491 stats->tx_dropped = vsi_stats->tx_dropped;
492 stats->rx_errors = vsi_stats->rx_errors;
493 stats->rx_dropped = vsi_stats->rx_dropped;
494 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
495 stats->rx_length_errors = vsi_stats->rx_length_errors;
496 }
497
498 /**
499 * i40e_vsi_reset_stats - Resets all stats of the given vsi
500 * @vsi: the VSI to have its stats reset
501 **/
502 void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
503 {
504 struct rtnl_link_stats64 *ns;
505 int i;
506
507 if (!vsi)
508 return;
509
510 ns = i40e_get_vsi_stats_struct(vsi);
511 memset(ns, 0, sizeof(*ns));
512 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets));
513 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats));
514 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets));
515 if (vsi->rx_rings && vsi->rx_rings[0]) {
516 for (i = 0; i < vsi->num_queue_pairs; i++) {
517 memset(&vsi->rx_rings[i]->stats, 0,
518 sizeof(vsi->rx_rings[i]->stats));
519 memset(&vsi->rx_rings[i]->rx_stats, 0,
520 sizeof(vsi->rx_rings[i]->rx_stats));
521 memset(&vsi->tx_rings[i]->stats, 0,
522 sizeof(vsi->tx_rings[i]->stats));
523 memset(&vsi->tx_rings[i]->tx_stats, 0,
524 sizeof(vsi->tx_rings[i]->tx_stats));
525 }
526 }
527 vsi->stat_offsets_loaded = false;
528 }
529
530 /**
531 * i40e_pf_reset_stats - Reset all of the stats for the given PF
532 * @pf: the PF to be reset
533 **/
534 void i40e_pf_reset_stats(struct i40e_pf *pf)
535 {
536 int i;
537
538 memset(&pf->stats, 0, sizeof(pf->stats));
539 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets));
540 pf->stat_offsets_loaded = false;
541
542 for (i = 0; i < I40E_MAX_VEB; i++) {
543 if (pf->veb[i]) {
544 memset(&pf->veb[i]->stats, 0,
545 sizeof(pf->veb[i]->stats));
546 memset(&pf->veb[i]->stats_offsets, 0,
547 sizeof(pf->veb[i]->stats_offsets));
548 pf->veb[i]->stat_offsets_loaded = false;
549 }
550 }
551 pf->hw_csum_rx_error = 0;
552 }
553
554 /**
555 * i40e_stat_update48 - read and update a 48 bit stat from the chip
556 * @hw: ptr to the hardware info
557 * @hireg: the high 32 bit reg to read
558 * @loreg: the low 32 bit reg to read
559 * @offset_loaded: has the initial offset been loaded yet
560 * @offset: ptr to current offset value
561 * @stat: ptr to the stat
562 *
563 * Since the device stats are not reset at PFReset, they likely will not
564 * be zeroed when the driver starts. We'll save the first values read
565 * and use them as offsets to be subtracted from the raw values in order
566 * to report stats that count from zero. In the process, we also manage
567 * the potential roll-over.
568 **/
569 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
570 bool offset_loaded, u64 *offset, u64 *stat)
571 {
572 u64 new_data;
573
574 if (hw->device_id == I40E_DEV_ID_QEMU) {
575 new_data = rd32(hw, loreg);
576 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
577 } else {
578 new_data = rd64(hw, loreg);
579 }
580 if (!offset_loaded)
581 *offset = new_data;
582 if (likely(new_data >= *offset))
583 *stat = new_data - *offset;
584 else
585 *stat = (new_data + BIT_ULL(48)) - *offset;
586 *stat &= 0xFFFFFFFFFFFFULL;
587 }
588
589 /**
590 * i40e_stat_update32 - read and update a 32 bit stat from the chip
591 * @hw: ptr to the hardware info
592 * @reg: the hw reg to read
593 * @offset_loaded: has the initial offset been loaded yet
594 * @offset: ptr to current offset value
595 * @stat: ptr to the stat
596 **/
597 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg,
598 bool offset_loaded, u64 *offset, u64 *stat)
599 {
600 u32 new_data;
601
602 new_data = rd32(hw, reg);
603 if (!offset_loaded)
604 *offset = new_data;
605 if (likely(new_data >= *offset))
606 *stat = (u32)(new_data - *offset);
607 else
608 *stat = (u32)((new_data + BIT_ULL(32)) - *offset);
609 }
610
611 /**
612 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat
613 * @hw: ptr to the hardware info
614 * @reg: the hw reg to read and clear
615 * @stat: ptr to the stat
616 **/
617 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat)
618 {
619 u32 new_data = rd32(hw, reg);
620
621 wr32(hw, reg, 1); /* must write a nonzero value to clear register */
622 *stat += new_data;
623 }
624
625 /**
626 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters.
627 * @vsi: the VSI to be updated
628 **/
629 void i40e_update_eth_stats(struct i40e_vsi *vsi)
630 {
631 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx);
632 struct i40e_pf *pf = vsi->back;
633 struct i40e_hw *hw = &pf->hw;
634 struct i40e_eth_stats *oes;
635 struct i40e_eth_stats *es; /* device's eth stats */
636
637 es = &vsi->eth_stats;
638 oes = &vsi->eth_stats_offsets;
639
640 /* Gather up the stats that the hw collects */
641 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
642 vsi->stat_offsets_loaded,
643 &oes->tx_errors, &es->tx_errors);
644 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx),
645 vsi->stat_offsets_loaded,
646 &oes->rx_discards, &es->rx_discards);
647 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx),
648 vsi->stat_offsets_loaded,
649 &oes->rx_unknown_protocol, &es->rx_unknown_protocol);
650 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
651 vsi->stat_offsets_loaded,
652 &oes->tx_errors, &es->tx_errors);
653
654 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
655 I40E_GLV_GORCL(stat_idx),
656 vsi->stat_offsets_loaded,
657 &oes->rx_bytes, &es->rx_bytes);
658 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
659 I40E_GLV_UPRCL(stat_idx),
660 vsi->stat_offsets_loaded,
661 &oes->rx_unicast, &es->rx_unicast);
662 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
663 I40E_GLV_MPRCL(stat_idx),
664 vsi->stat_offsets_loaded,
665 &oes->rx_multicast, &es->rx_multicast);
666 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
667 I40E_GLV_BPRCL(stat_idx),
668 vsi->stat_offsets_loaded,
669 &oes->rx_broadcast, &es->rx_broadcast);
670
671 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
672 I40E_GLV_GOTCL(stat_idx),
673 vsi->stat_offsets_loaded,
674 &oes->tx_bytes, &es->tx_bytes);
675 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
676 I40E_GLV_UPTCL(stat_idx),
677 vsi->stat_offsets_loaded,
678 &oes->tx_unicast, &es->tx_unicast);
679 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
680 I40E_GLV_MPTCL(stat_idx),
681 vsi->stat_offsets_loaded,
682 &oes->tx_multicast, &es->tx_multicast);
683 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
684 I40E_GLV_BPTCL(stat_idx),
685 vsi->stat_offsets_loaded,
686 &oes->tx_broadcast, &es->tx_broadcast);
687 vsi->stat_offsets_loaded = true;
688 }
689
690 /**
691 * i40e_update_veb_stats - Update Switch component statistics
692 * @veb: the VEB being updated
693 **/
694 static void i40e_update_veb_stats(struct i40e_veb *veb)
695 {
696 struct i40e_pf *pf = veb->pf;
697 struct i40e_hw *hw = &pf->hw;
698 struct i40e_eth_stats *oes;
699 struct i40e_eth_stats *es; /* device's eth stats */
700 struct i40e_veb_tc_stats *veb_oes;
701 struct i40e_veb_tc_stats *veb_es;
702 int i, idx = 0;
703
704 idx = veb->stats_idx;
705 es = &veb->stats;
706 oes = &veb->stats_offsets;
707 veb_es = &veb->tc_stats;
708 veb_oes = &veb->tc_stats_offsets;
709
710 /* Gather up the stats that the hw collects */
711 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx),
712 veb->stat_offsets_loaded,
713 &oes->tx_discards, &es->tx_discards);
714 if (hw->revision_id > 0)
715 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx),
716 veb->stat_offsets_loaded,
717 &oes->rx_unknown_protocol,
718 &es->rx_unknown_protocol);
719 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx),
720 veb->stat_offsets_loaded,
721 &oes->rx_bytes, &es->rx_bytes);
722 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx),
723 veb->stat_offsets_loaded,
724 &oes->rx_unicast, &es->rx_unicast);
725 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx),
726 veb->stat_offsets_loaded,
727 &oes->rx_multicast, &es->rx_multicast);
728 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx),
729 veb->stat_offsets_loaded,
730 &oes->rx_broadcast, &es->rx_broadcast);
731
732 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx),
733 veb->stat_offsets_loaded,
734 &oes->tx_bytes, &es->tx_bytes);
735 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx),
736 veb->stat_offsets_loaded,
737 &oes->tx_unicast, &es->tx_unicast);
738 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx),
739 veb->stat_offsets_loaded,
740 &oes->tx_multicast, &es->tx_multicast);
741 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx),
742 veb->stat_offsets_loaded,
743 &oes->tx_broadcast, &es->tx_broadcast);
744 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
745 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx),
746 I40E_GLVEBTC_RPCL(i, idx),
747 veb->stat_offsets_loaded,
748 &veb_oes->tc_rx_packets[i],
749 &veb_es->tc_rx_packets[i]);
750 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx),
751 I40E_GLVEBTC_RBCL(i, idx),
752 veb->stat_offsets_loaded,
753 &veb_oes->tc_rx_bytes[i],
754 &veb_es->tc_rx_bytes[i]);
755 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx),
756 I40E_GLVEBTC_TPCL(i, idx),
757 veb->stat_offsets_loaded,
758 &veb_oes->tc_tx_packets[i],
759 &veb_es->tc_tx_packets[i]);
760 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx),
761 I40E_GLVEBTC_TBCL(i, idx),
762 veb->stat_offsets_loaded,
763 &veb_oes->tc_tx_bytes[i],
764 &veb_es->tc_tx_bytes[i]);
765 }
766 veb->stat_offsets_loaded = true;
767 }
768
769 /**
770 * i40e_update_vsi_stats - Update the vsi statistics counters.
771 * @vsi: the VSI to be updated
772 *
773 * There are a few instances where we store the same stat in a
774 * couple of different structs. This is partly because we have
775 * the netdev stats that need to be filled out, which is slightly
776 * different from the "eth_stats" defined by the chip and used in
777 * VF communications. We sort it out here.
778 **/
779 static void i40e_update_vsi_stats(struct i40e_vsi *vsi)
780 {
781 struct i40e_pf *pf = vsi->back;
782 struct rtnl_link_stats64 *ons;
783 struct rtnl_link_stats64 *ns; /* netdev stats */
784 struct i40e_eth_stats *oes;
785 struct i40e_eth_stats *es; /* device's eth stats */
786 u32 tx_restart, tx_busy;
787 struct i40e_ring *p;
788 u32 rx_page, rx_buf;
789 u64 bytes, packets;
790 unsigned int start;
791 u64 tx_linearize;
792 u64 tx_force_wb;
793 u64 rx_p, rx_b;
794 u64 tx_p, tx_b;
795 u16 q;
796
797 if (test_bit(__I40E_VSI_DOWN, vsi->state) ||
798 test_bit(__I40E_CONFIG_BUSY, pf->state))
799 return;
800
801 ns = i40e_get_vsi_stats_struct(vsi);
802 ons = &vsi->net_stats_offsets;
803 es = &vsi->eth_stats;
804 oes = &vsi->eth_stats_offsets;
805
806 /* Gather up the netdev and vsi stats that the driver collects
807 * on the fly during packet processing
808 */
809 rx_b = rx_p = 0;
810 tx_b = tx_p = 0;
811 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0;
812 rx_page = 0;
813 rx_buf = 0;
814 rcu_read_lock();
815 for (q = 0; q < vsi->num_queue_pairs; q++) {
816 /* locate Tx ring */
817 p = READ_ONCE(vsi->tx_rings[q]);
818
819 do {
820 start = u64_stats_fetch_begin_irq(&p->syncp);
821 packets = p->stats.packets;
822 bytes = p->stats.bytes;
823 } while (u64_stats_fetch_retry_irq(&p->syncp, start));
824 tx_b += bytes;
825 tx_p += packets;
826 tx_restart += p->tx_stats.restart_queue;
827 tx_busy += p->tx_stats.tx_busy;
828 tx_linearize += p->tx_stats.tx_linearize;
829 tx_force_wb += p->tx_stats.tx_force_wb;
830
831 /* Rx queue is part of the same block as Tx queue */
832 p = &p[1];
833 do {
834 start = u64_stats_fetch_begin_irq(&p->syncp);
835 packets = p->stats.packets;
836 bytes = p->stats.bytes;
837 } while (u64_stats_fetch_retry_irq(&p->syncp, start));
838 rx_b += bytes;
839 rx_p += packets;
840 rx_buf += p->rx_stats.alloc_buff_failed;
841 rx_page += p->rx_stats.alloc_page_failed;
842 }
843 rcu_read_unlock();
844 vsi->tx_restart = tx_restart;
845 vsi->tx_busy = tx_busy;
846 vsi->tx_linearize = tx_linearize;
847 vsi->tx_force_wb = tx_force_wb;
848 vsi->rx_page_failed = rx_page;
849 vsi->rx_buf_failed = rx_buf;
850
851 ns->rx_packets = rx_p;
852 ns->rx_bytes = rx_b;
853 ns->tx_packets = tx_p;
854 ns->tx_bytes = tx_b;
855
856 /* update netdev stats from eth stats */
857 i40e_update_eth_stats(vsi);
858 ons->tx_errors = oes->tx_errors;
859 ns->tx_errors = es->tx_errors;
860 ons->multicast = oes->rx_multicast;
861 ns->multicast = es->rx_multicast;
862 ons->rx_dropped = oes->rx_discards;
863 ns->rx_dropped = es->rx_discards;
864 ons->tx_dropped = oes->tx_discards;
865 ns->tx_dropped = es->tx_discards;
866
867 /* pull in a couple PF stats if this is the main vsi */
868 if (vsi == pf->vsi[pf->lan_vsi]) {
869 ns->rx_crc_errors = pf->stats.crc_errors;
870 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes;
871 ns->rx_length_errors = pf->stats.rx_length_errors;
872 }
873 }
874
875 /**
876 * i40e_update_pf_stats - Update the PF statistics counters.
877 * @pf: the PF to be updated
878 **/
879 static void i40e_update_pf_stats(struct i40e_pf *pf)
880 {
881 struct i40e_hw_port_stats *osd = &pf->stats_offsets;
882 struct i40e_hw_port_stats *nsd = &pf->stats;
883 struct i40e_hw *hw = &pf->hw;
884 u32 val;
885 int i;
886
887 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
888 I40E_GLPRT_GORCL(hw->port),
889 pf->stat_offsets_loaded,
890 &osd->eth.rx_bytes, &nsd->eth.rx_bytes);
891 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
892 I40E_GLPRT_GOTCL(hw->port),
893 pf->stat_offsets_loaded,
894 &osd->eth.tx_bytes, &nsd->eth.tx_bytes);
895 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
896 pf->stat_offsets_loaded,
897 &osd->eth.rx_discards,
898 &nsd->eth.rx_discards);
899 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port),
900 I40E_GLPRT_UPRCL(hw->port),
901 pf->stat_offsets_loaded,
902 &osd->eth.rx_unicast,
903 &nsd->eth.rx_unicast);
904 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
905 I40E_GLPRT_MPRCL(hw->port),
906 pf->stat_offsets_loaded,
907 &osd->eth.rx_multicast,
908 &nsd->eth.rx_multicast);
909 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port),
910 I40E_GLPRT_BPRCL(hw->port),
911 pf->stat_offsets_loaded,
912 &osd->eth.rx_broadcast,
913 &nsd->eth.rx_broadcast);
914 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port),
915 I40E_GLPRT_UPTCL(hw->port),
916 pf->stat_offsets_loaded,
917 &osd->eth.tx_unicast,
918 &nsd->eth.tx_unicast);
919 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port),
920 I40E_GLPRT_MPTCL(hw->port),
921 pf->stat_offsets_loaded,
922 &osd->eth.tx_multicast,
923 &nsd->eth.tx_multicast);
924 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port),
925 I40E_GLPRT_BPTCL(hw->port),
926 pf->stat_offsets_loaded,
927 &osd->eth.tx_broadcast,
928 &nsd->eth.tx_broadcast);
929
930 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
931 pf->stat_offsets_loaded,
932 &osd->tx_dropped_link_down,
933 &nsd->tx_dropped_link_down);
934
935 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
936 pf->stat_offsets_loaded,
937 &osd->crc_errors, &nsd->crc_errors);
938
939 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
940 pf->stat_offsets_loaded,
941 &osd->illegal_bytes, &nsd->illegal_bytes);
942
943 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
944 pf->stat_offsets_loaded,
945 &osd->mac_local_faults,
946 &nsd->mac_local_faults);
947 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
948 pf->stat_offsets_loaded,
949 &osd->mac_remote_faults,
950 &nsd->mac_remote_faults);
951
952 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
953 pf->stat_offsets_loaded,
954 &osd->rx_length_errors,
955 &nsd->rx_length_errors);
956
957 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
958 pf->stat_offsets_loaded,
959 &osd->link_xon_rx, &nsd->link_xon_rx);
960 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
961 pf->stat_offsets_loaded,
962 &osd->link_xon_tx, &nsd->link_xon_tx);
963 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
964 pf->stat_offsets_loaded,
965 &osd->link_xoff_rx, &nsd->link_xoff_rx);
966 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
967 pf->stat_offsets_loaded,
968 &osd->link_xoff_tx, &nsd->link_xoff_tx);
969
970 for (i = 0; i < 8; i++) {
971 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
972 pf->stat_offsets_loaded,
973 &osd->priority_xoff_rx[i],
974 &nsd->priority_xoff_rx[i]);
975 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
976 pf->stat_offsets_loaded,
977 &osd->priority_xon_rx[i],
978 &nsd->priority_xon_rx[i]);
979 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
980 pf->stat_offsets_loaded,
981 &osd->priority_xon_tx[i],
982 &nsd->priority_xon_tx[i]);
983 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
984 pf->stat_offsets_loaded,
985 &osd->priority_xoff_tx[i],
986 &nsd->priority_xoff_tx[i]);
987 i40e_stat_update32(hw,
988 I40E_GLPRT_RXON2OFFCNT(hw->port, i),
989 pf->stat_offsets_loaded,
990 &osd->priority_xon_2_xoff[i],
991 &nsd->priority_xon_2_xoff[i]);
992 }
993
994 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
995 I40E_GLPRT_PRC64L(hw->port),
996 pf->stat_offsets_loaded,
997 &osd->rx_size_64, &nsd->rx_size_64);
998 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
999 I40E_GLPRT_PRC127L(hw->port),
1000 pf->stat_offsets_loaded,
1001 &osd->rx_size_127, &nsd->rx_size_127);
1002 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
1003 I40E_GLPRT_PRC255L(hw->port),
1004 pf->stat_offsets_loaded,
1005 &osd->rx_size_255, &nsd->rx_size_255);
1006 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
1007 I40E_GLPRT_PRC511L(hw->port),
1008 pf->stat_offsets_loaded,
1009 &osd->rx_size_511, &nsd->rx_size_511);
1010 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
1011 I40E_GLPRT_PRC1023L(hw->port),
1012 pf->stat_offsets_loaded,
1013 &osd->rx_size_1023, &nsd->rx_size_1023);
1014 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
1015 I40E_GLPRT_PRC1522L(hw->port),
1016 pf->stat_offsets_loaded,
1017 &osd->rx_size_1522, &nsd->rx_size_1522);
1018 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
1019 I40E_GLPRT_PRC9522L(hw->port),
1020 pf->stat_offsets_loaded,
1021 &osd->rx_size_big, &nsd->rx_size_big);
1022
1023 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
1024 I40E_GLPRT_PTC64L(hw->port),
1025 pf->stat_offsets_loaded,
1026 &osd->tx_size_64, &nsd->tx_size_64);
1027 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
1028 I40E_GLPRT_PTC127L(hw->port),
1029 pf->stat_offsets_loaded,
1030 &osd->tx_size_127, &nsd->tx_size_127);
1031 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
1032 I40E_GLPRT_PTC255L(hw->port),
1033 pf->stat_offsets_loaded,
1034 &osd->tx_size_255, &nsd->tx_size_255);
1035 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
1036 I40E_GLPRT_PTC511L(hw->port),
1037 pf->stat_offsets_loaded,
1038 &osd->tx_size_511, &nsd->tx_size_511);
1039 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
1040 I40E_GLPRT_PTC1023L(hw->port),
1041 pf->stat_offsets_loaded,
1042 &osd->tx_size_1023, &nsd->tx_size_1023);
1043 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
1044 I40E_GLPRT_PTC1522L(hw->port),
1045 pf->stat_offsets_loaded,
1046 &osd->tx_size_1522, &nsd->tx_size_1522);
1047 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
1048 I40E_GLPRT_PTC9522L(hw->port),
1049 pf->stat_offsets_loaded,
1050 &osd->tx_size_big, &nsd->tx_size_big);
1051
1052 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
1053 pf->stat_offsets_loaded,
1054 &osd->rx_undersize, &nsd->rx_undersize);
1055 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
1056 pf->stat_offsets_loaded,
1057 &osd->rx_fragments, &nsd->rx_fragments);
1058 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
1059 pf->stat_offsets_loaded,
1060 &osd->rx_oversize, &nsd->rx_oversize);
1061 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
1062 pf->stat_offsets_loaded,
1063 &osd->rx_jabber, &nsd->rx_jabber);
1064
1065 /* FDIR stats */
1066 i40e_stat_update_and_clear32(hw,
1067 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)),
1068 &nsd->fd_atr_match);
1069 i40e_stat_update_and_clear32(hw,
1070 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)),
1071 &nsd->fd_sb_match);
1072 i40e_stat_update_and_clear32(hw,
1073 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)),
1074 &nsd->fd_atr_tunnel_match);
1075
1076 val = rd32(hw, I40E_PRTPM_EEE_STAT);
1077 nsd->tx_lpi_status =
1078 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >>
1079 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT;
1080 nsd->rx_lpi_status =
1081 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >>
1082 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT;
1083 i40e_stat_update32(hw, I40E_PRTPM_TLPIC,
1084 pf->stat_offsets_loaded,
1085 &osd->tx_lpi_count, &nsd->tx_lpi_count);
1086 i40e_stat_update32(hw, I40E_PRTPM_RLPIC,
1087 pf->stat_offsets_loaded,
1088 &osd->rx_lpi_count, &nsd->rx_lpi_count);
1089
1090 if (pf->flags & I40E_FLAG_FD_SB_ENABLED &&
1091 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED))
1092 nsd->fd_sb_status = true;
1093 else
1094 nsd->fd_sb_status = false;
1095
1096 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED &&
1097 !(pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
1098 nsd->fd_atr_status = true;
1099 else
1100 nsd->fd_atr_status = false;
1101
1102 pf->stat_offsets_loaded = true;
1103 }
1104
1105 /**
1106 * i40e_update_stats - Update the various statistics counters.
1107 * @vsi: the VSI to be updated
1108 *
1109 * Update the various stats for this VSI and its related entities.
1110 **/
1111 void i40e_update_stats(struct i40e_vsi *vsi)
1112 {
1113 struct i40e_pf *pf = vsi->back;
1114
1115 if (vsi == pf->vsi[pf->lan_vsi])
1116 i40e_update_pf_stats(pf);
1117
1118 i40e_update_vsi_stats(vsi);
1119 }
1120
1121 /**
1122 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter
1123 * @vsi: the VSI to be searched
1124 * @macaddr: the MAC address
1125 * @vlan: the vlan
1126 *
1127 * Returns ptr to the filter object or NULL
1128 **/
1129 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi,
1130 const u8 *macaddr, s16 vlan)
1131 {
1132 struct i40e_mac_filter *f;
1133 u64 key;
1134
1135 if (!vsi || !macaddr)
1136 return NULL;
1137
1138 key = i40e_addr_to_hkey(macaddr);
1139 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1140 if ((ether_addr_equal(macaddr, f->macaddr)) &&
1141 (vlan == f->vlan))
1142 return f;
1143 }
1144 return NULL;
1145 }
1146
1147 /**
1148 * i40e_find_mac - Find a mac addr in the macvlan filters list
1149 * @vsi: the VSI to be searched
1150 * @macaddr: the MAC address we are searching for
1151 *
1152 * Returns the first filter with the provided MAC address or NULL if
1153 * MAC address was not found
1154 **/
1155 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr)
1156 {
1157 struct i40e_mac_filter *f;
1158 u64 key;
1159
1160 if (!vsi || !macaddr)
1161 return NULL;
1162
1163 key = i40e_addr_to_hkey(macaddr);
1164 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1165 if ((ether_addr_equal(macaddr, f->macaddr)))
1166 return f;
1167 }
1168 return NULL;
1169 }
1170
1171 /**
1172 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode
1173 * @vsi: the VSI to be searched
1174 *
1175 * Returns true if VSI is in vlan mode or false otherwise
1176 **/
1177 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi)
1178 {
1179 /* If we have a PVID, always operate in VLAN mode */
1180 if (vsi->info.pvid)
1181 return true;
1182
1183 /* We need to operate in VLAN mode whenever we have any filters with
1184 * a VLAN other than I40E_VLAN_ALL. We could check the table each
1185 * time, incurring search cost repeatedly. However, we can notice two
1186 * things:
1187 *
1188 * 1) the only place where we can gain a VLAN filter is in
1189 * i40e_add_filter.
1190 *
1191 * 2) the only place where filters are actually removed is in
1192 * i40e_sync_filters_subtask.
1193 *
1194 * Thus, we can simply use a boolean value, has_vlan_filters which we
1195 * will set to true when we add a VLAN filter in i40e_add_filter. Then
1196 * we have to perform the full search after deleting filters in
1197 * i40e_sync_filters_subtask, but we already have to search
1198 * filters here and can perform the check at the same time. This
1199 * results in avoiding embedding a loop for VLAN mode inside another
1200 * loop over all the filters, and should maintain correctness as noted
1201 * above.
1202 */
1203 return vsi->has_vlan_filter;
1204 }
1205
1206 /**
1207 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary
1208 * @vsi: the VSI to configure
1209 * @tmp_add_list: list of filters ready to be added
1210 * @tmp_del_list: list of filters ready to be deleted
1211 * @vlan_filters: the number of active VLAN filters
1212 *
1213 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they
1214 * behave as expected. If we have any active VLAN filters remaining or about
1215 * to be added then we need to update non-VLAN filters to be marked as VLAN=0
1216 * so that they only match against untagged traffic. If we no longer have any
1217 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1
1218 * so that they match against both tagged and untagged traffic. In this way,
1219 * we ensure that we correctly receive the desired traffic. This ensures that
1220 * when we have an active VLAN we will receive only untagged traffic and
1221 * traffic matching active VLANs. If we have no active VLANs then we will
1222 * operate in non-VLAN mode and receive all traffic, tagged or untagged.
1223 *
1224 * Finally, in a similar fashion, this function also corrects filters when
1225 * there is an active PVID assigned to this VSI.
1226 *
1227 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
1228 *
1229 * This function is only expected to be called from within
1230 * i40e_sync_vsi_filters.
1231 *
1232 * NOTE: This function expects to be called while under the
1233 * mac_filter_hash_lock
1234 */
1235 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi,
1236 struct hlist_head *tmp_add_list,
1237 struct hlist_head *tmp_del_list,
1238 int vlan_filters)
1239 {
1240 s16 pvid = le16_to_cpu(vsi->info.pvid);
1241 struct i40e_mac_filter *f, *add_head;
1242 struct i40e_new_mac_filter *new;
1243 struct hlist_node *h;
1244 int bkt, new_vlan;
1245
1246 /* To determine if a particular filter needs to be replaced we
1247 * have the three following conditions:
1248 *
1249 * a) if we have a PVID assigned, then all filters which are
1250 * not marked as VLAN=PVID must be replaced with filters that
1251 * are.
1252 * b) otherwise, if we have any active VLANS, all filters
1253 * which are marked as VLAN=-1 must be replaced with
1254 * filters marked as VLAN=0
1255 * c) finally, if we do not have any active VLANS, all filters
1256 * which are marked as VLAN=0 must be replaced with filters
1257 * marked as VLAN=-1
1258 */
1259
1260 /* Update the filters about to be added in place */
1261 hlist_for_each_entry(new, tmp_add_list, hlist) {
1262 if (pvid && new->f->vlan != pvid)
1263 new->f->vlan = pvid;
1264 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY)
1265 new->f->vlan = 0;
1266 else if (!vlan_filters && new->f->vlan == 0)
1267 new->f->vlan = I40E_VLAN_ANY;
1268 }
1269
1270 /* Update the remaining active filters */
1271 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1272 /* Combine the checks for whether a filter needs to be changed
1273 * and then determine the new VLAN inside the if block, in
1274 * order to avoid duplicating code for adding the new filter
1275 * then deleting the old filter.
1276 */
1277 if ((pvid && f->vlan != pvid) ||
1278 (vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1279 (!vlan_filters && f->vlan == 0)) {
1280 /* Determine the new vlan we will be adding */
1281 if (pvid)
1282 new_vlan = pvid;
1283 else if (vlan_filters)
1284 new_vlan = 0;
1285 else
1286 new_vlan = I40E_VLAN_ANY;
1287
1288 /* Create the new filter */
1289 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
1290 if (!add_head)
1291 return -ENOMEM;
1292
1293 /* Create a temporary i40e_new_mac_filter */
1294 new = kzalloc(sizeof(*new), GFP_ATOMIC);
1295 if (!new)
1296 return -ENOMEM;
1297
1298 new->f = add_head;
1299 new->state = add_head->state;
1300
1301 /* Add the new filter to the tmp list */
1302 hlist_add_head(&new->hlist, tmp_add_list);
1303
1304 /* Put the original filter into the delete list */
1305 f->state = I40E_FILTER_REMOVE;
1306 hash_del(&f->hlist);
1307 hlist_add_head(&f->hlist, tmp_del_list);
1308 }
1309 }
1310
1311 vsi->has_vlan_filter = !!vlan_filters;
1312
1313 return 0;
1314 }
1315
1316 /**
1317 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM
1318 * @vsi: the PF Main VSI - inappropriate for any other VSI
1319 * @macaddr: the MAC address
1320 *
1321 * Remove whatever filter the firmware set up so the driver can manage
1322 * its own filtering intelligently.
1323 **/
1324 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr)
1325 {
1326 struct i40e_aqc_remove_macvlan_element_data element;
1327 struct i40e_pf *pf = vsi->back;
1328
1329 /* Only appropriate for the PF main VSI */
1330 if (vsi->type != I40E_VSI_MAIN)
1331 return;
1332
1333 memset(&element, 0, sizeof(element));
1334 ether_addr_copy(element.mac_addr, macaddr);
1335 element.vlan_tag = 0;
1336 /* Ignore error returns, some firmware does it this way... */
1337 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
1338 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1339
1340 memset(&element, 0, sizeof(element));
1341 ether_addr_copy(element.mac_addr, macaddr);
1342 element.vlan_tag = 0;
1343 /* ...and some firmware does it this way. */
1344 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
1345 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
1346 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1347 }
1348
1349 /**
1350 * i40e_add_filter - Add a mac/vlan filter to the VSI
1351 * @vsi: the VSI to be searched
1352 * @macaddr: the MAC address
1353 * @vlan: the vlan
1354 *
1355 * Returns ptr to the filter object or NULL when no memory available.
1356 *
1357 * NOTE: This function is expected to be called with mac_filter_hash_lock
1358 * being held.
1359 **/
1360 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
1361 const u8 *macaddr, s16 vlan)
1362 {
1363 struct i40e_mac_filter *f;
1364 u64 key;
1365
1366 if (!vsi || !macaddr)
1367 return NULL;
1368
1369 f = i40e_find_filter(vsi, macaddr, vlan);
1370 if (!f) {
1371 f = kzalloc(sizeof(*f), GFP_ATOMIC);
1372 if (!f)
1373 return NULL;
1374
1375 /* Update the boolean indicating if we need to function in
1376 * VLAN mode.
1377 */
1378 if (vlan >= 0)
1379 vsi->has_vlan_filter = true;
1380
1381 ether_addr_copy(f->macaddr, macaddr);
1382 f->vlan = vlan;
1383 /* If we're in overflow promisc mode, set the state directly
1384 * to failed, so we don't bother to try sending the filter
1385 * to the hardware.
1386 */
1387 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state))
1388 f->state = I40E_FILTER_FAILED;
1389 else
1390 f->state = I40E_FILTER_NEW;
1391 INIT_HLIST_NODE(&f->hlist);
1392
1393 key = i40e_addr_to_hkey(macaddr);
1394 hash_add(vsi->mac_filter_hash, &f->hlist, key);
1395
1396 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1397 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1398 }
1399
1400 /* If we're asked to add a filter that has been marked for removal, it
1401 * is safe to simply restore it to active state. __i40e_del_filter
1402 * will have simply deleted any filters which were previously marked
1403 * NEW or FAILED, so if it is currently marked REMOVE it must have
1404 * previously been ACTIVE. Since we haven't yet run the sync filters
1405 * task, just restore this filter to the ACTIVE state so that the
1406 * sync task leaves it in place
1407 */
1408 if (f->state == I40E_FILTER_REMOVE)
1409 f->state = I40E_FILTER_ACTIVE;
1410
1411 return f;
1412 }
1413
1414 /**
1415 * __i40e_del_filter - Remove a specific filter from the VSI
1416 * @vsi: VSI to remove from
1417 * @f: the filter to remove from the list
1418 *
1419 * This function should be called instead of i40e_del_filter only if you know
1420 * the exact filter you will remove already, such as via i40e_find_filter or
1421 * i40e_find_mac.
1422 *
1423 * NOTE: This function is expected to be called with mac_filter_hash_lock
1424 * being held.
1425 * ANOTHER NOTE: This function MUST be called from within the context of
1426 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1427 * instead of list_for_each_entry().
1428 **/
1429 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f)
1430 {
1431 if (!f)
1432 return;
1433
1434 /* If the filter was never added to firmware then we can just delete it
1435 * directly and we don't want to set the status to remove or else an
1436 * admin queue command will unnecessarily fire.
1437 */
1438 if ((f->state == I40E_FILTER_FAILED) ||
1439 (f->state == I40E_FILTER_NEW)) {
1440 hash_del(&f->hlist);
1441 kfree(f);
1442 } else {
1443 f->state = I40E_FILTER_REMOVE;
1444 }
1445
1446 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1447 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1448 }
1449
1450 /**
1451 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI
1452 * @vsi: the VSI to be searched
1453 * @macaddr: the MAC address
1454 * @vlan: the VLAN
1455 *
1456 * NOTE: This function is expected to be called with mac_filter_hash_lock
1457 * being held.
1458 * ANOTHER NOTE: This function MUST be called from within the context of
1459 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1460 * instead of list_for_each_entry().
1461 **/
1462 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan)
1463 {
1464 struct i40e_mac_filter *f;
1465
1466 if (!vsi || !macaddr)
1467 return;
1468
1469 f = i40e_find_filter(vsi, macaddr, vlan);
1470 __i40e_del_filter(vsi, f);
1471 }
1472
1473 /**
1474 * i40e_add_mac_filter - Add a MAC filter for all active VLANs
1475 * @vsi: the VSI to be searched
1476 * @macaddr: the mac address to be filtered
1477 *
1478 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise,
1479 * go through all the macvlan filters and add a macvlan filter for each
1480 * unique vlan that already exists. If a PVID has been assigned, instead only
1481 * add the macaddr to that VLAN.
1482 *
1483 * Returns last filter added on success, else NULL
1484 **/
1485 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi,
1486 const u8 *macaddr)
1487 {
1488 struct i40e_mac_filter *f, *add = NULL;
1489 struct hlist_node *h;
1490 int bkt;
1491
1492 if (vsi->info.pvid)
1493 return i40e_add_filter(vsi, macaddr,
1494 le16_to_cpu(vsi->info.pvid));
1495
1496 if (!i40e_is_vsi_in_vlan(vsi))
1497 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY);
1498
1499 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1500 if (f->state == I40E_FILTER_REMOVE)
1501 continue;
1502 add = i40e_add_filter(vsi, macaddr, f->vlan);
1503 if (!add)
1504 return NULL;
1505 }
1506
1507 return add;
1508 }
1509
1510 /**
1511 * i40e_del_mac_filter - Remove a MAC filter from all VLANs
1512 * @vsi: the VSI to be searched
1513 * @macaddr: the mac address to be removed
1514 *
1515 * Removes a given MAC address from a VSI regardless of what VLAN it has been
1516 * associated with.
1517 *
1518 * Returns 0 for success, or error
1519 **/
1520 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr)
1521 {
1522 struct i40e_mac_filter *f;
1523 struct hlist_node *h;
1524 bool found = false;
1525 int bkt;
1526
1527 WARN(!spin_is_locked(&vsi->mac_filter_hash_lock),
1528 "Missing mac_filter_hash_lock\n");
1529 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1530 if (ether_addr_equal(macaddr, f->macaddr)) {
1531 __i40e_del_filter(vsi, f);
1532 found = true;
1533 }
1534 }
1535
1536 if (found)
1537 return 0;
1538 else
1539 return -ENOENT;
1540 }
1541
1542 /**
1543 * i40e_set_mac - NDO callback to set mac address
1544 * @netdev: network interface device structure
1545 * @p: pointer to an address structure
1546 *
1547 * Returns 0 on success, negative on failure
1548 **/
1549 static int i40e_set_mac(struct net_device *netdev, void *p)
1550 {
1551 struct i40e_netdev_priv *np = netdev_priv(netdev);
1552 struct i40e_vsi *vsi = np->vsi;
1553 struct i40e_pf *pf = vsi->back;
1554 struct i40e_hw *hw = &pf->hw;
1555 struct sockaddr *addr = p;
1556
1557 if (!is_valid_ether_addr(addr->sa_data))
1558 return -EADDRNOTAVAIL;
1559
1560 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) {
1561 netdev_info(netdev, "already using mac address %pM\n",
1562 addr->sa_data);
1563 return 0;
1564 }
1565
1566 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) ||
1567 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state))
1568 return -EADDRNOTAVAIL;
1569
1570 if (ether_addr_equal(hw->mac.addr, addr->sa_data))
1571 netdev_info(netdev, "returning to hw mac address %pM\n",
1572 hw->mac.addr);
1573 else
1574 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data);
1575
1576 /* Copy the address first, so that we avoid a possible race with
1577 * .set_rx_mode(). If we copy after changing the address in the filter
1578 * list, we might open ourselves to a narrow race window where
1579 * .set_rx_mode could delete our dev_addr filter and prevent traffic
1580 * from passing.
1581 */
1582 ether_addr_copy(netdev->dev_addr, addr->sa_data);
1583
1584 spin_lock_bh(&vsi->mac_filter_hash_lock);
1585 i40e_del_mac_filter(vsi, netdev->dev_addr);
1586 i40e_add_mac_filter(vsi, addr->sa_data);
1587 spin_unlock_bh(&vsi->mac_filter_hash_lock);
1588 if (vsi->type == I40E_VSI_MAIN) {
1589 i40e_status ret;
1590
1591 ret = i40e_aq_mac_address_write(&vsi->back->hw,
1592 I40E_AQC_WRITE_TYPE_LAA_WOL,
1593 addr->sa_data, NULL);
1594 if (ret)
1595 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n",
1596 i40e_stat_str(hw, ret),
1597 i40e_aq_str(hw, hw->aq.asq_last_status));
1598 }
1599
1600 /* schedule our worker thread which will take care of
1601 * applying the new filter changes
1602 */
1603 i40e_service_event_schedule(vsi->back);
1604 return 0;
1605 }
1606
1607 /**
1608 * i40e_config_rss_aq - Prepare for RSS using AQ commands
1609 * @vsi: vsi structure
1610 * @seed: RSS hash seed
1611 **/
1612 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
1613 u8 *lut, u16 lut_size)
1614 {
1615 struct i40e_pf *pf = vsi->back;
1616 struct i40e_hw *hw = &pf->hw;
1617 int ret = 0;
1618
1619 if (seed) {
1620 struct i40e_aqc_get_set_rss_key_data *seed_dw =
1621 (struct i40e_aqc_get_set_rss_key_data *)seed;
1622 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw);
1623 if (ret) {
1624 dev_info(&pf->pdev->dev,
1625 "Cannot set RSS key, err %s aq_err %s\n",
1626 i40e_stat_str(hw, ret),
1627 i40e_aq_str(hw, hw->aq.asq_last_status));
1628 return ret;
1629 }
1630 }
1631 if (lut) {
1632 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false;
1633
1634 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
1635 if (ret) {
1636 dev_info(&pf->pdev->dev,
1637 "Cannot set RSS lut, err %s aq_err %s\n",
1638 i40e_stat_str(hw, ret),
1639 i40e_aq_str(hw, hw->aq.asq_last_status));
1640 return ret;
1641 }
1642 }
1643 return ret;
1644 }
1645
1646 /**
1647 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used
1648 * @vsi: VSI structure
1649 **/
1650 static int i40e_vsi_config_rss(struct i40e_vsi *vsi)
1651 {
1652 struct i40e_pf *pf = vsi->back;
1653 u8 seed[I40E_HKEY_ARRAY_SIZE];
1654 u8 *lut;
1655 int ret;
1656
1657 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE))
1658 return 0;
1659 if (!vsi->rss_size)
1660 vsi->rss_size = min_t(int, pf->alloc_rss_size,
1661 vsi->num_queue_pairs);
1662 if (!vsi->rss_size)
1663 return -EINVAL;
1664 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1665 if (!lut)
1666 return -ENOMEM;
1667
1668 /* Use the user configured hash keys and lookup table if there is one,
1669 * otherwise use default
1670 */
1671 if (vsi->rss_lut_user)
1672 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1673 else
1674 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
1675 if (vsi->rss_hkey_user)
1676 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
1677 else
1678 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
1679 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size);
1680 kfree(lut);
1681 return ret;
1682 }
1683
1684 /**
1685 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config
1686 * @vsi: the VSI being configured,
1687 * @ctxt: VSI context structure
1688 * @enabled_tc: number of traffic classes to enable
1689 *
1690 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
1691 **/
1692 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi,
1693 struct i40e_vsi_context *ctxt,
1694 u8 enabled_tc)
1695 {
1696 u16 qcount = 0, max_qcount, qmap, sections = 0;
1697 int i, override_q, pow, num_qps, ret;
1698 u8 netdev_tc = 0, offset = 0;
1699
1700 if (vsi->type != I40E_VSI_MAIN)
1701 return -EINVAL;
1702 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1703 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1704 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc;
1705 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1706 num_qps = vsi->mqprio_qopt.qopt.count[0];
1707
1708 /* find the next higher power-of-2 of num queue pairs */
1709 pow = ilog2(num_qps);
1710 if (!is_power_of_2(num_qps))
1711 pow++;
1712 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1713 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1714
1715 /* Setup queue offset/count for all TCs for given VSI */
1716 max_qcount = vsi->mqprio_qopt.qopt.count[0];
1717 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1718 /* See if the given TC is enabled for the given VSI */
1719 if (vsi->tc_config.enabled_tc & BIT(i)) {
1720 offset = vsi->mqprio_qopt.qopt.offset[i];
1721 qcount = vsi->mqprio_qopt.qopt.count[i];
1722 if (qcount > max_qcount)
1723 max_qcount = qcount;
1724 vsi->tc_config.tc_info[i].qoffset = offset;
1725 vsi->tc_config.tc_info[i].qcount = qcount;
1726 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1727 } else {
1728 /* TC is not enabled so set the offset to
1729 * default queue and allocate one queue
1730 * for the given TC.
1731 */
1732 vsi->tc_config.tc_info[i].qoffset = 0;
1733 vsi->tc_config.tc_info[i].qcount = 1;
1734 vsi->tc_config.tc_info[i].netdev_tc = 0;
1735 }
1736 }
1737
1738 /* Set actual Tx/Rx queue pairs */
1739 vsi->num_queue_pairs = offset + qcount;
1740
1741 /* Setup queue TC[0].qmap for given VSI context */
1742 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1743 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1744 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1745 ctxt->info.valid_sections |= cpu_to_le16(sections);
1746
1747 /* Reconfigure RSS for main VSI with max queue count */
1748 vsi->rss_size = max_qcount;
1749 ret = i40e_vsi_config_rss(vsi);
1750 if (ret) {
1751 dev_info(&vsi->back->pdev->dev,
1752 "Failed to reconfig rss for num_queues (%u)\n",
1753 max_qcount);
1754 return ret;
1755 }
1756 vsi->reconfig_rss = true;
1757 dev_dbg(&vsi->back->pdev->dev,
1758 "Reconfigured rss with num_queues (%u)\n", max_qcount);
1759
1760 /* Find queue count available for channel VSIs and starting offset
1761 * for channel VSIs
1762 */
1763 override_q = vsi->mqprio_qopt.qopt.count[0];
1764 if (override_q && override_q < vsi->num_queue_pairs) {
1765 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q;
1766 vsi->next_base_queue = override_q;
1767 }
1768 return 0;
1769 }
1770
1771 /**
1772 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc
1773 * @vsi: the VSI being setup
1774 * @ctxt: VSI context structure
1775 * @enabled_tc: Enabled TCs bitmap
1776 * @is_add: True if called before Add VSI
1777 *
1778 * Setup VSI queue mapping for enabled traffic classes.
1779 **/
1780 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi,
1781 struct i40e_vsi_context *ctxt,
1782 u8 enabled_tc,
1783 bool is_add)
1784 {
1785 struct i40e_pf *pf = vsi->back;
1786 u16 sections = 0;
1787 u8 netdev_tc = 0;
1788 u16 numtc = 0;
1789 u16 qcount;
1790 u8 offset;
1791 u16 qmap;
1792 int i;
1793 u16 num_tc_qps = 0;
1794
1795 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1796 offset = 0;
1797
1798 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) {
1799 /* Find numtc from enabled TC bitmap */
1800 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1801 if (enabled_tc & BIT(i)) /* TC is enabled */
1802 numtc++;
1803 }
1804 if (!numtc) {
1805 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n");
1806 numtc = 1;
1807 }
1808 } else {
1809 /* At least TC0 is enabled in non-DCB, non-MQPRIO case */
1810 numtc = 1;
1811 }
1812
1813 vsi->tc_config.numtc = numtc;
1814 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1815 /* Number of queues per enabled TC */
1816 qcount = vsi->alloc_queue_pairs;
1817
1818 num_tc_qps = qcount / numtc;
1819 num_tc_qps = min_t(int, num_tc_qps, i40e_pf_get_max_q_per_tc(pf));
1820
1821 /* Setup queue offset/count for all TCs for given VSI */
1822 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1823 /* See if the given TC is enabled for the given VSI */
1824 if (vsi->tc_config.enabled_tc & BIT(i)) {
1825 /* TC is enabled */
1826 int pow, num_qps;
1827
1828 switch (vsi->type) {
1829 case I40E_VSI_MAIN:
1830 qcount = min_t(int, pf->alloc_rss_size,
1831 num_tc_qps);
1832 break;
1833 case I40E_VSI_FDIR:
1834 case I40E_VSI_SRIOV:
1835 case I40E_VSI_VMDQ2:
1836 default:
1837 qcount = num_tc_qps;
1838 WARN_ON(i != 0);
1839 break;
1840 }
1841 vsi->tc_config.tc_info[i].qoffset = offset;
1842 vsi->tc_config.tc_info[i].qcount = qcount;
1843
1844 /* find the next higher power-of-2 of num queue pairs */
1845 num_qps = qcount;
1846 pow = 0;
1847 while (num_qps && (BIT_ULL(pow) < qcount)) {
1848 pow++;
1849 num_qps >>= 1;
1850 }
1851
1852 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1853 qmap =
1854 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1855 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1856
1857 offset += qcount;
1858 } else {
1859 /* TC is not enabled so set the offset to
1860 * default queue and allocate one queue
1861 * for the given TC.
1862 */
1863 vsi->tc_config.tc_info[i].qoffset = 0;
1864 vsi->tc_config.tc_info[i].qcount = 1;
1865 vsi->tc_config.tc_info[i].netdev_tc = 0;
1866
1867 qmap = 0;
1868 }
1869 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1870 }
1871
1872 /* Set actual Tx/Rx queue pairs */
1873 vsi->num_queue_pairs = offset;
1874 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) {
1875 if (vsi->req_queue_pairs > 0)
1876 vsi->num_queue_pairs = vsi->req_queue_pairs;
1877 else if (pf->flags & I40E_FLAG_MSIX_ENABLED)
1878 vsi->num_queue_pairs = pf->num_lan_msix;
1879 }
1880
1881 /* Scheduler section valid can only be set for ADD VSI */
1882 if (is_add) {
1883 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1884
1885 ctxt->info.up_enable_bits = enabled_tc;
1886 }
1887 if (vsi->type == I40E_VSI_SRIOV) {
1888 ctxt->info.mapping_flags |=
1889 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
1890 for (i = 0; i < vsi->num_queue_pairs; i++)
1891 ctxt->info.queue_mapping[i] =
1892 cpu_to_le16(vsi->base_queue + i);
1893 } else {
1894 ctxt->info.mapping_flags |=
1895 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1896 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1897 }
1898 ctxt->info.valid_sections |= cpu_to_le16(sections);
1899 }
1900
1901 /**
1902 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address
1903 * @netdev: the netdevice
1904 * @addr: address to add
1905 *
1906 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1907 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1908 */
1909 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr)
1910 {
1911 struct i40e_netdev_priv *np = netdev_priv(netdev);
1912 struct i40e_vsi *vsi = np->vsi;
1913
1914 if (i40e_add_mac_filter(vsi, addr))
1915 return 0;
1916 else
1917 return -ENOMEM;
1918 }
1919
1920 /**
1921 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1922 * @netdev: the netdevice
1923 * @addr: address to add
1924 *
1925 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1926 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1927 */
1928 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr)
1929 {
1930 struct i40e_netdev_priv *np = netdev_priv(netdev);
1931 struct i40e_vsi *vsi = np->vsi;
1932
1933 /* Under some circumstances, we might receive a request to delete
1934 * our own device address from our uc list. Because we store the
1935 * device address in the VSI's MAC/VLAN filter list, we need to ignore
1936 * such requests and not delete our device address from this list.
1937 */
1938 if (ether_addr_equal(addr, netdev->dev_addr))
1939 return 0;
1940
1941 i40e_del_mac_filter(vsi, addr);
1942
1943 return 0;
1944 }
1945
1946 /**
1947 * i40e_set_rx_mode - NDO callback to set the netdev filters
1948 * @netdev: network interface device structure
1949 **/
1950 static void i40e_set_rx_mode(struct net_device *netdev)
1951 {
1952 struct i40e_netdev_priv *np = netdev_priv(netdev);
1953 struct i40e_vsi *vsi = np->vsi;
1954
1955 spin_lock_bh(&vsi->mac_filter_hash_lock);
1956
1957 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
1958 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
1959
1960 spin_unlock_bh(&vsi->mac_filter_hash_lock);
1961
1962 /* check for other flag changes */
1963 if (vsi->current_netdev_flags != vsi->netdev->flags) {
1964 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1965 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1966 }
1967 }
1968
1969 /**
1970 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries
1971 * @vsi: Pointer to VSI struct
1972 * @from: Pointer to list which contains MAC filter entries - changes to
1973 * those entries needs to be undone.
1974 *
1975 * MAC filter entries from this list were slated for deletion.
1976 **/
1977 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi,
1978 struct hlist_head *from)
1979 {
1980 struct i40e_mac_filter *f;
1981 struct hlist_node *h;
1982
1983 hlist_for_each_entry_safe(f, h, from, hlist) {
1984 u64 key = i40e_addr_to_hkey(f->macaddr);
1985
1986 /* Move the element back into MAC filter list*/
1987 hlist_del(&f->hlist);
1988 hash_add(vsi->mac_filter_hash, &f->hlist, key);
1989 }
1990 }
1991
1992 /**
1993 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries
1994 * @vsi: Pointer to vsi struct
1995 * @from: Pointer to list which contains MAC filter entries - changes to
1996 * those entries needs to be undone.
1997 *
1998 * MAC filter entries from this list were slated for addition.
1999 **/
2000 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi,
2001 struct hlist_head *from)
2002 {
2003 struct i40e_new_mac_filter *new;
2004 struct hlist_node *h;
2005
2006 hlist_for_each_entry_safe(new, h, from, hlist) {
2007 /* We can simply free the wrapper structure */
2008 hlist_del(&new->hlist);
2009 kfree(new);
2010 }
2011 }
2012
2013 /**
2014 * i40e_next_entry - Get the next non-broadcast filter from a list
2015 * @next: pointer to filter in list
2016 *
2017 * Returns the next non-broadcast filter in the list. Required so that we
2018 * ignore broadcast filters within the list, since these are not handled via
2019 * the normal firmware update path.
2020 */
2021 static
2022 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next)
2023 {
2024 hlist_for_each_entry_continue(next, hlist) {
2025 if (!is_broadcast_ether_addr(next->f->macaddr))
2026 return next;
2027 }
2028
2029 return NULL;
2030 }
2031
2032 /**
2033 * i40e_update_filter_state - Update filter state based on return data
2034 * from firmware
2035 * @count: Number of filters added
2036 * @add_list: return data from fw
2037 * @head: pointer to first filter in current batch
2038 *
2039 * MAC filter entries from list were slated to be added to device. Returns
2040 * number of successful filters. Note that 0 does NOT mean success!
2041 **/
2042 static int
2043 i40e_update_filter_state(int count,
2044 struct i40e_aqc_add_macvlan_element_data *add_list,
2045 struct i40e_new_mac_filter *add_head)
2046 {
2047 int retval = 0;
2048 int i;
2049
2050 for (i = 0; i < count; i++) {
2051 /* Always check status of each filter. We don't need to check
2052 * the firmware return status because we pre-set the filter
2053 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter
2054 * request to the adminq. Thus, if it no longer matches then
2055 * we know the filter is active.
2056 */
2057 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) {
2058 add_head->state = I40E_FILTER_FAILED;
2059 } else {
2060 add_head->state = I40E_FILTER_ACTIVE;
2061 retval++;
2062 }
2063
2064 add_head = i40e_next_filter(add_head);
2065 if (!add_head)
2066 break;
2067 }
2068
2069 return retval;
2070 }
2071
2072 /**
2073 * i40e_aqc_del_filters - Request firmware to delete a set of filters
2074 * @vsi: ptr to the VSI
2075 * @vsi_name: name to display in messages
2076 * @list: the list of filters to send to firmware
2077 * @num_del: the number of filters to delete
2078 * @retval: Set to -EIO on failure to delete
2079 *
2080 * Send a request to firmware via AdminQ to delete a set of filters. Uses
2081 * *retval instead of a return value so that success does not force ret_val to
2082 * be set to 0. This ensures that a sequence of calls to this function
2083 * preserve the previous value of *retval on successful delete.
2084 */
2085 static
2086 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name,
2087 struct i40e_aqc_remove_macvlan_element_data *list,
2088 int num_del, int *retval)
2089 {
2090 struct i40e_hw *hw = &vsi->back->hw;
2091 i40e_status aq_ret;
2092 int aq_err;
2093
2094 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL);
2095 aq_err = hw->aq.asq_last_status;
2096
2097 /* Explicitly ignore and do not report when firmware returns ENOENT */
2098 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) {
2099 *retval = -EIO;
2100 dev_info(&vsi->back->pdev->dev,
2101 "ignoring delete macvlan error on %s, err %s, aq_err %s\n",
2102 vsi_name, i40e_stat_str(hw, aq_ret),
2103 i40e_aq_str(hw, aq_err));
2104 }
2105 }
2106
2107 /**
2108 * i40e_aqc_add_filters - Request firmware to add a set of filters
2109 * @vsi: ptr to the VSI
2110 * @vsi_name: name to display in messages
2111 * @list: the list of filters to send to firmware
2112 * @add_head: Position in the add hlist
2113 * @num_add: the number of filters to add
2114 * @promisc_change: set to true on exit if promiscuous mode was forced on
2115 *
2116 * Send a request to firmware via AdminQ to add a chunk of filters. Will set
2117 * promisc_changed to true if the firmware has run out of space for more
2118 * filters.
2119 */
2120 static
2121 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name,
2122 struct i40e_aqc_add_macvlan_element_data *list,
2123 struct i40e_new_mac_filter *add_head,
2124 int num_add, bool *promisc_changed)
2125 {
2126 struct i40e_hw *hw = &vsi->back->hw;
2127 int aq_err, fcnt;
2128
2129 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL);
2130 aq_err = hw->aq.asq_last_status;
2131 fcnt = i40e_update_filter_state(num_add, list, add_head);
2132
2133 if (fcnt != num_add) {
2134 *promisc_changed = true;
2135 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2136 dev_warn(&vsi->back->pdev->dev,
2137 "Error %s adding RX filters on %s, promiscuous mode forced on\n",
2138 i40e_aq_str(hw, aq_err),
2139 vsi_name);
2140 }
2141 }
2142
2143 /**
2144 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags
2145 * @vsi: pointer to the VSI
2146 * @f: filter data
2147 *
2148 * This function sets or clears the promiscuous broadcast flags for VLAN
2149 * filters in order to properly receive broadcast frames. Assumes that only
2150 * broadcast filters are passed.
2151 *
2152 * Returns status indicating success or failure;
2153 **/
2154 static i40e_status
2155 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name,
2156 struct i40e_mac_filter *f)
2157 {
2158 bool enable = f->state == I40E_FILTER_NEW;
2159 struct i40e_hw *hw = &vsi->back->hw;
2160 i40e_status aq_ret;
2161
2162 if (f->vlan == I40E_VLAN_ANY) {
2163 aq_ret = i40e_aq_set_vsi_broadcast(hw,
2164 vsi->seid,
2165 enable,
2166 NULL);
2167 } else {
2168 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw,
2169 vsi->seid,
2170 enable,
2171 f->vlan,
2172 NULL);
2173 }
2174
2175 if (aq_ret)
2176 dev_warn(&vsi->back->pdev->dev,
2177 "Error %s setting broadcast promiscuous mode on %s\n",
2178 i40e_aq_str(hw, hw->aq.asq_last_status),
2179 vsi_name);
2180
2181 return aq_ret;
2182 }
2183
2184 /**
2185 * i40e_set_promiscuous - set promiscuous mode
2186 * @pf: board private structure
2187 * @promisc: promisc on or off
2188 *
2189 * There are different ways of setting promiscuous mode on a PF depending on
2190 * what state/environment we're in. This identifies and sets it appropriately.
2191 * Returns 0 on success.
2192 **/
2193 static int i40e_set_promiscuous(struct i40e_pf *pf, bool promisc)
2194 {
2195 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
2196 struct i40e_hw *hw = &pf->hw;
2197 i40e_status aq_ret;
2198
2199 if (vsi->type == I40E_VSI_MAIN &&
2200 pf->lan_veb != I40E_NO_VEB &&
2201 !(pf->flags & I40E_FLAG_MFP_ENABLED)) {
2202 /* set defport ON for Main VSI instead of true promisc
2203 * this way we will get all unicast/multicast and VLAN
2204 * promisc behavior but will not get VF or VMDq traffic
2205 * replicated on the Main VSI.
2206 */
2207 if (promisc)
2208 aq_ret = i40e_aq_set_default_vsi(hw,
2209 vsi->seid,
2210 NULL);
2211 else
2212 aq_ret = i40e_aq_clear_default_vsi(hw,
2213 vsi->seid,
2214 NULL);
2215 if (aq_ret) {
2216 dev_info(&pf->pdev->dev,
2217 "Set default VSI failed, err %s, aq_err %s\n",
2218 i40e_stat_str(hw, aq_ret),
2219 i40e_aq_str(hw, hw->aq.asq_last_status));
2220 }
2221 } else {
2222 aq_ret = i40e_aq_set_vsi_unicast_promiscuous(
2223 hw,
2224 vsi->seid,
2225 promisc, NULL,
2226 true);
2227 if (aq_ret) {
2228 dev_info(&pf->pdev->dev,
2229 "set unicast promisc failed, err %s, aq_err %s\n",
2230 i40e_stat_str(hw, aq_ret),
2231 i40e_aq_str(hw, hw->aq.asq_last_status));
2232 }
2233 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(
2234 hw,
2235 vsi->seid,
2236 promisc, NULL);
2237 if (aq_ret) {
2238 dev_info(&pf->pdev->dev,
2239 "set multicast promisc failed, err %s, aq_err %s\n",
2240 i40e_stat_str(hw, aq_ret),
2241 i40e_aq_str(hw, hw->aq.asq_last_status));
2242 }
2243 }
2244
2245 if (!aq_ret)
2246 pf->cur_promisc = promisc;
2247
2248 return aq_ret;
2249 }
2250
2251 /**
2252 * i40e_sync_vsi_filters - Update the VSI filter list to the HW
2253 * @vsi: ptr to the VSI
2254 *
2255 * Push any outstanding VSI filter changes through the AdminQ.
2256 *
2257 * Returns 0 or error value
2258 **/
2259 int i40e_sync_vsi_filters(struct i40e_vsi *vsi)
2260 {
2261 struct hlist_head tmp_add_list, tmp_del_list;
2262 struct i40e_mac_filter *f;
2263 struct i40e_new_mac_filter *new, *add_head = NULL;
2264 struct i40e_hw *hw = &vsi->back->hw;
2265 unsigned int failed_filters = 0;
2266 unsigned int vlan_filters = 0;
2267 bool promisc_changed = false;
2268 char vsi_name[16] = "PF";
2269 int filter_list_len = 0;
2270 i40e_status aq_ret = 0;
2271 u32 changed_flags = 0;
2272 struct hlist_node *h;
2273 struct i40e_pf *pf;
2274 int num_add = 0;
2275 int num_del = 0;
2276 int retval = 0;
2277 u16 cmd_flags;
2278 int list_size;
2279 int bkt;
2280
2281 /* empty array typed pointers, kcalloc later */
2282 struct i40e_aqc_add_macvlan_element_data *add_list;
2283 struct i40e_aqc_remove_macvlan_element_data *del_list;
2284
2285 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state))
2286 usleep_range(1000, 2000);
2287 pf = vsi->back;
2288
2289 if (vsi->netdev) {
2290 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
2291 vsi->current_netdev_flags = vsi->netdev->flags;
2292 }
2293
2294 INIT_HLIST_HEAD(&tmp_add_list);
2295 INIT_HLIST_HEAD(&tmp_del_list);
2296
2297 if (vsi->type == I40E_VSI_SRIOV)
2298 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id);
2299 else if (vsi->type != I40E_VSI_MAIN)
2300 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid);
2301
2302 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) {
2303 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED;
2304
2305 spin_lock_bh(&vsi->mac_filter_hash_lock);
2306 /* Create a list of filters to delete. */
2307 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2308 if (f->state == I40E_FILTER_REMOVE) {
2309 /* Move the element into temporary del_list */
2310 hash_del(&f->hlist);
2311 hlist_add_head(&f->hlist, &tmp_del_list);
2312
2313 /* Avoid counting removed filters */
2314 continue;
2315 }
2316 if (f->state == I40E_FILTER_NEW) {
2317 /* Create a temporary i40e_new_mac_filter */
2318 new = kzalloc(sizeof(*new), GFP_ATOMIC);
2319 if (!new)
2320 goto err_no_memory_locked;
2321
2322 /* Store pointer to the real filter */
2323 new->f = f;
2324 new->state = f->state;
2325
2326 /* Add it to the hash list */
2327 hlist_add_head(&new->hlist, &tmp_add_list);
2328 }
2329
2330 /* Count the number of active (current and new) VLAN
2331 * filters we have now. Does not count filters which
2332 * are marked for deletion.
2333 */
2334 if (f->vlan > 0)
2335 vlan_filters++;
2336 }
2337
2338 retval = i40e_correct_mac_vlan_filters(vsi,
2339 &tmp_add_list,
2340 &tmp_del_list,
2341 vlan_filters);
2342 if (retval)
2343 goto err_no_memory_locked;
2344
2345 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2346 }
2347
2348 /* Now process 'del_list' outside the lock */
2349 if (!hlist_empty(&tmp_del_list)) {
2350 filter_list_len = hw->aq.asq_buf_size /
2351 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2352 list_size = filter_list_len *
2353 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2354 del_list = kzalloc(list_size, GFP_ATOMIC);
2355 if (!del_list)
2356 goto err_no_memory;
2357
2358 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) {
2359 cmd_flags = 0;
2360
2361 /* handle broadcast filters by updating the broadcast
2362 * promiscuous flag and release filter list.
2363 */
2364 if (is_broadcast_ether_addr(f->macaddr)) {
2365 i40e_aqc_broadcast_filter(vsi, vsi_name, f);
2366
2367 hlist_del(&f->hlist);
2368 kfree(f);
2369 continue;
2370 }
2371
2372 /* add to delete list */
2373 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr);
2374 if (f->vlan == I40E_VLAN_ANY) {
2375 del_list[num_del].vlan_tag = 0;
2376 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
2377 } else {
2378 del_list[num_del].vlan_tag =
2379 cpu_to_le16((u16)(f->vlan));
2380 }
2381
2382 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2383 del_list[num_del].flags = cmd_flags;
2384 num_del++;
2385
2386 /* flush a full buffer */
2387 if (num_del == filter_list_len) {
2388 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2389 num_del, &retval);
2390 memset(del_list, 0, list_size);
2391 num_del = 0;
2392 }
2393 /* Release memory for MAC filter entries which were
2394 * synced up with HW.
2395 */
2396 hlist_del(&f->hlist);
2397 kfree(f);
2398 }
2399
2400 if (num_del) {
2401 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2402 num_del, &retval);
2403 }
2404
2405 kfree(del_list);
2406 del_list = NULL;
2407 }
2408
2409 if (!hlist_empty(&tmp_add_list)) {
2410 /* Do all the adds now. */
2411 filter_list_len = hw->aq.asq_buf_size /
2412 sizeof(struct i40e_aqc_add_macvlan_element_data);
2413 list_size = filter_list_len *
2414 sizeof(struct i40e_aqc_add_macvlan_element_data);
2415 add_list = kzalloc(list_size, GFP_ATOMIC);
2416 if (!add_list)
2417 goto err_no_memory;
2418
2419 num_add = 0;
2420 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2421 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC,
2422 vsi->state)) {
2423 new->state = I40E_FILTER_FAILED;
2424 continue;
2425 }
2426
2427 /* handle broadcast filters by updating the broadcast
2428 * promiscuous flag instead of adding a MAC filter.
2429 */
2430 if (is_broadcast_ether_addr(new->f->macaddr)) {
2431 if (i40e_aqc_broadcast_filter(vsi, vsi_name,
2432 new->f))
2433 new->state = I40E_FILTER_FAILED;
2434 else
2435 new->state = I40E_FILTER_ACTIVE;
2436 continue;
2437 }
2438
2439 /* add to add array */
2440 if (num_add == 0)
2441 add_head = new;
2442 cmd_flags = 0;
2443 ether_addr_copy(add_list[num_add].mac_addr,
2444 new->f->macaddr);
2445 if (new->f->vlan == I40E_VLAN_ANY) {
2446 add_list[num_add].vlan_tag = 0;
2447 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
2448 } else {
2449 add_list[num_add].vlan_tag =
2450 cpu_to_le16((u16)(new->f->vlan));
2451 }
2452 add_list[num_add].queue_number = 0;
2453 /* set invalid match method for later detection */
2454 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES;
2455 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
2456 add_list[num_add].flags = cpu_to_le16(cmd_flags);
2457 num_add++;
2458
2459 /* flush a full buffer */
2460 if (num_add == filter_list_len) {
2461 i40e_aqc_add_filters(vsi, vsi_name, add_list,
2462 add_head, num_add,
2463 &promisc_changed);
2464 memset(add_list, 0, list_size);
2465 num_add = 0;
2466 }
2467 }
2468 if (num_add) {
2469 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head,
2470 num_add, &promisc_changed);
2471 }
2472 /* Now move all of the filters from the temp add list back to
2473 * the VSI's list.
2474 */
2475 spin_lock_bh(&vsi->mac_filter_hash_lock);
2476 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2477 /* Only update the state if we're still NEW */
2478 if (new->f->state == I40E_FILTER_NEW)
2479 new->f->state = new->state;
2480 hlist_del(&new->hlist);
2481 kfree(new);
2482 }
2483 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2484 kfree(add_list);
2485 add_list = NULL;
2486 }
2487
2488 /* Determine the number of active and failed filters. */
2489 spin_lock_bh(&vsi->mac_filter_hash_lock);
2490 vsi->active_filters = 0;
2491 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) {
2492 if (f->state == I40E_FILTER_ACTIVE)
2493 vsi->active_filters++;
2494 else if (f->state == I40E_FILTER_FAILED)
2495 failed_filters++;
2496 }
2497 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2498
2499 /* If promiscuous mode has changed, we need to calculate a new
2500 * threshold for when we are safe to exit
2501 */
2502 if (promisc_changed)
2503 vsi->promisc_threshold = (vsi->active_filters * 3) / 4;
2504
2505 /* Check if we are able to exit overflow promiscuous mode. We can
2506 * safely exit if we didn't just enter, we no longer have any failed
2507 * filters, and we have reduced filters below the threshold value.
2508 */
2509 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state) &&
2510 !promisc_changed && !failed_filters &&
2511 (vsi->active_filters < vsi->promisc_threshold)) {
2512 dev_info(&pf->pdev->dev,
2513 "filter logjam cleared on %s, leaving overflow promiscuous mode\n",
2514 vsi_name);
2515 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2516 promisc_changed = true;
2517 vsi->promisc_threshold = 0;
2518 }
2519
2520 /* if the VF is not trusted do not do promisc */
2521 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) {
2522 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2523 goto out;
2524 }
2525
2526 /* check for changes in promiscuous modes */
2527 if (changed_flags & IFF_ALLMULTI) {
2528 bool cur_multipromisc;
2529
2530 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI);
2531 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw,
2532 vsi->seid,
2533 cur_multipromisc,
2534 NULL);
2535 if (aq_ret) {
2536 retval = i40e_aq_rc_to_posix(aq_ret,
2537 hw->aq.asq_last_status);
2538 dev_info(&pf->pdev->dev,
2539 "set multi promisc failed on %s, err %s aq_err %s\n",
2540 vsi_name,
2541 i40e_stat_str(hw, aq_ret),
2542 i40e_aq_str(hw, hw->aq.asq_last_status));
2543 }
2544 }
2545
2546 if ((changed_flags & IFF_PROMISC) || promisc_changed) {
2547 bool cur_promisc;
2548
2549 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) ||
2550 test_bit(__I40E_VSI_OVERFLOW_PROMISC,
2551 vsi->state));
2552 aq_ret = i40e_set_promiscuous(pf, cur_promisc);
2553 if (aq_ret) {
2554 retval = i40e_aq_rc_to_posix(aq_ret,
2555 hw->aq.asq_last_status);
2556 dev_info(&pf->pdev->dev,
2557 "Setting promiscuous %s failed on %s, err %s aq_err %s\n",
2558 cur_promisc ? "on" : "off",
2559 vsi_name,
2560 i40e_stat_str(hw, aq_ret),
2561 i40e_aq_str(hw, hw->aq.asq_last_status));
2562 }
2563 }
2564 out:
2565 /* if something went wrong then set the changed flag so we try again */
2566 if (retval)
2567 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2568
2569 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2570 return retval;
2571
2572 err_no_memory:
2573 /* Restore elements on the temporary add and delete lists */
2574 spin_lock_bh(&vsi->mac_filter_hash_lock);
2575 err_no_memory_locked:
2576 i40e_undo_del_filter_entries(vsi, &tmp_del_list);
2577 i40e_undo_add_filter_entries(vsi, &tmp_add_list);
2578 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2579
2580 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2581 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2582 return -ENOMEM;
2583 }
2584
2585 /**
2586 * i40e_sync_filters_subtask - Sync the VSI filter list with HW
2587 * @pf: board private structure
2588 **/
2589 static void i40e_sync_filters_subtask(struct i40e_pf *pf)
2590 {
2591 int v;
2592
2593 if (!pf || !(pf->flags & I40E_FLAG_FILTER_SYNC))
2594 return;
2595 pf->flags &= ~I40E_FLAG_FILTER_SYNC;
2596
2597 for (v = 0; v < pf->num_alloc_vsi; v++) {
2598 if (pf->vsi[v] &&
2599 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) {
2600 int ret = i40e_sync_vsi_filters(pf->vsi[v]);
2601
2602 if (ret) {
2603 /* come back and try again later */
2604 pf->flags |= I40E_FLAG_FILTER_SYNC;
2605 break;
2606 }
2607 }
2608 }
2609 }
2610
2611 /**
2612 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2613 * @vsi: the vsi
2614 **/
2615 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi)
2616 {
2617 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX))
2618 return I40E_RXBUFFER_2048;
2619 else
2620 return I40E_RXBUFFER_3072;
2621 }
2622
2623 /**
2624 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit
2625 * @netdev: network interface device structure
2626 * @new_mtu: new value for maximum frame size
2627 *
2628 * Returns 0 on success, negative on failure
2629 **/
2630 static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
2631 {
2632 struct i40e_netdev_priv *np = netdev_priv(netdev);
2633 struct i40e_vsi *vsi = np->vsi;
2634 struct i40e_pf *pf = vsi->back;
2635
2636 if (i40e_enabled_xdp_vsi(vsi)) {
2637 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2638
2639 if (frame_size > i40e_max_xdp_frame_size(vsi))
2640 return -EINVAL;
2641 }
2642
2643 netdev_info(netdev, "changing MTU from %d to %d\n",
2644 netdev->mtu, new_mtu);
2645 netdev->mtu = new_mtu;
2646 if (netif_running(netdev))
2647 i40e_vsi_reinit_locked(vsi);
2648 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED |
2649 I40E_FLAG_CLIENT_L2_CHANGE);
2650 return 0;
2651 }
2652
2653 /**
2654 * i40e_ioctl - Access the hwtstamp interface
2655 * @netdev: network interface device structure
2656 * @ifr: interface request data
2657 * @cmd: ioctl command
2658 **/
2659 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2660 {
2661 struct i40e_netdev_priv *np = netdev_priv(netdev);
2662 struct i40e_pf *pf = np->vsi->back;
2663
2664 switch (cmd) {
2665 case SIOCGHWTSTAMP:
2666 return i40e_ptp_get_ts_config(pf, ifr);
2667 case SIOCSHWTSTAMP:
2668 return i40e_ptp_set_ts_config(pf, ifr);
2669 default:
2670 return -EOPNOTSUPP;
2671 }
2672 }
2673
2674 /**
2675 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI
2676 * @vsi: the vsi being adjusted
2677 **/
2678 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi)
2679 {
2680 struct i40e_vsi_context ctxt;
2681 i40e_status ret;
2682
2683 if ((vsi->info.valid_sections &
2684 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2685 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0))
2686 return; /* already enabled */
2687
2688 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2689 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2690 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
2691
2692 ctxt.seid = vsi->seid;
2693 ctxt.info = vsi->info;
2694 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2695 if (ret) {
2696 dev_info(&vsi->back->pdev->dev,
2697 "update vlan stripping failed, err %s aq_err %s\n",
2698 i40e_stat_str(&vsi->back->hw, ret),
2699 i40e_aq_str(&vsi->back->hw,
2700 vsi->back->hw.aq.asq_last_status));
2701 }
2702 }
2703
2704 /**
2705 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI
2706 * @vsi: the vsi being adjusted
2707 **/
2708 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi)
2709 {
2710 struct i40e_vsi_context ctxt;
2711 i40e_status ret;
2712
2713 if ((vsi->info.valid_sections &
2714 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2715 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
2716 I40E_AQ_VSI_PVLAN_EMOD_MASK))
2717 return; /* already disabled */
2718
2719 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2720 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2721 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2722
2723 ctxt.seid = vsi->seid;
2724 ctxt.info = vsi->info;
2725 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2726 if (ret) {
2727 dev_info(&vsi->back->pdev->dev,
2728 "update vlan stripping failed, err %s aq_err %s\n",
2729 i40e_stat_str(&vsi->back->hw, ret),
2730 i40e_aq_str(&vsi->back->hw,
2731 vsi->back->hw.aq.asq_last_status));
2732 }
2733 }
2734
2735 /**
2736 * i40e_vlan_rx_register - Setup or shutdown vlan offload
2737 * @netdev: network interface to be adjusted
2738 * @features: netdev features to test if VLAN offload is enabled or not
2739 **/
2740 static void i40e_vlan_rx_register(struct net_device *netdev, u32 features)
2741 {
2742 struct i40e_netdev_priv *np = netdev_priv(netdev);
2743 struct i40e_vsi *vsi = np->vsi;
2744
2745 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2746 i40e_vlan_stripping_enable(vsi);
2747 else
2748 i40e_vlan_stripping_disable(vsi);
2749 }
2750
2751 /**
2752 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address
2753 * @vsi: the vsi being configured
2754 * @vid: vlan id to be added (0 = untagged only , -1 = any)
2755 *
2756 * This is a helper function for adding a new MAC/VLAN filter with the
2757 * specified VLAN for each existing MAC address already in the hash table.
2758 * This function does *not* perform any accounting to update filters based on
2759 * VLAN mode.
2760 *
2761 * NOTE: this function expects to be called while under the
2762 * mac_filter_hash_lock
2763 **/
2764 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
2765 {
2766 struct i40e_mac_filter *f, *add_f;
2767 struct hlist_node *h;
2768 int bkt;
2769
2770 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2771 if (f->state == I40E_FILTER_REMOVE)
2772 continue;
2773 add_f = i40e_add_filter(vsi, f->macaddr, vid);
2774 if (!add_f) {
2775 dev_info(&vsi->back->pdev->dev,
2776 "Could not add vlan filter %d for %pM\n",
2777 vid, f->macaddr);
2778 return -ENOMEM;
2779 }
2780 }
2781
2782 return 0;
2783 }
2784
2785 /**
2786 * i40e_vsi_add_vlan - Add VSI membership for given VLAN
2787 * @vsi: the VSI being configured
2788 * @vid: VLAN id to be added
2789 **/
2790 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid)
2791 {
2792 int err;
2793
2794 if (vsi->info.pvid)
2795 return -EINVAL;
2796
2797 /* The network stack will attempt to add VID=0, with the intention to
2798 * receive priority tagged packets with a VLAN of 0. Our HW receives
2799 * these packets by default when configured to receive untagged
2800 * packets, so we don't need to add a filter for this case.
2801 * Additionally, HW interprets adding a VID=0 filter as meaning to
2802 * receive *only* tagged traffic and stops receiving untagged traffic.
2803 * Thus, we do not want to actually add a filter for VID=0
2804 */
2805 if (!vid)
2806 return 0;
2807
2808 /* Locked once because all functions invoked below iterates list*/
2809 spin_lock_bh(&vsi->mac_filter_hash_lock);
2810 err = i40e_add_vlan_all_mac(vsi, vid);
2811 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2812 if (err)
2813 return err;
2814
2815 /* schedule our worker thread which will take care of
2816 * applying the new filter changes
2817 */
2818 i40e_service_event_schedule(vsi->back);
2819 return 0;
2820 }
2821
2822 /**
2823 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN
2824 * @vsi: the vsi being configured
2825 * @vid: vlan id to be removed (0 = untagged only , -1 = any)
2826 *
2827 * This function should be used to remove all VLAN filters which match the
2828 * given VID. It does not schedule the service event and does not take the
2829 * mac_filter_hash_lock so it may be combined with other operations under
2830 * a single invocation of the mac_filter_hash_lock.
2831 *
2832 * NOTE: this function expects to be called while under the
2833 * mac_filter_hash_lock
2834 */
2835 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
2836 {
2837 struct i40e_mac_filter *f;
2838 struct hlist_node *h;
2839 int bkt;
2840
2841 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2842 if (f->vlan == vid)
2843 __i40e_del_filter(vsi, f);
2844 }
2845 }
2846
2847 /**
2848 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN
2849 * @vsi: the VSI being configured
2850 * @vid: VLAN id to be removed
2851 **/
2852 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid)
2853 {
2854 if (!vid || vsi->info.pvid)
2855 return;
2856
2857 spin_lock_bh(&vsi->mac_filter_hash_lock);
2858 i40e_rm_vlan_all_mac(vsi, vid);
2859 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2860
2861 /* schedule our worker thread which will take care of
2862 * applying the new filter changes
2863 */
2864 i40e_service_event_schedule(vsi->back);
2865 }
2866
2867 /**
2868 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload
2869 * @netdev: network interface to be adjusted
2870 * @vid: vlan id to be added
2871 *
2872 * net_device_ops implementation for adding vlan ids
2873 **/
2874 static int i40e_vlan_rx_add_vid(struct net_device *netdev,
2875 __always_unused __be16 proto, u16 vid)
2876 {
2877 struct i40e_netdev_priv *np = netdev_priv(netdev);
2878 struct i40e_vsi *vsi = np->vsi;
2879 int ret = 0;
2880
2881 if (vid >= VLAN_N_VID)
2882 return -EINVAL;
2883
2884 ret = i40e_vsi_add_vlan(vsi, vid);
2885 if (!ret)
2886 set_bit(vid, vsi->active_vlans);
2887
2888 return ret;
2889 }
2890
2891 /**
2892 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
2893 * @netdev: network interface to be adjusted
2894 * @vid: vlan id to be removed
2895 *
2896 * net_device_ops implementation for removing vlan ids
2897 **/
2898 static int i40e_vlan_rx_kill_vid(struct net_device *netdev,
2899 __always_unused __be16 proto, u16 vid)
2900 {
2901 struct i40e_netdev_priv *np = netdev_priv(netdev);
2902 struct i40e_vsi *vsi = np->vsi;
2903
2904 /* return code is ignored as there is nothing a user
2905 * can do about failure to remove and a log message was
2906 * already printed from the other function
2907 */
2908 i40e_vsi_kill_vlan(vsi, vid);
2909
2910 clear_bit(vid, vsi->active_vlans);
2911
2912 return 0;
2913 }
2914
2915 /**
2916 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up
2917 * @vsi: the vsi being brought back up
2918 **/
2919 static void i40e_restore_vlan(struct i40e_vsi *vsi)
2920 {
2921 u16 vid;
2922
2923 if (!vsi->netdev)
2924 return;
2925
2926 i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features);
2927
2928 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID)
2929 i40e_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q),
2930 vid);
2931 }
2932
2933 /**
2934 * i40e_vsi_add_pvid - Add pvid for the VSI
2935 * @vsi: the vsi being adjusted
2936 * @vid: the vlan id to set as a PVID
2937 **/
2938 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid)
2939 {
2940 struct i40e_vsi_context ctxt;
2941 i40e_status ret;
2942
2943 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2944 vsi->info.pvid = cpu_to_le16(vid);
2945 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED |
2946 I40E_AQ_VSI_PVLAN_INSERT_PVID |
2947 I40E_AQ_VSI_PVLAN_EMOD_STR;
2948
2949 ctxt.seid = vsi->seid;
2950 ctxt.info = vsi->info;
2951 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2952 if (ret) {
2953 dev_info(&vsi->back->pdev->dev,
2954 "add pvid failed, err %s aq_err %s\n",
2955 i40e_stat_str(&vsi->back->hw, ret),
2956 i40e_aq_str(&vsi->back->hw,
2957 vsi->back->hw.aq.asq_last_status));
2958 return -ENOENT;
2959 }
2960
2961 return 0;
2962 }
2963
2964 /**
2965 * i40e_vsi_remove_pvid - Remove the pvid from the VSI
2966 * @vsi: the vsi being adjusted
2967 *
2968 * Just use the vlan_rx_register() service to put it back to normal
2969 **/
2970 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi)
2971 {
2972 i40e_vlan_stripping_disable(vsi);
2973
2974 vsi->info.pvid = 0;
2975 }
2976
2977 /**
2978 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources
2979 * @vsi: ptr to the VSI
2980 *
2981 * If this function returns with an error, then it's possible one or
2982 * more of the rings is populated (while the rest are not). It is the
2983 * callers duty to clean those orphaned rings.
2984 *
2985 * Return 0 on success, negative on failure
2986 **/
2987 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi)
2988 {
2989 int i, err = 0;
2990
2991 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2992 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]);
2993
2994 if (!i40e_enabled_xdp_vsi(vsi))
2995 return err;
2996
2997 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2998 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]);
2999
3000 return err;
3001 }
3002
3003 /**
3004 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues
3005 * @vsi: ptr to the VSI
3006 *
3007 * Free VSI's transmit software resources
3008 **/
3009 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi)
3010 {
3011 int i;
3012
3013 if (vsi->tx_rings) {
3014 for (i = 0; i < vsi->num_queue_pairs; i++)
3015 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
3016 i40e_free_tx_resources(vsi->tx_rings[i]);
3017 }
3018
3019 if (vsi->xdp_rings) {
3020 for (i = 0; i < vsi->num_queue_pairs; i++)
3021 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
3022 i40e_free_tx_resources(vsi->xdp_rings[i]);
3023 }
3024 }
3025
3026 /**
3027 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources
3028 * @vsi: ptr to the VSI
3029 *
3030 * If this function returns with an error, then it's possible one or
3031 * more of the rings is populated (while the rest are not). It is the
3032 * callers duty to clean those orphaned rings.
3033 *
3034 * Return 0 on success, negative on failure
3035 **/
3036 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi)
3037 {
3038 int i, err = 0;
3039
3040 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3041 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]);
3042 return err;
3043 }
3044
3045 /**
3046 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues
3047 * @vsi: ptr to the VSI
3048 *
3049 * Free all receive software resources
3050 **/
3051 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi)
3052 {
3053 int i;
3054
3055 if (!vsi->rx_rings)
3056 return;
3057
3058 for (i = 0; i < vsi->num_queue_pairs; i++)
3059 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
3060 i40e_free_rx_resources(vsi->rx_rings[i]);
3061 }
3062
3063 /**
3064 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring
3065 * @ring: The Tx ring to configure
3066 *
3067 * This enables/disables XPS for a given Tx descriptor ring
3068 * based on the TCs enabled for the VSI that ring belongs to.
3069 **/
3070 static void i40e_config_xps_tx_ring(struct i40e_ring *ring)
3071 {
3072 int cpu;
3073
3074 if (!ring->q_vector || !ring->netdev || ring->ch)
3075 return;
3076
3077 /* We only initialize XPS once, so as not to overwrite user settings */
3078 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state))
3079 return;
3080
3081 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1);
3082 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu),
3083 ring->queue_index);
3084 }
3085
3086 /**
3087 * i40e_configure_tx_ring - Configure a transmit ring context and rest
3088 * @ring: The Tx ring to configure
3089 *
3090 * Configure the Tx descriptor ring in the HMC context.
3091 **/
3092 static int i40e_configure_tx_ring(struct i40e_ring *ring)
3093 {
3094 struct i40e_vsi *vsi = ring->vsi;
3095 u16 pf_q = vsi->base_queue + ring->queue_index;
3096 struct i40e_hw *hw = &vsi->back->hw;
3097 struct i40e_hmc_obj_txq tx_ctx;
3098 i40e_status err = 0;
3099 u32 qtx_ctl = 0;
3100
3101 /* some ATR related tx ring init */
3102 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) {
3103 ring->atr_sample_rate = vsi->back->atr_sample_rate;
3104 ring->atr_count = 0;
3105 } else {
3106 ring->atr_sample_rate = 0;
3107 }
3108
3109 /* configure XPS */
3110 i40e_config_xps_tx_ring(ring);
3111
3112 /* clear the context structure first */
3113 memset(&tx_ctx, 0, sizeof(tx_ctx));
3114
3115 tx_ctx.new_context = 1;
3116 tx_ctx.base = (ring->dma / 128);
3117 tx_ctx.qlen = ring->count;
3118 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED |
3119 I40E_FLAG_FD_ATR_ENABLED));
3120 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP);
3121 /* FDIR VSI tx ring can still use RS bit and writebacks */
3122 if (vsi->type != I40E_VSI_FDIR)
3123 tx_ctx.head_wb_ena = 1;
3124 tx_ctx.head_wb_addr = ring->dma +
3125 (ring->count * sizeof(struct i40e_tx_desc));
3126
3127 /* As part of VSI creation/update, FW allocates certain
3128 * Tx arbitration queue sets for each TC enabled for
3129 * the VSI. The FW returns the handles to these queue
3130 * sets as part of the response buffer to Add VSI,
3131 * Update VSI, etc. AQ commands. It is expected that
3132 * these queue set handles be associated with the Tx
3133 * queues by the driver as part of the TX queue context
3134 * initialization. This has to be done regardless of
3135 * DCB as by default everything is mapped to TC0.
3136 */
3137
3138 if (ring->ch)
3139 tx_ctx.rdylist =
3140 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]);
3141
3142 else
3143 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]);
3144
3145 tx_ctx.rdylist_act = 0;
3146
3147 /* clear the context in the HMC */
3148 err = i40e_clear_lan_tx_queue_context(hw, pf_q);
3149 if (err) {
3150 dev_info(&vsi->back->pdev->dev,
3151 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n",
3152 ring->queue_index, pf_q, err);
3153 return -ENOMEM;
3154 }
3155
3156 /* set the context in the HMC */
3157 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
3158 if (err) {
3159 dev_info(&vsi->back->pdev->dev,
3160 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n",
3161 ring->queue_index, pf_q, err);
3162 return -ENOMEM;
3163 }
3164
3165 /* Now associate this queue with this PCI function */
3166 if (ring->ch) {
3167 if (ring->ch->type == I40E_VSI_VMDQ2)
3168 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3169 else
3170 return -EINVAL;
3171
3172 qtx_ctl |= (ring->ch->vsi_number <<
3173 I40E_QTX_CTL_VFVM_INDX_SHIFT) &
3174 I40E_QTX_CTL_VFVM_INDX_MASK;
3175 } else {
3176 if (vsi->type == I40E_VSI_VMDQ2) {
3177 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3178 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) &
3179 I40E_QTX_CTL_VFVM_INDX_MASK;
3180 } else {
3181 qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
3182 }
3183 }
3184
3185 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
3186 I40E_QTX_CTL_PF_INDX_MASK);
3187 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
3188 i40e_flush(hw);
3189
3190 /* cache tail off for easier writes later */
3191 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
3192
3193 return 0;
3194 }
3195
3196 /**
3197 * i40e_configure_rx_ring - Configure a receive ring context
3198 * @ring: The Rx ring to configure
3199 *
3200 * Configure the Rx descriptor ring in the HMC context.
3201 **/
3202 static int i40e_configure_rx_ring(struct i40e_ring *ring)
3203 {
3204 struct i40e_vsi *vsi = ring->vsi;
3205 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len;
3206 u16 pf_q = vsi->base_queue + ring->queue_index;
3207 struct i40e_hw *hw = &vsi->back->hw;
3208 struct i40e_hmc_obj_rxq rx_ctx;
3209 i40e_status err = 0;
3210
3211 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS);
3212
3213 /* clear the context structure first */
3214 memset(&rx_ctx, 0, sizeof(rx_ctx));
3215
3216 ring->rx_buf_len = vsi->rx_buf_len;
3217
3218 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len,
3219 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT));
3220
3221 rx_ctx.base = (ring->dma / 128);
3222 rx_ctx.qlen = ring->count;
3223
3224 /* use 32 byte descriptors */
3225 rx_ctx.dsize = 1;
3226
3227 /* descriptor type is always zero
3228 * rx_ctx.dtype = 0;
3229 */
3230 rx_ctx.hsplit_0 = 0;
3231
3232 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len);
3233 if (hw->revision_id == 0)
3234 rx_ctx.lrxqthresh = 0;
3235 else
3236 rx_ctx.lrxqthresh = 1;
3237 rx_ctx.crcstrip = 1;
3238 rx_ctx.l2tsel = 1;
3239 /* this controls whether VLAN is stripped from inner headers */
3240 rx_ctx.showiv = 0;
3241 /* set the prefena field to 1 because the manual says to */
3242 rx_ctx.prefena = 1;
3243
3244 /* clear the context in the HMC */
3245 err = i40e_clear_lan_rx_queue_context(hw, pf_q);
3246 if (err) {
3247 dev_info(&vsi->back->pdev->dev,
3248 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3249 ring->queue_index, pf_q, err);
3250 return -ENOMEM;
3251 }
3252
3253 /* set the context in the HMC */
3254 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
3255 if (err) {
3256 dev_info(&vsi->back->pdev->dev,
3257 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3258 ring->queue_index, pf_q, err);
3259 return -ENOMEM;
3260 }
3261
3262 /* configure Rx buffer alignment */
3263 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX))
3264 clear_ring_build_skb_enabled(ring);
3265 else
3266 set_ring_build_skb_enabled(ring);
3267
3268 /* cache tail for quicker writes, and clear the reg before use */
3269 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
3270 writel(0, ring->tail);
3271
3272 i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
3273
3274 return 0;
3275 }
3276
3277 /**
3278 * i40e_vsi_configure_tx - Configure the VSI for Tx
3279 * @vsi: VSI structure describing this set of rings and resources
3280 *
3281 * Configure the Tx VSI for operation.
3282 **/
3283 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi)
3284 {
3285 int err = 0;
3286 u16 i;
3287
3288 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3289 err = i40e_configure_tx_ring(vsi->tx_rings[i]);
3290
3291 if (!i40e_enabled_xdp_vsi(vsi))
3292 return err;
3293
3294 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3295 err = i40e_configure_tx_ring(vsi->xdp_rings[i]);
3296
3297 return err;
3298 }
3299
3300 /**
3301 * i40e_vsi_configure_rx - Configure the VSI for Rx
3302 * @vsi: the VSI being configured
3303 *
3304 * Configure the Rx VSI for operation.
3305 **/
3306 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi)
3307 {
3308 int err = 0;
3309 u16 i;
3310
3311 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) {
3312 vsi->max_frame = I40E_MAX_RXBUFFER;
3313 vsi->rx_buf_len = I40E_RXBUFFER_2048;
3314 #if (PAGE_SIZE < 8192)
3315 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING &&
3316 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
3317 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3318 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3319 #endif
3320 } else {
3321 vsi->max_frame = I40E_MAX_RXBUFFER;
3322 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 :
3323 I40E_RXBUFFER_2048;
3324 }
3325
3326 /* set up individual rings */
3327 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3328 err = i40e_configure_rx_ring(vsi->rx_rings[i]);
3329
3330 return err;
3331 }
3332
3333 /**
3334 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC
3335 * @vsi: ptr to the VSI
3336 **/
3337 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi)
3338 {
3339 struct i40e_ring *tx_ring, *rx_ring;
3340 u16 qoffset, qcount;
3341 int i, n;
3342
3343 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) {
3344 /* Reset the TC information */
3345 for (i = 0; i < vsi->num_queue_pairs; i++) {
3346 rx_ring = vsi->rx_rings[i];
3347 tx_ring = vsi->tx_rings[i];
3348 rx_ring->dcb_tc = 0;
3349 tx_ring->dcb_tc = 0;
3350 }
3351 return;
3352 }
3353
3354 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) {
3355 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n)))
3356 continue;
3357
3358 qoffset = vsi->tc_config.tc_info[n].qoffset;
3359 qcount = vsi->tc_config.tc_info[n].qcount;
3360 for (i = qoffset; i < (qoffset + qcount); i++) {
3361 rx_ring = vsi->rx_rings[i];
3362 tx_ring = vsi->tx_rings[i];
3363 rx_ring->dcb_tc = n;
3364 tx_ring->dcb_tc = n;
3365 }
3366 }
3367 }
3368
3369 /**
3370 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI
3371 * @vsi: ptr to the VSI
3372 **/
3373 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi)
3374 {
3375 if (vsi->netdev)
3376 i40e_set_rx_mode(vsi->netdev);
3377 }
3378
3379 /**
3380 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters
3381 * @vsi: Pointer to the targeted VSI
3382 *
3383 * This function replays the hlist on the hw where all the SB Flow Director
3384 * filters were saved.
3385 **/
3386 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi)
3387 {
3388 struct i40e_fdir_filter *filter;
3389 struct i40e_pf *pf = vsi->back;
3390 struct hlist_node *node;
3391
3392 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
3393 return;
3394
3395 /* Reset FDir counters as we're replaying all existing filters */
3396 pf->fd_tcp4_filter_cnt = 0;
3397 pf->fd_udp4_filter_cnt = 0;
3398 pf->fd_sctp4_filter_cnt = 0;
3399 pf->fd_ip4_filter_cnt = 0;
3400
3401 hlist_for_each_entry_safe(filter, node,
3402 &pf->fdir_filter_list, fdir_node) {
3403 i40e_add_del_fdir(vsi, filter, true);
3404 }
3405 }
3406
3407 /**
3408 * i40e_vsi_configure - Set up the VSI for action
3409 * @vsi: the VSI being configured
3410 **/
3411 static int i40e_vsi_configure(struct i40e_vsi *vsi)
3412 {
3413 int err;
3414
3415 i40e_set_vsi_rx_mode(vsi);
3416 i40e_restore_vlan(vsi);
3417 i40e_vsi_config_dcb_rings(vsi);
3418 err = i40e_vsi_configure_tx(vsi);
3419 if (!err)
3420 err = i40e_vsi_configure_rx(vsi);
3421
3422 return err;
3423 }
3424
3425 /**
3426 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW
3427 * @vsi: the VSI being configured
3428 **/
3429 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi)
3430 {
3431 bool has_xdp = i40e_enabled_xdp_vsi(vsi);
3432 struct i40e_pf *pf = vsi->back;
3433 struct i40e_hw *hw = &pf->hw;
3434 u16 vector;
3435 int i, q;
3436 u32 qp;
3437
3438 /* The interrupt indexing is offset by 1 in the PFINT_ITRn
3439 * and PFINT_LNKLSTn registers, e.g.:
3440 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts)
3441 */
3442 qp = vsi->base_queue;
3443 vector = vsi->base_vector;
3444 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
3445 struct i40e_q_vector *q_vector = vsi->q_vectors[i];
3446
3447 q_vector->itr_countdown = ITR_COUNTDOWN_START;
3448 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[i]->rx_itr_setting);
3449 q_vector->rx.latency_range = I40E_LOW_LATENCY;
3450 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1),
3451 q_vector->rx.itr);
3452 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[i]->tx_itr_setting);
3453 q_vector->tx.latency_range = I40E_LOW_LATENCY;
3454 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1),
3455 q_vector->tx.itr);
3456 wr32(hw, I40E_PFINT_RATEN(vector - 1),
3457 i40e_intrl_usec_to_reg(vsi->int_rate_limit));
3458
3459 /* Linked list for the queuepairs assigned to this vector */
3460 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp);
3461 for (q = 0; q < q_vector->num_ringpairs; q++) {
3462 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp;
3463 u32 val;
3464
3465 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3466 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
3467 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
3468 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
3469 (I40E_QUEUE_TYPE_TX <<
3470 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
3471
3472 wr32(hw, I40E_QINT_RQCTL(qp), val);
3473
3474 if (has_xdp) {
3475 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3476 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3477 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3478 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3479 (I40E_QUEUE_TYPE_TX <<
3480 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3481
3482 wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3483 }
3484
3485 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3486 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3487 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3488 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3489 (I40E_QUEUE_TYPE_RX <<
3490 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3491
3492 /* Terminate the linked list */
3493 if (q == (q_vector->num_ringpairs - 1))
3494 val |= (I40E_QUEUE_END_OF_LIST <<
3495 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3496
3497 wr32(hw, I40E_QINT_TQCTL(qp), val);
3498 qp++;
3499 }
3500 }
3501
3502 i40e_flush(hw);
3503 }
3504
3505 /**
3506 * i40e_enable_misc_int_causes - enable the non-queue interrupts
3507 * @hw: ptr to the hardware info
3508 **/
3509 static void i40e_enable_misc_int_causes(struct i40e_pf *pf)
3510 {
3511 struct i40e_hw *hw = &pf->hw;
3512 u32 val;
3513
3514 /* clear things first */
3515 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */
3516 rd32(hw, I40E_PFINT_ICR0); /* read to clear */
3517
3518 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK |
3519 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK |
3520 I40E_PFINT_ICR0_ENA_GRST_MASK |
3521 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK |
3522 I40E_PFINT_ICR0_ENA_GPIO_MASK |
3523 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK |
3524 I40E_PFINT_ICR0_ENA_VFLR_MASK |
3525 I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3526
3527 if (pf->flags & I40E_FLAG_IWARP_ENABLED)
3528 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3529
3530 if (pf->flags & I40E_FLAG_PTP)
3531 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3532
3533 wr32(hw, I40E_PFINT_ICR0_ENA, val);
3534
3535 /* SW_ITR_IDX = 0, but don't change INTENA */
3536 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK |
3537 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK);
3538
3539 /* OTHER_ITR_IDX = 0 */
3540 wr32(hw, I40E_PFINT_STAT_CTL0, 0);
3541 }
3542
3543 /**
3544 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW
3545 * @vsi: the VSI being configured
3546 **/
3547 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi)
3548 {
3549 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0;
3550 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
3551 struct i40e_pf *pf = vsi->back;
3552 struct i40e_hw *hw = &pf->hw;
3553 u32 val;
3554
3555 /* set the ITR configuration */
3556 q_vector->itr_countdown = ITR_COUNTDOWN_START;
3557 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[0]->rx_itr_setting);
3558 q_vector->rx.latency_range = I40E_LOW_LATENCY;
3559 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.itr);
3560 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[0]->tx_itr_setting);
3561 q_vector->tx.latency_range = I40E_LOW_LATENCY;
3562 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.itr);
3563
3564 i40e_enable_misc_int_causes(pf);
3565
3566 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
3567 wr32(hw, I40E_PFINT_LNKLST0, 0);
3568
3569 /* Associate the queue pair to the vector and enable the queue int */
3570 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3571 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
3572 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)|
3573 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3574
3575 wr32(hw, I40E_QINT_RQCTL(0), val);
3576
3577 if (i40e_enabled_xdp_vsi(vsi)) {
3578 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3579 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)|
3580 (I40E_QUEUE_TYPE_TX
3581 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3582
3583 wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3584 }
3585
3586 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3587 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3588 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3589
3590 wr32(hw, I40E_QINT_TQCTL(0), val);
3591 i40e_flush(hw);
3592 }
3593
3594 /**
3595 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0
3596 * @pf: board private structure
3597 **/
3598 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf)
3599 {
3600 struct i40e_hw *hw = &pf->hw;
3601
3602 wr32(hw, I40E_PFINT_DYN_CTL0,
3603 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
3604 i40e_flush(hw);
3605 }
3606
3607 /**
3608 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0
3609 * @pf: board private structure
3610 **/
3611 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf)
3612 {
3613 struct i40e_hw *hw = &pf->hw;
3614 u32 val;
3615
3616 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
3617 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
3618 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
3619
3620 wr32(hw, I40E_PFINT_DYN_CTL0, val);
3621 i40e_flush(hw);
3622 }
3623
3624 /**
3625 * i40e_msix_clean_rings - MSIX mode Interrupt Handler
3626 * @irq: interrupt number
3627 * @data: pointer to a q_vector
3628 **/
3629 static irqreturn_t i40e_msix_clean_rings(int irq, void *data)
3630 {
3631 struct i40e_q_vector *q_vector = data;
3632
3633 if (!q_vector->tx.ring && !q_vector->rx.ring)
3634 return IRQ_HANDLED;
3635
3636 napi_schedule_irqoff(&q_vector->napi);
3637
3638 return IRQ_HANDLED;
3639 }
3640
3641 /**
3642 * i40e_irq_affinity_notify - Callback for affinity changes
3643 * @notify: context as to what irq was changed
3644 * @mask: the new affinity mask
3645 *
3646 * This is a callback function used by the irq_set_affinity_notifier function
3647 * so that we may register to receive changes to the irq affinity masks.
3648 **/
3649 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify,
3650 const cpumask_t *mask)
3651 {
3652 struct i40e_q_vector *q_vector =
3653 container_of(notify, struct i40e_q_vector, affinity_notify);
3654
3655 cpumask_copy(&q_vector->affinity_mask, mask);
3656 }
3657
3658 /**
3659 * i40e_irq_affinity_release - Callback for affinity notifier release
3660 * @ref: internal core kernel usage
3661 *
3662 * This is a callback function used by the irq_set_affinity_notifier function
3663 * to inform the current notification subscriber that they will no longer
3664 * receive notifications.
3665 **/
3666 static void i40e_irq_affinity_release(struct kref *ref) {}
3667
3668 /**
3669 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts
3670 * @vsi: the VSI being configured
3671 * @basename: name for the vector
3672 *
3673 * Allocates MSI-X vectors and requests interrupts from the kernel.
3674 **/
3675 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename)
3676 {
3677 int q_vectors = vsi->num_q_vectors;
3678 struct i40e_pf *pf = vsi->back;
3679 int base = vsi->base_vector;
3680 int rx_int_idx = 0;
3681 int tx_int_idx = 0;
3682 int vector, err;
3683 int irq_num;
3684 int cpu;
3685
3686 for (vector = 0; vector < q_vectors; vector++) {
3687 struct i40e_q_vector *q_vector = vsi->q_vectors[vector];
3688
3689 irq_num = pf->msix_entries[base + vector].vector;
3690
3691 if (q_vector->tx.ring && q_vector->rx.ring) {
3692 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3693 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
3694 tx_int_idx++;
3695 } else if (q_vector->rx.ring) {
3696 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3697 "%s-%s-%d", basename, "rx", rx_int_idx++);
3698 } else if (q_vector->tx.ring) {
3699 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3700 "%s-%s-%d", basename, "tx", tx_int_idx++);
3701 } else {
3702 /* skip this unused q_vector */
3703 continue;
3704 }
3705 err = request_irq(irq_num,
3706 vsi->irq_handler,
3707 0,
3708 q_vector->name,
3709 q_vector);
3710 if (err) {
3711 dev_info(&pf->pdev->dev,
3712 "MSIX request_irq failed, error: %d\n", err);
3713 goto free_queue_irqs;
3714 }
3715
3716 /* register for affinity change notifications */
3717 q_vector->affinity_notify.notify = i40e_irq_affinity_notify;
3718 q_vector->affinity_notify.release = i40e_irq_affinity_release;
3719 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
3720 /* Spread affinity hints out across online CPUs.
3721 *
3722 * get_cpu_mask returns a static constant mask with
3723 * a permanent lifetime so it's ok to pass to
3724 * irq_set_affinity_hint without making a copy.
3725 */
3726 cpu = cpumask_local_spread(q_vector->v_idx, -1);
3727 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
3728 }
3729
3730 vsi->irqs_ready = true;
3731 return 0;
3732
3733 free_queue_irqs:
3734 while (vector) {
3735 vector--;
3736 irq_num = pf->msix_entries[base + vector].vector;
3737 irq_set_affinity_notifier(irq_num, NULL);
3738 irq_set_affinity_hint(irq_num, NULL);
3739 free_irq(irq_num, &vsi->q_vectors[vector]);
3740 }
3741 return err;
3742 }
3743
3744 /**
3745 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI
3746 * @vsi: the VSI being un-configured
3747 **/
3748 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi)
3749 {
3750 struct i40e_pf *pf = vsi->back;
3751 struct i40e_hw *hw = &pf->hw;
3752 int base = vsi->base_vector;
3753 int i;
3754
3755 /* disable interrupt causation from each queue */
3756 for (i = 0; i < vsi->num_queue_pairs; i++) {
3757 u32 val;
3758
3759 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
3760 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
3761 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
3762
3763 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx));
3764 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
3765 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val);
3766
3767 if (!i40e_enabled_xdp_vsi(vsi))
3768 continue;
3769 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0);
3770 }
3771
3772 /* disable each interrupt */
3773 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3774 for (i = vsi->base_vector;
3775 i < (vsi->num_q_vectors + vsi->base_vector); i++)
3776 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0);
3777
3778 i40e_flush(hw);
3779 for (i = 0; i < vsi->num_q_vectors; i++)
3780 synchronize_irq(pf->msix_entries[i + base].vector);
3781 } else {
3782 /* Legacy and MSI mode - this stops all interrupt handling */
3783 wr32(hw, I40E_PFINT_ICR0_ENA, 0);
3784 wr32(hw, I40E_PFINT_DYN_CTL0, 0);
3785 i40e_flush(hw);
3786 synchronize_irq(pf->pdev->irq);
3787 }
3788 }
3789
3790 /**
3791 * i40e_vsi_enable_irq - Enable IRQ for the given VSI
3792 * @vsi: the VSI being configured
3793 **/
3794 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi)
3795 {
3796 struct i40e_pf *pf = vsi->back;
3797 int i;
3798
3799 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3800 for (i = 0; i < vsi->num_q_vectors; i++)
3801 i40e_irq_dynamic_enable(vsi, i);
3802 } else {
3803 i40e_irq_dynamic_enable_icr0(pf);
3804 }
3805
3806 i40e_flush(&pf->hw);
3807 return 0;
3808 }
3809
3810 /**
3811 * i40e_free_misc_vector - Free the vector that handles non-queue events
3812 * @pf: board private structure
3813 **/
3814 static void i40e_free_misc_vector(struct i40e_pf *pf)
3815 {
3816 /* Disable ICR 0 */
3817 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0);
3818 i40e_flush(&pf->hw);
3819
3820 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) {
3821 synchronize_irq(pf->msix_entries[0].vector);
3822 free_irq(pf->msix_entries[0].vector, pf);
3823 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
3824 }
3825 }
3826
3827 /**
3828 * i40e_intr - MSI/Legacy and non-queue interrupt handler
3829 * @irq: interrupt number
3830 * @data: pointer to a q_vector
3831 *
3832 * This is the handler used for all MSI/Legacy interrupts, and deals
3833 * with both queue and non-queue interrupts. This is also used in
3834 * MSIX mode to handle the non-queue interrupts.
3835 **/
3836 static irqreturn_t i40e_intr(int irq, void *data)
3837 {
3838 struct i40e_pf *pf = (struct i40e_pf *)data;
3839 struct i40e_hw *hw = &pf->hw;
3840 irqreturn_t ret = IRQ_NONE;
3841 u32 icr0, icr0_remaining;
3842 u32 val, ena_mask;
3843
3844 icr0 = rd32(hw, I40E_PFINT_ICR0);
3845 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA);
3846
3847 /* if sharing a legacy IRQ, we might get called w/o an intr pending */
3848 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0)
3849 goto enable_intr;
3850
3851 /* if interrupt but no bits showing, must be SWINT */
3852 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) ||
3853 (icr0 & I40E_PFINT_ICR0_SWINT_MASK))
3854 pf->sw_int_count++;
3855
3856 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) &&
3857 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) {
3858 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3859 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n");
3860 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
3861 }
3862
3863 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */
3864 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) {
3865 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
3866 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
3867
3868 /* We do not have a way to disarm Queue causes while leaving
3869 * interrupt enabled for all other causes, ideally
3870 * interrupt should be disabled while we are in NAPI but
3871 * this is not a performance path and napi_schedule()
3872 * can deal with rescheduling.
3873 */
3874 if (!test_bit(__I40E_DOWN, pf->state))
3875 napi_schedule_irqoff(&q_vector->napi);
3876 }
3877
3878 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
3879 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3880 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
3881 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n");
3882 }
3883
3884 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) {
3885 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
3886 set_bit(__I40E_MDD_EVENT_PENDING, pf->state);
3887 }
3888
3889 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
3890 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
3891 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state);
3892 }
3893
3894 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) {
3895 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
3896 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
3897 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK;
3898 val = rd32(hw, I40E_GLGEN_RSTAT);
3899 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK)
3900 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT;
3901 if (val == I40E_RESET_CORER) {
3902 pf->corer_count++;
3903 } else if (val == I40E_RESET_GLOBR) {
3904 pf->globr_count++;
3905 } else if (val == I40E_RESET_EMPR) {
3906 pf->empr_count++;
3907 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state);
3908 }
3909 }
3910
3911 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) {
3912 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK;
3913 dev_info(&pf->pdev->dev, "HMC error interrupt\n");
3914 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n",
3915 rd32(hw, I40E_PFHMC_ERRORINFO),
3916 rd32(hw, I40E_PFHMC_ERRORDATA));
3917 }
3918
3919 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) {
3920 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0);
3921
3922 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) {
3923 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3924 i40e_ptp_tx_hwtstamp(pf);
3925 }
3926 }
3927
3928 /* If a critical error is pending we have no choice but to reset the
3929 * device.
3930 * Report and mask out any remaining unexpected interrupts.
3931 */
3932 icr0_remaining = icr0 & ena_mask;
3933 if (icr0_remaining) {
3934 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n",
3935 icr0_remaining);
3936 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) ||
3937 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) ||
3938 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) {
3939 dev_info(&pf->pdev->dev, "device will be reset\n");
3940 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
3941 i40e_service_event_schedule(pf);
3942 }
3943 ena_mask &= ~icr0_remaining;
3944 }
3945 ret = IRQ_HANDLED;
3946
3947 enable_intr:
3948 /* re-enable interrupt causes */
3949 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask);
3950 if (!test_bit(__I40E_DOWN, pf->state)) {
3951 i40e_service_event_schedule(pf);
3952 i40e_irq_dynamic_enable_icr0(pf);
3953 }
3954
3955 return ret;
3956 }
3957
3958 /**
3959 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes
3960 * @tx_ring: tx ring to clean
3961 * @budget: how many cleans we're allowed
3962 *
3963 * Returns true if there's any budget left (e.g. the clean is finished)
3964 **/
3965 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget)
3966 {
3967 struct i40e_vsi *vsi = tx_ring->vsi;
3968 u16 i = tx_ring->next_to_clean;
3969 struct i40e_tx_buffer *tx_buf;
3970 struct i40e_tx_desc *tx_desc;
3971
3972 tx_buf = &tx_ring->tx_bi[i];
3973 tx_desc = I40E_TX_DESC(tx_ring, i);
3974 i -= tx_ring->count;
3975
3976 do {
3977 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
3978
3979 /* if next_to_watch is not set then there is no work pending */
3980 if (!eop_desc)
3981 break;
3982
3983 /* prevent any other reads prior to eop_desc */
3984 smp_rmb();
3985
3986 /* if the descriptor isn't done, no work yet to do */
3987 if (!(eop_desc->cmd_type_offset_bsz &
3988 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
3989 break;
3990
3991 /* clear next_to_watch to prevent false hangs */
3992 tx_buf->next_to_watch = NULL;
3993
3994 tx_desc->buffer_addr = 0;
3995 tx_desc->cmd_type_offset_bsz = 0;
3996 /* move past filter desc */
3997 tx_buf++;
3998 tx_desc++;
3999 i++;
4000 if (unlikely(!i)) {
4001 i -= tx_ring->count;
4002 tx_buf = tx_ring->tx_bi;
4003 tx_desc = I40E_TX_DESC(tx_ring, 0);
4004 }
4005 /* unmap skb header data */
4006 dma_unmap_single(tx_ring->dev,
4007 dma_unmap_addr(tx_buf, dma),
4008 dma_unmap_len(tx_buf, len),
4009 DMA_TO_DEVICE);
4010 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB)
4011 kfree(tx_buf->raw_buf);
4012
4013 tx_buf->raw_buf = NULL;
4014 tx_buf->tx_flags = 0;
4015 tx_buf->next_to_watch = NULL;
4016 dma_unmap_len_set(tx_buf, len, 0);
4017 tx_desc->buffer_addr = 0;
4018 tx_desc->cmd_type_offset_bsz = 0;
4019
4020 /* move us past the eop_desc for start of next FD desc */
4021 tx_buf++;
4022 tx_desc++;
4023 i++;
4024 if (unlikely(!i)) {
4025 i -= tx_ring->count;
4026 tx_buf = tx_ring->tx_bi;
4027 tx_desc = I40E_TX_DESC(tx_ring, 0);
4028 }
4029
4030 /* update budget accounting */
4031 budget--;
4032 } while (likely(budget));
4033
4034 i += tx_ring->count;
4035 tx_ring->next_to_clean = i;
4036
4037 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED)
4038 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx);
4039
4040 return budget > 0;
4041 }
4042
4043 /**
4044 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring
4045 * @irq: interrupt number
4046 * @data: pointer to a q_vector
4047 **/
4048 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data)
4049 {
4050 struct i40e_q_vector *q_vector = data;
4051 struct i40e_vsi *vsi;
4052
4053 if (!q_vector->tx.ring)
4054 return IRQ_HANDLED;
4055
4056 vsi = q_vector->tx.ring->vsi;
4057 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit);
4058
4059 return IRQ_HANDLED;
4060 }
4061
4062 /**
4063 * i40e_map_vector_to_qp - Assigns the queue pair to the vector
4064 * @vsi: the VSI being configured
4065 * @v_idx: vector index
4066 * @qp_idx: queue pair index
4067 **/
4068 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx)
4069 {
4070 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
4071 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx];
4072 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx];
4073
4074 tx_ring->q_vector = q_vector;
4075 tx_ring->next = q_vector->tx.ring;
4076 q_vector->tx.ring = tx_ring;
4077 q_vector->tx.count++;
4078
4079 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */
4080 if (i40e_enabled_xdp_vsi(vsi)) {
4081 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx];
4082
4083 xdp_ring->q_vector = q_vector;
4084 xdp_ring->next = q_vector->tx.ring;
4085 q_vector->tx.ring = xdp_ring;
4086 q_vector->tx.count++;
4087 }
4088
4089 rx_ring->q_vector = q_vector;
4090 rx_ring->next = q_vector->rx.ring;
4091 q_vector->rx.ring = rx_ring;
4092 q_vector->rx.count++;
4093 }
4094
4095 /**
4096 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors
4097 * @vsi: the VSI being configured
4098 *
4099 * This function maps descriptor rings to the queue-specific vectors
4100 * we were allotted through the MSI-X enabling code. Ideally, we'd have
4101 * one vector per queue pair, but on a constrained vector budget, we
4102 * group the queue pairs as "efficiently" as possible.
4103 **/
4104 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi)
4105 {
4106 int qp_remaining = vsi->num_queue_pairs;
4107 int q_vectors = vsi->num_q_vectors;
4108 int num_ringpairs;
4109 int v_start = 0;
4110 int qp_idx = 0;
4111
4112 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to
4113 * group them so there are multiple queues per vector.
4114 * It is also important to go through all the vectors available to be
4115 * sure that if we don't use all the vectors, that the remaining vectors
4116 * are cleared. This is especially important when decreasing the
4117 * number of queues in use.
4118 */
4119 for (; v_start < q_vectors; v_start++) {
4120 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start];
4121
4122 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start);
4123
4124 q_vector->num_ringpairs = num_ringpairs;
4125
4126 q_vector->rx.count = 0;
4127 q_vector->tx.count = 0;
4128 q_vector->rx.ring = NULL;
4129 q_vector->tx.ring = NULL;
4130
4131 while (num_ringpairs--) {
4132 i40e_map_vector_to_qp(vsi, v_start, qp_idx);
4133 qp_idx++;
4134 qp_remaining--;
4135 }
4136 }
4137 }
4138
4139 /**
4140 * i40e_vsi_request_irq - Request IRQ from the OS
4141 * @vsi: the VSI being configured
4142 * @basename: name for the vector
4143 **/
4144 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename)
4145 {
4146 struct i40e_pf *pf = vsi->back;
4147 int err;
4148
4149 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
4150 err = i40e_vsi_request_irq_msix(vsi, basename);
4151 else if (pf->flags & I40E_FLAG_MSI_ENABLED)
4152 err = request_irq(pf->pdev->irq, i40e_intr, 0,
4153 pf->int_name, pf);
4154 else
4155 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED,
4156 pf->int_name, pf);
4157
4158 if (err)
4159 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err);
4160
4161 return err;
4162 }
4163
4164 #ifdef CONFIG_NET_POLL_CONTROLLER
4165 /**
4166 * i40e_netpoll - A Polling 'interrupt' handler
4167 * @netdev: network interface device structure
4168 *
4169 * This is used by netconsole to send skbs without having to re-enable
4170 * interrupts. It's not called while the normal interrupt routine is executing.
4171 **/
4172 static void i40e_netpoll(struct net_device *netdev)
4173 {
4174 struct i40e_netdev_priv *np = netdev_priv(netdev);
4175 struct i40e_vsi *vsi = np->vsi;
4176 struct i40e_pf *pf = vsi->back;
4177 int i;
4178
4179 /* if interface is down do nothing */
4180 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4181 return;
4182
4183 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4184 for (i = 0; i < vsi->num_q_vectors; i++)
4185 i40e_msix_clean_rings(0, vsi->q_vectors[i]);
4186 } else {
4187 i40e_intr(pf->pdev->irq, netdev);
4188 }
4189 }
4190 #endif
4191
4192 #define I40E_QTX_ENA_WAIT_COUNT 50
4193
4194 /**
4195 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled
4196 * @pf: the PF being configured
4197 * @pf_q: the PF queue
4198 * @enable: enable or disable state of the queue
4199 *
4200 * This routine will wait for the given Tx queue of the PF to reach the
4201 * enabled or disabled state.
4202 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4203 * multiple retries; else will return 0 in case of success.
4204 **/
4205 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4206 {
4207 int i;
4208 u32 tx_reg;
4209
4210 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4211 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q));
4212 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4213 break;
4214
4215 usleep_range(10, 20);
4216 }
4217 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4218 return -ETIMEDOUT;
4219
4220 return 0;
4221 }
4222
4223 /**
4224 * i40e_control_tx_q - Start or stop a particular Tx queue
4225 * @pf: the PF structure
4226 * @pf_q: the PF queue to configure
4227 * @enable: start or stop the queue
4228 *
4229 * This function enables or disables a single queue. Note that any delay
4230 * required after the operation is expected to be handled by the caller of
4231 * this function.
4232 **/
4233 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable)
4234 {
4235 struct i40e_hw *hw = &pf->hw;
4236 u32 tx_reg;
4237 int i;
4238
4239 /* warn the TX unit of coming changes */
4240 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable);
4241 if (!enable)
4242 usleep_range(10, 20);
4243
4244 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4245 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
4246 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) ==
4247 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1))
4248 break;
4249 usleep_range(1000, 2000);
4250 }
4251
4252 /* Skip if the queue is already in the requested state */
4253 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4254 return;
4255
4256 /* turn on/off the queue */
4257 if (enable) {
4258 wr32(hw, I40E_QTX_HEAD(pf_q), 0);
4259 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK;
4260 } else {
4261 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
4262 }
4263
4264 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg);
4265 }
4266
4267 /**
4268 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion
4269 * @seid: VSI SEID
4270 * @pf: the PF structure
4271 * @pf_q: the PF queue to configure
4272 * @is_xdp: true if the queue is used for XDP
4273 * @enable: start or stop the queue
4274 **/
4275 static int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q,
4276 bool is_xdp, bool enable)
4277 {
4278 int ret;
4279
4280 i40e_control_tx_q(pf, pf_q, enable);
4281
4282 /* wait for the change to finish */
4283 ret = i40e_pf_txq_wait(pf, pf_q, enable);
4284 if (ret) {
4285 dev_info(&pf->pdev->dev,
4286 "VSI seid %d %sTx ring %d %sable timeout\n",
4287 seid, (is_xdp ? "XDP " : ""), pf_q,
4288 (enable ? "en" : "dis"));
4289 }
4290
4291 return ret;
4292 }
4293
4294 /**
4295 * i40e_vsi_control_tx - Start or stop a VSI's rings
4296 * @vsi: the VSI being configured
4297 * @enable: start or stop the rings
4298 **/
4299 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable)
4300 {
4301 struct i40e_pf *pf = vsi->back;
4302 int i, pf_q, ret = 0;
4303
4304 pf_q = vsi->base_queue;
4305 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4306 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4307 pf_q,
4308 false /*is xdp*/, enable);
4309 if (ret)
4310 break;
4311
4312 if (!i40e_enabled_xdp_vsi(vsi))
4313 continue;
4314
4315 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4316 pf_q + vsi->alloc_queue_pairs,
4317 true /*is xdp*/, enable);
4318 if (ret)
4319 break;
4320 }
4321
4322 return ret;
4323 }
4324
4325 /**
4326 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4327 * @pf: the PF being configured
4328 * @pf_q: the PF queue
4329 * @enable: enable or disable state of the queue
4330 *
4331 * This routine will wait for the given Rx queue of the PF to reach the
4332 * enabled or disabled state.
4333 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4334 * multiple retries; else will return 0 in case of success.
4335 **/
4336 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4337 {
4338 int i;
4339 u32 rx_reg;
4340
4341 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4342 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q));
4343 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4344 break;
4345
4346 usleep_range(10, 20);
4347 }
4348 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4349 return -ETIMEDOUT;
4350
4351 return 0;
4352 }
4353
4354 /**
4355 * i40e_control_rx_q - Start or stop a particular Rx queue
4356 * @pf: the PF structure
4357 * @pf_q: the PF queue to configure
4358 * @enable: start or stop the queue
4359 *
4360 * This function enables or disables a single queue. Note that any delay
4361 * required after the operation is expected to be handled by the caller of
4362 * this function.
4363 **/
4364 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
4365 {
4366 struct i40e_hw *hw = &pf->hw;
4367 u32 rx_reg;
4368 int i;
4369
4370 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4371 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
4372 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) ==
4373 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1))
4374 break;
4375 usleep_range(1000, 2000);
4376 }
4377
4378 /* Skip if the queue is already in the requested state */
4379 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4380 return;
4381
4382 /* turn on/off the queue */
4383 if (enable)
4384 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK;
4385 else
4386 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
4387
4388 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg);
4389 }
4390
4391 /**
4392 * i40e_vsi_control_rx - Start or stop a VSI's rings
4393 * @vsi: the VSI being configured
4394 * @enable: start or stop the rings
4395 **/
4396 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable)
4397 {
4398 struct i40e_pf *pf = vsi->back;
4399 int i, pf_q, ret = 0;
4400
4401 pf_q = vsi->base_queue;
4402 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4403 i40e_control_rx_q(pf, pf_q, enable);
4404
4405 /* wait for the change to finish */
4406 ret = i40e_pf_rxq_wait(pf, pf_q, enable);
4407 if (ret) {
4408 dev_info(&pf->pdev->dev,
4409 "VSI seid %d Rx ring %d %sable timeout\n",
4410 vsi->seid, pf_q, (enable ? "en" : "dis"));
4411 break;
4412 }
4413 }
4414
4415 /* Due to HW errata, on Rx disable only, the register can indicate done
4416 * before it really is. Needs 50ms to be sure
4417 */
4418 if (!enable)
4419 mdelay(50);
4420
4421 return ret;
4422 }
4423
4424 /**
4425 * i40e_vsi_start_rings - Start a VSI's rings
4426 * @vsi: the VSI being configured
4427 **/
4428 int i40e_vsi_start_rings(struct i40e_vsi *vsi)
4429 {
4430 int ret = 0;
4431
4432 /* do rx first for enable and last for disable */
4433 ret = i40e_vsi_control_rx(vsi, true);
4434 if (ret)
4435 return ret;
4436 ret = i40e_vsi_control_tx(vsi, true);
4437
4438 return ret;
4439 }
4440
4441 /**
4442 * i40e_vsi_stop_rings - Stop a VSI's rings
4443 * @vsi: the VSI being configured
4444 **/
4445 void i40e_vsi_stop_rings(struct i40e_vsi *vsi)
4446 {
4447 /* When port TX is suspended, don't wait */
4448 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state))
4449 return i40e_vsi_stop_rings_no_wait(vsi);
4450
4451 /* do rx first for enable and last for disable
4452 * Ignore return value, we need to shutdown whatever we can
4453 */
4454 i40e_vsi_control_tx(vsi, false);
4455 i40e_vsi_control_rx(vsi, false);
4456 }
4457
4458 /**
4459 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay
4460 * @vsi: the VSI being shutdown
4461 *
4462 * This function stops all the rings for a VSI but does not delay to verify
4463 * that rings have been disabled. It is expected that the caller is shutting
4464 * down multiple VSIs at once and will delay together for all the VSIs after
4465 * initiating the shutdown. This is particularly useful for shutting down lots
4466 * of VFs together. Otherwise, a large delay can be incurred while configuring
4467 * each VSI in serial.
4468 **/
4469 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi)
4470 {
4471 struct i40e_pf *pf = vsi->back;
4472 int i, pf_q;
4473
4474 pf_q = vsi->base_queue;
4475 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4476 i40e_control_tx_q(pf, pf_q, false);
4477 i40e_control_rx_q(pf, pf_q, false);
4478 }
4479 }
4480
4481 /**
4482 * i40e_vsi_free_irq - Free the irq association with the OS
4483 * @vsi: the VSI being configured
4484 **/
4485 static void i40e_vsi_free_irq(struct i40e_vsi *vsi)
4486 {
4487 struct i40e_pf *pf = vsi->back;
4488 struct i40e_hw *hw = &pf->hw;
4489 int base = vsi->base_vector;
4490 u32 val, qp;
4491 int i;
4492
4493 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4494 if (!vsi->q_vectors)
4495 return;
4496
4497 if (!vsi->irqs_ready)
4498 return;
4499
4500 vsi->irqs_ready = false;
4501 for (i = 0; i < vsi->num_q_vectors; i++) {
4502 int irq_num;
4503 u16 vector;
4504
4505 vector = i + base;
4506 irq_num = pf->msix_entries[vector].vector;
4507
4508 /* free only the irqs that were actually requested */
4509 if (!vsi->q_vectors[i] ||
4510 !vsi->q_vectors[i]->num_ringpairs)
4511 continue;
4512
4513 /* clear the affinity notifier in the IRQ descriptor */
4514 irq_set_affinity_notifier(irq_num, NULL);
4515 /* remove our suggested affinity mask for this IRQ */
4516 irq_set_affinity_hint(irq_num, NULL);
4517 synchronize_irq(irq_num);
4518 free_irq(irq_num, vsi->q_vectors[i]);
4519
4520 /* Tear down the interrupt queue link list
4521 *
4522 * We know that they come in pairs and always
4523 * the Rx first, then the Tx. To clear the
4524 * link list, stick the EOL value into the
4525 * next_q field of the registers.
4526 */
4527 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1));
4528 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
4529 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4530 val |= I40E_QUEUE_END_OF_LIST
4531 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4532 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val);
4533
4534 while (qp != I40E_QUEUE_END_OF_LIST) {
4535 u32 next;
4536
4537 val = rd32(hw, I40E_QINT_RQCTL(qp));
4538
4539 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
4540 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
4541 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
4542 I40E_QINT_RQCTL_INTEVENT_MASK);
4543
4544 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
4545 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
4546
4547 wr32(hw, I40E_QINT_RQCTL(qp), val);
4548
4549 val = rd32(hw, I40E_QINT_TQCTL(qp));
4550
4551 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK)
4552 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT;
4553
4554 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
4555 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
4556 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
4557 I40E_QINT_TQCTL_INTEVENT_MASK);
4558
4559 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
4560 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
4561
4562 wr32(hw, I40E_QINT_TQCTL(qp), val);
4563 qp = next;
4564 }
4565 }
4566 } else {
4567 free_irq(pf->pdev->irq, pf);
4568
4569 val = rd32(hw, I40E_PFINT_LNKLST0);
4570 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
4571 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4572 val |= I40E_QUEUE_END_OF_LIST
4573 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
4574 wr32(hw, I40E_PFINT_LNKLST0, val);
4575
4576 val = rd32(hw, I40E_QINT_RQCTL(qp));
4577 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
4578 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
4579 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
4580 I40E_QINT_RQCTL_INTEVENT_MASK);
4581
4582 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
4583 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
4584
4585 wr32(hw, I40E_QINT_RQCTL(qp), val);
4586
4587 val = rd32(hw, I40E_QINT_TQCTL(qp));
4588
4589 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
4590 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
4591 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
4592 I40E_QINT_TQCTL_INTEVENT_MASK);
4593
4594 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
4595 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
4596
4597 wr32(hw, I40E_QINT_TQCTL(qp), val);
4598 }
4599 }
4600
4601 /**
4602 * i40e_free_q_vector - Free memory allocated for specific interrupt vector
4603 * @vsi: the VSI being configured
4604 * @v_idx: Index of vector to be freed
4605 *
4606 * This function frees the memory allocated to the q_vector. In addition if
4607 * NAPI is enabled it will delete any references to the NAPI struct prior
4608 * to freeing the q_vector.
4609 **/
4610 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx)
4611 {
4612 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
4613 struct i40e_ring *ring;
4614
4615 if (!q_vector)
4616 return;
4617
4618 /* disassociate q_vector from rings */
4619 i40e_for_each_ring(ring, q_vector->tx)
4620 ring->q_vector = NULL;
4621
4622 i40e_for_each_ring(ring, q_vector->rx)
4623 ring->q_vector = NULL;
4624
4625 /* only VSI w/ an associated netdev is set up w/ NAPI */
4626 if (vsi->netdev)
4627 netif_napi_del(&q_vector->napi);
4628
4629 vsi->q_vectors[v_idx] = NULL;
4630
4631 kfree_rcu(q_vector, rcu);
4632 }
4633
4634 /**
4635 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors
4636 * @vsi: the VSI being un-configured
4637 *
4638 * This frees the memory allocated to the q_vectors and
4639 * deletes references to the NAPI struct.
4640 **/
4641 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi)
4642 {
4643 int v_idx;
4644
4645 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
4646 i40e_free_q_vector(vsi, v_idx);
4647 }
4648
4649 /**
4650 * i40e_reset_interrupt_capability - Disable interrupt setup in OS
4651 * @pf: board private structure
4652 **/
4653 static void i40e_reset_interrupt_capability(struct i40e_pf *pf)
4654 {
4655 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */
4656 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4657 pci_disable_msix(pf->pdev);
4658 kfree(pf->msix_entries);
4659 pf->msix_entries = NULL;
4660 kfree(pf->irq_pile);
4661 pf->irq_pile = NULL;
4662 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) {
4663 pci_disable_msi(pf->pdev);
4664 }
4665 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED);
4666 }
4667
4668 /**
4669 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings
4670 * @pf: board private structure
4671 *
4672 * We go through and clear interrupt specific resources and reset the structure
4673 * to pre-load conditions
4674 **/
4675 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf)
4676 {
4677 int i;
4678
4679 i40e_free_misc_vector(pf);
4680
4681 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector,
4682 I40E_IWARP_IRQ_PILE_ID);
4683
4684 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1);
4685 for (i = 0; i < pf->num_alloc_vsi; i++)
4686 if (pf->vsi[i])
4687 i40e_vsi_free_q_vectors(pf->vsi[i]);
4688 i40e_reset_interrupt_capability(pf);
4689 }
4690
4691 /**
4692 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI
4693 * @vsi: the VSI being configured
4694 **/
4695 static void i40e_napi_enable_all(struct i40e_vsi *vsi)
4696 {
4697 int q_idx;
4698
4699 if (!vsi->netdev)
4700 return;
4701
4702 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
4703 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
4704
4705 if (q_vector->rx.ring || q_vector->tx.ring)
4706 napi_enable(&q_vector->napi);
4707 }
4708 }
4709
4710 /**
4711 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4712 * @vsi: the VSI being configured
4713 **/
4714 static void i40e_napi_disable_all(struct i40e_vsi *vsi)
4715 {
4716 int q_idx;
4717
4718 if (!vsi->netdev)
4719 return;
4720
4721 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
4722 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
4723
4724 if (q_vector->rx.ring || q_vector->tx.ring)
4725 napi_disable(&q_vector->napi);
4726 }
4727 }
4728
4729 /**
4730 * i40e_vsi_close - Shut down a VSI
4731 * @vsi: the vsi to be quelled
4732 **/
4733 static void i40e_vsi_close(struct i40e_vsi *vsi)
4734 {
4735 struct i40e_pf *pf = vsi->back;
4736 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state))
4737 i40e_down(vsi);
4738 i40e_vsi_free_irq(vsi);
4739 i40e_vsi_free_tx_resources(vsi);
4740 i40e_vsi_free_rx_resources(vsi);
4741 vsi->current_netdev_flags = 0;
4742 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED;
4743 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
4744 pf->flags |= I40E_FLAG_CLIENT_RESET;
4745 }
4746
4747 /**
4748 * i40e_quiesce_vsi - Pause a given VSI
4749 * @vsi: the VSI being paused
4750 **/
4751 static void i40e_quiesce_vsi(struct i40e_vsi *vsi)
4752 {
4753 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4754 return;
4755
4756 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state);
4757 if (vsi->netdev && netif_running(vsi->netdev))
4758 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
4759 else
4760 i40e_vsi_close(vsi);
4761 }
4762
4763 /**
4764 * i40e_unquiesce_vsi - Resume a given VSI
4765 * @vsi: the VSI being resumed
4766 **/
4767 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi)
4768 {
4769 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state))
4770 return;
4771
4772 if (vsi->netdev && netif_running(vsi->netdev))
4773 vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
4774 else
4775 i40e_vsi_open(vsi); /* this clears the DOWN bit */
4776 }
4777
4778 /**
4779 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF
4780 * @pf: the PF
4781 **/
4782 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf)
4783 {
4784 int v;
4785
4786 for (v = 0; v < pf->num_alloc_vsi; v++) {
4787 if (pf->vsi[v])
4788 i40e_quiesce_vsi(pf->vsi[v]);
4789 }
4790 }
4791
4792 /**
4793 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF
4794 * @pf: the PF
4795 **/
4796 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf)
4797 {
4798 int v;
4799
4800 for (v = 0; v < pf->num_alloc_vsi; v++) {
4801 if (pf->vsi[v])
4802 i40e_unquiesce_vsi(pf->vsi[v]);
4803 }
4804 }
4805
4806 /**
4807 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled
4808 * @vsi: the VSI being configured
4809 *
4810 * Wait until all queues on a given VSI have been disabled.
4811 **/
4812 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi)
4813 {
4814 struct i40e_pf *pf = vsi->back;
4815 int i, pf_q, ret;
4816
4817 pf_q = vsi->base_queue;
4818 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4819 /* Check and wait for the Tx queue */
4820 ret = i40e_pf_txq_wait(pf, pf_q, false);
4821 if (ret) {
4822 dev_info(&pf->pdev->dev,
4823 "VSI seid %d Tx ring %d disable timeout\n",
4824 vsi->seid, pf_q);
4825 return ret;
4826 }
4827
4828 if (!i40e_enabled_xdp_vsi(vsi))
4829 goto wait_rx;
4830
4831 /* Check and wait for the XDP Tx queue */
4832 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs,
4833 false);
4834 if (ret) {
4835 dev_info(&pf->pdev->dev,
4836 "VSI seid %d XDP Tx ring %d disable timeout\n",
4837 vsi->seid, pf_q);
4838 return ret;
4839 }
4840 wait_rx:
4841 /* Check and wait for the Rx queue */
4842 ret = i40e_pf_rxq_wait(pf, pf_q, false);
4843 if (ret) {
4844 dev_info(&pf->pdev->dev,
4845 "VSI seid %d Rx ring %d disable timeout\n",
4846 vsi->seid, pf_q);
4847 return ret;
4848 }
4849 }
4850
4851 return 0;
4852 }
4853
4854 #ifdef CONFIG_I40E_DCB
4855 /**
4856 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled
4857 * @pf: the PF
4858 *
4859 * This function waits for the queues to be in disabled state for all the
4860 * VSIs that are managed by this PF.
4861 **/
4862 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf)
4863 {
4864 int v, ret = 0;
4865
4866 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
4867 if (pf->vsi[v]) {
4868 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]);
4869 if (ret)
4870 break;
4871 }
4872 }
4873
4874 return ret;
4875 }
4876
4877 #endif
4878
4879 /**
4880 * i40e_detect_recover_hung_queue - Function to detect and recover hung_queue
4881 * @q_idx: TX queue number
4882 * @vsi: Pointer to VSI struct
4883 *
4884 * This function checks specified queue for given VSI. Detects hung condition.
4885 * We proactively detect hung TX queues by checking if interrupts are disabled
4886 * but there are pending descriptors. If it appears hung, attempt to recover
4887 * by triggering a SW interrupt.
4888 **/
4889 static void i40e_detect_recover_hung_queue(int q_idx, struct i40e_vsi *vsi)
4890 {
4891 struct i40e_ring *tx_ring = NULL;
4892 struct i40e_pf *pf;
4893 u32 val, tx_pending;
4894 int i;
4895
4896 pf = vsi->back;
4897
4898 /* now that we have an index, find the tx_ring struct */
4899 for (i = 0; i < vsi->num_queue_pairs; i++) {
4900 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
4901 if (q_idx == vsi->tx_rings[i]->queue_index) {
4902 tx_ring = vsi->tx_rings[i];
4903 break;
4904 }
4905 }
4906 }
4907
4908 if (!tx_ring)
4909 return;
4910
4911 /* Read interrupt register */
4912 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
4913 val = rd32(&pf->hw,
4914 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
4915 tx_ring->vsi->base_vector - 1));
4916 else
4917 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
4918
4919 tx_pending = i40e_get_tx_pending(tx_ring);
4920
4921 /* Interrupts are disabled and TX pending is non-zero,
4922 * trigger the SW interrupt (don't wait). Worst case
4923 * there will be one extra interrupt which may result
4924 * into not cleaning any queues because queues are cleaned.
4925 */
4926 if (tx_pending && (!(val & I40E_PFINT_DYN_CTLN_INTENA_MASK)))
4927 i40e_force_wb(vsi, tx_ring->q_vector);
4928 }
4929
4930 /**
4931 * i40e_detect_recover_hung - Function to detect and recover hung_queues
4932 * @pf: pointer to PF struct
4933 *
4934 * LAN VSI has netdev and netdev has TX queues. This function is to check
4935 * each of those TX queues if they are hung, trigger recovery by issuing
4936 * SW interrupt.
4937 **/
4938 static void i40e_detect_recover_hung(struct i40e_pf *pf)
4939 {
4940 struct net_device *netdev;
4941 struct i40e_vsi *vsi;
4942 unsigned int i;
4943
4944 /* Only for LAN VSI */
4945 vsi = pf->vsi[pf->lan_vsi];
4946
4947 if (!vsi)
4948 return;
4949
4950 /* Make sure, VSI state is not DOWN/RECOVERY_PENDING */
4951 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) ||
4952 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state))
4953 return;
4954
4955 /* Make sure type is MAIN VSI */
4956 if (vsi->type != I40E_VSI_MAIN)
4957 return;
4958
4959 netdev = vsi->netdev;
4960 if (!netdev)
4961 return;
4962
4963 /* Bail out if netif_carrier is not OK */
4964 if (!netif_carrier_ok(netdev))
4965 return;
4966
4967 /* Go thru' TX queues for netdev */
4968 for (i = 0; i < netdev->num_tx_queues; i++) {
4969 struct netdev_queue *q;
4970
4971 q = netdev_get_tx_queue(netdev, i);
4972 if (q)
4973 i40e_detect_recover_hung_queue(i, vsi);
4974 }
4975 }
4976
4977 /**
4978 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP
4979 * @pf: pointer to PF
4980 *
4981 * Get TC map for ISCSI PF type that will include iSCSI TC
4982 * and LAN TC.
4983 **/
4984 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf)
4985 {
4986 struct i40e_dcb_app_priority_table app;
4987 struct i40e_hw *hw = &pf->hw;
4988 u8 enabled_tc = 1; /* TC0 is always enabled */
4989 u8 tc, i;
4990 /* Get the iSCSI APP TLV */
4991 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
4992
4993 for (i = 0; i < dcbcfg->numapps; i++) {
4994 app = dcbcfg->app[i];
4995 if (app.selector == I40E_APP_SEL_TCPIP &&
4996 app.protocolid == I40E_APP_PROTOID_ISCSI) {
4997 tc = dcbcfg->etscfg.prioritytable[app.priority];
4998 enabled_tc |= BIT(tc);
4999 break;
5000 }
5001 }
5002
5003 return enabled_tc;
5004 }
5005
5006 /**
5007 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config
5008 * @dcbcfg: the corresponding DCBx configuration structure
5009 *
5010 * Return the number of TCs from given DCBx configuration
5011 **/
5012 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg)
5013 {
5014 int i, tc_unused = 0;
5015 u8 num_tc = 0;
5016 u8 ret = 0;
5017
5018 /* Scan the ETS Config Priority Table to find
5019 * traffic class enabled for a given priority
5020 * and create a bitmask of enabled TCs
5021 */
5022 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
5023 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]);
5024
5025 /* Now scan the bitmask to check for
5026 * contiguous TCs starting with TC0
5027 */
5028 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5029 if (num_tc & BIT(i)) {
5030 if (!tc_unused) {
5031 ret++;
5032 } else {
5033 pr_err("Non-contiguous TC - Disabling DCB\n");
5034 return 1;
5035 }
5036 } else {
5037 tc_unused = 1;
5038 }
5039 }
5040
5041 /* There is always at least TC0 */
5042 if (!ret)
5043 ret = 1;
5044
5045 return ret;
5046 }
5047
5048 /**
5049 * i40e_dcb_get_enabled_tc - Get enabled traffic classes
5050 * @dcbcfg: the corresponding DCBx configuration structure
5051 *
5052 * Query the current DCB configuration and return the number of
5053 * traffic classes enabled from the given DCBX config
5054 **/
5055 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg)
5056 {
5057 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg);
5058 u8 enabled_tc = 1;
5059 u8 i;
5060
5061 for (i = 0; i < num_tc; i++)
5062 enabled_tc |= BIT(i);
5063
5064 return enabled_tc;
5065 }
5066
5067 /**
5068 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes
5069 * @pf: PF being queried
5070 *
5071 * Query the current MQPRIO configuration and return the number of
5072 * traffic classes enabled.
5073 **/
5074 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf)
5075 {
5076 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
5077 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc;
5078 u8 enabled_tc = 1, i;
5079
5080 for (i = 1; i < num_tc; i++)
5081 enabled_tc |= BIT(i);
5082 return enabled_tc;
5083 }
5084
5085 /**
5086 * i40e_pf_get_num_tc - Get enabled traffic classes for PF
5087 * @pf: PF being queried
5088 *
5089 * Return number of traffic classes enabled for the given PF
5090 **/
5091 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf)
5092 {
5093 struct i40e_hw *hw = &pf->hw;
5094 u8 i, enabled_tc = 1;
5095 u8 num_tc = 0;
5096 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5097
5098 if (pf->flags & I40E_FLAG_TC_MQPRIO)
5099 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc;
5100
5101 /* If neither MQPRIO nor DCB is enabled, then always use single TC */
5102 if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
5103 return 1;
5104
5105 /* SFP mode will be enabled for all TCs on port */
5106 if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
5107 return i40e_dcb_get_num_tc(dcbcfg);
5108
5109 /* MFP mode return count of enabled TCs for this PF */
5110 if (pf->hw.func_caps.iscsi)
5111 enabled_tc = i40e_get_iscsi_tc_map(pf);
5112 else
5113 return 1; /* Only TC0 */
5114
5115 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5116 if (enabled_tc & BIT(i))
5117 num_tc++;
5118 }
5119 return num_tc;
5120 }
5121
5122 /**
5123 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes
5124 * @pf: PF being queried
5125 *
5126 * Return a bitmap for enabled traffic classes for this PF.
5127 **/
5128 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf)
5129 {
5130 if (pf->flags & I40E_FLAG_TC_MQPRIO)
5131 return i40e_mqprio_get_enabled_tc(pf);
5132
5133 /* If neither MQPRIO nor DCB is enabled for this PF then just return
5134 * default TC
5135 */
5136 if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
5137 return I40E_DEFAULT_TRAFFIC_CLASS;
5138
5139 /* SFP mode we want PF to be enabled for all TCs */
5140 if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
5141 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config);
5142
5143 /* MFP enabled and iSCSI PF type */
5144 if (pf->hw.func_caps.iscsi)
5145 return i40e_get_iscsi_tc_map(pf);
5146 else
5147 return I40E_DEFAULT_TRAFFIC_CLASS;
5148 }
5149
5150 /**
5151 * i40e_vsi_get_bw_info - Query VSI BW Information
5152 * @vsi: the VSI being queried
5153 *
5154 * Returns 0 on success, negative value on failure
5155 **/
5156 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
5157 {
5158 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
5159 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
5160 struct i40e_pf *pf = vsi->back;
5161 struct i40e_hw *hw = &pf->hw;
5162 i40e_status ret;
5163 u32 tc_bw_max;
5164 int i;
5165
5166 /* Get the VSI level BW configuration */
5167 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
5168 if (ret) {
5169 dev_info(&pf->pdev->dev,
5170 "couldn't get PF vsi bw config, err %s aq_err %s\n",
5171 i40e_stat_str(&pf->hw, ret),
5172 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5173 return -EINVAL;
5174 }
5175
5176 /* Get the VSI level BW configuration per TC */
5177 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config,
5178 NULL);
5179 if (ret) {
5180 dev_info(&pf->pdev->dev,
5181 "couldn't get PF vsi ets bw config, err %s aq_err %s\n",
5182 i40e_stat_str(&pf->hw, ret),
5183 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5184 return -EINVAL;
5185 }
5186
5187 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
5188 dev_info(&pf->pdev->dev,
5189 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n",
5190 bw_config.tc_valid_bits,
5191 bw_ets_config.tc_valid_bits);
5192 /* Still continuing */
5193 }
5194
5195 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit);
5196 vsi->bw_max_quanta = bw_config.max_bw;
5197 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) |
5198 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16);
5199 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5200 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i];
5201 vsi->bw_ets_limit_credits[i] =
5202 le16_to_cpu(bw_ets_config.credits[i]);
5203 /* 3 bits out of 4 for each TC */
5204 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7);
5205 }
5206
5207 return 0;
5208 }
5209
5210 /**
5211 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC
5212 * @vsi: the VSI being configured
5213 * @enabled_tc: TC bitmap
5214 * @bw_credits: BW shared credits per TC
5215 *
5216 * Returns 0 on success, negative value on failure
5217 **/
5218 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc,
5219 u8 *bw_share)
5220 {
5221 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
5222 i40e_status ret;
5223 int i;
5224
5225 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO)
5226 return 0;
5227 if (!vsi->mqprio_qopt.qopt.hw) {
5228 ret = i40e_set_bw_limit(vsi, vsi->seid, 0);
5229 if (ret)
5230 dev_info(&vsi->back->pdev->dev,
5231 "Failed to reset tx rate for vsi->seid %u\n",
5232 vsi->seid);
5233 return ret;
5234 }
5235 bw_data.tc_valid_bits = enabled_tc;
5236 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5237 bw_data.tc_bw_credits[i] = bw_share[i];
5238
5239 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid, &bw_data,
5240 NULL);
5241 if (ret) {
5242 dev_info(&vsi->back->pdev->dev,
5243 "AQ command Config VSI BW allocation per TC failed = %d\n",
5244 vsi->back->hw.aq.asq_last_status);
5245 return -EINVAL;
5246 }
5247
5248 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5249 vsi->info.qs_handle[i] = bw_data.qs_handles[i];
5250
5251 return 0;
5252 }
5253
5254 /**
5255 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration
5256 * @vsi: the VSI being configured
5257 * @enabled_tc: TC map to be enabled
5258 *
5259 **/
5260 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5261 {
5262 struct net_device *netdev = vsi->netdev;
5263 struct i40e_pf *pf = vsi->back;
5264 struct i40e_hw *hw = &pf->hw;
5265 u8 netdev_tc = 0;
5266 int i;
5267 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5268
5269 if (!netdev)
5270 return;
5271
5272 if (!enabled_tc) {
5273 netdev_reset_tc(netdev);
5274 return;
5275 }
5276
5277 /* Set up actual enabled TCs on the VSI */
5278 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc))
5279 return;
5280
5281 /* set per TC queues for the VSI */
5282 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5283 /* Only set TC queues for enabled tcs
5284 *
5285 * e.g. For a VSI that has TC0 and TC3 enabled the
5286 * enabled_tc bitmap would be 0x00001001; the driver
5287 * will set the numtc for netdev as 2 that will be
5288 * referenced by the netdev layer as TC 0 and 1.
5289 */
5290 if (vsi->tc_config.enabled_tc & BIT(i))
5291 netdev_set_tc_queue(netdev,
5292 vsi->tc_config.tc_info[i].netdev_tc,
5293 vsi->tc_config.tc_info[i].qcount,
5294 vsi->tc_config.tc_info[i].qoffset);
5295 }
5296
5297 if (pf->flags & I40E_FLAG_TC_MQPRIO)
5298 return;
5299
5300 /* Assign UP2TC map for the VSI */
5301 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
5302 /* Get the actual TC# for the UP */
5303 u8 ets_tc = dcbcfg->etscfg.prioritytable[i];
5304 /* Get the mapped netdev TC# for the UP */
5305 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc;
5306 netdev_set_prio_tc_map(netdev, i, netdev_tc);
5307 }
5308 }
5309
5310 /**
5311 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map
5312 * @vsi: the VSI being configured
5313 * @ctxt: the ctxt buffer returned from AQ VSI update param command
5314 **/
5315 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi,
5316 struct i40e_vsi_context *ctxt)
5317 {
5318 /* copy just the sections touched not the entire info
5319 * since not all sections are valid as returned by
5320 * update vsi params
5321 */
5322 vsi->info.mapping_flags = ctxt->info.mapping_flags;
5323 memcpy(&vsi->info.queue_mapping,
5324 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping));
5325 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping,
5326 sizeof(vsi->info.tc_mapping));
5327 }
5328
5329 /**
5330 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map
5331 * @vsi: VSI to be configured
5332 * @enabled_tc: TC bitmap
5333 *
5334 * This configures a particular VSI for TCs that are mapped to the
5335 * given TC bitmap. It uses default bandwidth share for TCs across
5336 * VSIs to configure TC for a particular VSI.
5337 *
5338 * NOTE:
5339 * It is expected that the VSI queues have been quisced before calling
5340 * this function.
5341 **/
5342 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5343 {
5344 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
5345 struct i40e_vsi_context ctxt;
5346 int ret = 0;
5347 int i;
5348
5349 /* Check if enabled_tc is same as existing or new TCs */
5350 if (vsi->tc_config.enabled_tc == enabled_tc &&
5351 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
5352 return ret;
5353
5354 /* Enable ETS TCs with equal BW Share for now across all VSIs */
5355 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5356 if (enabled_tc & BIT(i))
5357 bw_share[i] = 1;
5358 }
5359
5360 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
5361 if (ret) {
5362 dev_info(&vsi->back->pdev->dev,
5363 "Failed configuring TC map %d for VSI %d\n",
5364 enabled_tc, vsi->seid);
5365 goto out;
5366 }
5367
5368 /* Update Queue Pairs Mapping for currently enabled UPs */
5369 ctxt.seid = vsi->seid;
5370 ctxt.pf_num = vsi->back->hw.pf_id;
5371 ctxt.vf_num = 0;
5372 ctxt.uplink_seid = vsi->uplink_seid;
5373 ctxt.info = vsi->info;
5374 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) {
5375 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc);
5376 if (ret)
5377 goto out;
5378 } else {
5379 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
5380 }
5381
5382 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled
5383 * queues changed.
5384 */
5385 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) {
5386 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size,
5387 vsi->num_queue_pairs);
5388 ret = i40e_vsi_config_rss(vsi);
5389 if (ret) {
5390 dev_info(&vsi->back->pdev->dev,
5391 "Failed to reconfig rss for num_queues\n");
5392 return ret;
5393 }
5394 vsi->reconfig_rss = false;
5395 }
5396 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) {
5397 ctxt.info.valid_sections |=
5398 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
5399 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA;
5400 }
5401
5402 /* Update the VSI after updating the VSI queue-mapping
5403 * information
5404 */
5405 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
5406 if (ret) {
5407 dev_info(&vsi->back->pdev->dev,
5408 "Update vsi tc config failed, err %s aq_err %s\n",
5409 i40e_stat_str(&vsi->back->hw, ret),
5410 i40e_aq_str(&vsi->back->hw,
5411 vsi->back->hw.aq.asq_last_status));
5412 goto out;
5413 }
5414 /* update the local VSI info with updated queue map */
5415 i40e_vsi_update_queue_map(vsi, &ctxt);
5416 vsi->info.valid_sections = 0;
5417
5418 /* Update current VSI BW information */
5419 ret = i40e_vsi_get_bw_info(vsi);
5420 if (ret) {
5421 dev_info(&vsi->back->pdev->dev,
5422 "Failed updating vsi bw info, err %s aq_err %s\n",
5423 i40e_stat_str(&vsi->back->hw, ret),
5424 i40e_aq_str(&vsi->back->hw,
5425 vsi->back->hw.aq.asq_last_status));
5426 goto out;
5427 }
5428
5429 /* Update the netdev TC setup */
5430 i40e_vsi_config_netdev_tc(vsi, enabled_tc);
5431 out:
5432 return ret;
5433 }
5434
5435 /**
5436 * i40e_get_link_speed - Returns link speed for the interface
5437 * @vsi: VSI to be configured
5438 *
5439 **/
5440 int i40e_get_link_speed(struct i40e_vsi *vsi)
5441 {
5442 struct i40e_pf *pf = vsi->back;
5443
5444 switch (pf->hw.phy.link_info.link_speed) {
5445 case I40E_LINK_SPEED_40GB:
5446 return 40000;
5447 case I40E_LINK_SPEED_25GB:
5448 return 25000;
5449 case I40E_LINK_SPEED_20GB:
5450 return 20000;
5451 case I40E_LINK_SPEED_10GB:
5452 return 10000;
5453 case I40E_LINK_SPEED_1GB:
5454 return 1000;
5455 default:
5456 return -EINVAL;
5457 }
5458 }
5459
5460 /**
5461 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
5462 * @vsi: VSI to be configured
5463 * @seid: seid of the channel/VSI
5464 * @max_tx_rate: max TX rate to be configured as BW limit
5465 *
5466 * Helper function to set BW limit for a given VSI
5467 **/
5468 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate)
5469 {
5470 struct i40e_pf *pf = vsi->back;
5471 u64 credits = 0;
5472 int speed = 0;
5473 int ret = 0;
5474
5475 speed = i40e_get_link_speed(vsi);
5476 if (max_tx_rate > speed) {
5477 dev_err(&pf->pdev->dev,
5478 "Invalid max tx rate %llu specified for VSI seid %d.",
5479 max_tx_rate, seid);
5480 return -EINVAL;
5481 }
5482 if (max_tx_rate && max_tx_rate < 50) {
5483 dev_warn(&pf->pdev->dev,
5484 "Setting max tx rate to minimum usable value of 50Mbps.\n");
5485 max_tx_rate = 50;
5486 }
5487
5488 /* Tx rate credits are in values of 50Mbps, 0 is disabled */
5489 credits = max_tx_rate;
5490 do_div(credits, I40E_BW_CREDIT_DIVISOR);
5491 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits,
5492 I40E_MAX_BW_INACTIVE_ACCUM, NULL);
5493 if (ret)
5494 dev_err(&pf->pdev->dev,
5495 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n",
5496 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret),
5497 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5498 return ret;
5499 }
5500
5501 /**
5502 * i40e_remove_queue_channels - Remove queue channels for the TCs
5503 * @vsi: VSI to be configured
5504 *
5505 * Remove queue channels for the TCs
5506 **/
5507 static void i40e_remove_queue_channels(struct i40e_vsi *vsi)
5508 {
5509 enum i40e_admin_queue_err last_aq_status;
5510 struct i40e_cloud_filter *cfilter;
5511 struct i40e_channel *ch, *ch_tmp;
5512 struct i40e_pf *pf = vsi->back;
5513 struct hlist_node *node;
5514 int ret, i;
5515
5516 /* Reset rss size that was stored when reconfiguring rss for
5517 * channel VSIs with non-power-of-2 queue count.
5518 */
5519 vsi->current_rss_size = 0;
5520
5521 /* perform cleanup for channels if they exist */
5522 if (list_empty(&vsi->ch_list))
5523 return;
5524
5525 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
5526 struct i40e_vsi *p_vsi;
5527
5528 list_del(&ch->list);
5529 p_vsi = ch->parent_vsi;
5530 if (!p_vsi || !ch->initialized) {
5531 kfree(ch);
5532 continue;
5533 }
5534 /* Reset queue contexts */
5535 for (i = 0; i < ch->num_queue_pairs; i++) {
5536 struct i40e_ring *tx_ring, *rx_ring;
5537 u16 pf_q;
5538
5539 pf_q = ch->base_queue + i;
5540 tx_ring = vsi->tx_rings[pf_q];
5541 tx_ring->ch = NULL;
5542
5543 rx_ring = vsi->rx_rings[pf_q];
5544 rx_ring->ch = NULL;
5545 }
5546
5547 /* Reset BW configured for this VSI via mqprio */
5548 ret = i40e_set_bw_limit(vsi, ch->seid, 0);
5549 if (ret)
5550 dev_info(&vsi->back->pdev->dev,
5551 "Failed to reset tx rate for ch->seid %u\n",
5552 ch->seid);
5553
5554 /* delete cloud filters associated with this channel */
5555 hlist_for_each_entry_safe(cfilter, node,
5556 &pf->cloud_filter_list, cloud_node) {
5557 if (cfilter->seid != ch->seid)
5558 continue;
5559
5560 hash_del(&cfilter->cloud_node);
5561 if (cfilter->dst_port)
5562 ret = i40e_add_del_cloud_filter_big_buf(vsi,
5563 cfilter,
5564 false);
5565 else
5566 ret = i40e_add_del_cloud_filter(vsi, cfilter,
5567 false);
5568 last_aq_status = pf->hw.aq.asq_last_status;
5569 if (ret)
5570 dev_info(&pf->pdev->dev,
5571 "Failed to delete cloud filter, err %s aq_err %s\n",
5572 i40e_stat_str(&pf->hw, ret),
5573 i40e_aq_str(&pf->hw, last_aq_status));
5574 kfree(cfilter);
5575 }
5576
5577 /* delete VSI from FW */
5578 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
5579 NULL);
5580 if (ret)
5581 dev_err(&vsi->back->pdev->dev,
5582 "unable to remove channel (%d) for parent VSI(%d)\n",
5583 ch->seid, p_vsi->seid);
5584 kfree(ch);
5585 }
5586 INIT_LIST_HEAD(&vsi->ch_list);
5587 }
5588
5589 /**
5590 * i40e_is_any_channel - channel exist or not
5591 * @vsi: ptr to VSI to which channels are associated with
5592 *
5593 * Returns true or false if channel(s) exist for associated VSI or not
5594 **/
5595 static bool i40e_is_any_channel(struct i40e_vsi *vsi)
5596 {
5597 struct i40e_channel *ch, *ch_tmp;
5598
5599 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
5600 if (ch->initialized)
5601 return true;
5602 }
5603
5604 return false;
5605 }
5606
5607 /**
5608 * i40e_get_max_queues_for_channel
5609 * @vsi: ptr to VSI to which channels are associated with
5610 *
5611 * Helper function which returns max value among the queue counts set on the
5612 * channels/TCs created.
5613 **/
5614 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi)
5615 {
5616 struct i40e_channel *ch, *ch_tmp;
5617 int max = 0;
5618
5619 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
5620 if (!ch->initialized)
5621 continue;
5622 if (ch->num_queue_pairs > max)
5623 max = ch->num_queue_pairs;
5624 }
5625
5626 return max;
5627 }
5628
5629 /**
5630 * i40e_validate_num_queues - validate num_queues w.r.t channel
5631 * @pf: ptr to PF device
5632 * @num_queues: number of queues
5633 * @vsi: the parent VSI
5634 * @reconfig_rss: indicates should the RSS be reconfigured or not
5635 *
5636 * This function validates number of queues in the context of new channel
5637 * which is being established and determines if RSS should be reconfigured
5638 * or not for parent VSI.
5639 **/
5640 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues,
5641 struct i40e_vsi *vsi, bool *reconfig_rss)
5642 {
5643 int max_ch_queues;
5644
5645 if (!reconfig_rss)
5646 return -EINVAL;
5647
5648 *reconfig_rss = false;
5649 if (vsi->current_rss_size) {
5650 if (num_queues > vsi->current_rss_size) {
5651 dev_dbg(&pf->pdev->dev,
5652 "Error: num_queues (%d) > vsi's current_size(%d)\n",
5653 num_queues, vsi->current_rss_size);
5654 return -EINVAL;
5655 } else if ((num_queues < vsi->current_rss_size) &&
5656 (!is_power_of_2(num_queues))) {
5657 dev_dbg(&pf->pdev->dev,
5658 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n",
5659 num_queues, vsi->current_rss_size);
5660 return -EINVAL;
5661 }
5662 }
5663
5664 if (!is_power_of_2(num_queues)) {
5665 /* Find the max num_queues configured for channel if channel
5666 * exist.
5667 * if channel exist, then enforce 'num_queues' to be more than
5668 * max ever queues configured for channel.
5669 */
5670 max_ch_queues = i40e_get_max_queues_for_channel(vsi);
5671 if (num_queues < max_ch_queues) {
5672 dev_dbg(&pf->pdev->dev,
5673 "Error: num_queues (%d) < max queues configured for channel(%d)\n",
5674 num_queues, max_ch_queues);
5675 return -EINVAL;
5676 }
5677 *reconfig_rss = true;
5678 }
5679
5680 return 0;
5681 }
5682
5683 /**
5684 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size
5685 * @vsi: the VSI being setup
5686 * @rss_size: size of RSS, accordingly LUT gets reprogrammed
5687 *
5688 * This function reconfigures RSS by reprogramming LUTs using 'rss_size'
5689 **/
5690 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size)
5691 {
5692 struct i40e_pf *pf = vsi->back;
5693 u8 seed[I40E_HKEY_ARRAY_SIZE];
5694 struct i40e_hw *hw = &pf->hw;
5695 int local_rss_size;
5696 u8 *lut;
5697 int ret;
5698
5699 if (!vsi->rss_size)
5700 return -EINVAL;
5701
5702 if (rss_size > vsi->rss_size)
5703 return -EINVAL;
5704
5705 local_rss_size = min_t(int, vsi->rss_size, rss_size);
5706 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
5707 if (!lut)
5708 return -ENOMEM;
5709
5710 /* Ignoring user configured lut if there is one */
5711 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size);
5712
5713 /* Use user configured hash key if there is one, otherwise
5714 * use default.
5715 */
5716 if (vsi->rss_hkey_user)
5717 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
5718 else
5719 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
5720
5721 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
5722 if (ret) {
5723 dev_info(&pf->pdev->dev,
5724 "Cannot set RSS lut, err %s aq_err %s\n",
5725 i40e_stat_str(hw, ret),
5726 i40e_aq_str(hw, hw->aq.asq_last_status));
5727 kfree(lut);
5728 return ret;
5729 }
5730 kfree(lut);
5731
5732 /* Do the update w.r.t. storing rss_size */
5733 if (!vsi->orig_rss_size)
5734 vsi->orig_rss_size = vsi->rss_size;
5735 vsi->current_rss_size = local_rss_size;
5736
5737 return ret;
5738 }
5739
5740 /**
5741 * i40e_channel_setup_queue_map - Setup a channel queue map
5742 * @pf: ptr to PF device
5743 * @vsi: the VSI being setup
5744 * @ctxt: VSI context structure
5745 * @ch: ptr to channel structure
5746 *
5747 * Setup queue map for a specific channel
5748 **/
5749 static void i40e_channel_setup_queue_map(struct i40e_pf *pf,
5750 struct i40e_vsi_context *ctxt,
5751 struct i40e_channel *ch)
5752 {
5753 u16 qcount, qmap, sections = 0;
5754 u8 offset = 0;
5755 int pow;
5756
5757 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
5758 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
5759
5760 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix);
5761 ch->num_queue_pairs = qcount;
5762
5763 /* find the next higher power-of-2 of num queue pairs */
5764 pow = ilog2(qcount);
5765 if (!is_power_of_2(qcount))
5766 pow++;
5767
5768 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
5769 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
5770
5771 /* Setup queue TC[0].qmap for given VSI context */
5772 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
5773
5774 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */
5775 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
5776 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue);
5777 ctxt->info.valid_sections |= cpu_to_le16(sections);
5778 }
5779
5780 /**
5781 * i40e_add_channel - add a channel by adding VSI
5782 * @pf: ptr to PF device
5783 * @uplink_seid: underlying HW switching element (VEB) ID
5784 * @ch: ptr to channel structure
5785 *
5786 * Add a channel (VSI) using add_vsi and queue_map
5787 **/
5788 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid,
5789 struct i40e_channel *ch)
5790 {
5791 struct i40e_hw *hw = &pf->hw;
5792 struct i40e_vsi_context ctxt;
5793 u8 enabled_tc = 0x1; /* TC0 enabled */
5794 int ret;
5795
5796 if (ch->type != I40E_VSI_VMDQ2) {
5797 dev_info(&pf->pdev->dev,
5798 "add new vsi failed, ch->type %d\n", ch->type);
5799 return -EINVAL;
5800 }
5801
5802 memset(&ctxt, 0, sizeof(ctxt));
5803 ctxt.pf_num = hw->pf_id;
5804 ctxt.vf_num = 0;
5805 ctxt.uplink_seid = uplink_seid;
5806 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
5807 if (ch->type == I40E_VSI_VMDQ2)
5808 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
5809
5810 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) {
5811 ctxt.info.valid_sections |=
5812 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
5813 ctxt.info.switch_id =
5814 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
5815 }
5816
5817 /* Set queue map for a given VSI context */
5818 i40e_channel_setup_queue_map(pf, &ctxt, ch);
5819
5820 /* Now time to create VSI */
5821 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
5822 if (ret) {
5823 dev_info(&pf->pdev->dev,
5824 "add new vsi failed, err %s aq_err %s\n",
5825 i40e_stat_str(&pf->hw, ret),
5826 i40e_aq_str(&pf->hw,
5827 pf->hw.aq.asq_last_status));
5828 return -ENOENT;
5829 }
5830
5831 /* Success, update channel */
5832 ch->enabled_tc = enabled_tc;
5833 ch->seid = ctxt.seid;
5834 ch->vsi_number = ctxt.vsi_number;
5835 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx);
5836
5837 /* copy just the sections touched not the entire info
5838 * since not all sections are valid as returned by
5839 * update vsi params
5840 */
5841 ch->info.mapping_flags = ctxt.info.mapping_flags;
5842 memcpy(&ch->info.queue_mapping,
5843 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping));
5844 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping,
5845 sizeof(ctxt.info.tc_mapping));
5846
5847 return 0;
5848 }
5849
5850 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch,
5851 u8 *bw_share)
5852 {
5853 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
5854 i40e_status ret;
5855 int i;
5856
5857 bw_data.tc_valid_bits = ch->enabled_tc;
5858 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5859 bw_data.tc_bw_credits[i] = bw_share[i];
5860
5861 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid,
5862 &bw_data, NULL);
5863 if (ret) {
5864 dev_info(&vsi->back->pdev->dev,
5865 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n",
5866 vsi->back->hw.aq.asq_last_status, ch->seid);
5867 return -EINVAL;
5868 }
5869
5870 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5871 ch->info.qs_handle[i] = bw_data.qs_handles[i];
5872
5873 return 0;
5874 }
5875
5876 /**
5877 * i40e_channel_config_tx_ring - config TX ring associated with new channel
5878 * @pf: ptr to PF device
5879 * @vsi: the VSI being setup
5880 * @ch: ptr to channel structure
5881 *
5882 * Configure TX rings associated with channel (VSI) since queues are being
5883 * from parent VSI.
5884 **/
5885 static int i40e_channel_config_tx_ring(struct i40e_pf *pf,
5886 struct i40e_vsi *vsi,
5887 struct i40e_channel *ch)
5888 {
5889 i40e_status ret;
5890 int i;
5891 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
5892
5893 /* Enable ETS TCs with equal BW Share for now across all VSIs */
5894 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5895 if (ch->enabled_tc & BIT(i))
5896 bw_share[i] = 1;
5897 }
5898
5899 /* configure BW for new VSI */
5900 ret = i40e_channel_config_bw(vsi, ch, bw_share);
5901 if (ret) {
5902 dev_info(&vsi->back->pdev->dev,
5903 "Failed configuring TC map %d for channel (seid %u)\n",
5904 ch->enabled_tc, ch->seid);
5905 return ret;
5906 }
5907
5908 for (i = 0; i < ch->num_queue_pairs; i++) {
5909 struct i40e_ring *tx_ring, *rx_ring;
5910 u16 pf_q;
5911
5912 pf_q = ch->base_queue + i;
5913
5914 /* Get to TX ring ptr of main VSI, for re-setup TX queue
5915 * context
5916 */
5917 tx_ring = vsi->tx_rings[pf_q];
5918 tx_ring->ch = ch;
5919
5920 /* Get the RX ring ptr */
5921 rx_ring = vsi->rx_rings[pf_q];
5922 rx_ring->ch = ch;
5923 }
5924
5925 return 0;
5926 }
5927
5928 /**
5929 * i40e_setup_hw_channel - setup new channel
5930 * @pf: ptr to PF device
5931 * @vsi: the VSI being setup
5932 * @ch: ptr to channel structure
5933 * @uplink_seid: underlying HW switching element (VEB) ID
5934 * @type: type of channel to be created (VMDq2/VF)
5935 *
5936 * Setup new channel (VSI) based on specified type (VMDq2/VF)
5937 * and configures TX rings accordingly
5938 **/
5939 static inline int i40e_setup_hw_channel(struct i40e_pf *pf,
5940 struct i40e_vsi *vsi,
5941 struct i40e_channel *ch,
5942 u16 uplink_seid, u8 type)
5943 {
5944 int ret;
5945
5946 ch->initialized = false;
5947 ch->base_queue = vsi->next_base_queue;
5948 ch->type = type;
5949
5950 /* Proceed with creation of channel (VMDq2) VSI */
5951 ret = i40e_add_channel(pf, uplink_seid, ch);
5952 if (ret) {
5953 dev_info(&pf->pdev->dev,
5954 "failed to add_channel using uplink_seid %u\n",
5955 uplink_seid);
5956 return ret;
5957 }
5958
5959 /* Mark the successful creation of channel */
5960 ch->initialized = true;
5961
5962 /* Reconfigure TX queues using QTX_CTL register */
5963 ret = i40e_channel_config_tx_ring(pf, vsi, ch);
5964 if (ret) {
5965 dev_info(&pf->pdev->dev,
5966 "failed to configure TX rings for channel %u\n",
5967 ch->seid);
5968 return ret;
5969 }
5970
5971 /* update 'next_base_queue' */
5972 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs;
5973 dev_dbg(&pf->pdev->dev,
5974 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n",
5975 ch->seid, ch->vsi_number, ch->stat_counter_idx,
5976 ch->num_queue_pairs,
5977 vsi->next_base_queue);
5978 return ret;
5979 }
5980
5981 /**
5982 * i40e_setup_channel - setup new channel using uplink element
5983 * @pf: ptr to PF device
5984 * @type: type of channel to be created (VMDq2/VF)
5985 * @uplink_seid: underlying HW switching element (VEB) ID
5986 * @ch: ptr to channel structure
5987 *
5988 * Setup new channel (VSI) based on specified type (VMDq2/VF)
5989 * and uplink switching element (uplink_seid)
5990 **/
5991 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi,
5992 struct i40e_channel *ch)
5993 {
5994 u8 vsi_type;
5995 u16 seid;
5996 int ret;
5997
5998 if (vsi->type == I40E_VSI_MAIN) {
5999 vsi_type = I40E_VSI_VMDQ2;
6000 } else {
6001 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n",
6002 vsi->type);
6003 return false;
6004 }
6005
6006 /* underlying switching element */
6007 seid = pf->vsi[pf->lan_vsi]->uplink_seid;
6008
6009 /* create channel (VSI), configure TX rings */
6010 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type);
6011 if (ret) {
6012 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n");
6013 return false;
6014 }
6015
6016 return ch->initialized ? true : false;
6017 }
6018
6019 /**
6020 * i40e_validate_and_set_switch_mode - sets up switch mode correctly
6021 * @vsi: ptr to VSI which has PF backing
6022 *
6023 * Sets up switch mode correctly if it needs to be changed and perform
6024 * what are allowed modes.
6025 **/
6026 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi)
6027 {
6028 u8 mode;
6029 struct i40e_pf *pf = vsi->back;
6030 struct i40e_hw *hw = &pf->hw;
6031 int ret;
6032
6033 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities);
6034 if (ret)
6035 return -EINVAL;
6036
6037 if (hw->dev_caps.switch_mode) {
6038 /* if switch mode is set, support mode2 (non-tunneled for
6039 * cloud filter) for now
6040 */
6041 u32 switch_mode = hw->dev_caps.switch_mode &
6042 I40E_SWITCH_MODE_MASK;
6043 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) {
6044 if (switch_mode == I40E_CLOUD_FILTER_MODE2)
6045 return 0;
6046 dev_err(&pf->pdev->dev,
6047 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n",
6048 hw->dev_caps.switch_mode);
6049 return -EINVAL;
6050 }
6051 }
6052
6053 /* Set Bit 7 to be valid */
6054 mode = I40E_AQ_SET_SWITCH_BIT7_VALID;
6055
6056 /* Set L4type for TCP support */
6057 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_TCP;
6058
6059 /* Set cloud filter mode */
6060 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL;
6061
6062 /* Prep mode field for set_switch_config */
6063 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags,
6064 pf->last_sw_conf_valid_flags,
6065 mode, NULL);
6066 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH)
6067 dev_err(&pf->pdev->dev,
6068 "couldn't set switch config bits, err %s aq_err %s\n",
6069 i40e_stat_str(hw, ret),
6070 i40e_aq_str(hw,
6071 hw->aq.asq_last_status));
6072
6073 return ret;
6074 }
6075
6076 /**
6077 * i40e_create_queue_channel - function to create channel
6078 * @vsi: VSI to be configured
6079 * @ch: ptr to channel (it contains channel specific params)
6080 *
6081 * This function creates channel (VSI) using num_queues specified by user,
6082 * reconfigs RSS if needed.
6083 **/
6084 int i40e_create_queue_channel(struct i40e_vsi *vsi,
6085 struct i40e_channel *ch)
6086 {
6087 struct i40e_pf *pf = vsi->back;
6088 bool reconfig_rss;
6089 int err;
6090
6091 if (!ch)
6092 return -EINVAL;
6093
6094 if (!ch->num_queue_pairs) {
6095 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n",
6096 ch->num_queue_pairs);
6097 return -EINVAL;
6098 }
6099
6100 /* validate user requested num_queues for channel */
6101 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi,
6102 &reconfig_rss);
6103 if (err) {
6104 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n",
6105 ch->num_queue_pairs);
6106 return -EINVAL;
6107 }
6108
6109 /* By default we are in VEPA mode, if this is the first VF/VMDq
6110 * VSI to be added switch to VEB mode.
6111 */
6112 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) ||
6113 (!i40e_is_any_channel(vsi))) {
6114 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) {
6115 dev_dbg(&pf->pdev->dev,
6116 "Failed to create channel. Override queues (%u) not power of 2\n",
6117 vsi->tc_config.tc_info[0].qcount);
6118 return -EINVAL;
6119 }
6120
6121 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) {
6122 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
6123
6124 if (vsi->type == I40E_VSI_MAIN) {
6125 if (pf->flags & I40E_FLAG_TC_MQPRIO)
6126 i40e_do_reset(pf, I40E_PF_RESET_FLAG,
6127 true);
6128 else
6129 i40e_do_reset_safe(pf,
6130 I40E_PF_RESET_FLAG);
6131 }
6132 }
6133 /* now onwards for main VSI, number of queues will be value
6134 * of TC0's queue count
6135 */
6136 }
6137
6138 /* By this time, vsi->cnt_q_avail shall be set to non-zero and
6139 * it should be more than num_queues
6140 */
6141 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) {
6142 dev_dbg(&pf->pdev->dev,
6143 "Error: cnt_q_avail (%u) less than num_queues %d\n",
6144 vsi->cnt_q_avail, ch->num_queue_pairs);
6145 return -EINVAL;
6146 }
6147
6148 /* reconfig_rss only if vsi type is MAIN_VSI */
6149 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) {
6150 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs);
6151 if (err) {
6152 dev_info(&pf->pdev->dev,
6153 "Error: unable to reconfig rss for num_queues (%u)\n",
6154 ch->num_queue_pairs);
6155 return -EINVAL;
6156 }
6157 }
6158
6159 if (!i40e_setup_channel(pf, vsi, ch)) {
6160 dev_info(&pf->pdev->dev, "Failed to setup channel\n");
6161 return -EINVAL;
6162 }
6163
6164 dev_info(&pf->pdev->dev,
6165 "Setup channel (id:%u) utilizing num_queues %d\n",
6166 ch->seid, ch->num_queue_pairs);
6167
6168 /* configure VSI for BW limit */
6169 if (ch->max_tx_rate) {
6170 u64 credits = ch->max_tx_rate;
6171
6172 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate))
6173 return -EINVAL;
6174
6175 do_div(credits, I40E_BW_CREDIT_DIVISOR);
6176 dev_dbg(&pf->pdev->dev,
6177 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
6178 ch->max_tx_rate,
6179 credits,
6180 ch->seid);
6181 }
6182
6183 /* in case of VF, this will be main SRIOV VSI */
6184 ch->parent_vsi = vsi;
6185
6186 /* and update main_vsi's count for queue_available to use */
6187 vsi->cnt_q_avail -= ch->num_queue_pairs;
6188
6189 return 0;
6190 }
6191
6192 /**
6193 * i40e_configure_queue_channels - Add queue channel for the given TCs
6194 * @vsi: VSI to be configured
6195 *
6196 * Configures queue channel mapping to the given TCs
6197 **/
6198 static int i40e_configure_queue_channels(struct i40e_vsi *vsi)
6199 {
6200 struct i40e_channel *ch;
6201 u64 max_rate = 0;
6202 int ret = 0, i;
6203
6204 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */
6205 vsi->tc_seid_map[0] = vsi->seid;
6206 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6207 if (vsi->tc_config.enabled_tc & BIT(i)) {
6208 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
6209 if (!ch) {
6210 ret = -ENOMEM;
6211 goto err_free;
6212 }
6213
6214 INIT_LIST_HEAD(&ch->list);
6215 ch->num_queue_pairs =
6216 vsi->tc_config.tc_info[i].qcount;
6217 ch->base_queue =
6218 vsi->tc_config.tc_info[i].qoffset;
6219
6220 /* Bandwidth limit through tc interface is in bytes/s,
6221 * change to Mbit/s
6222 */
6223 max_rate = vsi->mqprio_qopt.max_rate[i];
6224 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
6225 ch->max_tx_rate = max_rate;
6226
6227 list_add_tail(&ch->list, &vsi->ch_list);
6228
6229 ret = i40e_create_queue_channel(vsi, ch);
6230 if (ret) {
6231 dev_err(&vsi->back->pdev->dev,
6232 "Failed creating queue channel with TC%d: queues %d\n",
6233 i, ch->num_queue_pairs);
6234 goto err_free;
6235 }
6236 vsi->tc_seid_map[i] = ch->seid;
6237 }
6238 }
6239 return ret;
6240
6241 err_free:
6242 i40e_remove_queue_channels(vsi);
6243 return ret;
6244 }
6245
6246 /**
6247 * i40e_veb_config_tc - Configure TCs for given VEB
6248 * @veb: given VEB
6249 * @enabled_tc: TC bitmap
6250 *
6251 * Configures given TC bitmap for VEB (switching) element
6252 **/
6253 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc)
6254 {
6255 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0};
6256 struct i40e_pf *pf = veb->pf;
6257 int ret = 0;
6258 int i;
6259
6260 /* No TCs or already enabled TCs just return */
6261 if (!enabled_tc || veb->enabled_tc == enabled_tc)
6262 return ret;
6263
6264 bw_data.tc_valid_bits = enabled_tc;
6265 /* bw_data.absolute_credits is not set (relative) */
6266
6267 /* Enable ETS TCs with equal BW Share for now */
6268 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6269 if (enabled_tc & BIT(i))
6270 bw_data.tc_bw_share_credits[i] = 1;
6271 }
6272
6273 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid,
6274 &bw_data, NULL);
6275 if (ret) {
6276 dev_info(&pf->pdev->dev,
6277 "VEB bw config failed, err %s aq_err %s\n",
6278 i40e_stat_str(&pf->hw, ret),
6279 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6280 goto out;
6281 }
6282
6283 /* Update the BW information */
6284 ret = i40e_veb_get_bw_info(veb);
6285 if (ret) {
6286 dev_info(&pf->pdev->dev,
6287 "Failed getting veb bw config, err %s aq_err %s\n",
6288 i40e_stat_str(&pf->hw, ret),
6289 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6290 }
6291
6292 out:
6293 return ret;
6294 }
6295
6296 #ifdef CONFIG_I40E_DCB
6297 /**
6298 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs
6299 * @pf: PF struct
6300 *
6301 * Reconfigure VEB/VSIs on a given PF; it is assumed that
6302 * the caller would've quiesce all the VSIs before calling
6303 * this function
6304 **/
6305 static void i40e_dcb_reconfigure(struct i40e_pf *pf)
6306 {
6307 u8 tc_map = 0;
6308 int ret;
6309 u8 v;
6310
6311 /* Enable the TCs available on PF to all VEBs */
6312 tc_map = i40e_pf_get_tc_map(pf);
6313 for (v = 0; v < I40E_MAX_VEB; v++) {
6314 if (!pf->veb[v])
6315 continue;
6316 ret = i40e_veb_config_tc(pf->veb[v], tc_map);
6317 if (ret) {
6318 dev_info(&pf->pdev->dev,
6319 "Failed configuring TC for VEB seid=%d\n",
6320 pf->veb[v]->seid);
6321 /* Will try to configure as many components */
6322 }
6323 }
6324
6325 /* Update each VSI */
6326 for (v = 0; v < pf->num_alloc_vsi; v++) {
6327 if (!pf->vsi[v])
6328 continue;
6329
6330 /* - Enable all TCs for the LAN VSI
6331 * - For all others keep them at TC0 for now
6332 */
6333 if (v == pf->lan_vsi)
6334 tc_map = i40e_pf_get_tc_map(pf);
6335 else
6336 tc_map = I40E_DEFAULT_TRAFFIC_CLASS;
6337
6338 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map);
6339 if (ret) {
6340 dev_info(&pf->pdev->dev,
6341 "Failed configuring TC for VSI seid=%d\n",
6342 pf->vsi[v]->seid);
6343 /* Will try to configure as many components */
6344 } else {
6345 /* Re-configure VSI vectors based on updated TC map */
6346 i40e_vsi_map_rings_to_vectors(pf->vsi[v]);
6347 if (pf->vsi[v]->netdev)
6348 i40e_dcbnl_set_all(pf->vsi[v]);
6349 }
6350 }
6351 }
6352
6353 /**
6354 * i40e_resume_port_tx - Resume port Tx
6355 * @pf: PF struct
6356 *
6357 * Resume a port's Tx and issue a PF reset in case of failure to
6358 * resume.
6359 **/
6360 static int i40e_resume_port_tx(struct i40e_pf *pf)
6361 {
6362 struct i40e_hw *hw = &pf->hw;
6363 int ret;
6364
6365 ret = i40e_aq_resume_port_tx(hw, NULL);
6366 if (ret) {
6367 dev_info(&pf->pdev->dev,
6368 "Resume Port Tx failed, err %s aq_err %s\n",
6369 i40e_stat_str(&pf->hw, ret),
6370 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6371 /* Schedule PF reset to recover */
6372 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6373 i40e_service_event_schedule(pf);
6374 }
6375
6376 return ret;
6377 }
6378
6379 /**
6380 * i40e_init_pf_dcb - Initialize DCB configuration
6381 * @pf: PF being configured
6382 *
6383 * Query the current DCB configuration and cache it
6384 * in the hardware structure
6385 **/
6386 static int i40e_init_pf_dcb(struct i40e_pf *pf)
6387 {
6388 struct i40e_hw *hw = &pf->hw;
6389 int err = 0;
6390
6391 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable */
6392 if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT)
6393 goto out;
6394
6395 /* Get the initial DCB configuration */
6396 err = i40e_init_dcb(hw);
6397 if (!err) {
6398 /* Device/Function is not DCBX capable */
6399 if ((!hw->func_caps.dcb) ||
6400 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) {
6401 dev_info(&pf->pdev->dev,
6402 "DCBX offload is not supported or is disabled for this PF.\n");
6403 } else {
6404 /* When status is not DISABLED then DCBX in FW */
6405 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED |
6406 DCB_CAP_DCBX_VER_IEEE;
6407
6408 pf->flags |= I40E_FLAG_DCB_CAPABLE;
6409 /* Enable DCB tagging only when more than one TC
6410 * or explicitly disable if only one TC
6411 */
6412 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
6413 pf->flags |= I40E_FLAG_DCB_ENABLED;
6414 else
6415 pf->flags &= ~I40E_FLAG_DCB_ENABLED;
6416 dev_dbg(&pf->pdev->dev,
6417 "DCBX offload is supported for this PF.\n");
6418 }
6419 } else {
6420 dev_info(&pf->pdev->dev,
6421 "Query for DCB configuration failed, err %s aq_err %s\n",
6422 i40e_stat_str(&pf->hw, err),
6423 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6424 }
6425
6426 out:
6427 return err;
6428 }
6429 #endif /* CONFIG_I40E_DCB */
6430 #define SPEED_SIZE 14
6431 #define FC_SIZE 8
6432 /**
6433 * i40e_print_link_message - print link up or down
6434 * @vsi: the VSI for which link needs a message
6435 */
6436 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup)
6437 {
6438 enum i40e_aq_link_speed new_speed;
6439 struct i40e_pf *pf = vsi->back;
6440 char *speed = "Unknown";
6441 char *fc = "Unknown";
6442 char *fec = "";
6443 char *req_fec = "";
6444 char *an = "";
6445
6446 new_speed = pf->hw.phy.link_info.link_speed;
6447
6448 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed))
6449 return;
6450 vsi->current_isup = isup;
6451 vsi->current_speed = new_speed;
6452 if (!isup) {
6453 netdev_info(vsi->netdev, "NIC Link is Down\n");
6454 return;
6455 }
6456
6457 /* Warn user if link speed on NPAR enabled partition is not at
6458 * least 10GB
6459 */
6460 if (pf->hw.func_caps.npar_enable &&
6461 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB ||
6462 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB))
6463 netdev_warn(vsi->netdev,
6464 "The partition detected link speed that is less than 10Gbps\n");
6465
6466 switch (pf->hw.phy.link_info.link_speed) {
6467 case I40E_LINK_SPEED_40GB:
6468 speed = "40 G";
6469 break;
6470 case I40E_LINK_SPEED_20GB:
6471 speed = "20 G";
6472 break;
6473 case I40E_LINK_SPEED_25GB:
6474 speed = "25 G";
6475 break;
6476 case I40E_LINK_SPEED_10GB:
6477 speed = "10 G";
6478 break;
6479 case I40E_LINK_SPEED_1GB:
6480 speed = "1000 M";
6481 break;
6482 case I40E_LINK_SPEED_100MB:
6483 speed = "100 M";
6484 break;
6485 default:
6486 break;
6487 }
6488
6489 switch (pf->hw.fc.current_mode) {
6490 case I40E_FC_FULL:
6491 fc = "RX/TX";
6492 break;
6493 case I40E_FC_TX_PAUSE:
6494 fc = "TX";
6495 break;
6496 case I40E_FC_RX_PAUSE:
6497 fc = "RX";
6498 break;
6499 default:
6500 fc = "None";
6501 break;
6502 }
6503
6504 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) {
6505 req_fec = ", Requested FEC: None";
6506 fec = ", FEC: None";
6507 an = ", Autoneg: False";
6508
6509 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
6510 an = ", Autoneg: True";
6511
6512 if (pf->hw.phy.link_info.fec_info &
6513 I40E_AQ_CONFIG_FEC_KR_ENA)
6514 fec = ", FEC: CL74 FC-FEC/BASE-R";
6515 else if (pf->hw.phy.link_info.fec_info &
6516 I40E_AQ_CONFIG_FEC_RS_ENA)
6517 fec = ", FEC: CL108 RS-FEC";
6518
6519 /* 'CL108 RS-FEC' should be displayed when RS is requested, or
6520 * both RS and FC are requested
6521 */
6522 if (vsi->back->hw.phy.link_info.req_fec_info &
6523 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) {
6524 if (vsi->back->hw.phy.link_info.req_fec_info &
6525 I40E_AQ_REQUEST_FEC_RS)
6526 req_fec = ", Requested FEC: CL108 RS-FEC";
6527 else
6528 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R";
6529 }
6530 }
6531
6532 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n",
6533 speed, req_fec, fec, an, fc);
6534 }
6535
6536 /**
6537 * i40e_up_complete - Finish the last steps of bringing up a connection
6538 * @vsi: the VSI being configured
6539 **/
6540 static int i40e_up_complete(struct i40e_vsi *vsi)
6541 {
6542 struct i40e_pf *pf = vsi->back;
6543 int err;
6544
6545 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
6546 i40e_vsi_configure_msix(vsi);
6547 else
6548 i40e_configure_msi_and_legacy(vsi);
6549
6550 /* start rings */
6551 err = i40e_vsi_start_rings(vsi);
6552 if (err)
6553 return err;
6554
6555 clear_bit(__I40E_VSI_DOWN, vsi->state);
6556 i40e_napi_enable_all(vsi);
6557 i40e_vsi_enable_irq(vsi);
6558
6559 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) &&
6560 (vsi->netdev)) {
6561 i40e_print_link_message(vsi, true);
6562 netif_tx_start_all_queues(vsi->netdev);
6563 netif_carrier_on(vsi->netdev);
6564 }
6565
6566 /* replay FDIR SB filters */
6567 if (vsi->type == I40E_VSI_FDIR) {
6568 /* reset fd counters */
6569 pf->fd_add_err = 0;
6570 pf->fd_atr_cnt = 0;
6571 i40e_fdir_filter_restore(vsi);
6572 }
6573
6574 /* On the next run of the service_task, notify any clients of the new
6575 * opened netdev
6576 */
6577 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED;
6578 i40e_service_event_schedule(pf);
6579
6580 return 0;
6581 }
6582
6583 /**
6584 * i40e_vsi_reinit_locked - Reset the VSI
6585 * @vsi: the VSI being configured
6586 *
6587 * Rebuild the ring structs after some configuration
6588 * has changed, e.g. MTU size.
6589 **/
6590 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi)
6591 {
6592 struct i40e_pf *pf = vsi->back;
6593
6594 WARN_ON(in_interrupt());
6595 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state))
6596 usleep_range(1000, 2000);
6597 i40e_down(vsi);
6598
6599 i40e_up(vsi);
6600 clear_bit(__I40E_CONFIG_BUSY, pf->state);
6601 }
6602
6603 /**
6604 * i40e_up - Bring the connection back up after being down
6605 * @vsi: the VSI being configured
6606 **/
6607 int i40e_up(struct i40e_vsi *vsi)
6608 {
6609 int err;
6610
6611 err = i40e_vsi_configure(vsi);
6612 if (!err)
6613 err = i40e_up_complete(vsi);
6614
6615 return err;
6616 }
6617
6618 /**
6619 * i40e_down - Shutdown the connection processing
6620 * @vsi: the VSI being stopped
6621 **/
6622 void i40e_down(struct i40e_vsi *vsi)
6623 {
6624 int i;
6625
6626 /* It is assumed that the caller of this function
6627 * sets the vsi->state __I40E_VSI_DOWN bit.
6628 */
6629 if (vsi->netdev) {
6630 netif_carrier_off(vsi->netdev);
6631 netif_tx_disable(vsi->netdev);
6632 }
6633 i40e_vsi_disable_irq(vsi);
6634 i40e_vsi_stop_rings(vsi);
6635 i40e_napi_disable_all(vsi);
6636
6637 for (i = 0; i < vsi->num_queue_pairs; i++) {
6638 i40e_clean_tx_ring(vsi->tx_rings[i]);
6639 if (i40e_enabled_xdp_vsi(vsi))
6640 i40e_clean_tx_ring(vsi->xdp_rings[i]);
6641 i40e_clean_rx_ring(vsi->rx_rings[i]);
6642 }
6643
6644 }
6645
6646 /**
6647 * i40e_validate_mqprio_qopt- validate queue mapping info
6648 * @vsi: the VSI being configured
6649 * @mqprio_qopt: queue parametrs
6650 **/
6651 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi,
6652 struct tc_mqprio_qopt_offload *mqprio_qopt)
6653 {
6654 u64 sum_max_rate = 0;
6655 u64 max_rate = 0;
6656 int i;
6657
6658 if (mqprio_qopt->qopt.offset[0] != 0 ||
6659 mqprio_qopt->qopt.num_tc < 1 ||
6660 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS)
6661 return -EINVAL;
6662 for (i = 0; ; i++) {
6663 if (!mqprio_qopt->qopt.count[i])
6664 return -EINVAL;
6665 if (mqprio_qopt->min_rate[i]) {
6666 dev_err(&vsi->back->pdev->dev,
6667 "Invalid min tx rate (greater than 0) specified\n");
6668 return -EINVAL;
6669 }
6670 max_rate = mqprio_qopt->max_rate[i];
6671 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
6672 sum_max_rate += max_rate;
6673
6674 if (i >= mqprio_qopt->qopt.num_tc - 1)
6675 break;
6676 if (mqprio_qopt->qopt.offset[i + 1] !=
6677 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
6678 return -EINVAL;
6679 }
6680 if (vsi->num_queue_pairs <
6681 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) {
6682 return -EINVAL;
6683 }
6684 if (sum_max_rate > i40e_get_link_speed(vsi)) {
6685 dev_err(&vsi->back->pdev->dev,
6686 "Invalid max tx rate specified\n");
6687 return -EINVAL;
6688 }
6689 return 0;
6690 }
6691
6692 /**
6693 * i40e_vsi_set_default_tc_config - set default values for tc configuration
6694 * @vsi: the VSI being configured
6695 **/
6696 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi)
6697 {
6698 u16 qcount;
6699 int i;
6700
6701 /* Only TC0 is enabled */
6702 vsi->tc_config.numtc = 1;
6703 vsi->tc_config.enabled_tc = 1;
6704 qcount = min_t(int, vsi->alloc_queue_pairs,
6705 i40e_pf_get_max_q_per_tc(vsi->back));
6706 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6707 /* For the TC that is not enabled set the offset to to default
6708 * queue and allocate one queue for the given TC.
6709 */
6710 vsi->tc_config.tc_info[i].qoffset = 0;
6711 if (i == 0)
6712 vsi->tc_config.tc_info[i].qcount = qcount;
6713 else
6714 vsi->tc_config.tc_info[i].qcount = 1;
6715 vsi->tc_config.tc_info[i].netdev_tc = 0;
6716 }
6717 }
6718
6719 /**
6720 * i40e_setup_tc - configure multiple traffic classes
6721 * @netdev: net device to configure
6722 * @type_data: tc offload data
6723 **/
6724 static int i40e_setup_tc(struct net_device *netdev, void *type_data)
6725 {
6726 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
6727 struct i40e_netdev_priv *np = netdev_priv(netdev);
6728 struct i40e_vsi *vsi = np->vsi;
6729 struct i40e_pf *pf = vsi->back;
6730 u8 enabled_tc = 0, num_tc, hw;
6731 bool need_reset = false;
6732 int ret = -EINVAL;
6733 u16 mode;
6734 int i;
6735
6736 num_tc = mqprio_qopt->qopt.num_tc;
6737 hw = mqprio_qopt->qopt.hw;
6738 mode = mqprio_qopt->mode;
6739 if (!hw) {
6740 pf->flags &= ~I40E_FLAG_TC_MQPRIO;
6741 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
6742 goto config_tc;
6743 }
6744
6745 /* Check if MFP enabled */
6746 if (pf->flags & I40E_FLAG_MFP_ENABLED) {
6747 netdev_info(netdev,
6748 "Configuring TC not supported in MFP mode\n");
6749 return ret;
6750 }
6751 switch (mode) {
6752 case TC_MQPRIO_MODE_DCB:
6753 pf->flags &= ~I40E_FLAG_TC_MQPRIO;
6754
6755 /* Check if DCB enabled to continue */
6756 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) {
6757 netdev_info(netdev,
6758 "DCB is not enabled for adapter\n");
6759 return ret;
6760 }
6761
6762 /* Check whether tc count is within enabled limit */
6763 if (num_tc > i40e_pf_get_num_tc(pf)) {
6764 netdev_info(netdev,
6765 "TC count greater than enabled on link for adapter\n");
6766 return ret;
6767 }
6768 break;
6769 case TC_MQPRIO_MODE_CHANNEL:
6770 if (pf->flags & I40E_FLAG_DCB_ENABLED) {
6771 netdev_info(netdev,
6772 "Full offload of TC Mqprio options is not supported when DCB is enabled\n");
6773 return ret;
6774 }
6775 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
6776 return ret;
6777 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt);
6778 if (ret)
6779 return ret;
6780 memcpy(&vsi->mqprio_qopt, mqprio_qopt,
6781 sizeof(*mqprio_qopt));
6782 pf->flags |= I40E_FLAG_TC_MQPRIO;
6783 pf->flags &= ~I40E_FLAG_DCB_ENABLED;
6784 break;
6785 default:
6786 return -EINVAL;
6787 }
6788
6789 config_tc:
6790 /* Generate TC map for number of tc requested */
6791 for (i = 0; i < num_tc; i++)
6792 enabled_tc |= BIT(i);
6793
6794 /* Requesting same TC configuration as already enabled */
6795 if (enabled_tc == vsi->tc_config.enabled_tc &&
6796 mode != TC_MQPRIO_MODE_CHANNEL)
6797 return 0;
6798
6799 /* Quiesce VSI queues */
6800 i40e_quiesce_vsi(vsi);
6801
6802 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO))
6803 i40e_remove_queue_channels(vsi);
6804
6805 /* Configure VSI for enabled TCs */
6806 ret = i40e_vsi_config_tc(vsi, enabled_tc);
6807 if (ret) {
6808 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n",
6809 vsi->seid);
6810 need_reset = true;
6811 goto exit;
6812 }
6813
6814 if (pf->flags & I40E_FLAG_TC_MQPRIO) {
6815 if (vsi->mqprio_qopt.max_rate[0]) {
6816 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
6817
6818 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR);
6819 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
6820 if (!ret) {
6821 u64 credits = max_tx_rate;
6822
6823 do_div(credits, I40E_BW_CREDIT_DIVISOR);
6824 dev_dbg(&vsi->back->pdev->dev,
6825 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
6826 max_tx_rate,
6827 credits,
6828 vsi->seid);
6829 } else {
6830 need_reset = true;
6831 goto exit;
6832 }
6833 }
6834 ret = i40e_configure_queue_channels(vsi);
6835 if (ret) {
6836 netdev_info(netdev,
6837 "Failed configuring queue channels\n");
6838 need_reset = true;
6839 goto exit;
6840 }
6841 }
6842
6843 exit:
6844 /* Reset the configuration data to defaults, only TC0 is enabled */
6845 if (need_reset) {
6846 i40e_vsi_set_default_tc_config(vsi);
6847 need_reset = false;
6848 }
6849
6850 /* Unquiesce VSI */
6851 i40e_unquiesce_vsi(vsi);
6852 return ret;
6853 }
6854
6855 /**
6856 * i40e_set_cld_element - sets cloud filter element data
6857 * @filter: cloud filter rule
6858 * @cld: ptr to cloud filter element data
6859 *
6860 * This is helper function to copy data into cloud filter element
6861 **/
6862 static inline void
6863 i40e_set_cld_element(struct i40e_cloud_filter *filter,
6864 struct i40e_aqc_cloud_filters_element_data *cld)
6865 {
6866 int i, j;
6867 u32 ipa;
6868
6869 memset(cld, 0, sizeof(*cld));
6870 ether_addr_copy(cld->outer_mac, filter->dst_mac);
6871 ether_addr_copy(cld->inner_mac, filter->src_mac);
6872
6873 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6)
6874 return;
6875
6876 if (filter->n_proto == ETH_P_IPV6) {
6877 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1)
6878 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6);
6879 i++, j += 2) {
6880 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]);
6881 ipa = cpu_to_le32(ipa);
6882 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa));
6883 }
6884 } else {
6885 ipa = be32_to_cpu(filter->dst_ipv4);
6886 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa));
6887 }
6888
6889 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id));
6890
6891 /* tenant_id is not supported by FW now, once the support is enabled
6892 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id)
6893 */
6894 if (filter->tenant_id)
6895 return;
6896 }
6897
6898 /**
6899 * i40e_add_del_cloud_filter - Add/del cloud filter
6900 * @vsi: pointer to VSI
6901 * @filter: cloud filter rule
6902 * @add: if true, add, if false, delete
6903 *
6904 * Add or delete a cloud filter for a specific flow spec.
6905 * Returns 0 if the filter were successfully added.
6906 **/
6907 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
6908 struct i40e_cloud_filter *filter, bool add)
6909 {
6910 struct i40e_aqc_cloud_filters_element_data cld_filter;
6911 struct i40e_pf *pf = vsi->back;
6912 int ret;
6913 static const u16 flag_table[128] = {
6914 [I40E_CLOUD_FILTER_FLAGS_OMAC] =
6915 I40E_AQC_ADD_CLOUD_FILTER_OMAC,
6916 [I40E_CLOUD_FILTER_FLAGS_IMAC] =
6917 I40E_AQC_ADD_CLOUD_FILTER_IMAC,
6918 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] =
6919 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN,
6920 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] =
6921 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID,
6922 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] =
6923 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC,
6924 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] =
6925 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID,
6926 [I40E_CLOUD_FILTER_FLAGS_IIP] =
6927 I40E_AQC_ADD_CLOUD_FILTER_IIP,
6928 };
6929
6930 if (filter->flags >= ARRAY_SIZE(flag_table))
6931 return I40E_ERR_CONFIG;
6932
6933 /* copy element needed to add cloud filter from filter */
6934 i40e_set_cld_element(filter, &cld_filter);
6935
6936 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE)
6937 cld_filter.flags = cpu_to_le16(filter->tunnel_type <<
6938 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT);
6939
6940 if (filter->n_proto == ETH_P_IPV6)
6941 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
6942 I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
6943 else
6944 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
6945 I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
6946
6947 if (add)
6948 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid,
6949 &cld_filter, 1);
6950 else
6951 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid,
6952 &cld_filter, 1);
6953 if (ret)
6954 dev_dbg(&pf->pdev->dev,
6955 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n",
6956 add ? "add" : "delete", filter->dst_port, ret,
6957 pf->hw.aq.asq_last_status);
6958 else
6959 dev_info(&pf->pdev->dev,
6960 "%s cloud filter for VSI: %d\n",
6961 add ? "Added" : "Deleted", filter->seid);
6962 return ret;
6963 }
6964
6965 /**
6966 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf
6967 * @vsi: pointer to VSI
6968 * @filter: cloud filter rule
6969 * @add: if true, add, if false, delete
6970 *
6971 * Add or delete a cloud filter for a specific flow spec using big buffer.
6972 * Returns 0 if the filter were successfully added.
6973 **/
6974 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
6975 struct i40e_cloud_filter *filter,
6976 bool add)
6977 {
6978 struct i40e_aqc_cloud_filters_element_bb cld_filter;
6979 struct i40e_pf *pf = vsi->back;
6980 int ret;
6981
6982 /* Both (src/dst) valid mac_addr are not supported */
6983 if ((is_valid_ether_addr(filter->dst_mac) &&
6984 is_valid_ether_addr(filter->src_mac)) ||
6985 (is_multicast_ether_addr(filter->dst_mac) &&
6986 is_multicast_ether_addr(filter->src_mac)))
6987 return -EOPNOTSUPP;
6988
6989 /* Big buffer cloud filter needs 'L4 port' to be non-zero. Also, UDP
6990 * ports are not supported via big buffer now.
6991 */
6992 if (!filter->dst_port || filter->ip_proto == IPPROTO_UDP)
6993 return -EOPNOTSUPP;
6994
6995 /* adding filter using src_port/src_ip is not supported at this stage */
6996 if (filter->src_port || filter->src_ipv4 ||
6997 !ipv6_addr_any(&filter->ip.v6.src_ip6))
6998 return -EOPNOTSUPP;
6999
7000 /* copy element needed to add cloud filter from filter */
7001 i40e_set_cld_element(filter, &cld_filter.element);
7002
7003 if (is_valid_ether_addr(filter->dst_mac) ||
7004 is_valid_ether_addr(filter->src_mac) ||
7005 is_multicast_ether_addr(filter->dst_mac) ||
7006 is_multicast_ether_addr(filter->src_mac)) {
7007 /* MAC + IP : unsupported mode */
7008 if (filter->dst_ipv4)
7009 return -EOPNOTSUPP;
7010
7011 /* since we validated that L4 port must be valid before
7012 * we get here, start with respective "flags" value
7013 * and update if vlan is present or not
7014 */
7015 cld_filter.element.flags =
7016 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT);
7017
7018 if (filter->vlan_id) {
7019 cld_filter.element.flags =
7020 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT);
7021 }
7022
7023 } else if (filter->dst_ipv4 ||
7024 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) {
7025 cld_filter.element.flags =
7026 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT);
7027 if (filter->n_proto == ETH_P_IPV6)
7028 cld_filter.element.flags |=
7029 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
7030 else
7031 cld_filter.element.flags |=
7032 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
7033 } else {
7034 dev_err(&pf->pdev->dev,
7035 "either mac or ip has to be valid for cloud filter\n");
7036 return -EINVAL;
7037 }
7038
7039 /* Now copy L4 port in Byte 6..7 in general fields */
7040 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] =
7041 be16_to_cpu(filter->dst_port);
7042
7043 if (add) {
7044 /* Validate current device switch mode, change if necessary */
7045 ret = i40e_validate_and_set_switch_mode(vsi);
7046 if (ret) {
7047 dev_err(&pf->pdev->dev,
7048 "failed to set switch mode, ret %d\n",
7049 ret);
7050 return ret;
7051 }
7052
7053 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid,
7054 &cld_filter, 1);
7055 } else {
7056 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid,
7057 &cld_filter, 1);
7058 }
7059
7060 if (ret)
7061 dev_dbg(&pf->pdev->dev,
7062 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n",
7063 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status);
7064 else
7065 dev_info(&pf->pdev->dev,
7066 "%s cloud filter for VSI: %d, L4 port: %d\n",
7067 add ? "add" : "delete", filter->seid,
7068 ntohs(filter->dst_port));
7069 return ret;
7070 }
7071
7072 /**
7073 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel
7074 * @vsi: Pointer to VSI
7075 * @cls_flower: Pointer to struct tc_cls_flower_offload
7076 * @filter: Pointer to cloud filter structure
7077 *
7078 **/
7079 static int i40e_parse_cls_flower(struct i40e_vsi *vsi,
7080 struct tc_cls_flower_offload *f,
7081 struct i40e_cloud_filter *filter)
7082 {
7083 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0;
7084 struct i40e_pf *pf = vsi->back;
7085 u8 field_flags = 0;
7086
7087 if (f->dissector->used_keys &
7088 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
7089 BIT(FLOW_DISSECTOR_KEY_BASIC) |
7090 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
7091 BIT(FLOW_DISSECTOR_KEY_VLAN) |
7092 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
7093 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
7094 BIT(FLOW_DISSECTOR_KEY_PORTS) |
7095 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
7096 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n",
7097 f->dissector->used_keys);
7098 return -EOPNOTSUPP;
7099 }
7100
7101 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
7102 struct flow_dissector_key_keyid *key =
7103 skb_flow_dissector_target(f->dissector,
7104 FLOW_DISSECTOR_KEY_ENC_KEYID,
7105 f->key);
7106
7107 struct flow_dissector_key_keyid *mask =
7108 skb_flow_dissector_target(f->dissector,
7109 FLOW_DISSECTOR_KEY_ENC_KEYID,
7110 f->mask);
7111
7112 if (mask->keyid != 0)
7113 field_flags |= I40E_CLOUD_FIELD_TEN_ID;
7114
7115 filter->tenant_id = be32_to_cpu(key->keyid);
7116 }
7117
7118 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
7119 struct flow_dissector_key_basic *key =
7120 skb_flow_dissector_target(f->dissector,
7121 FLOW_DISSECTOR_KEY_BASIC,
7122 f->key);
7123
7124 struct flow_dissector_key_basic *mask =
7125 skb_flow_dissector_target(f->dissector,
7126 FLOW_DISSECTOR_KEY_BASIC,
7127 f->mask);
7128
7129 n_proto_key = ntohs(key->n_proto);
7130 n_proto_mask = ntohs(mask->n_proto);
7131
7132 if (n_proto_key == ETH_P_ALL) {
7133 n_proto_key = 0;
7134 n_proto_mask = 0;
7135 }
7136 filter->n_proto = n_proto_key & n_proto_mask;
7137 filter->ip_proto = key->ip_proto;
7138 }
7139
7140 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
7141 struct flow_dissector_key_eth_addrs *key =
7142 skb_flow_dissector_target(f->dissector,
7143 FLOW_DISSECTOR_KEY_ETH_ADDRS,
7144 f->key);
7145
7146 struct flow_dissector_key_eth_addrs *mask =
7147 skb_flow_dissector_target(f->dissector,
7148 FLOW_DISSECTOR_KEY_ETH_ADDRS,
7149 f->mask);
7150
7151 /* use is_broadcast and is_zero to check for all 0xf or 0 */
7152 if (!is_zero_ether_addr(mask->dst)) {
7153 if (is_broadcast_ether_addr(mask->dst)) {
7154 field_flags |= I40E_CLOUD_FIELD_OMAC;
7155 } else {
7156 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n",
7157 mask->dst);
7158 return I40E_ERR_CONFIG;
7159 }
7160 }
7161
7162 if (!is_zero_ether_addr(mask->src)) {
7163 if (is_broadcast_ether_addr(mask->src)) {
7164 field_flags |= I40E_CLOUD_FIELD_IMAC;
7165 } else {
7166 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n",
7167 mask->src);
7168 return I40E_ERR_CONFIG;
7169 }
7170 }
7171 ether_addr_copy(filter->dst_mac, key->dst);
7172 ether_addr_copy(filter->src_mac, key->src);
7173 }
7174
7175 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
7176 struct flow_dissector_key_vlan *key =
7177 skb_flow_dissector_target(f->dissector,
7178 FLOW_DISSECTOR_KEY_VLAN,
7179 f->key);
7180 struct flow_dissector_key_vlan *mask =
7181 skb_flow_dissector_target(f->dissector,
7182 FLOW_DISSECTOR_KEY_VLAN,
7183 f->mask);
7184
7185 if (mask->vlan_id) {
7186 if (mask->vlan_id == VLAN_VID_MASK) {
7187 field_flags |= I40E_CLOUD_FIELD_IVLAN;
7188
7189 } else {
7190 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n",
7191 mask->vlan_id);
7192 return I40E_ERR_CONFIG;
7193 }
7194 }
7195
7196 filter->vlan_id = cpu_to_be16(key->vlan_id);
7197 }
7198
7199 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) {
7200 struct flow_dissector_key_control *key =
7201 skb_flow_dissector_target(f->dissector,
7202 FLOW_DISSECTOR_KEY_CONTROL,
7203 f->key);
7204
7205 addr_type = key->addr_type;
7206 }
7207
7208 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
7209 struct flow_dissector_key_ipv4_addrs *key =
7210 skb_flow_dissector_target(f->dissector,
7211 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
7212 f->key);
7213 struct flow_dissector_key_ipv4_addrs *mask =
7214 skb_flow_dissector_target(f->dissector,
7215 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
7216 f->mask);
7217
7218 if (mask->dst) {
7219 if (mask->dst == cpu_to_be32(0xffffffff)) {
7220 field_flags |= I40E_CLOUD_FIELD_IIP;
7221 } else {
7222 mask->dst = be32_to_cpu(mask->dst);
7223 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4\n",
7224 &mask->dst);
7225 return I40E_ERR_CONFIG;
7226 }
7227 }
7228
7229 if (mask->src) {
7230 if (mask->src == cpu_to_be32(0xffffffff)) {
7231 field_flags |= I40E_CLOUD_FIELD_IIP;
7232 } else {
7233 mask->src = be32_to_cpu(mask->src);
7234 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4\n",
7235 &mask->src);
7236 return I40E_ERR_CONFIG;
7237 }
7238 }
7239
7240 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) {
7241 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n");
7242 return I40E_ERR_CONFIG;
7243 }
7244 filter->dst_ipv4 = key->dst;
7245 filter->src_ipv4 = key->src;
7246 }
7247
7248 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
7249 struct flow_dissector_key_ipv6_addrs *key =
7250 skb_flow_dissector_target(f->dissector,
7251 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
7252 f->key);
7253 struct flow_dissector_key_ipv6_addrs *mask =
7254 skb_flow_dissector_target(f->dissector,
7255 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
7256 f->mask);
7257
7258 /* src and dest IPV6 address should not be LOOPBACK
7259 * (0:0:0:0:0:0:0:1), which can be represented as ::1
7260 */
7261 if (ipv6_addr_loopback(&key->dst) ||
7262 ipv6_addr_loopback(&key->src)) {
7263 dev_err(&pf->pdev->dev,
7264 "Bad ipv6, addr is LOOPBACK\n");
7265 return I40E_ERR_CONFIG;
7266 }
7267 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src))
7268 field_flags |= I40E_CLOUD_FIELD_IIP;
7269
7270 memcpy(&filter->src_ipv6, &key->src.s6_addr32,
7271 sizeof(filter->src_ipv6));
7272 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32,
7273 sizeof(filter->dst_ipv6));
7274 }
7275
7276 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) {
7277 struct flow_dissector_key_ports *key =
7278 skb_flow_dissector_target(f->dissector,
7279 FLOW_DISSECTOR_KEY_PORTS,
7280 f->key);
7281 struct flow_dissector_key_ports *mask =
7282 skb_flow_dissector_target(f->dissector,
7283 FLOW_DISSECTOR_KEY_PORTS,
7284 f->mask);
7285
7286 if (mask->src) {
7287 if (mask->src == cpu_to_be16(0xffff)) {
7288 field_flags |= I40E_CLOUD_FIELD_IIP;
7289 } else {
7290 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n",
7291 be16_to_cpu(mask->src));
7292 return I40E_ERR_CONFIG;
7293 }
7294 }
7295
7296 if (mask->dst) {
7297 if (mask->dst == cpu_to_be16(0xffff)) {
7298 field_flags |= I40E_CLOUD_FIELD_IIP;
7299 } else {
7300 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n",
7301 be16_to_cpu(mask->dst));
7302 return I40E_ERR_CONFIG;
7303 }
7304 }
7305
7306 filter->dst_port = key->dst;
7307 filter->src_port = key->src;
7308
7309 switch (filter->ip_proto) {
7310 case IPPROTO_TCP:
7311 case IPPROTO_UDP:
7312 break;
7313 default:
7314 dev_err(&pf->pdev->dev,
7315 "Only UDP and TCP transport are supported\n");
7316 return -EINVAL;
7317 }
7318 }
7319 filter->flags = field_flags;
7320 return 0;
7321 }
7322
7323 /**
7324 * i40e_handle_tclass: Forward to a traffic class on the device
7325 * @vsi: Pointer to VSI
7326 * @tc: traffic class index on the device
7327 * @filter: Pointer to cloud filter structure
7328 *
7329 **/
7330 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc,
7331 struct i40e_cloud_filter *filter)
7332 {
7333 struct i40e_channel *ch, *ch_tmp;
7334
7335 /* direct to a traffic class on the same device */
7336 if (tc == 0) {
7337 filter->seid = vsi->seid;
7338 return 0;
7339 } else if (vsi->tc_config.enabled_tc & BIT(tc)) {
7340 if (!filter->dst_port) {
7341 dev_err(&vsi->back->pdev->dev,
7342 "Specify destination port to direct to traffic class that is not default\n");
7343 return -EINVAL;
7344 }
7345 if (list_empty(&vsi->ch_list))
7346 return -EINVAL;
7347 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list,
7348 list) {
7349 if (ch->seid == vsi->tc_seid_map[tc])
7350 filter->seid = ch->seid;
7351 }
7352 return 0;
7353 }
7354 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n");
7355 return -EINVAL;
7356 }
7357
7358 /**
7359 * i40e_configure_clsflower - Configure tc flower filters
7360 * @vsi: Pointer to VSI
7361 * @cls_flower: Pointer to struct tc_cls_flower_offload
7362 *
7363 **/
7364 static int i40e_configure_clsflower(struct i40e_vsi *vsi,
7365 struct tc_cls_flower_offload *cls_flower)
7366 {
7367 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid);
7368 struct i40e_cloud_filter *filter = NULL;
7369 struct i40e_pf *pf = vsi->back;
7370 int err = 0;
7371
7372 if (tc < 0) {
7373 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n");
7374 return -EOPNOTSUPP;
7375 }
7376
7377 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
7378 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state))
7379 return -EBUSY;
7380
7381 if (pf->fdir_pf_active_filters ||
7382 (!hlist_empty(&pf->fdir_filter_list))) {
7383 dev_err(&vsi->back->pdev->dev,
7384 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n");
7385 return -EINVAL;
7386 }
7387
7388 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) {
7389 dev_err(&vsi->back->pdev->dev,
7390 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n");
7391 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED;
7392 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER;
7393 }
7394
7395 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
7396 if (!filter)
7397 return -ENOMEM;
7398
7399 filter->cookie = cls_flower->cookie;
7400
7401 err = i40e_parse_cls_flower(vsi, cls_flower, filter);
7402 if (err < 0)
7403 goto err;
7404
7405 err = i40e_handle_tclass(vsi, tc, filter);
7406 if (err < 0)
7407 goto err;
7408
7409 /* Add cloud filter */
7410 if (filter->dst_port)
7411 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true);
7412 else
7413 err = i40e_add_del_cloud_filter(vsi, filter, true);
7414
7415 if (err) {
7416 dev_err(&pf->pdev->dev,
7417 "Failed to add cloud filter, err %s\n",
7418 i40e_stat_str(&pf->hw, err));
7419 goto err;
7420 }
7421
7422 /* add filter to the ordered list */
7423 INIT_HLIST_NODE(&filter->cloud_node);
7424
7425 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list);
7426
7427 pf->num_cloud_filters++;
7428
7429 return err;
7430 err:
7431 kfree(filter);
7432 return err;
7433 }
7434
7435 /**
7436 * i40e_find_cloud_filter - Find the could filter in the list
7437 * @vsi: Pointer to VSI
7438 * @cookie: filter specific cookie
7439 *
7440 **/
7441 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi,
7442 unsigned long *cookie)
7443 {
7444 struct i40e_cloud_filter *filter = NULL;
7445 struct hlist_node *node2;
7446
7447 hlist_for_each_entry_safe(filter, node2,
7448 &vsi->back->cloud_filter_list, cloud_node)
7449 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
7450 return filter;
7451 return NULL;
7452 }
7453
7454 /**
7455 * i40e_delete_clsflower - Remove tc flower filters
7456 * @vsi: Pointer to VSI
7457 * @cls_flower: Pointer to struct tc_cls_flower_offload
7458 *
7459 **/
7460 static int i40e_delete_clsflower(struct i40e_vsi *vsi,
7461 struct tc_cls_flower_offload *cls_flower)
7462 {
7463 struct i40e_cloud_filter *filter = NULL;
7464 struct i40e_pf *pf = vsi->back;
7465 int err = 0;
7466
7467 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie);
7468
7469 if (!filter)
7470 return -EINVAL;
7471
7472 hash_del(&filter->cloud_node);
7473
7474 if (filter->dst_port)
7475 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false);
7476 else
7477 err = i40e_add_del_cloud_filter(vsi, filter, false);
7478
7479 kfree(filter);
7480 if (err) {
7481 dev_err(&pf->pdev->dev,
7482 "Failed to delete cloud filter, err %s\n",
7483 i40e_stat_str(&pf->hw, err));
7484 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status);
7485 }
7486
7487 pf->num_cloud_filters--;
7488 if (!pf->num_cloud_filters)
7489 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) &&
7490 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) {
7491 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
7492 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER;
7493 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE;
7494 }
7495 return 0;
7496 }
7497
7498 /**
7499 * i40e_setup_tc_cls_flower - flower classifier offloads
7500 * @netdev: net device to configure
7501 * @type_data: offload data
7502 **/
7503 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np,
7504 struct tc_cls_flower_offload *cls_flower)
7505 {
7506 struct i40e_vsi *vsi = np->vsi;
7507
7508 if (cls_flower->common.chain_index)
7509 return -EOPNOTSUPP;
7510
7511 switch (cls_flower->command) {
7512 case TC_CLSFLOWER_REPLACE:
7513 return i40e_configure_clsflower(vsi, cls_flower);
7514 case TC_CLSFLOWER_DESTROY:
7515 return i40e_delete_clsflower(vsi, cls_flower);
7516 case TC_CLSFLOWER_STATS:
7517 return -EOPNOTSUPP;
7518 default:
7519 return -EINVAL;
7520 }
7521 }
7522
7523 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7524 void *cb_priv)
7525 {
7526 struct i40e_netdev_priv *np = cb_priv;
7527
7528 switch (type) {
7529 case TC_SETUP_CLSFLOWER:
7530 return i40e_setup_tc_cls_flower(np, type_data);
7531
7532 default:
7533 return -EOPNOTSUPP;
7534 }
7535 }
7536
7537 static int i40e_setup_tc_block(struct net_device *dev,
7538 struct tc_block_offload *f)
7539 {
7540 struct i40e_netdev_priv *np = netdev_priv(dev);
7541
7542 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7543 return -EOPNOTSUPP;
7544
7545 switch (f->command) {
7546 case TC_BLOCK_BIND:
7547 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb,
7548 np, np);
7549 case TC_BLOCK_UNBIND:
7550 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np);
7551 return 0;
7552 default:
7553 return -EOPNOTSUPP;
7554 }
7555 }
7556
7557 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type,
7558 void *type_data)
7559 {
7560 switch (type) {
7561 case TC_SETUP_QDISC_MQPRIO:
7562 return i40e_setup_tc(netdev, type_data);
7563 case TC_SETUP_BLOCK:
7564 return i40e_setup_tc_block(netdev, type_data);
7565 default:
7566 return -EOPNOTSUPP;
7567 }
7568 }
7569
7570 /**
7571 * i40e_open - Called when a network interface is made active
7572 * @netdev: network interface device structure
7573 *
7574 * The open entry point is called when a network interface is made
7575 * active by the system (IFF_UP). At this point all resources needed
7576 * for transmit and receive operations are allocated, the interrupt
7577 * handler is registered with the OS, the netdev watchdog subtask is
7578 * enabled, and the stack is notified that the interface is ready.
7579 *
7580 * Returns 0 on success, negative value on failure
7581 **/
7582 int i40e_open(struct net_device *netdev)
7583 {
7584 struct i40e_netdev_priv *np = netdev_priv(netdev);
7585 struct i40e_vsi *vsi = np->vsi;
7586 struct i40e_pf *pf = vsi->back;
7587 int err;
7588
7589 /* disallow open during test or if eeprom is broken */
7590 if (test_bit(__I40E_TESTING, pf->state) ||
7591 test_bit(__I40E_BAD_EEPROM, pf->state))
7592 return -EBUSY;
7593
7594 netif_carrier_off(netdev);
7595
7596 err = i40e_vsi_open(vsi);
7597 if (err)
7598 return err;
7599
7600 /* configure global TSO hardware offload settings */
7601 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH |
7602 TCP_FLAG_FIN) >> 16);
7603 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH |
7604 TCP_FLAG_FIN |
7605 TCP_FLAG_CWR) >> 16);
7606 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16);
7607
7608 udp_tunnel_get_rx_info(netdev);
7609
7610 return 0;
7611 }
7612
7613 /**
7614 * i40e_vsi_open -
7615 * @vsi: the VSI to open
7616 *
7617 * Finish initialization of the VSI.
7618 *
7619 * Returns 0 on success, negative value on failure
7620 *
7621 * Note: expects to be called while under rtnl_lock()
7622 **/
7623 int i40e_vsi_open(struct i40e_vsi *vsi)
7624 {
7625 struct i40e_pf *pf = vsi->back;
7626 char int_name[I40E_INT_NAME_STR_LEN];
7627 int err;
7628
7629 /* allocate descriptors */
7630 err = i40e_vsi_setup_tx_resources(vsi);
7631 if (err)
7632 goto err_setup_tx;
7633 err = i40e_vsi_setup_rx_resources(vsi);
7634 if (err)
7635 goto err_setup_rx;
7636
7637 err = i40e_vsi_configure(vsi);
7638 if (err)
7639 goto err_setup_rx;
7640
7641 if (vsi->netdev) {
7642 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7643 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
7644 err = i40e_vsi_request_irq(vsi, int_name);
7645 if (err)
7646 goto err_setup_rx;
7647
7648 /* Notify the stack of the actual queue counts. */
7649 err = netif_set_real_num_tx_queues(vsi->netdev,
7650 vsi->num_queue_pairs);
7651 if (err)
7652 goto err_set_queues;
7653
7654 err = netif_set_real_num_rx_queues(vsi->netdev,
7655 vsi->num_queue_pairs);
7656 if (err)
7657 goto err_set_queues;
7658
7659 } else if (vsi->type == I40E_VSI_FDIR) {
7660 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir",
7661 dev_driver_string(&pf->pdev->dev),
7662 dev_name(&pf->pdev->dev));
7663 err = i40e_vsi_request_irq(vsi, int_name);
7664
7665 } else {
7666 err = -EINVAL;
7667 goto err_setup_rx;
7668 }
7669
7670 err = i40e_up_complete(vsi);
7671 if (err)
7672 goto err_up_complete;
7673
7674 return 0;
7675
7676 err_up_complete:
7677 i40e_down(vsi);
7678 err_set_queues:
7679 i40e_vsi_free_irq(vsi);
7680 err_setup_rx:
7681 i40e_vsi_free_rx_resources(vsi);
7682 err_setup_tx:
7683 i40e_vsi_free_tx_resources(vsi);
7684 if (vsi == pf->vsi[pf->lan_vsi])
7685 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
7686
7687 return err;
7688 }
7689
7690 /**
7691 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting
7692 * @pf: Pointer to PF
7693 *
7694 * This function destroys the hlist where all the Flow Director
7695 * filters were saved.
7696 **/
7697 static void i40e_fdir_filter_exit(struct i40e_pf *pf)
7698 {
7699 struct i40e_fdir_filter *filter;
7700 struct i40e_flex_pit *pit_entry, *tmp;
7701 struct hlist_node *node2;
7702
7703 hlist_for_each_entry_safe(filter, node2,
7704 &pf->fdir_filter_list, fdir_node) {
7705 hlist_del(&filter->fdir_node);
7706 kfree(filter);
7707 }
7708
7709 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) {
7710 list_del(&pit_entry->list);
7711 kfree(pit_entry);
7712 }
7713 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
7714
7715 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) {
7716 list_del(&pit_entry->list);
7717 kfree(pit_entry);
7718 }
7719 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
7720
7721 pf->fdir_pf_active_filters = 0;
7722 pf->fd_tcp4_filter_cnt = 0;
7723 pf->fd_udp4_filter_cnt = 0;
7724 pf->fd_sctp4_filter_cnt = 0;
7725 pf->fd_ip4_filter_cnt = 0;
7726
7727 /* Reprogram the default input set for TCP/IPv4 */
7728 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
7729 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
7730 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
7731
7732 /* Reprogram the default input set for UDP/IPv4 */
7733 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP,
7734 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
7735 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
7736
7737 /* Reprogram the default input set for SCTP/IPv4 */
7738 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP,
7739 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
7740 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
7741
7742 /* Reprogram the default input set for Other/IPv4 */
7743 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER,
7744 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
7745 }
7746
7747 /**
7748 * i40e_cloud_filter_exit - Cleans up the cloud filters
7749 * @pf: Pointer to PF
7750 *
7751 * This function destroys the hlist where all the cloud filters
7752 * were saved.
7753 **/
7754 static void i40e_cloud_filter_exit(struct i40e_pf *pf)
7755 {
7756 struct i40e_cloud_filter *cfilter;
7757 struct hlist_node *node;
7758
7759 hlist_for_each_entry_safe(cfilter, node,
7760 &pf->cloud_filter_list, cloud_node) {
7761 hlist_del(&cfilter->cloud_node);
7762 kfree(cfilter);
7763 }
7764 pf->num_cloud_filters = 0;
7765
7766 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) &&
7767 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) {
7768 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
7769 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER;
7770 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE;
7771 }
7772 }
7773
7774 /**
7775 * i40e_close - Disables a network interface
7776 * @netdev: network interface device structure
7777 *
7778 * The close entry point is called when an interface is de-activated
7779 * by the OS. The hardware is still under the driver's control, but
7780 * this netdev interface is disabled.
7781 *
7782 * Returns 0, this is not allowed to fail
7783 **/
7784 int i40e_close(struct net_device *netdev)
7785 {
7786 struct i40e_netdev_priv *np = netdev_priv(netdev);
7787 struct i40e_vsi *vsi = np->vsi;
7788
7789 i40e_vsi_close(vsi);
7790
7791 return 0;
7792 }
7793
7794 /**
7795 * i40e_do_reset - Start a PF or Core Reset sequence
7796 * @pf: board private structure
7797 * @reset_flags: which reset is requested
7798 * @lock_acquired: indicates whether or not the lock has been acquired
7799 * before this function was called.
7800 *
7801 * The essential difference in resets is that the PF Reset
7802 * doesn't clear the packet buffers, doesn't reset the PE
7803 * firmware, and doesn't bother the other PFs on the chip.
7804 **/
7805 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired)
7806 {
7807 u32 val;
7808
7809 WARN_ON(in_interrupt());
7810
7811
7812 /* do the biggest reset indicated */
7813 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) {
7814
7815 /* Request a Global Reset
7816 *
7817 * This will start the chip's countdown to the actual full
7818 * chip reset event, and a warning interrupt to be sent
7819 * to all PFs, including the requestor. Our handler
7820 * for the warning interrupt will deal with the shutdown
7821 * and recovery of the switch setup.
7822 */
7823 dev_dbg(&pf->pdev->dev, "GlobalR requested\n");
7824 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
7825 val |= I40E_GLGEN_RTRIG_GLOBR_MASK;
7826 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
7827
7828 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) {
7829
7830 /* Request a Core Reset
7831 *
7832 * Same as Global Reset, except does *not* include the MAC/PHY
7833 */
7834 dev_dbg(&pf->pdev->dev, "CoreR requested\n");
7835 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
7836 val |= I40E_GLGEN_RTRIG_CORER_MASK;
7837 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
7838 i40e_flush(&pf->hw);
7839
7840 } else if (reset_flags & I40E_PF_RESET_FLAG) {
7841
7842 /* Request a PF Reset
7843 *
7844 * Resets only the PF-specific registers
7845 *
7846 * This goes directly to the tear-down and rebuild of
7847 * the switch, since we need to do all the recovery as
7848 * for the Core Reset.
7849 */
7850 dev_dbg(&pf->pdev->dev, "PFR requested\n");
7851 i40e_handle_reset_warning(pf, lock_acquired);
7852
7853 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) {
7854 int v;
7855
7856 /* Find the VSI(s) that requested a re-init */
7857 dev_info(&pf->pdev->dev,
7858 "VSI reinit requested\n");
7859 for (v = 0; v < pf->num_alloc_vsi; v++) {
7860 struct i40e_vsi *vsi = pf->vsi[v];
7861
7862 if (vsi != NULL &&
7863 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED,
7864 vsi->state))
7865 i40e_vsi_reinit_locked(pf->vsi[v]);
7866 }
7867 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) {
7868 int v;
7869
7870 /* Find the VSI(s) that needs to be brought down */
7871 dev_info(&pf->pdev->dev, "VSI down requested\n");
7872 for (v = 0; v < pf->num_alloc_vsi; v++) {
7873 struct i40e_vsi *vsi = pf->vsi[v];
7874
7875 if (vsi != NULL &&
7876 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED,
7877 vsi->state)) {
7878 set_bit(__I40E_VSI_DOWN, vsi->state);
7879 i40e_down(vsi);
7880 }
7881 }
7882 } else {
7883 dev_info(&pf->pdev->dev,
7884 "bad reset request 0x%08x\n", reset_flags);
7885 }
7886 }
7887
7888 #ifdef CONFIG_I40E_DCB
7889 /**
7890 * i40e_dcb_need_reconfig - Check if DCB needs reconfig
7891 * @pf: board private structure
7892 * @old_cfg: current DCB config
7893 * @new_cfg: new DCB config
7894 **/
7895 bool i40e_dcb_need_reconfig(struct i40e_pf *pf,
7896 struct i40e_dcbx_config *old_cfg,
7897 struct i40e_dcbx_config *new_cfg)
7898 {
7899 bool need_reconfig = false;
7900
7901 /* Check if ETS configuration has changed */
7902 if (memcmp(&new_cfg->etscfg,
7903 &old_cfg->etscfg,
7904 sizeof(new_cfg->etscfg))) {
7905 /* If Priority Table has changed reconfig is needed */
7906 if (memcmp(&new_cfg->etscfg.prioritytable,
7907 &old_cfg->etscfg.prioritytable,
7908 sizeof(new_cfg->etscfg.prioritytable))) {
7909 need_reconfig = true;
7910 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n");
7911 }
7912
7913 if (memcmp(&new_cfg->etscfg.tcbwtable,
7914 &old_cfg->etscfg.tcbwtable,
7915 sizeof(new_cfg->etscfg.tcbwtable)))
7916 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n");
7917
7918 if (memcmp(&new_cfg->etscfg.tsatable,
7919 &old_cfg->etscfg.tsatable,
7920 sizeof(new_cfg->etscfg.tsatable)))
7921 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n");
7922 }
7923
7924 /* Check if PFC configuration has changed */
7925 if (memcmp(&new_cfg->pfc,
7926 &old_cfg->pfc,
7927 sizeof(new_cfg->pfc))) {
7928 need_reconfig = true;
7929 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n");
7930 }
7931
7932 /* Check if APP Table has changed */
7933 if (memcmp(&new_cfg->app,
7934 &old_cfg->app,
7935 sizeof(new_cfg->app))) {
7936 need_reconfig = true;
7937 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n");
7938 }
7939
7940 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig);
7941 return need_reconfig;
7942 }
7943
7944 /**
7945 * i40e_handle_lldp_event - Handle LLDP Change MIB event
7946 * @pf: board private structure
7947 * @e: event info posted on ARQ
7948 **/
7949 static int i40e_handle_lldp_event(struct i40e_pf *pf,
7950 struct i40e_arq_event_info *e)
7951 {
7952 struct i40e_aqc_lldp_get_mib *mib =
7953 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw;
7954 struct i40e_hw *hw = &pf->hw;
7955 struct i40e_dcbx_config tmp_dcbx_cfg;
7956 bool need_reconfig = false;
7957 int ret = 0;
7958 u8 type;
7959
7960 /* Not DCB capable or capability disabled */
7961 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE))
7962 return ret;
7963
7964 /* Ignore if event is not for Nearest Bridge */
7965 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT)
7966 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
7967 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type);
7968 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE)
7969 return ret;
7970
7971 /* Check MIB Type and return if event for Remote MIB update */
7972 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK;
7973 dev_dbg(&pf->pdev->dev,
7974 "LLDP event mib type %s\n", type ? "remote" : "local");
7975 if (type == I40E_AQ_LLDP_MIB_REMOTE) {
7976 /* Update the remote cached instance and return */
7977 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE,
7978 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE,
7979 &hw->remote_dcbx_config);
7980 goto exit;
7981 }
7982
7983 /* Store the old configuration */
7984 tmp_dcbx_cfg = hw->local_dcbx_config;
7985
7986 /* Reset the old DCBx configuration data */
7987 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config));
7988 /* Get updated DCBX data from firmware */
7989 ret = i40e_get_dcb_config(&pf->hw);
7990 if (ret) {
7991 dev_info(&pf->pdev->dev,
7992 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n",
7993 i40e_stat_str(&pf->hw, ret),
7994 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7995 goto exit;
7996 }
7997
7998 /* No change detected in DCBX configs */
7999 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config,
8000 sizeof(tmp_dcbx_cfg))) {
8001 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n");
8002 goto exit;
8003 }
8004
8005 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg,
8006 &hw->local_dcbx_config);
8007
8008 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config);
8009
8010 if (!need_reconfig)
8011 goto exit;
8012
8013 /* Enable DCB tagging only when more than one TC */
8014 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
8015 pf->flags |= I40E_FLAG_DCB_ENABLED;
8016 else
8017 pf->flags &= ~I40E_FLAG_DCB_ENABLED;
8018
8019 set_bit(__I40E_PORT_SUSPENDED, pf->state);
8020 /* Reconfiguration needed quiesce all VSIs */
8021 i40e_pf_quiesce_all_vsi(pf);
8022
8023 /* Changes in configuration update VEB/VSI */
8024 i40e_dcb_reconfigure(pf);
8025
8026 ret = i40e_resume_port_tx(pf);
8027
8028 clear_bit(__I40E_PORT_SUSPENDED, pf->state);
8029 /* In case of error no point in resuming VSIs */
8030 if (ret)
8031 goto exit;
8032
8033 /* Wait for the PF's queues to be disabled */
8034 ret = i40e_pf_wait_queues_disabled(pf);
8035 if (ret) {
8036 /* Schedule PF reset to recover */
8037 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
8038 i40e_service_event_schedule(pf);
8039 } else {
8040 i40e_pf_unquiesce_all_vsi(pf);
8041 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED |
8042 I40E_FLAG_CLIENT_L2_CHANGE);
8043 }
8044
8045 exit:
8046 return ret;
8047 }
8048 #endif /* CONFIG_I40E_DCB */
8049
8050 /**
8051 * i40e_do_reset_safe - Protected reset path for userland calls.
8052 * @pf: board private structure
8053 * @reset_flags: which reset is requested
8054 *
8055 **/
8056 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags)
8057 {
8058 rtnl_lock();
8059 i40e_do_reset(pf, reset_flags, true);
8060 rtnl_unlock();
8061 }
8062
8063 /**
8064 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event
8065 * @pf: board private structure
8066 * @e: event info posted on ARQ
8067 *
8068 * Handler for LAN Queue Overflow Event generated by the firmware for PF
8069 * and VF queues
8070 **/
8071 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf,
8072 struct i40e_arq_event_info *e)
8073 {
8074 struct i40e_aqc_lan_overflow *data =
8075 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw;
8076 u32 queue = le32_to_cpu(data->prtdcb_rupto);
8077 u32 qtx_ctl = le32_to_cpu(data->otx_ctl);
8078 struct i40e_hw *hw = &pf->hw;
8079 struct i40e_vf *vf;
8080 u16 vf_id;
8081
8082 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n",
8083 queue, qtx_ctl);
8084
8085 /* Queue belongs to VF, find the VF and issue VF reset */
8086 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK)
8087 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) {
8088 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK)
8089 >> I40E_QTX_CTL_VFVM_INDX_SHIFT);
8090 vf_id -= hw->func_caps.vf_base_id;
8091 vf = &pf->vf[vf_id];
8092 i40e_vc_notify_vf_reset(vf);
8093 /* Allow VF to process pending reset notification */
8094 msleep(20);
8095 i40e_reset_vf(vf, false);
8096 }
8097 }
8098
8099 /**
8100 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters
8101 * @pf: board private structure
8102 **/
8103 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf)
8104 {
8105 u32 val, fcnt_prog;
8106
8107 val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
8108 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK);
8109 return fcnt_prog;
8110 }
8111
8112 /**
8113 * i40e_get_current_fd_count - Get total FD filters programmed for this PF
8114 * @pf: board private structure
8115 **/
8116 u32 i40e_get_current_fd_count(struct i40e_pf *pf)
8117 {
8118 u32 val, fcnt_prog;
8119
8120 val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
8121 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) +
8122 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >>
8123 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT);
8124 return fcnt_prog;
8125 }
8126
8127 /**
8128 * i40e_get_global_fd_count - Get total FD filters programmed on device
8129 * @pf: board private structure
8130 **/
8131 u32 i40e_get_global_fd_count(struct i40e_pf *pf)
8132 {
8133 u32 val, fcnt_prog;
8134
8135 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0);
8136 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) +
8137 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >>
8138 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT);
8139 return fcnt_prog;
8140 }
8141
8142 /**
8143 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled
8144 * @pf: board private structure
8145 **/
8146 void i40e_fdir_check_and_reenable(struct i40e_pf *pf)
8147 {
8148 struct i40e_fdir_filter *filter;
8149 u32 fcnt_prog, fcnt_avail;
8150 struct hlist_node *node;
8151
8152 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
8153 return;
8154
8155 /* Check if we have enough room to re-enable FDir SB capability. */
8156 fcnt_prog = i40e_get_global_fd_count(pf);
8157 fcnt_avail = pf->fdir_pf_filter_count;
8158 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) ||
8159 (pf->fd_add_err == 0) ||
8160 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) {
8161 if (pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
8162 pf->flags &= ~I40E_FLAG_FD_SB_AUTO_DISABLED;
8163 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
8164 (I40E_DEBUG_FD & pf->hw.debug_mask))
8165 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n");
8166 }
8167 }
8168
8169 /* We should wait for even more space before re-enabling ATR.
8170 * Additionally, we cannot enable ATR as long as we still have TCP SB
8171 * rules active.
8172 */
8173 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) &&
8174 (pf->fd_tcp4_filter_cnt == 0)) {
8175 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) {
8176 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
8177 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
8178 (I40E_DEBUG_FD & pf->hw.debug_mask))
8179 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n");
8180 }
8181 }
8182
8183 /* if hw had a problem adding a filter, delete it */
8184 if (pf->fd_inv > 0) {
8185 hlist_for_each_entry_safe(filter, node,
8186 &pf->fdir_filter_list, fdir_node) {
8187 if (filter->fd_id == pf->fd_inv) {
8188 hlist_del(&filter->fdir_node);
8189 kfree(filter);
8190 pf->fdir_pf_active_filters--;
8191 pf->fd_inv = 0;
8192 }
8193 }
8194 }
8195 }
8196
8197 #define I40E_MIN_FD_FLUSH_INTERVAL 10
8198 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30
8199 /**
8200 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB
8201 * @pf: board private structure
8202 **/
8203 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf)
8204 {
8205 unsigned long min_flush_time;
8206 int flush_wait_retry = 50;
8207 bool disable_atr = false;
8208 int fd_room;
8209 int reg;
8210
8211 if (!time_after(jiffies, pf->fd_flush_timestamp +
8212 (I40E_MIN_FD_FLUSH_INTERVAL * HZ)))
8213 return;
8214
8215 /* If the flush is happening too quick and we have mostly SB rules we
8216 * should not re-enable ATR for some time.
8217 */
8218 min_flush_time = pf->fd_flush_timestamp +
8219 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ);
8220 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters;
8221
8222 if (!(time_after(jiffies, min_flush_time)) &&
8223 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) {
8224 if (I40E_DEBUG_FD & pf->hw.debug_mask)
8225 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n");
8226 disable_atr = true;
8227 }
8228
8229 pf->fd_flush_timestamp = jiffies;
8230 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
8231 /* flush all filters */
8232 wr32(&pf->hw, I40E_PFQF_CTL_1,
8233 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK);
8234 i40e_flush(&pf->hw);
8235 pf->fd_flush_cnt++;
8236 pf->fd_add_err = 0;
8237 do {
8238 /* Check FD flush status every 5-6msec */
8239 usleep_range(5000, 6000);
8240 reg = rd32(&pf->hw, I40E_PFQF_CTL_1);
8241 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK))
8242 break;
8243 } while (flush_wait_retry--);
8244 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) {
8245 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n");
8246 } else {
8247 /* replay sideband filters */
8248 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]);
8249 if (!disable_atr && !pf->fd_tcp4_filter_cnt)
8250 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
8251 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
8252 if (I40E_DEBUG_FD & pf->hw.debug_mask)
8253 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n");
8254 }
8255 }
8256
8257 /**
8258 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed
8259 * @pf: board private structure
8260 **/
8261 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf)
8262 {
8263 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters;
8264 }
8265
8266 /* We can see up to 256 filter programming desc in transit if the filters are
8267 * being applied really fast; before we see the first
8268 * filter miss error on Rx queue 0. Accumulating enough error messages before
8269 * reacting will make sure we don't cause flush too often.
8270 */
8271 #define I40E_MAX_FD_PROGRAM_ERROR 256
8272
8273 /**
8274 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table
8275 * @pf: board private structure
8276 **/
8277 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf)
8278 {
8279
8280 /* if interface is down do nothing */
8281 if (test_bit(__I40E_DOWN, pf->state))
8282 return;
8283
8284 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
8285 i40e_fdir_flush_and_replay(pf);
8286
8287 i40e_fdir_check_and_reenable(pf);
8288
8289 }
8290
8291 /**
8292 * i40e_vsi_link_event - notify VSI of a link event
8293 * @vsi: vsi to be notified
8294 * @link_up: link up or down
8295 **/
8296 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up)
8297 {
8298 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state))
8299 return;
8300
8301 switch (vsi->type) {
8302 case I40E_VSI_MAIN:
8303 if (!vsi->netdev || !vsi->netdev_registered)
8304 break;
8305
8306 if (link_up) {
8307 netif_carrier_on(vsi->netdev);
8308 netif_tx_wake_all_queues(vsi->netdev);
8309 } else {
8310 netif_carrier_off(vsi->netdev);
8311 netif_tx_stop_all_queues(vsi->netdev);
8312 }
8313 break;
8314
8315 case I40E_VSI_SRIOV:
8316 case I40E_VSI_VMDQ2:
8317 case I40E_VSI_CTRL:
8318 case I40E_VSI_IWARP:
8319 case I40E_VSI_MIRROR:
8320 default:
8321 /* there is no notification for other VSIs */
8322 break;
8323 }
8324 }
8325
8326 /**
8327 * i40e_veb_link_event - notify elements on the veb of a link event
8328 * @veb: veb to be notified
8329 * @link_up: link up or down
8330 **/
8331 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up)
8332 {
8333 struct i40e_pf *pf;
8334 int i;
8335
8336 if (!veb || !veb->pf)
8337 return;
8338 pf = veb->pf;
8339
8340 /* depth first... */
8341 for (i = 0; i < I40E_MAX_VEB; i++)
8342 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid))
8343 i40e_veb_link_event(pf->veb[i], link_up);
8344
8345 /* ... now the local VSIs */
8346 for (i = 0; i < pf->num_alloc_vsi; i++)
8347 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid))
8348 i40e_vsi_link_event(pf->vsi[i], link_up);
8349 }
8350
8351 /**
8352 * i40e_link_event - Update netif_carrier status
8353 * @pf: board private structure
8354 **/
8355 static void i40e_link_event(struct i40e_pf *pf)
8356 {
8357 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8358 u8 new_link_speed, old_link_speed;
8359 i40e_status status;
8360 bool new_link, old_link;
8361
8362 /* save off old link status information */
8363 pf->hw.phy.link_info_old = pf->hw.phy.link_info;
8364
8365 /* set this to force the get_link_status call to refresh state */
8366 pf->hw.phy.get_link_info = true;
8367
8368 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP);
8369
8370 status = i40e_get_link_status(&pf->hw, &new_link);
8371
8372 /* On success, disable temp link polling */
8373 if (status == I40E_SUCCESS) {
8374 if (pf->flags & I40E_FLAG_TEMP_LINK_POLLING)
8375 pf->flags &= ~I40E_FLAG_TEMP_LINK_POLLING;
8376 } else {
8377 /* Enable link polling temporarily until i40e_get_link_status
8378 * returns I40E_SUCCESS
8379 */
8380 pf->flags |= I40E_FLAG_TEMP_LINK_POLLING;
8381 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n",
8382 status);
8383 return;
8384 }
8385
8386 old_link_speed = pf->hw.phy.link_info_old.link_speed;
8387 new_link_speed = pf->hw.phy.link_info.link_speed;
8388
8389 if (new_link == old_link &&
8390 new_link_speed == old_link_speed &&
8391 (test_bit(__I40E_VSI_DOWN, vsi->state) ||
8392 new_link == netif_carrier_ok(vsi->netdev)))
8393 return;
8394
8395 i40e_print_link_message(vsi, new_link);
8396
8397 /* Notify the base of the switch tree connected to
8398 * the link. Floating VEBs are not notified.
8399 */
8400 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
8401 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link);
8402 else
8403 i40e_vsi_link_event(vsi, new_link);
8404
8405 if (pf->vf)
8406 i40e_vc_notify_link_state(pf);
8407
8408 if (pf->flags & I40E_FLAG_PTP)
8409 i40e_ptp_set_increment(pf);
8410 }
8411
8412 /**
8413 * i40e_watchdog_subtask - periodic checks not using event driven response
8414 * @pf: board private structure
8415 **/
8416 static void i40e_watchdog_subtask(struct i40e_pf *pf)
8417 {
8418 int i;
8419
8420 /* if interface is down do nothing */
8421 if (test_bit(__I40E_DOWN, pf->state) ||
8422 test_bit(__I40E_CONFIG_BUSY, pf->state))
8423 return;
8424
8425 /* make sure we don't do these things too often */
8426 if (time_before(jiffies, (pf->service_timer_previous +
8427 pf->service_timer_period)))
8428 return;
8429 pf->service_timer_previous = jiffies;
8430
8431 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) ||
8432 (pf->flags & I40E_FLAG_TEMP_LINK_POLLING))
8433 i40e_link_event(pf);
8434
8435 /* Update the stats for active netdevs so the network stack
8436 * can look at updated numbers whenever it cares to
8437 */
8438 for (i = 0; i < pf->num_alloc_vsi; i++)
8439 if (pf->vsi[i] && pf->vsi[i]->netdev)
8440 i40e_update_stats(pf->vsi[i]);
8441
8442 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) {
8443 /* Update the stats for the active switching components */
8444 for (i = 0; i < I40E_MAX_VEB; i++)
8445 if (pf->veb[i])
8446 i40e_update_veb_stats(pf->veb[i]);
8447 }
8448
8449 i40e_ptp_rx_hang(pf);
8450 i40e_ptp_tx_hang(pf);
8451 }
8452
8453 /**
8454 * i40e_reset_subtask - Set up for resetting the device and driver
8455 * @pf: board private structure
8456 **/
8457 static void i40e_reset_subtask(struct i40e_pf *pf)
8458 {
8459 u32 reset_flags = 0;
8460
8461 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) {
8462 reset_flags |= BIT(__I40E_REINIT_REQUESTED);
8463 clear_bit(__I40E_REINIT_REQUESTED, pf->state);
8464 }
8465 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) {
8466 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED);
8467 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state);
8468 }
8469 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) {
8470 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED);
8471 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
8472 }
8473 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) {
8474 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED);
8475 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
8476 }
8477 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) {
8478 reset_flags |= BIT(__I40E_DOWN_REQUESTED);
8479 clear_bit(__I40E_DOWN_REQUESTED, pf->state);
8480 }
8481
8482 /* If there's a recovery already waiting, it takes
8483 * precedence before starting a new reset sequence.
8484 */
8485 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) {
8486 i40e_prep_for_reset(pf, false);
8487 i40e_reset(pf);
8488 i40e_rebuild(pf, false, false);
8489 }
8490
8491 /* If we're already down or resetting, just bail */
8492 if (reset_flags &&
8493 !test_bit(__I40E_DOWN, pf->state) &&
8494 !test_bit(__I40E_CONFIG_BUSY, pf->state)) {
8495 i40e_do_reset(pf, reset_flags, false);
8496 }
8497 }
8498
8499 /**
8500 * i40e_handle_link_event - Handle link event
8501 * @pf: board private structure
8502 * @e: event info posted on ARQ
8503 **/
8504 static void i40e_handle_link_event(struct i40e_pf *pf,
8505 struct i40e_arq_event_info *e)
8506 {
8507 struct i40e_aqc_get_link_status *status =
8508 (struct i40e_aqc_get_link_status *)&e->desc.params.raw;
8509
8510 /* Do a new status request to re-enable LSE reporting
8511 * and load new status information into the hw struct
8512 * This completely ignores any state information
8513 * in the ARQ event info, instead choosing to always
8514 * issue the AQ update link status command.
8515 */
8516 i40e_link_event(pf);
8517
8518 /* Check if module meets thermal requirements */
8519 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) {
8520 dev_err(&pf->pdev->dev,
8521 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n");
8522 dev_err(&pf->pdev->dev,
8523 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
8524 } else {
8525 /* check for unqualified module, if link is down, suppress
8526 * the message if link was forced to be down.
8527 */
8528 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) &&
8529 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) &&
8530 (!(status->link_info & I40E_AQ_LINK_UP)) &&
8531 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) {
8532 dev_err(&pf->pdev->dev,
8533 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n");
8534 dev_err(&pf->pdev->dev,
8535 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
8536 }
8537 }
8538 }
8539
8540 /**
8541 * i40e_clean_adminq_subtask - Clean the AdminQ rings
8542 * @pf: board private structure
8543 **/
8544 static void i40e_clean_adminq_subtask(struct i40e_pf *pf)
8545 {
8546 struct i40e_arq_event_info event;
8547 struct i40e_hw *hw = &pf->hw;
8548 u16 pending, i = 0;
8549 i40e_status ret;
8550 u16 opcode;
8551 u32 oldval;
8552 u32 val;
8553
8554 /* Do not run clean AQ when PF reset fails */
8555 if (test_bit(__I40E_RESET_FAILED, pf->state))
8556 return;
8557
8558 /* check for error indications */
8559 val = rd32(&pf->hw, pf->hw.aq.arq.len);
8560 oldval = val;
8561 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) {
8562 if (hw->debug_mask & I40E_DEBUG_AQ)
8563 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n");
8564 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK;
8565 }
8566 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) {
8567 if (hw->debug_mask & I40E_DEBUG_AQ)
8568 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n");
8569 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK;
8570 pf->arq_overflows++;
8571 }
8572 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) {
8573 if (hw->debug_mask & I40E_DEBUG_AQ)
8574 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n");
8575 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK;
8576 }
8577 if (oldval != val)
8578 wr32(&pf->hw, pf->hw.aq.arq.len, val);
8579
8580 val = rd32(&pf->hw, pf->hw.aq.asq.len);
8581 oldval = val;
8582 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) {
8583 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
8584 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n");
8585 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK;
8586 }
8587 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) {
8588 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
8589 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n");
8590 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK;
8591 }
8592 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) {
8593 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
8594 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n");
8595 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK;
8596 }
8597 if (oldval != val)
8598 wr32(&pf->hw, pf->hw.aq.asq.len, val);
8599
8600 event.buf_len = I40E_MAX_AQ_BUF_SIZE;
8601 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
8602 if (!event.msg_buf)
8603 return;
8604
8605 do {
8606 ret = i40e_clean_arq_element(hw, &event, &pending);
8607 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK)
8608 break;
8609 else if (ret) {
8610 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret);
8611 break;
8612 }
8613
8614 opcode = le16_to_cpu(event.desc.opcode);
8615 switch (opcode) {
8616
8617 case i40e_aqc_opc_get_link_status:
8618 i40e_handle_link_event(pf, &event);
8619 break;
8620 case i40e_aqc_opc_send_msg_to_pf:
8621 ret = i40e_vc_process_vf_msg(pf,
8622 le16_to_cpu(event.desc.retval),
8623 le32_to_cpu(event.desc.cookie_high),
8624 le32_to_cpu(event.desc.cookie_low),
8625 event.msg_buf,
8626 event.msg_len);
8627 break;
8628 case i40e_aqc_opc_lldp_update_mib:
8629 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n");
8630 #ifdef CONFIG_I40E_DCB
8631 rtnl_lock();
8632 ret = i40e_handle_lldp_event(pf, &event);
8633 rtnl_unlock();
8634 #endif /* CONFIG_I40E_DCB */
8635 break;
8636 case i40e_aqc_opc_event_lan_overflow:
8637 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n");
8638 i40e_handle_lan_overflow_event(pf, &event);
8639 break;
8640 case i40e_aqc_opc_send_msg_to_peer:
8641 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n");
8642 break;
8643 case i40e_aqc_opc_nvm_erase:
8644 case i40e_aqc_opc_nvm_update:
8645 case i40e_aqc_opc_oem_post_update:
8646 i40e_debug(&pf->hw, I40E_DEBUG_NVM,
8647 "ARQ NVM operation 0x%04x completed\n",
8648 opcode);
8649 break;
8650 default:
8651 dev_info(&pf->pdev->dev,
8652 "ARQ: Unknown event 0x%04x ignored\n",
8653 opcode);
8654 break;
8655 }
8656 } while (i++ < pf->adminq_work_limit);
8657
8658 if (i < pf->adminq_work_limit)
8659 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
8660
8661 /* re-enable Admin queue interrupt cause */
8662 val = rd32(hw, I40E_PFINT_ICR0_ENA);
8663 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
8664 wr32(hw, I40E_PFINT_ICR0_ENA, val);
8665 i40e_flush(hw);
8666
8667 kfree(event.msg_buf);
8668 }
8669
8670 /**
8671 * i40e_verify_eeprom - make sure eeprom is good to use
8672 * @pf: board private structure
8673 **/
8674 static void i40e_verify_eeprom(struct i40e_pf *pf)
8675 {
8676 int err;
8677
8678 err = i40e_diag_eeprom_test(&pf->hw);
8679 if (err) {
8680 /* retry in case of garbage read */
8681 err = i40e_diag_eeprom_test(&pf->hw);
8682 if (err) {
8683 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n",
8684 err);
8685 set_bit(__I40E_BAD_EEPROM, pf->state);
8686 }
8687 }
8688
8689 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) {
8690 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n");
8691 clear_bit(__I40E_BAD_EEPROM, pf->state);
8692 }
8693 }
8694
8695 /**
8696 * i40e_enable_pf_switch_lb
8697 * @pf: pointer to the PF structure
8698 *
8699 * enable switch loop back or die - no point in a return value
8700 **/
8701 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf)
8702 {
8703 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8704 struct i40e_vsi_context ctxt;
8705 int ret;
8706
8707 ctxt.seid = pf->main_vsi_seid;
8708 ctxt.pf_num = pf->hw.pf_id;
8709 ctxt.vf_num = 0;
8710 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
8711 if (ret) {
8712 dev_info(&pf->pdev->dev,
8713 "couldn't get PF vsi config, err %s aq_err %s\n",
8714 i40e_stat_str(&pf->hw, ret),
8715 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8716 return;
8717 }
8718 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
8719 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
8720 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
8721
8722 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
8723 if (ret) {
8724 dev_info(&pf->pdev->dev,
8725 "update vsi switch failed, err %s aq_err %s\n",
8726 i40e_stat_str(&pf->hw, ret),
8727 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8728 }
8729 }
8730
8731 /**
8732 * i40e_disable_pf_switch_lb
8733 * @pf: pointer to the PF structure
8734 *
8735 * disable switch loop back or die - no point in a return value
8736 **/
8737 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf)
8738 {
8739 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8740 struct i40e_vsi_context ctxt;
8741 int ret;
8742
8743 ctxt.seid = pf->main_vsi_seid;
8744 ctxt.pf_num = pf->hw.pf_id;
8745 ctxt.vf_num = 0;
8746 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
8747 if (ret) {
8748 dev_info(&pf->pdev->dev,
8749 "couldn't get PF vsi config, err %s aq_err %s\n",
8750 i40e_stat_str(&pf->hw, ret),
8751 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8752 return;
8753 }
8754 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
8755 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
8756 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
8757
8758 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
8759 if (ret) {
8760 dev_info(&pf->pdev->dev,
8761 "update vsi switch failed, err %s aq_err %s\n",
8762 i40e_stat_str(&pf->hw, ret),
8763 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8764 }
8765 }
8766
8767 /**
8768 * i40e_config_bridge_mode - Configure the HW bridge mode
8769 * @veb: pointer to the bridge instance
8770 *
8771 * Configure the loop back mode for the LAN VSI that is downlink to the
8772 * specified HW bridge instance. It is expected this function is called
8773 * when a new HW bridge is instantiated.
8774 **/
8775 static void i40e_config_bridge_mode(struct i40e_veb *veb)
8776 {
8777 struct i40e_pf *pf = veb->pf;
8778
8779 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
8780 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n",
8781 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
8782 if (veb->bridge_mode & BRIDGE_MODE_VEPA)
8783 i40e_disable_pf_switch_lb(pf);
8784 else
8785 i40e_enable_pf_switch_lb(pf);
8786 }
8787
8788 /**
8789 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it
8790 * @veb: pointer to the VEB instance
8791 *
8792 * This is a recursive function that first builds the attached VSIs then
8793 * recurses in to build the next layer of VEB. We track the connections
8794 * through our own index numbers because the seid's from the HW could
8795 * change across the reset.
8796 **/
8797 static int i40e_reconstitute_veb(struct i40e_veb *veb)
8798 {
8799 struct i40e_vsi *ctl_vsi = NULL;
8800 struct i40e_pf *pf = veb->pf;
8801 int v, veb_idx;
8802 int ret;
8803
8804 /* build VSI that owns this VEB, temporarily attached to base VEB */
8805 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) {
8806 if (pf->vsi[v] &&
8807 pf->vsi[v]->veb_idx == veb->idx &&
8808 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) {
8809 ctl_vsi = pf->vsi[v];
8810 break;
8811 }
8812 }
8813 if (!ctl_vsi) {
8814 dev_info(&pf->pdev->dev,
8815 "missing owner VSI for veb_idx %d\n", veb->idx);
8816 ret = -ENOENT;
8817 goto end_reconstitute;
8818 }
8819 if (ctl_vsi != pf->vsi[pf->lan_vsi])
8820 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
8821 ret = i40e_add_vsi(ctl_vsi);
8822 if (ret) {
8823 dev_info(&pf->pdev->dev,
8824 "rebuild of veb_idx %d owner VSI failed: %d\n",
8825 veb->idx, ret);
8826 goto end_reconstitute;
8827 }
8828 i40e_vsi_reset_stats(ctl_vsi);
8829
8830 /* create the VEB in the switch and move the VSI onto the VEB */
8831 ret = i40e_add_veb(veb, ctl_vsi);
8832 if (ret)
8833 goto end_reconstitute;
8834
8835 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED)
8836 veb->bridge_mode = BRIDGE_MODE_VEB;
8837 else
8838 veb->bridge_mode = BRIDGE_MODE_VEPA;
8839 i40e_config_bridge_mode(veb);
8840
8841 /* create the remaining VSIs attached to this VEB */
8842 for (v = 0; v < pf->num_alloc_vsi; v++) {
8843 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi)
8844 continue;
8845
8846 if (pf->vsi[v]->veb_idx == veb->idx) {
8847 struct i40e_vsi *vsi = pf->vsi[v];
8848
8849 vsi->uplink_seid = veb->seid;
8850 ret = i40e_add_vsi(vsi);
8851 if (ret) {
8852 dev_info(&pf->pdev->dev,
8853 "rebuild of vsi_idx %d failed: %d\n",
8854 v, ret);
8855 goto end_reconstitute;
8856 }
8857 i40e_vsi_reset_stats(vsi);
8858 }
8859 }
8860
8861 /* create any VEBs attached to this VEB - RECURSION */
8862 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
8863 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) {
8864 pf->veb[veb_idx]->uplink_seid = veb->seid;
8865 ret = i40e_reconstitute_veb(pf->veb[veb_idx]);
8866 if (ret)
8867 break;
8868 }
8869 }
8870
8871 end_reconstitute:
8872 return ret;
8873 }
8874
8875 /**
8876 * i40e_get_capabilities - get info about the HW
8877 * @pf: the PF struct
8878 **/
8879 static int i40e_get_capabilities(struct i40e_pf *pf,
8880 enum i40e_admin_queue_opc list_type)
8881 {
8882 struct i40e_aqc_list_capabilities_element_resp *cap_buf;
8883 u16 data_size;
8884 int buf_len;
8885 int err;
8886
8887 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp);
8888 do {
8889 cap_buf = kzalloc(buf_len, GFP_KERNEL);
8890 if (!cap_buf)
8891 return -ENOMEM;
8892
8893 /* this loads the data into the hw struct for us */
8894 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len,
8895 &data_size, list_type,
8896 NULL);
8897 /* data loaded, buffer no longer needed */
8898 kfree(cap_buf);
8899
8900 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) {
8901 /* retry with a larger buffer */
8902 buf_len = data_size;
8903 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) {
8904 dev_info(&pf->pdev->dev,
8905 "capability discovery failed, err %s aq_err %s\n",
8906 i40e_stat_str(&pf->hw, err),
8907 i40e_aq_str(&pf->hw,
8908 pf->hw.aq.asq_last_status));
8909 return -ENODEV;
8910 }
8911 } while (err);
8912
8913 if (pf->hw.debug_mask & I40E_DEBUG_USER) {
8914 if (list_type == i40e_aqc_opc_list_func_capabilities) {
8915 dev_info(&pf->pdev->dev,
8916 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n",
8917 pf->hw.pf_id, pf->hw.func_caps.num_vfs,
8918 pf->hw.func_caps.num_msix_vectors,
8919 pf->hw.func_caps.num_msix_vectors_vf,
8920 pf->hw.func_caps.fd_filters_guaranteed,
8921 pf->hw.func_caps.fd_filters_best_effort,
8922 pf->hw.func_caps.num_tx_qp,
8923 pf->hw.func_caps.num_vsis);
8924 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) {
8925 dev_info(&pf->pdev->dev,
8926 "switch_mode=0x%04x, function_valid=0x%08x\n",
8927 pf->hw.dev_caps.switch_mode,
8928 pf->hw.dev_caps.valid_functions);
8929 dev_info(&pf->pdev->dev,
8930 "SR-IOV=%d, num_vfs for all function=%u\n",
8931 pf->hw.dev_caps.sr_iov_1_1,
8932 pf->hw.dev_caps.num_vfs);
8933 dev_info(&pf->pdev->dev,
8934 "num_vsis=%u, num_rx:%u, num_tx=%u\n",
8935 pf->hw.dev_caps.num_vsis,
8936 pf->hw.dev_caps.num_rx_qp,
8937 pf->hw.dev_caps.num_tx_qp);
8938 }
8939 }
8940 if (list_type == i40e_aqc_opc_list_func_capabilities) {
8941 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \
8942 + pf->hw.func_caps.num_vfs)
8943 if (pf->hw.revision_id == 0 &&
8944 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) {
8945 dev_info(&pf->pdev->dev,
8946 "got num_vsis %d, setting num_vsis to %d\n",
8947 pf->hw.func_caps.num_vsis, DEF_NUM_VSI);
8948 pf->hw.func_caps.num_vsis = DEF_NUM_VSI;
8949 }
8950 }
8951 return 0;
8952 }
8953
8954 static int i40e_vsi_clear(struct i40e_vsi *vsi);
8955
8956 /**
8957 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband
8958 * @pf: board private structure
8959 **/
8960 static void i40e_fdir_sb_setup(struct i40e_pf *pf)
8961 {
8962 struct i40e_vsi *vsi;
8963
8964 /* quick workaround for an NVM issue that leaves a critical register
8965 * uninitialized
8966 */
8967 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) {
8968 static const u32 hkey[] = {
8969 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36,
8970 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb,
8971 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21,
8972 0x95b3a76d};
8973 int i;
8974
8975 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++)
8976 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]);
8977 }
8978
8979 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
8980 return;
8981
8982 /* find existing VSI and see if it needs configuring */
8983 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
8984
8985 /* create a new VSI if none exists */
8986 if (!vsi) {
8987 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR,
8988 pf->vsi[pf->lan_vsi]->seid, 0);
8989 if (!vsi) {
8990 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n");
8991 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
8992 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
8993 return;
8994 }
8995 }
8996
8997 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring);
8998 }
8999
9000 /**
9001 * i40e_fdir_teardown - release the Flow Director resources
9002 * @pf: board private structure
9003 **/
9004 static void i40e_fdir_teardown(struct i40e_pf *pf)
9005 {
9006 struct i40e_vsi *vsi;
9007
9008 i40e_fdir_filter_exit(pf);
9009 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
9010 if (vsi)
9011 i40e_vsi_release(vsi);
9012 }
9013
9014 /**
9015 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs
9016 * @vsi: PF main vsi
9017 * @seid: seid of main or channel VSIs
9018 *
9019 * Rebuilds cloud filters associated with main VSI and channel VSIs if they
9020 * existed before reset
9021 **/
9022 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid)
9023 {
9024 struct i40e_cloud_filter *cfilter;
9025 struct i40e_pf *pf = vsi->back;
9026 struct hlist_node *node;
9027 i40e_status ret;
9028
9029 /* Add cloud filters back if they exist */
9030 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list,
9031 cloud_node) {
9032 if (cfilter->seid != seid)
9033 continue;
9034
9035 if (cfilter->dst_port)
9036 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter,
9037 true);
9038 else
9039 ret = i40e_add_del_cloud_filter(vsi, cfilter, true);
9040
9041 if (ret) {
9042 dev_dbg(&pf->pdev->dev,
9043 "Failed to rebuild cloud filter, err %s aq_err %s\n",
9044 i40e_stat_str(&pf->hw, ret),
9045 i40e_aq_str(&pf->hw,
9046 pf->hw.aq.asq_last_status));
9047 return ret;
9048 }
9049 }
9050 return 0;
9051 }
9052
9053 /**
9054 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset
9055 * @vsi: PF main vsi
9056 *
9057 * Rebuilds channel VSIs if they existed before reset
9058 **/
9059 static int i40e_rebuild_channels(struct i40e_vsi *vsi)
9060 {
9061 struct i40e_channel *ch, *ch_tmp;
9062 i40e_status ret;
9063
9064 if (list_empty(&vsi->ch_list))
9065 return 0;
9066
9067 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
9068 if (!ch->initialized)
9069 break;
9070 /* Proceed with creation of channel (VMDq2) VSI */
9071 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch);
9072 if (ret) {
9073 dev_info(&vsi->back->pdev->dev,
9074 "failed to rebuild channels using uplink_seid %u\n",
9075 vsi->uplink_seid);
9076 return ret;
9077 }
9078 if (ch->max_tx_rate) {
9079 u64 credits = ch->max_tx_rate;
9080
9081 if (i40e_set_bw_limit(vsi, ch->seid,
9082 ch->max_tx_rate))
9083 return -EINVAL;
9084
9085 do_div(credits, I40E_BW_CREDIT_DIVISOR);
9086 dev_dbg(&vsi->back->pdev->dev,
9087 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
9088 ch->max_tx_rate,
9089 credits,
9090 ch->seid);
9091 }
9092 ret = i40e_rebuild_cloud_filters(vsi, ch->seid);
9093 if (ret) {
9094 dev_dbg(&vsi->back->pdev->dev,
9095 "Failed to rebuild cloud filters for channel VSI %u\n",
9096 ch->seid);
9097 return ret;
9098 }
9099 }
9100 return 0;
9101 }
9102
9103 /**
9104 * i40e_prep_for_reset - prep for the core to reset
9105 * @pf: board private structure
9106 * @lock_acquired: indicates whether or not the lock has been acquired
9107 * before this function was called.
9108 *
9109 * Close up the VFs and other things in prep for PF Reset.
9110 **/
9111 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired)
9112 {
9113 struct i40e_hw *hw = &pf->hw;
9114 i40e_status ret = 0;
9115 u32 v;
9116
9117 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
9118 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
9119 return;
9120 if (i40e_check_asq_alive(&pf->hw))
9121 i40e_vc_notify_reset(pf);
9122
9123 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
9124
9125 /* quiesce the VSIs and their queues that are not already DOWN */
9126 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */
9127 if (!lock_acquired)
9128 rtnl_lock();
9129 i40e_pf_quiesce_all_vsi(pf);
9130 if (!lock_acquired)
9131 rtnl_unlock();
9132
9133 for (v = 0; v < pf->num_alloc_vsi; v++) {
9134 if (pf->vsi[v])
9135 pf->vsi[v]->seid = 0;
9136 }
9137
9138 i40e_shutdown_adminq(&pf->hw);
9139
9140 /* call shutdown HMC */
9141 if (hw->hmc.hmc_obj) {
9142 ret = i40e_shutdown_lan_hmc(hw);
9143 if (ret)
9144 dev_warn(&pf->pdev->dev,
9145 "shutdown_lan_hmc failed: %d\n", ret);
9146 }
9147 }
9148
9149 /**
9150 * i40e_send_version - update firmware with driver version
9151 * @pf: PF struct
9152 */
9153 static void i40e_send_version(struct i40e_pf *pf)
9154 {
9155 struct i40e_driver_version dv;
9156
9157 dv.major_version = DRV_VERSION_MAJOR;
9158 dv.minor_version = DRV_VERSION_MINOR;
9159 dv.build_version = DRV_VERSION_BUILD;
9160 dv.subbuild_version = 0;
9161 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string));
9162 i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
9163 }
9164
9165 /**
9166 * i40e_get_oem_version - get OEM specific version information
9167 * @hw: pointer to the hardware structure
9168 **/
9169 static void i40e_get_oem_version(struct i40e_hw *hw)
9170 {
9171 u16 block_offset = 0xffff;
9172 u16 block_length = 0;
9173 u16 capabilities = 0;
9174 u16 gen_snap = 0;
9175 u16 release = 0;
9176
9177 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B
9178 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00
9179 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01
9180 #define I40E_NVM_OEM_GEN_OFFSET 0x02
9181 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03
9182 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F
9183 #define I40E_NVM_OEM_LENGTH 3
9184
9185 /* Check if pointer to OEM version block is valid. */
9186 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset);
9187 if (block_offset == 0xffff)
9188 return;
9189
9190 /* Check if OEM version block has correct length. */
9191 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET,
9192 &block_length);
9193 if (block_length < I40E_NVM_OEM_LENGTH)
9194 return;
9195
9196 /* Check if OEM version format is as expected. */
9197 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET,
9198 &capabilities);
9199 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0)
9200 return;
9201
9202 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET,
9203 &gen_snap);
9204 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET,
9205 &release);
9206 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release;
9207 hw->nvm.eetrack = I40E_OEM_EETRACK_ID;
9208 }
9209
9210 /**
9211 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen
9212 * @pf: board private structure
9213 **/
9214 static int i40e_reset(struct i40e_pf *pf)
9215 {
9216 struct i40e_hw *hw = &pf->hw;
9217 i40e_status ret;
9218
9219 ret = i40e_pf_reset(hw);
9220 if (ret) {
9221 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret);
9222 set_bit(__I40E_RESET_FAILED, pf->state);
9223 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
9224 } else {
9225 pf->pfr_count++;
9226 }
9227 return ret;
9228 }
9229
9230 /**
9231 * i40e_rebuild - rebuild using a saved config
9232 * @pf: board private structure
9233 * @reinit: if the Main VSI needs to re-initialized.
9234 * @lock_acquired: indicates whether or not the lock has been acquired
9235 * before this function was called.
9236 **/
9237 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired)
9238 {
9239 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
9240 struct i40e_hw *hw = &pf->hw;
9241 u8 set_fc_aq_fail = 0;
9242 i40e_status ret;
9243 u32 val;
9244 int v;
9245
9246 if (test_bit(__I40E_DOWN, pf->state))
9247 goto clear_recovery;
9248 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n");
9249
9250 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */
9251 ret = i40e_init_adminq(&pf->hw);
9252 if (ret) {
9253 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n",
9254 i40e_stat_str(&pf->hw, ret),
9255 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
9256 goto clear_recovery;
9257 }
9258 i40e_get_oem_version(&pf->hw);
9259
9260 /* re-verify the eeprom if we just had an EMP reset */
9261 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state))
9262 i40e_verify_eeprom(pf);
9263
9264 i40e_clear_pxe_mode(hw);
9265 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
9266 if (ret)
9267 goto end_core_reset;
9268
9269 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
9270 hw->func_caps.num_rx_qp, 0, 0);
9271 if (ret) {
9272 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret);
9273 goto end_core_reset;
9274 }
9275 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
9276 if (ret) {
9277 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret);
9278 goto end_core_reset;
9279 }
9280
9281 #ifdef CONFIG_I40E_DCB
9282 ret = i40e_init_pf_dcb(pf);
9283 if (ret) {
9284 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret);
9285 pf->flags &= ~I40E_FLAG_DCB_CAPABLE;
9286 /* Continue without DCB enabled */
9287 }
9288 #endif /* CONFIG_I40E_DCB */
9289 /* do basic switch setup */
9290 if (!lock_acquired)
9291 rtnl_lock();
9292 ret = i40e_setup_pf_switch(pf, reinit);
9293 if (ret)
9294 goto end_unlock;
9295
9296 /* The driver only wants link up/down and module qualification
9297 * reports from firmware. Note the negative logic.
9298 */
9299 ret = i40e_aq_set_phy_int_mask(&pf->hw,
9300 ~(I40E_AQ_EVENT_LINK_UPDOWN |
9301 I40E_AQ_EVENT_MEDIA_NA |
9302 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
9303 if (ret)
9304 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n",
9305 i40e_stat_str(&pf->hw, ret),
9306 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
9307
9308 /* make sure our flow control settings are restored */
9309 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true);
9310 if (ret)
9311 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n",
9312 i40e_stat_str(&pf->hw, ret),
9313 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
9314
9315 /* Rebuild the VSIs and VEBs that existed before reset.
9316 * They are still in our local switch element arrays, so only
9317 * need to rebuild the switch model in the HW.
9318 *
9319 * If there were VEBs but the reconstitution failed, we'll try
9320 * try to recover minimal use by getting the basic PF VSI working.
9321 */
9322 if (vsi->uplink_seid != pf->mac_seid) {
9323 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n");
9324 /* find the one VEB connected to the MAC, and find orphans */
9325 for (v = 0; v < I40E_MAX_VEB; v++) {
9326 if (!pf->veb[v])
9327 continue;
9328
9329 if (pf->veb[v]->uplink_seid == pf->mac_seid ||
9330 pf->veb[v]->uplink_seid == 0) {
9331 ret = i40e_reconstitute_veb(pf->veb[v]);
9332
9333 if (!ret)
9334 continue;
9335
9336 /* If Main VEB failed, we're in deep doodoo,
9337 * so give up rebuilding the switch and set up
9338 * for minimal rebuild of PF VSI.
9339 * If orphan failed, we'll report the error
9340 * but try to keep going.
9341 */
9342 if (pf->veb[v]->uplink_seid == pf->mac_seid) {
9343 dev_info(&pf->pdev->dev,
9344 "rebuild of switch failed: %d, will try to set up simple PF connection\n",
9345 ret);
9346 vsi->uplink_seid = pf->mac_seid;
9347 break;
9348 } else if (pf->veb[v]->uplink_seid == 0) {
9349 dev_info(&pf->pdev->dev,
9350 "rebuild of orphan VEB failed: %d\n",
9351 ret);
9352 }
9353 }
9354 }
9355 }
9356
9357 if (vsi->uplink_seid == pf->mac_seid) {
9358 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n");
9359 /* no VEB, so rebuild only the Main VSI */
9360 ret = i40e_add_vsi(vsi);
9361 if (ret) {
9362 dev_info(&pf->pdev->dev,
9363 "rebuild of Main VSI failed: %d\n", ret);
9364 goto end_unlock;
9365 }
9366 }
9367
9368 if (vsi->mqprio_qopt.max_rate[0]) {
9369 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9370 u64 credits = 0;
9371
9372 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR);
9373 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
9374 if (ret)
9375 goto end_unlock;
9376
9377 credits = max_tx_rate;
9378 do_div(credits, I40E_BW_CREDIT_DIVISOR);
9379 dev_dbg(&vsi->back->pdev->dev,
9380 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
9381 max_tx_rate,
9382 credits,
9383 vsi->seid);
9384 }
9385
9386 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid);
9387 if (ret)
9388 goto end_unlock;
9389
9390 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs
9391 * for this main VSI if they exist
9392 */
9393 ret = i40e_rebuild_channels(vsi);
9394 if (ret)
9395 goto end_unlock;
9396
9397 /* Reconfigure hardware for allowing smaller MSS in the case
9398 * of TSO, so that we avoid the MDD being fired and causing
9399 * a reset in the case of small MSS+TSO.
9400 */
9401 #define I40E_REG_MSS 0x000E64DC
9402 #define I40E_REG_MSS_MIN_MASK 0x3FF0000
9403 #define I40E_64BYTE_MSS 0x400000
9404 val = rd32(hw, I40E_REG_MSS);
9405 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
9406 val &= ~I40E_REG_MSS_MIN_MASK;
9407 val |= I40E_64BYTE_MSS;
9408 wr32(hw, I40E_REG_MSS, val);
9409 }
9410
9411 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) {
9412 msleep(75);
9413 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
9414 if (ret)
9415 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n",
9416 i40e_stat_str(&pf->hw, ret),
9417 i40e_aq_str(&pf->hw,
9418 pf->hw.aq.asq_last_status));
9419 }
9420 /* reinit the misc interrupt */
9421 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
9422 ret = i40e_setup_misc_vector(pf);
9423
9424 /* Add a filter to drop all Flow control frames from any VSI from being
9425 * transmitted. By doing so we stop a malicious VF from sending out
9426 * PAUSE or PFC frames and potentially controlling traffic for other
9427 * PF/VF VSIs.
9428 * The FW can still send Flow control frames if enabled.
9429 */
9430 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
9431 pf->main_vsi_seid);
9432
9433 /* restart the VSIs that were rebuilt and running before the reset */
9434 i40e_pf_unquiesce_all_vsi(pf);
9435
9436 /* Release the RTNL lock before we start resetting VFs */
9437 if (!lock_acquired)
9438 rtnl_unlock();
9439
9440 /* Restore promiscuous settings */
9441 ret = i40e_set_promiscuous(pf, pf->cur_promisc);
9442 if (ret)
9443 dev_warn(&pf->pdev->dev,
9444 "Failed to restore promiscuous setting: %s, err %s aq_err %s\n",
9445 pf->cur_promisc ? "on" : "off",
9446 i40e_stat_str(&pf->hw, ret),
9447 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
9448
9449 i40e_reset_all_vfs(pf, true);
9450
9451 /* tell the firmware that we're starting */
9452 i40e_send_version(pf);
9453
9454 /* We've already released the lock, so don't do it again */
9455 goto end_core_reset;
9456
9457 end_unlock:
9458 if (!lock_acquired)
9459 rtnl_unlock();
9460 end_core_reset:
9461 clear_bit(__I40E_RESET_FAILED, pf->state);
9462 clear_recovery:
9463 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
9464 }
9465
9466 /**
9467 * i40e_reset_and_rebuild - reset and rebuild using a saved config
9468 * @pf: board private structure
9469 * @reinit: if the Main VSI needs to re-initialized.
9470 * @lock_acquired: indicates whether or not the lock has been acquired
9471 * before this function was called.
9472 **/
9473 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
9474 bool lock_acquired)
9475 {
9476 int ret;
9477 /* Now we wait for GRST to settle out.
9478 * We don't have to delete the VEBs or VSIs from the hw switch
9479 * because the reset will make them disappear.
9480 */
9481 ret = i40e_reset(pf);
9482 if (!ret)
9483 i40e_rebuild(pf, reinit, lock_acquired);
9484 }
9485
9486 /**
9487 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild
9488 * @pf: board private structure
9489 *
9490 * Close up the VFs and other things in prep for a Core Reset,
9491 * then get ready to rebuild the world.
9492 * @lock_acquired: indicates whether or not the lock has been acquired
9493 * before this function was called.
9494 **/
9495 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired)
9496 {
9497 i40e_prep_for_reset(pf, lock_acquired);
9498 i40e_reset_and_rebuild(pf, false, lock_acquired);
9499 }
9500
9501 /**
9502 * i40e_handle_mdd_event
9503 * @pf: pointer to the PF structure
9504 *
9505 * Called from the MDD irq handler to identify possibly malicious vfs
9506 **/
9507 static void i40e_handle_mdd_event(struct i40e_pf *pf)
9508 {
9509 struct i40e_hw *hw = &pf->hw;
9510 bool mdd_detected = false;
9511 bool pf_mdd_detected = false;
9512 struct i40e_vf *vf;
9513 u32 reg;
9514 int i;
9515
9516 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state))
9517 return;
9518
9519 /* find what triggered the MDD event */
9520 reg = rd32(hw, I40E_GL_MDET_TX);
9521 if (reg & I40E_GL_MDET_TX_VALID_MASK) {
9522 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >>
9523 I40E_GL_MDET_TX_PF_NUM_SHIFT;
9524 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >>
9525 I40E_GL_MDET_TX_VF_NUM_SHIFT;
9526 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >>
9527 I40E_GL_MDET_TX_EVENT_SHIFT;
9528 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >>
9529 I40E_GL_MDET_TX_QUEUE_SHIFT) -
9530 pf->hw.func_caps.base_queue;
9531 if (netif_msg_tx_err(pf))
9532 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n",
9533 event, queue, pf_num, vf_num);
9534 wr32(hw, I40E_GL_MDET_TX, 0xffffffff);
9535 mdd_detected = true;
9536 }
9537 reg = rd32(hw, I40E_GL_MDET_RX);
9538 if (reg & I40E_GL_MDET_RX_VALID_MASK) {
9539 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >>
9540 I40E_GL_MDET_RX_FUNCTION_SHIFT;
9541 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >>
9542 I40E_GL_MDET_RX_EVENT_SHIFT;
9543 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >>
9544 I40E_GL_MDET_RX_QUEUE_SHIFT) -
9545 pf->hw.func_caps.base_queue;
9546 if (netif_msg_rx_err(pf))
9547 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n",
9548 event, queue, func);
9549 wr32(hw, I40E_GL_MDET_RX, 0xffffffff);
9550 mdd_detected = true;
9551 }
9552
9553 if (mdd_detected) {
9554 reg = rd32(hw, I40E_PF_MDET_TX);
9555 if (reg & I40E_PF_MDET_TX_VALID_MASK) {
9556 wr32(hw, I40E_PF_MDET_TX, 0xFFFF);
9557 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
9558 pf_mdd_detected = true;
9559 }
9560 reg = rd32(hw, I40E_PF_MDET_RX);
9561 if (reg & I40E_PF_MDET_RX_VALID_MASK) {
9562 wr32(hw, I40E_PF_MDET_RX, 0xFFFF);
9563 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
9564 pf_mdd_detected = true;
9565 }
9566 /* Queue belongs to the PF, initiate a reset */
9567 if (pf_mdd_detected) {
9568 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
9569 i40e_service_event_schedule(pf);
9570 }
9571 }
9572
9573 /* see if one of the VFs needs its hand slapped */
9574 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
9575 vf = &(pf->vf[i]);
9576 reg = rd32(hw, I40E_VP_MDET_TX(i));
9577 if (reg & I40E_VP_MDET_TX_VALID_MASK) {
9578 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF);
9579 vf->num_mdd_events++;
9580 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
9581 i);
9582 }
9583
9584 reg = rd32(hw, I40E_VP_MDET_RX(i));
9585 if (reg & I40E_VP_MDET_RX_VALID_MASK) {
9586 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF);
9587 vf->num_mdd_events++;
9588 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
9589 i);
9590 }
9591
9592 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) {
9593 dev_info(&pf->pdev->dev,
9594 "Too many MDD events on VF %d, disabled\n", i);
9595 dev_info(&pf->pdev->dev,
9596 "Use PF Control I/F to re-enable the VF\n");
9597 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
9598 }
9599 }
9600
9601 /* re-enable mdd interrupt cause */
9602 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state);
9603 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
9604 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
9605 wr32(hw, I40E_PFINT_ICR0_ENA, reg);
9606 i40e_flush(hw);
9607 }
9608
9609 static const char *i40e_tunnel_name(struct i40e_udp_port_config *port)
9610 {
9611 switch (port->type) {
9612 case UDP_TUNNEL_TYPE_VXLAN:
9613 return "vxlan";
9614 case UDP_TUNNEL_TYPE_GENEVE:
9615 return "geneve";
9616 default:
9617 return "unknown";
9618 }
9619 }
9620
9621 /**
9622 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters
9623 * @pf: board private structure
9624 **/
9625 static void i40e_sync_udp_filters(struct i40e_pf *pf)
9626 {
9627 int i;
9628
9629 /* loop through and set pending bit for all active UDP filters */
9630 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
9631 if (pf->udp_ports[i].port)
9632 pf->pending_udp_bitmap |= BIT_ULL(i);
9633 }
9634
9635 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
9636 }
9637
9638 /**
9639 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW
9640 * @pf: board private structure
9641 **/
9642 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf)
9643 {
9644 struct i40e_hw *hw = &pf->hw;
9645 i40e_status ret;
9646 u16 port;
9647 int i;
9648
9649 if (!(pf->flags & I40E_FLAG_UDP_FILTER_SYNC))
9650 return;
9651
9652 pf->flags &= ~I40E_FLAG_UDP_FILTER_SYNC;
9653
9654 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
9655 if (pf->pending_udp_bitmap & BIT_ULL(i)) {
9656 pf->pending_udp_bitmap &= ~BIT_ULL(i);
9657 port = pf->udp_ports[i].port;
9658 if (port)
9659 ret = i40e_aq_add_udp_tunnel(hw, port,
9660 pf->udp_ports[i].type,
9661 NULL, NULL);
9662 else
9663 ret = i40e_aq_del_udp_tunnel(hw, i, NULL);
9664
9665 if (ret) {
9666 dev_info(&pf->pdev->dev,
9667 "%s %s port %d, index %d failed, err %s aq_err %s\n",
9668 i40e_tunnel_name(&pf->udp_ports[i]),
9669 port ? "add" : "delete",
9670 port, i,
9671 i40e_stat_str(&pf->hw, ret),
9672 i40e_aq_str(&pf->hw,
9673 pf->hw.aq.asq_last_status));
9674 pf->udp_ports[i].port = 0;
9675 }
9676 }
9677 }
9678 }
9679
9680 /**
9681 * i40e_service_task - Run the driver's async subtasks
9682 * @work: pointer to work_struct containing our data
9683 **/
9684 static void i40e_service_task(struct work_struct *work)
9685 {
9686 struct i40e_pf *pf = container_of(work,
9687 struct i40e_pf,
9688 service_task);
9689 unsigned long start_time = jiffies;
9690
9691 /* don't bother with service tasks if a reset is in progress */
9692 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
9693 return;
9694
9695 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state))
9696 return;
9697
9698 i40e_detect_recover_hung(pf);
9699 i40e_sync_filters_subtask(pf);
9700 i40e_reset_subtask(pf);
9701 i40e_handle_mdd_event(pf);
9702 i40e_vc_process_vflr_event(pf);
9703 i40e_watchdog_subtask(pf);
9704 i40e_fdir_reinit_subtask(pf);
9705 if (pf->flags & I40E_FLAG_CLIENT_RESET) {
9706 /* Client subtask will reopen next time through. */
9707 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true);
9708 pf->flags &= ~I40E_FLAG_CLIENT_RESET;
9709 } else {
9710 i40e_client_subtask(pf);
9711 if (pf->flags & I40E_FLAG_CLIENT_L2_CHANGE) {
9712 i40e_notify_client_of_l2_param_changes(
9713 pf->vsi[pf->lan_vsi]);
9714 pf->flags &= ~I40E_FLAG_CLIENT_L2_CHANGE;
9715 }
9716 }
9717 i40e_sync_filters_subtask(pf);
9718 i40e_sync_udp_filters_subtask(pf);
9719 i40e_clean_adminq_subtask(pf);
9720
9721 /* flush memory to make sure state is correct before next watchdog */
9722 smp_mb__before_atomic();
9723 clear_bit(__I40E_SERVICE_SCHED, pf->state);
9724
9725 /* If the tasks have taken longer than one timer cycle or there
9726 * is more work to be done, reschedule the service task now
9727 * rather than wait for the timer to tick again.
9728 */
9729 if (time_after(jiffies, (start_time + pf->service_timer_period)) ||
9730 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) ||
9731 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) ||
9732 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state))
9733 i40e_service_event_schedule(pf);
9734 }
9735
9736 /**
9737 * i40e_service_timer - timer callback
9738 * @data: pointer to PF struct
9739 **/
9740 static void i40e_service_timer(struct timer_list *t)
9741 {
9742 struct i40e_pf *pf = from_timer(pf, t, service_timer);
9743
9744 mod_timer(&pf->service_timer,
9745 round_jiffies(jiffies + pf->service_timer_period));
9746 i40e_service_event_schedule(pf);
9747 }
9748
9749 /**
9750 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI
9751 * @vsi: the VSI being configured
9752 **/
9753 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi)
9754 {
9755 struct i40e_pf *pf = vsi->back;
9756
9757 switch (vsi->type) {
9758 case I40E_VSI_MAIN:
9759 vsi->alloc_queue_pairs = pf->num_lan_qps;
9760 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
9761 I40E_REQ_DESCRIPTOR_MULTIPLE);
9762 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
9763 vsi->num_q_vectors = pf->num_lan_msix;
9764 else
9765 vsi->num_q_vectors = 1;
9766
9767 break;
9768
9769 case I40E_VSI_FDIR:
9770 vsi->alloc_queue_pairs = 1;
9771 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT,
9772 I40E_REQ_DESCRIPTOR_MULTIPLE);
9773 vsi->num_q_vectors = pf->num_fdsb_msix;
9774 break;
9775
9776 case I40E_VSI_VMDQ2:
9777 vsi->alloc_queue_pairs = pf->num_vmdq_qps;
9778 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
9779 I40E_REQ_DESCRIPTOR_MULTIPLE);
9780 vsi->num_q_vectors = pf->num_vmdq_msix;
9781 break;
9782
9783 case I40E_VSI_SRIOV:
9784 vsi->alloc_queue_pairs = pf->num_vf_qps;
9785 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
9786 I40E_REQ_DESCRIPTOR_MULTIPLE);
9787 break;
9788
9789 default:
9790 WARN_ON(1);
9791 return -ENODATA;
9792 }
9793
9794 return 0;
9795 }
9796
9797 /**
9798 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
9799 * @vsi: VSI pointer
9800 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
9801 *
9802 * On error: returns error code (negative)
9803 * On success: returns 0
9804 **/
9805 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors)
9806 {
9807 struct i40e_ring **next_rings;
9808 int size;
9809 int ret = 0;
9810
9811 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */
9812 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs *
9813 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2);
9814 vsi->tx_rings = kzalloc(size, GFP_KERNEL);
9815 if (!vsi->tx_rings)
9816 return -ENOMEM;
9817 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs;
9818 if (i40e_enabled_xdp_vsi(vsi)) {
9819 vsi->xdp_rings = next_rings;
9820 next_rings += vsi->alloc_queue_pairs;
9821 }
9822 vsi->rx_rings = next_rings;
9823
9824 if (alloc_qvectors) {
9825 /* allocate memory for q_vector pointers */
9826 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors;
9827 vsi->q_vectors = kzalloc(size, GFP_KERNEL);
9828 if (!vsi->q_vectors) {
9829 ret = -ENOMEM;
9830 goto err_vectors;
9831 }
9832 }
9833 return ret;
9834
9835 err_vectors:
9836 kfree(vsi->tx_rings);
9837 return ret;
9838 }
9839
9840 /**
9841 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF
9842 * @pf: board private structure
9843 * @type: type of VSI
9844 *
9845 * On error: returns error code (negative)
9846 * On success: returns vsi index in PF (positive)
9847 **/
9848 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type)
9849 {
9850 int ret = -ENODEV;
9851 struct i40e_vsi *vsi;
9852 int vsi_idx;
9853 int i;
9854
9855 /* Need to protect the allocation of the VSIs at the PF level */
9856 mutex_lock(&pf->switch_mutex);
9857
9858 /* VSI list may be fragmented if VSI creation/destruction has
9859 * been happening. We can afford to do a quick scan to look
9860 * for any free VSIs in the list.
9861 *
9862 * find next empty vsi slot, looping back around if necessary
9863 */
9864 i = pf->next_vsi;
9865 while (i < pf->num_alloc_vsi && pf->vsi[i])
9866 i++;
9867 if (i >= pf->num_alloc_vsi) {
9868 i = 0;
9869 while (i < pf->next_vsi && pf->vsi[i])
9870 i++;
9871 }
9872
9873 if (i < pf->num_alloc_vsi && !pf->vsi[i]) {
9874 vsi_idx = i; /* Found one! */
9875 } else {
9876 ret = -ENODEV;
9877 goto unlock_pf; /* out of VSI slots! */
9878 }
9879 pf->next_vsi = ++i;
9880
9881 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL);
9882 if (!vsi) {
9883 ret = -ENOMEM;
9884 goto unlock_pf;
9885 }
9886 vsi->type = type;
9887 vsi->back = pf;
9888 set_bit(__I40E_VSI_DOWN, vsi->state);
9889 vsi->flags = 0;
9890 vsi->idx = vsi_idx;
9891 vsi->int_rate_limit = 0;
9892 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ?
9893 pf->rss_table_size : 64;
9894 vsi->netdev_registered = false;
9895 vsi->work_limit = I40E_DEFAULT_IRQ_WORK;
9896 hash_init(vsi->mac_filter_hash);
9897 vsi->irqs_ready = false;
9898
9899 ret = i40e_set_num_rings_in_vsi(vsi);
9900 if (ret)
9901 goto err_rings;
9902
9903 ret = i40e_vsi_alloc_arrays(vsi, true);
9904 if (ret)
9905 goto err_rings;
9906
9907 /* Setup default MSIX irq handler for VSI */
9908 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings);
9909
9910 /* Initialize VSI lock */
9911 spin_lock_init(&vsi->mac_filter_hash_lock);
9912 pf->vsi[vsi_idx] = vsi;
9913 ret = vsi_idx;
9914 goto unlock_pf;
9915
9916 err_rings:
9917 pf->next_vsi = i - 1;
9918 kfree(vsi);
9919 unlock_pf:
9920 mutex_unlock(&pf->switch_mutex);
9921 return ret;
9922 }
9923
9924 /**
9925 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI
9926 * @type: VSI pointer
9927 * @free_qvectors: a bool to specify if q_vectors need to be freed.
9928 *
9929 * On error: returns error code (negative)
9930 * On success: returns 0
9931 **/
9932 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors)
9933 {
9934 /* free the ring and vector containers */
9935 if (free_qvectors) {
9936 kfree(vsi->q_vectors);
9937 vsi->q_vectors = NULL;
9938 }
9939 kfree(vsi->tx_rings);
9940 vsi->tx_rings = NULL;
9941 vsi->rx_rings = NULL;
9942 vsi->xdp_rings = NULL;
9943 }
9944
9945 /**
9946 * i40e_clear_rss_config_user - clear the user configured RSS hash keys
9947 * and lookup table
9948 * @vsi: Pointer to VSI structure
9949 */
9950 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi)
9951 {
9952 if (!vsi)
9953 return;
9954
9955 kfree(vsi->rss_hkey_user);
9956 vsi->rss_hkey_user = NULL;
9957
9958 kfree(vsi->rss_lut_user);
9959 vsi->rss_lut_user = NULL;
9960 }
9961
9962 /**
9963 * i40e_vsi_clear - Deallocate the VSI provided
9964 * @vsi: the VSI being un-configured
9965 **/
9966 static int i40e_vsi_clear(struct i40e_vsi *vsi)
9967 {
9968 struct i40e_pf *pf;
9969
9970 if (!vsi)
9971 return 0;
9972
9973 if (!vsi->back)
9974 goto free_vsi;
9975 pf = vsi->back;
9976
9977 mutex_lock(&pf->switch_mutex);
9978 if (!pf->vsi[vsi->idx]) {
9979 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](%p,type %d)\n",
9980 vsi->idx, vsi->idx, vsi, vsi->type);
9981 goto unlock_vsi;
9982 }
9983
9984 if (pf->vsi[vsi->idx] != vsi) {
9985 dev_err(&pf->pdev->dev,
9986 "pf->vsi[%d](%p, type %d) != vsi[%d](%p,type %d): no free!\n",
9987 pf->vsi[vsi->idx]->idx,
9988 pf->vsi[vsi->idx],
9989 pf->vsi[vsi->idx]->type,
9990 vsi->idx, vsi, vsi->type);
9991 goto unlock_vsi;
9992 }
9993
9994 /* updates the PF for this cleared vsi */
9995 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
9996 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx);
9997
9998 i40e_vsi_free_arrays(vsi, true);
9999 i40e_clear_rss_config_user(vsi);
10000
10001 pf->vsi[vsi->idx] = NULL;
10002 if (vsi->idx < pf->next_vsi)
10003 pf->next_vsi = vsi->idx;
10004
10005 unlock_vsi:
10006 mutex_unlock(&pf->switch_mutex);
10007 free_vsi:
10008 kfree(vsi);
10009
10010 return 0;
10011 }
10012
10013 /**
10014 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI
10015 * @vsi: the VSI being cleaned
10016 **/
10017 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi)
10018 {
10019 int i;
10020
10021 if (vsi->tx_rings && vsi->tx_rings[0]) {
10022 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
10023 kfree_rcu(vsi->tx_rings[i], rcu);
10024 vsi->tx_rings[i] = NULL;
10025 vsi->rx_rings[i] = NULL;
10026 if (vsi->xdp_rings)
10027 vsi->xdp_rings[i] = NULL;
10028 }
10029 }
10030 }
10031
10032 /**
10033 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI
10034 * @vsi: the VSI being configured
10035 **/
10036 static int i40e_alloc_rings(struct i40e_vsi *vsi)
10037 {
10038 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2;
10039 struct i40e_pf *pf = vsi->back;
10040 struct i40e_ring *ring;
10041
10042 /* Set basic values in the rings to be used later during open() */
10043 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
10044 /* allocate space for both Tx and Rx in one shot */
10045 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL);
10046 if (!ring)
10047 goto err_out;
10048
10049 ring->queue_index = i;
10050 ring->reg_idx = vsi->base_queue + i;
10051 ring->ring_active = false;
10052 ring->vsi = vsi;
10053 ring->netdev = vsi->netdev;
10054 ring->dev = &pf->pdev->dev;
10055 ring->count = vsi->num_desc;
10056 ring->size = 0;
10057 ring->dcb_tc = 0;
10058 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE)
10059 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
10060 ring->tx_itr_setting = pf->tx_itr_default;
10061 vsi->tx_rings[i] = ring++;
10062
10063 if (!i40e_enabled_xdp_vsi(vsi))
10064 goto setup_rx;
10065
10066 ring->queue_index = vsi->alloc_queue_pairs + i;
10067 ring->reg_idx = vsi->base_queue + ring->queue_index;
10068 ring->ring_active = false;
10069 ring->vsi = vsi;
10070 ring->netdev = NULL;
10071 ring->dev = &pf->pdev->dev;
10072 ring->count = vsi->num_desc;
10073 ring->size = 0;
10074 ring->dcb_tc = 0;
10075 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE)
10076 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
10077 set_ring_xdp(ring);
10078 ring->tx_itr_setting = pf->tx_itr_default;
10079 vsi->xdp_rings[i] = ring++;
10080
10081 setup_rx:
10082 ring->queue_index = i;
10083 ring->reg_idx = vsi->base_queue + i;
10084 ring->ring_active = false;
10085 ring->vsi = vsi;
10086 ring->netdev = vsi->netdev;
10087 ring->dev = &pf->pdev->dev;
10088 ring->count = vsi->num_desc;
10089 ring->size = 0;
10090 ring->dcb_tc = 0;
10091 ring->rx_itr_setting = pf->rx_itr_default;
10092 vsi->rx_rings[i] = ring;
10093 }
10094
10095 return 0;
10096
10097 err_out:
10098 i40e_vsi_clear_rings(vsi);
10099 return -ENOMEM;
10100 }
10101
10102 /**
10103 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel
10104 * @pf: board private structure
10105 * @vectors: the number of MSI-X vectors to request
10106 *
10107 * Returns the number of vectors reserved, or error
10108 **/
10109 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors)
10110 {
10111 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries,
10112 I40E_MIN_MSIX, vectors);
10113 if (vectors < 0) {
10114 dev_info(&pf->pdev->dev,
10115 "MSI-X vector reservation failed: %d\n", vectors);
10116 vectors = 0;
10117 }
10118
10119 return vectors;
10120 }
10121
10122 /**
10123 * i40e_init_msix - Setup the MSIX capability
10124 * @pf: board private structure
10125 *
10126 * Work with the OS to set up the MSIX vectors needed.
10127 *
10128 * Returns the number of vectors reserved or negative on failure
10129 **/
10130 static int i40e_init_msix(struct i40e_pf *pf)
10131 {
10132 struct i40e_hw *hw = &pf->hw;
10133 int cpus, extra_vectors;
10134 int vectors_left;
10135 int v_budget, i;
10136 int v_actual;
10137 int iwarp_requested = 0;
10138
10139 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
10140 return -ENODEV;
10141
10142 /* The number of vectors we'll request will be comprised of:
10143 * - Add 1 for "other" cause for Admin Queue events, etc.
10144 * - The number of LAN queue pairs
10145 * - Queues being used for RSS.
10146 * We don't need as many as max_rss_size vectors.
10147 * use rss_size instead in the calculation since that
10148 * is governed by number of cpus in the system.
10149 * - assumes symmetric Tx/Rx pairing
10150 * - The number of VMDq pairs
10151 * - The CPU count within the NUMA node if iWARP is enabled
10152 * Once we count this up, try the request.
10153 *
10154 * If we can't get what we want, we'll simplify to nearly nothing
10155 * and try again. If that still fails, we punt.
10156 */
10157 vectors_left = hw->func_caps.num_msix_vectors;
10158 v_budget = 0;
10159
10160 /* reserve one vector for miscellaneous handler */
10161 if (vectors_left) {
10162 v_budget++;
10163 vectors_left--;
10164 }
10165
10166 /* reserve some vectors for the main PF traffic queues. Initially we
10167 * only reserve at most 50% of the available vectors, in the case that
10168 * the number of online CPUs is large. This ensures that we can enable
10169 * extra features as well. Once we've enabled the other features, we
10170 * will use any remaining vectors to reach as close as we can to the
10171 * number of online CPUs.
10172 */
10173 cpus = num_online_cpus();
10174 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2);
10175 vectors_left -= pf->num_lan_msix;
10176
10177 /* reserve one vector for sideband flow director */
10178 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
10179 if (vectors_left) {
10180 pf->num_fdsb_msix = 1;
10181 v_budget++;
10182 vectors_left--;
10183 } else {
10184 pf->num_fdsb_msix = 0;
10185 }
10186 }
10187
10188 /* can we reserve enough for iWARP? */
10189 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
10190 iwarp_requested = pf->num_iwarp_msix;
10191
10192 if (!vectors_left)
10193 pf->num_iwarp_msix = 0;
10194 else if (vectors_left < pf->num_iwarp_msix)
10195 pf->num_iwarp_msix = 1;
10196 v_budget += pf->num_iwarp_msix;
10197 vectors_left -= pf->num_iwarp_msix;
10198 }
10199
10200 /* any vectors left over go for VMDq support */
10201 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) {
10202 int vmdq_vecs_wanted = pf->num_vmdq_vsis * pf->num_vmdq_qps;
10203 int vmdq_vecs = min_t(int, vectors_left, vmdq_vecs_wanted);
10204
10205 if (!vectors_left) {
10206 pf->num_vmdq_msix = 0;
10207 pf->num_vmdq_qps = 0;
10208 } else {
10209 /* if we're short on vectors for what's desired, we limit
10210 * the queues per vmdq. If this is still more than are
10211 * available, the user will need to change the number of
10212 * queues/vectors used by the PF later with the ethtool
10213 * channels command
10214 */
10215 if (vmdq_vecs < vmdq_vecs_wanted)
10216 pf->num_vmdq_qps = 1;
10217 pf->num_vmdq_msix = pf->num_vmdq_qps;
10218
10219 v_budget += vmdq_vecs;
10220 vectors_left -= vmdq_vecs;
10221 }
10222 }
10223
10224 /* On systems with a large number of SMP cores, we previously limited
10225 * the number of vectors for num_lan_msix to be at most 50% of the
10226 * available vectors, to allow for other features. Now, we add back
10227 * the remaining vectors. However, we ensure that the total
10228 * num_lan_msix will not exceed num_online_cpus(). To do this, we
10229 * calculate the number of vectors we can add without going over the
10230 * cap of CPUs. For systems with a small number of CPUs this will be
10231 * zero.
10232 */
10233 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left);
10234 pf->num_lan_msix += extra_vectors;
10235 vectors_left -= extra_vectors;
10236
10237 WARN(vectors_left < 0,
10238 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n");
10239
10240 v_budget += pf->num_lan_msix;
10241 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
10242 GFP_KERNEL);
10243 if (!pf->msix_entries)
10244 return -ENOMEM;
10245
10246 for (i = 0; i < v_budget; i++)
10247 pf->msix_entries[i].entry = i;
10248 v_actual = i40e_reserve_msix_vectors(pf, v_budget);
10249
10250 if (v_actual < I40E_MIN_MSIX) {
10251 pf->flags &= ~I40E_FLAG_MSIX_ENABLED;
10252 kfree(pf->msix_entries);
10253 pf->msix_entries = NULL;
10254 pci_disable_msix(pf->pdev);
10255 return -ENODEV;
10256
10257 } else if (v_actual == I40E_MIN_MSIX) {
10258 /* Adjust for minimal MSIX use */
10259 pf->num_vmdq_vsis = 0;
10260 pf->num_vmdq_qps = 0;
10261 pf->num_lan_qps = 1;
10262 pf->num_lan_msix = 1;
10263
10264 } else if (v_actual != v_budget) {
10265 /* If we have limited resources, we will start with no vectors
10266 * for the special features and then allocate vectors to some
10267 * of these features based on the policy and at the end disable
10268 * the features that did not get any vectors.
10269 */
10270 int vec;
10271
10272 dev_info(&pf->pdev->dev,
10273 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n",
10274 v_actual, v_budget);
10275 /* reserve the misc vector */
10276 vec = v_actual - 1;
10277
10278 /* Scale vector usage down */
10279 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */
10280 pf->num_vmdq_vsis = 1;
10281 pf->num_vmdq_qps = 1;
10282
10283 /* partition out the remaining vectors */
10284 switch (vec) {
10285 case 2:
10286 pf->num_lan_msix = 1;
10287 break;
10288 case 3:
10289 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
10290 pf->num_lan_msix = 1;
10291 pf->num_iwarp_msix = 1;
10292 } else {
10293 pf->num_lan_msix = 2;
10294 }
10295 break;
10296 default:
10297 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
10298 pf->num_iwarp_msix = min_t(int, (vec / 3),
10299 iwarp_requested);
10300 pf->num_vmdq_vsis = min_t(int, (vec / 3),
10301 I40E_DEFAULT_NUM_VMDQ_VSI);
10302 } else {
10303 pf->num_vmdq_vsis = min_t(int, (vec / 2),
10304 I40E_DEFAULT_NUM_VMDQ_VSI);
10305 }
10306 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
10307 pf->num_fdsb_msix = 1;
10308 vec--;
10309 }
10310 pf->num_lan_msix = min_t(int,
10311 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)),
10312 pf->num_lan_msix);
10313 pf->num_lan_qps = pf->num_lan_msix;
10314 break;
10315 }
10316 }
10317
10318 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
10319 (pf->num_fdsb_msix == 0)) {
10320 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n");
10321 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
10322 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
10323 }
10324 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) &&
10325 (pf->num_vmdq_msix == 0)) {
10326 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n");
10327 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED;
10328 }
10329
10330 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) &&
10331 (pf->num_iwarp_msix == 0)) {
10332 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n");
10333 pf->flags &= ~I40E_FLAG_IWARP_ENABLED;
10334 }
10335 i40e_debug(&pf->hw, I40E_DEBUG_INIT,
10336 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n",
10337 pf->num_lan_msix,
10338 pf->num_vmdq_msix * pf->num_vmdq_vsis,
10339 pf->num_fdsb_msix,
10340 pf->num_iwarp_msix);
10341
10342 return v_actual;
10343 }
10344
10345 /**
10346 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
10347 * @vsi: the VSI being configured
10348 * @v_idx: index of the vector in the vsi struct
10349 * @cpu: cpu to be used on affinity_mask
10350 *
10351 * We allocate one q_vector. If allocation fails we return -ENOMEM.
10352 **/
10353 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu)
10354 {
10355 struct i40e_q_vector *q_vector;
10356
10357 /* allocate q_vector */
10358 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL);
10359 if (!q_vector)
10360 return -ENOMEM;
10361
10362 q_vector->vsi = vsi;
10363 q_vector->v_idx = v_idx;
10364 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
10365
10366 if (vsi->netdev)
10367 netif_napi_add(vsi->netdev, &q_vector->napi,
10368 i40e_napi_poll, NAPI_POLL_WEIGHT);
10369
10370 q_vector->rx.latency_range = I40E_LOW_LATENCY;
10371 q_vector->tx.latency_range = I40E_LOW_LATENCY;
10372
10373 /* tie q_vector and vsi together */
10374 vsi->q_vectors[v_idx] = q_vector;
10375
10376 return 0;
10377 }
10378
10379 /**
10380 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
10381 * @vsi: the VSI being configured
10382 *
10383 * We allocate one q_vector per queue interrupt. If allocation fails we
10384 * return -ENOMEM.
10385 **/
10386 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi)
10387 {
10388 struct i40e_pf *pf = vsi->back;
10389 int err, v_idx, num_q_vectors, current_cpu;
10390
10391 /* if not MSIX, give the one vector only to the LAN VSI */
10392 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
10393 num_q_vectors = vsi->num_q_vectors;
10394 else if (vsi == pf->vsi[pf->lan_vsi])
10395 num_q_vectors = 1;
10396 else
10397 return -EINVAL;
10398
10399 current_cpu = cpumask_first(cpu_online_mask);
10400
10401 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
10402 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu);
10403 if (err)
10404 goto err_out;
10405 current_cpu = cpumask_next(current_cpu, cpu_online_mask);
10406 if (unlikely(current_cpu >= nr_cpu_ids))
10407 current_cpu = cpumask_first(cpu_online_mask);
10408 }
10409
10410 return 0;
10411
10412 err_out:
10413 while (v_idx--)
10414 i40e_free_q_vector(vsi, v_idx);
10415
10416 return err;
10417 }
10418
10419 /**
10420 * i40e_init_interrupt_scheme - Determine proper interrupt scheme
10421 * @pf: board private structure to initialize
10422 **/
10423 static int i40e_init_interrupt_scheme(struct i40e_pf *pf)
10424 {
10425 int vectors = 0;
10426 ssize_t size;
10427
10428 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
10429 vectors = i40e_init_msix(pf);
10430 if (vectors < 0) {
10431 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED |
10432 I40E_FLAG_IWARP_ENABLED |
10433 I40E_FLAG_RSS_ENABLED |
10434 I40E_FLAG_DCB_CAPABLE |
10435 I40E_FLAG_DCB_ENABLED |
10436 I40E_FLAG_SRIOV_ENABLED |
10437 I40E_FLAG_FD_SB_ENABLED |
10438 I40E_FLAG_FD_ATR_ENABLED |
10439 I40E_FLAG_VMDQ_ENABLED);
10440 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
10441
10442 /* rework the queue expectations without MSIX */
10443 i40e_determine_queue_usage(pf);
10444 }
10445 }
10446
10447 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) &&
10448 (pf->flags & I40E_FLAG_MSI_ENABLED)) {
10449 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n");
10450 vectors = pci_enable_msi(pf->pdev);
10451 if (vectors < 0) {
10452 dev_info(&pf->pdev->dev, "MSI init failed - %d\n",
10453 vectors);
10454 pf->flags &= ~I40E_FLAG_MSI_ENABLED;
10455 }
10456 vectors = 1; /* one MSI or Legacy vector */
10457 }
10458
10459 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED)))
10460 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n");
10461
10462 /* set up vector assignment tracking */
10463 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors);
10464 pf->irq_pile = kzalloc(size, GFP_KERNEL);
10465 if (!pf->irq_pile) {
10466 dev_err(&pf->pdev->dev, "error allocating irq_pile memory\n");
10467 return -ENOMEM;
10468 }
10469 pf->irq_pile->num_entries = vectors;
10470 pf->irq_pile->search_hint = 0;
10471
10472 /* track first vector for misc interrupts, ignore return */
10473 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1);
10474
10475 return 0;
10476 }
10477
10478 /**
10479 * i40e_restore_interrupt_scheme - Restore the interrupt scheme
10480 * @pf: private board data structure
10481 *
10482 * Restore the interrupt scheme that was cleared when we suspended the
10483 * device. This should be called during resume to re-allocate the q_vectors
10484 * and reacquire IRQs.
10485 */
10486 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf)
10487 {
10488 int err, i;
10489
10490 /* We cleared the MSI and MSI-X flags when disabling the old interrupt
10491 * scheme. We need to re-enabled them here in order to attempt to
10492 * re-acquire the MSI or MSI-X vectors
10493 */
10494 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED);
10495
10496 err = i40e_init_interrupt_scheme(pf);
10497 if (err)
10498 return err;
10499
10500 /* Now that we've re-acquired IRQs, we need to remap the vectors and
10501 * rings together again.
10502 */
10503 for (i = 0; i < pf->num_alloc_vsi; i++) {
10504 if (pf->vsi[i]) {
10505 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]);
10506 if (err)
10507 goto err_unwind;
10508 i40e_vsi_map_rings_to_vectors(pf->vsi[i]);
10509 }
10510 }
10511
10512 err = i40e_setup_misc_vector(pf);
10513 if (err)
10514 goto err_unwind;
10515
10516 return 0;
10517
10518 err_unwind:
10519 while (i--) {
10520 if (pf->vsi[i])
10521 i40e_vsi_free_q_vectors(pf->vsi[i]);
10522 }
10523
10524 return err;
10525 }
10526
10527 /**
10528 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events
10529 * @pf: board private structure
10530 *
10531 * This sets up the handler for MSIX 0, which is used to manage the
10532 * non-queue interrupts, e.g. AdminQ and errors. This is not used
10533 * when in MSI or Legacy interrupt mode.
10534 **/
10535 static int i40e_setup_misc_vector(struct i40e_pf *pf)
10536 {
10537 struct i40e_hw *hw = &pf->hw;
10538 int err = 0;
10539
10540 /* Only request the IRQ once, the first time through. */
10541 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) {
10542 err = request_irq(pf->msix_entries[0].vector,
10543 i40e_intr, 0, pf->int_name, pf);
10544 if (err) {
10545 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
10546 dev_info(&pf->pdev->dev,
10547 "request_irq for %s failed: %d\n",
10548 pf->int_name, err);
10549 return -EFAULT;
10550 }
10551 }
10552
10553 i40e_enable_misc_int_causes(pf);
10554
10555 /* associate no queues to the misc vector */
10556 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST);
10557 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K);
10558
10559 i40e_flush(hw);
10560
10561 i40e_irq_dynamic_enable_icr0(pf);
10562
10563 return err;
10564 }
10565
10566 /**
10567 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands
10568 * @vsi: Pointer to vsi structure
10569 * @seed: Buffter to store the hash keys
10570 * @lut: Buffer to store the lookup table entries
10571 * @lut_size: Size of buffer to store the lookup table entries
10572 *
10573 * Return 0 on success, negative on failure
10574 */
10575 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
10576 u8 *lut, u16 lut_size)
10577 {
10578 struct i40e_pf *pf = vsi->back;
10579 struct i40e_hw *hw = &pf->hw;
10580 int ret = 0;
10581
10582 if (seed) {
10583 ret = i40e_aq_get_rss_key(hw, vsi->id,
10584 (struct i40e_aqc_get_set_rss_key_data *)seed);
10585 if (ret) {
10586 dev_info(&pf->pdev->dev,
10587 "Cannot get RSS key, err %s aq_err %s\n",
10588 i40e_stat_str(&pf->hw, ret),
10589 i40e_aq_str(&pf->hw,
10590 pf->hw.aq.asq_last_status));
10591 return ret;
10592 }
10593 }
10594
10595 if (lut) {
10596 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false;
10597
10598 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
10599 if (ret) {
10600 dev_info(&pf->pdev->dev,
10601 "Cannot get RSS lut, err %s aq_err %s\n",
10602 i40e_stat_str(&pf->hw, ret),
10603 i40e_aq_str(&pf->hw,
10604 pf->hw.aq.asq_last_status));
10605 return ret;
10606 }
10607 }
10608
10609 return ret;
10610 }
10611
10612 /**
10613 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers
10614 * @vsi: Pointer to vsi structure
10615 * @seed: RSS hash seed
10616 * @lut: Lookup table
10617 * @lut_size: Lookup table size
10618 *
10619 * Returns 0 on success, negative on failure
10620 **/
10621 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed,
10622 const u8 *lut, u16 lut_size)
10623 {
10624 struct i40e_pf *pf = vsi->back;
10625 struct i40e_hw *hw = &pf->hw;
10626 u16 vf_id = vsi->vf_id;
10627 u8 i;
10628
10629 /* Fill out hash function seed */
10630 if (seed) {
10631 u32 *seed_dw = (u32 *)seed;
10632
10633 if (vsi->type == I40E_VSI_MAIN) {
10634 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
10635 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]);
10636 } else if (vsi->type == I40E_VSI_SRIOV) {
10637 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++)
10638 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]);
10639 } else {
10640 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n");
10641 }
10642 }
10643
10644 if (lut) {
10645 u32 *lut_dw = (u32 *)lut;
10646
10647 if (vsi->type == I40E_VSI_MAIN) {
10648 if (lut_size != I40E_HLUT_ARRAY_SIZE)
10649 return -EINVAL;
10650 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
10651 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]);
10652 } else if (vsi->type == I40E_VSI_SRIOV) {
10653 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE)
10654 return -EINVAL;
10655 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
10656 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]);
10657 } else {
10658 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
10659 }
10660 }
10661 i40e_flush(hw);
10662
10663 return 0;
10664 }
10665
10666 /**
10667 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers
10668 * @vsi: Pointer to VSI structure
10669 * @seed: Buffer to store the keys
10670 * @lut: Buffer to store the lookup table entries
10671 * @lut_size: Size of buffer to store the lookup table entries
10672 *
10673 * Returns 0 on success, negative on failure
10674 */
10675 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed,
10676 u8 *lut, u16 lut_size)
10677 {
10678 struct i40e_pf *pf = vsi->back;
10679 struct i40e_hw *hw = &pf->hw;
10680 u16 i;
10681
10682 if (seed) {
10683 u32 *seed_dw = (u32 *)seed;
10684
10685 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
10686 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i));
10687 }
10688 if (lut) {
10689 u32 *lut_dw = (u32 *)lut;
10690
10691 if (lut_size != I40E_HLUT_ARRAY_SIZE)
10692 return -EINVAL;
10693 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
10694 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i));
10695 }
10696
10697 return 0;
10698 }
10699
10700 /**
10701 * i40e_config_rss - Configure RSS keys and lut
10702 * @vsi: Pointer to VSI structure
10703 * @seed: RSS hash seed
10704 * @lut: Lookup table
10705 * @lut_size: Lookup table size
10706 *
10707 * Returns 0 on success, negative on failure
10708 */
10709 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
10710 {
10711 struct i40e_pf *pf = vsi->back;
10712
10713 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)
10714 return i40e_config_rss_aq(vsi, seed, lut, lut_size);
10715 else
10716 return i40e_config_rss_reg(vsi, seed, lut, lut_size);
10717 }
10718
10719 /**
10720 * i40e_get_rss - Get RSS keys and lut
10721 * @vsi: Pointer to VSI structure
10722 * @seed: Buffer to store the keys
10723 * @lut: Buffer to store the lookup table entries
10724 * lut_size: Size of buffer to store the lookup table entries
10725 *
10726 * Returns 0 on success, negative on failure
10727 */
10728 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
10729 {
10730 struct i40e_pf *pf = vsi->back;
10731
10732 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)
10733 return i40e_get_rss_aq(vsi, seed, lut, lut_size);
10734 else
10735 return i40e_get_rss_reg(vsi, seed, lut, lut_size);
10736 }
10737
10738 /**
10739 * i40e_fill_rss_lut - Fill the RSS lookup table with default values
10740 * @pf: Pointer to board private structure
10741 * @lut: Lookup table
10742 * @rss_table_size: Lookup table size
10743 * @rss_size: Range of queue number for hashing
10744 */
10745 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut,
10746 u16 rss_table_size, u16 rss_size)
10747 {
10748 u16 i;
10749
10750 for (i = 0; i < rss_table_size; i++)
10751 lut[i] = i % rss_size;
10752 }
10753
10754 /**
10755 * i40e_pf_config_rss - Prepare for RSS if used
10756 * @pf: board private structure
10757 **/
10758 static int i40e_pf_config_rss(struct i40e_pf *pf)
10759 {
10760 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
10761 u8 seed[I40E_HKEY_ARRAY_SIZE];
10762 u8 *lut;
10763 struct i40e_hw *hw = &pf->hw;
10764 u32 reg_val;
10765 u64 hena;
10766 int ret;
10767
10768 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */
10769 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) |
10770 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32);
10771 hena |= i40e_pf_get_default_rss_hena(pf);
10772
10773 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena);
10774 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
10775
10776 /* Determine the RSS table size based on the hardware capabilities */
10777 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
10778 reg_val = (pf->rss_table_size == 512) ?
10779 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) :
10780 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512);
10781 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val);
10782
10783 /* Determine the RSS size of the VSI */
10784 if (!vsi->rss_size) {
10785 u16 qcount;
10786
10787 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
10788 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
10789 }
10790 if (!vsi->rss_size)
10791 return -EINVAL;
10792
10793 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
10794 if (!lut)
10795 return -ENOMEM;
10796
10797 /* Use user configured lut if there is one, otherwise use default */
10798 if (vsi->rss_lut_user)
10799 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
10800 else
10801 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
10802
10803 /* Use user configured hash key if there is one, otherwise
10804 * use default.
10805 */
10806 if (vsi->rss_hkey_user)
10807 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
10808 else
10809 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
10810 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
10811 kfree(lut);
10812
10813 return ret;
10814 }
10815
10816 /**
10817 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild
10818 * @pf: board private structure
10819 * @queue_count: the requested queue count for rss.
10820 *
10821 * returns 0 if rss is not enabled, if enabled returns the final rss queue
10822 * count which may be different from the requested queue count.
10823 * Note: expects to be called while under rtnl_lock()
10824 **/
10825 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count)
10826 {
10827 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
10828 int new_rss_size;
10829
10830 if (!(pf->flags & I40E_FLAG_RSS_ENABLED))
10831 return 0;
10832
10833 new_rss_size = min_t(int, queue_count, pf->rss_size_max);
10834
10835 if (queue_count != vsi->num_queue_pairs) {
10836 u16 qcount;
10837
10838 vsi->req_queue_pairs = queue_count;
10839 i40e_prep_for_reset(pf, true);
10840
10841 pf->alloc_rss_size = new_rss_size;
10842
10843 i40e_reset_and_rebuild(pf, true, true);
10844
10845 /* Discard the user configured hash keys and lut, if less
10846 * queues are enabled.
10847 */
10848 if (queue_count < vsi->rss_size) {
10849 i40e_clear_rss_config_user(vsi);
10850 dev_dbg(&pf->pdev->dev,
10851 "discard user configured hash keys and lut\n");
10852 }
10853
10854 /* Reset vsi->rss_size, as number of enabled queues changed */
10855 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
10856 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
10857
10858 i40e_pf_config_rss(pf);
10859 }
10860 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n",
10861 vsi->req_queue_pairs, pf->rss_size_max);
10862 return pf->alloc_rss_size;
10863 }
10864
10865 /**
10866 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition
10867 * @pf: board private structure
10868 **/
10869 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf)
10870 {
10871 i40e_status status;
10872 bool min_valid, max_valid;
10873 u32 max_bw, min_bw;
10874
10875 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw,
10876 &min_valid, &max_valid);
10877
10878 if (!status) {
10879 if (min_valid)
10880 pf->min_bw = min_bw;
10881 if (max_valid)
10882 pf->max_bw = max_bw;
10883 }
10884
10885 return status;
10886 }
10887
10888 /**
10889 * i40e_set_partition_bw_setting - Set BW settings for this PF partition
10890 * @pf: board private structure
10891 **/
10892 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf)
10893 {
10894 struct i40e_aqc_configure_partition_bw_data bw_data;
10895 i40e_status status;
10896
10897 /* Set the valid bit for this PF */
10898 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id));
10899 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK;
10900 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK;
10901
10902 /* Set the new bandwidths */
10903 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL);
10904
10905 return status;
10906 }
10907
10908 /**
10909 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition
10910 * @pf: board private structure
10911 **/
10912 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf)
10913 {
10914 /* Commit temporary BW setting to permanent NVM image */
10915 enum i40e_admin_queue_err last_aq_status;
10916 i40e_status ret;
10917 u16 nvm_word;
10918
10919 if (pf->hw.partition_id != 1) {
10920 dev_info(&pf->pdev->dev,
10921 "Commit BW only works on partition 1! This is partition %d",
10922 pf->hw.partition_id);
10923 ret = I40E_NOT_SUPPORTED;
10924 goto bw_commit_out;
10925 }
10926
10927 /* Acquire NVM for read access */
10928 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ);
10929 last_aq_status = pf->hw.aq.asq_last_status;
10930 if (ret) {
10931 dev_info(&pf->pdev->dev,
10932 "Cannot acquire NVM for read access, err %s aq_err %s\n",
10933 i40e_stat_str(&pf->hw, ret),
10934 i40e_aq_str(&pf->hw, last_aq_status));
10935 goto bw_commit_out;
10936 }
10937
10938 /* Read word 0x10 of NVM - SW compatibility word 1 */
10939 ret = i40e_aq_read_nvm(&pf->hw,
10940 I40E_SR_NVM_CONTROL_WORD,
10941 0x10, sizeof(nvm_word), &nvm_word,
10942 false, NULL);
10943 /* Save off last admin queue command status before releasing
10944 * the NVM
10945 */
10946 last_aq_status = pf->hw.aq.asq_last_status;
10947 i40e_release_nvm(&pf->hw);
10948 if (ret) {
10949 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n",
10950 i40e_stat_str(&pf->hw, ret),
10951 i40e_aq_str(&pf->hw, last_aq_status));
10952 goto bw_commit_out;
10953 }
10954
10955 /* Wait a bit for NVM release to complete */
10956 msleep(50);
10957
10958 /* Acquire NVM for write access */
10959 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE);
10960 last_aq_status = pf->hw.aq.asq_last_status;
10961 if (ret) {
10962 dev_info(&pf->pdev->dev,
10963 "Cannot acquire NVM for write access, err %s aq_err %s\n",
10964 i40e_stat_str(&pf->hw, ret),
10965 i40e_aq_str(&pf->hw, last_aq_status));
10966 goto bw_commit_out;
10967 }
10968 /* Write it back out unchanged to initiate update NVM,
10969 * which will force a write of the shadow (alt) RAM to
10970 * the NVM - thus storing the bandwidth values permanently.
10971 */
10972 ret = i40e_aq_update_nvm(&pf->hw,
10973 I40E_SR_NVM_CONTROL_WORD,
10974 0x10, sizeof(nvm_word),
10975 &nvm_word, true, NULL);
10976 /* Save off last admin queue command status before releasing
10977 * the NVM
10978 */
10979 last_aq_status = pf->hw.aq.asq_last_status;
10980 i40e_release_nvm(&pf->hw);
10981 if (ret)
10982 dev_info(&pf->pdev->dev,
10983 "BW settings NOT SAVED, err %s aq_err %s\n",
10984 i40e_stat_str(&pf->hw, ret),
10985 i40e_aq_str(&pf->hw, last_aq_status));
10986 bw_commit_out:
10987
10988 return ret;
10989 }
10990
10991 /**
10992 * i40e_sw_init - Initialize general software structures (struct i40e_pf)
10993 * @pf: board private structure to initialize
10994 *
10995 * i40e_sw_init initializes the Adapter private data structure.
10996 * Fields are initialized based on PCI device information and
10997 * OS network device settings (MTU size).
10998 **/
10999 static int i40e_sw_init(struct i40e_pf *pf)
11000 {
11001 int err = 0;
11002 int size;
11003
11004 /* Set default capability flags */
11005 pf->flags = I40E_FLAG_RX_CSUM_ENABLED |
11006 I40E_FLAG_MSI_ENABLED |
11007 I40E_FLAG_MSIX_ENABLED;
11008
11009 /* Set default ITR */
11010 pf->rx_itr_default = I40E_ITR_RX_DEF;
11011 pf->tx_itr_default = I40E_ITR_TX_DEF;
11012
11013 /* Depending on PF configurations, it is possible that the RSS
11014 * maximum might end up larger than the available queues
11015 */
11016 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width);
11017 pf->alloc_rss_size = 1;
11018 pf->rss_table_size = pf->hw.func_caps.rss_table_size;
11019 pf->rss_size_max = min_t(int, pf->rss_size_max,
11020 pf->hw.func_caps.num_tx_qp);
11021 if (pf->hw.func_caps.rss) {
11022 pf->flags |= I40E_FLAG_RSS_ENABLED;
11023 pf->alloc_rss_size = min_t(int, pf->rss_size_max,
11024 num_online_cpus());
11025 }
11026
11027 /* MFP mode enabled */
11028 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) {
11029 pf->flags |= I40E_FLAG_MFP_ENABLED;
11030 dev_info(&pf->pdev->dev, "MFP mode Enabled\n");
11031 if (i40e_get_partition_bw_setting(pf)) {
11032 dev_warn(&pf->pdev->dev,
11033 "Could not get partition bw settings\n");
11034 } else {
11035 dev_info(&pf->pdev->dev,
11036 "Partition BW Min = %8.8x, Max = %8.8x\n",
11037 pf->min_bw, pf->max_bw);
11038
11039 /* nudge the Tx scheduler */
11040 i40e_set_partition_bw_setting(pf);
11041 }
11042 }
11043
11044 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) ||
11045 (pf->hw.func_caps.fd_filters_best_effort > 0)) {
11046 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
11047 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE;
11048 if (pf->flags & I40E_FLAG_MFP_ENABLED &&
11049 pf->hw.num_partitions > 1)
11050 dev_info(&pf->pdev->dev,
11051 "Flow Director Sideband mode Disabled in MFP mode\n");
11052 else
11053 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
11054 pf->fdir_pf_filter_count =
11055 pf->hw.func_caps.fd_filters_guaranteed;
11056 pf->hw.fdir_shared_filter_count =
11057 pf->hw.func_caps.fd_filters_best_effort;
11058 }
11059
11060 if (pf->hw.mac.type == I40E_MAC_X722) {
11061 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE |
11062 I40E_HW_128_QP_RSS_CAPABLE |
11063 I40E_HW_ATR_EVICT_CAPABLE |
11064 I40E_HW_WB_ON_ITR_CAPABLE |
11065 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE |
11066 I40E_HW_NO_PCI_LINK_CHECK |
11067 I40E_HW_USE_SET_LLDP_MIB |
11068 I40E_HW_GENEVE_OFFLOAD_CAPABLE |
11069 I40E_HW_PTP_L4_CAPABLE |
11070 I40E_HW_WOL_MC_MAGIC_PKT_WAKE |
11071 I40E_HW_OUTER_UDP_CSUM_CAPABLE);
11072
11073 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03
11074 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) !=
11075 I40E_FDEVICT_PCTYPE_DEFAULT) {
11076 dev_warn(&pf->pdev->dev,
11077 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n");
11078 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE;
11079 }
11080 } else if ((pf->hw.aq.api_maj_ver > 1) ||
11081 ((pf->hw.aq.api_maj_ver == 1) &&
11082 (pf->hw.aq.api_min_ver > 4))) {
11083 /* Supported in FW API version higher than 1.4 */
11084 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE;
11085 }
11086
11087 /* Enable HW ATR eviction if possible */
11088 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE)
11089 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED;
11090
11091 if ((pf->hw.mac.type == I40E_MAC_XL710) &&
11092 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) ||
11093 (pf->hw.aq.fw_maj_ver < 4))) {
11094 pf->hw_features |= I40E_HW_RESTART_AUTONEG;
11095 /* No DCB support for FW < v4.33 */
11096 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT;
11097 }
11098
11099 /* Disable FW LLDP if FW < v4.3 */
11100 if ((pf->hw.mac.type == I40E_MAC_XL710) &&
11101 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) ||
11102 (pf->hw.aq.fw_maj_ver < 4)))
11103 pf->hw_features |= I40E_HW_STOP_FW_LLDP;
11104
11105 /* Use the FW Set LLDP MIB API if FW > v4.40 */
11106 if ((pf->hw.mac.type == I40E_MAC_XL710) &&
11107 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) ||
11108 (pf->hw.aq.fw_maj_ver >= 5)))
11109 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB;
11110
11111 /* Enable PTP L4 if FW > v6.0 */
11112 if (pf->hw.mac.type == I40E_MAC_XL710 &&
11113 pf->hw.aq.fw_maj_ver >= 6)
11114 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE;
11115
11116 if (pf->hw.func_caps.vmdq) {
11117 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI;
11118 pf->flags |= I40E_FLAG_VMDQ_ENABLED;
11119 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf);
11120 }
11121
11122 if (pf->hw.func_caps.iwarp) {
11123 pf->flags |= I40E_FLAG_IWARP_ENABLED;
11124 /* IWARP needs one extra vector for CQP just like MISC.*/
11125 pf->num_iwarp_msix = (int)num_online_cpus() + 1;
11126 }
11127
11128 #ifdef CONFIG_PCI_IOV
11129 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) {
11130 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF;
11131 pf->flags |= I40E_FLAG_SRIOV_ENABLED;
11132 pf->num_req_vfs = min_t(int,
11133 pf->hw.func_caps.num_vfs,
11134 I40E_MAX_VF_COUNT);
11135 }
11136 #endif /* CONFIG_PCI_IOV */
11137 pf->eeprom_version = 0xDEAD;
11138 pf->lan_veb = I40E_NO_VEB;
11139 pf->lan_vsi = I40E_NO_VSI;
11140
11141 /* By default FW has this off for performance reasons */
11142 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED;
11143
11144 /* set up queue assignment tracking */
11145 size = sizeof(struct i40e_lump_tracking)
11146 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp);
11147 pf->qp_pile = kzalloc(size, GFP_KERNEL);
11148 if (!pf->qp_pile) {
11149 err = -ENOMEM;
11150 goto sw_init_done;
11151 }
11152 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp;
11153 pf->qp_pile->search_hint = 0;
11154
11155 pf->tx_timeout_recovery_level = 1;
11156
11157 mutex_init(&pf->switch_mutex);
11158
11159 sw_init_done:
11160 return err;
11161 }
11162
11163 /**
11164 * i40e_set_ntuple - set the ntuple feature flag and take action
11165 * @pf: board private structure to initialize
11166 * @features: the feature set that the stack is suggesting
11167 *
11168 * returns a bool to indicate if reset needs to happen
11169 **/
11170 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features)
11171 {
11172 bool need_reset = false;
11173
11174 /* Check if Flow Director n-tuple support was enabled or disabled. If
11175 * the state changed, we need to reset.
11176 */
11177 if (features & NETIF_F_NTUPLE) {
11178 /* Enable filters and mark for reset */
11179 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
11180 need_reset = true;
11181 /* enable FD_SB only if there is MSI-X vector and no cloud
11182 * filters exist
11183 */
11184 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) {
11185 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
11186 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE;
11187 }
11188 } else {
11189 /* turn off filters, mark for reset and clear SW filter list */
11190 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
11191 need_reset = true;
11192 i40e_fdir_filter_exit(pf);
11193 }
11194 pf->flags &= ~(I40E_FLAG_FD_SB_ENABLED |
11195 I40E_FLAG_FD_SB_AUTO_DISABLED);
11196 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
11197
11198 /* reset fd counters */
11199 pf->fd_add_err = 0;
11200 pf->fd_atr_cnt = 0;
11201 /* if ATR was auto disabled it can be re-enabled. */
11202 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) {
11203 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
11204 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
11205 (I40E_DEBUG_FD & pf->hw.debug_mask))
11206 dev_info(&pf->pdev->dev, "ATR re-enabled.\n");
11207 }
11208 }
11209 return need_reset;
11210 }
11211
11212 /**
11213 * i40e_clear_rss_lut - clear the rx hash lookup table
11214 * @vsi: the VSI being configured
11215 **/
11216 static void i40e_clear_rss_lut(struct i40e_vsi *vsi)
11217 {
11218 struct i40e_pf *pf = vsi->back;
11219 struct i40e_hw *hw = &pf->hw;
11220 u16 vf_id = vsi->vf_id;
11221 u8 i;
11222
11223 if (vsi->type == I40E_VSI_MAIN) {
11224 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
11225 wr32(hw, I40E_PFQF_HLUT(i), 0);
11226 } else if (vsi->type == I40E_VSI_SRIOV) {
11227 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
11228 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0);
11229 } else {
11230 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
11231 }
11232 }
11233
11234 /**
11235 * i40e_set_features - set the netdev feature flags
11236 * @netdev: ptr to the netdev being adjusted
11237 * @features: the feature set that the stack is suggesting
11238 * Note: expects to be called while under rtnl_lock()
11239 **/
11240 static int i40e_set_features(struct net_device *netdev,
11241 netdev_features_t features)
11242 {
11243 struct i40e_netdev_priv *np = netdev_priv(netdev);
11244 struct i40e_vsi *vsi = np->vsi;
11245 struct i40e_pf *pf = vsi->back;
11246 bool need_reset;
11247
11248 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
11249 i40e_pf_config_rss(pf);
11250 else if (!(features & NETIF_F_RXHASH) &&
11251 netdev->features & NETIF_F_RXHASH)
11252 i40e_clear_rss_lut(vsi);
11253
11254 if (features & NETIF_F_HW_VLAN_CTAG_RX)
11255 i40e_vlan_stripping_enable(vsi);
11256 else
11257 i40e_vlan_stripping_disable(vsi);
11258
11259 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) {
11260 dev_err(&pf->pdev->dev,
11261 "Offloaded tc filters active, can't turn hw_tc_offload off");
11262 return -EINVAL;
11263 }
11264
11265 need_reset = i40e_set_ntuple(pf, features);
11266
11267 if (need_reset)
11268 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
11269
11270 return 0;
11271 }
11272
11273 /**
11274 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port
11275 * @pf: board private structure
11276 * @port: The UDP port to look up
11277 *
11278 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found
11279 **/
11280 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port)
11281 {
11282 u8 i;
11283
11284 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
11285 if (pf->udp_ports[i].port == port)
11286 return i;
11287 }
11288
11289 return i;
11290 }
11291
11292 /**
11293 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
11294 * @netdev: This physical port's netdev
11295 * @ti: Tunnel endpoint information
11296 **/
11297 static void i40e_udp_tunnel_add(struct net_device *netdev,
11298 struct udp_tunnel_info *ti)
11299 {
11300 struct i40e_netdev_priv *np = netdev_priv(netdev);
11301 struct i40e_vsi *vsi = np->vsi;
11302 struct i40e_pf *pf = vsi->back;
11303 u16 port = ntohs(ti->port);
11304 u8 next_idx;
11305 u8 idx;
11306
11307 idx = i40e_get_udp_port_idx(pf, port);
11308
11309 /* Check if port already exists */
11310 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) {
11311 netdev_info(netdev, "port %d already offloaded\n", port);
11312 return;
11313 }
11314
11315 /* Now check if there is space to add the new port */
11316 next_idx = i40e_get_udp_port_idx(pf, 0);
11317
11318 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) {
11319 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n",
11320 port);
11321 return;
11322 }
11323
11324 switch (ti->type) {
11325 case UDP_TUNNEL_TYPE_VXLAN:
11326 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN;
11327 break;
11328 case UDP_TUNNEL_TYPE_GENEVE:
11329 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE))
11330 return;
11331 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE;
11332 break;
11333 default:
11334 return;
11335 }
11336
11337 /* New port: add it and mark its index in the bitmap */
11338 pf->udp_ports[next_idx].port = port;
11339 pf->pending_udp_bitmap |= BIT_ULL(next_idx);
11340 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
11341 }
11342
11343 /**
11344 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
11345 * @netdev: This physical port's netdev
11346 * @ti: Tunnel endpoint information
11347 **/
11348 static void i40e_udp_tunnel_del(struct net_device *netdev,
11349 struct udp_tunnel_info *ti)
11350 {
11351 struct i40e_netdev_priv *np = netdev_priv(netdev);
11352 struct i40e_vsi *vsi = np->vsi;
11353 struct i40e_pf *pf = vsi->back;
11354 u16 port = ntohs(ti->port);
11355 u8 idx;
11356
11357 idx = i40e_get_udp_port_idx(pf, port);
11358
11359 /* Check if port already exists */
11360 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS)
11361 goto not_found;
11362
11363 switch (ti->type) {
11364 case UDP_TUNNEL_TYPE_VXLAN:
11365 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN)
11366 goto not_found;
11367 break;
11368 case UDP_TUNNEL_TYPE_GENEVE:
11369 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE)
11370 goto not_found;
11371 break;
11372 default:
11373 goto not_found;
11374 }
11375
11376 /* if port exists, set it to 0 (mark for deletion)
11377 * and make it pending
11378 */
11379 pf->udp_ports[idx].port = 0;
11380 pf->pending_udp_bitmap |= BIT_ULL(idx);
11381 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
11382
11383 return;
11384 not_found:
11385 netdev_warn(netdev, "UDP port %d was not found, not deleting\n",
11386 port);
11387 }
11388
11389 static int i40e_get_phys_port_id(struct net_device *netdev,
11390 struct netdev_phys_item_id *ppid)
11391 {
11392 struct i40e_netdev_priv *np = netdev_priv(netdev);
11393 struct i40e_pf *pf = np->vsi->back;
11394 struct i40e_hw *hw = &pf->hw;
11395
11396 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID))
11397 return -EOPNOTSUPP;
11398
11399 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id));
11400 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len);
11401
11402 return 0;
11403 }
11404
11405 /**
11406 * i40e_ndo_fdb_add - add an entry to the hardware database
11407 * @ndm: the input from the stack
11408 * @tb: pointer to array of nladdr (unused)
11409 * @dev: the net device pointer
11410 * @addr: the MAC address entry being added
11411 * @flags: instructions from stack about fdb operation
11412 */
11413 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
11414 struct net_device *dev,
11415 const unsigned char *addr, u16 vid,
11416 u16 flags)
11417 {
11418 struct i40e_netdev_priv *np = netdev_priv(dev);
11419 struct i40e_pf *pf = np->vsi->back;
11420 int err = 0;
11421
11422 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED))
11423 return -EOPNOTSUPP;
11424
11425 if (vid) {
11426 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
11427 return -EINVAL;
11428 }
11429
11430 /* Hardware does not support aging addresses so if a
11431 * ndm_state is given only allow permanent addresses
11432 */
11433 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
11434 netdev_info(dev, "FDB only supports static addresses\n");
11435 return -EINVAL;
11436 }
11437
11438 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
11439 err = dev_uc_add_excl(dev, addr);
11440 else if (is_multicast_ether_addr(addr))
11441 err = dev_mc_add_excl(dev, addr);
11442 else
11443 err = -EINVAL;
11444
11445 /* Only return duplicate errors if NLM_F_EXCL is set */
11446 if (err == -EEXIST && !(flags & NLM_F_EXCL))
11447 err = 0;
11448
11449 return err;
11450 }
11451
11452 /**
11453 * i40e_ndo_bridge_setlink - Set the hardware bridge mode
11454 * @dev: the netdev being configured
11455 * @nlh: RTNL message
11456 *
11457 * Inserts a new hardware bridge if not already created and
11458 * enables the bridging mode requested (VEB or VEPA). If the
11459 * hardware bridge has already been inserted and the request
11460 * is to change the mode then that requires a PF reset to
11461 * allow rebuild of the components with required hardware
11462 * bridge mode enabled.
11463 *
11464 * Note: expects to be called while under rtnl_lock()
11465 **/
11466 static int i40e_ndo_bridge_setlink(struct net_device *dev,
11467 struct nlmsghdr *nlh,
11468 u16 flags)
11469 {
11470 struct i40e_netdev_priv *np = netdev_priv(dev);
11471 struct i40e_vsi *vsi = np->vsi;
11472 struct i40e_pf *pf = vsi->back;
11473 struct i40e_veb *veb = NULL;
11474 struct nlattr *attr, *br_spec;
11475 int i, rem;
11476
11477 /* Only for PF VSI for now */
11478 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
11479 return -EOPNOTSUPP;
11480
11481 /* Find the HW bridge for PF VSI */
11482 for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
11483 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
11484 veb = pf->veb[i];
11485 }
11486
11487 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11488
11489 nla_for_each_nested(attr, br_spec, rem) {
11490 __u16 mode;
11491
11492 if (nla_type(attr) != IFLA_BRIDGE_MODE)
11493 continue;
11494
11495 mode = nla_get_u16(attr);
11496 if ((mode != BRIDGE_MODE_VEPA) &&
11497 (mode != BRIDGE_MODE_VEB))
11498 return -EINVAL;
11499
11500 /* Insert a new HW bridge */
11501 if (!veb) {
11502 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
11503 vsi->tc_config.enabled_tc);
11504 if (veb) {
11505 veb->bridge_mode = mode;
11506 i40e_config_bridge_mode(veb);
11507 } else {
11508 /* No Bridge HW offload available */
11509 return -ENOENT;
11510 }
11511 break;
11512 } else if (mode != veb->bridge_mode) {
11513 /* Existing HW bridge but different mode needs reset */
11514 veb->bridge_mode = mode;
11515 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */
11516 if (mode == BRIDGE_MODE_VEB)
11517 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
11518 else
11519 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED;
11520 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
11521 break;
11522 }
11523 }
11524
11525 return 0;
11526 }
11527
11528 /**
11529 * i40e_ndo_bridge_getlink - Get the hardware bridge mode
11530 * @skb: skb buff
11531 * @pid: process id
11532 * @seq: RTNL message seq #
11533 * @dev: the netdev being configured
11534 * @filter_mask: unused
11535 * @nlflags: netlink flags passed in
11536 *
11537 * Return the mode in which the hardware bridge is operating in
11538 * i.e VEB or VEPA.
11539 **/
11540 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11541 struct net_device *dev,
11542 u32 __always_unused filter_mask,
11543 int nlflags)
11544 {
11545 struct i40e_netdev_priv *np = netdev_priv(dev);
11546 struct i40e_vsi *vsi = np->vsi;
11547 struct i40e_pf *pf = vsi->back;
11548 struct i40e_veb *veb = NULL;
11549 int i;
11550
11551 /* Only for PF VSI for now */
11552 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
11553 return -EOPNOTSUPP;
11554
11555 /* Find the HW bridge for the PF VSI */
11556 for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
11557 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
11558 veb = pf->veb[i];
11559 }
11560
11561 if (!veb)
11562 return 0;
11563
11564 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode,
11565 0, 0, nlflags, filter_mask, NULL);
11566 }
11567
11568 /**
11569 * i40e_features_check - Validate encapsulated packet conforms to limits
11570 * @skb: skb buff
11571 * @dev: This physical port's netdev
11572 * @features: Offload features that the stack believes apply
11573 **/
11574 static netdev_features_t i40e_features_check(struct sk_buff *skb,
11575 struct net_device *dev,
11576 netdev_features_t features)
11577 {
11578 size_t len;
11579
11580 /* No point in doing any of this if neither checksum nor GSO are
11581 * being requested for this frame. We can rule out both by just
11582 * checking for CHECKSUM_PARTIAL
11583 */
11584 if (skb->ip_summed != CHECKSUM_PARTIAL)
11585 return features;
11586
11587 /* We cannot support GSO if the MSS is going to be less than
11588 * 64 bytes. If it is then we need to drop support for GSO.
11589 */
11590 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
11591 features &= ~NETIF_F_GSO_MASK;
11592
11593 /* MACLEN can support at most 63 words */
11594 len = skb_network_header(skb) - skb->data;
11595 if (len & ~(63 * 2))
11596 goto out_err;
11597
11598 /* IPLEN and EIPLEN can support at most 127 dwords */
11599 len = skb_transport_header(skb) - skb_network_header(skb);
11600 if (len & ~(127 * 4))
11601 goto out_err;
11602
11603 if (skb->encapsulation) {
11604 /* L4TUNLEN can support 127 words */
11605 len = skb_inner_network_header(skb) - skb_transport_header(skb);
11606 if (len & ~(127 * 2))
11607 goto out_err;
11608
11609 /* IPLEN can support at most 127 dwords */
11610 len = skb_inner_transport_header(skb) -
11611 skb_inner_network_header(skb);
11612 if (len & ~(127 * 4))
11613 goto out_err;
11614 }
11615
11616 /* No need to validate L4LEN as TCP is the only protocol with a
11617 * a flexible value and we support all possible values supported
11618 * by TCP, which is at most 15 dwords
11619 */
11620
11621 return features;
11622 out_err:
11623 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11624 }
11625
11626 /**
11627 * i40e_xdp_setup - add/remove an XDP program
11628 * @vsi: VSI to changed
11629 * @prog: XDP program
11630 **/
11631 static int i40e_xdp_setup(struct i40e_vsi *vsi,
11632 struct bpf_prog *prog)
11633 {
11634 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
11635 struct i40e_pf *pf = vsi->back;
11636 struct bpf_prog *old_prog;
11637 bool need_reset;
11638 int i;
11639
11640 /* Don't allow frames that span over multiple buffers */
11641 if (frame_size > vsi->rx_buf_len)
11642 return -EINVAL;
11643
11644 if (!i40e_enabled_xdp_vsi(vsi) && !prog)
11645 return 0;
11646
11647 /* When turning XDP on->off/off->on we reset and rebuild the rings. */
11648 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog);
11649
11650 if (need_reset)
11651 i40e_prep_for_reset(pf, true);
11652
11653 old_prog = xchg(&vsi->xdp_prog, prog);
11654
11655 if (need_reset)
11656 i40e_reset_and_rebuild(pf, true, true);
11657
11658 for (i = 0; i < vsi->num_queue_pairs; i++)
11659 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
11660
11661 if (old_prog)
11662 bpf_prog_put(old_prog);
11663
11664 return 0;
11665 }
11666
11667 /**
11668 * i40e_xdp - implements ndo_bpf for i40e
11669 * @dev: netdevice
11670 * @xdp: XDP command
11671 **/
11672 static int i40e_xdp(struct net_device *dev,
11673 struct netdev_bpf *xdp)
11674 {
11675 struct i40e_netdev_priv *np = netdev_priv(dev);
11676 struct i40e_vsi *vsi = np->vsi;
11677
11678 if (vsi->type != I40E_VSI_MAIN)
11679 return -EINVAL;
11680
11681 switch (xdp->command) {
11682 case XDP_SETUP_PROG:
11683 return i40e_xdp_setup(vsi, xdp->prog);
11684 case XDP_QUERY_PROG:
11685 xdp->prog_attached = i40e_enabled_xdp_vsi(vsi);
11686 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
11687 return 0;
11688 default:
11689 return -EINVAL;
11690 }
11691 }
11692
11693 static const struct net_device_ops i40e_netdev_ops = {
11694 .ndo_open = i40e_open,
11695 .ndo_stop = i40e_close,
11696 .ndo_start_xmit = i40e_lan_xmit_frame,
11697 .ndo_get_stats64 = i40e_get_netdev_stats_struct,
11698 .ndo_set_rx_mode = i40e_set_rx_mode,
11699 .ndo_validate_addr = eth_validate_addr,
11700 .ndo_set_mac_address = i40e_set_mac,
11701 .ndo_change_mtu = i40e_change_mtu,
11702 .ndo_do_ioctl = i40e_ioctl,
11703 .ndo_tx_timeout = i40e_tx_timeout,
11704 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid,
11705 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid,
11706 #ifdef CONFIG_NET_POLL_CONTROLLER
11707 .ndo_poll_controller = i40e_netpoll,
11708 #endif
11709 .ndo_setup_tc = __i40e_setup_tc,
11710 .ndo_set_features = i40e_set_features,
11711 .ndo_set_vf_mac = i40e_ndo_set_vf_mac,
11712 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan,
11713 .ndo_set_vf_rate = i40e_ndo_set_vf_bw,
11714 .ndo_get_vf_config = i40e_ndo_get_vf_config,
11715 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state,
11716 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk,
11717 .ndo_set_vf_trust = i40e_ndo_set_vf_trust,
11718 .ndo_udp_tunnel_add = i40e_udp_tunnel_add,
11719 .ndo_udp_tunnel_del = i40e_udp_tunnel_del,
11720 .ndo_get_phys_port_id = i40e_get_phys_port_id,
11721 .ndo_fdb_add = i40e_ndo_fdb_add,
11722 .ndo_features_check = i40e_features_check,
11723 .ndo_bridge_getlink = i40e_ndo_bridge_getlink,
11724 .ndo_bridge_setlink = i40e_ndo_bridge_setlink,
11725 .ndo_bpf = i40e_xdp,
11726 };
11727
11728 /**
11729 * i40e_config_netdev - Setup the netdev flags
11730 * @vsi: the VSI being configured
11731 *
11732 * Returns 0 on success, negative value on failure
11733 **/
11734 static int i40e_config_netdev(struct i40e_vsi *vsi)
11735 {
11736 struct i40e_pf *pf = vsi->back;
11737 struct i40e_hw *hw = &pf->hw;
11738 struct i40e_netdev_priv *np;
11739 struct net_device *netdev;
11740 u8 broadcast[ETH_ALEN];
11741 u8 mac_addr[ETH_ALEN];
11742 int etherdev_size;
11743 netdev_features_t hw_enc_features;
11744 netdev_features_t hw_features;
11745
11746 etherdev_size = sizeof(struct i40e_netdev_priv);
11747 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs);
11748 if (!netdev)
11749 return -ENOMEM;
11750
11751 vsi->netdev = netdev;
11752 np = netdev_priv(netdev);
11753 np->vsi = vsi;
11754
11755 hw_enc_features = NETIF_F_SG |
11756 NETIF_F_IP_CSUM |
11757 NETIF_F_IPV6_CSUM |
11758 NETIF_F_HIGHDMA |
11759 NETIF_F_SOFT_FEATURES |
11760 NETIF_F_TSO |
11761 NETIF_F_TSO_ECN |
11762 NETIF_F_TSO6 |
11763 NETIF_F_GSO_GRE |
11764 NETIF_F_GSO_GRE_CSUM |
11765 NETIF_F_GSO_PARTIAL |
11766 NETIF_F_GSO_UDP_TUNNEL |
11767 NETIF_F_GSO_UDP_TUNNEL_CSUM |
11768 NETIF_F_SCTP_CRC |
11769 NETIF_F_RXHASH |
11770 NETIF_F_RXCSUM |
11771 0;
11772
11773 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE))
11774 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
11775
11776 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
11777
11778 netdev->hw_enc_features |= hw_enc_features;
11779
11780 /* record features VLANs can make use of */
11781 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
11782
11783 if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
11784 netdev->hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC;
11785
11786 hw_features = hw_enc_features |
11787 NETIF_F_HW_VLAN_CTAG_TX |
11788 NETIF_F_HW_VLAN_CTAG_RX;
11789
11790 netdev->hw_features |= hw_features;
11791
11792 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
11793 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11794
11795 if (vsi->type == I40E_VSI_MAIN) {
11796 SET_NETDEV_DEV(netdev, &pf->pdev->dev);
11797 ether_addr_copy(mac_addr, hw->mac.perm_addr);
11798 /* The following steps are necessary for two reasons. First,
11799 * some older NVM configurations load a default MAC-VLAN
11800 * filter that will accept any tagged packet, and we want to
11801 * replace this with a normal filter. Additionally, it is
11802 * possible our MAC address was provided by the platform using
11803 * Open Firmware or similar.
11804 *
11805 * Thus, we need to remove the default filter and install one
11806 * specific to the MAC address.
11807 */
11808 i40e_rm_default_mac_filter(vsi, mac_addr);
11809 spin_lock_bh(&vsi->mac_filter_hash_lock);
11810 i40e_add_mac_filter(vsi, mac_addr);
11811 spin_unlock_bh(&vsi->mac_filter_hash_lock);
11812 } else {
11813 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we
11814 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to
11815 * the end, which is 4 bytes long, so force truncation of the
11816 * original name by IFNAMSIZ - 4
11817 */
11818 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d",
11819 IFNAMSIZ - 4,
11820 pf->vsi[pf->lan_vsi]->netdev->name);
11821 random_ether_addr(mac_addr);
11822
11823 spin_lock_bh(&vsi->mac_filter_hash_lock);
11824 i40e_add_mac_filter(vsi, mac_addr);
11825 spin_unlock_bh(&vsi->mac_filter_hash_lock);
11826 }
11827
11828 /* Add the broadcast filter so that we initially will receive
11829 * broadcast packets. Note that when a new VLAN is first added the
11830 * driver will convert all filters marked I40E_VLAN_ANY into VLAN
11831 * specific filters as part of transitioning into "vlan" operation.
11832 * When more VLANs are added, the driver will copy each existing MAC
11833 * filter and add it for the new VLAN.
11834 *
11835 * Broadcast filters are handled specially by
11836 * i40e_sync_filters_subtask, as the driver must to set the broadcast
11837 * promiscuous bit instead of adding this directly as a MAC/VLAN
11838 * filter. The subtask will update the correct broadcast promiscuous
11839 * bits as VLANs become active or inactive.
11840 */
11841 eth_broadcast_addr(broadcast);
11842 spin_lock_bh(&vsi->mac_filter_hash_lock);
11843 i40e_add_mac_filter(vsi, broadcast);
11844 spin_unlock_bh(&vsi->mac_filter_hash_lock);
11845
11846 ether_addr_copy(netdev->dev_addr, mac_addr);
11847 ether_addr_copy(netdev->perm_addr, mac_addr);
11848
11849 netdev->priv_flags |= IFF_UNICAST_FLT;
11850 netdev->priv_flags |= IFF_SUPP_NOFCS;
11851 /* Setup netdev TC information */
11852 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc);
11853
11854 netdev->netdev_ops = &i40e_netdev_ops;
11855 netdev->watchdog_timeo = 5 * HZ;
11856 i40e_set_ethtool_ops(netdev);
11857
11858 /* MTU range: 68 - 9706 */
11859 netdev->min_mtu = ETH_MIN_MTU;
11860 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD;
11861
11862 return 0;
11863 }
11864
11865 /**
11866 * i40e_vsi_delete - Delete a VSI from the switch
11867 * @vsi: the VSI being removed
11868 *
11869 * Returns 0 on success, negative value on failure
11870 **/
11871 static void i40e_vsi_delete(struct i40e_vsi *vsi)
11872 {
11873 /* remove default VSI is not allowed */
11874 if (vsi == vsi->back->vsi[vsi->back->lan_vsi])
11875 return;
11876
11877 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL);
11878 }
11879
11880 /**
11881 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB
11882 * @vsi: the VSI being queried
11883 *
11884 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode
11885 **/
11886 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi)
11887 {
11888 struct i40e_veb *veb;
11889 struct i40e_pf *pf = vsi->back;
11890
11891 /* Uplink is not a bridge so default to VEB */
11892 if (vsi->veb_idx == I40E_NO_VEB)
11893 return 1;
11894
11895 veb = pf->veb[vsi->veb_idx];
11896 if (!veb) {
11897 dev_info(&pf->pdev->dev,
11898 "There is no veb associated with the bridge\n");
11899 return -ENOENT;
11900 }
11901
11902 /* Uplink is a bridge in VEPA mode */
11903 if (veb->bridge_mode & BRIDGE_MODE_VEPA) {
11904 return 0;
11905 } else {
11906 /* Uplink is a bridge in VEB mode */
11907 return 1;
11908 }
11909
11910 /* VEPA is now default bridge, so return 0 */
11911 return 0;
11912 }
11913
11914 /**
11915 * i40e_add_vsi - Add a VSI to the switch
11916 * @vsi: the VSI being configured
11917 *
11918 * This initializes a VSI context depending on the VSI type to be added and
11919 * passes it down to the add_vsi aq command.
11920 **/
11921 static int i40e_add_vsi(struct i40e_vsi *vsi)
11922 {
11923 int ret = -ENODEV;
11924 struct i40e_pf *pf = vsi->back;
11925 struct i40e_hw *hw = &pf->hw;
11926 struct i40e_vsi_context ctxt;
11927 struct i40e_mac_filter *f;
11928 struct hlist_node *h;
11929 int bkt;
11930
11931 u8 enabled_tc = 0x1; /* TC0 enabled */
11932 int f_count = 0;
11933
11934 memset(&ctxt, 0, sizeof(ctxt));
11935 switch (vsi->type) {
11936 case I40E_VSI_MAIN:
11937 /* The PF's main VSI is already setup as part of the
11938 * device initialization, so we'll not bother with
11939 * the add_vsi call, but we will retrieve the current
11940 * VSI context.
11941 */
11942 ctxt.seid = pf->main_vsi_seid;
11943 ctxt.pf_num = pf->hw.pf_id;
11944 ctxt.vf_num = 0;
11945 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
11946 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
11947 if (ret) {
11948 dev_info(&pf->pdev->dev,
11949 "couldn't get PF vsi config, err %s aq_err %s\n",
11950 i40e_stat_str(&pf->hw, ret),
11951 i40e_aq_str(&pf->hw,
11952 pf->hw.aq.asq_last_status));
11953 return -ENOENT;
11954 }
11955 vsi->info = ctxt.info;
11956 vsi->info.valid_sections = 0;
11957
11958 vsi->seid = ctxt.seid;
11959 vsi->id = ctxt.vsi_number;
11960
11961 enabled_tc = i40e_pf_get_tc_map(pf);
11962
11963 /* Source pruning is enabled by default, so the flag is
11964 * negative logic - if it's set, we need to fiddle with
11965 * the VSI to disable source pruning.
11966 */
11967 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) {
11968 memset(&ctxt, 0, sizeof(ctxt));
11969 ctxt.seid = pf->main_vsi_seid;
11970 ctxt.pf_num = pf->hw.pf_id;
11971 ctxt.vf_num = 0;
11972 ctxt.info.valid_sections |=
11973 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
11974 ctxt.info.switch_id =
11975 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
11976 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
11977 if (ret) {
11978 dev_info(&pf->pdev->dev,
11979 "update vsi failed, err %s aq_err %s\n",
11980 i40e_stat_str(&pf->hw, ret),
11981 i40e_aq_str(&pf->hw,
11982 pf->hw.aq.asq_last_status));
11983 ret = -ENOENT;
11984 goto err;
11985 }
11986 }
11987
11988 /* MFP mode setup queue map and update VSI */
11989 if ((pf->flags & I40E_FLAG_MFP_ENABLED) &&
11990 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */
11991 memset(&ctxt, 0, sizeof(ctxt));
11992 ctxt.seid = pf->main_vsi_seid;
11993 ctxt.pf_num = pf->hw.pf_id;
11994 ctxt.vf_num = 0;
11995 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
11996 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
11997 if (ret) {
11998 dev_info(&pf->pdev->dev,
11999 "update vsi failed, err %s aq_err %s\n",
12000 i40e_stat_str(&pf->hw, ret),
12001 i40e_aq_str(&pf->hw,
12002 pf->hw.aq.asq_last_status));
12003 ret = -ENOENT;
12004 goto err;
12005 }
12006 /* update the local VSI info queue map */
12007 i40e_vsi_update_queue_map(vsi, &ctxt);
12008 vsi->info.valid_sections = 0;
12009 } else {
12010 /* Default/Main VSI is only enabled for TC0
12011 * reconfigure it to enable all TCs that are
12012 * available on the port in SFP mode.
12013 * For MFP case the iSCSI PF would use this
12014 * flow to enable LAN+iSCSI TC.
12015 */
12016 ret = i40e_vsi_config_tc(vsi, enabled_tc);
12017 if (ret) {
12018 /* Single TC condition is not fatal,
12019 * message and continue
12020 */
12021 dev_info(&pf->pdev->dev,
12022 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n",
12023 enabled_tc,
12024 i40e_stat_str(&pf->hw, ret),
12025 i40e_aq_str(&pf->hw,
12026 pf->hw.aq.asq_last_status));
12027 }
12028 }
12029 break;
12030
12031 case I40E_VSI_FDIR:
12032 ctxt.pf_num = hw->pf_id;
12033 ctxt.vf_num = 0;
12034 ctxt.uplink_seid = vsi->uplink_seid;
12035 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
12036 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
12037 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) &&
12038 (i40e_is_vsi_uplink_mode_veb(vsi))) {
12039 ctxt.info.valid_sections |=
12040 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
12041 ctxt.info.switch_id =
12042 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
12043 }
12044 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
12045 break;
12046
12047 case I40E_VSI_VMDQ2:
12048 ctxt.pf_num = hw->pf_id;
12049 ctxt.vf_num = 0;
12050 ctxt.uplink_seid = vsi->uplink_seid;
12051 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
12052 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
12053
12054 /* This VSI is connected to VEB so the switch_id
12055 * should be set to zero by default.
12056 */
12057 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
12058 ctxt.info.valid_sections |=
12059 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
12060 ctxt.info.switch_id =
12061 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
12062 }
12063
12064 /* Setup the VSI tx/rx queue map for TC0 only for now */
12065 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
12066 break;
12067
12068 case I40E_VSI_SRIOV:
12069 ctxt.pf_num = hw->pf_id;
12070 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
12071 ctxt.uplink_seid = vsi->uplink_seid;
12072 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
12073 ctxt.flags = I40E_AQ_VSI_TYPE_VF;
12074
12075 /* This VSI is connected to VEB so the switch_id
12076 * should be set to zero by default.
12077 */
12078 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
12079 ctxt.info.valid_sections |=
12080 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
12081 ctxt.info.switch_id =
12082 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
12083 }
12084
12085 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) {
12086 ctxt.info.valid_sections |=
12087 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
12088 ctxt.info.queueing_opt_flags |=
12089 (I40E_AQ_VSI_QUE_OPT_TCP_ENA |
12090 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI);
12091 }
12092
12093 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
12094 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
12095 if (pf->vf[vsi->vf_id].spoofchk) {
12096 ctxt.info.valid_sections |=
12097 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
12098 ctxt.info.sec_flags |=
12099 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK |
12100 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK);
12101 }
12102 /* Setup the VSI tx/rx queue map for TC0 only for now */
12103 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
12104 break;
12105
12106 case I40E_VSI_IWARP:
12107 /* send down message to iWARP */
12108 break;
12109
12110 default:
12111 return -ENODEV;
12112 }
12113
12114 if (vsi->type != I40E_VSI_MAIN) {
12115 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
12116 if (ret) {
12117 dev_info(&vsi->back->pdev->dev,
12118 "add vsi failed, err %s aq_err %s\n",
12119 i40e_stat_str(&pf->hw, ret),
12120 i40e_aq_str(&pf->hw,
12121 pf->hw.aq.asq_last_status));
12122 ret = -ENOENT;
12123 goto err;
12124 }
12125 vsi->info = ctxt.info;
12126 vsi->info.valid_sections = 0;
12127 vsi->seid = ctxt.seid;
12128 vsi->id = ctxt.vsi_number;
12129 }
12130
12131 vsi->active_filters = 0;
12132 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
12133 spin_lock_bh(&vsi->mac_filter_hash_lock);
12134 /* If macvlan filters already exist, force them to get loaded */
12135 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
12136 f->state = I40E_FILTER_NEW;
12137 f_count++;
12138 }
12139 spin_unlock_bh(&vsi->mac_filter_hash_lock);
12140
12141 if (f_count) {
12142 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
12143 pf->flags |= I40E_FLAG_FILTER_SYNC;
12144 }
12145
12146 /* Update VSI BW information */
12147 ret = i40e_vsi_get_bw_info(vsi);
12148 if (ret) {
12149 dev_info(&pf->pdev->dev,
12150 "couldn't get vsi bw info, err %s aq_err %s\n",
12151 i40e_stat_str(&pf->hw, ret),
12152 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12153 /* VSI is already added so not tearing that up */
12154 ret = 0;
12155 }
12156
12157 err:
12158 return ret;
12159 }
12160
12161 /**
12162 * i40e_vsi_release - Delete a VSI and free its resources
12163 * @vsi: the VSI being removed
12164 *
12165 * Returns 0 on success or < 0 on error
12166 **/
12167 int i40e_vsi_release(struct i40e_vsi *vsi)
12168 {
12169 struct i40e_mac_filter *f;
12170 struct hlist_node *h;
12171 struct i40e_veb *veb = NULL;
12172 struct i40e_pf *pf;
12173 u16 uplink_seid;
12174 int i, n, bkt;
12175
12176 pf = vsi->back;
12177
12178 /* release of a VEB-owner or last VSI is not allowed */
12179 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) {
12180 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n",
12181 vsi->seid, vsi->uplink_seid);
12182 return -ENODEV;
12183 }
12184 if (vsi == pf->vsi[pf->lan_vsi] &&
12185 !test_bit(__I40E_DOWN, pf->state)) {
12186 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n");
12187 return -ENODEV;
12188 }
12189
12190 uplink_seid = vsi->uplink_seid;
12191 if (vsi->type != I40E_VSI_SRIOV) {
12192 if (vsi->netdev_registered) {
12193 vsi->netdev_registered = false;
12194 if (vsi->netdev) {
12195 /* results in a call to i40e_close() */
12196 unregister_netdev(vsi->netdev);
12197 }
12198 } else {
12199 i40e_vsi_close(vsi);
12200 }
12201 i40e_vsi_disable_irq(vsi);
12202 }
12203
12204 spin_lock_bh(&vsi->mac_filter_hash_lock);
12205
12206 /* clear the sync flag on all filters */
12207 if (vsi->netdev) {
12208 __dev_uc_unsync(vsi->netdev, NULL);
12209 __dev_mc_unsync(vsi->netdev, NULL);
12210 }
12211
12212 /* make sure any remaining filters are marked for deletion */
12213 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
12214 __i40e_del_filter(vsi, f);
12215
12216 spin_unlock_bh(&vsi->mac_filter_hash_lock);
12217
12218 i40e_sync_vsi_filters(vsi);
12219
12220 i40e_vsi_delete(vsi);
12221 i40e_vsi_free_q_vectors(vsi);
12222 if (vsi->netdev) {
12223 free_netdev(vsi->netdev);
12224 vsi->netdev = NULL;
12225 }
12226 i40e_vsi_clear_rings(vsi);
12227 i40e_vsi_clear(vsi);
12228
12229 /* If this was the last thing on the VEB, except for the
12230 * controlling VSI, remove the VEB, which puts the controlling
12231 * VSI onto the next level down in the switch.
12232 *
12233 * Well, okay, there's one more exception here: don't remove
12234 * the orphan VEBs yet. We'll wait for an explicit remove request
12235 * from up the network stack.
12236 */
12237 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) {
12238 if (pf->vsi[i] &&
12239 pf->vsi[i]->uplink_seid == uplink_seid &&
12240 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
12241 n++; /* count the VSIs */
12242 }
12243 }
12244 for (i = 0; i < I40E_MAX_VEB; i++) {
12245 if (!pf->veb[i])
12246 continue;
12247 if (pf->veb[i]->uplink_seid == uplink_seid)
12248 n++; /* count the VEBs */
12249 if (pf->veb[i]->seid == uplink_seid)
12250 veb = pf->veb[i];
12251 }
12252 if (n == 0 && veb && veb->uplink_seid != 0)
12253 i40e_veb_release(veb);
12254
12255 return 0;
12256 }
12257
12258 /**
12259 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI
12260 * @vsi: ptr to the VSI
12261 *
12262 * This should only be called after i40e_vsi_mem_alloc() which allocates the
12263 * corresponding SW VSI structure and initializes num_queue_pairs for the
12264 * newly allocated VSI.
12265 *
12266 * Returns 0 on success or negative on failure
12267 **/
12268 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi)
12269 {
12270 int ret = -ENOENT;
12271 struct i40e_pf *pf = vsi->back;
12272
12273 if (vsi->q_vectors[0]) {
12274 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
12275 vsi->seid);
12276 return -EEXIST;
12277 }
12278
12279 if (vsi->base_vector) {
12280 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
12281 vsi->seid, vsi->base_vector);
12282 return -EEXIST;
12283 }
12284
12285 ret = i40e_vsi_alloc_q_vectors(vsi);
12286 if (ret) {
12287 dev_info(&pf->pdev->dev,
12288 "failed to allocate %d q_vector for VSI %d, ret=%d\n",
12289 vsi->num_q_vectors, vsi->seid, ret);
12290 vsi->num_q_vectors = 0;
12291 goto vector_setup_out;
12292 }
12293
12294 /* In Legacy mode, we do not have to get any other vector since we
12295 * piggyback on the misc/ICR0 for queue interrupts.
12296 */
12297 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
12298 return ret;
12299 if (vsi->num_q_vectors)
12300 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile,
12301 vsi->num_q_vectors, vsi->idx);
12302 if (vsi->base_vector < 0) {
12303 dev_info(&pf->pdev->dev,
12304 "failed to get tracking for %d vectors for VSI %d, err=%d\n",
12305 vsi->num_q_vectors, vsi->seid, vsi->base_vector);
12306 i40e_vsi_free_q_vectors(vsi);
12307 ret = -ENOENT;
12308 goto vector_setup_out;
12309 }
12310
12311 vector_setup_out:
12312 return ret;
12313 }
12314
12315 /**
12316 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI
12317 * @vsi: pointer to the vsi.
12318 *
12319 * This re-allocates a vsi's queue resources.
12320 *
12321 * Returns pointer to the successfully allocated and configured VSI sw struct
12322 * on success, otherwise returns NULL on failure.
12323 **/
12324 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi)
12325 {
12326 u16 alloc_queue_pairs;
12327 struct i40e_pf *pf;
12328 u8 enabled_tc;
12329 int ret;
12330
12331 if (!vsi)
12332 return NULL;
12333
12334 pf = vsi->back;
12335
12336 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
12337 i40e_vsi_clear_rings(vsi);
12338
12339 i40e_vsi_free_arrays(vsi, false);
12340 i40e_set_num_rings_in_vsi(vsi);
12341 ret = i40e_vsi_alloc_arrays(vsi, false);
12342 if (ret)
12343 goto err_vsi;
12344
12345 alloc_queue_pairs = vsi->alloc_queue_pairs *
12346 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
12347
12348 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
12349 if (ret < 0) {
12350 dev_info(&pf->pdev->dev,
12351 "failed to get tracking for %d queues for VSI %d err %d\n",
12352 alloc_queue_pairs, vsi->seid, ret);
12353 goto err_vsi;
12354 }
12355 vsi->base_queue = ret;
12356
12357 /* Update the FW view of the VSI. Force a reset of TC and queue
12358 * layout configurations.
12359 */
12360 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
12361 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
12362 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
12363 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
12364 if (vsi->type == I40E_VSI_MAIN)
12365 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr);
12366
12367 /* assign it some queues */
12368 ret = i40e_alloc_rings(vsi);
12369 if (ret)
12370 goto err_rings;
12371
12372 /* map all of the rings to the q_vectors */
12373 i40e_vsi_map_rings_to_vectors(vsi);
12374 return vsi;
12375
12376 err_rings:
12377 i40e_vsi_free_q_vectors(vsi);
12378 if (vsi->netdev_registered) {
12379 vsi->netdev_registered = false;
12380 unregister_netdev(vsi->netdev);
12381 free_netdev(vsi->netdev);
12382 vsi->netdev = NULL;
12383 }
12384 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
12385 err_vsi:
12386 i40e_vsi_clear(vsi);
12387 return NULL;
12388 }
12389
12390 /**
12391 * i40e_vsi_setup - Set up a VSI by a given type
12392 * @pf: board private structure
12393 * @type: VSI type
12394 * @uplink_seid: the switch element to link to
12395 * @param1: usage depends upon VSI type. For VF types, indicates VF id
12396 *
12397 * This allocates the sw VSI structure and its queue resources, then add a VSI
12398 * to the identified VEB.
12399 *
12400 * Returns pointer to the successfully allocated and configure VSI sw struct on
12401 * success, otherwise returns NULL on failure.
12402 **/
12403 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
12404 u16 uplink_seid, u32 param1)
12405 {
12406 struct i40e_vsi *vsi = NULL;
12407 struct i40e_veb *veb = NULL;
12408 u16 alloc_queue_pairs;
12409 int ret, i;
12410 int v_idx;
12411
12412 /* The requested uplink_seid must be either
12413 * - the PF's port seid
12414 * no VEB is needed because this is the PF
12415 * or this is a Flow Director special case VSI
12416 * - seid of an existing VEB
12417 * - seid of a VSI that owns an existing VEB
12418 * - seid of a VSI that doesn't own a VEB
12419 * a new VEB is created and the VSI becomes the owner
12420 * - seid of the PF VSI, which is what creates the first VEB
12421 * this is a special case of the previous
12422 *
12423 * Find which uplink_seid we were given and create a new VEB if needed
12424 */
12425 for (i = 0; i < I40E_MAX_VEB; i++) {
12426 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) {
12427 veb = pf->veb[i];
12428 break;
12429 }
12430 }
12431
12432 if (!veb && uplink_seid != pf->mac_seid) {
12433
12434 for (i = 0; i < pf->num_alloc_vsi; i++) {
12435 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) {
12436 vsi = pf->vsi[i];
12437 break;
12438 }
12439 }
12440 if (!vsi) {
12441 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n",
12442 uplink_seid);
12443 return NULL;
12444 }
12445
12446 if (vsi->uplink_seid == pf->mac_seid)
12447 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid,
12448 vsi->tc_config.enabled_tc);
12449 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
12450 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
12451 vsi->tc_config.enabled_tc);
12452 if (veb) {
12453 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) {
12454 dev_info(&vsi->back->pdev->dev,
12455 "New VSI creation error, uplink seid of LAN VSI expected.\n");
12456 return NULL;
12457 }
12458 /* We come up by default in VEPA mode if SRIOV is not
12459 * already enabled, in which case we can't force VEPA
12460 * mode.
12461 */
12462 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) {
12463 veb->bridge_mode = BRIDGE_MODE_VEPA;
12464 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED;
12465 }
12466 i40e_config_bridge_mode(veb);
12467 }
12468 for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
12469 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
12470 veb = pf->veb[i];
12471 }
12472 if (!veb) {
12473 dev_info(&pf->pdev->dev, "couldn't add VEB\n");
12474 return NULL;
12475 }
12476
12477 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
12478 uplink_seid = veb->seid;
12479 }
12480
12481 /* get vsi sw struct */
12482 v_idx = i40e_vsi_mem_alloc(pf, type);
12483 if (v_idx < 0)
12484 goto err_alloc;
12485 vsi = pf->vsi[v_idx];
12486 if (!vsi)
12487 goto err_alloc;
12488 vsi->type = type;
12489 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB);
12490
12491 if (type == I40E_VSI_MAIN)
12492 pf->lan_vsi = v_idx;
12493 else if (type == I40E_VSI_SRIOV)
12494 vsi->vf_id = param1;
12495 /* assign it some queues */
12496 alloc_queue_pairs = vsi->alloc_queue_pairs *
12497 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
12498
12499 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
12500 if (ret < 0) {
12501 dev_info(&pf->pdev->dev,
12502 "failed to get tracking for %d queues for VSI %d err=%d\n",
12503 alloc_queue_pairs, vsi->seid, ret);
12504 goto err_vsi;
12505 }
12506 vsi->base_queue = ret;
12507
12508 /* get a VSI from the hardware */
12509 vsi->uplink_seid = uplink_seid;
12510 ret = i40e_add_vsi(vsi);
12511 if (ret)
12512 goto err_vsi;
12513
12514 switch (vsi->type) {
12515 /* setup the netdev if needed */
12516 case I40E_VSI_MAIN:
12517 case I40E_VSI_VMDQ2:
12518 ret = i40e_config_netdev(vsi);
12519 if (ret)
12520 goto err_netdev;
12521 ret = register_netdev(vsi->netdev);
12522 if (ret)
12523 goto err_netdev;
12524 vsi->netdev_registered = true;
12525 netif_carrier_off(vsi->netdev);
12526 #ifdef CONFIG_I40E_DCB
12527 /* Setup DCB netlink interface */
12528 i40e_dcbnl_setup(vsi);
12529 #endif /* CONFIG_I40E_DCB */
12530 /* fall through */
12531
12532 case I40E_VSI_FDIR:
12533 /* set up vectors and rings if needed */
12534 ret = i40e_vsi_setup_vectors(vsi);
12535 if (ret)
12536 goto err_msix;
12537
12538 ret = i40e_alloc_rings(vsi);
12539 if (ret)
12540 goto err_rings;
12541
12542 /* map all of the rings to the q_vectors */
12543 i40e_vsi_map_rings_to_vectors(vsi);
12544
12545 i40e_vsi_reset_stats(vsi);
12546 break;
12547
12548 default:
12549 /* no netdev or rings for the other VSI types */
12550 break;
12551 }
12552
12553 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) &&
12554 (vsi->type == I40E_VSI_VMDQ2)) {
12555 ret = i40e_vsi_config_rss(vsi);
12556 }
12557 return vsi;
12558
12559 err_rings:
12560 i40e_vsi_free_q_vectors(vsi);
12561 err_msix:
12562 if (vsi->netdev_registered) {
12563 vsi->netdev_registered = false;
12564 unregister_netdev(vsi->netdev);
12565 free_netdev(vsi->netdev);
12566 vsi->netdev = NULL;
12567 }
12568 err_netdev:
12569 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
12570 err_vsi:
12571 i40e_vsi_clear(vsi);
12572 err_alloc:
12573 return NULL;
12574 }
12575
12576 /**
12577 * i40e_veb_get_bw_info - Query VEB BW information
12578 * @veb: the veb to query
12579 *
12580 * Query the Tx scheduler BW configuration data for given VEB
12581 **/
12582 static int i40e_veb_get_bw_info(struct i40e_veb *veb)
12583 {
12584 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data;
12585 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data;
12586 struct i40e_pf *pf = veb->pf;
12587 struct i40e_hw *hw = &pf->hw;
12588 u32 tc_bw_max;
12589 int ret = 0;
12590 int i;
12591
12592 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
12593 &bw_data, NULL);
12594 if (ret) {
12595 dev_info(&pf->pdev->dev,
12596 "query veb bw config failed, err %s aq_err %s\n",
12597 i40e_stat_str(&pf->hw, ret),
12598 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
12599 goto out;
12600 }
12601
12602 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
12603 &ets_data, NULL);
12604 if (ret) {
12605 dev_info(&pf->pdev->dev,
12606 "query veb bw ets config failed, err %s aq_err %s\n",
12607 i40e_stat_str(&pf->hw, ret),
12608 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
12609 goto out;
12610 }
12611
12612 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit);
12613 veb->bw_max_quanta = ets_data.tc_bw_max;
12614 veb->is_abs_credits = bw_data.absolute_credits_enable;
12615 veb->enabled_tc = ets_data.tc_valid_bits;
12616 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) |
12617 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16);
12618 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
12619 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i];
12620 veb->bw_tc_limit_credits[i] =
12621 le16_to_cpu(bw_data.tc_bw_limits[i]);
12622 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7);
12623 }
12624
12625 out:
12626 return ret;
12627 }
12628
12629 /**
12630 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF
12631 * @pf: board private structure
12632 *
12633 * On error: returns error code (negative)
12634 * On success: returns vsi index in PF (positive)
12635 **/
12636 static int i40e_veb_mem_alloc(struct i40e_pf *pf)
12637 {
12638 int ret = -ENOENT;
12639 struct i40e_veb *veb;
12640 int i;
12641
12642 /* Need to protect the allocation of switch elements at the PF level */
12643 mutex_lock(&pf->switch_mutex);
12644
12645 /* VEB list may be fragmented if VEB creation/destruction has
12646 * been happening. We can afford to do a quick scan to look
12647 * for any free slots in the list.
12648 *
12649 * find next empty veb slot, looping back around if necessary
12650 */
12651 i = 0;
12652 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL))
12653 i++;
12654 if (i >= I40E_MAX_VEB) {
12655 ret = -ENOMEM;
12656 goto err_alloc_veb; /* out of VEB slots! */
12657 }
12658
12659 veb = kzalloc(sizeof(*veb), GFP_KERNEL);
12660 if (!veb) {
12661 ret = -ENOMEM;
12662 goto err_alloc_veb;
12663 }
12664 veb->pf = pf;
12665 veb->idx = i;
12666 veb->enabled_tc = 1;
12667
12668 pf->veb[i] = veb;
12669 ret = i;
12670 err_alloc_veb:
12671 mutex_unlock(&pf->switch_mutex);
12672 return ret;
12673 }
12674
12675 /**
12676 * i40e_switch_branch_release - Delete a branch of the switch tree
12677 * @branch: where to start deleting
12678 *
12679 * This uses recursion to find the tips of the branch to be
12680 * removed, deleting until we get back to and can delete this VEB.
12681 **/
12682 static void i40e_switch_branch_release(struct i40e_veb *branch)
12683 {
12684 struct i40e_pf *pf = branch->pf;
12685 u16 branch_seid = branch->seid;
12686 u16 veb_idx = branch->idx;
12687 int i;
12688
12689 /* release any VEBs on this VEB - RECURSION */
12690 for (i = 0; i < I40E_MAX_VEB; i++) {
12691 if (!pf->veb[i])
12692 continue;
12693 if (pf->veb[i]->uplink_seid == branch->seid)
12694 i40e_switch_branch_release(pf->veb[i]);
12695 }
12696
12697 /* Release the VSIs on this VEB, but not the owner VSI.
12698 *
12699 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing
12700 * the VEB itself, so don't use (*branch) after this loop.
12701 */
12702 for (i = 0; i < pf->num_alloc_vsi; i++) {
12703 if (!pf->vsi[i])
12704 continue;
12705 if (pf->vsi[i]->uplink_seid == branch_seid &&
12706 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
12707 i40e_vsi_release(pf->vsi[i]);
12708 }
12709 }
12710
12711 /* There's one corner case where the VEB might not have been
12712 * removed, so double check it here and remove it if needed.
12713 * This case happens if the veb was created from the debugfs
12714 * commands and no VSIs were added to it.
12715 */
12716 if (pf->veb[veb_idx])
12717 i40e_veb_release(pf->veb[veb_idx]);
12718 }
12719
12720 /**
12721 * i40e_veb_clear - remove veb struct
12722 * @veb: the veb to remove
12723 **/
12724 static void i40e_veb_clear(struct i40e_veb *veb)
12725 {
12726 if (!veb)
12727 return;
12728
12729 if (veb->pf) {
12730 struct i40e_pf *pf = veb->pf;
12731
12732 mutex_lock(&pf->switch_mutex);
12733 if (pf->veb[veb->idx] == veb)
12734 pf->veb[veb->idx] = NULL;
12735 mutex_unlock(&pf->switch_mutex);
12736 }
12737
12738 kfree(veb);
12739 }
12740
12741 /**
12742 * i40e_veb_release - Delete a VEB and free its resources
12743 * @veb: the VEB being removed
12744 **/
12745 void i40e_veb_release(struct i40e_veb *veb)
12746 {
12747 struct i40e_vsi *vsi = NULL;
12748 struct i40e_pf *pf;
12749 int i, n = 0;
12750
12751 pf = veb->pf;
12752
12753 /* find the remaining VSI and check for extras */
12754 for (i = 0; i < pf->num_alloc_vsi; i++) {
12755 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) {
12756 n++;
12757 vsi = pf->vsi[i];
12758 }
12759 }
12760 if (n != 1) {
12761 dev_info(&pf->pdev->dev,
12762 "can't remove VEB %d with %d VSIs left\n",
12763 veb->seid, n);
12764 return;
12765 }
12766
12767 /* move the remaining VSI to uplink veb */
12768 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER;
12769 if (veb->uplink_seid) {
12770 vsi->uplink_seid = veb->uplink_seid;
12771 if (veb->uplink_seid == pf->mac_seid)
12772 vsi->veb_idx = I40E_NO_VEB;
12773 else
12774 vsi->veb_idx = veb->veb_idx;
12775 } else {
12776 /* floating VEB */
12777 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
12778 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx;
12779 }
12780
12781 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
12782 i40e_veb_clear(veb);
12783 }
12784
12785 /**
12786 * i40e_add_veb - create the VEB in the switch
12787 * @veb: the VEB to be instantiated
12788 * @vsi: the controlling VSI
12789 **/
12790 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi)
12791 {
12792 struct i40e_pf *pf = veb->pf;
12793 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED);
12794 int ret;
12795
12796 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid,
12797 veb->enabled_tc, false,
12798 &veb->seid, enable_stats, NULL);
12799
12800 /* get a VEB from the hardware */
12801 if (ret) {
12802 dev_info(&pf->pdev->dev,
12803 "couldn't add VEB, err %s aq_err %s\n",
12804 i40e_stat_str(&pf->hw, ret),
12805 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12806 return -EPERM;
12807 }
12808
12809 /* get statistics counter */
12810 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL,
12811 &veb->stats_idx, NULL, NULL, NULL);
12812 if (ret) {
12813 dev_info(&pf->pdev->dev,
12814 "couldn't get VEB statistics idx, err %s aq_err %s\n",
12815 i40e_stat_str(&pf->hw, ret),
12816 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12817 return -EPERM;
12818 }
12819 ret = i40e_veb_get_bw_info(veb);
12820 if (ret) {
12821 dev_info(&pf->pdev->dev,
12822 "couldn't get VEB bw info, err %s aq_err %s\n",
12823 i40e_stat_str(&pf->hw, ret),
12824 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12825 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
12826 return -ENOENT;
12827 }
12828
12829 vsi->uplink_seid = veb->seid;
12830 vsi->veb_idx = veb->idx;
12831 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
12832
12833 return 0;
12834 }
12835
12836 /**
12837 * i40e_veb_setup - Set up a VEB
12838 * @pf: board private structure
12839 * @flags: VEB setup flags
12840 * @uplink_seid: the switch element to link to
12841 * @vsi_seid: the initial VSI seid
12842 * @enabled_tc: Enabled TC bit-map
12843 *
12844 * This allocates the sw VEB structure and links it into the switch
12845 * It is possible and legal for this to be a duplicate of an already
12846 * existing VEB. It is also possible for both uplink and vsi seids
12847 * to be zero, in order to create a floating VEB.
12848 *
12849 * Returns pointer to the successfully allocated VEB sw struct on
12850 * success, otherwise returns NULL on failure.
12851 **/
12852 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags,
12853 u16 uplink_seid, u16 vsi_seid,
12854 u8 enabled_tc)
12855 {
12856 struct i40e_veb *veb, *uplink_veb = NULL;
12857 int vsi_idx, veb_idx;
12858 int ret;
12859
12860 /* if one seid is 0, the other must be 0 to create a floating relay */
12861 if ((uplink_seid == 0 || vsi_seid == 0) &&
12862 (uplink_seid + vsi_seid != 0)) {
12863 dev_info(&pf->pdev->dev,
12864 "one, not both seid's are 0: uplink=%d vsi=%d\n",
12865 uplink_seid, vsi_seid);
12866 return NULL;
12867 }
12868
12869 /* make sure there is such a vsi and uplink */
12870 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++)
12871 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid)
12872 break;
12873 if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) {
12874 dev_info(&pf->pdev->dev, "vsi seid %d not found\n",
12875 vsi_seid);
12876 return NULL;
12877 }
12878
12879 if (uplink_seid && uplink_seid != pf->mac_seid) {
12880 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
12881 if (pf->veb[veb_idx] &&
12882 pf->veb[veb_idx]->seid == uplink_seid) {
12883 uplink_veb = pf->veb[veb_idx];
12884 break;
12885 }
12886 }
12887 if (!uplink_veb) {
12888 dev_info(&pf->pdev->dev,
12889 "uplink seid %d not found\n", uplink_seid);
12890 return NULL;
12891 }
12892 }
12893
12894 /* get veb sw struct */
12895 veb_idx = i40e_veb_mem_alloc(pf);
12896 if (veb_idx < 0)
12897 goto err_alloc;
12898 veb = pf->veb[veb_idx];
12899 veb->flags = flags;
12900 veb->uplink_seid = uplink_seid;
12901 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB);
12902 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1);
12903
12904 /* create the VEB in the switch */
12905 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]);
12906 if (ret)
12907 goto err_veb;
12908 if (vsi_idx == pf->lan_vsi)
12909 pf->lan_veb = veb->idx;
12910
12911 return veb;
12912
12913 err_veb:
12914 i40e_veb_clear(veb);
12915 err_alloc:
12916 return NULL;
12917 }
12918
12919 /**
12920 * i40e_setup_pf_switch_element - set PF vars based on switch type
12921 * @pf: board private structure
12922 * @ele: element we are building info from
12923 * @num_reported: total number of elements
12924 * @printconfig: should we print the contents
12925 *
12926 * helper function to assist in extracting a few useful SEID values.
12927 **/
12928 static void i40e_setup_pf_switch_element(struct i40e_pf *pf,
12929 struct i40e_aqc_switch_config_element_resp *ele,
12930 u16 num_reported, bool printconfig)
12931 {
12932 u16 downlink_seid = le16_to_cpu(ele->downlink_seid);
12933 u16 uplink_seid = le16_to_cpu(ele->uplink_seid);
12934 u8 element_type = ele->element_type;
12935 u16 seid = le16_to_cpu(ele->seid);
12936
12937 if (printconfig)
12938 dev_info(&pf->pdev->dev,
12939 "type=%d seid=%d uplink=%d downlink=%d\n",
12940 element_type, seid, uplink_seid, downlink_seid);
12941
12942 switch (element_type) {
12943 case I40E_SWITCH_ELEMENT_TYPE_MAC:
12944 pf->mac_seid = seid;
12945 break;
12946 case I40E_SWITCH_ELEMENT_TYPE_VEB:
12947 /* Main VEB? */
12948 if (uplink_seid != pf->mac_seid)
12949 break;
12950 if (pf->lan_veb == I40E_NO_VEB) {
12951 int v;
12952
12953 /* find existing or else empty VEB */
12954 for (v = 0; v < I40E_MAX_VEB; v++) {
12955 if (pf->veb[v] && (pf->veb[v]->seid == seid)) {
12956 pf->lan_veb = v;
12957 break;
12958 }
12959 }
12960 if (pf->lan_veb == I40E_NO_VEB) {
12961 v = i40e_veb_mem_alloc(pf);
12962 if (v < 0)
12963 break;
12964 pf->lan_veb = v;
12965 }
12966 }
12967
12968 pf->veb[pf->lan_veb]->seid = seid;
12969 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid;
12970 pf->veb[pf->lan_veb]->pf = pf;
12971 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB;
12972 break;
12973 case I40E_SWITCH_ELEMENT_TYPE_VSI:
12974 if (num_reported != 1)
12975 break;
12976 /* This is immediately after a reset so we can assume this is
12977 * the PF's VSI
12978 */
12979 pf->mac_seid = uplink_seid;
12980 pf->pf_seid = downlink_seid;
12981 pf->main_vsi_seid = seid;
12982 if (printconfig)
12983 dev_info(&pf->pdev->dev,
12984 "pf_seid=%d main_vsi_seid=%d\n",
12985 pf->pf_seid, pf->main_vsi_seid);
12986 break;
12987 case I40E_SWITCH_ELEMENT_TYPE_PF:
12988 case I40E_SWITCH_ELEMENT_TYPE_VF:
12989 case I40E_SWITCH_ELEMENT_TYPE_EMP:
12990 case I40E_SWITCH_ELEMENT_TYPE_BMC:
12991 case I40E_SWITCH_ELEMENT_TYPE_PE:
12992 case I40E_SWITCH_ELEMENT_TYPE_PA:
12993 /* ignore these for now */
12994 break;
12995 default:
12996 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n",
12997 element_type, seid);
12998 break;
12999 }
13000 }
13001
13002 /**
13003 * i40e_fetch_switch_configuration - Get switch config from firmware
13004 * @pf: board private structure
13005 * @printconfig: should we print the contents
13006 *
13007 * Get the current switch configuration from the device and
13008 * extract a few useful SEID values.
13009 **/
13010 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig)
13011 {
13012 struct i40e_aqc_get_switch_config_resp *sw_config;
13013 u16 next_seid = 0;
13014 int ret = 0;
13015 u8 *aq_buf;
13016 int i;
13017
13018 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL);
13019 if (!aq_buf)
13020 return -ENOMEM;
13021
13022 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
13023 do {
13024 u16 num_reported, num_total;
13025
13026 ret = i40e_aq_get_switch_config(&pf->hw, sw_config,
13027 I40E_AQ_LARGE_BUF,
13028 &next_seid, NULL);
13029 if (ret) {
13030 dev_info(&pf->pdev->dev,
13031 "get switch config failed err %s aq_err %s\n",
13032 i40e_stat_str(&pf->hw, ret),
13033 i40e_aq_str(&pf->hw,
13034 pf->hw.aq.asq_last_status));
13035 kfree(aq_buf);
13036 return -ENOENT;
13037 }
13038
13039 num_reported = le16_to_cpu(sw_config->header.num_reported);
13040 num_total = le16_to_cpu(sw_config->header.num_total);
13041
13042 if (printconfig)
13043 dev_info(&pf->pdev->dev,
13044 "header: %d reported %d total\n",
13045 num_reported, num_total);
13046
13047 for (i = 0; i < num_reported; i++) {
13048 struct i40e_aqc_switch_config_element_resp *ele =
13049 &sw_config->element[i];
13050
13051 i40e_setup_pf_switch_element(pf, ele, num_reported,
13052 printconfig);
13053 }
13054 } while (next_seid != 0);
13055
13056 kfree(aq_buf);
13057 return ret;
13058 }
13059
13060 /**
13061 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset
13062 * @pf: board private structure
13063 * @reinit: if the Main VSI needs to re-initialized.
13064 *
13065 * Returns 0 on success, negative value on failure
13066 **/
13067 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit)
13068 {
13069 u16 flags = 0;
13070 int ret;
13071
13072 /* find out what's out there already */
13073 ret = i40e_fetch_switch_configuration(pf, false);
13074 if (ret) {
13075 dev_info(&pf->pdev->dev,
13076 "couldn't fetch switch config, err %s aq_err %s\n",
13077 i40e_stat_str(&pf->hw, ret),
13078 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13079 return ret;
13080 }
13081 i40e_pf_reset_stats(pf);
13082
13083 /* set the switch config bit for the whole device to
13084 * support limited promisc or true promisc
13085 * when user requests promisc. The default is limited
13086 * promisc.
13087 */
13088
13089 if ((pf->hw.pf_id == 0) &&
13090 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) {
13091 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
13092 pf->last_sw_conf_flags = flags;
13093 }
13094
13095 if (pf->hw.pf_id == 0) {
13096 u16 valid_flags;
13097
13098 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
13099 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0,
13100 NULL);
13101 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) {
13102 dev_info(&pf->pdev->dev,
13103 "couldn't set switch config bits, err %s aq_err %s\n",
13104 i40e_stat_str(&pf->hw, ret),
13105 i40e_aq_str(&pf->hw,
13106 pf->hw.aq.asq_last_status));
13107 /* not a fatal problem, just keep going */
13108 }
13109 pf->last_sw_conf_valid_flags = valid_flags;
13110 }
13111
13112 /* first time setup */
13113 if (pf->lan_vsi == I40E_NO_VSI || reinit) {
13114 struct i40e_vsi *vsi = NULL;
13115 u16 uplink_seid;
13116
13117 /* Set up the PF VSI associated with the PF's main VSI
13118 * that is already in the HW switch
13119 */
13120 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
13121 uplink_seid = pf->veb[pf->lan_veb]->seid;
13122 else
13123 uplink_seid = pf->mac_seid;
13124 if (pf->lan_vsi == I40E_NO_VSI)
13125 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0);
13126 else if (reinit)
13127 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]);
13128 if (!vsi) {
13129 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n");
13130 i40e_cloud_filter_exit(pf);
13131 i40e_fdir_teardown(pf);
13132 return -EAGAIN;
13133 }
13134 } else {
13135 /* force a reset of TC and queue layout configurations */
13136 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
13137
13138 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
13139 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
13140 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
13141 }
13142 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]);
13143
13144 i40e_fdir_sb_setup(pf);
13145
13146 /* Setup static PF queue filter control settings */
13147 ret = i40e_setup_pf_filter_control(pf);
13148 if (ret) {
13149 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n",
13150 ret);
13151 /* Failure here should not stop continuing other steps */
13152 }
13153
13154 /* enable RSS in the HW, even for only one queue, as the stack can use
13155 * the hash
13156 */
13157 if ((pf->flags & I40E_FLAG_RSS_ENABLED))
13158 i40e_pf_config_rss(pf);
13159
13160 /* fill in link information and enable LSE reporting */
13161 i40e_link_event(pf);
13162
13163 /* Initialize user-specific link properties */
13164 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info &
13165 I40E_AQ_AN_COMPLETED) ? true : false);
13166
13167 i40e_ptp_init(pf);
13168
13169 /* repopulate tunnel port filters */
13170 i40e_sync_udp_filters(pf);
13171
13172 return ret;
13173 }
13174
13175 /**
13176 * i40e_determine_queue_usage - Work out queue distribution
13177 * @pf: board private structure
13178 **/
13179 static void i40e_determine_queue_usage(struct i40e_pf *pf)
13180 {
13181 int queues_left;
13182 int q_max;
13183
13184 pf->num_lan_qps = 0;
13185
13186 /* Find the max queues to be put into basic use. We'll always be
13187 * using TC0, whether or not DCB is running, and TC0 will get the
13188 * big RSS set.
13189 */
13190 queues_left = pf->hw.func_caps.num_tx_qp;
13191
13192 if ((queues_left == 1) ||
13193 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) {
13194 /* one qp for PF, no queues for anything else */
13195 queues_left = 0;
13196 pf->alloc_rss_size = pf->num_lan_qps = 1;
13197
13198 /* make sure all the fancies are disabled */
13199 pf->flags &= ~(I40E_FLAG_RSS_ENABLED |
13200 I40E_FLAG_IWARP_ENABLED |
13201 I40E_FLAG_FD_SB_ENABLED |
13202 I40E_FLAG_FD_ATR_ENABLED |
13203 I40E_FLAG_DCB_CAPABLE |
13204 I40E_FLAG_DCB_ENABLED |
13205 I40E_FLAG_SRIOV_ENABLED |
13206 I40E_FLAG_VMDQ_ENABLED);
13207 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
13208 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED |
13209 I40E_FLAG_FD_SB_ENABLED |
13210 I40E_FLAG_FD_ATR_ENABLED |
13211 I40E_FLAG_DCB_CAPABLE))) {
13212 /* one qp for PF */
13213 pf->alloc_rss_size = pf->num_lan_qps = 1;
13214 queues_left -= pf->num_lan_qps;
13215
13216 pf->flags &= ~(I40E_FLAG_RSS_ENABLED |
13217 I40E_FLAG_IWARP_ENABLED |
13218 I40E_FLAG_FD_SB_ENABLED |
13219 I40E_FLAG_FD_ATR_ENABLED |
13220 I40E_FLAG_DCB_ENABLED |
13221 I40E_FLAG_VMDQ_ENABLED);
13222 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
13223 } else {
13224 /* Not enough queues for all TCs */
13225 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) &&
13226 (queues_left < I40E_MAX_TRAFFIC_CLASS)) {
13227 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE |
13228 I40E_FLAG_DCB_ENABLED);
13229 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n");
13230 }
13231
13232 /* limit lan qps to the smaller of qps, cpus or msix */
13233 q_max = max_t(int, pf->rss_size_max, num_online_cpus());
13234 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp);
13235 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors);
13236 pf->num_lan_qps = q_max;
13237
13238 queues_left -= pf->num_lan_qps;
13239 }
13240
13241 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
13242 if (queues_left > 1) {
13243 queues_left -= 1; /* save 1 queue for FD */
13244 } else {
13245 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
13246 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
13247 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n");
13248 }
13249 }
13250
13251 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
13252 pf->num_vf_qps && pf->num_req_vfs && queues_left) {
13253 pf->num_req_vfs = min_t(int, pf->num_req_vfs,
13254 (queues_left / pf->num_vf_qps));
13255 queues_left -= (pf->num_req_vfs * pf->num_vf_qps);
13256 }
13257
13258 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) &&
13259 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) {
13260 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis,
13261 (queues_left / pf->num_vmdq_qps));
13262 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps);
13263 }
13264
13265 pf->queues_left = queues_left;
13266 dev_dbg(&pf->pdev->dev,
13267 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n",
13268 pf->hw.func_caps.num_tx_qp,
13269 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED),
13270 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs,
13271 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps,
13272 queues_left);
13273 }
13274
13275 /**
13276 * i40e_setup_pf_filter_control - Setup PF static filter control
13277 * @pf: PF to be setup
13278 *
13279 * i40e_setup_pf_filter_control sets up a PF's initial filter control
13280 * settings. If PE/FCoE are enabled then it will also set the per PF
13281 * based filter sizes required for them. It also enables Flow director,
13282 * ethertype and macvlan type filter settings for the pf.
13283 *
13284 * Returns 0 on success, negative on failure
13285 **/
13286 static int i40e_setup_pf_filter_control(struct i40e_pf *pf)
13287 {
13288 struct i40e_filter_control_settings *settings = &pf->filter_settings;
13289
13290 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128;
13291
13292 /* Flow Director is enabled */
13293 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED))
13294 settings->enable_fdir = true;
13295
13296 /* Ethtype and MACVLAN filters enabled for PF */
13297 settings->enable_ethtype = true;
13298 settings->enable_macvlan = true;
13299
13300 if (i40e_set_filter_control(&pf->hw, settings))
13301 return -ENOENT;
13302
13303 return 0;
13304 }
13305
13306 #define INFO_STRING_LEN 255
13307 #define REMAIN(__x) (INFO_STRING_LEN - (__x))
13308 static void i40e_print_features(struct i40e_pf *pf)
13309 {
13310 struct i40e_hw *hw = &pf->hw;
13311 char *buf;
13312 int i;
13313
13314 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL);
13315 if (!buf)
13316 return;
13317
13318 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id);
13319 #ifdef CONFIG_PCI_IOV
13320 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs);
13321 #endif
13322 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d",
13323 pf->hw.func_caps.num_vsis,
13324 pf->vsi[pf->lan_vsi]->num_queue_pairs);
13325 if (pf->flags & I40E_FLAG_RSS_ENABLED)
13326 i += snprintf(&buf[i], REMAIN(i), " RSS");
13327 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED)
13328 i += snprintf(&buf[i], REMAIN(i), " FD_ATR");
13329 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
13330 i += snprintf(&buf[i], REMAIN(i), " FD_SB");
13331 i += snprintf(&buf[i], REMAIN(i), " NTUPLE");
13332 }
13333 if (pf->flags & I40E_FLAG_DCB_CAPABLE)
13334 i += snprintf(&buf[i], REMAIN(i), " DCB");
13335 i += snprintf(&buf[i], REMAIN(i), " VxLAN");
13336 i += snprintf(&buf[i], REMAIN(i), " Geneve");
13337 if (pf->flags & I40E_FLAG_PTP)
13338 i += snprintf(&buf[i], REMAIN(i), " PTP");
13339 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED)
13340 i += snprintf(&buf[i], REMAIN(i), " VEB");
13341 else
13342 i += snprintf(&buf[i], REMAIN(i), " VEPA");
13343
13344 dev_info(&pf->pdev->dev, "%s\n", buf);
13345 kfree(buf);
13346 WARN_ON(i > INFO_STRING_LEN);
13347 }
13348
13349 /**
13350 * i40e_get_platform_mac_addr - get platform-specific MAC address
13351 * @pdev: PCI device information struct
13352 * @pf: board private structure
13353 *
13354 * Look up the MAC address for the device. First we'll try
13355 * eth_platform_get_mac_address, which will check Open Firmware, or arch
13356 * specific fallback. Otherwise, we'll default to the stored value in
13357 * firmware.
13358 **/
13359 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf)
13360 {
13361 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr))
13362 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr);
13363 }
13364
13365 /**
13366 * i40e_probe - Device initialization routine
13367 * @pdev: PCI device information struct
13368 * @ent: entry in i40e_pci_tbl
13369 *
13370 * i40e_probe initializes a PF identified by a pci_dev structure.
13371 * The OS initialization, configuring of the PF private structure,
13372 * and a hardware reset occur.
13373 *
13374 * Returns 0 on success, negative on failure
13375 **/
13376 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
13377 {
13378 struct i40e_aq_get_phy_abilities_resp abilities;
13379 struct i40e_pf *pf;
13380 struct i40e_hw *hw;
13381 static u16 pfs_found;
13382 u16 wol_nvm_bits;
13383 u16 link_status;
13384 int err;
13385 u32 val;
13386 u32 i;
13387 u8 set_fc_aq_fail;
13388
13389 err = pci_enable_device_mem(pdev);
13390 if (err)
13391 return err;
13392
13393 /* set up for high or low dma */
13394 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
13395 if (err) {
13396 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
13397 if (err) {
13398 dev_err(&pdev->dev,
13399 "DMA configuration failed: 0x%x\n", err);
13400 goto err_dma;
13401 }
13402 }
13403
13404 /* set up pci connections */
13405 err = pci_request_mem_regions(pdev, i40e_driver_name);
13406 if (err) {
13407 dev_info(&pdev->dev,
13408 "pci_request_selected_regions failed %d\n", err);
13409 goto err_pci_reg;
13410 }
13411
13412 pci_enable_pcie_error_reporting(pdev);
13413 pci_set_master(pdev);
13414
13415 /* Now that we have a PCI connection, we need to do the
13416 * low level device setup. This is primarily setting up
13417 * the Admin Queue structures and then querying for the
13418 * device's current profile information.
13419 */
13420 pf = kzalloc(sizeof(*pf), GFP_KERNEL);
13421 if (!pf) {
13422 err = -ENOMEM;
13423 goto err_pf_alloc;
13424 }
13425 pf->next_vsi = 0;
13426 pf->pdev = pdev;
13427 set_bit(__I40E_DOWN, pf->state);
13428
13429 hw = &pf->hw;
13430 hw->back = pf;
13431
13432 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0),
13433 I40E_MAX_CSR_SPACE);
13434
13435 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len);
13436 if (!hw->hw_addr) {
13437 err = -EIO;
13438 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n",
13439 (unsigned int)pci_resource_start(pdev, 0),
13440 pf->ioremap_len, err);
13441 goto err_ioremap;
13442 }
13443 hw->vendor_id = pdev->vendor;
13444 hw->device_id = pdev->device;
13445 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
13446 hw->subsystem_vendor_id = pdev->subsystem_vendor;
13447 hw->subsystem_device_id = pdev->subsystem_device;
13448 hw->bus.device = PCI_SLOT(pdev->devfn);
13449 hw->bus.func = PCI_FUNC(pdev->devfn);
13450 hw->bus.bus_id = pdev->bus->number;
13451 pf->instance = pfs_found;
13452
13453 /* Select something other than the 802.1ad ethertype for the
13454 * switch to use internally and drop on ingress.
13455 */
13456 hw->switch_tag = 0xffff;
13457 hw->first_tag = ETH_P_8021AD;
13458 hw->second_tag = ETH_P_8021Q;
13459
13460 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
13461 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
13462
13463 /* set up the locks for the AQ, do this only once in probe
13464 * and destroy them only once in remove
13465 */
13466 mutex_init(&hw->aq.asq_mutex);
13467 mutex_init(&hw->aq.arq_mutex);
13468
13469 pf->msg_enable = netif_msg_init(debug,
13470 NETIF_MSG_DRV |
13471 NETIF_MSG_PROBE |
13472 NETIF_MSG_LINK);
13473 if (debug < -1)
13474 pf->hw.debug_mask = debug;
13475
13476 /* do a special CORER for clearing PXE mode once at init */
13477 if (hw->revision_id == 0 &&
13478 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) {
13479 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK);
13480 i40e_flush(hw);
13481 msleep(200);
13482 pf->corer_count++;
13483
13484 i40e_clear_pxe_mode(hw);
13485 }
13486
13487 /* Reset here to make sure all is clean and to define PF 'n' */
13488 i40e_clear_hw(hw);
13489 err = i40e_pf_reset(hw);
13490 if (err) {
13491 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err);
13492 goto err_pf_reset;
13493 }
13494 pf->pfr_count++;
13495
13496 hw->aq.num_arq_entries = I40E_AQ_LEN;
13497 hw->aq.num_asq_entries = I40E_AQ_LEN;
13498 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE;
13499 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE;
13500 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT;
13501
13502 snprintf(pf->int_name, sizeof(pf->int_name) - 1,
13503 "%s-%s:misc",
13504 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev));
13505
13506 err = i40e_init_shared_code(hw);
13507 if (err) {
13508 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
13509 err);
13510 goto err_pf_reset;
13511 }
13512
13513 /* set up a default setting for link flow control */
13514 pf->hw.fc.requested_mode = I40E_FC_NONE;
13515
13516 err = i40e_init_adminq(hw);
13517 if (err) {
13518 if (err == I40E_ERR_FIRMWARE_API_VERSION)
13519 dev_info(&pdev->dev,
13520 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n");
13521 else
13522 dev_info(&pdev->dev,
13523 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n");
13524
13525 goto err_pf_reset;
13526 }
13527 i40e_get_oem_version(hw);
13528
13529 /* provide nvm, fw, api versions */
13530 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n",
13531 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build,
13532 hw->aq.api_maj_ver, hw->aq.api_min_ver,
13533 i40e_nvm_version_str(hw));
13534
13535 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
13536 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw))
13537 dev_info(&pdev->dev,
13538 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n");
13539 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4)
13540 dev_info(&pdev->dev,
13541 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n");
13542
13543 i40e_verify_eeprom(pf);
13544
13545 /* Rev 0 hardware was never productized */
13546 if (hw->revision_id < 1)
13547 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n");
13548
13549 i40e_clear_pxe_mode(hw);
13550 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
13551 if (err)
13552 goto err_adminq_setup;
13553
13554 err = i40e_sw_init(pf);
13555 if (err) {
13556 dev_info(&pdev->dev, "sw_init failed: %d\n", err);
13557 goto err_sw_init;
13558 }
13559
13560 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
13561 hw->func_caps.num_rx_qp, 0, 0);
13562 if (err) {
13563 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err);
13564 goto err_init_lan_hmc;
13565 }
13566
13567 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
13568 if (err) {
13569 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err);
13570 err = -ENOENT;
13571 goto err_configure_lan_hmc;
13572 }
13573
13574 /* Disable LLDP for NICs that have firmware versions lower than v4.3.
13575 * Ignore error return codes because if it was already disabled via
13576 * hardware settings this will fail
13577 */
13578 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) {
13579 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n");
13580 i40e_aq_stop_lldp(hw, true, NULL);
13581 }
13582
13583 /* allow a platform config to override the HW addr */
13584 i40e_get_platform_mac_addr(pdev, pf);
13585
13586 if (!is_valid_ether_addr(hw->mac.addr)) {
13587 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr);
13588 err = -EIO;
13589 goto err_mac_addr;
13590 }
13591 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr);
13592 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr);
13593 i40e_get_port_mac_addr(hw, hw->mac.port_addr);
13594 if (is_valid_ether_addr(hw->mac.port_addr))
13595 pf->hw_features |= I40E_HW_PORT_ID_VALID;
13596
13597 pci_set_drvdata(pdev, pf);
13598 pci_save_state(pdev);
13599 #ifdef CONFIG_I40E_DCB
13600 err = i40e_init_pf_dcb(pf);
13601 if (err) {
13602 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err);
13603 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED);
13604 /* Continue without DCB enabled */
13605 }
13606 #endif /* CONFIG_I40E_DCB */
13607
13608 /* set up periodic task facility */
13609 timer_setup(&pf->service_timer, i40e_service_timer, 0);
13610 pf->service_timer_period = HZ;
13611
13612 INIT_WORK(&pf->service_task, i40e_service_task);
13613 clear_bit(__I40E_SERVICE_SCHED, pf->state);
13614
13615 /* NVM bit on means WoL disabled for the port */
13616 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits);
13617 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1)
13618 pf->wol_en = false;
13619 else
13620 pf->wol_en = true;
13621 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en);
13622
13623 /* set up the main switch operations */
13624 i40e_determine_queue_usage(pf);
13625 err = i40e_init_interrupt_scheme(pf);
13626 if (err)
13627 goto err_switch_setup;
13628
13629 /* The number of VSIs reported by the FW is the minimum guaranteed
13630 * to us; HW supports far more and we share the remaining pool with
13631 * the other PFs. We allocate space for more than the guarantee with
13632 * the understanding that we might not get them all later.
13633 */
13634 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
13635 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
13636 else
13637 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
13638
13639 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */
13640 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
13641 GFP_KERNEL);
13642 if (!pf->vsi) {
13643 err = -ENOMEM;
13644 goto err_switch_setup;
13645 }
13646
13647 #ifdef CONFIG_PCI_IOV
13648 /* prep for VF support */
13649 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
13650 (pf->flags & I40E_FLAG_MSIX_ENABLED) &&
13651 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
13652 if (pci_num_vf(pdev))
13653 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
13654 }
13655 #endif
13656 err = i40e_setup_pf_switch(pf, false);
13657 if (err) {
13658 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err);
13659 goto err_vsis;
13660 }
13661 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list);
13662
13663 /* Make sure flow control is set according to current settings */
13664 err = i40e_set_fc(hw, &set_fc_aq_fail, true);
13665 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET)
13666 dev_dbg(&pf->pdev->dev,
13667 "Set fc with err %s aq_err %s on get_phy_cap\n",
13668 i40e_stat_str(hw, err),
13669 i40e_aq_str(hw, hw->aq.asq_last_status));
13670 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET)
13671 dev_dbg(&pf->pdev->dev,
13672 "Set fc with err %s aq_err %s on set_phy_config\n",
13673 i40e_stat_str(hw, err),
13674 i40e_aq_str(hw, hw->aq.asq_last_status));
13675 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE)
13676 dev_dbg(&pf->pdev->dev,
13677 "Set fc with err %s aq_err %s on get_link_info\n",
13678 i40e_stat_str(hw, err),
13679 i40e_aq_str(hw, hw->aq.asq_last_status));
13680
13681 /* if FDIR VSI was set up, start it now */
13682 for (i = 0; i < pf->num_alloc_vsi; i++) {
13683 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) {
13684 i40e_vsi_open(pf->vsi[i]);
13685 break;
13686 }
13687 }
13688
13689 /* The driver only wants link up/down and module qualification
13690 * reports from firmware. Note the negative logic.
13691 */
13692 err = i40e_aq_set_phy_int_mask(&pf->hw,
13693 ~(I40E_AQ_EVENT_LINK_UPDOWN |
13694 I40E_AQ_EVENT_MEDIA_NA |
13695 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
13696 if (err)
13697 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n",
13698 i40e_stat_str(&pf->hw, err),
13699 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13700
13701 /* Reconfigure hardware for allowing smaller MSS in the case
13702 * of TSO, so that we avoid the MDD being fired and causing
13703 * a reset in the case of small MSS+TSO.
13704 */
13705 val = rd32(hw, I40E_REG_MSS);
13706 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
13707 val &= ~I40E_REG_MSS_MIN_MASK;
13708 val |= I40E_64BYTE_MSS;
13709 wr32(hw, I40E_REG_MSS, val);
13710 }
13711
13712 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) {
13713 msleep(75);
13714 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
13715 if (err)
13716 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n",
13717 i40e_stat_str(&pf->hw, err),
13718 i40e_aq_str(&pf->hw,
13719 pf->hw.aq.asq_last_status));
13720 }
13721 /* The main driver is (mostly) up and happy. We need to set this state
13722 * before setting up the misc vector or we get a race and the vector
13723 * ends up disabled forever.
13724 */
13725 clear_bit(__I40E_DOWN, pf->state);
13726
13727 /* In case of MSIX we are going to setup the misc vector right here
13728 * to handle admin queue events etc. In case of legacy and MSI
13729 * the misc functionality and queue processing is combined in
13730 * the same vector and that gets setup at open.
13731 */
13732 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
13733 err = i40e_setup_misc_vector(pf);
13734 if (err) {
13735 dev_info(&pdev->dev,
13736 "setup of misc vector failed: %d\n", err);
13737 goto err_vsis;
13738 }
13739 }
13740
13741 #ifdef CONFIG_PCI_IOV
13742 /* prep for VF support */
13743 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
13744 (pf->flags & I40E_FLAG_MSIX_ENABLED) &&
13745 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
13746 /* disable link interrupts for VFs */
13747 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM);
13748 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK;
13749 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val);
13750 i40e_flush(hw);
13751
13752 if (pci_num_vf(pdev)) {
13753 dev_info(&pdev->dev,
13754 "Active VFs found, allocating resources.\n");
13755 err = i40e_alloc_vfs(pf, pci_num_vf(pdev));
13756 if (err)
13757 dev_info(&pdev->dev,
13758 "Error %d allocating resources for existing VFs\n",
13759 err);
13760 }
13761 }
13762 #endif /* CONFIG_PCI_IOV */
13763
13764 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
13765 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile,
13766 pf->num_iwarp_msix,
13767 I40E_IWARP_IRQ_PILE_ID);
13768 if (pf->iwarp_base_vector < 0) {
13769 dev_info(&pdev->dev,
13770 "failed to get tracking for %d vectors for IWARP err=%d\n",
13771 pf->num_iwarp_msix, pf->iwarp_base_vector);
13772 pf->flags &= ~I40E_FLAG_IWARP_ENABLED;
13773 }
13774 }
13775
13776 i40e_dbg_pf_init(pf);
13777
13778 /* tell the firmware that we're starting */
13779 i40e_send_version(pf);
13780
13781 /* since everything's happy, start the service_task timer */
13782 mod_timer(&pf->service_timer,
13783 round_jiffies(jiffies + pf->service_timer_period));
13784
13785 /* add this PF to client device list and launch a client service task */
13786 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
13787 err = i40e_lan_add_device(pf);
13788 if (err)
13789 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n",
13790 err);
13791 }
13792
13793 #define PCI_SPEED_SIZE 8
13794 #define PCI_WIDTH_SIZE 8
13795 /* Devices on the IOSF bus do not have this information
13796 * and will report PCI Gen 1 x 1 by default so don't bother
13797 * checking them.
13798 */
13799 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) {
13800 char speed[PCI_SPEED_SIZE] = "Unknown";
13801 char width[PCI_WIDTH_SIZE] = "Unknown";
13802
13803 /* Get the negotiated link width and speed from PCI config
13804 * space
13805 */
13806 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA,
13807 &link_status);
13808
13809 i40e_set_pci_config_data(hw, link_status);
13810
13811 switch (hw->bus.speed) {
13812 case i40e_bus_speed_8000:
13813 strncpy(speed, "8.0", PCI_SPEED_SIZE); break;
13814 case i40e_bus_speed_5000:
13815 strncpy(speed, "5.0", PCI_SPEED_SIZE); break;
13816 case i40e_bus_speed_2500:
13817 strncpy(speed, "2.5", PCI_SPEED_SIZE); break;
13818 default:
13819 break;
13820 }
13821 switch (hw->bus.width) {
13822 case i40e_bus_width_pcie_x8:
13823 strncpy(width, "8", PCI_WIDTH_SIZE); break;
13824 case i40e_bus_width_pcie_x4:
13825 strncpy(width, "4", PCI_WIDTH_SIZE); break;
13826 case i40e_bus_width_pcie_x2:
13827 strncpy(width, "2", PCI_WIDTH_SIZE); break;
13828 case i40e_bus_width_pcie_x1:
13829 strncpy(width, "1", PCI_WIDTH_SIZE); break;
13830 default:
13831 break;
13832 }
13833
13834 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n",
13835 speed, width);
13836
13837 if (hw->bus.width < i40e_bus_width_pcie_x8 ||
13838 hw->bus.speed < i40e_bus_speed_8000) {
13839 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
13840 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
13841 }
13842 }
13843
13844 /* get the requested speeds from the fw */
13845 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL);
13846 if (err)
13847 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n",
13848 i40e_stat_str(&pf->hw, err),
13849 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13850 pf->hw.phy.link_info.requested_speeds = abilities.link_speed;
13851
13852 /* get the supported phy types from the fw */
13853 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL);
13854 if (err)
13855 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n",
13856 i40e_stat_str(&pf->hw, err),
13857 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13858
13859 /* Add a filter to drop all Flow control frames from any VSI from being
13860 * transmitted. By doing so we stop a malicious VF from sending out
13861 * PAUSE or PFC frames and potentially controlling traffic for other
13862 * PF/VF VSIs.
13863 * The FW can still send Flow control frames if enabled.
13864 */
13865 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
13866 pf->main_vsi_seid);
13867
13868 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) ||
13869 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4))
13870 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS;
13871 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722)
13872 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER;
13873 /* print a string summarizing features */
13874 i40e_print_features(pf);
13875
13876 return 0;
13877
13878 /* Unwind what we've done if something failed in the setup */
13879 err_vsis:
13880 set_bit(__I40E_DOWN, pf->state);
13881 i40e_clear_interrupt_scheme(pf);
13882 kfree(pf->vsi);
13883 err_switch_setup:
13884 i40e_reset_interrupt_capability(pf);
13885 del_timer_sync(&pf->service_timer);
13886 err_mac_addr:
13887 err_configure_lan_hmc:
13888 (void)i40e_shutdown_lan_hmc(hw);
13889 err_init_lan_hmc:
13890 kfree(pf->qp_pile);
13891 err_sw_init:
13892 err_adminq_setup:
13893 err_pf_reset:
13894 iounmap(hw->hw_addr);
13895 err_ioremap:
13896 kfree(pf);
13897 err_pf_alloc:
13898 pci_disable_pcie_error_reporting(pdev);
13899 pci_release_mem_regions(pdev);
13900 err_pci_reg:
13901 err_dma:
13902 pci_disable_device(pdev);
13903 return err;
13904 }
13905
13906 /**
13907 * i40e_remove - Device removal routine
13908 * @pdev: PCI device information struct
13909 *
13910 * i40e_remove is called by the PCI subsystem to alert the driver
13911 * that is should release a PCI device. This could be caused by a
13912 * Hot-Plug event, or because the driver is going to be removed from
13913 * memory.
13914 **/
13915 static void i40e_remove(struct pci_dev *pdev)
13916 {
13917 struct i40e_pf *pf = pci_get_drvdata(pdev);
13918 struct i40e_hw *hw = &pf->hw;
13919 i40e_status ret_code;
13920 int i;
13921
13922 i40e_dbg_pf_exit(pf);
13923
13924 i40e_ptp_stop(pf);
13925
13926 /* Disable RSS in hw */
13927 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0);
13928 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0);
13929
13930 /* no more scheduling of any task */
13931 set_bit(__I40E_SUSPENDED, pf->state);
13932 set_bit(__I40E_DOWN, pf->state);
13933 if (pf->service_timer.function)
13934 del_timer_sync(&pf->service_timer);
13935 if (pf->service_task.func)
13936 cancel_work_sync(&pf->service_task);
13937
13938 /* Client close must be called explicitly here because the timer
13939 * has been stopped.
13940 */
13941 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
13942
13943 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) {
13944 i40e_free_vfs(pf);
13945 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED;
13946 }
13947
13948 i40e_fdir_teardown(pf);
13949
13950 /* If there is a switch structure or any orphans, remove them.
13951 * This will leave only the PF's VSI remaining.
13952 */
13953 for (i = 0; i < I40E_MAX_VEB; i++) {
13954 if (!pf->veb[i])
13955 continue;
13956
13957 if (pf->veb[i]->uplink_seid == pf->mac_seid ||
13958 pf->veb[i]->uplink_seid == 0)
13959 i40e_switch_branch_release(pf->veb[i]);
13960 }
13961
13962 /* Now we can shutdown the PF's VSI, just before we kill
13963 * adminq and hmc.
13964 */
13965 if (pf->vsi[pf->lan_vsi])
13966 i40e_vsi_release(pf->vsi[pf->lan_vsi]);
13967
13968 i40e_cloud_filter_exit(pf);
13969
13970 /* remove attached clients */
13971 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
13972 ret_code = i40e_lan_del_device(pf);
13973 if (ret_code)
13974 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
13975 ret_code);
13976 }
13977
13978 /* shutdown and destroy the HMC */
13979 if (hw->hmc.hmc_obj) {
13980 ret_code = i40e_shutdown_lan_hmc(hw);
13981 if (ret_code)
13982 dev_warn(&pdev->dev,
13983 "Failed to destroy the HMC resources: %d\n",
13984 ret_code);
13985 }
13986
13987 /* shutdown the adminq */
13988 i40e_shutdown_adminq(hw);
13989
13990 /* destroy the locks only once, here */
13991 mutex_destroy(&hw->aq.arq_mutex);
13992 mutex_destroy(&hw->aq.asq_mutex);
13993
13994 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */
13995 i40e_clear_interrupt_scheme(pf);
13996 for (i = 0; i < pf->num_alloc_vsi; i++) {
13997 if (pf->vsi[i]) {
13998 i40e_vsi_clear_rings(pf->vsi[i]);
13999 i40e_vsi_clear(pf->vsi[i]);
14000 pf->vsi[i] = NULL;
14001 }
14002 }
14003
14004 for (i = 0; i < I40E_MAX_VEB; i++) {
14005 kfree(pf->veb[i]);
14006 pf->veb[i] = NULL;
14007 }
14008
14009 kfree(pf->qp_pile);
14010 kfree(pf->vsi);
14011
14012 iounmap(hw->hw_addr);
14013 kfree(pf);
14014 pci_release_mem_regions(pdev);
14015
14016 pci_disable_pcie_error_reporting(pdev);
14017 pci_disable_device(pdev);
14018 }
14019
14020 /**
14021 * i40e_pci_error_detected - warning that something funky happened in PCI land
14022 * @pdev: PCI device information struct
14023 *
14024 * Called to warn that something happened and the error handling steps
14025 * are in progress. Allows the driver to quiesce things, be ready for
14026 * remediation.
14027 **/
14028 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev,
14029 enum pci_channel_state error)
14030 {
14031 struct i40e_pf *pf = pci_get_drvdata(pdev);
14032
14033 dev_info(&pdev->dev, "%s: error %d\n", __func__, error);
14034
14035 if (!pf) {
14036 dev_info(&pdev->dev,
14037 "Cannot recover - error happened during device probe\n");
14038 return PCI_ERS_RESULT_DISCONNECT;
14039 }
14040
14041 /* shutdown all operations */
14042 if (!test_bit(__I40E_SUSPENDED, pf->state))
14043 i40e_prep_for_reset(pf, false);
14044
14045 /* Request a slot reset */
14046 return PCI_ERS_RESULT_NEED_RESET;
14047 }
14048
14049 /**
14050 * i40e_pci_error_slot_reset - a PCI slot reset just happened
14051 * @pdev: PCI device information struct
14052 *
14053 * Called to find if the driver can work with the device now that
14054 * the pci slot has been reset. If a basic connection seems good
14055 * (registers are readable and have sane content) then return a
14056 * happy little PCI_ERS_RESULT_xxx.
14057 **/
14058 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev)
14059 {
14060 struct i40e_pf *pf = pci_get_drvdata(pdev);
14061 pci_ers_result_t result;
14062 int err;
14063 u32 reg;
14064
14065 dev_dbg(&pdev->dev, "%s\n", __func__);
14066 if (pci_enable_device_mem(pdev)) {
14067 dev_info(&pdev->dev,
14068 "Cannot re-enable PCI device after reset.\n");
14069 result = PCI_ERS_RESULT_DISCONNECT;
14070 } else {
14071 pci_set_master(pdev);
14072 pci_restore_state(pdev);
14073 pci_save_state(pdev);
14074 pci_wake_from_d3(pdev, false);
14075
14076 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
14077 if (reg == 0)
14078 result = PCI_ERS_RESULT_RECOVERED;
14079 else
14080 result = PCI_ERS_RESULT_DISCONNECT;
14081 }
14082
14083 err = pci_cleanup_aer_uncorrect_error_status(pdev);
14084 if (err) {
14085 dev_info(&pdev->dev,
14086 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
14087 err);
14088 /* non-fatal, continue */
14089 }
14090
14091 return result;
14092 }
14093
14094 /**
14095 * i40e_pci_error_reset_prepare - prepare device driver for pci reset
14096 * @pdev: PCI device information struct
14097 */
14098 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev)
14099 {
14100 struct i40e_pf *pf = pci_get_drvdata(pdev);
14101
14102 i40e_prep_for_reset(pf, false);
14103 }
14104
14105 /**
14106 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin
14107 * @pdev: PCI device information struct
14108 */
14109 static void i40e_pci_error_reset_done(struct pci_dev *pdev)
14110 {
14111 struct i40e_pf *pf = pci_get_drvdata(pdev);
14112
14113 i40e_reset_and_rebuild(pf, false, false);
14114 }
14115
14116 /**
14117 * i40e_pci_error_resume - restart operations after PCI error recovery
14118 * @pdev: PCI device information struct
14119 *
14120 * Called to allow the driver to bring things back up after PCI error
14121 * and/or reset recovery has finished.
14122 **/
14123 static void i40e_pci_error_resume(struct pci_dev *pdev)
14124 {
14125 struct i40e_pf *pf = pci_get_drvdata(pdev);
14126
14127 dev_dbg(&pdev->dev, "%s\n", __func__);
14128 if (test_bit(__I40E_SUSPENDED, pf->state))
14129 return;
14130
14131 i40e_handle_reset_warning(pf, false);
14132 }
14133
14134 /**
14135 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up
14136 * using the mac_address_write admin q function
14137 * @pf: pointer to i40e_pf struct
14138 **/
14139 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf)
14140 {
14141 struct i40e_hw *hw = &pf->hw;
14142 i40e_status ret;
14143 u8 mac_addr[6];
14144 u16 flags = 0;
14145
14146 /* Get current MAC address in case it's an LAA */
14147 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) {
14148 ether_addr_copy(mac_addr,
14149 pf->vsi[pf->lan_vsi]->netdev->dev_addr);
14150 } else {
14151 dev_err(&pf->pdev->dev,
14152 "Failed to retrieve MAC address; using default\n");
14153 ether_addr_copy(mac_addr, hw->mac.addr);
14154 }
14155
14156 /* The FW expects the mac address write cmd to first be called with
14157 * one of these flags before calling it again with the multicast
14158 * enable flags.
14159 */
14160 flags = I40E_AQC_WRITE_TYPE_LAA_WOL;
14161
14162 if (hw->func_caps.flex10_enable && hw->partition_id != 1)
14163 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY;
14164
14165 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
14166 if (ret) {
14167 dev_err(&pf->pdev->dev,
14168 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up");
14169 return;
14170 }
14171
14172 flags = I40E_AQC_MC_MAG_EN
14173 | I40E_AQC_WOL_PRESERVE_ON_PFR
14174 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG;
14175 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
14176 if (ret)
14177 dev_err(&pf->pdev->dev,
14178 "Failed to enable Multicast Magic Packet wake up\n");
14179 }
14180
14181 /**
14182 * i40e_shutdown - PCI callback for shutting down
14183 * @pdev: PCI device information struct
14184 **/
14185 static void i40e_shutdown(struct pci_dev *pdev)
14186 {
14187 struct i40e_pf *pf = pci_get_drvdata(pdev);
14188 struct i40e_hw *hw = &pf->hw;
14189
14190 set_bit(__I40E_SUSPENDED, pf->state);
14191 set_bit(__I40E_DOWN, pf->state);
14192 rtnl_lock();
14193 i40e_prep_for_reset(pf, true);
14194 rtnl_unlock();
14195
14196 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
14197 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
14198
14199 del_timer_sync(&pf->service_timer);
14200 cancel_work_sync(&pf->service_task);
14201 i40e_cloud_filter_exit(pf);
14202 i40e_fdir_teardown(pf);
14203
14204 /* Client close must be called explicitly here because the timer
14205 * has been stopped.
14206 */
14207 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
14208
14209 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE))
14210 i40e_enable_mc_magic_wake(pf);
14211
14212 i40e_prep_for_reset(pf, false);
14213
14214 wr32(hw, I40E_PFPM_APM,
14215 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
14216 wr32(hw, I40E_PFPM_WUFC,
14217 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
14218
14219 i40e_clear_interrupt_scheme(pf);
14220
14221 if (system_state == SYSTEM_POWER_OFF) {
14222 pci_wake_from_d3(pdev, pf->wol_en);
14223 pci_set_power_state(pdev, PCI_D3hot);
14224 }
14225 }
14226
14227 /**
14228 * i40e_suspend - PM callback for moving to D3
14229 * @dev: generic device information structure
14230 **/
14231 static int __maybe_unused i40e_suspend(struct device *dev)
14232 {
14233 struct pci_dev *pdev = to_pci_dev(dev);
14234 struct i40e_pf *pf = pci_get_drvdata(pdev);
14235 struct i40e_hw *hw = &pf->hw;
14236
14237 /* If we're already suspended, then there is nothing to do */
14238 if (test_and_set_bit(__I40E_SUSPENDED, pf->state))
14239 return 0;
14240
14241 set_bit(__I40E_DOWN, pf->state);
14242
14243 /* Ensure service task will not be running */
14244 del_timer_sync(&pf->service_timer);
14245 cancel_work_sync(&pf->service_task);
14246
14247 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE))
14248 i40e_enable_mc_magic_wake(pf);
14249
14250 i40e_prep_for_reset(pf, false);
14251
14252 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
14253 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
14254
14255 /* Clear the interrupt scheme and release our IRQs so that the system
14256 * can safely hibernate even when there are a large number of CPUs.
14257 * Otherwise hibernation might fail when mapping all the vectors back
14258 * to CPU0.
14259 */
14260 i40e_clear_interrupt_scheme(pf);
14261
14262 return 0;
14263 }
14264
14265 /**
14266 * i40e_resume - PM callback for waking up from D3
14267 * @dev: generic device information structure
14268 **/
14269 static int __maybe_unused i40e_resume(struct device *dev)
14270 {
14271 struct pci_dev *pdev = to_pci_dev(dev);
14272 struct i40e_pf *pf = pci_get_drvdata(pdev);
14273 int err;
14274
14275 /* If we're not suspended, then there is nothing to do */
14276 if (!test_bit(__I40E_SUSPENDED, pf->state))
14277 return 0;
14278
14279 /* We cleared the interrupt scheme when we suspended, so we need to
14280 * restore it now to resume device functionality.
14281 */
14282 err = i40e_restore_interrupt_scheme(pf);
14283 if (err) {
14284 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n",
14285 err);
14286 }
14287
14288 clear_bit(__I40E_DOWN, pf->state);
14289 i40e_reset_and_rebuild(pf, false, false);
14290
14291 /* Clear suspended state last after everything is recovered */
14292 clear_bit(__I40E_SUSPENDED, pf->state);
14293
14294 /* Restart the service task */
14295 mod_timer(&pf->service_timer,
14296 round_jiffies(jiffies + pf->service_timer_period));
14297
14298 return 0;
14299 }
14300
14301 static const struct pci_error_handlers i40e_err_handler = {
14302 .error_detected = i40e_pci_error_detected,
14303 .slot_reset = i40e_pci_error_slot_reset,
14304 .reset_prepare = i40e_pci_error_reset_prepare,
14305 .reset_done = i40e_pci_error_reset_done,
14306 .resume = i40e_pci_error_resume,
14307 };
14308
14309 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume);
14310
14311 static struct pci_driver i40e_driver = {
14312 .name = i40e_driver_name,
14313 .id_table = i40e_pci_tbl,
14314 .probe = i40e_probe,
14315 .remove = i40e_remove,
14316 .driver = {
14317 .pm = &i40e_pm_ops,
14318 },
14319 .shutdown = i40e_shutdown,
14320 .err_handler = &i40e_err_handler,
14321 .sriov_configure = i40e_pci_sriov_configure,
14322 };
14323
14324 /**
14325 * i40e_init_module - Driver registration routine
14326 *
14327 * i40e_init_module is the first routine called when the driver is
14328 * loaded. All it does is register with the PCI subsystem.
14329 **/
14330 static int __init i40e_init_module(void)
14331 {
14332 pr_info("%s: %s - version %s\n", i40e_driver_name,
14333 i40e_driver_string, i40e_driver_version_str);
14334 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright);
14335
14336 /* There is no need to throttle the number of active tasks because
14337 * each device limits its own task using a state bit for scheduling
14338 * the service task, and the device tasks do not interfere with each
14339 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM
14340 * since we need to be able to guarantee forward progress even under
14341 * memory pressure.
14342 */
14343 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name);
14344 if (!i40e_wq) {
14345 pr_err("%s: Failed to create workqueue\n", i40e_driver_name);
14346 return -ENOMEM;
14347 }
14348
14349 i40e_dbg_init();
14350 return pci_register_driver(&i40e_driver);
14351 }
14352 module_init(i40e_init_module);
14353
14354 /**
14355 * i40e_exit_module - Driver exit cleanup routine
14356 *
14357 * i40e_exit_module is called just before the driver is removed
14358 * from memory.
14359 **/
14360 static void __exit i40e_exit_module(void)
14361 {
14362 pci_unregister_driver(&i40e_driver);
14363 destroy_workqueue(i40e_wq);
14364 i40e_dbg_exit();
14365 }
14366 module_exit(i40e_exit_module);