]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/intel/i40e/i40e_main.c
mmc: core: prepend 0x to OCR entry in sysfs
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_main.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2017 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/etherdevice.h>
28 #include <linux/of_net.h>
29 #include <linux/pci.h>
30 #include <linux/bpf.h>
31
32 /* Local includes */
33 #include "i40e.h"
34 #include "i40e_diag.h"
35 #include <net/udp_tunnel.h>
36 /* All i40e tracepoints are defined by the include below, which
37 * must be included exactly once across the whole kernel with
38 * CREATE_TRACE_POINTS defined
39 */
40 #define CREATE_TRACE_POINTS
41 #include "i40e_trace.h"
42
43 const char i40e_driver_name[] = "i40e";
44 static const char i40e_driver_string[] =
45 "Intel(R) Ethernet Connection XL710 Network Driver";
46
47 #define DRV_KERN "-k"
48
49 #define DRV_VERSION_MAJOR 2
50 #define DRV_VERSION_MINOR 1
51 #define DRV_VERSION_BUILD 14
52 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
53 __stringify(DRV_VERSION_MINOR) "." \
54 __stringify(DRV_VERSION_BUILD) DRV_KERN
55 const char i40e_driver_version_str[] = DRV_VERSION;
56 static const char i40e_copyright[] = "Copyright (c) 2013 - 2014 Intel Corporation.";
57
58 /* a bit of forward declarations */
59 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi);
60 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired);
61 static int i40e_add_vsi(struct i40e_vsi *vsi);
62 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi);
63 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit);
64 static int i40e_setup_misc_vector(struct i40e_pf *pf);
65 static void i40e_determine_queue_usage(struct i40e_pf *pf);
66 static int i40e_setup_pf_filter_control(struct i40e_pf *pf);
67 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired);
68 static int i40e_reset(struct i40e_pf *pf);
69 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired);
70 static void i40e_fdir_sb_setup(struct i40e_pf *pf);
71 static int i40e_veb_get_bw_info(struct i40e_veb *veb);
72 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
73 struct i40e_cloud_filter *filter,
74 bool add);
75 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
76 struct i40e_cloud_filter *filter,
77 bool add);
78 static int i40e_get_capabilities(struct i40e_pf *pf,
79 enum i40e_admin_queue_opc list_type);
80
81
82 /* i40e_pci_tbl - PCI Device ID Table
83 *
84 * Last entry must be all 0s
85 *
86 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
87 * Class, Class Mask, private data (not used) }
88 */
89 static const struct pci_device_id i40e_pci_tbl[] = {
90 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_XL710), 0},
91 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QEMU), 0},
92 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_B), 0},
93 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_C), 0},
94 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_A), 0},
95 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_B), 0},
96 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_C), 0},
97 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T), 0},
98 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T4), 0},
99 {PCI_VDEVICE(INTEL, I40E_DEV_ID_KX_X722), 0},
100 {PCI_VDEVICE(INTEL, I40E_DEV_ID_QSFP_X722), 0},
101 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_X722), 0},
102 {PCI_VDEVICE(INTEL, I40E_DEV_ID_1G_BASE_T_X722), 0},
103 {PCI_VDEVICE(INTEL, I40E_DEV_ID_10G_BASE_T_X722), 0},
104 {PCI_VDEVICE(INTEL, I40E_DEV_ID_SFP_I_X722), 0},
105 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2), 0},
106 {PCI_VDEVICE(INTEL, I40E_DEV_ID_20G_KR2_A), 0},
107 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_B), 0},
108 {PCI_VDEVICE(INTEL, I40E_DEV_ID_25G_SFP28), 0},
109 /* required last entry */
110 {0, }
111 };
112 MODULE_DEVICE_TABLE(pci, i40e_pci_tbl);
113
114 #define I40E_MAX_VF_COUNT 128
115 static int debug = -1;
116 module_param(debug, uint, 0);
117 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all), Debug mask (0x8XXXXXXX)");
118
119 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
120 MODULE_DESCRIPTION("Intel(R) Ethernet Connection XL710 Network Driver");
121 MODULE_LICENSE("GPL");
122 MODULE_VERSION(DRV_VERSION);
123
124 static struct workqueue_struct *i40e_wq;
125
126 /**
127 * i40e_allocate_dma_mem_d - OS specific memory alloc for shared code
128 * @hw: pointer to the HW structure
129 * @mem: ptr to mem struct to fill out
130 * @size: size of memory requested
131 * @alignment: what to align the allocation to
132 **/
133 int i40e_allocate_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem,
134 u64 size, u32 alignment)
135 {
136 struct i40e_pf *pf = (struct i40e_pf *)hw->back;
137
138 mem->size = ALIGN(size, alignment);
139 mem->va = dma_zalloc_coherent(&pf->pdev->dev, mem->size,
140 &mem->pa, GFP_KERNEL);
141 if (!mem->va)
142 return -ENOMEM;
143
144 return 0;
145 }
146
147 /**
148 * i40e_free_dma_mem_d - OS specific memory free for shared code
149 * @hw: pointer to the HW structure
150 * @mem: ptr to mem struct to free
151 **/
152 int i40e_free_dma_mem_d(struct i40e_hw *hw, struct i40e_dma_mem *mem)
153 {
154 struct i40e_pf *pf = (struct i40e_pf *)hw->back;
155
156 dma_free_coherent(&pf->pdev->dev, mem->size, mem->va, mem->pa);
157 mem->va = NULL;
158 mem->pa = 0;
159 mem->size = 0;
160
161 return 0;
162 }
163
164 /**
165 * i40e_allocate_virt_mem_d - OS specific memory alloc for shared code
166 * @hw: pointer to the HW structure
167 * @mem: ptr to mem struct to fill out
168 * @size: size of memory requested
169 **/
170 int i40e_allocate_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem,
171 u32 size)
172 {
173 mem->size = size;
174 mem->va = kzalloc(size, GFP_KERNEL);
175
176 if (!mem->va)
177 return -ENOMEM;
178
179 return 0;
180 }
181
182 /**
183 * i40e_free_virt_mem_d - OS specific memory free for shared code
184 * @hw: pointer to the HW structure
185 * @mem: ptr to mem struct to free
186 **/
187 int i40e_free_virt_mem_d(struct i40e_hw *hw, struct i40e_virt_mem *mem)
188 {
189 /* it's ok to kfree a NULL pointer */
190 kfree(mem->va);
191 mem->va = NULL;
192 mem->size = 0;
193
194 return 0;
195 }
196
197 /**
198 * i40e_get_lump - find a lump of free generic resource
199 * @pf: board private structure
200 * @pile: the pile of resource to search
201 * @needed: the number of items needed
202 * @id: an owner id to stick on the items assigned
203 *
204 * Returns the base item index of the lump, or negative for error
205 *
206 * The search_hint trick and lack of advanced fit-finding only work
207 * because we're highly likely to have all the same size lump requests.
208 * Linear search time and any fragmentation should be minimal.
209 **/
210 static int i40e_get_lump(struct i40e_pf *pf, struct i40e_lump_tracking *pile,
211 u16 needed, u16 id)
212 {
213 int ret = -ENOMEM;
214 int i, j;
215
216 if (!pile || needed == 0 || id >= I40E_PILE_VALID_BIT) {
217 dev_info(&pf->pdev->dev,
218 "param err: pile=%p needed=%d id=0x%04x\n",
219 pile, needed, id);
220 return -EINVAL;
221 }
222
223 /* start the linear search with an imperfect hint */
224 i = pile->search_hint;
225 while (i < pile->num_entries) {
226 /* skip already allocated entries */
227 if (pile->list[i] & I40E_PILE_VALID_BIT) {
228 i++;
229 continue;
230 }
231
232 /* do we have enough in this lump? */
233 for (j = 0; (j < needed) && ((i+j) < pile->num_entries); j++) {
234 if (pile->list[i+j] & I40E_PILE_VALID_BIT)
235 break;
236 }
237
238 if (j == needed) {
239 /* there was enough, so assign it to the requestor */
240 for (j = 0; j < needed; j++)
241 pile->list[i+j] = id | I40E_PILE_VALID_BIT;
242 ret = i;
243 pile->search_hint = i + j;
244 break;
245 }
246
247 /* not enough, so skip over it and continue looking */
248 i += j;
249 }
250
251 return ret;
252 }
253
254 /**
255 * i40e_put_lump - return a lump of generic resource
256 * @pile: the pile of resource to search
257 * @index: the base item index
258 * @id: the owner id of the items assigned
259 *
260 * Returns the count of items in the lump
261 **/
262 static int i40e_put_lump(struct i40e_lump_tracking *pile, u16 index, u16 id)
263 {
264 int valid_id = (id | I40E_PILE_VALID_BIT);
265 int count = 0;
266 int i;
267
268 if (!pile || index >= pile->num_entries)
269 return -EINVAL;
270
271 for (i = index;
272 i < pile->num_entries && pile->list[i] == valid_id;
273 i++) {
274 pile->list[i] = 0;
275 count++;
276 }
277
278 if (count && index < pile->search_hint)
279 pile->search_hint = index;
280
281 return count;
282 }
283
284 /**
285 * i40e_find_vsi_from_id - searches for the vsi with the given id
286 * @pf - the pf structure to search for the vsi
287 * @id - id of the vsi it is searching for
288 **/
289 struct i40e_vsi *i40e_find_vsi_from_id(struct i40e_pf *pf, u16 id)
290 {
291 int i;
292
293 for (i = 0; i < pf->num_alloc_vsi; i++)
294 if (pf->vsi[i] && (pf->vsi[i]->id == id))
295 return pf->vsi[i];
296
297 return NULL;
298 }
299
300 /**
301 * i40e_service_event_schedule - Schedule the service task to wake up
302 * @pf: board private structure
303 *
304 * If not already scheduled, this puts the task into the work queue
305 **/
306 void i40e_service_event_schedule(struct i40e_pf *pf)
307 {
308 if (!test_bit(__I40E_DOWN, pf->state) &&
309 !test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
310 queue_work(i40e_wq, &pf->service_task);
311 }
312
313 /**
314 * i40e_tx_timeout - Respond to a Tx Hang
315 * @netdev: network interface device structure
316 *
317 * If any port has noticed a Tx timeout, it is likely that the whole
318 * device is munged, not just the one netdev port, so go for the full
319 * reset.
320 **/
321 static void i40e_tx_timeout(struct net_device *netdev)
322 {
323 struct i40e_netdev_priv *np = netdev_priv(netdev);
324 struct i40e_vsi *vsi = np->vsi;
325 struct i40e_pf *pf = vsi->back;
326 struct i40e_ring *tx_ring = NULL;
327 unsigned int i, hung_queue = 0;
328 u32 head, val;
329
330 pf->tx_timeout_count++;
331
332 /* find the stopped queue the same way the stack does */
333 for (i = 0; i < netdev->num_tx_queues; i++) {
334 struct netdev_queue *q;
335 unsigned long trans_start;
336
337 q = netdev_get_tx_queue(netdev, i);
338 trans_start = q->trans_start;
339 if (netif_xmit_stopped(q) &&
340 time_after(jiffies,
341 (trans_start + netdev->watchdog_timeo))) {
342 hung_queue = i;
343 break;
344 }
345 }
346
347 if (i == netdev->num_tx_queues) {
348 netdev_info(netdev, "tx_timeout: no netdev hung queue found\n");
349 } else {
350 /* now that we have an index, find the tx_ring struct */
351 for (i = 0; i < vsi->num_queue_pairs; i++) {
352 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
353 if (hung_queue ==
354 vsi->tx_rings[i]->queue_index) {
355 tx_ring = vsi->tx_rings[i];
356 break;
357 }
358 }
359 }
360 }
361
362 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ*20)))
363 pf->tx_timeout_recovery_level = 1; /* reset after some time */
364 else if (time_before(jiffies,
365 (pf->tx_timeout_last_recovery + netdev->watchdog_timeo)))
366 return; /* don't do any new action before the next timeout */
367
368 if (tx_ring) {
369 head = i40e_get_head(tx_ring);
370 /* Read interrupt register */
371 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
372 val = rd32(&pf->hw,
373 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
374 tx_ring->vsi->base_vector - 1));
375 else
376 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
377
378 netdev_info(netdev, "tx_timeout: VSI_seid: %d, Q %d, NTC: 0x%x, HWB: 0x%x, NTU: 0x%x, TAIL: 0x%x, INT: 0x%x\n",
379 vsi->seid, hung_queue, tx_ring->next_to_clean,
380 head, tx_ring->next_to_use,
381 readl(tx_ring->tail), val);
382 }
383
384 pf->tx_timeout_last_recovery = jiffies;
385 netdev_info(netdev, "tx_timeout recovery level %d, hung_queue %d\n",
386 pf->tx_timeout_recovery_level, hung_queue);
387
388 switch (pf->tx_timeout_recovery_level) {
389 case 1:
390 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
391 break;
392 case 2:
393 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
394 break;
395 case 3:
396 set_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
397 break;
398 default:
399 netdev_err(netdev, "tx_timeout recovery unsuccessful\n");
400 break;
401 }
402
403 i40e_service_event_schedule(pf);
404 pf->tx_timeout_recovery_level++;
405 }
406
407 /**
408 * i40e_get_vsi_stats_struct - Get System Network Statistics
409 * @vsi: the VSI we care about
410 *
411 * Returns the address of the device statistics structure.
412 * The statistics are actually updated from the service task.
413 **/
414 struct rtnl_link_stats64 *i40e_get_vsi_stats_struct(struct i40e_vsi *vsi)
415 {
416 return &vsi->net_stats;
417 }
418
419 /**
420 * i40e_get_netdev_stats_struct_tx - populate stats from a Tx ring
421 * @ring: Tx ring to get statistics from
422 * @stats: statistics entry to be updated
423 **/
424 static void i40e_get_netdev_stats_struct_tx(struct i40e_ring *ring,
425 struct rtnl_link_stats64 *stats)
426 {
427 u64 bytes, packets;
428 unsigned int start;
429
430 do {
431 start = u64_stats_fetch_begin_irq(&ring->syncp);
432 packets = ring->stats.packets;
433 bytes = ring->stats.bytes;
434 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
435
436 stats->tx_packets += packets;
437 stats->tx_bytes += bytes;
438 }
439
440 /**
441 * i40e_get_netdev_stats_struct - Get statistics for netdev interface
442 * @netdev: network interface device structure
443 *
444 * Returns the address of the device statistics structure.
445 * The statistics are actually updated from the service task.
446 **/
447 static void i40e_get_netdev_stats_struct(struct net_device *netdev,
448 struct rtnl_link_stats64 *stats)
449 {
450 struct i40e_netdev_priv *np = netdev_priv(netdev);
451 struct i40e_ring *tx_ring, *rx_ring;
452 struct i40e_vsi *vsi = np->vsi;
453 struct rtnl_link_stats64 *vsi_stats = i40e_get_vsi_stats_struct(vsi);
454 int i;
455
456 if (test_bit(__I40E_VSI_DOWN, vsi->state))
457 return;
458
459 if (!vsi->tx_rings)
460 return;
461
462 rcu_read_lock();
463 for (i = 0; i < vsi->num_queue_pairs; i++) {
464 u64 bytes, packets;
465 unsigned int start;
466
467 tx_ring = READ_ONCE(vsi->tx_rings[i]);
468 if (!tx_ring)
469 continue;
470 i40e_get_netdev_stats_struct_tx(tx_ring, stats);
471
472 rx_ring = &tx_ring[1];
473
474 do {
475 start = u64_stats_fetch_begin_irq(&rx_ring->syncp);
476 packets = rx_ring->stats.packets;
477 bytes = rx_ring->stats.bytes;
478 } while (u64_stats_fetch_retry_irq(&rx_ring->syncp, start));
479
480 stats->rx_packets += packets;
481 stats->rx_bytes += bytes;
482
483 if (i40e_enabled_xdp_vsi(vsi))
484 i40e_get_netdev_stats_struct_tx(&rx_ring[1], stats);
485 }
486 rcu_read_unlock();
487
488 /* following stats updated by i40e_watchdog_subtask() */
489 stats->multicast = vsi_stats->multicast;
490 stats->tx_errors = vsi_stats->tx_errors;
491 stats->tx_dropped = vsi_stats->tx_dropped;
492 stats->rx_errors = vsi_stats->rx_errors;
493 stats->rx_dropped = vsi_stats->rx_dropped;
494 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
495 stats->rx_length_errors = vsi_stats->rx_length_errors;
496 }
497
498 /**
499 * i40e_vsi_reset_stats - Resets all stats of the given vsi
500 * @vsi: the VSI to have its stats reset
501 **/
502 void i40e_vsi_reset_stats(struct i40e_vsi *vsi)
503 {
504 struct rtnl_link_stats64 *ns;
505 int i;
506
507 if (!vsi)
508 return;
509
510 ns = i40e_get_vsi_stats_struct(vsi);
511 memset(ns, 0, sizeof(*ns));
512 memset(&vsi->net_stats_offsets, 0, sizeof(vsi->net_stats_offsets));
513 memset(&vsi->eth_stats, 0, sizeof(vsi->eth_stats));
514 memset(&vsi->eth_stats_offsets, 0, sizeof(vsi->eth_stats_offsets));
515 if (vsi->rx_rings && vsi->rx_rings[0]) {
516 for (i = 0; i < vsi->num_queue_pairs; i++) {
517 memset(&vsi->rx_rings[i]->stats, 0,
518 sizeof(vsi->rx_rings[i]->stats));
519 memset(&vsi->rx_rings[i]->rx_stats, 0,
520 sizeof(vsi->rx_rings[i]->rx_stats));
521 memset(&vsi->tx_rings[i]->stats, 0,
522 sizeof(vsi->tx_rings[i]->stats));
523 memset(&vsi->tx_rings[i]->tx_stats, 0,
524 sizeof(vsi->tx_rings[i]->tx_stats));
525 }
526 }
527 vsi->stat_offsets_loaded = false;
528 }
529
530 /**
531 * i40e_pf_reset_stats - Reset all of the stats for the given PF
532 * @pf: the PF to be reset
533 **/
534 void i40e_pf_reset_stats(struct i40e_pf *pf)
535 {
536 int i;
537
538 memset(&pf->stats, 0, sizeof(pf->stats));
539 memset(&pf->stats_offsets, 0, sizeof(pf->stats_offsets));
540 pf->stat_offsets_loaded = false;
541
542 for (i = 0; i < I40E_MAX_VEB; i++) {
543 if (pf->veb[i]) {
544 memset(&pf->veb[i]->stats, 0,
545 sizeof(pf->veb[i]->stats));
546 memset(&pf->veb[i]->stats_offsets, 0,
547 sizeof(pf->veb[i]->stats_offsets));
548 pf->veb[i]->stat_offsets_loaded = false;
549 }
550 }
551 pf->hw_csum_rx_error = 0;
552 }
553
554 /**
555 * i40e_stat_update48 - read and update a 48 bit stat from the chip
556 * @hw: ptr to the hardware info
557 * @hireg: the high 32 bit reg to read
558 * @loreg: the low 32 bit reg to read
559 * @offset_loaded: has the initial offset been loaded yet
560 * @offset: ptr to current offset value
561 * @stat: ptr to the stat
562 *
563 * Since the device stats are not reset at PFReset, they likely will not
564 * be zeroed when the driver starts. We'll save the first values read
565 * and use them as offsets to be subtracted from the raw values in order
566 * to report stats that count from zero. In the process, we also manage
567 * the potential roll-over.
568 **/
569 static void i40e_stat_update48(struct i40e_hw *hw, u32 hireg, u32 loreg,
570 bool offset_loaded, u64 *offset, u64 *stat)
571 {
572 u64 new_data;
573
574 if (hw->device_id == I40E_DEV_ID_QEMU) {
575 new_data = rd32(hw, loreg);
576 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
577 } else {
578 new_data = rd64(hw, loreg);
579 }
580 if (!offset_loaded)
581 *offset = new_data;
582 if (likely(new_data >= *offset))
583 *stat = new_data - *offset;
584 else
585 *stat = (new_data + BIT_ULL(48)) - *offset;
586 *stat &= 0xFFFFFFFFFFFFULL;
587 }
588
589 /**
590 * i40e_stat_update32 - read and update a 32 bit stat from the chip
591 * @hw: ptr to the hardware info
592 * @reg: the hw reg to read
593 * @offset_loaded: has the initial offset been loaded yet
594 * @offset: ptr to current offset value
595 * @stat: ptr to the stat
596 **/
597 static void i40e_stat_update32(struct i40e_hw *hw, u32 reg,
598 bool offset_loaded, u64 *offset, u64 *stat)
599 {
600 u32 new_data;
601
602 new_data = rd32(hw, reg);
603 if (!offset_loaded)
604 *offset = new_data;
605 if (likely(new_data >= *offset))
606 *stat = (u32)(new_data - *offset);
607 else
608 *stat = (u32)((new_data + BIT_ULL(32)) - *offset);
609 }
610
611 /**
612 * i40e_stat_update_and_clear32 - read and clear hw reg, update a 32 bit stat
613 * @hw: ptr to the hardware info
614 * @reg: the hw reg to read and clear
615 * @stat: ptr to the stat
616 **/
617 static void i40e_stat_update_and_clear32(struct i40e_hw *hw, u32 reg, u64 *stat)
618 {
619 u32 new_data = rd32(hw, reg);
620
621 wr32(hw, reg, 1); /* must write a nonzero value to clear register */
622 *stat += new_data;
623 }
624
625 /**
626 * i40e_update_eth_stats - Update VSI-specific ethernet statistics counters.
627 * @vsi: the VSI to be updated
628 **/
629 void i40e_update_eth_stats(struct i40e_vsi *vsi)
630 {
631 int stat_idx = le16_to_cpu(vsi->info.stat_counter_idx);
632 struct i40e_pf *pf = vsi->back;
633 struct i40e_hw *hw = &pf->hw;
634 struct i40e_eth_stats *oes;
635 struct i40e_eth_stats *es; /* device's eth stats */
636
637 es = &vsi->eth_stats;
638 oes = &vsi->eth_stats_offsets;
639
640 /* Gather up the stats that the hw collects */
641 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
642 vsi->stat_offsets_loaded,
643 &oes->tx_errors, &es->tx_errors);
644 i40e_stat_update32(hw, I40E_GLV_RDPC(stat_idx),
645 vsi->stat_offsets_loaded,
646 &oes->rx_discards, &es->rx_discards);
647 i40e_stat_update32(hw, I40E_GLV_RUPP(stat_idx),
648 vsi->stat_offsets_loaded,
649 &oes->rx_unknown_protocol, &es->rx_unknown_protocol);
650 i40e_stat_update32(hw, I40E_GLV_TEPC(stat_idx),
651 vsi->stat_offsets_loaded,
652 &oes->tx_errors, &es->tx_errors);
653
654 i40e_stat_update48(hw, I40E_GLV_GORCH(stat_idx),
655 I40E_GLV_GORCL(stat_idx),
656 vsi->stat_offsets_loaded,
657 &oes->rx_bytes, &es->rx_bytes);
658 i40e_stat_update48(hw, I40E_GLV_UPRCH(stat_idx),
659 I40E_GLV_UPRCL(stat_idx),
660 vsi->stat_offsets_loaded,
661 &oes->rx_unicast, &es->rx_unicast);
662 i40e_stat_update48(hw, I40E_GLV_MPRCH(stat_idx),
663 I40E_GLV_MPRCL(stat_idx),
664 vsi->stat_offsets_loaded,
665 &oes->rx_multicast, &es->rx_multicast);
666 i40e_stat_update48(hw, I40E_GLV_BPRCH(stat_idx),
667 I40E_GLV_BPRCL(stat_idx),
668 vsi->stat_offsets_loaded,
669 &oes->rx_broadcast, &es->rx_broadcast);
670
671 i40e_stat_update48(hw, I40E_GLV_GOTCH(stat_idx),
672 I40E_GLV_GOTCL(stat_idx),
673 vsi->stat_offsets_loaded,
674 &oes->tx_bytes, &es->tx_bytes);
675 i40e_stat_update48(hw, I40E_GLV_UPTCH(stat_idx),
676 I40E_GLV_UPTCL(stat_idx),
677 vsi->stat_offsets_loaded,
678 &oes->tx_unicast, &es->tx_unicast);
679 i40e_stat_update48(hw, I40E_GLV_MPTCH(stat_idx),
680 I40E_GLV_MPTCL(stat_idx),
681 vsi->stat_offsets_loaded,
682 &oes->tx_multicast, &es->tx_multicast);
683 i40e_stat_update48(hw, I40E_GLV_BPTCH(stat_idx),
684 I40E_GLV_BPTCL(stat_idx),
685 vsi->stat_offsets_loaded,
686 &oes->tx_broadcast, &es->tx_broadcast);
687 vsi->stat_offsets_loaded = true;
688 }
689
690 /**
691 * i40e_update_veb_stats - Update Switch component statistics
692 * @veb: the VEB being updated
693 **/
694 static void i40e_update_veb_stats(struct i40e_veb *veb)
695 {
696 struct i40e_pf *pf = veb->pf;
697 struct i40e_hw *hw = &pf->hw;
698 struct i40e_eth_stats *oes;
699 struct i40e_eth_stats *es; /* device's eth stats */
700 struct i40e_veb_tc_stats *veb_oes;
701 struct i40e_veb_tc_stats *veb_es;
702 int i, idx = 0;
703
704 idx = veb->stats_idx;
705 es = &veb->stats;
706 oes = &veb->stats_offsets;
707 veb_es = &veb->tc_stats;
708 veb_oes = &veb->tc_stats_offsets;
709
710 /* Gather up the stats that the hw collects */
711 i40e_stat_update32(hw, I40E_GLSW_TDPC(idx),
712 veb->stat_offsets_loaded,
713 &oes->tx_discards, &es->tx_discards);
714 if (hw->revision_id > 0)
715 i40e_stat_update32(hw, I40E_GLSW_RUPP(idx),
716 veb->stat_offsets_loaded,
717 &oes->rx_unknown_protocol,
718 &es->rx_unknown_protocol);
719 i40e_stat_update48(hw, I40E_GLSW_GORCH(idx), I40E_GLSW_GORCL(idx),
720 veb->stat_offsets_loaded,
721 &oes->rx_bytes, &es->rx_bytes);
722 i40e_stat_update48(hw, I40E_GLSW_UPRCH(idx), I40E_GLSW_UPRCL(idx),
723 veb->stat_offsets_loaded,
724 &oes->rx_unicast, &es->rx_unicast);
725 i40e_stat_update48(hw, I40E_GLSW_MPRCH(idx), I40E_GLSW_MPRCL(idx),
726 veb->stat_offsets_loaded,
727 &oes->rx_multicast, &es->rx_multicast);
728 i40e_stat_update48(hw, I40E_GLSW_BPRCH(idx), I40E_GLSW_BPRCL(idx),
729 veb->stat_offsets_loaded,
730 &oes->rx_broadcast, &es->rx_broadcast);
731
732 i40e_stat_update48(hw, I40E_GLSW_GOTCH(idx), I40E_GLSW_GOTCL(idx),
733 veb->stat_offsets_loaded,
734 &oes->tx_bytes, &es->tx_bytes);
735 i40e_stat_update48(hw, I40E_GLSW_UPTCH(idx), I40E_GLSW_UPTCL(idx),
736 veb->stat_offsets_loaded,
737 &oes->tx_unicast, &es->tx_unicast);
738 i40e_stat_update48(hw, I40E_GLSW_MPTCH(idx), I40E_GLSW_MPTCL(idx),
739 veb->stat_offsets_loaded,
740 &oes->tx_multicast, &es->tx_multicast);
741 i40e_stat_update48(hw, I40E_GLSW_BPTCH(idx), I40E_GLSW_BPTCL(idx),
742 veb->stat_offsets_loaded,
743 &oes->tx_broadcast, &es->tx_broadcast);
744 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
745 i40e_stat_update48(hw, I40E_GLVEBTC_RPCH(i, idx),
746 I40E_GLVEBTC_RPCL(i, idx),
747 veb->stat_offsets_loaded,
748 &veb_oes->tc_rx_packets[i],
749 &veb_es->tc_rx_packets[i]);
750 i40e_stat_update48(hw, I40E_GLVEBTC_RBCH(i, idx),
751 I40E_GLVEBTC_RBCL(i, idx),
752 veb->stat_offsets_loaded,
753 &veb_oes->tc_rx_bytes[i],
754 &veb_es->tc_rx_bytes[i]);
755 i40e_stat_update48(hw, I40E_GLVEBTC_TPCH(i, idx),
756 I40E_GLVEBTC_TPCL(i, idx),
757 veb->stat_offsets_loaded,
758 &veb_oes->tc_tx_packets[i],
759 &veb_es->tc_tx_packets[i]);
760 i40e_stat_update48(hw, I40E_GLVEBTC_TBCH(i, idx),
761 I40E_GLVEBTC_TBCL(i, idx),
762 veb->stat_offsets_loaded,
763 &veb_oes->tc_tx_bytes[i],
764 &veb_es->tc_tx_bytes[i]);
765 }
766 veb->stat_offsets_loaded = true;
767 }
768
769 /**
770 * i40e_update_vsi_stats - Update the vsi statistics counters.
771 * @vsi: the VSI to be updated
772 *
773 * There are a few instances where we store the same stat in a
774 * couple of different structs. This is partly because we have
775 * the netdev stats that need to be filled out, which is slightly
776 * different from the "eth_stats" defined by the chip and used in
777 * VF communications. We sort it out here.
778 **/
779 static void i40e_update_vsi_stats(struct i40e_vsi *vsi)
780 {
781 struct i40e_pf *pf = vsi->back;
782 struct rtnl_link_stats64 *ons;
783 struct rtnl_link_stats64 *ns; /* netdev stats */
784 struct i40e_eth_stats *oes;
785 struct i40e_eth_stats *es; /* device's eth stats */
786 u32 tx_restart, tx_busy;
787 struct i40e_ring *p;
788 u32 rx_page, rx_buf;
789 u64 bytes, packets;
790 unsigned int start;
791 u64 tx_linearize;
792 u64 tx_force_wb;
793 u64 rx_p, rx_b;
794 u64 tx_p, tx_b;
795 u16 q;
796
797 if (test_bit(__I40E_VSI_DOWN, vsi->state) ||
798 test_bit(__I40E_CONFIG_BUSY, pf->state))
799 return;
800
801 ns = i40e_get_vsi_stats_struct(vsi);
802 ons = &vsi->net_stats_offsets;
803 es = &vsi->eth_stats;
804 oes = &vsi->eth_stats_offsets;
805
806 /* Gather up the netdev and vsi stats that the driver collects
807 * on the fly during packet processing
808 */
809 rx_b = rx_p = 0;
810 tx_b = tx_p = 0;
811 tx_restart = tx_busy = tx_linearize = tx_force_wb = 0;
812 rx_page = 0;
813 rx_buf = 0;
814 rcu_read_lock();
815 for (q = 0; q < vsi->num_queue_pairs; q++) {
816 /* locate Tx ring */
817 p = READ_ONCE(vsi->tx_rings[q]);
818
819 do {
820 start = u64_stats_fetch_begin_irq(&p->syncp);
821 packets = p->stats.packets;
822 bytes = p->stats.bytes;
823 } while (u64_stats_fetch_retry_irq(&p->syncp, start));
824 tx_b += bytes;
825 tx_p += packets;
826 tx_restart += p->tx_stats.restart_queue;
827 tx_busy += p->tx_stats.tx_busy;
828 tx_linearize += p->tx_stats.tx_linearize;
829 tx_force_wb += p->tx_stats.tx_force_wb;
830
831 /* Rx queue is part of the same block as Tx queue */
832 p = &p[1];
833 do {
834 start = u64_stats_fetch_begin_irq(&p->syncp);
835 packets = p->stats.packets;
836 bytes = p->stats.bytes;
837 } while (u64_stats_fetch_retry_irq(&p->syncp, start));
838 rx_b += bytes;
839 rx_p += packets;
840 rx_buf += p->rx_stats.alloc_buff_failed;
841 rx_page += p->rx_stats.alloc_page_failed;
842 }
843 rcu_read_unlock();
844 vsi->tx_restart = tx_restart;
845 vsi->tx_busy = tx_busy;
846 vsi->tx_linearize = tx_linearize;
847 vsi->tx_force_wb = tx_force_wb;
848 vsi->rx_page_failed = rx_page;
849 vsi->rx_buf_failed = rx_buf;
850
851 ns->rx_packets = rx_p;
852 ns->rx_bytes = rx_b;
853 ns->tx_packets = tx_p;
854 ns->tx_bytes = tx_b;
855
856 /* update netdev stats from eth stats */
857 i40e_update_eth_stats(vsi);
858 ons->tx_errors = oes->tx_errors;
859 ns->tx_errors = es->tx_errors;
860 ons->multicast = oes->rx_multicast;
861 ns->multicast = es->rx_multicast;
862 ons->rx_dropped = oes->rx_discards;
863 ns->rx_dropped = es->rx_discards;
864 ons->tx_dropped = oes->tx_discards;
865 ns->tx_dropped = es->tx_discards;
866
867 /* pull in a couple PF stats if this is the main vsi */
868 if (vsi == pf->vsi[pf->lan_vsi]) {
869 ns->rx_crc_errors = pf->stats.crc_errors;
870 ns->rx_errors = pf->stats.crc_errors + pf->stats.illegal_bytes;
871 ns->rx_length_errors = pf->stats.rx_length_errors;
872 }
873 }
874
875 /**
876 * i40e_update_pf_stats - Update the PF statistics counters.
877 * @pf: the PF to be updated
878 **/
879 static void i40e_update_pf_stats(struct i40e_pf *pf)
880 {
881 struct i40e_hw_port_stats *osd = &pf->stats_offsets;
882 struct i40e_hw_port_stats *nsd = &pf->stats;
883 struct i40e_hw *hw = &pf->hw;
884 u32 val;
885 int i;
886
887 i40e_stat_update48(hw, I40E_GLPRT_GORCH(hw->port),
888 I40E_GLPRT_GORCL(hw->port),
889 pf->stat_offsets_loaded,
890 &osd->eth.rx_bytes, &nsd->eth.rx_bytes);
891 i40e_stat_update48(hw, I40E_GLPRT_GOTCH(hw->port),
892 I40E_GLPRT_GOTCL(hw->port),
893 pf->stat_offsets_loaded,
894 &osd->eth.tx_bytes, &nsd->eth.tx_bytes);
895 i40e_stat_update32(hw, I40E_GLPRT_RDPC(hw->port),
896 pf->stat_offsets_loaded,
897 &osd->eth.rx_discards,
898 &nsd->eth.rx_discards);
899 i40e_stat_update48(hw, I40E_GLPRT_UPRCH(hw->port),
900 I40E_GLPRT_UPRCL(hw->port),
901 pf->stat_offsets_loaded,
902 &osd->eth.rx_unicast,
903 &nsd->eth.rx_unicast);
904 i40e_stat_update48(hw, I40E_GLPRT_MPRCH(hw->port),
905 I40E_GLPRT_MPRCL(hw->port),
906 pf->stat_offsets_loaded,
907 &osd->eth.rx_multicast,
908 &nsd->eth.rx_multicast);
909 i40e_stat_update48(hw, I40E_GLPRT_BPRCH(hw->port),
910 I40E_GLPRT_BPRCL(hw->port),
911 pf->stat_offsets_loaded,
912 &osd->eth.rx_broadcast,
913 &nsd->eth.rx_broadcast);
914 i40e_stat_update48(hw, I40E_GLPRT_UPTCH(hw->port),
915 I40E_GLPRT_UPTCL(hw->port),
916 pf->stat_offsets_loaded,
917 &osd->eth.tx_unicast,
918 &nsd->eth.tx_unicast);
919 i40e_stat_update48(hw, I40E_GLPRT_MPTCH(hw->port),
920 I40E_GLPRT_MPTCL(hw->port),
921 pf->stat_offsets_loaded,
922 &osd->eth.tx_multicast,
923 &nsd->eth.tx_multicast);
924 i40e_stat_update48(hw, I40E_GLPRT_BPTCH(hw->port),
925 I40E_GLPRT_BPTCL(hw->port),
926 pf->stat_offsets_loaded,
927 &osd->eth.tx_broadcast,
928 &nsd->eth.tx_broadcast);
929
930 i40e_stat_update32(hw, I40E_GLPRT_TDOLD(hw->port),
931 pf->stat_offsets_loaded,
932 &osd->tx_dropped_link_down,
933 &nsd->tx_dropped_link_down);
934
935 i40e_stat_update32(hw, I40E_GLPRT_CRCERRS(hw->port),
936 pf->stat_offsets_loaded,
937 &osd->crc_errors, &nsd->crc_errors);
938
939 i40e_stat_update32(hw, I40E_GLPRT_ILLERRC(hw->port),
940 pf->stat_offsets_loaded,
941 &osd->illegal_bytes, &nsd->illegal_bytes);
942
943 i40e_stat_update32(hw, I40E_GLPRT_MLFC(hw->port),
944 pf->stat_offsets_loaded,
945 &osd->mac_local_faults,
946 &nsd->mac_local_faults);
947 i40e_stat_update32(hw, I40E_GLPRT_MRFC(hw->port),
948 pf->stat_offsets_loaded,
949 &osd->mac_remote_faults,
950 &nsd->mac_remote_faults);
951
952 i40e_stat_update32(hw, I40E_GLPRT_RLEC(hw->port),
953 pf->stat_offsets_loaded,
954 &osd->rx_length_errors,
955 &nsd->rx_length_errors);
956
957 i40e_stat_update32(hw, I40E_GLPRT_LXONRXC(hw->port),
958 pf->stat_offsets_loaded,
959 &osd->link_xon_rx, &nsd->link_xon_rx);
960 i40e_stat_update32(hw, I40E_GLPRT_LXONTXC(hw->port),
961 pf->stat_offsets_loaded,
962 &osd->link_xon_tx, &nsd->link_xon_tx);
963 i40e_stat_update32(hw, I40E_GLPRT_LXOFFRXC(hw->port),
964 pf->stat_offsets_loaded,
965 &osd->link_xoff_rx, &nsd->link_xoff_rx);
966 i40e_stat_update32(hw, I40E_GLPRT_LXOFFTXC(hw->port),
967 pf->stat_offsets_loaded,
968 &osd->link_xoff_tx, &nsd->link_xoff_tx);
969
970 for (i = 0; i < 8; i++) {
971 i40e_stat_update32(hw, I40E_GLPRT_PXOFFRXC(hw->port, i),
972 pf->stat_offsets_loaded,
973 &osd->priority_xoff_rx[i],
974 &nsd->priority_xoff_rx[i]);
975 i40e_stat_update32(hw, I40E_GLPRT_PXONRXC(hw->port, i),
976 pf->stat_offsets_loaded,
977 &osd->priority_xon_rx[i],
978 &nsd->priority_xon_rx[i]);
979 i40e_stat_update32(hw, I40E_GLPRT_PXONTXC(hw->port, i),
980 pf->stat_offsets_loaded,
981 &osd->priority_xon_tx[i],
982 &nsd->priority_xon_tx[i]);
983 i40e_stat_update32(hw, I40E_GLPRT_PXOFFTXC(hw->port, i),
984 pf->stat_offsets_loaded,
985 &osd->priority_xoff_tx[i],
986 &nsd->priority_xoff_tx[i]);
987 i40e_stat_update32(hw,
988 I40E_GLPRT_RXON2OFFCNT(hw->port, i),
989 pf->stat_offsets_loaded,
990 &osd->priority_xon_2_xoff[i],
991 &nsd->priority_xon_2_xoff[i]);
992 }
993
994 i40e_stat_update48(hw, I40E_GLPRT_PRC64H(hw->port),
995 I40E_GLPRT_PRC64L(hw->port),
996 pf->stat_offsets_loaded,
997 &osd->rx_size_64, &nsd->rx_size_64);
998 i40e_stat_update48(hw, I40E_GLPRT_PRC127H(hw->port),
999 I40E_GLPRT_PRC127L(hw->port),
1000 pf->stat_offsets_loaded,
1001 &osd->rx_size_127, &nsd->rx_size_127);
1002 i40e_stat_update48(hw, I40E_GLPRT_PRC255H(hw->port),
1003 I40E_GLPRT_PRC255L(hw->port),
1004 pf->stat_offsets_loaded,
1005 &osd->rx_size_255, &nsd->rx_size_255);
1006 i40e_stat_update48(hw, I40E_GLPRT_PRC511H(hw->port),
1007 I40E_GLPRT_PRC511L(hw->port),
1008 pf->stat_offsets_loaded,
1009 &osd->rx_size_511, &nsd->rx_size_511);
1010 i40e_stat_update48(hw, I40E_GLPRT_PRC1023H(hw->port),
1011 I40E_GLPRT_PRC1023L(hw->port),
1012 pf->stat_offsets_loaded,
1013 &osd->rx_size_1023, &nsd->rx_size_1023);
1014 i40e_stat_update48(hw, I40E_GLPRT_PRC1522H(hw->port),
1015 I40E_GLPRT_PRC1522L(hw->port),
1016 pf->stat_offsets_loaded,
1017 &osd->rx_size_1522, &nsd->rx_size_1522);
1018 i40e_stat_update48(hw, I40E_GLPRT_PRC9522H(hw->port),
1019 I40E_GLPRT_PRC9522L(hw->port),
1020 pf->stat_offsets_loaded,
1021 &osd->rx_size_big, &nsd->rx_size_big);
1022
1023 i40e_stat_update48(hw, I40E_GLPRT_PTC64H(hw->port),
1024 I40E_GLPRT_PTC64L(hw->port),
1025 pf->stat_offsets_loaded,
1026 &osd->tx_size_64, &nsd->tx_size_64);
1027 i40e_stat_update48(hw, I40E_GLPRT_PTC127H(hw->port),
1028 I40E_GLPRT_PTC127L(hw->port),
1029 pf->stat_offsets_loaded,
1030 &osd->tx_size_127, &nsd->tx_size_127);
1031 i40e_stat_update48(hw, I40E_GLPRT_PTC255H(hw->port),
1032 I40E_GLPRT_PTC255L(hw->port),
1033 pf->stat_offsets_loaded,
1034 &osd->tx_size_255, &nsd->tx_size_255);
1035 i40e_stat_update48(hw, I40E_GLPRT_PTC511H(hw->port),
1036 I40E_GLPRT_PTC511L(hw->port),
1037 pf->stat_offsets_loaded,
1038 &osd->tx_size_511, &nsd->tx_size_511);
1039 i40e_stat_update48(hw, I40E_GLPRT_PTC1023H(hw->port),
1040 I40E_GLPRT_PTC1023L(hw->port),
1041 pf->stat_offsets_loaded,
1042 &osd->tx_size_1023, &nsd->tx_size_1023);
1043 i40e_stat_update48(hw, I40E_GLPRT_PTC1522H(hw->port),
1044 I40E_GLPRT_PTC1522L(hw->port),
1045 pf->stat_offsets_loaded,
1046 &osd->tx_size_1522, &nsd->tx_size_1522);
1047 i40e_stat_update48(hw, I40E_GLPRT_PTC9522H(hw->port),
1048 I40E_GLPRT_PTC9522L(hw->port),
1049 pf->stat_offsets_loaded,
1050 &osd->tx_size_big, &nsd->tx_size_big);
1051
1052 i40e_stat_update32(hw, I40E_GLPRT_RUC(hw->port),
1053 pf->stat_offsets_loaded,
1054 &osd->rx_undersize, &nsd->rx_undersize);
1055 i40e_stat_update32(hw, I40E_GLPRT_RFC(hw->port),
1056 pf->stat_offsets_loaded,
1057 &osd->rx_fragments, &nsd->rx_fragments);
1058 i40e_stat_update32(hw, I40E_GLPRT_ROC(hw->port),
1059 pf->stat_offsets_loaded,
1060 &osd->rx_oversize, &nsd->rx_oversize);
1061 i40e_stat_update32(hw, I40E_GLPRT_RJC(hw->port),
1062 pf->stat_offsets_loaded,
1063 &osd->rx_jabber, &nsd->rx_jabber);
1064
1065 /* FDIR stats */
1066 i40e_stat_update_and_clear32(hw,
1067 I40E_GLQF_PCNT(I40E_FD_ATR_STAT_IDX(hw->pf_id)),
1068 &nsd->fd_atr_match);
1069 i40e_stat_update_and_clear32(hw,
1070 I40E_GLQF_PCNT(I40E_FD_SB_STAT_IDX(hw->pf_id)),
1071 &nsd->fd_sb_match);
1072 i40e_stat_update_and_clear32(hw,
1073 I40E_GLQF_PCNT(I40E_FD_ATR_TUNNEL_STAT_IDX(hw->pf_id)),
1074 &nsd->fd_atr_tunnel_match);
1075
1076 val = rd32(hw, I40E_PRTPM_EEE_STAT);
1077 nsd->tx_lpi_status =
1078 (val & I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_MASK) >>
1079 I40E_PRTPM_EEE_STAT_TX_LPI_STATUS_SHIFT;
1080 nsd->rx_lpi_status =
1081 (val & I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_MASK) >>
1082 I40E_PRTPM_EEE_STAT_RX_LPI_STATUS_SHIFT;
1083 i40e_stat_update32(hw, I40E_PRTPM_TLPIC,
1084 pf->stat_offsets_loaded,
1085 &osd->tx_lpi_count, &nsd->tx_lpi_count);
1086 i40e_stat_update32(hw, I40E_PRTPM_RLPIC,
1087 pf->stat_offsets_loaded,
1088 &osd->rx_lpi_count, &nsd->rx_lpi_count);
1089
1090 if (pf->flags & I40E_FLAG_FD_SB_ENABLED &&
1091 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED))
1092 nsd->fd_sb_status = true;
1093 else
1094 nsd->fd_sb_status = false;
1095
1096 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED &&
1097 !(pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
1098 nsd->fd_atr_status = true;
1099 else
1100 nsd->fd_atr_status = false;
1101
1102 pf->stat_offsets_loaded = true;
1103 }
1104
1105 /**
1106 * i40e_update_stats - Update the various statistics counters.
1107 * @vsi: the VSI to be updated
1108 *
1109 * Update the various stats for this VSI and its related entities.
1110 **/
1111 void i40e_update_stats(struct i40e_vsi *vsi)
1112 {
1113 struct i40e_pf *pf = vsi->back;
1114
1115 if (vsi == pf->vsi[pf->lan_vsi])
1116 i40e_update_pf_stats(pf);
1117
1118 i40e_update_vsi_stats(vsi);
1119 }
1120
1121 /**
1122 * i40e_find_filter - Search VSI filter list for specific mac/vlan filter
1123 * @vsi: the VSI to be searched
1124 * @macaddr: the MAC address
1125 * @vlan: the vlan
1126 *
1127 * Returns ptr to the filter object or NULL
1128 **/
1129 static struct i40e_mac_filter *i40e_find_filter(struct i40e_vsi *vsi,
1130 const u8 *macaddr, s16 vlan)
1131 {
1132 struct i40e_mac_filter *f;
1133 u64 key;
1134
1135 if (!vsi || !macaddr)
1136 return NULL;
1137
1138 key = i40e_addr_to_hkey(macaddr);
1139 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1140 if ((ether_addr_equal(macaddr, f->macaddr)) &&
1141 (vlan == f->vlan))
1142 return f;
1143 }
1144 return NULL;
1145 }
1146
1147 /**
1148 * i40e_find_mac - Find a mac addr in the macvlan filters list
1149 * @vsi: the VSI to be searched
1150 * @macaddr: the MAC address we are searching for
1151 *
1152 * Returns the first filter with the provided MAC address or NULL if
1153 * MAC address was not found
1154 **/
1155 struct i40e_mac_filter *i40e_find_mac(struct i40e_vsi *vsi, const u8 *macaddr)
1156 {
1157 struct i40e_mac_filter *f;
1158 u64 key;
1159
1160 if (!vsi || !macaddr)
1161 return NULL;
1162
1163 key = i40e_addr_to_hkey(macaddr);
1164 hash_for_each_possible(vsi->mac_filter_hash, f, hlist, key) {
1165 if ((ether_addr_equal(macaddr, f->macaddr)))
1166 return f;
1167 }
1168 return NULL;
1169 }
1170
1171 /**
1172 * i40e_is_vsi_in_vlan - Check if VSI is in vlan mode
1173 * @vsi: the VSI to be searched
1174 *
1175 * Returns true if VSI is in vlan mode or false otherwise
1176 **/
1177 bool i40e_is_vsi_in_vlan(struct i40e_vsi *vsi)
1178 {
1179 /* If we have a PVID, always operate in VLAN mode */
1180 if (vsi->info.pvid)
1181 return true;
1182
1183 /* We need to operate in VLAN mode whenever we have any filters with
1184 * a VLAN other than I40E_VLAN_ALL. We could check the table each
1185 * time, incurring search cost repeatedly. However, we can notice two
1186 * things:
1187 *
1188 * 1) the only place where we can gain a VLAN filter is in
1189 * i40e_add_filter.
1190 *
1191 * 2) the only place where filters are actually removed is in
1192 * i40e_sync_filters_subtask.
1193 *
1194 * Thus, we can simply use a boolean value, has_vlan_filters which we
1195 * will set to true when we add a VLAN filter in i40e_add_filter. Then
1196 * we have to perform the full search after deleting filters in
1197 * i40e_sync_filters_subtask, but we already have to search
1198 * filters here and can perform the check at the same time. This
1199 * results in avoiding embedding a loop for VLAN mode inside another
1200 * loop over all the filters, and should maintain correctness as noted
1201 * above.
1202 */
1203 return vsi->has_vlan_filter;
1204 }
1205
1206 /**
1207 * i40e_correct_mac_vlan_filters - Correct non-VLAN filters if necessary
1208 * @vsi: the VSI to configure
1209 * @tmp_add_list: list of filters ready to be added
1210 * @tmp_del_list: list of filters ready to be deleted
1211 * @vlan_filters: the number of active VLAN filters
1212 *
1213 * Update VLAN=0 and VLAN=-1 (I40E_VLAN_ANY) filters properly so that they
1214 * behave as expected. If we have any active VLAN filters remaining or about
1215 * to be added then we need to update non-VLAN filters to be marked as VLAN=0
1216 * so that they only match against untagged traffic. If we no longer have any
1217 * active VLAN filters, we need to make all non-VLAN filters marked as VLAN=-1
1218 * so that they match against both tagged and untagged traffic. In this way,
1219 * we ensure that we correctly receive the desired traffic. This ensures that
1220 * when we have an active VLAN we will receive only untagged traffic and
1221 * traffic matching active VLANs. If we have no active VLANs then we will
1222 * operate in non-VLAN mode and receive all traffic, tagged or untagged.
1223 *
1224 * Finally, in a similar fashion, this function also corrects filters when
1225 * there is an active PVID assigned to this VSI.
1226 *
1227 * In case of memory allocation failure return -ENOMEM. Otherwise, return 0.
1228 *
1229 * This function is only expected to be called from within
1230 * i40e_sync_vsi_filters.
1231 *
1232 * NOTE: This function expects to be called while under the
1233 * mac_filter_hash_lock
1234 */
1235 static int i40e_correct_mac_vlan_filters(struct i40e_vsi *vsi,
1236 struct hlist_head *tmp_add_list,
1237 struct hlist_head *tmp_del_list,
1238 int vlan_filters)
1239 {
1240 s16 pvid = le16_to_cpu(vsi->info.pvid);
1241 struct i40e_mac_filter *f, *add_head;
1242 struct i40e_new_mac_filter *new;
1243 struct hlist_node *h;
1244 int bkt, new_vlan;
1245
1246 /* To determine if a particular filter needs to be replaced we
1247 * have the three following conditions:
1248 *
1249 * a) if we have a PVID assigned, then all filters which are
1250 * not marked as VLAN=PVID must be replaced with filters that
1251 * are.
1252 * b) otherwise, if we have any active VLANS, all filters
1253 * which are marked as VLAN=-1 must be replaced with
1254 * filters marked as VLAN=0
1255 * c) finally, if we do not have any active VLANS, all filters
1256 * which are marked as VLAN=0 must be replaced with filters
1257 * marked as VLAN=-1
1258 */
1259
1260 /* Update the filters about to be added in place */
1261 hlist_for_each_entry(new, tmp_add_list, hlist) {
1262 if (pvid && new->f->vlan != pvid)
1263 new->f->vlan = pvid;
1264 else if (vlan_filters && new->f->vlan == I40E_VLAN_ANY)
1265 new->f->vlan = 0;
1266 else if (!vlan_filters && new->f->vlan == 0)
1267 new->f->vlan = I40E_VLAN_ANY;
1268 }
1269
1270 /* Update the remaining active filters */
1271 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1272 /* Combine the checks for whether a filter needs to be changed
1273 * and then determine the new VLAN inside the if block, in
1274 * order to avoid duplicating code for adding the new filter
1275 * then deleting the old filter.
1276 */
1277 if ((pvid && f->vlan != pvid) ||
1278 (vlan_filters && f->vlan == I40E_VLAN_ANY) ||
1279 (!vlan_filters && f->vlan == 0)) {
1280 /* Determine the new vlan we will be adding */
1281 if (pvid)
1282 new_vlan = pvid;
1283 else if (vlan_filters)
1284 new_vlan = 0;
1285 else
1286 new_vlan = I40E_VLAN_ANY;
1287
1288 /* Create the new filter */
1289 add_head = i40e_add_filter(vsi, f->macaddr, new_vlan);
1290 if (!add_head)
1291 return -ENOMEM;
1292
1293 /* Create a temporary i40e_new_mac_filter */
1294 new = kzalloc(sizeof(*new), GFP_ATOMIC);
1295 if (!new)
1296 return -ENOMEM;
1297
1298 new->f = add_head;
1299 new->state = add_head->state;
1300
1301 /* Add the new filter to the tmp list */
1302 hlist_add_head(&new->hlist, tmp_add_list);
1303
1304 /* Put the original filter into the delete list */
1305 f->state = I40E_FILTER_REMOVE;
1306 hash_del(&f->hlist);
1307 hlist_add_head(&f->hlist, tmp_del_list);
1308 }
1309 }
1310
1311 vsi->has_vlan_filter = !!vlan_filters;
1312
1313 return 0;
1314 }
1315
1316 /**
1317 * i40e_rm_default_mac_filter - Remove the default MAC filter set by NVM
1318 * @vsi: the PF Main VSI - inappropriate for any other VSI
1319 * @macaddr: the MAC address
1320 *
1321 * Remove whatever filter the firmware set up so the driver can manage
1322 * its own filtering intelligently.
1323 **/
1324 static void i40e_rm_default_mac_filter(struct i40e_vsi *vsi, u8 *macaddr)
1325 {
1326 struct i40e_aqc_remove_macvlan_element_data element;
1327 struct i40e_pf *pf = vsi->back;
1328
1329 /* Only appropriate for the PF main VSI */
1330 if (vsi->type != I40E_VSI_MAIN)
1331 return;
1332
1333 memset(&element, 0, sizeof(element));
1334 ether_addr_copy(element.mac_addr, macaddr);
1335 element.vlan_tag = 0;
1336 /* Ignore error returns, some firmware does it this way... */
1337 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
1338 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1339
1340 memset(&element, 0, sizeof(element));
1341 ether_addr_copy(element.mac_addr, macaddr);
1342 element.vlan_tag = 0;
1343 /* ...and some firmware does it this way. */
1344 element.flags = I40E_AQC_MACVLAN_DEL_PERFECT_MATCH |
1345 I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
1346 i40e_aq_remove_macvlan(&pf->hw, vsi->seid, &element, 1, NULL);
1347 }
1348
1349 /**
1350 * i40e_add_filter - Add a mac/vlan filter to the VSI
1351 * @vsi: the VSI to be searched
1352 * @macaddr: the MAC address
1353 * @vlan: the vlan
1354 *
1355 * Returns ptr to the filter object or NULL when no memory available.
1356 *
1357 * NOTE: This function is expected to be called with mac_filter_hash_lock
1358 * being held.
1359 **/
1360 struct i40e_mac_filter *i40e_add_filter(struct i40e_vsi *vsi,
1361 const u8 *macaddr, s16 vlan)
1362 {
1363 struct i40e_mac_filter *f;
1364 u64 key;
1365
1366 if (!vsi || !macaddr)
1367 return NULL;
1368
1369 f = i40e_find_filter(vsi, macaddr, vlan);
1370 if (!f) {
1371 f = kzalloc(sizeof(*f), GFP_ATOMIC);
1372 if (!f)
1373 return NULL;
1374
1375 /* Update the boolean indicating if we need to function in
1376 * VLAN mode.
1377 */
1378 if (vlan >= 0)
1379 vsi->has_vlan_filter = true;
1380
1381 ether_addr_copy(f->macaddr, macaddr);
1382 f->vlan = vlan;
1383 /* If we're in overflow promisc mode, set the state directly
1384 * to failed, so we don't bother to try sending the filter
1385 * to the hardware.
1386 */
1387 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state))
1388 f->state = I40E_FILTER_FAILED;
1389 else
1390 f->state = I40E_FILTER_NEW;
1391 INIT_HLIST_NODE(&f->hlist);
1392
1393 key = i40e_addr_to_hkey(macaddr);
1394 hash_add(vsi->mac_filter_hash, &f->hlist, key);
1395
1396 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1397 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1398 }
1399
1400 /* If we're asked to add a filter that has been marked for removal, it
1401 * is safe to simply restore it to active state. __i40e_del_filter
1402 * will have simply deleted any filters which were previously marked
1403 * NEW or FAILED, so if it is currently marked REMOVE it must have
1404 * previously been ACTIVE. Since we haven't yet run the sync filters
1405 * task, just restore this filter to the ACTIVE state so that the
1406 * sync task leaves it in place
1407 */
1408 if (f->state == I40E_FILTER_REMOVE)
1409 f->state = I40E_FILTER_ACTIVE;
1410
1411 return f;
1412 }
1413
1414 /**
1415 * __i40e_del_filter - Remove a specific filter from the VSI
1416 * @vsi: VSI to remove from
1417 * @f: the filter to remove from the list
1418 *
1419 * This function should be called instead of i40e_del_filter only if you know
1420 * the exact filter you will remove already, such as via i40e_find_filter or
1421 * i40e_find_mac.
1422 *
1423 * NOTE: This function is expected to be called with mac_filter_hash_lock
1424 * being held.
1425 * ANOTHER NOTE: This function MUST be called from within the context of
1426 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1427 * instead of list_for_each_entry().
1428 **/
1429 void __i40e_del_filter(struct i40e_vsi *vsi, struct i40e_mac_filter *f)
1430 {
1431 if (!f)
1432 return;
1433
1434 /* If the filter was never added to firmware then we can just delete it
1435 * directly and we don't want to set the status to remove or else an
1436 * admin queue command will unnecessarily fire.
1437 */
1438 if ((f->state == I40E_FILTER_FAILED) ||
1439 (f->state == I40E_FILTER_NEW)) {
1440 hash_del(&f->hlist);
1441 kfree(f);
1442 } else {
1443 f->state = I40E_FILTER_REMOVE;
1444 }
1445
1446 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1447 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1448 }
1449
1450 /**
1451 * i40e_del_filter - Remove a MAC/VLAN filter from the VSI
1452 * @vsi: the VSI to be searched
1453 * @macaddr: the MAC address
1454 * @vlan: the VLAN
1455 *
1456 * NOTE: This function is expected to be called with mac_filter_hash_lock
1457 * being held.
1458 * ANOTHER NOTE: This function MUST be called from within the context of
1459 * the "safe" variants of any list iterators, e.g. list_for_each_entry_safe()
1460 * instead of list_for_each_entry().
1461 **/
1462 void i40e_del_filter(struct i40e_vsi *vsi, const u8 *macaddr, s16 vlan)
1463 {
1464 struct i40e_mac_filter *f;
1465
1466 if (!vsi || !macaddr)
1467 return;
1468
1469 f = i40e_find_filter(vsi, macaddr, vlan);
1470 __i40e_del_filter(vsi, f);
1471 }
1472
1473 /**
1474 * i40e_add_mac_filter - Add a MAC filter for all active VLANs
1475 * @vsi: the VSI to be searched
1476 * @macaddr: the mac address to be filtered
1477 *
1478 * If we're not in VLAN mode, just add the filter to I40E_VLAN_ANY. Otherwise,
1479 * go through all the macvlan filters and add a macvlan filter for each
1480 * unique vlan that already exists. If a PVID has been assigned, instead only
1481 * add the macaddr to that VLAN.
1482 *
1483 * Returns last filter added on success, else NULL
1484 **/
1485 struct i40e_mac_filter *i40e_add_mac_filter(struct i40e_vsi *vsi,
1486 const u8 *macaddr)
1487 {
1488 struct i40e_mac_filter *f, *add = NULL;
1489 struct hlist_node *h;
1490 int bkt;
1491
1492 if (vsi->info.pvid)
1493 return i40e_add_filter(vsi, macaddr,
1494 le16_to_cpu(vsi->info.pvid));
1495
1496 if (!i40e_is_vsi_in_vlan(vsi))
1497 return i40e_add_filter(vsi, macaddr, I40E_VLAN_ANY);
1498
1499 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1500 if (f->state == I40E_FILTER_REMOVE)
1501 continue;
1502 add = i40e_add_filter(vsi, macaddr, f->vlan);
1503 if (!add)
1504 return NULL;
1505 }
1506
1507 return add;
1508 }
1509
1510 /**
1511 * i40e_del_mac_filter - Remove a MAC filter from all VLANs
1512 * @vsi: the VSI to be searched
1513 * @macaddr: the mac address to be removed
1514 *
1515 * Removes a given MAC address from a VSI regardless of what VLAN it has been
1516 * associated with.
1517 *
1518 * Returns 0 for success, or error
1519 **/
1520 int i40e_del_mac_filter(struct i40e_vsi *vsi, const u8 *macaddr)
1521 {
1522 struct i40e_mac_filter *f;
1523 struct hlist_node *h;
1524 bool found = false;
1525 int bkt;
1526
1527 WARN(!spin_is_locked(&vsi->mac_filter_hash_lock),
1528 "Missing mac_filter_hash_lock\n");
1529 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
1530 if (ether_addr_equal(macaddr, f->macaddr)) {
1531 __i40e_del_filter(vsi, f);
1532 found = true;
1533 }
1534 }
1535
1536 if (found)
1537 return 0;
1538 else
1539 return -ENOENT;
1540 }
1541
1542 /**
1543 * i40e_set_mac - NDO callback to set mac address
1544 * @netdev: network interface device structure
1545 * @p: pointer to an address structure
1546 *
1547 * Returns 0 on success, negative on failure
1548 **/
1549 static int i40e_set_mac(struct net_device *netdev, void *p)
1550 {
1551 struct i40e_netdev_priv *np = netdev_priv(netdev);
1552 struct i40e_vsi *vsi = np->vsi;
1553 struct i40e_pf *pf = vsi->back;
1554 struct i40e_hw *hw = &pf->hw;
1555 struct sockaddr *addr = p;
1556
1557 if (!is_valid_ether_addr(addr->sa_data))
1558 return -EADDRNOTAVAIL;
1559
1560 if (ether_addr_equal(netdev->dev_addr, addr->sa_data)) {
1561 netdev_info(netdev, "already using mac address %pM\n",
1562 addr->sa_data);
1563 return 0;
1564 }
1565
1566 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) ||
1567 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state))
1568 return -EADDRNOTAVAIL;
1569
1570 if (ether_addr_equal(hw->mac.addr, addr->sa_data))
1571 netdev_info(netdev, "returning to hw mac address %pM\n",
1572 hw->mac.addr);
1573 else
1574 netdev_info(netdev, "set new mac address %pM\n", addr->sa_data);
1575
1576 spin_lock_bh(&vsi->mac_filter_hash_lock);
1577 i40e_del_mac_filter(vsi, netdev->dev_addr);
1578 i40e_add_mac_filter(vsi, addr->sa_data);
1579 spin_unlock_bh(&vsi->mac_filter_hash_lock);
1580 ether_addr_copy(netdev->dev_addr, addr->sa_data);
1581 if (vsi->type == I40E_VSI_MAIN) {
1582 i40e_status ret;
1583
1584 ret = i40e_aq_mac_address_write(&vsi->back->hw,
1585 I40E_AQC_WRITE_TYPE_LAA_WOL,
1586 addr->sa_data, NULL);
1587 if (ret)
1588 netdev_info(netdev, "Ignoring error from firmware on LAA update, status %s, AQ ret %s\n",
1589 i40e_stat_str(hw, ret),
1590 i40e_aq_str(hw, hw->aq.asq_last_status));
1591 }
1592
1593 /* schedule our worker thread which will take care of
1594 * applying the new filter changes
1595 */
1596 i40e_service_event_schedule(vsi->back);
1597 return 0;
1598 }
1599
1600 /**
1601 * i40e_config_rss_aq - Prepare for RSS using AQ commands
1602 * @vsi: vsi structure
1603 * @seed: RSS hash seed
1604 **/
1605 static int i40e_config_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
1606 u8 *lut, u16 lut_size)
1607 {
1608 struct i40e_pf *pf = vsi->back;
1609 struct i40e_hw *hw = &pf->hw;
1610 int ret = 0;
1611
1612 if (seed) {
1613 struct i40e_aqc_get_set_rss_key_data *seed_dw =
1614 (struct i40e_aqc_get_set_rss_key_data *)seed;
1615 ret = i40e_aq_set_rss_key(hw, vsi->id, seed_dw);
1616 if (ret) {
1617 dev_info(&pf->pdev->dev,
1618 "Cannot set RSS key, err %s aq_err %s\n",
1619 i40e_stat_str(hw, ret),
1620 i40e_aq_str(hw, hw->aq.asq_last_status));
1621 return ret;
1622 }
1623 }
1624 if (lut) {
1625 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false;
1626
1627 ret = i40e_aq_set_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
1628 if (ret) {
1629 dev_info(&pf->pdev->dev,
1630 "Cannot set RSS lut, err %s aq_err %s\n",
1631 i40e_stat_str(hw, ret),
1632 i40e_aq_str(hw, hw->aq.asq_last_status));
1633 return ret;
1634 }
1635 }
1636 return ret;
1637 }
1638
1639 /**
1640 * i40e_vsi_config_rss - Prepare for VSI(VMDq) RSS if used
1641 * @vsi: VSI structure
1642 **/
1643 static int i40e_vsi_config_rss(struct i40e_vsi *vsi)
1644 {
1645 struct i40e_pf *pf = vsi->back;
1646 u8 seed[I40E_HKEY_ARRAY_SIZE];
1647 u8 *lut;
1648 int ret;
1649
1650 if (!(pf->hw_features & I40E_HW_RSS_AQ_CAPABLE))
1651 return 0;
1652 if (!vsi->rss_size)
1653 vsi->rss_size = min_t(int, pf->alloc_rss_size,
1654 vsi->num_queue_pairs);
1655 if (!vsi->rss_size)
1656 return -EINVAL;
1657 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1658 if (!lut)
1659 return -ENOMEM;
1660
1661 /* Use the user configured hash keys and lookup table if there is one,
1662 * otherwise use default
1663 */
1664 if (vsi->rss_lut_user)
1665 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1666 else
1667 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
1668 if (vsi->rss_hkey_user)
1669 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
1670 else
1671 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
1672 ret = i40e_config_rss_aq(vsi, seed, lut, vsi->rss_table_size);
1673 kfree(lut);
1674 return ret;
1675 }
1676
1677 /**
1678 * i40e_vsi_setup_queue_map_mqprio - Prepares mqprio based tc_config
1679 * @vsi: the VSI being configured,
1680 * @ctxt: VSI context structure
1681 * @enabled_tc: number of traffic classes to enable
1682 *
1683 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
1684 **/
1685 static int i40e_vsi_setup_queue_map_mqprio(struct i40e_vsi *vsi,
1686 struct i40e_vsi_context *ctxt,
1687 u8 enabled_tc)
1688 {
1689 u16 qcount = 0, max_qcount, qmap, sections = 0;
1690 int i, override_q, pow, num_qps, ret;
1691 u8 netdev_tc = 0, offset = 0;
1692
1693 if (vsi->type != I40E_VSI_MAIN)
1694 return -EINVAL;
1695 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1696 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1697 vsi->tc_config.numtc = vsi->mqprio_qopt.qopt.num_tc;
1698 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1699 num_qps = vsi->mqprio_qopt.qopt.count[0];
1700
1701 /* find the next higher power-of-2 of num queue pairs */
1702 pow = ilog2(num_qps);
1703 if (!is_power_of_2(num_qps))
1704 pow++;
1705 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1706 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1707
1708 /* Setup queue offset/count for all TCs for given VSI */
1709 max_qcount = vsi->mqprio_qopt.qopt.count[0];
1710 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1711 /* See if the given TC is enabled for the given VSI */
1712 if (vsi->tc_config.enabled_tc & BIT(i)) {
1713 offset = vsi->mqprio_qopt.qopt.offset[i];
1714 qcount = vsi->mqprio_qopt.qopt.count[i];
1715 if (qcount > max_qcount)
1716 max_qcount = qcount;
1717 vsi->tc_config.tc_info[i].qoffset = offset;
1718 vsi->tc_config.tc_info[i].qcount = qcount;
1719 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1720 } else {
1721 /* TC is not enabled so set the offset to
1722 * default queue and allocate one queue
1723 * for the given TC.
1724 */
1725 vsi->tc_config.tc_info[i].qoffset = 0;
1726 vsi->tc_config.tc_info[i].qcount = 1;
1727 vsi->tc_config.tc_info[i].netdev_tc = 0;
1728 }
1729 }
1730
1731 /* Set actual Tx/Rx queue pairs */
1732 vsi->num_queue_pairs = offset + qcount;
1733
1734 /* Setup queue TC[0].qmap for given VSI context */
1735 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1736 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1737 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1738 ctxt->info.valid_sections |= cpu_to_le16(sections);
1739
1740 /* Reconfigure RSS for main VSI with max queue count */
1741 vsi->rss_size = max_qcount;
1742 ret = i40e_vsi_config_rss(vsi);
1743 if (ret) {
1744 dev_info(&vsi->back->pdev->dev,
1745 "Failed to reconfig rss for num_queues (%u)\n",
1746 max_qcount);
1747 return ret;
1748 }
1749 vsi->reconfig_rss = true;
1750 dev_dbg(&vsi->back->pdev->dev,
1751 "Reconfigured rss with num_queues (%u)\n", max_qcount);
1752
1753 /* Find queue count available for channel VSIs and starting offset
1754 * for channel VSIs
1755 */
1756 override_q = vsi->mqprio_qopt.qopt.count[0];
1757 if (override_q && override_q < vsi->num_queue_pairs) {
1758 vsi->cnt_q_avail = vsi->num_queue_pairs - override_q;
1759 vsi->next_base_queue = override_q;
1760 }
1761 return 0;
1762 }
1763
1764 /**
1765 * i40e_vsi_setup_queue_map - Setup a VSI queue map based on enabled_tc
1766 * @vsi: the VSI being setup
1767 * @ctxt: VSI context structure
1768 * @enabled_tc: Enabled TCs bitmap
1769 * @is_add: True if called before Add VSI
1770 *
1771 * Setup VSI queue mapping for enabled traffic classes.
1772 **/
1773 static void i40e_vsi_setup_queue_map(struct i40e_vsi *vsi,
1774 struct i40e_vsi_context *ctxt,
1775 u8 enabled_tc,
1776 bool is_add)
1777 {
1778 struct i40e_pf *pf = vsi->back;
1779 u16 sections = 0;
1780 u8 netdev_tc = 0;
1781 u16 numtc = 0;
1782 u16 qcount;
1783 u8 offset;
1784 u16 qmap;
1785 int i;
1786 u16 num_tc_qps = 0;
1787
1788 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
1789 offset = 0;
1790
1791 if (enabled_tc && (vsi->back->flags & I40E_FLAG_DCB_ENABLED)) {
1792 /* Find numtc from enabled TC bitmap */
1793 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1794 if (enabled_tc & BIT(i)) /* TC is enabled */
1795 numtc++;
1796 }
1797 if (!numtc) {
1798 dev_warn(&pf->pdev->dev, "DCB is enabled but no TC enabled, forcing TC0\n");
1799 numtc = 1;
1800 }
1801 } else {
1802 /* At least TC0 is enabled in non-DCB, non-MQPRIO case */
1803 numtc = 1;
1804 }
1805
1806 vsi->tc_config.numtc = numtc;
1807 vsi->tc_config.enabled_tc = enabled_tc ? enabled_tc : 1;
1808 /* Number of queues per enabled TC */
1809 qcount = vsi->alloc_queue_pairs;
1810
1811 num_tc_qps = qcount / numtc;
1812 num_tc_qps = min_t(int, num_tc_qps, i40e_pf_get_max_q_per_tc(pf));
1813
1814 /* Setup queue offset/count for all TCs for given VSI */
1815 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
1816 /* See if the given TC is enabled for the given VSI */
1817 if (vsi->tc_config.enabled_tc & BIT(i)) {
1818 /* TC is enabled */
1819 int pow, num_qps;
1820
1821 switch (vsi->type) {
1822 case I40E_VSI_MAIN:
1823 qcount = min_t(int, pf->alloc_rss_size,
1824 num_tc_qps);
1825 break;
1826 case I40E_VSI_FDIR:
1827 case I40E_VSI_SRIOV:
1828 case I40E_VSI_VMDQ2:
1829 default:
1830 qcount = num_tc_qps;
1831 WARN_ON(i != 0);
1832 break;
1833 }
1834 vsi->tc_config.tc_info[i].qoffset = offset;
1835 vsi->tc_config.tc_info[i].qcount = qcount;
1836
1837 /* find the next higher power-of-2 of num queue pairs */
1838 num_qps = qcount;
1839 pow = 0;
1840 while (num_qps && (BIT_ULL(pow) < qcount)) {
1841 pow++;
1842 num_qps >>= 1;
1843 }
1844
1845 vsi->tc_config.tc_info[i].netdev_tc = netdev_tc++;
1846 qmap =
1847 (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
1848 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
1849
1850 offset += qcount;
1851 } else {
1852 /* TC is not enabled so set the offset to
1853 * default queue and allocate one queue
1854 * for the given TC.
1855 */
1856 vsi->tc_config.tc_info[i].qoffset = 0;
1857 vsi->tc_config.tc_info[i].qcount = 1;
1858 vsi->tc_config.tc_info[i].netdev_tc = 0;
1859
1860 qmap = 0;
1861 }
1862 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1863 }
1864
1865 /* Set actual Tx/Rx queue pairs */
1866 vsi->num_queue_pairs = offset;
1867 if ((vsi->type == I40E_VSI_MAIN) && (numtc == 1)) {
1868 if (vsi->req_queue_pairs > 0)
1869 vsi->num_queue_pairs = vsi->req_queue_pairs;
1870 else if (pf->flags & I40E_FLAG_MSIX_ENABLED)
1871 vsi->num_queue_pairs = pf->num_lan_msix;
1872 }
1873
1874 /* Scheduler section valid can only be set for ADD VSI */
1875 if (is_add) {
1876 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
1877
1878 ctxt->info.up_enable_bits = enabled_tc;
1879 }
1880 if (vsi->type == I40E_VSI_SRIOV) {
1881 ctxt->info.mapping_flags |=
1882 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_NONCONTIG);
1883 for (i = 0; i < vsi->num_queue_pairs; i++)
1884 ctxt->info.queue_mapping[i] =
1885 cpu_to_le16(vsi->base_queue + i);
1886 } else {
1887 ctxt->info.mapping_flags |=
1888 cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
1889 ctxt->info.queue_mapping[0] = cpu_to_le16(vsi->base_queue);
1890 }
1891 ctxt->info.valid_sections |= cpu_to_le16(sections);
1892 }
1893
1894 /**
1895 * i40e_addr_sync - Callback for dev_(mc|uc)_sync to add address
1896 * @netdev: the netdevice
1897 * @addr: address to add
1898 *
1899 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
1900 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1901 */
1902 static int i40e_addr_sync(struct net_device *netdev, const u8 *addr)
1903 {
1904 struct i40e_netdev_priv *np = netdev_priv(netdev);
1905 struct i40e_vsi *vsi = np->vsi;
1906
1907 if (i40e_add_mac_filter(vsi, addr))
1908 return 0;
1909 else
1910 return -ENOMEM;
1911 }
1912
1913 /**
1914 * i40e_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
1915 * @netdev: the netdevice
1916 * @addr: address to add
1917 *
1918 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
1919 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
1920 */
1921 static int i40e_addr_unsync(struct net_device *netdev, const u8 *addr)
1922 {
1923 struct i40e_netdev_priv *np = netdev_priv(netdev);
1924 struct i40e_vsi *vsi = np->vsi;
1925
1926 i40e_del_mac_filter(vsi, addr);
1927
1928 return 0;
1929 }
1930
1931 /**
1932 * i40e_set_rx_mode - NDO callback to set the netdev filters
1933 * @netdev: network interface device structure
1934 **/
1935 static void i40e_set_rx_mode(struct net_device *netdev)
1936 {
1937 struct i40e_netdev_priv *np = netdev_priv(netdev);
1938 struct i40e_vsi *vsi = np->vsi;
1939
1940 spin_lock_bh(&vsi->mac_filter_hash_lock);
1941
1942 __dev_uc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
1943 __dev_mc_sync(netdev, i40e_addr_sync, i40e_addr_unsync);
1944
1945 spin_unlock_bh(&vsi->mac_filter_hash_lock);
1946
1947 /* check for other flag changes */
1948 if (vsi->current_netdev_flags != vsi->netdev->flags) {
1949 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
1950 vsi->back->flags |= I40E_FLAG_FILTER_SYNC;
1951 }
1952 }
1953
1954 /**
1955 * i40e_undo_del_filter_entries - Undo the changes made to MAC filter entries
1956 * @vsi: Pointer to VSI struct
1957 * @from: Pointer to list which contains MAC filter entries - changes to
1958 * those entries needs to be undone.
1959 *
1960 * MAC filter entries from this list were slated for deletion.
1961 **/
1962 static void i40e_undo_del_filter_entries(struct i40e_vsi *vsi,
1963 struct hlist_head *from)
1964 {
1965 struct i40e_mac_filter *f;
1966 struct hlist_node *h;
1967
1968 hlist_for_each_entry_safe(f, h, from, hlist) {
1969 u64 key = i40e_addr_to_hkey(f->macaddr);
1970
1971 /* Move the element back into MAC filter list*/
1972 hlist_del(&f->hlist);
1973 hash_add(vsi->mac_filter_hash, &f->hlist, key);
1974 }
1975 }
1976
1977 /**
1978 * i40e_undo_add_filter_entries - Undo the changes made to MAC filter entries
1979 * @vsi: Pointer to vsi struct
1980 * @from: Pointer to list which contains MAC filter entries - changes to
1981 * those entries needs to be undone.
1982 *
1983 * MAC filter entries from this list were slated for addition.
1984 **/
1985 static void i40e_undo_add_filter_entries(struct i40e_vsi *vsi,
1986 struct hlist_head *from)
1987 {
1988 struct i40e_new_mac_filter *new;
1989 struct hlist_node *h;
1990
1991 hlist_for_each_entry_safe(new, h, from, hlist) {
1992 /* We can simply free the wrapper structure */
1993 hlist_del(&new->hlist);
1994 kfree(new);
1995 }
1996 }
1997
1998 /**
1999 * i40e_next_entry - Get the next non-broadcast filter from a list
2000 * @next: pointer to filter in list
2001 *
2002 * Returns the next non-broadcast filter in the list. Required so that we
2003 * ignore broadcast filters within the list, since these are not handled via
2004 * the normal firmware update path.
2005 */
2006 static
2007 struct i40e_new_mac_filter *i40e_next_filter(struct i40e_new_mac_filter *next)
2008 {
2009 hlist_for_each_entry_continue(next, hlist) {
2010 if (!is_broadcast_ether_addr(next->f->macaddr))
2011 return next;
2012 }
2013
2014 return NULL;
2015 }
2016
2017 /**
2018 * i40e_update_filter_state - Update filter state based on return data
2019 * from firmware
2020 * @count: Number of filters added
2021 * @add_list: return data from fw
2022 * @head: pointer to first filter in current batch
2023 *
2024 * MAC filter entries from list were slated to be added to device. Returns
2025 * number of successful filters. Note that 0 does NOT mean success!
2026 **/
2027 static int
2028 i40e_update_filter_state(int count,
2029 struct i40e_aqc_add_macvlan_element_data *add_list,
2030 struct i40e_new_mac_filter *add_head)
2031 {
2032 int retval = 0;
2033 int i;
2034
2035 for (i = 0; i < count; i++) {
2036 /* Always check status of each filter. We don't need to check
2037 * the firmware return status because we pre-set the filter
2038 * status to I40E_AQC_MM_ERR_NO_RES when sending the filter
2039 * request to the adminq. Thus, if it no longer matches then
2040 * we know the filter is active.
2041 */
2042 if (add_list[i].match_method == I40E_AQC_MM_ERR_NO_RES) {
2043 add_head->state = I40E_FILTER_FAILED;
2044 } else {
2045 add_head->state = I40E_FILTER_ACTIVE;
2046 retval++;
2047 }
2048
2049 add_head = i40e_next_filter(add_head);
2050 if (!add_head)
2051 break;
2052 }
2053
2054 return retval;
2055 }
2056
2057 /**
2058 * i40e_aqc_del_filters - Request firmware to delete a set of filters
2059 * @vsi: ptr to the VSI
2060 * @vsi_name: name to display in messages
2061 * @list: the list of filters to send to firmware
2062 * @num_del: the number of filters to delete
2063 * @retval: Set to -EIO on failure to delete
2064 *
2065 * Send a request to firmware via AdminQ to delete a set of filters. Uses
2066 * *retval instead of a return value so that success does not force ret_val to
2067 * be set to 0. This ensures that a sequence of calls to this function
2068 * preserve the previous value of *retval on successful delete.
2069 */
2070 static
2071 void i40e_aqc_del_filters(struct i40e_vsi *vsi, const char *vsi_name,
2072 struct i40e_aqc_remove_macvlan_element_data *list,
2073 int num_del, int *retval)
2074 {
2075 struct i40e_hw *hw = &vsi->back->hw;
2076 i40e_status aq_ret;
2077 int aq_err;
2078
2079 aq_ret = i40e_aq_remove_macvlan(hw, vsi->seid, list, num_del, NULL);
2080 aq_err = hw->aq.asq_last_status;
2081
2082 /* Explicitly ignore and do not report when firmware returns ENOENT */
2083 if (aq_ret && !(aq_err == I40E_AQ_RC_ENOENT)) {
2084 *retval = -EIO;
2085 dev_info(&vsi->back->pdev->dev,
2086 "ignoring delete macvlan error on %s, err %s, aq_err %s\n",
2087 vsi_name, i40e_stat_str(hw, aq_ret),
2088 i40e_aq_str(hw, aq_err));
2089 }
2090 }
2091
2092 /**
2093 * i40e_aqc_add_filters - Request firmware to add a set of filters
2094 * @vsi: ptr to the VSI
2095 * @vsi_name: name to display in messages
2096 * @list: the list of filters to send to firmware
2097 * @add_head: Position in the add hlist
2098 * @num_add: the number of filters to add
2099 * @promisc_change: set to true on exit if promiscuous mode was forced on
2100 *
2101 * Send a request to firmware via AdminQ to add a chunk of filters. Will set
2102 * promisc_changed to true if the firmware has run out of space for more
2103 * filters.
2104 */
2105 static
2106 void i40e_aqc_add_filters(struct i40e_vsi *vsi, const char *vsi_name,
2107 struct i40e_aqc_add_macvlan_element_data *list,
2108 struct i40e_new_mac_filter *add_head,
2109 int num_add, bool *promisc_changed)
2110 {
2111 struct i40e_hw *hw = &vsi->back->hw;
2112 int aq_err, fcnt;
2113
2114 i40e_aq_add_macvlan(hw, vsi->seid, list, num_add, NULL);
2115 aq_err = hw->aq.asq_last_status;
2116 fcnt = i40e_update_filter_state(num_add, list, add_head);
2117
2118 if (fcnt != num_add) {
2119 *promisc_changed = true;
2120 set_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2121 dev_warn(&vsi->back->pdev->dev,
2122 "Error %s adding RX filters on %s, promiscuous mode forced on\n",
2123 i40e_aq_str(hw, aq_err),
2124 vsi_name);
2125 }
2126 }
2127
2128 /**
2129 * i40e_aqc_broadcast_filter - Set promiscuous broadcast flags
2130 * @vsi: pointer to the VSI
2131 * @f: filter data
2132 *
2133 * This function sets or clears the promiscuous broadcast flags for VLAN
2134 * filters in order to properly receive broadcast frames. Assumes that only
2135 * broadcast filters are passed.
2136 *
2137 * Returns status indicating success or failure;
2138 **/
2139 static i40e_status
2140 i40e_aqc_broadcast_filter(struct i40e_vsi *vsi, const char *vsi_name,
2141 struct i40e_mac_filter *f)
2142 {
2143 bool enable = f->state == I40E_FILTER_NEW;
2144 struct i40e_hw *hw = &vsi->back->hw;
2145 i40e_status aq_ret;
2146
2147 if (f->vlan == I40E_VLAN_ANY) {
2148 aq_ret = i40e_aq_set_vsi_broadcast(hw,
2149 vsi->seid,
2150 enable,
2151 NULL);
2152 } else {
2153 aq_ret = i40e_aq_set_vsi_bc_promisc_on_vlan(hw,
2154 vsi->seid,
2155 enable,
2156 f->vlan,
2157 NULL);
2158 }
2159
2160 if (aq_ret)
2161 dev_warn(&vsi->back->pdev->dev,
2162 "Error %s setting broadcast promiscuous mode on %s\n",
2163 i40e_aq_str(hw, hw->aq.asq_last_status),
2164 vsi_name);
2165
2166 return aq_ret;
2167 }
2168
2169 /**
2170 * i40e_sync_vsi_filters - Update the VSI filter list to the HW
2171 * @vsi: ptr to the VSI
2172 *
2173 * Push any outstanding VSI filter changes through the AdminQ.
2174 *
2175 * Returns 0 or error value
2176 **/
2177 int i40e_sync_vsi_filters(struct i40e_vsi *vsi)
2178 {
2179 struct hlist_head tmp_add_list, tmp_del_list;
2180 struct i40e_mac_filter *f;
2181 struct i40e_new_mac_filter *new, *add_head = NULL;
2182 struct i40e_hw *hw = &vsi->back->hw;
2183 unsigned int failed_filters = 0;
2184 unsigned int vlan_filters = 0;
2185 bool promisc_changed = false;
2186 char vsi_name[16] = "PF";
2187 int filter_list_len = 0;
2188 i40e_status aq_ret = 0;
2189 u32 changed_flags = 0;
2190 struct hlist_node *h;
2191 struct i40e_pf *pf;
2192 int num_add = 0;
2193 int num_del = 0;
2194 int retval = 0;
2195 u16 cmd_flags;
2196 int list_size;
2197 int bkt;
2198
2199 /* empty array typed pointers, kcalloc later */
2200 struct i40e_aqc_add_macvlan_element_data *add_list;
2201 struct i40e_aqc_remove_macvlan_element_data *del_list;
2202
2203 while (test_and_set_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state))
2204 usleep_range(1000, 2000);
2205 pf = vsi->back;
2206
2207 if (vsi->netdev) {
2208 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
2209 vsi->current_netdev_flags = vsi->netdev->flags;
2210 }
2211
2212 INIT_HLIST_HEAD(&tmp_add_list);
2213 INIT_HLIST_HEAD(&tmp_del_list);
2214
2215 if (vsi->type == I40E_VSI_SRIOV)
2216 snprintf(vsi_name, sizeof(vsi_name) - 1, "VF %d", vsi->vf_id);
2217 else if (vsi->type != I40E_VSI_MAIN)
2218 snprintf(vsi_name, sizeof(vsi_name) - 1, "vsi %d", vsi->seid);
2219
2220 if (vsi->flags & I40E_VSI_FLAG_FILTER_CHANGED) {
2221 vsi->flags &= ~I40E_VSI_FLAG_FILTER_CHANGED;
2222
2223 spin_lock_bh(&vsi->mac_filter_hash_lock);
2224 /* Create a list of filters to delete. */
2225 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2226 if (f->state == I40E_FILTER_REMOVE) {
2227 /* Move the element into temporary del_list */
2228 hash_del(&f->hlist);
2229 hlist_add_head(&f->hlist, &tmp_del_list);
2230
2231 /* Avoid counting removed filters */
2232 continue;
2233 }
2234 if (f->state == I40E_FILTER_NEW) {
2235 /* Create a temporary i40e_new_mac_filter */
2236 new = kzalloc(sizeof(*new), GFP_ATOMIC);
2237 if (!new)
2238 goto err_no_memory_locked;
2239
2240 /* Store pointer to the real filter */
2241 new->f = f;
2242 new->state = f->state;
2243
2244 /* Add it to the hash list */
2245 hlist_add_head(&new->hlist, &tmp_add_list);
2246 }
2247
2248 /* Count the number of active (current and new) VLAN
2249 * filters we have now. Does not count filters which
2250 * are marked for deletion.
2251 */
2252 if (f->vlan > 0)
2253 vlan_filters++;
2254 }
2255
2256 retval = i40e_correct_mac_vlan_filters(vsi,
2257 &tmp_add_list,
2258 &tmp_del_list,
2259 vlan_filters);
2260 if (retval)
2261 goto err_no_memory_locked;
2262
2263 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2264 }
2265
2266 /* Now process 'del_list' outside the lock */
2267 if (!hlist_empty(&tmp_del_list)) {
2268 filter_list_len = hw->aq.asq_buf_size /
2269 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2270 list_size = filter_list_len *
2271 sizeof(struct i40e_aqc_remove_macvlan_element_data);
2272 del_list = kzalloc(list_size, GFP_ATOMIC);
2273 if (!del_list)
2274 goto err_no_memory;
2275
2276 hlist_for_each_entry_safe(f, h, &tmp_del_list, hlist) {
2277 cmd_flags = 0;
2278
2279 /* handle broadcast filters by updating the broadcast
2280 * promiscuous flag and release filter list.
2281 */
2282 if (is_broadcast_ether_addr(f->macaddr)) {
2283 i40e_aqc_broadcast_filter(vsi, vsi_name, f);
2284
2285 hlist_del(&f->hlist);
2286 kfree(f);
2287 continue;
2288 }
2289
2290 /* add to delete list */
2291 ether_addr_copy(del_list[num_del].mac_addr, f->macaddr);
2292 if (f->vlan == I40E_VLAN_ANY) {
2293 del_list[num_del].vlan_tag = 0;
2294 cmd_flags |= I40E_AQC_MACVLAN_DEL_IGNORE_VLAN;
2295 } else {
2296 del_list[num_del].vlan_tag =
2297 cpu_to_le16((u16)(f->vlan));
2298 }
2299
2300 cmd_flags |= I40E_AQC_MACVLAN_DEL_PERFECT_MATCH;
2301 del_list[num_del].flags = cmd_flags;
2302 num_del++;
2303
2304 /* flush a full buffer */
2305 if (num_del == filter_list_len) {
2306 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2307 num_del, &retval);
2308 memset(del_list, 0, list_size);
2309 num_del = 0;
2310 }
2311 /* Release memory for MAC filter entries which were
2312 * synced up with HW.
2313 */
2314 hlist_del(&f->hlist);
2315 kfree(f);
2316 }
2317
2318 if (num_del) {
2319 i40e_aqc_del_filters(vsi, vsi_name, del_list,
2320 num_del, &retval);
2321 }
2322
2323 kfree(del_list);
2324 del_list = NULL;
2325 }
2326
2327 if (!hlist_empty(&tmp_add_list)) {
2328 /* Do all the adds now. */
2329 filter_list_len = hw->aq.asq_buf_size /
2330 sizeof(struct i40e_aqc_add_macvlan_element_data);
2331 list_size = filter_list_len *
2332 sizeof(struct i40e_aqc_add_macvlan_element_data);
2333 add_list = kzalloc(list_size, GFP_ATOMIC);
2334 if (!add_list)
2335 goto err_no_memory;
2336
2337 num_add = 0;
2338 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2339 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC,
2340 vsi->state)) {
2341 new->state = I40E_FILTER_FAILED;
2342 continue;
2343 }
2344
2345 /* handle broadcast filters by updating the broadcast
2346 * promiscuous flag instead of adding a MAC filter.
2347 */
2348 if (is_broadcast_ether_addr(new->f->macaddr)) {
2349 if (i40e_aqc_broadcast_filter(vsi, vsi_name,
2350 new->f))
2351 new->state = I40E_FILTER_FAILED;
2352 else
2353 new->state = I40E_FILTER_ACTIVE;
2354 continue;
2355 }
2356
2357 /* add to add array */
2358 if (num_add == 0)
2359 add_head = new;
2360 cmd_flags = 0;
2361 ether_addr_copy(add_list[num_add].mac_addr,
2362 new->f->macaddr);
2363 if (new->f->vlan == I40E_VLAN_ANY) {
2364 add_list[num_add].vlan_tag = 0;
2365 cmd_flags |= I40E_AQC_MACVLAN_ADD_IGNORE_VLAN;
2366 } else {
2367 add_list[num_add].vlan_tag =
2368 cpu_to_le16((u16)(new->f->vlan));
2369 }
2370 add_list[num_add].queue_number = 0;
2371 /* set invalid match method for later detection */
2372 add_list[num_add].match_method = I40E_AQC_MM_ERR_NO_RES;
2373 cmd_flags |= I40E_AQC_MACVLAN_ADD_PERFECT_MATCH;
2374 add_list[num_add].flags = cpu_to_le16(cmd_flags);
2375 num_add++;
2376
2377 /* flush a full buffer */
2378 if (num_add == filter_list_len) {
2379 i40e_aqc_add_filters(vsi, vsi_name, add_list,
2380 add_head, num_add,
2381 &promisc_changed);
2382 memset(add_list, 0, list_size);
2383 num_add = 0;
2384 }
2385 }
2386 if (num_add) {
2387 i40e_aqc_add_filters(vsi, vsi_name, add_list, add_head,
2388 num_add, &promisc_changed);
2389 }
2390 /* Now move all of the filters from the temp add list back to
2391 * the VSI's list.
2392 */
2393 spin_lock_bh(&vsi->mac_filter_hash_lock);
2394 hlist_for_each_entry_safe(new, h, &tmp_add_list, hlist) {
2395 /* Only update the state if we're still NEW */
2396 if (new->f->state == I40E_FILTER_NEW)
2397 new->f->state = new->state;
2398 hlist_del(&new->hlist);
2399 kfree(new);
2400 }
2401 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2402 kfree(add_list);
2403 add_list = NULL;
2404 }
2405
2406 /* Determine the number of active and failed filters. */
2407 spin_lock_bh(&vsi->mac_filter_hash_lock);
2408 vsi->active_filters = 0;
2409 hash_for_each(vsi->mac_filter_hash, bkt, f, hlist) {
2410 if (f->state == I40E_FILTER_ACTIVE)
2411 vsi->active_filters++;
2412 else if (f->state == I40E_FILTER_FAILED)
2413 failed_filters++;
2414 }
2415 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2416
2417 /* If promiscuous mode has changed, we need to calculate a new
2418 * threshold for when we are safe to exit
2419 */
2420 if (promisc_changed)
2421 vsi->promisc_threshold = (vsi->active_filters * 3) / 4;
2422
2423 /* Check if we are able to exit overflow promiscuous mode. We can
2424 * safely exit if we didn't just enter, we no longer have any failed
2425 * filters, and we have reduced filters below the threshold value.
2426 */
2427 if (test_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state) &&
2428 !promisc_changed && !failed_filters &&
2429 (vsi->active_filters < vsi->promisc_threshold)) {
2430 dev_info(&pf->pdev->dev,
2431 "filter logjam cleared on %s, leaving overflow promiscuous mode\n",
2432 vsi_name);
2433 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2434 promisc_changed = true;
2435 vsi->promisc_threshold = 0;
2436 }
2437
2438 /* if the VF is not trusted do not do promisc */
2439 if ((vsi->type == I40E_VSI_SRIOV) && !pf->vf[vsi->vf_id].trusted) {
2440 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
2441 goto out;
2442 }
2443
2444 /* check for changes in promiscuous modes */
2445 if (changed_flags & IFF_ALLMULTI) {
2446 bool cur_multipromisc;
2447
2448 cur_multipromisc = !!(vsi->current_netdev_flags & IFF_ALLMULTI);
2449 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(&vsi->back->hw,
2450 vsi->seid,
2451 cur_multipromisc,
2452 NULL);
2453 if (aq_ret) {
2454 retval = i40e_aq_rc_to_posix(aq_ret,
2455 hw->aq.asq_last_status);
2456 dev_info(&pf->pdev->dev,
2457 "set multi promisc failed on %s, err %s aq_err %s\n",
2458 vsi_name,
2459 i40e_stat_str(hw, aq_ret),
2460 i40e_aq_str(hw, hw->aq.asq_last_status));
2461 }
2462 }
2463
2464 if ((changed_flags & IFF_PROMISC) || promisc_changed) {
2465 bool cur_promisc;
2466
2467 cur_promisc = (!!(vsi->current_netdev_flags & IFF_PROMISC) ||
2468 test_bit(__I40E_VSI_OVERFLOW_PROMISC,
2469 vsi->state));
2470 if ((vsi->type == I40E_VSI_MAIN) &&
2471 (pf->lan_veb != I40E_NO_VEB) &&
2472 !(pf->flags & I40E_FLAG_MFP_ENABLED)) {
2473 /* set defport ON for Main VSI instead of true promisc
2474 * this way we will get all unicast/multicast and VLAN
2475 * promisc behavior but will not get VF or VMDq traffic
2476 * replicated on the Main VSI.
2477 */
2478 if (pf->cur_promisc != cur_promisc) {
2479 pf->cur_promisc = cur_promisc;
2480 if (cur_promisc)
2481 aq_ret =
2482 i40e_aq_set_default_vsi(hw,
2483 vsi->seid,
2484 NULL);
2485 else
2486 aq_ret =
2487 i40e_aq_clear_default_vsi(hw,
2488 vsi->seid,
2489 NULL);
2490 if (aq_ret) {
2491 retval = i40e_aq_rc_to_posix(aq_ret,
2492 hw->aq.asq_last_status);
2493 dev_info(&pf->pdev->dev,
2494 "Set default VSI failed on %s, err %s, aq_err %s\n",
2495 vsi_name,
2496 i40e_stat_str(hw, aq_ret),
2497 i40e_aq_str(hw,
2498 hw->aq.asq_last_status));
2499 }
2500 }
2501 } else {
2502 aq_ret = i40e_aq_set_vsi_unicast_promiscuous(
2503 hw,
2504 vsi->seid,
2505 cur_promisc, NULL,
2506 true);
2507 if (aq_ret) {
2508 retval =
2509 i40e_aq_rc_to_posix(aq_ret,
2510 hw->aq.asq_last_status);
2511 dev_info(&pf->pdev->dev,
2512 "set unicast promisc failed on %s, err %s, aq_err %s\n",
2513 vsi_name,
2514 i40e_stat_str(hw, aq_ret),
2515 i40e_aq_str(hw,
2516 hw->aq.asq_last_status));
2517 }
2518 aq_ret = i40e_aq_set_vsi_multicast_promiscuous(
2519 hw,
2520 vsi->seid,
2521 cur_promisc, NULL);
2522 if (aq_ret) {
2523 retval =
2524 i40e_aq_rc_to_posix(aq_ret,
2525 hw->aq.asq_last_status);
2526 dev_info(&pf->pdev->dev,
2527 "set multicast promisc failed on %s, err %s, aq_err %s\n",
2528 vsi_name,
2529 i40e_stat_str(hw, aq_ret),
2530 i40e_aq_str(hw,
2531 hw->aq.asq_last_status));
2532 }
2533 }
2534 aq_ret = i40e_aq_set_vsi_broadcast(&vsi->back->hw,
2535 vsi->seid,
2536 cur_promisc, NULL);
2537 if (aq_ret) {
2538 retval = i40e_aq_rc_to_posix(aq_ret,
2539 pf->hw.aq.asq_last_status);
2540 dev_info(&pf->pdev->dev,
2541 "set brdcast promisc failed, err %s, aq_err %s\n",
2542 i40e_stat_str(hw, aq_ret),
2543 i40e_aq_str(hw,
2544 hw->aq.asq_last_status));
2545 }
2546 }
2547 out:
2548 /* if something went wrong then set the changed flag so we try again */
2549 if (retval)
2550 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2551
2552 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2553 return retval;
2554
2555 err_no_memory:
2556 /* Restore elements on the temporary add and delete lists */
2557 spin_lock_bh(&vsi->mac_filter_hash_lock);
2558 err_no_memory_locked:
2559 i40e_undo_del_filter_entries(vsi, &tmp_del_list);
2560 i40e_undo_add_filter_entries(vsi, &tmp_add_list);
2561 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2562
2563 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
2564 clear_bit(__I40E_VSI_SYNCING_FILTERS, vsi->state);
2565 return -ENOMEM;
2566 }
2567
2568 /**
2569 * i40e_sync_filters_subtask - Sync the VSI filter list with HW
2570 * @pf: board private structure
2571 **/
2572 static void i40e_sync_filters_subtask(struct i40e_pf *pf)
2573 {
2574 int v;
2575
2576 if (!pf || !(pf->flags & I40E_FLAG_FILTER_SYNC))
2577 return;
2578 pf->flags &= ~I40E_FLAG_FILTER_SYNC;
2579
2580 for (v = 0; v < pf->num_alloc_vsi; v++) {
2581 if (pf->vsi[v] &&
2582 (pf->vsi[v]->flags & I40E_VSI_FLAG_FILTER_CHANGED)) {
2583 int ret = i40e_sync_vsi_filters(pf->vsi[v]);
2584
2585 if (ret) {
2586 /* come back and try again later */
2587 pf->flags |= I40E_FLAG_FILTER_SYNC;
2588 break;
2589 }
2590 }
2591 }
2592 }
2593
2594 /**
2595 * i40e_max_xdp_frame_size - returns the maximum allowed frame size for XDP
2596 * @vsi: the vsi
2597 **/
2598 static int i40e_max_xdp_frame_size(struct i40e_vsi *vsi)
2599 {
2600 if (PAGE_SIZE >= 8192 || (vsi->back->flags & I40E_FLAG_LEGACY_RX))
2601 return I40E_RXBUFFER_2048;
2602 else
2603 return I40E_RXBUFFER_3072;
2604 }
2605
2606 /**
2607 * i40e_change_mtu - NDO callback to change the Maximum Transfer Unit
2608 * @netdev: network interface device structure
2609 * @new_mtu: new value for maximum frame size
2610 *
2611 * Returns 0 on success, negative on failure
2612 **/
2613 static int i40e_change_mtu(struct net_device *netdev, int new_mtu)
2614 {
2615 struct i40e_netdev_priv *np = netdev_priv(netdev);
2616 struct i40e_vsi *vsi = np->vsi;
2617 struct i40e_pf *pf = vsi->back;
2618
2619 if (i40e_enabled_xdp_vsi(vsi)) {
2620 int frame_size = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2621
2622 if (frame_size > i40e_max_xdp_frame_size(vsi))
2623 return -EINVAL;
2624 }
2625
2626 netdev_info(netdev, "changing MTU from %d to %d\n",
2627 netdev->mtu, new_mtu);
2628 netdev->mtu = new_mtu;
2629 if (netif_running(netdev))
2630 i40e_vsi_reinit_locked(vsi);
2631 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED |
2632 I40E_FLAG_CLIENT_L2_CHANGE);
2633 return 0;
2634 }
2635
2636 /**
2637 * i40e_ioctl - Access the hwtstamp interface
2638 * @netdev: network interface device structure
2639 * @ifr: interface request data
2640 * @cmd: ioctl command
2641 **/
2642 int i40e_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2643 {
2644 struct i40e_netdev_priv *np = netdev_priv(netdev);
2645 struct i40e_pf *pf = np->vsi->back;
2646
2647 switch (cmd) {
2648 case SIOCGHWTSTAMP:
2649 return i40e_ptp_get_ts_config(pf, ifr);
2650 case SIOCSHWTSTAMP:
2651 return i40e_ptp_set_ts_config(pf, ifr);
2652 default:
2653 return -EOPNOTSUPP;
2654 }
2655 }
2656
2657 /**
2658 * i40e_vlan_stripping_enable - Turn on vlan stripping for the VSI
2659 * @vsi: the vsi being adjusted
2660 **/
2661 void i40e_vlan_stripping_enable(struct i40e_vsi *vsi)
2662 {
2663 struct i40e_vsi_context ctxt;
2664 i40e_status ret;
2665
2666 if ((vsi->info.valid_sections &
2667 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2668 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_MODE_MASK) == 0))
2669 return; /* already enabled */
2670
2671 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2672 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2673 I40E_AQ_VSI_PVLAN_EMOD_STR_BOTH;
2674
2675 ctxt.seid = vsi->seid;
2676 ctxt.info = vsi->info;
2677 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2678 if (ret) {
2679 dev_info(&vsi->back->pdev->dev,
2680 "update vlan stripping failed, err %s aq_err %s\n",
2681 i40e_stat_str(&vsi->back->hw, ret),
2682 i40e_aq_str(&vsi->back->hw,
2683 vsi->back->hw.aq.asq_last_status));
2684 }
2685 }
2686
2687 /**
2688 * i40e_vlan_stripping_disable - Turn off vlan stripping for the VSI
2689 * @vsi: the vsi being adjusted
2690 **/
2691 void i40e_vlan_stripping_disable(struct i40e_vsi *vsi)
2692 {
2693 struct i40e_vsi_context ctxt;
2694 i40e_status ret;
2695
2696 if ((vsi->info.valid_sections &
2697 cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID)) &&
2698 ((vsi->info.port_vlan_flags & I40E_AQ_VSI_PVLAN_EMOD_MASK) ==
2699 I40E_AQ_VSI_PVLAN_EMOD_MASK))
2700 return; /* already disabled */
2701
2702 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2703 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_ALL |
2704 I40E_AQ_VSI_PVLAN_EMOD_NOTHING;
2705
2706 ctxt.seid = vsi->seid;
2707 ctxt.info = vsi->info;
2708 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2709 if (ret) {
2710 dev_info(&vsi->back->pdev->dev,
2711 "update vlan stripping failed, err %s aq_err %s\n",
2712 i40e_stat_str(&vsi->back->hw, ret),
2713 i40e_aq_str(&vsi->back->hw,
2714 vsi->back->hw.aq.asq_last_status));
2715 }
2716 }
2717
2718 /**
2719 * i40e_vlan_rx_register - Setup or shutdown vlan offload
2720 * @netdev: network interface to be adjusted
2721 * @features: netdev features to test if VLAN offload is enabled or not
2722 **/
2723 static void i40e_vlan_rx_register(struct net_device *netdev, u32 features)
2724 {
2725 struct i40e_netdev_priv *np = netdev_priv(netdev);
2726 struct i40e_vsi *vsi = np->vsi;
2727
2728 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2729 i40e_vlan_stripping_enable(vsi);
2730 else
2731 i40e_vlan_stripping_disable(vsi);
2732 }
2733
2734 /**
2735 * i40e_add_vlan_all_mac - Add a MAC/VLAN filter for each existing MAC address
2736 * @vsi: the vsi being configured
2737 * @vid: vlan id to be added (0 = untagged only , -1 = any)
2738 *
2739 * This is a helper function for adding a new MAC/VLAN filter with the
2740 * specified VLAN for each existing MAC address already in the hash table.
2741 * This function does *not* perform any accounting to update filters based on
2742 * VLAN mode.
2743 *
2744 * NOTE: this function expects to be called while under the
2745 * mac_filter_hash_lock
2746 **/
2747 int i40e_add_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
2748 {
2749 struct i40e_mac_filter *f, *add_f;
2750 struct hlist_node *h;
2751 int bkt;
2752
2753 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2754 if (f->state == I40E_FILTER_REMOVE)
2755 continue;
2756 add_f = i40e_add_filter(vsi, f->macaddr, vid);
2757 if (!add_f) {
2758 dev_info(&vsi->back->pdev->dev,
2759 "Could not add vlan filter %d for %pM\n",
2760 vid, f->macaddr);
2761 return -ENOMEM;
2762 }
2763 }
2764
2765 return 0;
2766 }
2767
2768 /**
2769 * i40e_vsi_add_vlan - Add VSI membership for given VLAN
2770 * @vsi: the VSI being configured
2771 * @vid: VLAN id to be added
2772 **/
2773 int i40e_vsi_add_vlan(struct i40e_vsi *vsi, u16 vid)
2774 {
2775 int err;
2776
2777 if (vsi->info.pvid)
2778 return -EINVAL;
2779
2780 /* The network stack will attempt to add VID=0, with the intention to
2781 * receive priority tagged packets with a VLAN of 0. Our HW receives
2782 * these packets by default when configured to receive untagged
2783 * packets, so we don't need to add a filter for this case.
2784 * Additionally, HW interprets adding a VID=0 filter as meaning to
2785 * receive *only* tagged traffic and stops receiving untagged traffic.
2786 * Thus, we do not want to actually add a filter for VID=0
2787 */
2788 if (!vid)
2789 return 0;
2790
2791 /* Locked once because all functions invoked below iterates list*/
2792 spin_lock_bh(&vsi->mac_filter_hash_lock);
2793 err = i40e_add_vlan_all_mac(vsi, vid);
2794 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2795 if (err)
2796 return err;
2797
2798 /* schedule our worker thread which will take care of
2799 * applying the new filter changes
2800 */
2801 i40e_service_event_schedule(vsi->back);
2802 return 0;
2803 }
2804
2805 /**
2806 * i40e_rm_vlan_all_mac - Remove MAC/VLAN pair for all MAC with the given VLAN
2807 * @vsi: the vsi being configured
2808 * @vid: vlan id to be removed (0 = untagged only , -1 = any)
2809 *
2810 * This function should be used to remove all VLAN filters which match the
2811 * given VID. It does not schedule the service event and does not take the
2812 * mac_filter_hash_lock so it may be combined with other operations under
2813 * a single invocation of the mac_filter_hash_lock.
2814 *
2815 * NOTE: this function expects to be called while under the
2816 * mac_filter_hash_lock
2817 */
2818 void i40e_rm_vlan_all_mac(struct i40e_vsi *vsi, s16 vid)
2819 {
2820 struct i40e_mac_filter *f;
2821 struct hlist_node *h;
2822 int bkt;
2823
2824 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
2825 if (f->vlan == vid)
2826 __i40e_del_filter(vsi, f);
2827 }
2828 }
2829
2830 /**
2831 * i40e_vsi_kill_vlan - Remove VSI membership for given VLAN
2832 * @vsi: the VSI being configured
2833 * @vid: VLAN id to be removed
2834 **/
2835 void i40e_vsi_kill_vlan(struct i40e_vsi *vsi, u16 vid)
2836 {
2837 if (!vid || vsi->info.pvid)
2838 return;
2839
2840 spin_lock_bh(&vsi->mac_filter_hash_lock);
2841 i40e_rm_vlan_all_mac(vsi, vid);
2842 spin_unlock_bh(&vsi->mac_filter_hash_lock);
2843
2844 /* schedule our worker thread which will take care of
2845 * applying the new filter changes
2846 */
2847 i40e_service_event_schedule(vsi->back);
2848 }
2849
2850 /**
2851 * i40e_vlan_rx_add_vid - Add a vlan id filter to HW offload
2852 * @netdev: network interface to be adjusted
2853 * @vid: vlan id to be added
2854 *
2855 * net_device_ops implementation for adding vlan ids
2856 **/
2857 static int i40e_vlan_rx_add_vid(struct net_device *netdev,
2858 __always_unused __be16 proto, u16 vid)
2859 {
2860 struct i40e_netdev_priv *np = netdev_priv(netdev);
2861 struct i40e_vsi *vsi = np->vsi;
2862 int ret = 0;
2863
2864 if (vid >= VLAN_N_VID)
2865 return -EINVAL;
2866
2867 ret = i40e_vsi_add_vlan(vsi, vid);
2868 if (!ret)
2869 set_bit(vid, vsi->active_vlans);
2870
2871 return ret;
2872 }
2873
2874 /**
2875 * i40e_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
2876 * @netdev: network interface to be adjusted
2877 * @vid: vlan id to be removed
2878 *
2879 * net_device_ops implementation for removing vlan ids
2880 **/
2881 static int i40e_vlan_rx_kill_vid(struct net_device *netdev,
2882 __always_unused __be16 proto, u16 vid)
2883 {
2884 struct i40e_netdev_priv *np = netdev_priv(netdev);
2885 struct i40e_vsi *vsi = np->vsi;
2886
2887 /* return code is ignored as there is nothing a user
2888 * can do about failure to remove and a log message was
2889 * already printed from the other function
2890 */
2891 i40e_vsi_kill_vlan(vsi, vid);
2892
2893 clear_bit(vid, vsi->active_vlans);
2894
2895 return 0;
2896 }
2897
2898 /**
2899 * i40e_restore_vlan - Reinstate vlans when vsi/netdev comes back up
2900 * @vsi: the vsi being brought back up
2901 **/
2902 static void i40e_restore_vlan(struct i40e_vsi *vsi)
2903 {
2904 u16 vid;
2905
2906 if (!vsi->netdev)
2907 return;
2908
2909 i40e_vlan_rx_register(vsi->netdev, vsi->netdev->features);
2910
2911 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID)
2912 i40e_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q),
2913 vid);
2914 }
2915
2916 /**
2917 * i40e_vsi_add_pvid - Add pvid for the VSI
2918 * @vsi: the vsi being adjusted
2919 * @vid: the vlan id to set as a PVID
2920 **/
2921 int i40e_vsi_add_pvid(struct i40e_vsi *vsi, u16 vid)
2922 {
2923 struct i40e_vsi_context ctxt;
2924 i40e_status ret;
2925
2926 vsi->info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
2927 vsi->info.pvid = cpu_to_le16(vid);
2928 vsi->info.port_vlan_flags = I40E_AQ_VSI_PVLAN_MODE_TAGGED |
2929 I40E_AQ_VSI_PVLAN_INSERT_PVID |
2930 I40E_AQ_VSI_PVLAN_EMOD_STR;
2931
2932 ctxt.seid = vsi->seid;
2933 ctxt.info = vsi->info;
2934 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
2935 if (ret) {
2936 dev_info(&vsi->back->pdev->dev,
2937 "add pvid failed, err %s aq_err %s\n",
2938 i40e_stat_str(&vsi->back->hw, ret),
2939 i40e_aq_str(&vsi->back->hw,
2940 vsi->back->hw.aq.asq_last_status));
2941 return -ENOENT;
2942 }
2943
2944 return 0;
2945 }
2946
2947 /**
2948 * i40e_vsi_remove_pvid - Remove the pvid from the VSI
2949 * @vsi: the vsi being adjusted
2950 *
2951 * Just use the vlan_rx_register() service to put it back to normal
2952 **/
2953 void i40e_vsi_remove_pvid(struct i40e_vsi *vsi)
2954 {
2955 i40e_vlan_stripping_disable(vsi);
2956
2957 vsi->info.pvid = 0;
2958 }
2959
2960 /**
2961 * i40e_vsi_setup_tx_resources - Allocate VSI Tx queue resources
2962 * @vsi: ptr to the VSI
2963 *
2964 * If this function returns with an error, then it's possible one or
2965 * more of the rings is populated (while the rest are not). It is the
2966 * callers duty to clean those orphaned rings.
2967 *
2968 * Return 0 on success, negative on failure
2969 **/
2970 static int i40e_vsi_setup_tx_resources(struct i40e_vsi *vsi)
2971 {
2972 int i, err = 0;
2973
2974 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2975 err = i40e_setup_tx_descriptors(vsi->tx_rings[i]);
2976
2977 if (!i40e_enabled_xdp_vsi(vsi))
2978 return err;
2979
2980 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
2981 err = i40e_setup_tx_descriptors(vsi->xdp_rings[i]);
2982
2983 return err;
2984 }
2985
2986 /**
2987 * i40e_vsi_free_tx_resources - Free Tx resources for VSI queues
2988 * @vsi: ptr to the VSI
2989 *
2990 * Free VSI's transmit software resources
2991 **/
2992 static void i40e_vsi_free_tx_resources(struct i40e_vsi *vsi)
2993 {
2994 int i;
2995
2996 if (vsi->tx_rings) {
2997 for (i = 0; i < vsi->num_queue_pairs; i++)
2998 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2999 i40e_free_tx_resources(vsi->tx_rings[i]);
3000 }
3001
3002 if (vsi->xdp_rings) {
3003 for (i = 0; i < vsi->num_queue_pairs; i++)
3004 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
3005 i40e_free_tx_resources(vsi->xdp_rings[i]);
3006 }
3007 }
3008
3009 /**
3010 * i40e_vsi_setup_rx_resources - Allocate VSI queues Rx resources
3011 * @vsi: ptr to the VSI
3012 *
3013 * If this function returns with an error, then it's possible one or
3014 * more of the rings is populated (while the rest are not). It is the
3015 * callers duty to clean those orphaned rings.
3016 *
3017 * Return 0 on success, negative on failure
3018 **/
3019 static int i40e_vsi_setup_rx_resources(struct i40e_vsi *vsi)
3020 {
3021 int i, err = 0;
3022
3023 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3024 err = i40e_setup_rx_descriptors(vsi->rx_rings[i]);
3025 return err;
3026 }
3027
3028 /**
3029 * i40e_vsi_free_rx_resources - Free Rx Resources for VSI queues
3030 * @vsi: ptr to the VSI
3031 *
3032 * Free all receive software resources
3033 **/
3034 static void i40e_vsi_free_rx_resources(struct i40e_vsi *vsi)
3035 {
3036 int i;
3037
3038 if (!vsi->rx_rings)
3039 return;
3040
3041 for (i = 0; i < vsi->num_queue_pairs; i++)
3042 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
3043 i40e_free_rx_resources(vsi->rx_rings[i]);
3044 }
3045
3046 /**
3047 * i40e_config_xps_tx_ring - Configure XPS for a Tx ring
3048 * @ring: The Tx ring to configure
3049 *
3050 * This enables/disables XPS for a given Tx descriptor ring
3051 * based on the TCs enabled for the VSI that ring belongs to.
3052 **/
3053 static void i40e_config_xps_tx_ring(struct i40e_ring *ring)
3054 {
3055 int cpu;
3056
3057 if (!ring->q_vector || !ring->netdev || ring->ch)
3058 return;
3059
3060 /* We only initialize XPS once, so as not to overwrite user settings */
3061 if (test_and_set_bit(__I40E_TX_XPS_INIT_DONE, ring->state))
3062 return;
3063
3064 cpu = cpumask_local_spread(ring->q_vector->v_idx, -1);
3065 netif_set_xps_queue(ring->netdev, get_cpu_mask(cpu),
3066 ring->queue_index);
3067 }
3068
3069 /**
3070 * i40e_configure_tx_ring - Configure a transmit ring context and rest
3071 * @ring: The Tx ring to configure
3072 *
3073 * Configure the Tx descriptor ring in the HMC context.
3074 **/
3075 static int i40e_configure_tx_ring(struct i40e_ring *ring)
3076 {
3077 struct i40e_vsi *vsi = ring->vsi;
3078 u16 pf_q = vsi->base_queue + ring->queue_index;
3079 struct i40e_hw *hw = &vsi->back->hw;
3080 struct i40e_hmc_obj_txq tx_ctx;
3081 i40e_status err = 0;
3082 u32 qtx_ctl = 0;
3083
3084 /* some ATR related tx ring init */
3085 if (vsi->back->flags & I40E_FLAG_FD_ATR_ENABLED) {
3086 ring->atr_sample_rate = vsi->back->atr_sample_rate;
3087 ring->atr_count = 0;
3088 } else {
3089 ring->atr_sample_rate = 0;
3090 }
3091
3092 /* configure XPS */
3093 i40e_config_xps_tx_ring(ring);
3094
3095 /* clear the context structure first */
3096 memset(&tx_ctx, 0, sizeof(tx_ctx));
3097
3098 tx_ctx.new_context = 1;
3099 tx_ctx.base = (ring->dma / 128);
3100 tx_ctx.qlen = ring->count;
3101 tx_ctx.fd_ena = !!(vsi->back->flags & (I40E_FLAG_FD_SB_ENABLED |
3102 I40E_FLAG_FD_ATR_ENABLED));
3103 tx_ctx.timesync_ena = !!(vsi->back->flags & I40E_FLAG_PTP);
3104 /* FDIR VSI tx ring can still use RS bit and writebacks */
3105 if (vsi->type != I40E_VSI_FDIR)
3106 tx_ctx.head_wb_ena = 1;
3107 tx_ctx.head_wb_addr = ring->dma +
3108 (ring->count * sizeof(struct i40e_tx_desc));
3109
3110 /* As part of VSI creation/update, FW allocates certain
3111 * Tx arbitration queue sets for each TC enabled for
3112 * the VSI. The FW returns the handles to these queue
3113 * sets as part of the response buffer to Add VSI,
3114 * Update VSI, etc. AQ commands. It is expected that
3115 * these queue set handles be associated with the Tx
3116 * queues by the driver as part of the TX queue context
3117 * initialization. This has to be done regardless of
3118 * DCB as by default everything is mapped to TC0.
3119 */
3120
3121 if (ring->ch)
3122 tx_ctx.rdylist =
3123 le16_to_cpu(ring->ch->info.qs_handle[ring->dcb_tc]);
3124
3125 else
3126 tx_ctx.rdylist = le16_to_cpu(vsi->info.qs_handle[ring->dcb_tc]);
3127
3128 tx_ctx.rdylist_act = 0;
3129
3130 /* clear the context in the HMC */
3131 err = i40e_clear_lan_tx_queue_context(hw, pf_q);
3132 if (err) {
3133 dev_info(&vsi->back->pdev->dev,
3134 "Failed to clear LAN Tx queue context on Tx ring %d (pf_q %d), error: %d\n",
3135 ring->queue_index, pf_q, err);
3136 return -ENOMEM;
3137 }
3138
3139 /* set the context in the HMC */
3140 err = i40e_set_lan_tx_queue_context(hw, pf_q, &tx_ctx);
3141 if (err) {
3142 dev_info(&vsi->back->pdev->dev,
3143 "Failed to set LAN Tx queue context on Tx ring %d (pf_q %d, error: %d\n",
3144 ring->queue_index, pf_q, err);
3145 return -ENOMEM;
3146 }
3147
3148 /* Now associate this queue with this PCI function */
3149 if (ring->ch) {
3150 if (ring->ch->type == I40E_VSI_VMDQ2)
3151 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3152 else
3153 return -EINVAL;
3154
3155 qtx_ctl |= (ring->ch->vsi_number <<
3156 I40E_QTX_CTL_VFVM_INDX_SHIFT) &
3157 I40E_QTX_CTL_VFVM_INDX_MASK;
3158 } else {
3159 if (vsi->type == I40E_VSI_VMDQ2) {
3160 qtx_ctl = I40E_QTX_CTL_VM_QUEUE;
3161 qtx_ctl |= ((vsi->id) << I40E_QTX_CTL_VFVM_INDX_SHIFT) &
3162 I40E_QTX_CTL_VFVM_INDX_MASK;
3163 } else {
3164 qtx_ctl = I40E_QTX_CTL_PF_QUEUE;
3165 }
3166 }
3167
3168 qtx_ctl |= ((hw->pf_id << I40E_QTX_CTL_PF_INDX_SHIFT) &
3169 I40E_QTX_CTL_PF_INDX_MASK);
3170 wr32(hw, I40E_QTX_CTL(pf_q), qtx_ctl);
3171 i40e_flush(hw);
3172
3173 /* cache tail off for easier writes later */
3174 ring->tail = hw->hw_addr + I40E_QTX_TAIL(pf_q);
3175
3176 return 0;
3177 }
3178
3179 /**
3180 * i40e_configure_rx_ring - Configure a receive ring context
3181 * @ring: The Rx ring to configure
3182 *
3183 * Configure the Rx descriptor ring in the HMC context.
3184 **/
3185 static int i40e_configure_rx_ring(struct i40e_ring *ring)
3186 {
3187 struct i40e_vsi *vsi = ring->vsi;
3188 u32 chain_len = vsi->back->hw.func_caps.rx_buf_chain_len;
3189 u16 pf_q = vsi->base_queue + ring->queue_index;
3190 struct i40e_hw *hw = &vsi->back->hw;
3191 struct i40e_hmc_obj_rxq rx_ctx;
3192 i40e_status err = 0;
3193
3194 bitmap_zero(ring->state, __I40E_RING_STATE_NBITS);
3195
3196 /* clear the context structure first */
3197 memset(&rx_ctx, 0, sizeof(rx_ctx));
3198
3199 ring->rx_buf_len = vsi->rx_buf_len;
3200
3201 rx_ctx.dbuff = DIV_ROUND_UP(ring->rx_buf_len,
3202 BIT_ULL(I40E_RXQ_CTX_DBUFF_SHIFT));
3203
3204 rx_ctx.base = (ring->dma / 128);
3205 rx_ctx.qlen = ring->count;
3206
3207 /* use 32 byte descriptors */
3208 rx_ctx.dsize = 1;
3209
3210 /* descriptor type is always zero
3211 * rx_ctx.dtype = 0;
3212 */
3213 rx_ctx.hsplit_0 = 0;
3214
3215 rx_ctx.rxmax = min_t(u16, vsi->max_frame, chain_len * ring->rx_buf_len);
3216 if (hw->revision_id == 0)
3217 rx_ctx.lrxqthresh = 0;
3218 else
3219 rx_ctx.lrxqthresh = 1;
3220 rx_ctx.crcstrip = 1;
3221 rx_ctx.l2tsel = 1;
3222 /* this controls whether VLAN is stripped from inner headers */
3223 rx_ctx.showiv = 0;
3224 /* set the prefena field to 1 because the manual says to */
3225 rx_ctx.prefena = 1;
3226
3227 /* clear the context in the HMC */
3228 err = i40e_clear_lan_rx_queue_context(hw, pf_q);
3229 if (err) {
3230 dev_info(&vsi->back->pdev->dev,
3231 "Failed to clear LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3232 ring->queue_index, pf_q, err);
3233 return -ENOMEM;
3234 }
3235
3236 /* set the context in the HMC */
3237 err = i40e_set_lan_rx_queue_context(hw, pf_q, &rx_ctx);
3238 if (err) {
3239 dev_info(&vsi->back->pdev->dev,
3240 "Failed to set LAN Rx queue context on Rx ring %d (pf_q %d), error: %d\n",
3241 ring->queue_index, pf_q, err);
3242 return -ENOMEM;
3243 }
3244
3245 /* configure Rx buffer alignment */
3246 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX))
3247 clear_ring_build_skb_enabled(ring);
3248 else
3249 set_ring_build_skb_enabled(ring);
3250
3251 /* cache tail for quicker writes, and clear the reg before use */
3252 ring->tail = hw->hw_addr + I40E_QRX_TAIL(pf_q);
3253 writel(0, ring->tail);
3254
3255 i40e_alloc_rx_buffers(ring, I40E_DESC_UNUSED(ring));
3256
3257 return 0;
3258 }
3259
3260 /**
3261 * i40e_vsi_configure_tx - Configure the VSI for Tx
3262 * @vsi: VSI structure describing this set of rings and resources
3263 *
3264 * Configure the Tx VSI for operation.
3265 **/
3266 static int i40e_vsi_configure_tx(struct i40e_vsi *vsi)
3267 {
3268 int err = 0;
3269 u16 i;
3270
3271 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3272 err = i40e_configure_tx_ring(vsi->tx_rings[i]);
3273
3274 if (!i40e_enabled_xdp_vsi(vsi))
3275 return err;
3276
3277 for (i = 0; (i < vsi->num_queue_pairs) && !err; i++)
3278 err = i40e_configure_tx_ring(vsi->xdp_rings[i]);
3279
3280 return err;
3281 }
3282
3283 /**
3284 * i40e_vsi_configure_rx - Configure the VSI for Rx
3285 * @vsi: the VSI being configured
3286 *
3287 * Configure the Rx VSI for operation.
3288 **/
3289 static int i40e_vsi_configure_rx(struct i40e_vsi *vsi)
3290 {
3291 int err = 0;
3292 u16 i;
3293
3294 if (!vsi->netdev || (vsi->back->flags & I40E_FLAG_LEGACY_RX)) {
3295 vsi->max_frame = I40E_MAX_RXBUFFER;
3296 vsi->rx_buf_len = I40E_RXBUFFER_2048;
3297 #if (PAGE_SIZE < 8192)
3298 } else if (!I40E_2K_TOO_SMALL_WITH_PADDING &&
3299 (vsi->netdev->mtu <= ETH_DATA_LEN)) {
3300 vsi->max_frame = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3301 vsi->rx_buf_len = I40E_RXBUFFER_1536 - NET_IP_ALIGN;
3302 #endif
3303 } else {
3304 vsi->max_frame = I40E_MAX_RXBUFFER;
3305 vsi->rx_buf_len = (PAGE_SIZE < 8192) ? I40E_RXBUFFER_3072 :
3306 I40E_RXBUFFER_2048;
3307 }
3308
3309 /* set up individual rings */
3310 for (i = 0; i < vsi->num_queue_pairs && !err; i++)
3311 err = i40e_configure_rx_ring(vsi->rx_rings[i]);
3312
3313 return err;
3314 }
3315
3316 /**
3317 * i40e_vsi_config_dcb_rings - Update rings to reflect DCB TC
3318 * @vsi: ptr to the VSI
3319 **/
3320 static void i40e_vsi_config_dcb_rings(struct i40e_vsi *vsi)
3321 {
3322 struct i40e_ring *tx_ring, *rx_ring;
3323 u16 qoffset, qcount;
3324 int i, n;
3325
3326 if (!(vsi->back->flags & I40E_FLAG_DCB_ENABLED)) {
3327 /* Reset the TC information */
3328 for (i = 0; i < vsi->num_queue_pairs; i++) {
3329 rx_ring = vsi->rx_rings[i];
3330 tx_ring = vsi->tx_rings[i];
3331 rx_ring->dcb_tc = 0;
3332 tx_ring->dcb_tc = 0;
3333 }
3334 return;
3335 }
3336
3337 for (n = 0; n < I40E_MAX_TRAFFIC_CLASS; n++) {
3338 if (!(vsi->tc_config.enabled_tc & BIT_ULL(n)))
3339 continue;
3340
3341 qoffset = vsi->tc_config.tc_info[n].qoffset;
3342 qcount = vsi->tc_config.tc_info[n].qcount;
3343 for (i = qoffset; i < (qoffset + qcount); i++) {
3344 rx_ring = vsi->rx_rings[i];
3345 tx_ring = vsi->tx_rings[i];
3346 rx_ring->dcb_tc = n;
3347 tx_ring->dcb_tc = n;
3348 }
3349 }
3350 }
3351
3352 /**
3353 * i40e_set_vsi_rx_mode - Call set_rx_mode on a VSI
3354 * @vsi: ptr to the VSI
3355 **/
3356 static void i40e_set_vsi_rx_mode(struct i40e_vsi *vsi)
3357 {
3358 if (vsi->netdev)
3359 i40e_set_rx_mode(vsi->netdev);
3360 }
3361
3362 /**
3363 * i40e_fdir_filter_restore - Restore the Sideband Flow Director filters
3364 * @vsi: Pointer to the targeted VSI
3365 *
3366 * This function replays the hlist on the hw where all the SB Flow Director
3367 * filters were saved.
3368 **/
3369 static void i40e_fdir_filter_restore(struct i40e_vsi *vsi)
3370 {
3371 struct i40e_fdir_filter *filter;
3372 struct i40e_pf *pf = vsi->back;
3373 struct hlist_node *node;
3374
3375 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
3376 return;
3377
3378 /* Reset FDir counters as we're replaying all existing filters */
3379 pf->fd_tcp4_filter_cnt = 0;
3380 pf->fd_udp4_filter_cnt = 0;
3381 pf->fd_sctp4_filter_cnt = 0;
3382 pf->fd_ip4_filter_cnt = 0;
3383
3384 hlist_for_each_entry_safe(filter, node,
3385 &pf->fdir_filter_list, fdir_node) {
3386 i40e_add_del_fdir(vsi, filter, true);
3387 }
3388 }
3389
3390 /**
3391 * i40e_vsi_configure - Set up the VSI for action
3392 * @vsi: the VSI being configured
3393 **/
3394 static int i40e_vsi_configure(struct i40e_vsi *vsi)
3395 {
3396 int err;
3397
3398 i40e_set_vsi_rx_mode(vsi);
3399 i40e_restore_vlan(vsi);
3400 i40e_vsi_config_dcb_rings(vsi);
3401 err = i40e_vsi_configure_tx(vsi);
3402 if (!err)
3403 err = i40e_vsi_configure_rx(vsi);
3404
3405 return err;
3406 }
3407
3408 /**
3409 * i40e_vsi_configure_msix - MSIX mode Interrupt Config in the HW
3410 * @vsi: the VSI being configured
3411 **/
3412 static void i40e_vsi_configure_msix(struct i40e_vsi *vsi)
3413 {
3414 bool has_xdp = i40e_enabled_xdp_vsi(vsi);
3415 struct i40e_pf *pf = vsi->back;
3416 struct i40e_hw *hw = &pf->hw;
3417 u16 vector;
3418 int i, q;
3419 u32 qp;
3420
3421 /* The interrupt indexing is offset by 1 in the PFINT_ITRn
3422 * and PFINT_LNKLSTn registers, e.g.:
3423 * PFINT_ITRn[0..n-1] gets msix-1..msix-n (qpair interrupts)
3424 */
3425 qp = vsi->base_queue;
3426 vector = vsi->base_vector;
3427 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
3428 struct i40e_q_vector *q_vector = vsi->q_vectors[i];
3429
3430 q_vector->itr_countdown = ITR_COUNTDOWN_START;
3431 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[i]->rx_itr_setting);
3432 q_vector->rx.latency_range = I40E_LOW_LATENCY;
3433 wr32(hw, I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1),
3434 q_vector->rx.itr);
3435 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[i]->tx_itr_setting);
3436 q_vector->tx.latency_range = I40E_LOW_LATENCY;
3437 wr32(hw, I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1),
3438 q_vector->tx.itr);
3439 wr32(hw, I40E_PFINT_RATEN(vector - 1),
3440 i40e_intrl_usec_to_reg(vsi->int_rate_limit));
3441
3442 /* Linked list for the queuepairs assigned to this vector */
3443 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), qp);
3444 for (q = 0; q < q_vector->num_ringpairs; q++) {
3445 u32 nextqp = has_xdp ? qp + vsi->alloc_queue_pairs : qp;
3446 u32 val;
3447
3448 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3449 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
3450 (vector << I40E_QINT_RQCTL_MSIX_INDX_SHIFT) |
3451 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT) |
3452 (I40E_QUEUE_TYPE_TX <<
3453 I40E_QINT_RQCTL_NEXTQ_TYPE_SHIFT);
3454
3455 wr32(hw, I40E_QINT_RQCTL(qp), val);
3456
3457 if (has_xdp) {
3458 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3459 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3460 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3461 (qp << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3462 (I40E_QUEUE_TYPE_TX <<
3463 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3464
3465 wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3466 }
3467
3468 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3469 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3470 (vector << I40E_QINT_TQCTL_MSIX_INDX_SHIFT) |
3471 ((qp + 1) << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT) |
3472 (I40E_QUEUE_TYPE_RX <<
3473 I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3474
3475 /* Terminate the linked list */
3476 if (q == (q_vector->num_ringpairs - 1))
3477 val |= (I40E_QUEUE_END_OF_LIST <<
3478 I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3479
3480 wr32(hw, I40E_QINT_TQCTL(qp), val);
3481 qp++;
3482 }
3483 }
3484
3485 i40e_flush(hw);
3486 }
3487
3488 /**
3489 * i40e_enable_misc_int_causes - enable the non-queue interrupts
3490 * @hw: ptr to the hardware info
3491 **/
3492 static void i40e_enable_misc_int_causes(struct i40e_pf *pf)
3493 {
3494 struct i40e_hw *hw = &pf->hw;
3495 u32 val;
3496
3497 /* clear things first */
3498 wr32(hw, I40E_PFINT_ICR0_ENA, 0); /* disable all */
3499 rd32(hw, I40E_PFINT_ICR0); /* read to clear */
3500
3501 val = I40E_PFINT_ICR0_ENA_ECC_ERR_MASK |
3502 I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK |
3503 I40E_PFINT_ICR0_ENA_GRST_MASK |
3504 I40E_PFINT_ICR0_ENA_PCI_EXCEPTION_MASK |
3505 I40E_PFINT_ICR0_ENA_GPIO_MASK |
3506 I40E_PFINT_ICR0_ENA_HMC_ERR_MASK |
3507 I40E_PFINT_ICR0_ENA_VFLR_MASK |
3508 I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3509
3510 if (pf->flags & I40E_FLAG_IWARP_ENABLED)
3511 val |= I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3512
3513 if (pf->flags & I40E_FLAG_PTP)
3514 val |= I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3515
3516 wr32(hw, I40E_PFINT_ICR0_ENA, val);
3517
3518 /* SW_ITR_IDX = 0, but don't change INTENA */
3519 wr32(hw, I40E_PFINT_DYN_CTL0, I40E_PFINT_DYN_CTL0_SW_ITR_INDX_MASK |
3520 I40E_PFINT_DYN_CTL0_INTENA_MSK_MASK);
3521
3522 /* OTHER_ITR_IDX = 0 */
3523 wr32(hw, I40E_PFINT_STAT_CTL0, 0);
3524 }
3525
3526 /**
3527 * i40e_configure_msi_and_legacy - Legacy mode interrupt config in the HW
3528 * @vsi: the VSI being configured
3529 **/
3530 static void i40e_configure_msi_and_legacy(struct i40e_vsi *vsi)
3531 {
3532 u32 nextqp = i40e_enabled_xdp_vsi(vsi) ? vsi->alloc_queue_pairs : 0;
3533 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
3534 struct i40e_pf *pf = vsi->back;
3535 struct i40e_hw *hw = &pf->hw;
3536 u32 val;
3537
3538 /* set the ITR configuration */
3539 q_vector->itr_countdown = ITR_COUNTDOWN_START;
3540 q_vector->rx.itr = ITR_TO_REG(vsi->rx_rings[0]->rx_itr_setting);
3541 q_vector->rx.latency_range = I40E_LOW_LATENCY;
3542 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), q_vector->rx.itr);
3543 q_vector->tx.itr = ITR_TO_REG(vsi->tx_rings[0]->tx_itr_setting);
3544 q_vector->tx.latency_range = I40E_LOW_LATENCY;
3545 wr32(hw, I40E_PFINT_ITR0(I40E_TX_ITR), q_vector->tx.itr);
3546
3547 i40e_enable_misc_int_causes(pf);
3548
3549 /* FIRSTQ_INDX = 0, FIRSTQ_TYPE = 0 (rx) */
3550 wr32(hw, I40E_PFINT_LNKLST0, 0);
3551
3552 /* Associate the queue pair to the vector and enable the queue int */
3553 val = I40E_QINT_RQCTL_CAUSE_ENA_MASK |
3554 (I40E_RX_ITR << I40E_QINT_RQCTL_ITR_INDX_SHIFT) |
3555 (nextqp << I40E_QINT_RQCTL_NEXTQ_INDX_SHIFT)|
3556 (I40E_QUEUE_TYPE_TX << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3557
3558 wr32(hw, I40E_QINT_RQCTL(0), val);
3559
3560 if (i40e_enabled_xdp_vsi(vsi)) {
3561 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3562 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT)|
3563 (I40E_QUEUE_TYPE_TX
3564 << I40E_QINT_TQCTL_NEXTQ_TYPE_SHIFT);
3565
3566 wr32(hw, I40E_QINT_TQCTL(nextqp), val);
3567 }
3568
3569 val = I40E_QINT_TQCTL_CAUSE_ENA_MASK |
3570 (I40E_TX_ITR << I40E_QINT_TQCTL_ITR_INDX_SHIFT) |
3571 (I40E_QUEUE_END_OF_LIST << I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT);
3572
3573 wr32(hw, I40E_QINT_TQCTL(0), val);
3574 i40e_flush(hw);
3575 }
3576
3577 /**
3578 * i40e_irq_dynamic_disable_icr0 - Disable default interrupt generation for icr0
3579 * @pf: board private structure
3580 **/
3581 void i40e_irq_dynamic_disable_icr0(struct i40e_pf *pf)
3582 {
3583 struct i40e_hw *hw = &pf->hw;
3584
3585 wr32(hw, I40E_PFINT_DYN_CTL0,
3586 I40E_ITR_NONE << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT);
3587 i40e_flush(hw);
3588 }
3589
3590 /**
3591 * i40e_irq_dynamic_enable_icr0 - Enable default interrupt generation for icr0
3592 * @pf: board private structure
3593 **/
3594 void i40e_irq_dynamic_enable_icr0(struct i40e_pf *pf)
3595 {
3596 struct i40e_hw *hw = &pf->hw;
3597 u32 val;
3598
3599 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
3600 I40E_PFINT_DYN_CTL0_CLEARPBA_MASK |
3601 (I40E_ITR_NONE << I40E_PFINT_DYN_CTL0_ITR_INDX_SHIFT);
3602
3603 wr32(hw, I40E_PFINT_DYN_CTL0, val);
3604 i40e_flush(hw);
3605 }
3606
3607 /**
3608 * i40e_msix_clean_rings - MSIX mode Interrupt Handler
3609 * @irq: interrupt number
3610 * @data: pointer to a q_vector
3611 **/
3612 static irqreturn_t i40e_msix_clean_rings(int irq, void *data)
3613 {
3614 struct i40e_q_vector *q_vector = data;
3615
3616 if (!q_vector->tx.ring && !q_vector->rx.ring)
3617 return IRQ_HANDLED;
3618
3619 napi_schedule_irqoff(&q_vector->napi);
3620
3621 return IRQ_HANDLED;
3622 }
3623
3624 /**
3625 * i40e_irq_affinity_notify - Callback for affinity changes
3626 * @notify: context as to what irq was changed
3627 * @mask: the new affinity mask
3628 *
3629 * This is a callback function used by the irq_set_affinity_notifier function
3630 * so that we may register to receive changes to the irq affinity masks.
3631 **/
3632 static void i40e_irq_affinity_notify(struct irq_affinity_notify *notify,
3633 const cpumask_t *mask)
3634 {
3635 struct i40e_q_vector *q_vector =
3636 container_of(notify, struct i40e_q_vector, affinity_notify);
3637
3638 cpumask_copy(&q_vector->affinity_mask, mask);
3639 }
3640
3641 /**
3642 * i40e_irq_affinity_release - Callback for affinity notifier release
3643 * @ref: internal core kernel usage
3644 *
3645 * This is a callback function used by the irq_set_affinity_notifier function
3646 * to inform the current notification subscriber that they will no longer
3647 * receive notifications.
3648 **/
3649 static void i40e_irq_affinity_release(struct kref *ref) {}
3650
3651 /**
3652 * i40e_vsi_request_irq_msix - Initialize MSI-X interrupts
3653 * @vsi: the VSI being configured
3654 * @basename: name for the vector
3655 *
3656 * Allocates MSI-X vectors and requests interrupts from the kernel.
3657 **/
3658 static int i40e_vsi_request_irq_msix(struct i40e_vsi *vsi, char *basename)
3659 {
3660 int q_vectors = vsi->num_q_vectors;
3661 struct i40e_pf *pf = vsi->back;
3662 int base = vsi->base_vector;
3663 int rx_int_idx = 0;
3664 int tx_int_idx = 0;
3665 int vector, err;
3666 int irq_num;
3667 int cpu;
3668
3669 for (vector = 0; vector < q_vectors; vector++) {
3670 struct i40e_q_vector *q_vector = vsi->q_vectors[vector];
3671
3672 irq_num = pf->msix_entries[base + vector].vector;
3673
3674 if (q_vector->tx.ring && q_vector->rx.ring) {
3675 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3676 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
3677 tx_int_idx++;
3678 } else if (q_vector->rx.ring) {
3679 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3680 "%s-%s-%d", basename, "rx", rx_int_idx++);
3681 } else if (q_vector->tx.ring) {
3682 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
3683 "%s-%s-%d", basename, "tx", tx_int_idx++);
3684 } else {
3685 /* skip this unused q_vector */
3686 continue;
3687 }
3688 err = request_irq(irq_num,
3689 vsi->irq_handler,
3690 0,
3691 q_vector->name,
3692 q_vector);
3693 if (err) {
3694 dev_info(&pf->pdev->dev,
3695 "MSIX request_irq failed, error: %d\n", err);
3696 goto free_queue_irqs;
3697 }
3698
3699 /* register for affinity change notifications */
3700 q_vector->affinity_notify.notify = i40e_irq_affinity_notify;
3701 q_vector->affinity_notify.release = i40e_irq_affinity_release;
3702 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
3703 /* Spread affinity hints out across online CPUs.
3704 *
3705 * get_cpu_mask returns a static constant mask with
3706 * a permanent lifetime so it's ok to pass to
3707 * irq_set_affinity_hint without making a copy.
3708 */
3709 cpu = cpumask_local_spread(q_vector->v_idx, -1);
3710 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
3711 }
3712
3713 vsi->irqs_ready = true;
3714 return 0;
3715
3716 free_queue_irqs:
3717 while (vector) {
3718 vector--;
3719 irq_num = pf->msix_entries[base + vector].vector;
3720 irq_set_affinity_notifier(irq_num, NULL);
3721 irq_set_affinity_hint(irq_num, NULL);
3722 free_irq(irq_num, &vsi->q_vectors[vector]);
3723 }
3724 return err;
3725 }
3726
3727 /**
3728 * i40e_vsi_disable_irq - Mask off queue interrupt generation on the VSI
3729 * @vsi: the VSI being un-configured
3730 **/
3731 static void i40e_vsi_disable_irq(struct i40e_vsi *vsi)
3732 {
3733 struct i40e_pf *pf = vsi->back;
3734 struct i40e_hw *hw = &pf->hw;
3735 int base = vsi->base_vector;
3736 int i;
3737
3738 /* disable interrupt causation from each queue */
3739 for (i = 0; i < vsi->num_queue_pairs; i++) {
3740 u32 val;
3741
3742 val = rd32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
3743 val &= ~I40E_QINT_TQCTL_CAUSE_ENA_MASK;
3744 wr32(hw, I40E_QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
3745
3746 val = rd32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx));
3747 val &= ~I40E_QINT_RQCTL_CAUSE_ENA_MASK;
3748 wr32(hw, I40E_QINT_RQCTL(vsi->rx_rings[i]->reg_idx), val);
3749
3750 if (!i40e_enabled_xdp_vsi(vsi))
3751 continue;
3752 wr32(hw, I40E_QINT_TQCTL(vsi->xdp_rings[i]->reg_idx), 0);
3753 }
3754
3755 /* disable each interrupt */
3756 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3757 for (i = vsi->base_vector;
3758 i < (vsi->num_q_vectors + vsi->base_vector); i++)
3759 wr32(hw, I40E_PFINT_DYN_CTLN(i - 1), 0);
3760
3761 i40e_flush(hw);
3762 for (i = 0; i < vsi->num_q_vectors; i++)
3763 synchronize_irq(pf->msix_entries[i + base].vector);
3764 } else {
3765 /* Legacy and MSI mode - this stops all interrupt handling */
3766 wr32(hw, I40E_PFINT_ICR0_ENA, 0);
3767 wr32(hw, I40E_PFINT_DYN_CTL0, 0);
3768 i40e_flush(hw);
3769 synchronize_irq(pf->pdev->irq);
3770 }
3771 }
3772
3773 /**
3774 * i40e_vsi_enable_irq - Enable IRQ for the given VSI
3775 * @vsi: the VSI being configured
3776 **/
3777 static int i40e_vsi_enable_irq(struct i40e_vsi *vsi)
3778 {
3779 struct i40e_pf *pf = vsi->back;
3780 int i;
3781
3782 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
3783 for (i = 0; i < vsi->num_q_vectors; i++)
3784 i40e_irq_dynamic_enable(vsi, i);
3785 } else {
3786 i40e_irq_dynamic_enable_icr0(pf);
3787 }
3788
3789 i40e_flush(&pf->hw);
3790 return 0;
3791 }
3792
3793 /**
3794 * i40e_free_misc_vector - Free the vector that handles non-queue events
3795 * @pf: board private structure
3796 **/
3797 static void i40e_free_misc_vector(struct i40e_pf *pf)
3798 {
3799 /* Disable ICR 0 */
3800 wr32(&pf->hw, I40E_PFINT_ICR0_ENA, 0);
3801 i40e_flush(&pf->hw);
3802
3803 if (pf->flags & I40E_FLAG_MSIX_ENABLED && pf->msix_entries) {
3804 synchronize_irq(pf->msix_entries[0].vector);
3805 free_irq(pf->msix_entries[0].vector, pf);
3806 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
3807 }
3808 }
3809
3810 /**
3811 * i40e_intr - MSI/Legacy and non-queue interrupt handler
3812 * @irq: interrupt number
3813 * @data: pointer to a q_vector
3814 *
3815 * This is the handler used for all MSI/Legacy interrupts, and deals
3816 * with both queue and non-queue interrupts. This is also used in
3817 * MSIX mode to handle the non-queue interrupts.
3818 **/
3819 static irqreturn_t i40e_intr(int irq, void *data)
3820 {
3821 struct i40e_pf *pf = (struct i40e_pf *)data;
3822 struct i40e_hw *hw = &pf->hw;
3823 irqreturn_t ret = IRQ_NONE;
3824 u32 icr0, icr0_remaining;
3825 u32 val, ena_mask;
3826
3827 icr0 = rd32(hw, I40E_PFINT_ICR0);
3828 ena_mask = rd32(hw, I40E_PFINT_ICR0_ENA);
3829
3830 /* if sharing a legacy IRQ, we might get called w/o an intr pending */
3831 if ((icr0 & I40E_PFINT_ICR0_INTEVENT_MASK) == 0)
3832 goto enable_intr;
3833
3834 /* if interrupt but no bits showing, must be SWINT */
3835 if (((icr0 & ~I40E_PFINT_ICR0_INTEVENT_MASK) == 0) ||
3836 (icr0 & I40E_PFINT_ICR0_SWINT_MASK))
3837 pf->sw_int_count++;
3838
3839 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) &&
3840 (icr0 & I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK)) {
3841 ena_mask &= ~I40E_PFINT_ICR0_ENA_PE_CRITERR_MASK;
3842 dev_dbg(&pf->pdev->dev, "cleared PE_CRITERR\n");
3843 set_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
3844 }
3845
3846 /* only q0 is used in MSI/Legacy mode, and none are used in MSIX */
3847 if (icr0 & I40E_PFINT_ICR0_QUEUE_0_MASK) {
3848 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
3849 struct i40e_q_vector *q_vector = vsi->q_vectors[0];
3850
3851 /* We do not have a way to disarm Queue causes while leaving
3852 * interrupt enabled for all other causes, ideally
3853 * interrupt should be disabled while we are in NAPI but
3854 * this is not a performance path and napi_schedule()
3855 * can deal with rescheduling.
3856 */
3857 if (!test_bit(__I40E_DOWN, pf->state))
3858 napi_schedule_irqoff(&q_vector->napi);
3859 }
3860
3861 if (icr0 & I40E_PFINT_ICR0_ADMINQ_MASK) {
3862 ena_mask &= ~I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
3863 set_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
3864 i40e_debug(&pf->hw, I40E_DEBUG_NVM, "AdminQ event\n");
3865 }
3866
3867 if (icr0 & I40E_PFINT_ICR0_MAL_DETECT_MASK) {
3868 ena_mask &= ~I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
3869 set_bit(__I40E_MDD_EVENT_PENDING, pf->state);
3870 }
3871
3872 if (icr0 & I40E_PFINT_ICR0_VFLR_MASK) {
3873 ena_mask &= ~I40E_PFINT_ICR0_ENA_VFLR_MASK;
3874 set_bit(__I40E_VFLR_EVENT_PENDING, pf->state);
3875 }
3876
3877 if (icr0 & I40E_PFINT_ICR0_GRST_MASK) {
3878 if (!test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
3879 set_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
3880 ena_mask &= ~I40E_PFINT_ICR0_ENA_GRST_MASK;
3881 val = rd32(hw, I40E_GLGEN_RSTAT);
3882 val = (val & I40E_GLGEN_RSTAT_RESET_TYPE_MASK)
3883 >> I40E_GLGEN_RSTAT_RESET_TYPE_SHIFT;
3884 if (val == I40E_RESET_CORER) {
3885 pf->corer_count++;
3886 } else if (val == I40E_RESET_GLOBR) {
3887 pf->globr_count++;
3888 } else if (val == I40E_RESET_EMPR) {
3889 pf->empr_count++;
3890 set_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state);
3891 }
3892 }
3893
3894 if (icr0 & I40E_PFINT_ICR0_HMC_ERR_MASK) {
3895 icr0 &= ~I40E_PFINT_ICR0_HMC_ERR_MASK;
3896 dev_info(&pf->pdev->dev, "HMC error interrupt\n");
3897 dev_info(&pf->pdev->dev, "HMC error info 0x%x, HMC error data 0x%x\n",
3898 rd32(hw, I40E_PFHMC_ERRORINFO),
3899 rd32(hw, I40E_PFHMC_ERRORDATA));
3900 }
3901
3902 if (icr0 & I40E_PFINT_ICR0_TIMESYNC_MASK) {
3903 u32 prttsyn_stat = rd32(hw, I40E_PRTTSYN_STAT_0);
3904
3905 if (prttsyn_stat & I40E_PRTTSYN_STAT_0_TXTIME_MASK) {
3906 icr0 &= ~I40E_PFINT_ICR0_ENA_TIMESYNC_MASK;
3907 i40e_ptp_tx_hwtstamp(pf);
3908 }
3909 }
3910
3911 /* If a critical error is pending we have no choice but to reset the
3912 * device.
3913 * Report and mask out any remaining unexpected interrupts.
3914 */
3915 icr0_remaining = icr0 & ena_mask;
3916 if (icr0_remaining) {
3917 dev_info(&pf->pdev->dev, "unhandled interrupt icr0=0x%08x\n",
3918 icr0_remaining);
3919 if ((icr0_remaining & I40E_PFINT_ICR0_PE_CRITERR_MASK) ||
3920 (icr0_remaining & I40E_PFINT_ICR0_PCI_EXCEPTION_MASK) ||
3921 (icr0_remaining & I40E_PFINT_ICR0_ECC_ERR_MASK)) {
3922 dev_info(&pf->pdev->dev, "device will be reset\n");
3923 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
3924 i40e_service_event_schedule(pf);
3925 }
3926 ena_mask &= ~icr0_remaining;
3927 }
3928 ret = IRQ_HANDLED;
3929
3930 enable_intr:
3931 /* re-enable interrupt causes */
3932 wr32(hw, I40E_PFINT_ICR0_ENA, ena_mask);
3933 if (!test_bit(__I40E_DOWN, pf->state)) {
3934 i40e_service_event_schedule(pf);
3935 i40e_irq_dynamic_enable_icr0(pf);
3936 }
3937
3938 return ret;
3939 }
3940
3941 /**
3942 * i40e_clean_fdir_tx_irq - Reclaim resources after transmit completes
3943 * @tx_ring: tx ring to clean
3944 * @budget: how many cleans we're allowed
3945 *
3946 * Returns true if there's any budget left (e.g. the clean is finished)
3947 **/
3948 static bool i40e_clean_fdir_tx_irq(struct i40e_ring *tx_ring, int budget)
3949 {
3950 struct i40e_vsi *vsi = tx_ring->vsi;
3951 u16 i = tx_ring->next_to_clean;
3952 struct i40e_tx_buffer *tx_buf;
3953 struct i40e_tx_desc *tx_desc;
3954
3955 tx_buf = &tx_ring->tx_bi[i];
3956 tx_desc = I40E_TX_DESC(tx_ring, i);
3957 i -= tx_ring->count;
3958
3959 do {
3960 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
3961
3962 /* if next_to_watch is not set then there is no work pending */
3963 if (!eop_desc)
3964 break;
3965
3966 /* prevent any other reads prior to eop_desc */
3967 read_barrier_depends();
3968
3969 /* if the descriptor isn't done, no work yet to do */
3970 if (!(eop_desc->cmd_type_offset_bsz &
3971 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
3972 break;
3973
3974 /* clear next_to_watch to prevent false hangs */
3975 tx_buf->next_to_watch = NULL;
3976
3977 tx_desc->buffer_addr = 0;
3978 tx_desc->cmd_type_offset_bsz = 0;
3979 /* move past filter desc */
3980 tx_buf++;
3981 tx_desc++;
3982 i++;
3983 if (unlikely(!i)) {
3984 i -= tx_ring->count;
3985 tx_buf = tx_ring->tx_bi;
3986 tx_desc = I40E_TX_DESC(tx_ring, 0);
3987 }
3988 /* unmap skb header data */
3989 dma_unmap_single(tx_ring->dev,
3990 dma_unmap_addr(tx_buf, dma),
3991 dma_unmap_len(tx_buf, len),
3992 DMA_TO_DEVICE);
3993 if (tx_buf->tx_flags & I40E_TX_FLAGS_FD_SB)
3994 kfree(tx_buf->raw_buf);
3995
3996 tx_buf->raw_buf = NULL;
3997 tx_buf->tx_flags = 0;
3998 tx_buf->next_to_watch = NULL;
3999 dma_unmap_len_set(tx_buf, len, 0);
4000 tx_desc->buffer_addr = 0;
4001 tx_desc->cmd_type_offset_bsz = 0;
4002
4003 /* move us past the eop_desc for start of next FD desc */
4004 tx_buf++;
4005 tx_desc++;
4006 i++;
4007 if (unlikely(!i)) {
4008 i -= tx_ring->count;
4009 tx_buf = tx_ring->tx_bi;
4010 tx_desc = I40E_TX_DESC(tx_ring, 0);
4011 }
4012
4013 /* update budget accounting */
4014 budget--;
4015 } while (likely(budget));
4016
4017 i += tx_ring->count;
4018 tx_ring->next_to_clean = i;
4019
4020 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED)
4021 i40e_irq_dynamic_enable(vsi, tx_ring->q_vector->v_idx);
4022
4023 return budget > 0;
4024 }
4025
4026 /**
4027 * i40e_fdir_clean_ring - Interrupt Handler for FDIR SB ring
4028 * @irq: interrupt number
4029 * @data: pointer to a q_vector
4030 **/
4031 static irqreturn_t i40e_fdir_clean_ring(int irq, void *data)
4032 {
4033 struct i40e_q_vector *q_vector = data;
4034 struct i40e_vsi *vsi;
4035
4036 if (!q_vector->tx.ring)
4037 return IRQ_HANDLED;
4038
4039 vsi = q_vector->tx.ring->vsi;
4040 i40e_clean_fdir_tx_irq(q_vector->tx.ring, vsi->work_limit);
4041
4042 return IRQ_HANDLED;
4043 }
4044
4045 /**
4046 * i40e_map_vector_to_qp - Assigns the queue pair to the vector
4047 * @vsi: the VSI being configured
4048 * @v_idx: vector index
4049 * @qp_idx: queue pair index
4050 **/
4051 static void i40e_map_vector_to_qp(struct i40e_vsi *vsi, int v_idx, int qp_idx)
4052 {
4053 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
4054 struct i40e_ring *tx_ring = vsi->tx_rings[qp_idx];
4055 struct i40e_ring *rx_ring = vsi->rx_rings[qp_idx];
4056
4057 tx_ring->q_vector = q_vector;
4058 tx_ring->next = q_vector->tx.ring;
4059 q_vector->tx.ring = tx_ring;
4060 q_vector->tx.count++;
4061
4062 /* Place XDP Tx ring in the same q_vector ring list as regular Tx */
4063 if (i40e_enabled_xdp_vsi(vsi)) {
4064 struct i40e_ring *xdp_ring = vsi->xdp_rings[qp_idx];
4065
4066 xdp_ring->q_vector = q_vector;
4067 xdp_ring->next = q_vector->tx.ring;
4068 q_vector->tx.ring = xdp_ring;
4069 q_vector->tx.count++;
4070 }
4071
4072 rx_ring->q_vector = q_vector;
4073 rx_ring->next = q_vector->rx.ring;
4074 q_vector->rx.ring = rx_ring;
4075 q_vector->rx.count++;
4076 }
4077
4078 /**
4079 * i40e_vsi_map_rings_to_vectors - Maps descriptor rings to vectors
4080 * @vsi: the VSI being configured
4081 *
4082 * This function maps descriptor rings to the queue-specific vectors
4083 * we were allotted through the MSI-X enabling code. Ideally, we'd have
4084 * one vector per queue pair, but on a constrained vector budget, we
4085 * group the queue pairs as "efficiently" as possible.
4086 **/
4087 static void i40e_vsi_map_rings_to_vectors(struct i40e_vsi *vsi)
4088 {
4089 int qp_remaining = vsi->num_queue_pairs;
4090 int q_vectors = vsi->num_q_vectors;
4091 int num_ringpairs;
4092 int v_start = 0;
4093 int qp_idx = 0;
4094
4095 /* If we don't have enough vectors for a 1-to-1 mapping, we'll have to
4096 * group them so there are multiple queues per vector.
4097 * It is also important to go through all the vectors available to be
4098 * sure that if we don't use all the vectors, that the remaining vectors
4099 * are cleared. This is especially important when decreasing the
4100 * number of queues in use.
4101 */
4102 for (; v_start < q_vectors; v_start++) {
4103 struct i40e_q_vector *q_vector = vsi->q_vectors[v_start];
4104
4105 num_ringpairs = DIV_ROUND_UP(qp_remaining, q_vectors - v_start);
4106
4107 q_vector->num_ringpairs = num_ringpairs;
4108
4109 q_vector->rx.count = 0;
4110 q_vector->tx.count = 0;
4111 q_vector->rx.ring = NULL;
4112 q_vector->tx.ring = NULL;
4113
4114 while (num_ringpairs--) {
4115 i40e_map_vector_to_qp(vsi, v_start, qp_idx);
4116 qp_idx++;
4117 qp_remaining--;
4118 }
4119 }
4120 }
4121
4122 /**
4123 * i40e_vsi_request_irq - Request IRQ from the OS
4124 * @vsi: the VSI being configured
4125 * @basename: name for the vector
4126 **/
4127 static int i40e_vsi_request_irq(struct i40e_vsi *vsi, char *basename)
4128 {
4129 struct i40e_pf *pf = vsi->back;
4130 int err;
4131
4132 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
4133 err = i40e_vsi_request_irq_msix(vsi, basename);
4134 else if (pf->flags & I40E_FLAG_MSI_ENABLED)
4135 err = request_irq(pf->pdev->irq, i40e_intr, 0,
4136 pf->int_name, pf);
4137 else
4138 err = request_irq(pf->pdev->irq, i40e_intr, IRQF_SHARED,
4139 pf->int_name, pf);
4140
4141 if (err)
4142 dev_info(&pf->pdev->dev, "request_irq failed, Error %d\n", err);
4143
4144 return err;
4145 }
4146
4147 #ifdef CONFIG_NET_POLL_CONTROLLER
4148 /**
4149 * i40e_netpoll - A Polling 'interrupt' handler
4150 * @netdev: network interface device structure
4151 *
4152 * This is used by netconsole to send skbs without having to re-enable
4153 * interrupts. It's not called while the normal interrupt routine is executing.
4154 **/
4155 static void i40e_netpoll(struct net_device *netdev)
4156 {
4157 struct i40e_netdev_priv *np = netdev_priv(netdev);
4158 struct i40e_vsi *vsi = np->vsi;
4159 struct i40e_pf *pf = vsi->back;
4160 int i;
4161
4162 /* if interface is down do nothing */
4163 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4164 return;
4165
4166 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4167 for (i = 0; i < vsi->num_q_vectors; i++)
4168 i40e_msix_clean_rings(0, vsi->q_vectors[i]);
4169 } else {
4170 i40e_intr(pf->pdev->irq, netdev);
4171 }
4172 }
4173 #endif
4174
4175 #define I40E_QTX_ENA_WAIT_COUNT 50
4176
4177 /**
4178 * i40e_pf_txq_wait - Wait for a PF's Tx queue to be enabled or disabled
4179 * @pf: the PF being configured
4180 * @pf_q: the PF queue
4181 * @enable: enable or disable state of the queue
4182 *
4183 * This routine will wait for the given Tx queue of the PF to reach the
4184 * enabled or disabled state.
4185 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4186 * multiple retries; else will return 0 in case of success.
4187 **/
4188 static int i40e_pf_txq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4189 {
4190 int i;
4191 u32 tx_reg;
4192
4193 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4194 tx_reg = rd32(&pf->hw, I40E_QTX_ENA(pf_q));
4195 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4196 break;
4197
4198 usleep_range(10, 20);
4199 }
4200 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4201 return -ETIMEDOUT;
4202
4203 return 0;
4204 }
4205
4206 /**
4207 * i40e_control_tx_q - Start or stop a particular Tx queue
4208 * @pf: the PF structure
4209 * @pf_q: the PF queue to configure
4210 * @enable: start or stop the queue
4211 *
4212 * This function enables or disables a single queue. Note that any delay
4213 * required after the operation is expected to be handled by the caller of
4214 * this function.
4215 **/
4216 static void i40e_control_tx_q(struct i40e_pf *pf, int pf_q, bool enable)
4217 {
4218 struct i40e_hw *hw = &pf->hw;
4219 u32 tx_reg;
4220 int i;
4221
4222 /* warn the TX unit of coming changes */
4223 i40e_pre_tx_queue_cfg(&pf->hw, pf_q, enable);
4224 if (!enable)
4225 usleep_range(10, 20);
4226
4227 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4228 tx_reg = rd32(hw, I40E_QTX_ENA(pf_q));
4229 if (((tx_reg >> I40E_QTX_ENA_QENA_REQ_SHIFT) & 1) ==
4230 ((tx_reg >> I40E_QTX_ENA_QENA_STAT_SHIFT) & 1))
4231 break;
4232 usleep_range(1000, 2000);
4233 }
4234
4235 /* Skip if the queue is already in the requested state */
4236 if (enable == !!(tx_reg & I40E_QTX_ENA_QENA_STAT_MASK))
4237 return;
4238
4239 /* turn on/off the queue */
4240 if (enable) {
4241 wr32(hw, I40E_QTX_HEAD(pf_q), 0);
4242 tx_reg |= I40E_QTX_ENA_QENA_REQ_MASK;
4243 } else {
4244 tx_reg &= ~I40E_QTX_ENA_QENA_REQ_MASK;
4245 }
4246
4247 wr32(hw, I40E_QTX_ENA(pf_q), tx_reg);
4248 }
4249
4250 /**
4251 * i40e_control_wait_tx_q - Start/stop Tx queue and wait for completion
4252 * @seid: VSI SEID
4253 * @pf: the PF structure
4254 * @pf_q: the PF queue to configure
4255 * @is_xdp: true if the queue is used for XDP
4256 * @enable: start or stop the queue
4257 **/
4258 static int i40e_control_wait_tx_q(int seid, struct i40e_pf *pf, int pf_q,
4259 bool is_xdp, bool enable)
4260 {
4261 int ret;
4262
4263 i40e_control_tx_q(pf, pf_q, enable);
4264
4265 /* wait for the change to finish */
4266 ret = i40e_pf_txq_wait(pf, pf_q, enable);
4267 if (ret) {
4268 dev_info(&pf->pdev->dev,
4269 "VSI seid %d %sTx ring %d %sable timeout\n",
4270 seid, (is_xdp ? "XDP " : ""), pf_q,
4271 (enable ? "en" : "dis"));
4272 }
4273
4274 return ret;
4275 }
4276
4277 /**
4278 * i40e_vsi_control_tx - Start or stop a VSI's rings
4279 * @vsi: the VSI being configured
4280 * @enable: start or stop the rings
4281 **/
4282 static int i40e_vsi_control_tx(struct i40e_vsi *vsi, bool enable)
4283 {
4284 struct i40e_pf *pf = vsi->back;
4285 int i, pf_q, ret = 0;
4286
4287 pf_q = vsi->base_queue;
4288 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4289 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4290 pf_q,
4291 false /*is xdp*/, enable);
4292 if (ret)
4293 break;
4294
4295 if (!i40e_enabled_xdp_vsi(vsi))
4296 continue;
4297
4298 ret = i40e_control_wait_tx_q(vsi->seid, pf,
4299 pf_q + vsi->alloc_queue_pairs,
4300 true /*is xdp*/, enable);
4301 if (ret)
4302 break;
4303 }
4304
4305 return ret;
4306 }
4307
4308 /**
4309 * i40e_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4310 * @pf: the PF being configured
4311 * @pf_q: the PF queue
4312 * @enable: enable or disable state of the queue
4313 *
4314 * This routine will wait for the given Rx queue of the PF to reach the
4315 * enabled or disabled state.
4316 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4317 * multiple retries; else will return 0 in case of success.
4318 **/
4319 static int i40e_pf_rxq_wait(struct i40e_pf *pf, int pf_q, bool enable)
4320 {
4321 int i;
4322 u32 rx_reg;
4323
4324 for (i = 0; i < I40E_QUEUE_WAIT_RETRY_LIMIT; i++) {
4325 rx_reg = rd32(&pf->hw, I40E_QRX_ENA(pf_q));
4326 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4327 break;
4328
4329 usleep_range(10, 20);
4330 }
4331 if (i >= I40E_QUEUE_WAIT_RETRY_LIMIT)
4332 return -ETIMEDOUT;
4333
4334 return 0;
4335 }
4336
4337 /**
4338 * i40e_control_rx_q - Start or stop a particular Rx queue
4339 * @pf: the PF structure
4340 * @pf_q: the PF queue to configure
4341 * @enable: start or stop the queue
4342 *
4343 * This function enables or disables a single queue. Note that any delay
4344 * required after the operation is expected to be handled by the caller of
4345 * this function.
4346 **/
4347 static void i40e_control_rx_q(struct i40e_pf *pf, int pf_q, bool enable)
4348 {
4349 struct i40e_hw *hw = &pf->hw;
4350 u32 rx_reg;
4351 int i;
4352
4353 for (i = 0; i < I40E_QTX_ENA_WAIT_COUNT; i++) {
4354 rx_reg = rd32(hw, I40E_QRX_ENA(pf_q));
4355 if (((rx_reg >> I40E_QRX_ENA_QENA_REQ_SHIFT) & 1) ==
4356 ((rx_reg >> I40E_QRX_ENA_QENA_STAT_SHIFT) & 1))
4357 break;
4358 usleep_range(1000, 2000);
4359 }
4360
4361 /* Skip if the queue is already in the requested state */
4362 if (enable == !!(rx_reg & I40E_QRX_ENA_QENA_STAT_MASK))
4363 return;
4364
4365 /* turn on/off the queue */
4366 if (enable)
4367 rx_reg |= I40E_QRX_ENA_QENA_REQ_MASK;
4368 else
4369 rx_reg &= ~I40E_QRX_ENA_QENA_REQ_MASK;
4370
4371 wr32(hw, I40E_QRX_ENA(pf_q), rx_reg);
4372 }
4373
4374 /**
4375 * i40e_vsi_control_rx - Start or stop a VSI's rings
4376 * @vsi: the VSI being configured
4377 * @enable: start or stop the rings
4378 **/
4379 static int i40e_vsi_control_rx(struct i40e_vsi *vsi, bool enable)
4380 {
4381 struct i40e_pf *pf = vsi->back;
4382 int i, pf_q, ret = 0;
4383
4384 pf_q = vsi->base_queue;
4385 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4386 i40e_control_rx_q(pf, pf_q, enable);
4387
4388 /* wait for the change to finish */
4389 ret = i40e_pf_rxq_wait(pf, pf_q, enable);
4390 if (ret) {
4391 dev_info(&pf->pdev->dev,
4392 "VSI seid %d Rx ring %d %sable timeout\n",
4393 vsi->seid, pf_q, (enable ? "en" : "dis"));
4394 break;
4395 }
4396 }
4397
4398 /* Due to HW errata, on Rx disable only, the register can indicate done
4399 * before it really is. Needs 50ms to be sure
4400 */
4401 if (!enable)
4402 mdelay(50);
4403
4404 return ret;
4405 }
4406
4407 /**
4408 * i40e_vsi_start_rings - Start a VSI's rings
4409 * @vsi: the VSI being configured
4410 **/
4411 int i40e_vsi_start_rings(struct i40e_vsi *vsi)
4412 {
4413 int ret = 0;
4414
4415 /* do rx first for enable and last for disable */
4416 ret = i40e_vsi_control_rx(vsi, true);
4417 if (ret)
4418 return ret;
4419 ret = i40e_vsi_control_tx(vsi, true);
4420
4421 return ret;
4422 }
4423
4424 /**
4425 * i40e_vsi_stop_rings - Stop a VSI's rings
4426 * @vsi: the VSI being configured
4427 **/
4428 void i40e_vsi_stop_rings(struct i40e_vsi *vsi)
4429 {
4430 /* When port TX is suspended, don't wait */
4431 if (test_bit(__I40E_PORT_SUSPENDED, vsi->back->state))
4432 return i40e_vsi_stop_rings_no_wait(vsi);
4433
4434 /* do rx first for enable and last for disable
4435 * Ignore return value, we need to shutdown whatever we can
4436 */
4437 i40e_vsi_control_tx(vsi, false);
4438 i40e_vsi_control_rx(vsi, false);
4439 }
4440
4441 /**
4442 * i40e_vsi_stop_rings_no_wait - Stop a VSI's rings and do not delay
4443 * @vsi: the VSI being shutdown
4444 *
4445 * This function stops all the rings for a VSI but does not delay to verify
4446 * that rings have been disabled. It is expected that the caller is shutting
4447 * down multiple VSIs at once and will delay together for all the VSIs after
4448 * initiating the shutdown. This is particularly useful for shutting down lots
4449 * of VFs together. Otherwise, a large delay can be incurred while configuring
4450 * each VSI in serial.
4451 **/
4452 void i40e_vsi_stop_rings_no_wait(struct i40e_vsi *vsi)
4453 {
4454 struct i40e_pf *pf = vsi->back;
4455 int i, pf_q;
4456
4457 pf_q = vsi->base_queue;
4458 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4459 i40e_control_tx_q(pf, pf_q, false);
4460 i40e_control_rx_q(pf, pf_q, false);
4461 }
4462 }
4463
4464 /**
4465 * i40e_vsi_free_irq - Free the irq association with the OS
4466 * @vsi: the VSI being configured
4467 **/
4468 static void i40e_vsi_free_irq(struct i40e_vsi *vsi)
4469 {
4470 struct i40e_pf *pf = vsi->back;
4471 struct i40e_hw *hw = &pf->hw;
4472 int base = vsi->base_vector;
4473 u32 val, qp;
4474 int i;
4475
4476 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4477 if (!vsi->q_vectors)
4478 return;
4479
4480 if (!vsi->irqs_ready)
4481 return;
4482
4483 vsi->irqs_ready = false;
4484 for (i = 0; i < vsi->num_q_vectors; i++) {
4485 int irq_num;
4486 u16 vector;
4487
4488 vector = i + base;
4489 irq_num = pf->msix_entries[vector].vector;
4490
4491 /* free only the irqs that were actually requested */
4492 if (!vsi->q_vectors[i] ||
4493 !vsi->q_vectors[i]->num_ringpairs)
4494 continue;
4495
4496 /* clear the affinity notifier in the IRQ descriptor */
4497 irq_set_affinity_notifier(irq_num, NULL);
4498 /* remove our suggested affinity mask for this IRQ */
4499 irq_set_affinity_hint(irq_num, NULL);
4500 synchronize_irq(irq_num);
4501 free_irq(irq_num, vsi->q_vectors[i]);
4502
4503 /* Tear down the interrupt queue link list
4504 *
4505 * We know that they come in pairs and always
4506 * the Rx first, then the Tx. To clear the
4507 * link list, stick the EOL value into the
4508 * next_q field of the registers.
4509 */
4510 val = rd32(hw, I40E_PFINT_LNKLSTN(vector - 1));
4511 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
4512 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4513 val |= I40E_QUEUE_END_OF_LIST
4514 << I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4515 wr32(hw, I40E_PFINT_LNKLSTN(vector - 1), val);
4516
4517 while (qp != I40E_QUEUE_END_OF_LIST) {
4518 u32 next;
4519
4520 val = rd32(hw, I40E_QINT_RQCTL(qp));
4521
4522 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
4523 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
4524 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
4525 I40E_QINT_RQCTL_INTEVENT_MASK);
4526
4527 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
4528 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
4529
4530 wr32(hw, I40E_QINT_RQCTL(qp), val);
4531
4532 val = rd32(hw, I40E_QINT_TQCTL(qp));
4533
4534 next = (val & I40E_QINT_TQCTL_NEXTQ_INDX_MASK)
4535 >> I40E_QINT_TQCTL_NEXTQ_INDX_SHIFT;
4536
4537 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
4538 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
4539 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
4540 I40E_QINT_TQCTL_INTEVENT_MASK);
4541
4542 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
4543 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
4544
4545 wr32(hw, I40E_QINT_TQCTL(qp), val);
4546 qp = next;
4547 }
4548 }
4549 } else {
4550 free_irq(pf->pdev->irq, pf);
4551
4552 val = rd32(hw, I40E_PFINT_LNKLST0);
4553 qp = (val & I40E_PFINT_LNKLSTN_FIRSTQ_INDX_MASK)
4554 >> I40E_PFINT_LNKLSTN_FIRSTQ_INDX_SHIFT;
4555 val |= I40E_QUEUE_END_OF_LIST
4556 << I40E_PFINT_LNKLST0_FIRSTQ_INDX_SHIFT;
4557 wr32(hw, I40E_PFINT_LNKLST0, val);
4558
4559 val = rd32(hw, I40E_QINT_RQCTL(qp));
4560 val &= ~(I40E_QINT_RQCTL_MSIX_INDX_MASK |
4561 I40E_QINT_RQCTL_MSIX0_INDX_MASK |
4562 I40E_QINT_RQCTL_CAUSE_ENA_MASK |
4563 I40E_QINT_RQCTL_INTEVENT_MASK);
4564
4565 val |= (I40E_QINT_RQCTL_ITR_INDX_MASK |
4566 I40E_QINT_RQCTL_NEXTQ_INDX_MASK);
4567
4568 wr32(hw, I40E_QINT_RQCTL(qp), val);
4569
4570 val = rd32(hw, I40E_QINT_TQCTL(qp));
4571
4572 val &= ~(I40E_QINT_TQCTL_MSIX_INDX_MASK |
4573 I40E_QINT_TQCTL_MSIX0_INDX_MASK |
4574 I40E_QINT_TQCTL_CAUSE_ENA_MASK |
4575 I40E_QINT_TQCTL_INTEVENT_MASK);
4576
4577 val |= (I40E_QINT_TQCTL_ITR_INDX_MASK |
4578 I40E_QINT_TQCTL_NEXTQ_INDX_MASK);
4579
4580 wr32(hw, I40E_QINT_TQCTL(qp), val);
4581 }
4582 }
4583
4584 /**
4585 * i40e_free_q_vector - Free memory allocated for specific interrupt vector
4586 * @vsi: the VSI being configured
4587 * @v_idx: Index of vector to be freed
4588 *
4589 * This function frees the memory allocated to the q_vector. In addition if
4590 * NAPI is enabled it will delete any references to the NAPI struct prior
4591 * to freeing the q_vector.
4592 **/
4593 static void i40e_free_q_vector(struct i40e_vsi *vsi, int v_idx)
4594 {
4595 struct i40e_q_vector *q_vector = vsi->q_vectors[v_idx];
4596 struct i40e_ring *ring;
4597
4598 if (!q_vector)
4599 return;
4600
4601 /* disassociate q_vector from rings */
4602 i40e_for_each_ring(ring, q_vector->tx)
4603 ring->q_vector = NULL;
4604
4605 i40e_for_each_ring(ring, q_vector->rx)
4606 ring->q_vector = NULL;
4607
4608 /* only VSI w/ an associated netdev is set up w/ NAPI */
4609 if (vsi->netdev)
4610 netif_napi_del(&q_vector->napi);
4611
4612 vsi->q_vectors[v_idx] = NULL;
4613
4614 kfree_rcu(q_vector, rcu);
4615 }
4616
4617 /**
4618 * i40e_vsi_free_q_vectors - Free memory allocated for interrupt vectors
4619 * @vsi: the VSI being un-configured
4620 *
4621 * This frees the memory allocated to the q_vectors and
4622 * deletes references to the NAPI struct.
4623 **/
4624 static void i40e_vsi_free_q_vectors(struct i40e_vsi *vsi)
4625 {
4626 int v_idx;
4627
4628 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
4629 i40e_free_q_vector(vsi, v_idx);
4630 }
4631
4632 /**
4633 * i40e_reset_interrupt_capability - Disable interrupt setup in OS
4634 * @pf: board private structure
4635 **/
4636 static void i40e_reset_interrupt_capability(struct i40e_pf *pf)
4637 {
4638 /* If we're in Legacy mode, the interrupt was cleaned in vsi_close */
4639 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
4640 pci_disable_msix(pf->pdev);
4641 kfree(pf->msix_entries);
4642 pf->msix_entries = NULL;
4643 kfree(pf->irq_pile);
4644 pf->irq_pile = NULL;
4645 } else if (pf->flags & I40E_FLAG_MSI_ENABLED) {
4646 pci_disable_msi(pf->pdev);
4647 }
4648 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED);
4649 }
4650
4651 /**
4652 * i40e_clear_interrupt_scheme - Clear the current interrupt scheme settings
4653 * @pf: board private structure
4654 *
4655 * We go through and clear interrupt specific resources and reset the structure
4656 * to pre-load conditions
4657 **/
4658 static void i40e_clear_interrupt_scheme(struct i40e_pf *pf)
4659 {
4660 int i;
4661
4662 i40e_free_misc_vector(pf);
4663
4664 i40e_put_lump(pf->irq_pile, pf->iwarp_base_vector,
4665 I40E_IWARP_IRQ_PILE_ID);
4666
4667 i40e_put_lump(pf->irq_pile, 0, I40E_PILE_VALID_BIT-1);
4668 for (i = 0; i < pf->num_alloc_vsi; i++)
4669 if (pf->vsi[i])
4670 i40e_vsi_free_q_vectors(pf->vsi[i]);
4671 i40e_reset_interrupt_capability(pf);
4672 }
4673
4674 /**
4675 * i40e_napi_enable_all - Enable NAPI for all q_vectors in the VSI
4676 * @vsi: the VSI being configured
4677 **/
4678 static void i40e_napi_enable_all(struct i40e_vsi *vsi)
4679 {
4680 int q_idx;
4681
4682 if (!vsi->netdev)
4683 return;
4684
4685 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
4686 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
4687
4688 if (q_vector->rx.ring || q_vector->tx.ring)
4689 napi_enable(&q_vector->napi);
4690 }
4691 }
4692
4693 /**
4694 * i40e_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4695 * @vsi: the VSI being configured
4696 **/
4697 static void i40e_napi_disable_all(struct i40e_vsi *vsi)
4698 {
4699 int q_idx;
4700
4701 if (!vsi->netdev)
4702 return;
4703
4704 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++) {
4705 struct i40e_q_vector *q_vector = vsi->q_vectors[q_idx];
4706
4707 if (q_vector->rx.ring || q_vector->tx.ring)
4708 napi_disable(&q_vector->napi);
4709 }
4710 }
4711
4712 /**
4713 * i40e_vsi_close - Shut down a VSI
4714 * @vsi: the vsi to be quelled
4715 **/
4716 static void i40e_vsi_close(struct i40e_vsi *vsi)
4717 {
4718 struct i40e_pf *pf = vsi->back;
4719 if (!test_and_set_bit(__I40E_VSI_DOWN, vsi->state))
4720 i40e_down(vsi);
4721 i40e_vsi_free_irq(vsi);
4722 i40e_vsi_free_tx_resources(vsi);
4723 i40e_vsi_free_rx_resources(vsi);
4724 vsi->current_netdev_flags = 0;
4725 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED;
4726 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
4727 pf->flags |= I40E_FLAG_CLIENT_RESET;
4728 }
4729
4730 /**
4731 * i40e_quiesce_vsi - Pause a given VSI
4732 * @vsi: the VSI being paused
4733 **/
4734 static void i40e_quiesce_vsi(struct i40e_vsi *vsi)
4735 {
4736 if (test_bit(__I40E_VSI_DOWN, vsi->state))
4737 return;
4738
4739 set_bit(__I40E_VSI_NEEDS_RESTART, vsi->state);
4740 if (vsi->netdev && netif_running(vsi->netdev))
4741 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
4742 else
4743 i40e_vsi_close(vsi);
4744 }
4745
4746 /**
4747 * i40e_unquiesce_vsi - Resume a given VSI
4748 * @vsi: the VSI being resumed
4749 **/
4750 static void i40e_unquiesce_vsi(struct i40e_vsi *vsi)
4751 {
4752 if (!test_and_clear_bit(__I40E_VSI_NEEDS_RESTART, vsi->state))
4753 return;
4754
4755 if (vsi->netdev && netif_running(vsi->netdev))
4756 vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
4757 else
4758 i40e_vsi_open(vsi); /* this clears the DOWN bit */
4759 }
4760
4761 /**
4762 * i40e_pf_quiesce_all_vsi - Pause all VSIs on a PF
4763 * @pf: the PF
4764 **/
4765 static void i40e_pf_quiesce_all_vsi(struct i40e_pf *pf)
4766 {
4767 int v;
4768
4769 for (v = 0; v < pf->num_alloc_vsi; v++) {
4770 if (pf->vsi[v])
4771 i40e_quiesce_vsi(pf->vsi[v]);
4772 }
4773 }
4774
4775 /**
4776 * i40e_pf_unquiesce_all_vsi - Resume all VSIs on a PF
4777 * @pf: the PF
4778 **/
4779 static void i40e_pf_unquiesce_all_vsi(struct i40e_pf *pf)
4780 {
4781 int v;
4782
4783 for (v = 0; v < pf->num_alloc_vsi; v++) {
4784 if (pf->vsi[v])
4785 i40e_unquiesce_vsi(pf->vsi[v]);
4786 }
4787 }
4788
4789 /**
4790 * i40e_vsi_wait_queues_disabled - Wait for VSI's queues to be disabled
4791 * @vsi: the VSI being configured
4792 *
4793 * Wait until all queues on a given VSI have been disabled.
4794 **/
4795 int i40e_vsi_wait_queues_disabled(struct i40e_vsi *vsi)
4796 {
4797 struct i40e_pf *pf = vsi->back;
4798 int i, pf_q, ret;
4799
4800 pf_q = vsi->base_queue;
4801 for (i = 0; i < vsi->num_queue_pairs; i++, pf_q++) {
4802 /* Check and wait for the Tx queue */
4803 ret = i40e_pf_txq_wait(pf, pf_q, false);
4804 if (ret) {
4805 dev_info(&pf->pdev->dev,
4806 "VSI seid %d Tx ring %d disable timeout\n",
4807 vsi->seid, pf_q);
4808 return ret;
4809 }
4810
4811 if (!i40e_enabled_xdp_vsi(vsi))
4812 goto wait_rx;
4813
4814 /* Check and wait for the XDP Tx queue */
4815 ret = i40e_pf_txq_wait(pf, pf_q + vsi->alloc_queue_pairs,
4816 false);
4817 if (ret) {
4818 dev_info(&pf->pdev->dev,
4819 "VSI seid %d XDP Tx ring %d disable timeout\n",
4820 vsi->seid, pf_q);
4821 return ret;
4822 }
4823 wait_rx:
4824 /* Check and wait for the Rx queue */
4825 ret = i40e_pf_rxq_wait(pf, pf_q, false);
4826 if (ret) {
4827 dev_info(&pf->pdev->dev,
4828 "VSI seid %d Rx ring %d disable timeout\n",
4829 vsi->seid, pf_q);
4830 return ret;
4831 }
4832 }
4833
4834 return 0;
4835 }
4836
4837 #ifdef CONFIG_I40E_DCB
4838 /**
4839 * i40e_pf_wait_queues_disabled - Wait for all queues of PF VSIs to be disabled
4840 * @pf: the PF
4841 *
4842 * This function waits for the queues to be in disabled state for all the
4843 * VSIs that are managed by this PF.
4844 **/
4845 static int i40e_pf_wait_queues_disabled(struct i40e_pf *pf)
4846 {
4847 int v, ret = 0;
4848
4849 for (v = 0; v < pf->hw.func_caps.num_vsis; v++) {
4850 if (pf->vsi[v]) {
4851 ret = i40e_vsi_wait_queues_disabled(pf->vsi[v]);
4852 if (ret)
4853 break;
4854 }
4855 }
4856
4857 return ret;
4858 }
4859
4860 #endif
4861
4862 /**
4863 * i40e_detect_recover_hung_queue - Function to detect and recover hung_queue
4864 * @q_idx: TX queue number
4865 * @vsi: Pointer to VSI struct
4866 *
4867 * This function checks specified queue for given VSI. Detects hung condition.
4868 * We proactively detect hung TX queues by checking if interrupts are disabled
4869 * but there are pending descriptors. If it appears hung, attempt to recover
4870 * by triggering a SW interrupt.
4871 **/
4872 static void i40e_detect_recover_hung_queue(int q_idx, struct i40e_vsi *vsi)
4873 {
4874 struct i40e_ring *tx_ring = NULL;
4875 struct i40e_pf *pf;
4876 u32 val, tx_pending;
4877 int i;
4878
4879 pf = vsi->back;
4880
4881 /* now that we have an index, find the tx_ring struct */
4882 for (i = 0; i < vsi->num_queue_pairs; i++) {
4883 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc) {
4884 if (q_idx == vsi->tx_rings[i]->queue_index) {
4885 tx_ring = vsi->tx_rings[i];
4886 break;
4887 }
4888 }
4889 }
4890
4891 if (!tx_ring)
4892 return;
4893
4894 /* Read interrupt register */
4895 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
4896 val = rd32(&pf->hw,
4897 I40E_PFINT_DYN_CTLN(tx_ring->q_vector->v_idx +
4898 tx_ring->vsi->base_vector - 1));
4899 else
4900 val = rd32(&pf->hw, I40E_PFINT_DYN_CTL0);
4901
4902 tx_pending = i40e_get_tx_pending(tx_ring);
4903
4904 /* Interrupts are disabled and TX pending is non-zero,
4905 * trigger the SW interrupt (don't wait). Worst case
4906 * there will be one extra interrupt which may result
4907 * into not cleaning any queues because queues are cleaned.
4908 */
4909 if (tx_pending && (!(val & I40E_PFINT_DYN_CTLN_INTENA_MASK)))
4910 i40e_force_wb(vsi, tx_ring->q_vector);
4911 }
4912
4913 /**
4914 * i40e_detect_recover_hung - Function to detect and recover hung_queues
4915 * @pf: pointer to PF struct
4916 *
4917 * LAN VSI has netdev and netdev has TX queues. This function is to check
4918 * each of those TX queues if they are hung, trigger recovery by issuing
4919 * SW interrupt.
4920 **/
4921 static void i40e_detect_recover_hung(struct i40e_pf *pf)
4922 {
4923 struct net_device *netdev;
4924 struct i40e_vsi *vsi;
4925 unsigned int i;
4926
4927 /* Only for LAN VSI */
4928 vsi = pf->vsi[pf->lan_vsi];
4929
4930 if (!vsi)
4931 return;
4932
4933 /* Make sure, VSI state is not DOWN/RECOVERY_PENDING */
4934 if (test_bit(__I40E_VSI_DOWN, vsi->back->state) ||
4935 test_bit(__I40E_RESET_RECOVERY_PENDING, vsi->back->state))
4936 return;
4937
4938 /* Make sure type is MAIN VSI */
4939 if (vsi->type != I40E_VSI_MAIN)
4940 return;
4941
4942 netdev = vsi->netdev;
4943 if (!netdev)
4944 return;
4945
4946 /* Bail out if netif_carrier is not OK */
4947 if (!netif_carrier_ok(netdev))
4948 return;
4949
4950 /* Go thru' TX queues for netdev */
4951 for (i = 0; i < netdev->num_tx_queues; i++) {
4952 struct netdev_queue *q;
4953
4954 q = netdev_get_tx_queue(netdev, i);
4955 if (q)
4956 i40e_detect_recover_hung_queue(i, vsi);
4957 }
4958 }
4959
4960 /**
4961 * i40e_get_iscsi_tc_map - Return TC map for iSCSI APP
4962 * @pf: pointer to PF
4963 *
4964 * Get TC map for ISCSI PF type that will include iSCSI TC
4965 * and LAN TC.
4966 **/
4967 static u8 i40e_get_iscsi_tc_map(struct i40e_pf *pf)
4968 {
4969 struct i40e_dcb_app_priority_table app;
4970 struct i40e_hw *hw = &pf->hw;
4971 u8 enabled_tc = 1; /* TC0 is always enabled */
4972 u8 tc, i;
4973 /* Get the iSCSI APP TLV */
4974 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
4975
4976 for (i = 0; i < dcbcfg->numapps; i++) {
4977 app = dcbcfg->app[i];
4978 if (app.selector == I40E_APP_SEL_TCPIP &&
4979 app.protocolid == I40E_APP_PROTOID_ISCSI) {
4980 tc = dcbcfg->etscfg.prioritytable[app.priority];
4981 enabled_tc |= BIT(tc);
4982 break;
4983 }
4984 }
4985
4986 return enabled_tc;
4987 }
4988
4989 /**
4990 * i40e_dcb_get_num_tc - Get the number of TCs from DCBx config
4991 * @dcbcfg: the corresponding DCBx configuration structure
4992 *
4993 * Return the number of TCs from given DCBx configuration
4994 **/
4995 static u8 i40e_dcb_get_num_tc(struct i40e_dcbx_config *dcbcfg)
4996 {
4997 int i, tc_unused = 0;
4998 u8 num_tc = 0;
4999 u8 ret = 0;
5000
5001 /* Scan the ETS Config Priority Table to find
5002 * traffic class enabled for a given priority
5003 * and create a bitmask of enabled TCs
5004 */
5005 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++)
5006 num_tc |= BIT(dcbcfg->etscfg.prioritytable[i]);
5007
5008 /* Now scan the bitmask to check for
5009 * contiguous TCs starting with TC0
5010 */
5011 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5012 if (num_tc & BIT(i)) {
5013 if (!tc_unused) {
5014 ret++;
5015 } else {
5016 pr_err("Non-contiguous TC - Disabling DCB\n");
5017 return 1;
5018 }
5019 } else {
5020 tc_unused = 1;
5021 }
5022 }
5023
5024 /* There is always at least TC0 */
5025 if (!ret)
5026 ret = 1;
5027
5028 return ret;
5029 }
5030
5031 /**
5032 * i40e_dcb_get_enabled_tc - Get enabled traffic classes
5033 * @dcbcfg: the corresponding DCBx configuration structure
5034 *
5035 * Query the current DCB configuration and return the number of
5036 * traffic classes enabled from the given DCBX config
5037 **/
5038 static u8 i40e_dcb_get_enabled_tc(struct i40e_dcbx_config *dcbcfg)
5039 {
5040 u8 num_tc = i40e_dcb_get_num_tc(dcbcfg);
5041 u8 enabled_tc = 1;
5042 u8 i;
5043
5044 for (i = 0; i < num_tc; i++)
5045 enabled_tc |= BIT(i);
5046
5047 return enabled_tc;
5048 }
5049
5050 /**
5051 * i40e_mqprio_get_enabled_tc - Get enabled traffic classes
5052 * @pf: PF being queried
5053 *
5054 * Query the current MQPRIO configuration and return the number of
5055 * traffic classes enabled.
5056 **/
5057 static u8 i40e_mqprio_get_enabled_tc(struct i40e_pf *pf)
5058 {
5059 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
5060 u8 num_tc = vsi->mqprio_qopt.qopt.num_tc;
5061 u8 enabled_tc = 1, i;
5062
5063 for (i = 1; i < num_tc; i++)
5064 enabled_tc |= BIT(i);
5065 return enabled_tc;
5066 }
5067
5068 /**
5069 * i40e_pf_get_num_tc - Get enabled traffic classes for PF
5070 * @pf: PF being queried
5071 *
5072 * Return number of traffic classes enabled for the given PF
5073 **/
5074 static u8 i40e_pf_get_num_tc(struct i40e_pf *pf)
5075 {
5076 struct i40e_hw *hw = &pf->hw;
5077 u8 i, enabled_tc = 1;
5078 u8 num_tc = 0;
5079 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5080
5081 if (pf->flags & I40E_FLAG_TC_MQPRIO)
5082 return pf->vsi[pf->lan_vsi]->mqprio_qopt.qopt.num_tc;
5083
5084 /* If neither MQPRIO nor DCB is enabled, then always use single TC */
5085 if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
5086 return 1;
5087
5088 /* SFP mode will be enabled for all TCs on port */
5089 if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
5090 return i40e_dcb_get_num_tc(dcbcfg);
5091
5092 /* MFP mode return count of enabled TCs for this PF */
5093 if (pf->hw.func_caps.iscsi)
5094 enabled_tc = i40e_get_iscsi_tc_map(pf);
5095 else
5096 return 1; /* Only TC0 */
5097
5098 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5099 if (enabled_tc & BIT(i))
5100 num_tc++;
5101 }
5102 return num_tc;
5103 }
5104
5105 /**
5106 * i40e_pf_get_pf_tc_map - Get bitmap for enabled traffic classes
5107 * @pf: PF being queried
5108 *
5109 * Return a bitmap for enabled traffic classes for this PF.
5110 **/
5111 static u8 i40e_pf_get_tc_map(struct i40e_pf *pf)
5112 {
5113 if (pf->flags & I40E_FLAG_TC_MQPRIO)
5114 return i40e_mqprio_get_enabled_tc(pf);
5115
5116 /* If neither MQPRIO nor DCB is enabled for this PF then just return
5117 * default TC
5118 */
5119 if (!(pf->flags & I40E_FLAG_DCB_ENABLED))
5120 return I40E_DEFAULT_TRAFFIC_CLASS;
5121
5122 /* SFP mode we want PF to be enabled for all TCs */
5123 if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
5124 return i40e_dcb_get_enabled_tc(&pf->hw.local_dcbx_config);
5125
5126 /* MFP enabled and iSCSI PF type */
5127 if (pf->hw.func_caps.iscsi)
5128 return i40e_get_iscsi_tc_map(pf);
5129 else
5130 return I40E_DEFAULT_TRAFFIC_CLASS;
5131 }
5132
5133 /**
5134 * i40e_vsi_get_bw_info - Query VSI BW Information
5135 * @vsi: the VSI being queried
5136 *
5137 * Returns 0 on success, negative value on failure
5138 **/
5139 static int i40e_vsi_get_bw_info(struct i40e_vsi *vsi)
5140 {
5141 struct i40e_aqc_query_vsi_ets_sla_config_resp bw_ets_config = {0};
5142 struct i40e_aqc_query_vsi_bw_config_resp bw_config = {0};
5143 struct i40e_pf *pf = vsi->back;
5144 struct i40e_hw *hw = &pf->hw;
5145 i40e_status ret;
5146 u32 tc_bw_max;
5147 int i;
5148
5149 /* Get the VSI level BW configuration */
5150 ret = i40e_aq_query_vsi_bw_config(hw, vsi->seid, &bw_config, NULL);
5151 if (ret) {
5152 dev_info(&pf->pdev->dev,
5153 "couldn't get PF vsi bw config, err %s aq_err %s\n",
5154 i40e_stat_str(&pf->hw, ret),
5155 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5156 return -EINVAL;
5157 }
5158
5159 /* Get the VSI level BW configuration per TC */
5160 ret = i40e_aq_query_vsi_ets_sla_config(hw, vsi->seid, &bw_ets_config,
5161 NULL);
5162 if (ret) {
5163 dev_info(&pf->pdev->dev,
5164 "couldn't get PF vsi ets bw config, err %s aq_err %s\n",
5165 i40e_stat_str(&pf->hw, ret),
5166 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5167 return -EINVAL;
5168 }
5169
5170 if (bw_config.tc_valid_bits != bw_ets_config.tc_valid_bits) {
5171 dev_info(&pf->pdev->dev,
5172 "Enabled TCs mismatch from querying VSI BW info 0x%08x 0x%08x\n",
5173 bw_config.tc_valid_bits,
5174 bw_ets_config.tc_valid_bits);
5175 /* Still continuing */
5176 }
5177
5178 vsi->bw_limit = le16_to_cpu(bw_config.port_bw_limit);
5179 vsi->bw_max_quanta = bw_config.max_bw;
5180 tc_bw_max = le16_to_cpu(bw_ets_config.tc_bw_max[0]) |
5181 (le16_to_cpu(bw_ets_config.tc_bw_max[1]) << 16);
5182 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5183 vsi->bw_ets_share_credits[i] = bw_ets_config.share_credits[i];
5184 vsi->bw_ets_limit_credits[i] =
5185 le16_to_cpu(bw_ets_config.credits[i]);
5186 /* 3 bits out of 4 for each TC */
5187 vsi->bw_ets_max_quanta[i] = (u8)((tc_bw_max >> (i*4)) & 0x7);
5188 }
5189
5190 return 0;
5191 }
5192
5193 /**
5194 * i40e_vsi_configure_bw_alloc - Configure VSI BW allocation per TC
5195 * @vsi: the VSI being configured
5196 * @enabled_tc: TC bitmap
5197 * @bw_credits: BW shared credits per TC
5198 *
5199 * Returns 0 on success, negative value on failure
5200 **/
5201 static int i40e_vsi_configure_bw_alloc(struct i40e_vsi *vsi, u8 enabled_tc,
5202 u8 *bw_share)
5203 {
5204 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
5205 i40e_status ret;
5206 int i;
5207
5208 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO)
5209 return 0;
5210 if (!vsi->mqprio_qopt.qopt.hw) {
5211 ret = i40e_set_bw_limit(vsi, vsi->seid, 0);
5212 if (ret)
5213 dev_info(&vsi->back->pdev->dev,
5214 "Failed to reset tx rate for vsi->seid %u\n",
5215 vsi->seid);
5216 return ret;
5217 }
5218 bw_data.tc_valid_bits = enabled_tc;
5219 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5220 bw_data.tc_bw_credits[i] = bw_share[i];
5221
5222 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, vsi->seid, &bw_data,
5223 NULL);
5224 if (ret) {
5225 dev_info(&vsi->back->pdev->dev,
5226 "AQ command Config VSI BW allocation per TC failed = %d\n",
5227 vsi->back->hw.aq.asq_last_status);
5228 return -EINVAL;
5229 }
5230
5231 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5232 vsi->info.qs_handle[i] = bw_data.qs_handles[i];
5233
5234 return 0;
5235 }
5236
5237 /**
5238 * i40e_vsi_config_netdev_tc - Setup the netdev TC configuration
5239 * @vsi: the VSI being configured
5240 * @enabled_tc: TC map to be enabled
5241 *
5242 **/
5243 static void i40e_vsi_config_netdev_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5244 {
5245 struct net_device *netdev = vsi->netdev;
5246 struct i40e_pf *pf = vsi->back;
5247 struct i40e_hw *hw = &pf->hw;
5248 u8 netdev_tc = 0;
5249 int i;
5250 struct i40e_dcbx_config *dcbcfg = &hw->local_dcbx_config;
5251
5252 if (!netdev)
5253 return;
5254
5255 if (!enabled_tc) {
5256 netdev_reset_tc(netdev);
5257 return;
5258 }
5259
5260 /* Set up actual enabled TCs on the VSI */
5261 if (netdev_set_num_tc(netdev, vsi->tc_config.numtc))
5262 return;
5263
5264 /* set per TC queues for the VSI */
5265 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5266 /* Only set TC queues for enabled tcs
5267 *
5268 * e.g. For a VSI that has TC0 and TC3 enabled the
5269 * enabled_tc bitmap would be 0x00001001; the driver
5270 * will set the numtc for netdev as 2 that will be
5271 * referenced by the netdev layer as TC 0 and 1.
5272 */
5273 if (vsi->tc_config.enabled_tc & BIT(i))
5274 netdev_set_tc_queue(netdev,
5275 vsi->tc_config.tc_info[i].netdev_tc,
5276 vsi->tc_config.tc_info[i].qcount,
5277 vsi->tc_config.tc_info[i].qoffset);
5278 }
5279
5280 if (pf->flags & I40E_FLAG_TC_MQPRIO)
5281 return;
5282
5283 /* Assign UP2TC map for the VSI */
5284 for (i = 0; i < I40E_MAX_USER_PRIORITY; i++) {
5285 /* Get the actual TC# for the UP */
5286 u8 ets_tc = dcbcfg->etscfg.prioritytable[i];
5287 /* Get the mapped netdev TC# for the UP */
5288 netdev_tc = vsi->tc_config.tc_info[ets_tc].netdev_tc;
5289 netdev_set_prio_tc_map(netdev, i, netdev_tc);
5290 }
5291 }
5292
5293 /**
5294 * i40e_vsi_update_queue_map - Update our copy of VSi info with new queue map
5295 * @vsi: the VSI being configured
5296 * @ctxt: the ctxt buffer returned from AQ VSI update param command
5297 **/
5298 static void i40e_vsi_update_queue_map(struct i40e_vsi *vsi,
5299 struct i40e_vsi_context *ctxt)
5300 {
5301 /* copy just the sections touched not the entire info
5302 * since not all sections are valid as returned by
5303 * update vsi params
5304 */
5305 vsi->info.mapping_flags = ctxt->info.mapping_flags;
5306 memcpy(&vsi->info.queue_mapping,
5307 &ctxt->info.queue_mapping, sizeof(vsi->info.queue_mapping));
5308 memcpy(&vsi->info.tc_mapping, ctxt->info.tc_mapping,
5309 sizeof(vsi->info.tc_mapping));
5310 }
5311
5312 /**
5313 * i40e_vsi_config_tc - Configure VSI Tx Scheduler for given TC map
5314 * @vsi: VSI to be configured
5315 * @enabled_tc: TC bitmap
5316 *
5317 * This configures a particular VSI for TCs that are mapped to the
5318 * given TC bitmap. It uses default bandwidth share for TCs across
5319 * VSIs to configure TC for a particular VSI.
5320 *
5321 * NOTE:
5322 * It is expected that the VSI queues have been quisced before calling
5323 * this function.
5324 **/
5325 static int i40e_vsi_config_tc(struct i40e_vsi *vsi, u8 enabled_tc)
5326 {
5327 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
5328 struct i40e_vsi_context ctxt;
5329 int ret = 0;
5330 int i;
5331
5332 /* Check if enabled_tc is same as existing or new TCs */
5333 if (vsi->tc_config.enabled_tc == enabled_tc &&
5334 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
5335 return ret;
5336
5337 /* Enable ETS TCs with equal BW Share for now across all VSIs */
5338 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5339 if (enabled_tc & BIT(i))
5340 bw_share[i] = 1;
5341 }
5342
5343 ret = i40e_vsi_configure_bw_alloc(vsi, enabled_tc, bw_share);
5344 if (ret) {
5345 dev_info(&vsi->back->pdev->dev,
5346 "Failed configuring TC map %d for VSI %d\n",
5347 enabled_tc, vsi->seid);
5348 goto out;
5349 }
5350
5351 /* Update Queue Pairs Mapping for currently enabled UPs */
5352 ctxt.seid = vsi->seid;
5353 ctxt.pf_num = vsi->back->hw.pf_id;
5354 ctxt.vf_num = 0;
5355 ctxt.uplink_seid = vsi->uplink_seid;
5356 ctxt.info = vsi->info;
5357 if (vsi->back->flags & I40E_FLAG_TC_MQPRIO) {
5358 ret = i40e_vsi_setup_queue_map_mqprio(vsi, &ctxt, enabled_tc);
5359 if (ret)
5360 goto out;
5361 } else {
5362 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
5363 }
5364
5365 /* On destroying the qdisc, reset vsi->rss_size, as number of enabled
5366 * queues changed.
5367 */
5368 if (!vsi->mqprio_qopt.qopt.hw && vsi->reconfig_rss) {
5369 vsi->rss_size = min_t(int, vsi->back->alloc_rss_size,
5370 vsi->num_queue_pairs);
5371 ret = i40e_vsi_config_rss(vsi);
5372 if (ret) {
5373 dev_info(&vsi->back->pdev->dev,
5374 "Failed to reconfig rss for num_queues\n");
5375 return ret;
5376 }
5377 vsi->reconfig_rss = false;
5378 }
5379 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) {
5380 ctxt.info.valid_sections |=
5381 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
5382 ctxt.info.queueing_opt_flags |= I40E_AQ_VSI_QUE_OPT_TCP_ENA;
5383 }
5384
5385 /* Update the VSI after updating the VSI queue-mapping
5386 * information
5387 */
5388 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
5389 if (ret) {
5390 dev_info(&vsi->back->pdev->dev,
5391 "Update vsi tc config failed, err %s aq_err %s\n",
5392 i40e_stat_str(&vsi->back->hw, ret),
5393 i40e_aq_str(&vsi->back->hw,
5394 vsi->back->hw.aq.asq_last_status));
5395 goto out;
5396 }
5397 /* update the local VSI info with updated queue map */
5398 i40e_vsi_update_queue_map(vsi, &ctxt);
5399 vsi->info.valid_sections = 0;
5400
5401 /* Update current VSI BW information */
5402 ret = i40e_vsi_get_bw_info(vsi);
5403 if (ret) {
5404 dev_info(&vsi->back->pdev->dev,
5405 "Failed updating vsi bw info, err %s aq_err %s\n",
5406 i40e_stat_str(&vsi->back->hw, ret),
5407 i40e_aq_str(&vsi->back->hw,
5408 vsi->back->hw.aq.asq_last_status));
5409 goto out;
5410 }
5411
5412 /* Update the netdev TC setup */
5413 i40e_vsi_config_netdev_tc(vsi, enabled_tc);
5414 out:
5415 return ret;
5416 }
5417
5418 /**
5419 * i40e_get_link_speed - Returns link speed for the interface
5420 * @vsi: VSI to be configured
5421 *
5422 **/
5423 int i40e_get_link_speed(struct i40e_vsi *vsi)
5424 {
5425 struct i40e_pf *pf = vsi->back;
5426
5427 switch (pf->hw.phy.link_info.link_speed) {
5428 case I40E_LINK_SPEED_40GB:
5429 return 40000;
5430 case I40E_LINK_SPEED_25GB:
5431 return 25000;
5432 case I40E_LINK_SPEED_20GB:
5433 return 20000;
5434 case I40E_LINK_SPEED_10GB:
5435 return 10000;
5436 case I40E_LINK_SPEED_1GB:
5437 return 1000;
5438 default:
5439 return -EINVAL;
5440 }
5441 }
5442
5443 /**
5444 * i40e_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
5445 * @vsi: VSI to be configured
5446 * @seid: seid of the channel/VSI
5447 * @max_tx_rate: max TX rate to be configured as BW limit
5448 *
5449 * Helper function to set BW limit for a given VSI
5450 **/
5451 int i40e_set_bw_limit(struct i40e_vsi *vsi, u16 seid, u64 max_tx_rate)
5452 {
5453 struct i40e_pf *pf = vsi->back;
5454 u64 credits = 0;
5455 int speed = 0;
5456 int ret = 0;
5457
5458 speed = i40e_get_link_speed(vsi);
5459 if (max_tx_rate > speed) {
5460 dev_err(&pf->pdev->dev,
5461 "Invalid max tx rate %llu specified for VSI seid %d.",
5462 max_tx_rate, seid);
5463 return -EINVAL;
5464 }
5465 if (max_tx_rate && max_tx_rate < 50) {
5466 dev_warn(&pf->pdev->dev,
5467 "Setting max tx rate to minimum usable value of 50Mbps.\n");
5468 max_tx_rate = 50;
5469 }
5470
5471 /* Tx rate credits are in values of 50Mbps, 0 is disabled */
5472 credits = max_tx_rate;
5473 do_div(credits, I40E_BW_CREDIT_DIVISOR);
5474 ret = i40e_aq_config_vsi_bw_limit(&pf->hw, seid, credits,
5475 I40E_MAX_BW_INACTIVE_ACCUM, NULL);
5476 if (ret)
5477 dev_err(&pf->pdev->dev,
5478 "Failed set tx rate (%llu Mbps) for vsi->seid %u, err %s aq_err %s\n",
5479 max_tx_rate, seid, i40e_stat_str(&pf->hw, ret),
5480 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
5481 return ret;
5482 }
5483
5484 /**
5485 * i40e_remove_queue_channels - Remove queue channels for the TCs
5486 * @vsi: VSI to be configured
5487 *
5488 * Remove queue channels for the TCs
5489 **/
5490 static void i40e_remove_queue_channels(struct i40e_vsi *vsi)
5491 {
5492 enum i40e_admin_queue_err last_aq_status;
5493 struct i40e_cloud_filter *cfilter;
5494 struct i40e_channel *ch, *ch_tmp;
5495 struct i40e_pf *pf = vsi->back;
5496 struct hlist_node *node;
5497 int ret, i;
5498
5499 /* Reset rss size that was stored when reconfiguring rss for
5500 * channel VSIs with non-power-of-2 queue count.
5501 */
5502 vsi->current_rss_size = 0;
5503
5504 /* perform cleanup for channels if they exist */
5505 if (list_empty(&vsi->ch_list))
5506 return;
5507
5508 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
5509 struct i40e_vsi *p_vsi;
5510
5511 list_del(&ch->list);
5512 p_vsi = ch->parent_vsi;
5513 if (!p_vsi || !ch->initialized) {
5514 kfree(ch);
5515 continue;
5516 }
5517 /* Reset queue contexts */
5518 for (i = 0; i < ch->num_queue_pairs; i++) {
5519 struct i40e_ring *tx_ring, *rx_ring;
5520 u16 pf_q;
5521
5522 pf_q = ch->base_queue + i;
5523 tx_ring = vsi->tx_rings[pf_q];
5524 tx_ring->ch = NULL;
5525
5526 rx_ring = vsi->rx_rings[pf_q];
5527 rx_ring->ch = NULL;
5528 }
5529
5530 /* Reset BW configured for this VSI via mqprio */
5531 ret = i40e_set_bw_limit(vsi, ch->seid, 0);
5532 if (ret)
5533 dev_info(&vsi->back->pdev->dev,
5534 "Failed to reset tx rate for ch->seid %u\n",
5535 ch->seid);
5536
5537 /* delete cloud filters associated with this channel */
5538 hlist_for_each_entry_safe(cfilter, node,
5539 &pf->cloud_filter_list, cloud_node) {
5540 if (cfilter->seid != ch->seid)
5541 continue;
5542
5543 hash_del(&cfilter->cloud_node);
5544 if (cfilter->dst_port)
5545 ret = i40e_add_del_cloud_filter_big_buf(vsi,
5546 cfilter,
5547 false);
5548 else
5549 ret = i40e_add_del_cloud_filter(vsi, cfilter,
5550 false);
5551 last_aq_status = pf->hw.aq.asq_last_status;
5552 if (ret)
5553 dev_info(&pf->pdev->dev,
5554 "Failed to delete cloud filter, err %s aq_err %s\n",
5555 i40e_stat_str(&pf->hw, ret),
5556 i40e_aq_str(&pf->hw, last_aq_status));
5557 kfree(cfilter);
5558 }
5559
5560 /* delete VSI from FW */
5561 ret = i40e_aq_delete_element(&vsi->back->hw, ch->seid,
5562 NULL);
5563 if (ret)
5564 dev_err(&vsi->back->pdev->dev,
5565 "unable to remove channel (%d) for parent VSI(%d)\n",
5566 ch->seid, p_vsi->seid);
5567 kfree(ch);
5568 }
5569 INIT_LIST_HEAD(&vsi->ch_list);
5570 }
5571
5572 /**
5573 * i40e_is_any_channel - channel exist or not
5574 * @vsi: ptr to VSI to which channels are associated with
5575 *
5576 * Returns true or false if channel(s) exist for associated VSI or not
5577 **/
5578 static bool i40e_is_any_channel(struct i40e_vsi *vsi)
5579 {
5580 struct i40e_channel *ch, *ch_tmp;
5581
5582 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
5583 if (ch->initialized)
5584 return true;
5585 }
5586
5587 return false;
5588 }
5589
5590 /**
5591 * i40e_get_max_queues_for_channel
5592 * @vsi: ptr to VSI to which channels are associated with
5593 *
5594 * Helper function which returns max value among the queue counts set on the
5595 * channels/TCs created.
5596 **/
5597 static int i40e_get_max_queues_for_channel(struct i40e_vsi *vsi)
5598 {
5599 struct i40e_channel *ch, *ch_tmp;
5600 int max = 0;
5601
5602 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
5603 if (!ch->initialized)
5604 continue;
5605 if (ch->num_queue_pairs > max)
5606 max = ch->num_queue_pairs;
5607 }
5608
5609 return max;
5610 }
5611
5612 /**
5613 * i40e_validate_num_queues - validate num_queues w.r.t channel
5614 * @pf: ptr to PF device
5615 * @num_queues: number of queues
5616 * @vsi: the parent VSI
5617 * @reconfig_rss: indicates should the RSS be reconfigured or not
5618 *
5619 * This function validates number of queues in the context of new channel
5620 * which is being established and determines if RSS should be reconfigured
5621 * or not for parent VSI.
5622 **/
5623 static int i40e_validate_num_queues(struct i40e_pf *pf, int num_queues,
5624 struct i40e_vsi *vsi, bool *reconfig_rss)
5625 {
5626 int max_ch_queues;
5627
5628 if (!reconfig_rss)
5629 return -EINVAL;
5630
5631 *reconfig_rss = false;
5632
5633 if (num_queues > I40E_MAX_QUEUES_PER_CH) {
5634 dev_err(&pf->pdev->dev,
5635 "Failed to create VMDq VSI. User requested num_queues (%d) > I40E_MAX_QUEUES_PER_VSI (%u)\n",
5636 num_queues, I40E_MAX_QUEUES_PER_CH);
5637 return -EINVAL;
5638 }
5639
5640 if (vsi->current_rss_size) {
5641 if (num_queues > vsi->current_rss_size) {
5642 dev_dbg(&pf->pdev->dev,
5643 "Error: num_queues (%d) > vsi's current_size(%d)\n",
5644 num_queues, vsi->current_rss_size);
5645 return -EINVAL;
5646 } else if ((num_queues < vsi->current_rss_size) &&
5647 (!is_power_of_2(num_queues))) {
5648 dev_dbg(&pf->pdev->dev,
5649 "Error: num_queues (%d) < vsi's current_size(%d), but not power of 2\n",
5650 num_queues, vsi->current_rss_size);
5651 return -EINVAL;
5652 }
5653 }
5654
5655 if (!is_power_of_2(num_queues)) {
5656 /* Find the max num_queues configured for channel if channel
5657 * exist.
5658 * if channel exist, then enforce 'num_queues' to be more than
5659 * max ever queues configured for channel.
5660 */
5661 max_ch_queues = i40e_get_max_queues_for_channel(vsi);
5662 if (num_queues < max_ch_queues) {
5663 dev_dbg(&pf->pdev->dev,
5664 "Error: num_queues (%d) < max queues configured for channel(%d)\n",
5665 num_queues, max_ch_queues);
5666 return -EINVAL;
5667 }
5668 *reconfig_rss = true;
5669 }
5670
5671 return 0;
5672 }
5673
5674 /**
5675 * i40e_vsi_reconfig_rss - reconfig RSS based on specified rss_size
5676 * @vsi: the VSI being setup
5677 * @rss_size: size of RSS, accordingly LUT gets reprogrammed
5678 *
5679 * This function reconfigures RSS by reprogramming LUTs using 'rss_size'
5680 **/
5681 static int i40e_vsi_reconfig_rss(struct i40e_vsi *vsi, u16 rss_size)
5682 {
5683 struct i40e_pf *pf = vsi->back;
5684 u8 seed[I40E_HKEY_ARRAY_SIZE];
5685 struct i40e_hw *hw = &pf->hw;
5686 int local_rss_size;
5687 u8 *lut;
5688 int ret;
5689
5690 if (!vsi->rss_size)
5691 return -EINVAL;
5692
5693 if (rss_size > vsi->rss_size)
5694 return -EINVAL;
5695
5696 local_rss_size = min_t(int, vsi->rss_size, rss_size);
5697 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
5698 if (!lut)
5699 return -ENOMEM;
5700
5701 /* Ignoring user configured lut if there is one */
5702 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, local_rss_size);
5703
5704 /* Use user configured hash key if there is one, otherwise
5705 * use default.
5706 */
5707 if (vsi->rss_hkey_user)
5708 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
5709 else
5710 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
5711
5712 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
5713 if (ret) {
5714 dev_info(&pf->pdev->dev,
5715 "Cannot set RSS lut, err %s aq_err %s\n",
5716 i40e_stat_str(hw, ret),
5717 i40e_aq_str(hw, hw->aq.asq_last_status));
5718 kfree(lut);
5719 return ret;
5720 }
5721 kfree(lut);
5722
5723 /* Do the update w.r.t. storing rss_size */
5724 if (!vsi->orig_rss_size)
5725 vsi->orig_rss_size = vsi->rss_size;
5726 vsi->current_rss_size = local_rss_size;
5727
5728 return ret;
5729 }
5730
5731 /**
5732 * i40e_channel_setup_queue_map - Setup a channel queue map
5733 * @pf: ptr to PF device
5734 * @vsi: the VSI being setup
5735 * @ctxt: VSI context structure
5736 * @ch: ptr to channel structure
5737 *
5738 * Setup queue map for a specific channel
5739 **/
5740 static void i40e_channel_setup_queue_map(struct i40e_pf *pf,
5741 struct i40e_vsi_context *ctxt,
5742 struct i40e_channel *ch)
5743 {
5744 u16 qcount, qmap, sections = 0;
5745 u8 offset = 0;
5746 int pow;
5747
5748 sections = I40E_AQ_VSI_PROP_QUEUE_MAP_VALID;
5749 sections |= I40E_AQ_VSI_PROP_SCHED_VALID;
5750
5751 qcount = min_t(int, ch->num_queue_pairs, pf->num_lan_msix);
5752 ch->num_queue_pairs = qcount;
5753
5754 /* find the next higher power-of-2 of num queue pairs */
5755 pow = ilog2(qcount);
5756 if (!is_power_of_2(qcount))
5757 pow++;
5758
5759 qmap = (offset << I40E_AQ_VSI_TC_QUE_OFFSET_SHIFT) |
5760 (pow << I40E_AQ_VSI_TC_QUE_NUMBER_SHIFT);
5761
5762 /* Setup queue TC[0].qmap for given VSI context */
5763 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
5764
5765 ctxt->info.up_enable_bits = 0x1; /* TC0 enabled */
5766 ctxt->info.mapping_flags |= cpu_to_le16(I40E_AQ_VSI_QUE_MAP_CONTIG);
5767 ctxt->info.queue_mapping[0] = cpu_to_le16(ch->base_queue);
5768 ctxt->info.valid_sections |= cpu_to_le16(sections);
5769 }
5770
5771 /**
5772 * i40e_add_channel - add a channel by adding VSI
5773 * @pf: ptr to PF device
5774 * @uplink_seid: underlying HW switching element (VEB) ID
5775 * @ch: ptr to channel structure
5776 *
5777 * Add a channel (VSI) using add_vsi and queue_map
5778 **/
5779 static int i40e_add_channel(struct i40e_pf *pf, u16 uplink_seid,
5780 struct i40e_channel *ch)
5781 {
5782 struct i40e_hw *hw = &pf->hw;
5783 struct i40e_vsi_context ctxt;
5784 u8 enabled_tc = 0x1; /* TC0 enabled */
5785 int ret;
5786
5787 if (ch->type != I40E_VSI_VMDQ2) {
5788 dev_info(&pf->pdev->dev,
5789 "add new vsi failed, ch->type %d\n", ch->type);
5790 return -EINVAL;
5791 }
5792
5793 memset(&ctxt, 0, sizeof(ctxt));
5794 ctxt.pf_num = hw->pf_id;
5795 ctxt.vf_num = 0;
5796 ctxt.uplink_seid = uplink_seid;
5797 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
5798 if (ch->type == I40E_VSI_VMDQ2)
5799 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
5800
5801 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED) {
5802 ctxt.info.valid_sections |=
5803 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
5804 ctxt.info.switch_id =
5805 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
5806 }
5807
5808 /* Set queue map for a given VSI context */
5809 i40e_channel_setup_queue_map(pf, &ctxt, ch);
5810
5811 /* Now time to create VSI */
5812 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
5813 if (ret) {
5814 dev_info(&pf->pdev->dev,
5815 "add new vsi failed, err %s aq_err %s\n",
5816 i40e_stat_str(&pf->hw, ret),
5817 i40e_aq_str(&pf->hw,
5818 pf->hw.aq.asq_last_status));
5819 return -ENOENT;
5820 }
5821
5822 /* Success, update channel */
5823 ch->enabled_tc = enabled_tc;
5824 ch->seid = ctxt.seid;
5825 ch->vsi_number = ctxt.vsi_number;
5826 ch->stat_counter_idx = cpu_to_le16(ctxt.info.stat_counter_idx);
5827
5828 /* copy just the sections touched not the entire info
5829 * since not all sections are valid as returned by
5830 * update vsi params
5831 */
5832 ch->info.mapping_flags = ctxt.info.mapping_flags;
5833 memcpy(&ch->info.queue_mapping,
5834 &ctxt.info.queue_mapping, sizeof(ctxt.info.queue_mapping));
5835 memcpy(&ch->info.tc_mapping, ctxt.info.tc_mapping,
5836 sizeof(ctxt.info.tc_mapping));
5837
5838 return 0;
5839 }
5840
5841 static int i40e_channel_config_bw(struct i40e_vsi *vsi, struct i40e_channel *ch,
5842 u8 *bw_share)
5843 {
5844 struct i40e_aqc_configure_vsi_tc_bw_data bw_data;
5845 i40e_status ret;
5846 int i;
5847
5848 bw_data.tc_valid_bits = ch->enabled_tc;
5849 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5850 bw_data.tc_bw_credits[i] = bw_share[i];
5851
5852 ret = i40e_aq_config_vsi_tc_bw(&vsi->back->hw, ch->seid,
5853 &bw_data, NULL);
5854 if (ret) {
5855 dev_info(&vsi->back->pdev->dev,
5856 "Config VSI BW allocation per TC failed, aq_err: %d for new_vsi->seid %u\n",
5857 vsi->back->hw.aq.asq_last_status, ch->seid);
5858 return -EINVAL;
5859 }
5860
5861 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++)
5862 ch->info.qs_handle[i] = bw_data.qs_handles[i];
5863
5864 return 0;
5865 }
5866
5867 /**
5868 * i40e_channel_config_tx_ring - config TX ring associated with new channel
5869 * @pf: ptr to PF device
5870 * @vsi: the VSI being setup
5871 * @ch: ptr to channel structure
5872 *
5873 * Configure TX rings associated with channel (VSI) since queues are being
5874 * from parent VSI.
5875 **/
5876 static int i40e_channel_config_tx_ring(struct i40e_pf *pf,
5877 struct i40e_vsi *vsi,
5878 struct i40e_channel *ch)
5879 {
5880 i40e_status ret;
5881 int i;
5882 u8 bw_share[I40E_MAX_TRAFFIC_CLASS] = {0};
5883
5884 /* Enable ETS TCs with equal BW Share for now across all VSIs */
5885 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
5886 if (ch->enabled_tc & BIT(i))
5887 bw_share[i] = 1;
5888 }
5889
5890 /* configure BW for new VSI */
5891 ret = i40e_channel_config_bw(vsi, ch, bw_share);
5892 if (ret) {
5893 dev_info(&vsi->back->pdev->dev,
5894 "Failed configuring TC map %d for channel (seid %u)\n",
5895 ch->enabled_tc, ch->seid);
5896 return ret;
5897 }
5898
5899 for (i = 0; i < ch->num_queue_pairs; i++) {
5900 struct i40e_ring *tx_ring, *rx_ring;
5901 u16 pf_q;
5902
5903 pf_q = ch->base_queue + i;
5904
5905 /* Get to TX ring ptr of main VSI, for re-setup TX queue
5906 * context
5907 */
5908 tx_ring = vsi->tx_rings[pf_q];
5909 tx_ring->ch = ch;
5910
5911 /* Get the RX ring ptr */
5912 rx_ring = vsi->rx_rings[pf_q];
5913 rx_ring->ch = ch;
5914 }
5915
5916 return 0;
5917 }
5918
5919 /**
5920 * i40e_setup_hw_channel - setup new channel
5921 * @pf: ptr to PF device
5922 * @vsi: the VSI being setup
5923 * @ch: ptr to channel structure
5924 * @uplink_seid: underlying HW switching element (VEB) ID
5925 * @type: type of channel to be created (VMDq2/VF)
5926 *
5927 * Setup new channel (VSI) based on specified type (VMDq2/VF)
5928 * and configures TX rings accordingly
5929 **/
5930 static inline int i40e_setup_hw_channel(struct i40e_pf *pf,
5931 struct i40e_vsi *vsi,
5932 struct i40e_channel *ch,
5933 u16 uplink_seid, u8 type)
5934 {
5935 int ret;
5936
5937 ch->initialized = false;
5938 ch->base_queue = vsi->next_base_queue;
5939 ch->type = type;
5940
5941 /* Proceed with creation of channel (VMDq2) VSI */
5942 ret = i40e_add_channel(pf, uplink_seid, ch);
5943 if (ret) {
5944 dev_info(&pf->pdev->dev,
5945 "failed to add_channel using uplink_seid %u\n",
5946 uplink_seid);
5947 return ret;
5948 }
5949
5950 /* Mark the successful creation of channel */
5951 ch->initialized = true;
5952
5953 /* Reconfigure TX queues using QTX_CTL register */
5954 ret = i40e_channel_config_tx_ring(pf, vsi, ch);
5955 if (ret) {
5956 dev_info(&pf->pdev->dev,
5957 "failed to configure TX rings for channel %u\n",
5958 ch->seid);
5959 return ret;
5960 }
5961
5962 /* update 'next_base_queue' */
5963 vsi->next_base_queue = vsi->next_base_queue + ch->num_queue_pairs;
5964 dev_dbg(&pf->pdev->dev,
5965 "Added channel: vsi_seid %u, vsi_number %u, stat_counter_idx %u, num_queue_pairs %u, pf->next_base_queue %d\n",
5966 ch->seid, ch->vsi_number, ch->stat_counter_idx,
5967 ch->num_queue_pairs,
5968 vsi->next_base_queue);
5969 return ret;
5970 }
5971
5972 /**
5973 * i40e_setup_channel - setup new channel using uplink element
5974 * @pf: ptr to PF device
5975 * @type: type of channel to be created (VMDq2/VF)
5976 * @uplink_seid: underlying HW switching element (VEB) ID
5977 * @ch: ptr to channel structure
5978 *
5979 * Setup new channel (VSI) based on specified type (VMDq2/VF)
5980 * and uplink switching element (uplink_seid)
5981 **/
5982 static bool i40e_setup_channel(struct i40e_pf *pf, struct i40e_vsi *vsi,
5983 struct i40e_channel *ch)
5984 {
5985 u8 vsi_type;
5986 u16 seid;
5987 int ret;
5988
5989 if (vsi->type == I40E_VSI_MAIN) {
5990 vsi_type = I40E_VSI_VMDQ2;
5991 } else {
5992 dev_err(&pf->pdev->dev, "unsupported parent vsi type(%d)\n",
5993 vsi->type);
5994 return false;
5995 }
5996
5997 /* underlying switching element */
5998 seid = pf->vsi[pf->lan_vsi]->uplink_seid;
5999
6000 /* create channel (VSI), configure TX rings */
6001 ret = i40e_setup_hw_channel(pf, vsi, ch, seid, vsi_type);
6002 if (ret) {
6003 dev_err(&pf->pdev->dev, "failed to setup hw_channel\n");
6004 return false;
6005 }
6006
6007 return ch->initialized ? true : false;
6008 }
6009
6010 /**
6011 * i40e_validate_and_set_switch_mode - sets up switch mode correctly
6012 * @vsi: ptr to VSI which has PF backing
6013 *
6014 * Sets up switch mode correctly if it needs to be changed and perform
6015 * what are allowed modes.
6016 **/
6017 static int i40e_validate_and_set_switch_mode(struct i40e_vsi *vsi)
6018 {
6019 u8 mode;
6020 struct i40e_pf *pf = vsi->back;
6021 struct i40e_hw *hw = &pf->hw;
6022 int ret;
6023
6024 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_dev_capabilities);
6025 if (ret)
6026 return -EINVAL;
6027
6028 if (hw->dev_caps.switch_mode) {
6029 /* if switch mode is set, support mode2 (non-tunneled for
6030 * cloud filter) for now
6031 */
6032 u32 switch_mode = hw->dev_caps.switch_mode &
6033 I40E_SWITCH_MODE_MASK;
6034 if (switch_mode >= I40E_CLOUD_FILTER_MODE1) {
6035 if (switch_mode == I40E_CLOUD_FILTER_MODE2)
6036 return 0;
6037 dev_err(&pf->pdev->dev,
6038 "Invalid switch_mode (%d), only non-tunneled mode for cloud filter is supported\n",
6039 hw->dev_caps.switch_mode);
6040 return -EINVAL;
6041 }
6042 }
6043
6044 /* Set Bit 7 to be valid */
6045 mode = I40E_AQ_SET_SWITCH_BIT7_VALID;
6046
6047 /* Set L4type to both TCP and UDP support */
6048 mode |= I40E_AQ_SET_SWITCH_L4_TYPE_BOTH;
6049
6050 /* Set cloud filter mode */
6051 mode |= I40E_AQ_SET_SWITCH_MODE_NON_TUNNEL;
6052
6053 /* Prep mode field for set_switch_config */
6054 ret = i40e_aq_set_switch_config(hw, pf->last_sw_conf_flags,
6055 pf->last_sw_conf_valid_flags,
6056 mode, NULL);
6057 if (ret && hw->aq.asq_last_status != I40E_AQ_RC_ESRCH)
6058 dev_err(&pf->pdev->dev,
6059 "couldn't set switch config bits, err %s aq_err %s\n",
6060 i40e_stat_str(hw, ret),
6061 i40e_aq_str(hw,
6062 hw->aq.asq_last_status));
6063
6064 return ret;
6065 }
6066
6067 /**
6068 * i40e_create_queue_channel - function to create channel
6069 * @vsi: VSI to be configured
6070 * @ch: ptr to channel (it contains channel specific params)
6071 *
6072 * This function creates channel (VSI) using num_queues specified by user,
6073 * reconfigs RSS if needed.
6074 **/
6075 int i40e_create_queue_channel(struct i40e_vsi *vsi,
6076 struct i40e_channel *ch)
6077 {
6078 struct i40e_pf *pf = vsi->back;
6079 bool reconfig_rss;
6080 int err;
6081
6082 if (!ch)
6083 return -EINVAL;
6084
6085 if (!ch->num_queue_pairs) {
6086 dev_err(&pf->pdev->dev, "Invalid num_queues requested: %d\n",
6087 ch->num_queue_pairs);
6088 return -EINVAL;
6089 }
6090
6091 /* validate user requested num_queues for channel */
6092 err = i40e_validate_num_queues(pf, ch->num_queue_pairs, vsi,
6093 &reconfig_rss);
6094 if (err) {
6095 dev_info(&pf->pdev->dev, "Failed to validate num_queues (%d)\n",
6096 ch->num_queue_pairs);
6097 return -EINVAL;
6098 }
6099
6100 /* By default we are in VEPA mode, if this is the first VF/VMDq
6101 * VSI to be added switch to VEB mode.
6102 */
6103 if ((!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) ||
6104 (!i40e_is_any_channel(vsi))) {
6105 if (!is_power_of_2(vsi->tc_config.tc_info[0].qcount)) {
6106 dev_dbg(&pf->pdev->dev,
6107 "Failed to create channel. Override queues (%u) not power of 2\n",
6108 vsi->tc_config.tc_info[0].qcount);
6109 return -EINVAL;
6110 }
6111
6112 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) {
6113 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
6114
6115 if (vsi->type == I40E_VSI_MAIN) {
6116 if (pf->flags & I40E_FLAG_TC_MQPRIO)
6117 i40e_do_reset(pf, I40E_PF_RESET_FLAG,
6118 true);
6119 else
6120 i40e_do_reset_safe(pf,
6121 I40E_PF_RESET_FLAG);
6122 }
6123 }
6124 /* now onwards for main VSI, number of queues will be value
6125 * of TC0's queue count
6126 */
6127 }
6128
6129 /* By this time, vsi->cnt_q_avail shall be set to non-zero and
6130 * it should be more than num_queues
6131 */
6132 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_queue_pairs) {
6133 dev_dbg(&pf->pdev->dev,
6134 "Error: cnt_q_avail (%u) less than num_queues %d\n",
6135 vsi->cnt_q_avail, ch->num_queue_pairs);
6136 return -EINVAL;
6137 }
6138
6139 /* reconfig_rss only if vsi type is MAIN_VSI */
6140 if (reconfig_rss && (vsi->type == I40E_VSI_MAIN)) {
6141 err = i40e_vsi_reconfig_rss(vsi, ch->num_queue_pairs);
6142 if (err) {
6143 dev_info(&pf->pdev->dev,
6144 "Error: unable to reconfig rss for num_queues (%u)\n",
6145 ch->num_queue_pairs);
6146 return -EINVAL;
6147 }
6148 }
6149
6150 if (!i40e_setup_channel(pf, vsi, ch)) {
6151 dev_info(&pf->pdev->dev, "Failed to setup channel\n");
6152 return -EINVAL;
6153 }
6154
6155 dev_info(&pf->pdev->dev,
6156 "Setup channel (id:%u) utilizing num_queues %d\n",
6157 ch->seid, ch->num_queue_pairs);
6158
6159 /* configure VSI for BW limit */
6160 if (ch->max_tx_rate) {
6161 u64 credits = ch->max_tx_rate;
6162
6163 if (i40e_set_bw_limit(vsi, ch->seid, ch->max_tx_rate))
6164 return -EINVAL;
6165
6166 do_div(credits, I40E_BW_CREDIT_DIVISOR);
6167 dev_dbg(&pf->pdev->dev,
6168 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
6169 ch->max_tx_rate,
6170 credits,
6171 ch->seid);
6172 }
6173
6174 /* in case of VF, this will be main SRIOV VSI */
6175 ch->parent_vsi = vsi;
6176
6177 /* and update main_vsi's count for queue_available to use */
6178 vsi->cnt_q_avail -= ch->num_queue_pairs;
6179
6180 return 0;
6181 }
6182
6183 /**
6184 * i40e_configure_queue_channels - Add queue channel for the given TCs
6185 * @vsi: VSI to be configured
6186 *
6187 * Configures queue channel mapping to the given TCs
6188 **/
6189 static int i40e_configure_queue_channels(struct i40e_vsi *vsi)
6190 {
6191 struct i40e_channel *ch;
6192 u64 max_rate = 0;
6193 int ret = 0, i;
6194
6195 /* Create app vsi with the TCs. Main VSI with TC0 is already set up */
6196 vsi->tc_seid_map[0] = vsi->seid;
6197 for (i = 1; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6198 if (vsi->tc_config.enabled_tc & BIT(i)) {
6199 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
6200 if (!ch) {
6201 ret = -ENOMEM;
6202 goto err_free;
6203 }
6204
6205 INIT_LIST_HEAD(&ch->list);
6206 ch->num_queue_pairs =
6207 vsi->tc_config.tc_info[i].qcount;
6208 ch->base_queue =
6209 vsi->tc_config.tc_info[i].qoffset;
6210
6211 /* Bandwidth limit through tc interface is in bytes/s,
6212 * change to Mbit/s
6213 */
6214 max_rate = vsi->mqprio_qopt.max_rate[i];
6215 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
6216 ch->max_tx_rate = max_rate;
6217
6218 list_add_tail(&ch->list, &vsi->ch_list);
6219
6220 ret = i40e_create_queue_channel(vsi, ch);
6221 if (ret) {
6222 dev_err(&vsi->back->pdev->dev,
6223 "Failed creating queue channel with TC%d: queues %d\n",
6224 i, ch->num_queue_pairs);
6225 goto err_free;
6226 }
6227 vsi->tc_seid_map[i] = ch->seid;
6228 }
6229 }
6230 return ret;
6231
6232 err_free:
6233 i40e_remove_queue_channels(vsi);
6234 return ret;
6235 }
6236
6237 /**
6238 * i40e_veb_config_tc - Configure TCs for given VEB
6239 * @veb: given VEB
6240 * @enabled_tc: TC bitmap
6241 *
6242 * Configures given TC bitmap for VEB (switching) element
6243 **/
6244 int i40e_veb_config_tc(struct i40e_veb *veb, u8 enabled_tc)
6245 {
6246 struct i40e_aqc_configure_switching_comp_bw_config_data bw_data = {0};
6247 struct i40e_pf *pf = veb->pf;
6248 int ret = 0;
6249 int i;
6250
6251 /* No TCs or already enabled TCs just return */
6252 if (!enabled_tc || veb->enabled_tc == enabled_tc)
6253 return ret;
6254
6255 bw_data.tc_valid_bits = enabled_tc;
6256 /* bw_data.absolute_credits is not set (relative) */
6257
6258 /* Enable ETS TCs with equal BW Share for now */
6259 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6260 if (enabled_tc & BIT(i))
6261 bw_data.tc_bw_share_credits[i] = 1;
6262 }
6263
6264 ret = i40e_aq_config_switch_comp_bw_config(&pf->hw, veb->seid,
6265 &bw_data, NULL);
6266 if (ret) {
6267 dev_info(&pf->pdev->dev,
6268 "VEB bw config failed, err %s aq_err %s\n",
6269 i40e_stat_str(&pf->hw, ret),
6270 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6271 goto out;
6272 }
6273
6274 /* Update the BW information */
6275 ret = i40e_veb_get_bw_info(veb);
6276 if (ret) {
6277 dev_info(&pf->pdev->dev,
6278 "Failed getting veb bw config, err %s aq_err %s\n",
6279 i40e_stat_str(&pf->hw, ret),
6280 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6281 }
6282
6283 out:
6284 return ret;
6285 }
6286
6287 #ifdef CONFIG_I40E_DCB
6288 /**
6289 * i40e_dcb_reconfigure - Reconfigure all VEBs and VSIs
6290 * @pf: PF struct
6291 *
6292 * Reconfigure VEB/VSIs on a given PF; it is assumed that
6293 * the caller would've quiesce all the VSIs before calling
6294 * this function
6295 **/
6296 static void i40e_dcb_reconfigure(struct i40e_pf *pf)
6297 {
6298 u8 tc_map = 0;
6299 int ret;
6300 u8 v;
6301
6302 /* Enable the TCs available on PF to all VEBs */
6303 tc_map = i40e_pf_get_tc_map(pf);
6304 for (v = 0; v < I40E_MAX_VEB; v++) {
6305 if (!pf->veb[v])
6306 continue;
6307 ret = i40e_veb_config_tc(pf->veb[v], tc_map);
6308 if (ret) {
6309 dev_info(&pf->pdev->dev,
6310 "Failed configuring TC for VEB seid=%d\n",
6311 pf->veb[v]->seid);
6312 /* Will try to configure as many components */
6313 }
6314 }
6315
6316 /* Update each VSI */
6317 for (v = 0; v < pf->num_alloc_vsi; v++) {
6318 if (!pf->vsi[v])
6319 continue;
6320
6321 /* - Enable all TCs for the LAN VSI
6322 * - For all others keep them at TC0 for now
6323 */
6324 if (v == pf->lan_vsi)
6325 tc_map = i40e_pf_get_tc_map(pf);
6326 else
6327 tc_map = I40E_DEFAULT_TRAFFIC_CLASS;
6328
6329 ret = i40e_vsi_config_tc(pf->vsi[v], tc_map);
6330 if (ret) {
6331 dev_info(&pf->pdev->dev,
6332 "Failed configuring TC for VSI seid=%d\n",
6333 pf->vsi[v]->seid);
6334 /* Will try to configure as many components */
6335 } else {
6336 /* Re-configure VSI vectors based on updated TC map */
6337 i40e_vsi_map_rings_to_vectors(pf->vsi[v]);
6338 if (pf->vsi[v]->netdev)
6339 i40e_dcbnl_set_all(pf->vsi[v]);
6340 }
6341 }
6342 }
6343
6344 /**
6345 * i40e_resume_port_tx - Resume port Tx
6346 * @pf: PF struct
6347 *
6348 * Resume a port's Tx and issue a PF reset in case of failure to
6349 * resume.
6350 **/
6351 static int i40e_resume_port_tx(struct i40e_pf *pf)
6352 {
6353 struct i40e_hw *hw = &pf->hw;
6354 int ret;
6355
6356 ret = i40e_aq_resume_port_tx(hw, NULL);
6357 if (ret) {
6358 dev_info(&pf->pdev->dev,
6359 "Resume Port Tx failed, err %s aq_err %s\n",
6360 i40e_stat_str(&pf->hw, ret),
6361 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6362 /* Schedule PF reset to recover */
6363 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
6364 i40e_service_event_schedule(pf);
6365 }
6366
6367 return ret;
6368 }
6369
6370 /**
6371 * i40e_init_pf_dcb - Initialize DCB configuration
6372 * @pf: PF being configured
6373 *
6374 * Query the current DCB configuration and cache it
6375 * in the hardware structure
6376 **/
6377 static int i40e_init_pf_dcb(struct i40e_pf *pf)
6378 {
6379 struct i40e_hw *hw = &pf->hw;
6380 int err = 0;
6381
6382 /* Do not enable DCB for SW1 and SW2 images even if the FW is capable */
6383 if (pf->hw_features & I40E_HW_NO_DCB_SUPPORT)
6384 goto out;
6385
6386 /* Get the initial DCB configuration */
6387 err = i40e_init_dcb(hw);
6388 if (!err) {
6389 /* Device/Function is not DCBX capable */
6390 if ((!hw->func_caps.dcb) ||
6391 (hw->dcbx_status == I40E_DCBX_STATUS_DISABLED)) {
6392 dev_info(&pf->pdev->dev,
6393 "DCBX offload is not supported or is disabled for this PF.\n");
6394 } else {
6395 /* When status is not DISABLED then DCBX in FW */
6396 pf->dcbx_cap = DCB_CAP_DCBX_LLD_MANAGED |
6397 DCB_CAP_DCBX_VER_IEEE;
6398
6399 pf->flags |= I40E_FLAG_DCB_CAPABLE;
6400 /* Enable DCB tagging only when more than one TC
6401 * or explicitly disable if only one TC
6402 */
6403 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
6404 pf->flags |= I40E_FLAG_DCB_ENABLED;
6405 else
6406 pf->flags &= ~I40E_FLAG_DCB_ENABLED;
6407 dev_dbg(&pf->pdev->dev,
6408 "DCBX offload is supported for this PF.\n");
6409 }
6410 } else {
6411 dev_info(&pf->pdev->dev,
6412 "Query for DCB configuration failed, err %s aq_err %s\n",
6413 i40e_stat_str(&pf->hw, err),
6414 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
6415 }
6416
6417 out:
6418 return err;
6419 }
6420 #endif /* CONFIG_I40E_DCB */
6421 #define SPEED_SIZE 14
6422 #define FC_SIZE 8
6423 /**
6424 * i40e_print_link_message - print link up or down
6425 * @vsi: the VSI for which link needs a message
6426 */
6427 void i40e_print_link_message(struct i40e_vsi *vsi, bool isup)
6428 {
6429 enum i40e_aq_link_speed new_speed;
6430 struct i40e_pf *pf = vsi->back;
6431 char *speed = "Unknown";
6432 char *fc = "Unknown";
6433 char *fec = "";
6434 char *req_fec = "";
6435 char *an = "";
6436
6437 new_speed = pf->hw.phy.link_info.link_speed;
6438
6439 if ((vsi->current_isup == isup) && (vsi->current_speed == new_speed))
6440 return;
6441 vsi->current_isup = isup;
6442 vsi->current_speed = new_speed;
6443 if (!isup) {
6444 netdev_info(vsi->netdev, "NIC Link is Down\n");
6445 return;
6446 }
6447
6448 /* Warn user if link speed on NPAR enabled partition is not at
6449 * least 10GB
6450 */
6451 if (pf->hw.func_caps.npar_enable &&
6452 (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_1GB ||
6453 pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_100MB))
6454 netdev_warn(vsi->netdev,
6455 "The partition detected link speed that is less than 10Gbps\n");
6456
6457 switch (pf->hw.phy.link_info.link_speed) {
6458 case I40E_LINK_SPEED_40GB:
6459 speed = "40 G";
6460 break;
6461 case I40E_LINK_SPEED_20GB:
6462 speed = "20 G";
6463 break;
6464 case I40E_LINK_SPEED_25GB:
6465 speed = "25 G";
6466 break;
6467 case I40E_LINK_SPEED_10GB:
6468 speed = "10 G";
6469 break;
6470 case I40E_LINK_SPEED_1GB:
6471 speed = "1000 M";
6472 break;
6473 case I40E_LINK_SPEED_100MB:
6474 speed = "100 M";
6475 break;
6476 default:
6477 break;
6478 }
6479
6480 switch (pf->hw.fc.current_mode) {
6481 case I40E_FC_FULL:
6482 fc = "RX/TX";
6483 break;
6484 case I40E_FC_TX_PAUSE:
6485 fc = "TX";
6486 break;
6487 case I40E_FC_RX_PAUSE:
6488 fc = "RX";
6489 break;
6490 default:
6491 fc = "None";
6492 break;
6493 }
6494
6495 if (pf->hw.phy.link_info.link_speed == I40E_LINK_SPEED_25GB) {
6496 req_fec = ", Requested FEC: None";
6497 fec = ", FEC: None";
6498 an = ", Autoneg: False";
6499
6500 if (pf->hw.phy.link_info.an_info & I40E_AQ_AN_COMPLETED)
6501 an = ", Autoneg: True";
6502
6503 if (pf->hw.phy.link_info.fec_info &
6504 I40E_AQ_CONFIG_FEC_KR_ENA)
6505 fec = ", FEC: CL74 FC-FEC/BASE-R";
6506 else if (pf->hw.phy.link_info.fec_info &
6507 I40E_AQ_CONFIG_FEC_RS_ENA)
6508 fec = ", FEC: CL108 RS-FEC";
6509
6510 /* 'CL108 RS-FEC' should be displayed when RS is requested, or
6511 * both RS and FC are requested
6512 */
6513 if (vsi->back->hw.phy.link_info.req_fec_info &
6514 (I40E_AQ_REQUEST_FEC_KR | I40E_AQ_REQUEST_FEC_RS)) {
6515 if (vsi->back->hw.phy.link_info.req_fec_info &
6516 I40E_AQ_REQUEST_FEC_RS)
6517 req_fec = ", Requested FEC: CL108 RS-FEC";
6518 else
6519 req_fec = ", Requested FEC: CL74 FC-FEC/BASE-R";
6520 }
6521 }
6522
6523 netdev_info(vsi->netdev, "NIC Link is Up, %sbps Full Duplex%s%s%s, Flow Control: %s\n",
6524 speed, req_fec, fec, an, fc);
6525 }
6526
6527 /**
6528 * i40e_up_complete - Finish the last steps of bringing up a connection
6529 * @vsi: the VSI being configured
6530 **/
6531 static int i40e_up_complete(struct i40e_vsi *vsi)
6532 {
6533 struct i40e_pf *pf = vsi->back;
6534 int err;
6535
6536 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
6537 i40e_vsi_configure_msix(vsi);
6538 else
6539 i40e_configure_msi_and_legacy(vsi);
6540
6541 /* start rings */
6542 err = i40e_vsi_start_rings(vsi);
6543 if (err)
6544 return err;
6545
6546 clear_bit(__I40E_VSI_DOWN, vsi->state);
6547 i40e_napi_enable_all(vsi);
6548 i40e_vsi_enable_irq(vsi);
6549
6550 if ((pf->hw.phy.link_info.link_info & I40E_AQ_LINK_UP) &&
6551 (vsi->netdev)) {
6552 i40e_print_link_message(vsi, true);
6553 netif_tx_start_all_queues(vsi->netdev);
6554 netif_carrier_on(vsi->netdev);
6555 }
6556
6557 /* replay FDIR SB filters */
6558 if (vsi->type == I40E_VSI_FDIR) {
6559 /* reset fd counters */
6560 pf->fd_add_err = 0;
6561 pf->fd_atr_cnt = 0;
6562 i40e_fdir_filter_restore(vsi);
6563 }
6564
6565 /* On the next run of the service_task, notify any clients of the new
6566 * opened netdev
6567 */
6568 pf->flags |= I40E_FLAG_SERVICE_CLIENT_REQUESTED;
6569 i40e_service_event_schedule(pf);
6570
6571 return 0;
6572 }
6573
6574 /**
6575 * i40e_vsi_reinit_locked - Reset the VSI
6576 * @vsi: the VSI being configured
6577 *
6578 * Rebuild the ring structs after some configuration
6579 * has changed, e.g. MTU size.
6580 **/
6581 static void i40e_vsi_reinit_locked(struct i40e_vsi *vsi)
6582 {
6583 struct i40e_pf *pf = vsi->back;
6584
6585 WARN_ON(in_interrupt());
6586 while (test_and_set_bit(__I40E_CONFIG_BUSY, pf->state))
6587 usleep_range(1000, 2000);
6588 i40e_down(vsi);
6589
6590 i40e_up(vsi);
6591 clear_bit(__I40E_CONFIG_BUSY, pf->state);
6592 }
6593
6594 /**
6595 * i40e_up - Bring the connection back up after being down
6596 * @vsi: the VSI being configured
6597 **/
6598 int i40e_up(struct i40e_vsi *vsi)
6599 {
6600 int err;
6601
6602 err = i40e_vsi_configure(vsi);
6603 if (!err)
6604 err = i40e_up_complete(vsi);
6605
6606 return err;
6607 }
6608
6609 /**
6610 * i40e_down - Shutdown the connection processing
6611 * @vsi: the VSI being stopped
6612 **/
6613 void i40e_down(struct i40e_vsi *vsi)
6614 {
6615 int i;
6616
6617 /* It is assumed that the caller of this function
6618 * sets the vsi->state __I40E_VSI_DOWN bit.
6619 */
6620 if (vsi->netdev) {
6621 netif_carrier_off(vsi->netdev);
6622 netif_tx_disable(vsi->netdev);
6623 }
6624 i40e_vsi_disable_irq(vsi);
6625 i40e_vsi_stop_rings(vsi);
6626 i40e_napi_disable_all(vsi);
6627
6628 for (i = 0; i < vsi->num_queue_pairs; i++) {
6629 i40e_clean_tx_ring(vsi->tx_rings[i]);
6630 if (i40e_enabled_xdp_vsi(vsi))
6631 i40e_clean_tx_ring(vsi->xdp_rings[i]);
6632 i40e_clean_rx_ring(vsi->rx_rings[i]);
6633 }
6634
6635 }
6636
6637 /**
6638 * i40e_validate_mqprio_qopt- validate queue mapping info
6639 * @vsi: the VSI being configured
6640 * @mqprio_qopt: queue parametrs
6641 **/
6642 static int i40e_validate_mqprio_qopt(struct i40e_vsi *vsi,
6643 struct tc_mqprio_qopt_offload *mqprio_qopt)
6644 {
6645 u64 sum_max_rate = 0;
6646 u64 max_rate = 0;
6647 int i;
6648
6649 if (mqprio_qopt->qopt.offset[0] != 0 ||
6650 mqprio_qopt->qopt.num_tc < 1 ||
6651 mqprio_qopt->qopt.num_tc > I40E_MAX_TRAFFIC_CLASS)
6652 return -EINVAL;
6653 for (i = 0; ; i++) {
6654 if (!mqprio_qopt->qopt.count[i])
6655 return -EINVAL;
6656 if (mqprio_qopt->min_rate[i]) {
6657 dev_err(&vsi->back->pdev->dev,
6658 "Invalid min tx rate (greater than 0) specified\n");
6659 return -EINVAL;
6660 }
6661 max_rate = mqprio_qopt->max_rate[i];
6662 do_div(max_rate, I40E_BW_MBPS_DIVISOR);
6663 sum_max_rate += max_rate;
6664
6665 if (i >= mqprio_qopt->qopt.num_tc - 1)
6666 break;
6667 if (mqprio_qopt->qopt.offset[i + 1] !=
6668 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
6669 return -EINVAL;
6670 }
6671 if (vsi->num_queue_pairs <
6672 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i])) {
6673 return -EINVAL;
6674 }
6675 if (sum_max_rate > i40e_get_link_speed(vsi)) {
6676 dev_err(&vsi->back->pdev->dev,
6677 "Invalid max tx rate specified\n");
6678 return -EINVAL;
6679 }
6680 return 0;
6681 }
6682
6683 /**
6684 * i40e_vsi_set_default_tc_config - set default values for tc configuration
6685 * @vsi: the VSI being configured
6686 **/
6687 static void i40e_vsi_set_default_tc_config(struct i40e_vsi *vsi)
6688 {
6689 u16 qcount;
6690 int i;
6691
6692 /* Only TC0 is enabled */
6693 vsi->tc_config.numtc = 1;
6694 vsi->tc_config.enabled_tc = 1;
6695 qcount = min_t(int, vsi->alloc_queue_pairs,
6696 i40e_pf_get_max_q_per_tc(vsi->back));
6697 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
6698 /* For the TC that is not enabled set the offset to to default
6699 * queue and allocate one queue for the given TC.
6700 */
6701 vsi->tc_config.tc_info[i].qoffset = 0;
6702 if (i == 0)
6703 vsi->tc_config.tc_info[i].qcount = qcount;
6704 else
6705 vsi->tc_config.tc_info[i].qcount = 1;
6706 vsi->tc_config.tc_info[i].netdev_tc = 0;
6707 }
6708 }
6709
6710 /**
6711 * i40e_setup_tc - configure multiple traffic classes
6712 * @netdev: net device to configure
6713 * @type_data: tc offload data
6714 **/
6715 static int i40e_setup_tc(struct net_device *netdev, void *type_data)
6716 {
6717 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
6718 struct i40e_netdev_priv *np = netdev_priv(netdev);
6719 struct i40e_vsi *vsi = np->vsi;
6720 struct i40e_pf *pf = vsi->back;
6721 u8 enabled_tc = 0, num_tc, hw;
6722 bool need_reset = false;
6723 int ret = -EINVAL;
6724 u16 mode;
6725 int i;
6726
6727 num_tc = mqprio_qopt->qopt.num_tc;
6728 hw = mqprio_qopt->qopt.hw;
6729 mode = mqprio_qopt->mode;
6730 if (!hw) {
6731 pf->flags &= ~I40E_FLAG_TC_MQPRIO;
6732 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
6733 goto config_tc;
6734 }
6735
6736 /* Check if MFP enabled */
6737 if (pf->flags & I40E_FLAG_MFP_ENABLED) {
6738 netdev_info(netdev,
6739 "Configuring TC not supported in MFP mode\n");
6740 return ret;
6741 }
6742 switch (mode) {
6743 case TC_MQPRIO_MODE_DCB:
6744 pf->flags &= ~I40E_FLAG_TC_MQPRIO;
6745
6746 /* Check if DCB enabled to continue */
6747 if (!(pf->flags & I40E_FLAG_DCB_ENABLED)) {
6748 netdev_info(netdev,
6749 "DCB is not enabled for adapter\n");
6750 return ret;
6751 }
6752
6753 /* Check whether tc count is within enabled limit */
6754 if (num_tc > i40e_pf_get_num_tc(pf)) {
6755 netdev_info(netdev,
6756 "TC count greater than enabled on link for adapter\n");
6757 return ret;
6758 }
6759 break;
6760 case TC_MQPRIO_MODE_CHANNEL:
6761 if (pf->flags & I40E_FLAG_DCB_ENABLED) {
6762 netdev_info(netdev,
6763 "Full offload of TC Mqprio options is not supported when DCB is enabled\n");
6764 return ret;
6765 }
6766 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
6767 return ret;
6768 ret = i40e_validate_mqprio_qopt(vsi, mqprio_qopt);
6769 if (ret)
6770 return ret;
6771 memcpy(&vsi->mqprio_qopt, mqprio_qopt,
6772 sizeof(*mqprio_qopt));
6773 pf->flags |= I40E_FLAG_TC_MQPRIO;
6774 pf->flags &= ~I40E_FLAG_DCB_ENABLED;
6775 break;
6776 default:
6777 return -EINVAL;
6778 }
6779
6780 config_tc:
6781 /* Generate TC map for number of tc requested */
6782 for (i = 0; i < num_tc; i++)
6783 enabled_tc |= BIT(i);
6784
6785 /* Requesting same TC configuration as already enabled */
6786 if (enabled_tc == vsi->tc_config.enabled_tc &&
6787 mode != TC_MQPRIO_MODE_CHANNEL)
6788 return 0;
6789
6790 /* Quiesce VSI queues */
6791 i40e_quiesce_vsi(vsi);
6792
6793 if (!hw && !(pf->flags & I40E_FLAG_TC_MQPRIO))
6794 i40e_remove_queue_channels(vsi);
6795
6796 /* Configure VSI for enabled TCs */
6797 ret = i40e_vsi_config_tc(vsi, enabled_tc);
6798 if (ret) {
6799 netdev_info(netdev, "Failed configuring TC for VSI seid=%d\n",
6800 vsi->seid);
6801 need_reset = true;
6802 goto exit;
6803 }
6804
6805 if (pf->flags & I40E_FLAG_TC_MQPRIO) {
6806 if (vsi->mqprio_qopt.max_rate[0]) {
6807 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
6808
6809 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR);
6810 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
6811 if (!ret) {
6812 u64 credits = max_tx_rate;
6813
6814 do_div(credits, I40E_BW_CREDIT_DIVISOR);
6815 dev_dbg(&vsi->back->pdev->dev,
6816 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
6817 max_tx_rate,
6818 credits,
6819 vsi->seid);
6820 } else {
6821 need_reset = true;
6822 goto exit;
6823 }
6824 }
6825 ret = i40e_configure_queue_channels(vsi);
6826 if (ret) {
6827 netdev_info(netdev,
6828 "Failed configuring queue channels\n");
6829 need_reset = true;
6830 goto exit;
6831 }
6832 }
6833
6834 exit:
6835 /* Reset the configuration data to defaults, only TC0 is enabled */
6836 if (need_reset) {
6837 i40e_vsi_set_default_tc_config(vsi);
6838 need_reset = false;
6839 }
6840
6841 /* Unquiesce VSI */
6842 i40e_unquiesce_vsi(vsi);
6843 return ret;
6844 }
6845
6846 /**
6847 * i40e_set_cld_element - sets cloud filter element data
6848 * @filter: cloud filter rule
6849 * @cld: ptr to cloud filter element data
6850 *
6851 * This is helper function to copy data into cloud filter element
6852 **/
6853 static inline void
6854 i40e_set_cld_element(struct i40e_cloud_filter *filter,
6855 struct i40e_aqc_cloud_filters_element_data *cld)
6856 {
6857 int i, j;
6858 u32 ipa;
6859
6860 memset(cld, 0, sizeof(*cld));
6861 ether_addr_copy(cld->outer_mac, filter->dst_mac);
6862 ether_addr_copy(cld->inner_mac, filter->src_mac);
6863
6864 if (filter->n_proto != ETH_P_IP && filter->n_proto != ETH_P_IPV6)
6865 return;
6866
6867 if (filter->n_proto == ETH_P_IPV6) {
6868 #define IPV6_MAX_INDEX (ARRAY_SIZE(filter->dst_ipv6) - 1)
6869 for (i = 0, j = 0; i < ARRAY_SIZE(filter->dst_ipv6);
6870 i++, j += 2) {
6871 ipa = be32_to_cpu(filter->dst_ipv6[IPV6_MAX_INDEX - i]);
6872 ipa = cpu_to_le32(ipa);
6873 memcpy(&cld->ipaddr.raw_v6.data[j], &ipa, sizeof(ipa));
6874 }
6875 } else {
6876 ipa = be32_to_cpu(filter->dst_ipv4);
6877 memcpy(&cld->ipaddr.v4.data, &ipa, sizeof(ipa));
6878 }
6879
6880 cld->inner_vlan = cpu_to_le16(ntohs(filter->vlan_id));
6881
6882 /* tenant_id is not supported by FW now, once the support is enabled
6883 * fill the cld->tenant_id with cpu_to_le32(filter->tenant_id)
6884 */
6885 if (filter->tenant_id)
6886 return;
6887 }
6888
6889 /**
6890 * i40e_add_del_cloud_filter - Add/del cloud filter
6891 * @vsi: pointer to VSI
6892 * @filter: cloud filter rule
6893 * @add: if true, add, if false, delete
6894 *
6895 * Add or delete a cloud filter for a specific flow spec.
6896 * Returns 0 if the filter were successfully added.
6897 **/
6898 static int i40e_add_del_cloud_filter(struct i40e_vsi *vsi,
6899 struct i40e_cloud_filter *filter, bool add)
6900 {
6901 struct i40e_aqc_cloud_filters_element_data cld_filter;
6902 struct i40e_pf *pf = vsi->back;
6903 int ret;
6904 static const u16 flag_table[128] = {
6905 [I40E_CLOUD_FILTER_FLAGS_OMAC] =
6906 I40E_AQC_ADD_CLOUD_FILTER_OMAC,
6907 [I40E_CLOUD_FILTER_FLAGS_IMAC] =
6908 I40E_AQC_ADD_CLOUD_FILTER_IMAC,
6909 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN] =
6910 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN,
6911 [I40E_CLOUD_FILTER_FLAGS_IMAC_TEN_ID] =
6912 I40E_AQC_ADD_CLOUD_FILTER_IMAC_TEN_ID,
6913 [I40E_CLOUD_FILTER_FLAGS_OMAC_TEN_ID_IMAC] =
6914 I40E_AQC_ADD_CLOUD_FILTER_OMAC_TEN_ID_IMAC,
6915 [I40E_CLOUD_FILTER_FLAGS_IMAC_IVLAN_TEN_ID] =
6916 I40E_AQC_ADD_CLOUD_FILTER_IMAC_IVLAN_TEN_ID,
6917 [I40E_CLOUD_FILTER_FLAGS_IIP] =
6918 I40E_AQC_ADD_CLOUD_FILTER_IIP,
6919 };
6920
6921 if (filter->flags >= ARRAY_SIZE(flag_table))
6922 return I40E_ERR_CONFIG;
6923
6924 /* copy element needed to add cloud filter from filter */
6925 i40e_set_cld_element(filter, &cld_filter);
6926
6927 if (filter->tunnel_type != I40E_CLOUD_TNL_TYPE_NONE)
6928 cld_filter.flags = cpu_to_le16(filter->tunnel_type <<
6929 I40E_AQC_ADD_CLOUD_TNL_TYPE_SHIFT);
6930
6931 if (filter->n_proto == ETH_P_IPV6)
6932 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
6933 I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
6934 else
6935 cld_filter.flags |= cpu_to_le16(flag_table[filter->flags] |
6936 I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
6937
6938 if (add)
6939 ret = i40e_aq_add_cloud_filters(&pf->hw, filter->seid,
6940 &cld_filter, 1);
6941 else
6942 ret = i40e_aq_rem_cloud_filters(&pf->hw, filter->seid,
6943 &cld_filter, 1);
6944 if (ret)
6945 dev_dbg(&pf->pdev->dev,
6946 "Failed to %s cloud filter using l4 port %u, err %d aq_err %d\n",
6947 add ? "add" : "delete", filter->dst_port, ret,
6948 pf->hw.aq.asq_last_status);
6949 else
6950 dev_info(&pf->pdev->dev,
6951 "%s cloud filter for VSI: %d\n",
6952 add ? "Added" : "Deleted", filter->seid);
6953 return ret;
6954 }
6955
6956 /**
6957 * i40e_add_del_cloud_filter_big_buf - Add/del cloud filter using big_buf
6958 * @vsi: pointer to VSI
6959 * @filter: cloud filter rule
6960 * @add: if true, add, if false, delete
6961 *
6962 * Add or delete a cloud filter for a specific flow spec using big buffer.
6963 * Returns 0 if the filter were successfully added.
6964 **/
6965 static int i40e_add_del_cloud_filter_big_buf(struct i40e_vsi *vsi,
6966 struct i40e_cloud_filter *filter,
6967 bool add)
6968 {
6969 struct i40e_aqc_cloud_filters_element_bb cld_filter;
6970 struct i40e_pf *pf = vsi->back;
6971 int ret;
6972
6973 /* Both (src/dst) valid mac_addr are not supported */
6974 if ((is_valid_ether_addr(filter->dst_mac) &&
6975 is_valid_ether_addr(filter->src_mac)) ||
6976 (is_multicast_ether_addr(filter->dst_mac) &&
6977 is_multicast_ether_addr(filter->src_mac)))
6978 return -EINVAL;
6979
6980 /* Make sure port is specified, otherwise bail out, for channel
6981 * specific cloud filter needs 'L4 port' to be non-zero
6982 */
6983 if (!filter->dst_port)
6984 return -EINVAL;
6985
6986 /* adding filter using src_port/src_ip is not supported at this stage */
6987 if (filter->src_port || filter->src_ipv4 ||
6988 !ipv6_addr_any(&filter->ip.v6.src_ip6))
6989 return -EINVAL;
6990
6991 /* copy element needed to add cloud filter from filter */
6992 i40e_set_cld_element(filter, &cld_filter.element);
6993
6994 if (is_valid_ether_addr(filter->dst_mac) ||
6995 is_valid_ether_addr(filter->src_mac) ||
6996 is_multicast_ether_addr(filter->dst_mac) ||
6997 is_multicast_ether_addr(filter->src_mac)) {
6998 /* MAC + IP : unsupported mode */
6999 if (filter->dst_ipv4)
7000 return -EINVAL;
7001
7002 /* since we validated that L4 port must be valid before
7003 * we get here, start with respective "flags" value
7004 * and update if vlan is present or not
7005 */
7006 cld_filter.element.flags =
7007 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_PORT);
7008
7009 if (filter->vlan_id) {
7010 cld_filter.element.flags =
7011 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_MAC_VLAN_PORT);
7012 }
7013
7014 } else if (filter->dst_ipv4 ||
7015 !ipv6_addr_any(&filter->ip.v6.dst_ip6)) {
7016 cld_filter.element.flags =
7017 cpu_to_le16(I40E_AQC_ADD_CLOUD_FILTER_IP_PORT);
7018 if (filter->n_proto == ETH_P_IPV6)
7019 cld_filter.element.flags |=
7020 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV6);
7021 else
7022 cld_filter.element.flags |=
7023 cpu_to_le16(I40E_AQC_ADD_CLOUD_FLAGS_IPV4);
7024 } else {
7025 dev_err(&pf->pdev->dev,
7026 "either mac or ip has to be valid for cloud filter\n");
7027 return -EINVAL;
7028 }
7029
7030 /* Now copy L4 port in Byte 6..7 in general fields */
7031 cld_filter.general_fields[I40E_AQC_ADD_CLOUD_FV_FLU_0X16_WORD0] =
7032 be16_to_cpu(filter->dst_port);
7033
7034 if (add) {
7035 /* Validate current device switch mode, change if necessary */
7036 ret = i40e_validate_and_set_switch_mode(vsi);
7037 if (ret) {
7038 dev_err(&pf->pdev->dev,
7039 "failed to set switch mode, ret %d\n",
7040 ret);
7041 return ret;
7042 }
7043
7044 ret = i40e_aq_add_cloud_filters_bb(&pf->hw, filter->seid,
7045 &cld_filter, 1);
7046 } else {
7047 ret = i40e_aq_rem_cloud_filters_bb(&pf->hw, filter->seid,
7048 &cld_filter, 1);
7049 }
7050
7051 if (ret)
7052 dev_dbg(&pf->pdev->dev,
7053 "Failed to %s cloud filter(big buffer) err %d aq_err %d\n",
7054 add ? "add" : "delete", ret, pf->hw.aq.asq_last_status);
7055 else
7056 dev_info(&pf->pdev->dev,
7057 "%s cloud filter for VSI: %d, L4 port: %d\n",
7058 add ? "add" : "delete", filter->seid,
7059 ntohs(filter->dst_port));
7060 return ret;
7061 }
7062
7063 /**
7064 * i40e_parse_cls_flower - Parse tc flower filters provided by kernel
7065 * @vsi: Pointer to VSI
7066 * @cls_flower: Pointer to struct tc_cls_flower_offload
7067 * @filter: Pointer to cloud filter structure
7068 *
7069 **/
7070 static int i40e_parse_cls_flower(struct i40e_vsi *vsi,
7071 struct tc_cls_flower_offload *f,
7072 struct i40e_cloud_filter *filter)
7073 {
7074 u16 n_proto_mask = 0, n_proto_key = 0, addr_type = 0;
7075 struct i40e_pf *pf = vsi->back;
7076 u8 field_flags = 0;
7077
7078 if (f->dissector->used_keys &
7079 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
7080 BIT(FLOW_DISSECTOR_KEY_BASIC) |
7081 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
7082 BIT(FLOW_DISSECTOR_KEY_VLAN) |
7083 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
7084 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
7085 BIT(FLOW_DISSECTOR_KEY_PORTS) |
7086 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
7087 dev_err(&pf->pdev->dev, "Unsupported key used: 0x%x\n",
7088 f->dissector->used_keys);
7089 return -EOPNOTSUPP;
7090 }
7091
7092 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
7093 struct flow_dissector_key_keyid *key =
7094 skb_flow_dissector_target(f->dissector,
7095 FLOW_DISSECTOR_KEY_ENC_KEYID,
7096 f->key);
7097
7098 struct flow_dissector_key_keyid *mask =
7099 skb_flow_dissector_target(f->dissector,
7100 FLOW_DISSECTOR_KEY_ENC_KEYID,
7101 f->mask);
7102
7103 if (mask->keyid != 0)
7104 field_flags |= I40E_CLOUD_FIELD_TEN_ID;
7105
7106 filter->tenant_id = be32_to_cpu(key->keyid);
7107 }
7108
7109 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
7110 struct flow_dissector_key_basic *key =
7111 skb_flow_dissector_target(f->dissector,
7112 FLOW_DISSECTOR_KEY_BASIC,
7113 f->key);
7114
7115 struct flow_dissector_key_basic *mask =
7116 skb_flow_dissector_target(f->dissector,
7117 FLOW_DISSECTOR_KEY_BASIC,
7118 f->mask);
7119
7120 n_proto_key = ntohs(key->n_proto);
7121 n_proto_mask = ntohs(mask->n_proto);
7122
7123 if (n_proto_key == ETH_P_ALL) {
7124 n_proto_key = 0;
7125 n_proto_mask = 0;
7126 }
7127 filter->n_proto = n_proto_key & n_proto_mask;
7128 filter->ip_proto = key->ip_proto;
7129 }
7130
7131 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
7132 struct flow_dissector_key_eth_addrs *key =
7133 skb_flow_dissector_target(f->dissector,
7134 FLOW_DISSECTOR_KEY_ETH_ADDRS,
7135 f->key);
7136
7137 struct flow_dissector_key_eth_addrs *mask =
7138 skb_flow_dissector_target(f->dissector,
7139 FLOW_DISSECTOR_KEY_ETH_ADDRS,
7140 f->mask);
7141
7142 /* use is_broadcast and is_zero to check for all 0xf or 0 */
7143 if (!is_zero_ether_addr(mask->dst)) {
7144 if (is_broadcast_ether_addr(mask->dst)) {
7145 field_flags |= I40E_CLOUD_FIELD_OMAC;
7146 } else {
7147 dev_err(&pf->pdev->dev, "Bad ether dest mask %pM\n",
7148 mask->dst);
7149 return I40E_ERR_CONFIG;
7150 }
7151 }
7152
7153 if (!is_zero_ether_addr(mask->src)) {
7154 if (is_broadcast_ether_addr(mask->src)) {
7155 field_flags |= I40E_CLOUD_FIELD_IMAC;
7156 } else {
7157 dev_err(&pf->pdev->dev, "Bad ether src mask %pM\n",
7158 mask->src);
7159 return I40E_ERR_CONFIG;
7160 }
7161 }
7162 ether_addr_copy(filter->dst_mac, key->dst);
7163 ether_addr_copy(filter->src_mac, key->src);
7164 }
7165
7166 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
7167 struct flow_dissector_key_vlan *key =
7168 skb_flow_dissector_target(f->dissector,
7169 FLOW_DISSECTOR_KEY_VLAN,
7170 f->key);
7171 struct flow_dissector_key_vlan *mask =
7172 skb_flow_dissector_target(f->dissector,
7173 FLOW_DISSECTOR_KEY_VLAN,
7174 f->mask);
7175
7176 if (mask->vlan_id) {
7177 if (mask->vlan_id == VLAN_VID_MASK) {
7178 field_flags |= I40E_CLOUD_FIELD_IVLAN;
7179
7180 } else {
7181 dev_err(&pf->pdev->dev, "Bad vlan mask 0x%04x\n",
7182 mask->vlan_id);
7183 return I40E_ERR_CONFIG;
7184 }
7185 }
7186
7187 filter->vlan_id = cpu_to_be16(key->vlan_id);
7188 }
7189
7190 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_CONTROL)) {
7191 struct flow_dissector_key_control *key =
7192 skb_flow_dissector_target(f->dissector,
7193 FLOW_DISSECTOR_KEY_CONTROL,
7194 f->key);
7195
7196 addr_type = key->addr_type;
7197 }
7198
7199 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
7200 struct flow_dissector_key_ipv4_addrs *key =
7201 skb_flow_dissector_target(f->dissector,
7202 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
7203 f->key);
7204 struct flow_dissector_key_ipv4_addrs *mask =
7205 skb_flow_dissector_target(f->dissector,
7206 FLOW_DISSECTOR_KEY_IPV4_ADDRS,
7207 f->mask);
7208
7209 if (mask->dst) {
7210 if (mask->dst == cpu_to_be32(0xffffffff)) {
7211 field_flags |= I40E_CLOUD_FIELD_IIP;
7212 } else {
7213 mask->dst = be32_to_cpu(mask->dst);
7214 dev_err(&pf->pdev->dev, "Bad ip dst mask %pI4\n",
7215 &mask->dst);
7216 return I40E_ERR_CONFIG;
7217 }
7218 }
7219
7220 if (mask->src) {
7221 if (mask->src == cpu_to_be32(0xffffffff)) {
7222 field_flags |= I40E_CLOUD_FIELD_IIP;
7223 } else {
7224 mask->src = be32_to_cpu(mask->src);
7225 dev_err(&pf->pdev->dev, "Bad ip src mask %pI4\n",
7226 &mask->src);
7227 return I40E_ERR_CONFIG;
7228 }
7229 }
7230
7231 if (field_flags & I40E_CLOUD_FIELD_TEN_ID) {
7232 dev_err(&pf->pdev->dev, "Tenant id not allowed for ip filter\n");
7233 return I40E_ERR_CONFIG;
7234 }
7235 filter->dst_ipv4 = key->dst;
7236 filter->src_ipv4 = key->src;
7237 }
7238
7239 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
7240 struct flow_dissector_key_ipv6_addrs *key =
7241 skb_flow_dissector_target(f->dissector,
7242 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
7243 f->key);
7244 struct flow_dissector_key_ipv6_addrs *mask =
7245 skb_flow_dissector_target(f->dissector,
7246 FLOW_DISSECTOR_KEY_IPV6_ADDRS,
7247 f->mask);
7248
7249 /* src and dest IPV6 address should not be LOOPBACK
7250 * (0:0:0:0:0:0:0:1), which can be represented as ::1
7251 */
7252 if (ipv6_addr_loopback(&key->dst) ||
7253 ipv6_addr_loopback(&key->src)) {
7254 dev_err(&pf->pdev->dev,
7255 "Bad ipv6, addr is LOOPBACK\n");
7256 return I40E_ERR_CONFIG;
7257 }
7258 if (!ipv6_addr_any(&mask->dst) || !ipv6_addr_any(&mask->src))
7259 field_flags |= I40E_CLOUD_FIELD_IIP;
7260
7261 memcpy(&filter->src_ipv6, &key->src.s6_addr32,
7262 sizeof(filter->src_ipv6));
7263 memcpy(&filter->dst_ipv6, &key->dst.s6_addr32,
7264 sizeof(filter->dst_ipv6));
7265 }
7266
7267 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_PORTS)) {
7268 struct flow_dissector_key_ports *key =
7269 skb_flow_dissector_target(f->dissector,
7270 FLOW_DISSECTOR_KEY_PORTS,
7271 f->key);
7272 struct flow_dissector_key_ports *mask =
7273 skb_flow_dissector_target(f->dissector,
7274 FLOW_DISSECTOR_KEY_PORTS,
7275 f->mask);
7276
7277 if (mask->src) {
7278 if (mask->src == cpu_to_be16(0xffff)) {
7279 field_flags |= I40E_CLOUD_FIELD_IIP;
7280 } else {
7281 dev_err(&pf->pdev->dev, "Bad src port mask 0x%04x\n",
7282 be16_to_cpu(mask->src));
7283 return I40E_ERR_CONFIG;
7284 }
7285 }
7286
7287 if (mask->dst) {
7288 if (mask->dst == cpu_to_be16(0xffff)) {
7289 field_flags |= I40E_CLOUD_FIELD_IIP;
7290 } else {
7291 dev_err(&pf->pdev->dev, "Bad dst port mask 0x%04x\n",
7292 be16_to_cpu(mask->dst));
7293 return I40E_ERR_CONFIG;
7294 }
7295 }
7296
7297 filter->dst_port = key->dst;
7298 filter->src_port = key->src;
7299
7300 switch (filter->ip_proto) {
7301 case IPPROTO_TCP:
7302 case IPPROTO_UDP:
7303 break;
7304 default:
7305 dev_err(&pf->pdev->dev,
7306 "Only UDP and TCP transport are supported\n");
7307 return -EINVAL;
7308 }
7309 }
7310 filter->flags = field_flags;
7311 return 0;
7312 }
7313
7314 /**
7315 * i40e_handle_tclass: Forward to a traffic class on the device
7316 * @vsi: Pointer to VSI
7317 * @tc: traffic class index on the device
7318 * @filter: Pointer to cloud filter structure
7319 *
7320 **/
7321 static int i40e_handle_tclass(struct i40e_vsi *vsi, u32 tc,
7322 struct i40e_cloud_filter *filter)
7323 {
7324 struct i40e_channel *ch, *ch_tmp;
7325
7326 /* direct to a traffic class on the same device */
7327 if (tc == 0) {
7328 filter->seid = vsi->seid;
7329 return 0;
7330 } else if (vsi->tc_config.enabled_tc & BIT(tc)) {
7331 if (!filter->dst_port) {
7332 dev_err(&vsi->back->pdev->dev,
7333 "Specify destination port to direct to traffic class that is not default\n");
7334 return -EINVAL;
7335 }
7336 if (list_empty(&vsi->ch_list))
7337 return -EINVAL;
7338 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list,
7339 list) {
7340 if (ch->seid == vsi->tc_seid_map[tc])
7341 filter->seid = ch->seid;
7342 }
7343 return 0;
7344 }
7345 dev_err(&vsi->back->pdev->dev, "TC is not enabled\n");
7346 return -EINVAL;
7347 }
7348
7349 /**
7350 * i40e_configure_clsflower - Configure tc flower filters
7351 * @vsi: Pointer to VSI
7352 * @cls_flower: Pointer to struct tc_cls_flower_offload
7353 *
7354 **/
7355 static int i40e_configure_clsflower(struct i40e_vsi *vsi,
7356 struct tc_cls_flower_offload *cls_flower)
7357 {
7358 int tc = tc_classid_to_hwtc(vsi->netdev, cls_flower->classid);
7359 struct i40e_cloud_filter *filter = NULL;
7360 struct i40e_pf *pf = vsi->back;
7361 int err = 0;
7362
7363 if (tc < 0) {
7364 dev_err(&vsi->back->pdev->dev, "Invalid traffic class\n");
7365 return -EINVAL;
7366 }
7367
7368 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state) ||
7369 test_bit(__I40E_RESET_INTR_RECEIVED, pf->state))
7370 return -EBUSY;
7371
7372 if (pf->fdir_pf_active_filters ||
7373 (!hlist_empty(&pf->fdir_filter_list))) {
7374 dev_err(&vsi->back->pdev->dev,
7375 "Flow Director Sideband filters exists, turn ntuple off to configure cloud filters\n");
7376 return -EINVAL;
7377 }
7378
7379 if (vsi->back->flags & I40E_FLAG_FD_SB_ENABLED) {
7380 dev_err(&vsi->back->pdev->dev,
7381 "Disable Flow Director Sideband, configuring Cloud filters via tc-flower\n");
7382 vsi->back->flags &= ~I40E_FLAG_FD_SB_ENABLED;
7383 vsi->back->flags |= I40E_FLAG_FD_SB_TO_CLOUD_FILTER;
7384 }
7385
7386 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
7387 if (!filter)
7388 return -ENOMEM;
7389
7390 filter->cookie = cls_flower->cookie;
7391
7392 err = i40e_parse_cls_flower(vsi, cls_flower, filter);
7393 if (err < 0)
7394 goto err;
7395
7396 err = i40e_handle_tclass(vsi, tc, filter);
7397 if (err < 0)
7398 goto err;
7399
7400 /* Add cloud filter */
7401 if (filter->dst_port)
7402 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, true);
7403 else
7404 err = i40e_add_del_cloud_filter(vsi, filter, true);
7405
7406 if (err) {
7407 dev_err(&pf->pdev->dev,
7408 "Failed to add cloud filter, err %s\n",
7409 i40e_stat_str(&pf->hw, err));
7410 err = i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status);
7411 goto err;
7412 }
7413
7414 /* add filter to the ordered list */
7415 INIT_HLIST_NODE(&filter->cloud_node);
7416
7417 hlist_add_head(&filter->cloud_node, &pf->cloud_filter_list);
7418
7419 pf->num_cloud_filters++;
7420
7421 return err;
7422 err:
7423 kfree(filter);
7424 return err;
7425 }
7426
7427 /**
7428 * i40e_find_cloud_filter - Find the could filter in the list
7429 * @vsi: Pointer to VSI
7430 * @cookie: filter specific cookie
7431 *
7432 **/
7433 static struct i40e_cloud_filter *i40e_find_cloud_filter(struct i40e_vsi *vsi,
7434 unsigned long *cookie)
7435 {
7436 struct i40e_cloud_filter *filter = NULL;
7437 struct hlist_node *node2;
7438
7439 hlist_for_each_entry_safe(filter, node2,
7440 &vsi->back->cloud_filter_list, cloud_node)
7441 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
7442 return filter;
7443 return NULL;
7444 }
7445
7446 /**
7447 * i40e_delete_clsflower - Remove tc flower filters
7448 * @vsi: Pointer to VSI
7449 * @cls_flower: Pointer to struct tc_cls_flower_offload
7450 *
7451 **/
7452 static int i40e_delete_clsflower(struct i40e_vsi *vsi,
7453 struct tc_cls_flower_offload *cls_flower)
7454 {
7455 struct i40e_cloud_filter *filter = NULL;
7456 struct i40e_pf *pf = vsi->back;
7457 int err = 0;
7458
7459 filter = i40e_find_cloud_filter(vsi, &cls_flower->cookie);
7460
7461 if (!filter)
7462 return -EINVAL;
7463
7464 hash_del(&filter->cloud_node);
7465
7466 if (filter->dst_port)
7467 err = i40e_add_del_cloud_filter_big_buf(vsi, filter, false);
7468 else
7469 err = i40e_add_del_cloud_filter(vsi, filter, false);
7470
7471 kfree(filter);
7472 if (err) {
7473 dev_err(&pf->pdev->dev,
7474 "Failed to delete cloud filter, err %s\n",
7475 i40e_stat_str(&pf->hw, err));
7476 return i40e_aq_rc_to_posix(err, pf->hw.aq.asq_last_status);
7477 }
7478
7479 pf->num_cloud_filters--;
7480 if (!pf->num_cloud_filters)
7481 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) &&
7482 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) {
7483 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
7484 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER;
7485 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE;
7486 }
7487 return 0;
7488 }
7489
7490 /**
7491 * i40e_setup_tc_cls_flower - flower classifier offloads
7492 * @netdev: net device to configure
7493 * @type_data: offload data
7494 **/
7495 static int i40e_setup_tc_cls_flower(struct i40e_netdev_priv *np,
7496 struct tc_cls_flower_offload *cls_flower)
7497 {
7498 struct i40e_vsi *vsi = np->vsi;
7499
7500 if (cls_flower->common.chain_index)
7501 return -EOPNOTSUPP;
7502
7503 switch (cls_flower->command) {
7504 case TC_CLSFLOWER_REPLACE:
7505 return i40e_configure_clsflower(vsi, cls_flower);
7506 case TC_CLSFLOWER_DESTROY:
7507 return i40e_delete_clsflower(vsi, cls_flower);
7508 case TC_CLSFLOWER_STATS:
7509 return -EOPNOTSUPP;
7510 default:
7511 return -EINVAL;
7512 }
7513 }
7514
7515 static int i40e_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
7516 void *cb_priv)
7517 {
7518 struct i40e_netdev_priv *np = cb_priv;
7519
7520 switch (type) {
7521 case TC_SETUP_CLSFLOWER:
7522 return i40e_setup_tc_cls_flower(np, type_data);
7523
7524 default:
7525 return -EOPNOTSUPP;
7526 }
7527 }
7528
7529 static int i40e_setup_tc_block(struct net_device *dev,
7530 struct tc_block_offload *f)
7531 {
7532 struct i40e_netdev_priv *np = netdev_priv(dev);
7533
7534 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
7535 return -EOPNOTSUPP;
7536
7537 switch (f->command) {
7538 case TC_BLOCK_BIND:
7539 return tcf_block_cb_register(f->block, i40e_setup_tc_block_cb,
7540 np, np);
7541 case TC_BLOCK_UNBIND:
7542 tcf_block_cb_unregister(f->block, i40e_setup_tc_block_cb, np);
7543 return 0;
7544 default:
7545 return -EOPNOTSUPP;
7546 }
7547 }
7548
7549 static int __i40e_setup_tc(struct net_device *netdev, enum tc_setup_type type,
7550 void *type_data)
7551 {
7552 switch (type) {
7553 case TC_SETUP_QDISC_MQPRIO:
7554 return i40e_setup_tc(netdev, type_data);
7555 case TC_SETUP_BLOCK:
7556 return i40e_setup_tc_block(netdev, type_data);
7557 default:
7558 return -EOPNOTSUPP;
7559 }
7560 }
7561
7562 /**
7563 * i40e_open - Called when a network interface is made active
7564 * @netdev: network interface device structure
7565 *
7566 * The open entry point is called when a network interface is made
7567 * active by the system (IFF_UP). At this point all resources needed
7568 * for transmit and receive operations are allocated, the interrupt
7569 * handler is registered with the OS, the netdev watchdog subtask is
7570 * enabled, and the stack is notified that the interface is ready.
7571 *
7572 * Returns 0 on success, negative value on failure
7573 **/
7574 int i40e_open(struct net_device *netdev)
7575 {
7576 struct i40e_netdev_priv *np = netdev_priv(netdev);
7577 struct i40e_vsi *vsi = np->vsi;
7578 struct i40e_pf *pf = vsi->back;
7579 int err;
7580
7581 /* disallow open during test or if eeprom is broken */
7582 if (test_bit(__I40E_TESTING, pf->state) ||
7583 test_bit(__I40E_BAD_EEPROM, pf->state))
7584 return -EBUSY;
7585
7586 netif_carrier_off(netdev);
7587
7588 err = i40e_vsi_open(vsi);
7589 if (err)
7590 return err;
7591
7592 /* configure global TSO hardware offload settings */
7593 wr32(&pf->hw, I40E_GLLAN_TSOMSK_F, be32_to_cpu(TCP_FLAG_PSH |
7594 TCP_FLAG_FIN) >> 16);
7595 wr32(&pf->hw, I40E_GLLAN_TSOMSK_M, be32_to_cpu(TCP_FLAG_PSH |
7596 TCP_FLAG_FIN |
7597 TCP_FLAG_CWR) >> 16);
7598 wr32(&pf->hw, I40E_GLLAN_TSOMSK_L, be32_to_cpu(TCP_FLAG_CWR) >> 16);
7599
7600 udp_tunnel_get_rx_info(netdev);
7601
7602 return 0;
7603 }
7604
7605 /**
7606 * i40e_vsi_open -
7607 * @vsi: the VSI to open
7608 *
7609 * Finish initialization of the VSI.
7610 *
7611 * Returns 0 on success, negative value on failure
7612 *
7613 * Note: expects to be called while under rtnl_lock()
7614 **/
7615 int i40e_vsi_open(struct i40e_vsi *vsi)
7616 {
7617 struct i40e_pf *pf = vsi->back;
7618 char int_name[I40E_INT_NAME_STR_LEN];
7619 int err;
7620
7621 /* allocate descriptors */
7622 err = i40e_vsi_setup_tx_resources(vsi);
7623 if (err)
7624 goto err_setup_tx;
7625 err = i40e_vsi_setup_rx_resources(vsi);
7626 if (err)
7627 goto err_setup_rx;
7628
7629 err = i40e_vsi_configure(vsi);
7630 if (err)
7631 goto err_setup_rx;
7632
7633 if (vsi->netdev) {
7634 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7635 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
7636 err = i40e_vsi_request_irq(vsi, int_name);
7637 if (err)
7638 goto err_setup_rx;
7639
7640 /* Notify the stack of the actual queue counts. */
7641 err = netif_set_real_num_tx_queues(vsi->netdev,
7642 vsi->num_queue_pairs);
7643 if (err)
7644 goto err_set_queues;
7645
7646 err = netif_set_real_num_rx_queues(vsi->netdev,
7647 vsi->num_queue_pairs);
7648 if (err)
7649 goto err_set_queues;
7650
7651 } else if (vsi->type == I40E_VSI_FDIR) {
7652 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:fdir",
7653 dev_driver_string(&pf->pdev->dev),
7654 dev_name(&pf->pdev->dev));
7655 err = i40e_vsi_request_irq(vsi, int_name);
7656
7657 } else {
7658 err = -EINVAL;
7659 goto err_setup_rx;
7660 }
7661
7662 err = i40e_up_complete(vsi);
7663 if (err)
7664 goto err_up_complete;
7665
7666 return 0;
7667
7668 err_up_complete:
7669 i40e_down(vsi);
7670 err_set_queues:
7671 i40e_vsi_free_irq(vsi);
7672 err_setup_rx:
7673 i40e_vsi_free_rx_resources(vsi);
7674 err_setup_tx:
7675 i40e_vsi_free_tx_resources(vsi);
7676 if (vsi == pf->vsi[pf->lan_vsi])
7677 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
7678
7679 return err;
7680 }
7681
7682 /**
7683 * i40e_fdir_filter_exit - Cleans up the Flow Director accounting
7684 * @pf: Pointer to PF
7685 *
7686 * This function destroys the hlist where all the Flow Director
7687 * filters were saved.
7688 **/
7689 static void i40e_fdir_filter_exit(struct i40e_pf *pf)
7690 {
7691 struct i40e_fdir_filter *filter;
7692 struct i40e_flex_pit *pit_entry, *tmp;
7693 struct hlist_node *node2;
7694
7695 hlist_for_each_entry_safe(filter, node2,
7696 &pf->fdir_filter_list, fdir_node) {
7697 hlist_del(&filter->fdir_node);
7698 kfree(filter);
7699 }
7700
7701 list_for_each_entry_safe(pit_entry, tmp, &pf->l3_flex_pit_list, list) {
7702 list_del(&pit_entry->list);
7703 kfree(pit_entry);
7704 }
7705 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
7706
7707 list_for_each_entry_safe(pit_entry, tmp, &pf->l4_flex_pit_list, list) {
7708 list_del(&pit_entry->list);
7709 kfree(pit_entry);
7710 }
7711 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
7712
7713 pf->fdir_pf_active_filters = 0;
7714 pf->fd_tcp4_filter_cnt = 0;
7715 pf->fd_udp4_filter_cnt = 0;
7716 pf->fd_sctp4_filter_cnt = 0;
7717 pf->fd_ip4_filter_cnt = 0;
7718
7719 /* Reprogram the default input set for TCP/IPv4 */
7720 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_TCP,
7721 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
7722 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
7723
7724 /* Reprogram the default input set for UDP/IPv4 */
7725 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_UDP,
7726 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
7727 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
7728
7729 /* Reprogram the default input set for SCTP/IPv4 */
7730 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_SCTP,
7731 I40E_L3_SRC_MASK | I40E_L3_DST_MASK |
7732 I40E_L4_SRC_MASK | I40E_L4_DST_MASK);
7733
7734 /* Reprogram the default input set for Other/IPv4 */
7735 i40e_write_fd_input_set(pf, I40E_FILTER_PCTYPE_NONF_IPV4_OTHER,
7736 I40E_L3_SRC_MASK | I40E_L3_DST_MASK);
7737 }
7738
7739 /**
7740 * i40e_cloud_filter_exit - Cleans up the cloud filters
7741 * @pf: Pointer to PF
7742 *
7743 * This function destroys the hlist where all the cloud filters
7744 * were saved.
7745 **/
7746 static void i40e_cloud_filter_exit(struct i40e_pf *pf)
7747 {
7748 struct i40e_cloud_filter *cfilter;
7749 struct hlist_node *node;
7750
7751 hlist_for_each_entry_safe(cfilter, node,
7752 &pf->cloud_filter_list, cloud_node) {
7753 hlist_del(&cfilter->cloud_node);
7754 kfree(cfilter);
7755 }
7756 pf->num_cloud_filters = 0;
7757
7758 if ((pf->flags & I40E_FLAG_FD_SB_TO_CLOUD_FILTER) &&
7759 !(pf->flags & I40E_FLAG_FD_SB_INACTIVE)) {
7760 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
7761 pf->flags &= ~I40E_FLAG_FD_SB_TO_CLOUD_FILTER;
7762 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE;
7763 }
7764 }
7765
7766 /**
7767 * i40e_close - Disables a network interface
7768 * @netdev: network interface device structure
7769 *
7770 * The close entry point is called when an interface is de-activated
7771 * by the OS. The hardware is still under the driver's control, but
7772 * this netdev interface is disabled.
7773 *
7774 * Returns 0, this is not allowed to fail
7775 **/
7776 int i40e_close(struct net_device *netdev)
7777 {
7778 struct i40e_netdev_priv *np = netdev_priv(netdev);
7779 struct i40e_vsi *vsi = np->vsi;
7780
7781 i40e_vsi_close(vsi);
7782
7783 return 0;
7784 }
7785
7786 /**
7787 * i40e_do_reset - Start a PF or Core Reset sequence
7788 * @pf: board private structure
7789 * @reset_flags: which reset is requested
7790 * @lock_acquired: indicates whether or not the lock has been acquired
7791 * before this function was called.
7792 *
7793 * The essential difference in resets is that the PF Reset
7794 * doesn't clear the packet buffers, doesn't reset the PE
7795 * firmware, and doesn't bother the other PFs on the chip.
7796 **/
7797 void i40e_do_reset(struct i40e_pf *pf, u32 reset_flags, bool lock_acquired)
7798 {
7799 u32 val;
7800
7801 WARN_ON(in_interrupt());
7802
7803
7804 /* do the biggest reset indicated */
7805 if (reset_flags & BIT_ULL(__I40E_GLOBAL_RESET_REQUESTED)) {
7806
7807 /* Request a Global Reset
7808 *
7809 * This will start the chip's countdown to the actual full
7810 * chip reset event, and a warning interrupt to be sent
7811 * to all PFs, including the requestor. Our handler
7812 * for the warning interrupt will deal with the shutdown
7813 * and recovery of the switch setup.
7814 */
7815 dev_dbg(&pf->pdev->dev, "GlobalR requested\n");
7816 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
7817 val |= I40E_GLGEN_RTRIG_GLOBR_MASK;
7818 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
7819
7820 } else if (reset_flags & BIT_ULL(__I40E_CORE_RESET_REQUESTED)) {
7821
7822 /* Request a Core Reset
7823 *
7824 * Same as Global Reset, except does *not* include the MAC/PHY
7825 */
7826 dev_dbg(&pf->pdev->dev, "CoreR requested\n");
7827 val = rd32(&pf->hw, I40E_GLGEN_RTRIG);
7828 val |= I40E_GLGEN_RTRIG_CORER_MASK;
7829 wr32(&pf->hw, I40E_GLGEN_RTRIG, val);
7830 i40e_flush(&pf->hw);
7831
7832 } else if (reset_flags & I40E_PF_RESET_FLAG) {
7833
7834 /* Request a PF Reset
7835 *
7836 * Resets only the PF-specific registers
7837 *
7838 * This goes directly to the tear-down and rebuild of
7839 * the switch, since we need to do all the recovery as
7840 * for the Core Reset.
7841 */
7842 dev_dbg(&pf->pdev->dev, "PFR requested\n");
7843 i40e_handle_reset_warning(pf, lock_acquired);
7844
7845 } else if (reset_flags & BIT_ULL(__I40E_REINIT_REQUESTED)) {
7846 int v;
7847
7848 /* Find the VSI(s) that requested a re-init */
7849 dev_info(&pf->pdev->dev,
7850 "VSI reinit requested\n");
7851 for (v = 0; v < pf->num_alloc_vsi; v++) {
7852 struct i40e_vsi *vsi = pf->vsi[v];
7853
7854 if (vsi != NULL &&
7855 test_and_clear_bit(__I40E_VSI_REINIT_REQUESTED,
7856 vsi->state))
7857 i40e_vsi_reinit_locked(pf->vsi[v]);
7858 }
7859 } else if (reset_flags & BIT_ULL(__I40E_DOWN_REQUESTED)) {
7860 int v;
7861
7862 /* Find the VSI(s) that needs to be brought down */
7863 dev_info(&pf->pdev->dev, "VSI down requested\n");
7864 for (v = 0; v < pf->num_alloc_vsi; v++) {
7865 struct i40e_vsi *vsi = pf->vsi[v];
7866
7867 if (vsi != NULL &&
7868 test_and_clear_bit(__I40E_VSI_DOWN_REQUESTED,
7869 vsi->state)) {
7870 set_bit(__I40E_VSI_DOWN, vsi->state);
7871 i40e_down(vsi);
7872 }
7873 }
7874 } else {
7875 dev_info(&pf->pdev->dev,
7876 "bad reset request 0x%08x\n", reset_flags);
7877 }
7878 }
7879
7880 #ifdef CONFIG_I40E_DCB
7881 /**
7882 * i40e_dcb_need_reconfig - Check if DCB needs reconfig
7883 * @pf: board private structure
7884 * @old_cfg: current DCB config
7885 * @new_cfg: new DCB config
7886 **/
7887 bool i40e_dcb_need_reconfig(struct i40e_pf *pf,
7888 struct i40e_dcbx_config *old_cfg,
7889 struct i40e_dcbx_config *new_cfg)
7890 {
7891 bool need_reconfig = false;
7892
7893 /* Check if ETS configuration has changed */
7894 if (memcmp(&new_cfg->etscfg,
7895 &old_cfg->etscfg,
7896 sizeof(new_cfg->etscfg))) {
7897 /* If Priority Table has changed reconfig is needed */
7898 if (memcmp(&new_cfg->etscfg.prioritytable,
7899 &old_cfg->etscfg.prioritytable,
7900 sizeof(new_cfg->etscfg.prioritytable))) {
7901 need_reconfig = true;
7902 dev_dbg(&pf->pdev->dev, "ETS UP2TC changed.\n");
7903 }
7904
7905 if (memcmp(&new_cfg->etscfg.tcbwtable,
7906 &old_cfg->etscfg.tcbwtable,
7907 sizeof(new_cfg->etscfg.tcbwtable)))
7908 dev_dbg(&pf->pdev->dev, "ETS TC BW Table changed.\n");
7909
7910 if (memcmp(&new_cfg->etscfg.tsatable,
7911 &old_cfg->etscfg.tsatable,
7912 sizeof(new_cfg->etscfg.tsatable)))
7913 dev_dbg(&pf->pdev->dev, "ETS TSA Table changed.\n");
7914 }
7915
7916 /* Check if PFC configuration has changed */
7917 if (memcmp(&new_cfg->pfc,
7918 &old_cfg->pfc,
7919 sizeof(new_cfg->pfc))) {
7920 need_reconfig = true;
7921 dev_dbg(&pf->pdev->dev, "PFC config change detected.\n");
7922 }
7923
7924 /* Check if APP Table has changed */
7925 if (memcmp(&new_cfg->app,
7926 &old_cfg->app,
7927 sizeof(new_cfg->app))) {
7928 need_reconfig = true;
7929 dev_dbg(&pf->pdev->dev, "APP Table change detected.\n");
7930 }
7931
7932 dev_dbg(&pf->pdev->dev, "dcb need_reconfig=%d\n", need_reconfig);
7933 return need_reconfig;
7934 }
7935
7936 /**
7937 * i40e_handle_lldp_event - Handle LLDP Change MIB event
7938 * @pf: board private structure
7939 * @e: event info posted on ARQ
7940 **/
7941 static int i40e_handle_lldp_event(struct i40e_pf *pf,
7942 struct i40e_arq_event_info *e)
7943 {
7944 struct i40e_aqc_lldp_get_mib *mib =
7945 (struct i40e_aqc_lldp_get_mib *)&e->desc.params.raw;
7946 struct i40e_hw *hw = &pf->hw;
7947 struct i40e_dcbx_config tmp_dcbx_cfg;
7948 bool need_reconfig = false;
7949 int ret = 0;
7950 u8 type;
7951
7952 /* Not DCB capable or capability disabled */
7953 if (!(pf->flags & I40E_FLAG_DCB_CAPABLE))
7954 return ret;
7955
7956 /* Ignore if event is not for Nearest Bridge */
7957 type = ((mib->type >> I40E_AQ_LLDP_BRIDGE_TYPE_SHIFT)
7958 & I40E_AQ_LLDP_BRIDGE_TYPE_MASK);
7959 dev_dbg(&pf->pdev->dev, "LLDP event mib bridge type 0x%x\n", type);
7960 if (type != I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE)
7961 return ret;
7962
7963 /* Check MIB Type and return if event for Remote MIB update */
7964 type = mib->type & I40E_AQ_LLDP_MIB_TYPE_MASK;
7965 dev_dbg(&pf->pdev->dev,
7966 "LLDP event mib type %s\n", type ? "remote" : "local");
7967 if (type == I40E_AQ_LLDP_MIB_REMOTE) {
7968 /* Update the remote cached instance and return */
7969 ret = i40e_aq_get_dcb_config(hw, I40E_AQ_LLDP_MIB_REMOTE,
7970 I40E_AQ_LLDP_BRIDGE_TYPE_NEAREST_BRIDGE,
7971 &hw->remote_dcbx_config);
7972 goto exit;
7973 }
7974
7975 /* Store the old configuration */
7976 tmp_dcbx_cfg = hw->local_dcbx_config;
7977
7978 /* Reset the old DCBx configuration data */
7979 memset(&hw->local_dcbx_config, 0, sizeof(hw->local_dcbx_config));
7980 /* Get updated DCBX data from firmware */
7981 ret = i40e_get_dcb_config(&pf->hw);
7982 if (ret) {
7983 dev_info(&pf->pdev->dev,
7984 "Failed querying DCB configuration data from firmware, err %s aq_err %s\n",
7985 i40e_stat_str(&pf->hw, ret),
7986 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
7987 goto exit;
7988 }
7989
7990 /* No change detected in DCBX configs */
7991 if (!memcmp(&tmp_dcbx_cfg, &hw->local_dcbx_config,
7992 sizeof(tmp_dcbx_cfg))) {
7993 dev_dbg(&pf->pdev->dev, "No change detected in DCBX configuration.\n");
7994 goto exit;
7995 }
7996
7997 need_reconfig = i40e_dcb_need_reconfig(pf, &tmp_dcbx_cfg,
7998 &hw->local_dcbx_config);
7999
8000 i40e_dcbnl_flush_apps(pf, &tmp_dcbx_cfg, &hw->local_dcbx_config);
8001
8002 if (!need_reconfig)
8003 goto exit;
8004
8005 /* Enable DCB tagging only when more than one TC */
8006 if (i40e_dcb_get_num_tc(&hw->local_dcbx_config) > 1)
8007 pf->flags |= I40E_FLAG_DCB_ENABLED;
8008 else
8009 pf->flags &= ~I40E_FLAG_DCB_ENABLED;
8010
8011 set_bit(__I40E_PORT_SUSPENDED, pf->state);
8012 /* Reconfiguration needed quiesce all VSIs */
8013 i40e_pf_quiesce_all_vsi(pf);
8014
8015 /* Changes in configuration update VEB/VSI */
8016 i40e_dcb_reconfigure(pf);
8017
8018 ret = i40e_resume_port_tx(pf);
8019
8020 clear_bit(__I40E_PORT_SUSPENDED, pf->state);
8021 /* In case of error no point in resuming VSIs */
8022 if (ret)
8023 goto exit;
8024
8025 /* Wait for the PF's queues to be disabled */
8026 ret = i40e_pf_wait_queues_disabled(pf);
8027 if (ret) {
8028 /* Schedule PF reset to recover */
8029 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
8030 i40e_service_event_schedule(pf);
8031 } else {
8032 i40e_pf_unquiesce_all_vsi(pf);
8033 pf->flags |= (I40E_FLAG_SERVICE_CLIENT_REQUESTED |
8034 I40E_FLAG_CLIENT_L2_CHANGE);
8035 }
8036
8037 exit:
8038 return ret;
8039 }
8040 #endif /* CONFIG_I40E_DCB */
8041
8042 /**
8043 * i40e_do_reset_safe - Protected reset path for userland calls.
8044 * @pf: board private structure
8045 * @reset_flags: which reset is requested
8046 *
8047 **/
8048 void i40e_do_reset_safe(struct i40e_pf *pf, u32 reset_flags)
8049 {
8050 rtnl_lock();
8051 i40e_do_reset(pf, reset_flags, true);
8052 rtnl_unlock();
8053 }
8054
8055 /**
8056 * i40e_handle_lan_overflow_event - Handler for LAN queue overflow event
8057 * @pf: board private structure
8058 * @e: event info posted on ARQ
8059 *
8060 * Handler for LAN Queue Overflow Event generated by the firmware for PF
8061 * and VF queues
8062 **/
8063 static void i40e_handle_lan_overflow_event(struct i40e_pf *pf,
8064 struct i40e_arq_event_info *e)
8065 {
8066 struct i40e_aqc_lan_overflow *data =
8067 (struct i40e_aqc_lan_overflow *)&e->desc.params.raw;
8068 u32 queue = le32_to_cpu(data->prtdcb_rupto);
8069 u32 qtx_ctl = le32_to_cpu(data->otx_ctl);
8070 struct i40e_hw *hw = &pf->hw;
8071 struct i40e_vf *vf;
8072 u16 vf_id;
8073
8074 dev_dbg(&pf->pdev->dev, "overflow Rx Queue Number = %d QTX_CTL=0x%08x\n",
8075 queue, qtx_ctl);
8076
8077 /* Queue belongs to VF, find the VF and issue VF reset */
8078 if (((qtx_ctl & I40E_QTX_CTL_PFVF_Q_MASK)
8079 >> I40E_QTX_CTL_PFVF_Q_SHIFT) == I40E_QTX_CTL_VF_QUEUE) {
8080 vf_id = (u16)((qtx_ctl & I40E_QTX_CTL_VFVM_INDX_MASK)
8081 >> I40E_QTX_CTL_VFVM_INDX_SHIFT);
8082 vf_id -= hw->func_caps.vf_base_id;
8083 vf = &pf->vf[vf_id];
8084 i40e_vc_notify_vf_reset(vf);
8085 /* Allow VF to process pending reset notification */
8086 msleep(20);
8087 i40e_reset_vf(vf, false);
8088 }
8089 }
8090
8091 /**
8092 * i40e_get_cur_guaranteed_fd_count - Get the consumed guaranteed FD filters
8093 * @pf: board private structure
8094 **/
8095 u32 i40e_get_cur_guaranteed_fd_count(struct i40e_pf *pf)
8096 {
8097 u32 val, fcnt_prog;
8098
8099 val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
8100 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK);
8101 return fcnt_prog;
8102 }
8103
8104 /**
8105 * i40e_get_current_fd_count - Get total FD filters programmed for this PF
8106 * @pf: board private structure
8107 **/
8108 u32 i40e_get_current_fd_count(struct i40e_pf *pf)
8109 {
8110 u32 val, fcnt_prog;
8111
8112 val = rd32(&pf->hw, I40E_PFQF_FDSTAT);
8113 fcnt_prog = (val & I40E_PFQF_FDSTAT_GUARANT_CNT_MASK) +
8114 ((val & I40E_PFQF_FDSTAT_BEST_CNT_MASK) >>
8115 I40E_PFQF_FDSTAT_BEST_CNT_SHIFT);
8116 return fcnt_prog;
8117 }
8118
8119 /**
8120 * i40e_get_global_fd_count - Get total FD filters programmed on device
8121 * @pf: board private structure
8122 **/
8123 u32 i40e_get_global_fd_count(struct i40e_pf *pf)
8124 {
8125 u32 val, fcnt_prog;
8126
8127 val = rd32(&pf->hw, I40E_GLQF_FDCNT_0);
8128 fcnt_prog = (val & I40E_GLQF_FDCNT_0_GUARANT_CNT_MASK) +
8129 ((val & I40E_GLQF_FDCNT_0_BESTCNT_MASK) >>
8130 I40E_GLQF_FDCNT_0_BESTCNT_SHIFT);
8131 return fcnt_prog;
8132 }
8133
8134 /**
8135 * i40e_fdir_check_and_reenable - Function to reenabe FD ATR or SB if disabled
8136 * @pf: board private structure
8137 **/
8138 void i40e_fdir_check_and_reenable(struct i40e_pf *pf)
8139 {
8140 struct i40e_fdir_filter *filter;
8141 u32 fcnt_prog, fcnt_avail;
8142 struct hlist_node *node;
8143
8144 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
8145 return;
8146
8147 /* Check if we have enough room to re-enable FDir SB capability. */
8148 fcnt_prog = i40e_get_global_fd_count(pf);
8149 fcnt_avail = pf->fdir_pf_filter_count;
8150 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM)) ||
8151 (pf->fd_add_err == 0) ||
8152 (i40e_get_current_atr_cnt(pf) < pf->fd_atr_cnt)) {
8153 if (pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
8154 pf->flags &= ~I40E_FLAG_FD_SB_AUTO_DISABLED;
8155 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
8156 (I40E_DEBUG_FD & pf->hw.debug_mask))
8157 dev_info(&pf->pdev->dev, "FD Sideband/ntuple is being enabled since we have space in the table now\n");
8158 }
8159 }
8160
8161 /* We should wait for even more space before re-enabling ATR.
8162 * Additionally, we cannot enable ATR as long as we still have TCP SB
8163 * rules active.
8164 */
8165 if ((fcnt_prog < (fcnt_avail - I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) &&
8166 (pf->fd_tcp4_filter_cnt == 0)) {
8167 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) {
8168 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
8169 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
8170 (I40E_DEBUG_FD & pf->hw.debug_mask))
8171 dev_info(&pf->pdev->dev, "ATR is being enabled since we have space in the table and there are no conflicting ntuple rules\n");
8172 }
8173 }
8174
8175 /* if hw had a problem adding a filter, delete it */
8176 if (pf->fd_inv > 0) {
8177 hlist_for_each_entry_safe(filter, node,
8178 &pf->fdir_filter_list, fdir_node) {
8179 if (filter->fd_id == pf->fd_inv) {
8180 hlist_del(&filter->fdir_node);
8181 kfree(filter);
8182 pf->fdir_pf_active_filters--;
8183 pf->fd_inv = 0;
8184 }
8185 }
8186 }
8187 }
8188
8189 #define I40E_MIN_FD_FLUSH_INTERVAL 10
8190 #define I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE 30
8191 /**
8192 * i40e_fdir_flush_and_replay - Function to flush all FD filters and replay SB
8193 * @pf: board private structure
8194 **/
8195 static void i40e_fdir_flush_and_replay(struct i40e_pf *pf)
8196 {
8197 unsigned long min_flush_time;
8198 int flush_wait_retry = 50;
8199 bool disable_atr = false;
8200 int fd_room;
8201 int reg;
8202
8203 if (!time_after(jiffies, pf->fd_flush_timestamp +
8204 (I40E_MIN_FD_FLUSH_INTERVAL * HZ)))
8205 return;
8206
8207 /* If the flush is happening too quick and we have mostly SB rules we
8208 * should not re-enable ATR for some time.
8209 */
8210 min_flush_time = pf->fd_flush_timestamp +
8211 (I40E_MIN_FD_FLUSH_SB_ATR_UNSTABLE * HZ);
8212 fd_room = pf->fdir_pf_filter_count - pf->fdir_pf_active_filters;
8213
8214 if (!(time_after(jiffies, min_flush_time)) &&
8215 (fd_room < I40E_FDIR_BUFFER_HEAD_ROOM_FOR_ATR)) {
8216 if (I40E_DEBUG_FD & pf->hw.debug_mask)
8217 dev_info(&pf->pdev->dev, "ATR disabled, not enough FD filter space.\n");
8218 disable_atr = true;
8219 }
8220
8221 pf->fd_flush_timestamp = jiffies;
8222 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
8223 /* flush all filters */
8224 wr32(&pf->hw, I40E_PFQF_CTL_1,
8225 I40E_PFQF_CTL_1_CLEARFDTABLE_MASK);
8226 i40e_flush(&pf->hw);
8227 pf->fd_flush_cnt++;
8228 pf->fd_add_err = 0;
8229 do {
8230 /* Check FD flush status every 5-6msec */
8231 usleep_range(5000, 6000);
8232 reg = rd32(&pf->hw, I40E_PFQF_CTL_1);
8233 if (!(reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK))
8234 break;
8235 } while (flush_wait_retry--);
8236 if (reg & I40E_PFQF_CTL_1_CLEARFDTABLE_MASK) {
8237 dev_warn(&pf->pdev->dev, "FD table did not flush, needs more time\n");
8238 } else {
8239 /* replay sideband filters */
8240 i40e_fdir_filter_restore(pf->vsi[pf->lan_vsi]);
8241 if (!disable_atr && !pf->fd_tcp4_filter_cnt)
8242 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
8243 clear_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
8244 if (I40E_DEBUG_FD & pf->hw.debug_mask)
8245 dev_info(&pf->pdev->dev, "FD Filter table flushed and FD-SB replayed.\n");
8246 }
8247 }
8248
8249 /**
8250 * i40e_get_current_atr_count - Get the count of total FD ATR filters programmed
8251 * @pf: board private structure
8252 **/
8253 u32 i40e_get_current_atr_cnt(struct i40e_pf *pf)
8254 {
8255 return i40e_get_current_fd_count(pf) - pf->fdir_pf_active_filters;
8256 }
8257
8258 /* We can see up to 256 filter programming desc in transit if the filters are
8259 * being applied really fast; before we see the first
8260 * filter miss error on Rx queue 0. Accumulating enough error messages before
8261 * reacting will make sure we don't cause flush too often.
8262 */
8263 #define I40E_MAX_FD_PROGRAM_ERROR 256
8264
8265 /**
8266 * i40e_fdir_reinit_subtask - Worker thread to reinit FDIR filter table
8267 * @pf: board private structure
8268 **/
8269 static void i40e_fdir_reinit_subtask(struct i40e_pf *pf)
8270 {
8271
8272 /* if interface is down do nothing */
8273 if (test_bit(__I40E_DOWN, pf->state))
8274 return;
8275
8276 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
8277 i40e_fdir_flush_and_replay(pf);
8278
8279 i40e_fdir_check_and_reenable(pf);
8280
8281 }
8282
8283 /**
8284 * i40e_vsi_link_event - notify VSI of a link event
8285 * @vsi: vsi to be notified
8286 * @link_up: link up or down
8287 **/
8288 static void i40e_vsi_link_event(struct i40e_vsi *vsi, bool link_up)
8289 {
8290 if (!vsi || test_bit(__I40E_VSI_DOWN, vsi->state))
8291 return;
8292
8293 switch (vsi->type) {
8294 case I40E_VSI_MAIN:
8295 if (!vsi->netdev || !vsi->netdev_registered)
8296 break;
8297
8298 if (link_up) {
8299 netif_carrier_on(vsi->netdev);
8300 netif_tx_wake_all_queues(vsi->netdev);
8301 } else {
8302 netif_carrier_off(vsi->netdev);
8303 netif_tx_stop_all_queues(vsi->netdev);
8304 }
8305 break;
8306
8307 case I40E_VSI_SRIOV:
8308 case I40E_VSI_VMDQ2:
8309 case I40E_VSI_CTRL:
8310 case I40E_VSI_IWARP:
8311 case I40E_VSI_MIRROR:
8312 default:
8313 /* there is no notification for other VSIs */
8314 break;
8315 }
8316 }
8317
8318 /**
8319 * i40e_veb_link_event - notify elements on the veb of a link event
8320 * @veb: veb to be notified
8321 * @link_up: link up or down
8322 **/
8323 static void i40e_veb_link_event(struct i40e_veb *veb, bool link_up)
8324 {
8325 struct i40e_pf *pf;
8326 int i;
8327
8328 if (!veb || !veb->pf)
8329 return;
8330 pf = veb->pf;
8331
8332 /* depth first... */
8333 for (i = 0; i < I40E_MAX_VEB; i++)
8334 if (pf->veb[i] && (pf->veb[i]->uplink_seid == veb->seid))
8335 i40e_veb_link_event(pf->veb[i], link_up);
8336
8337 /* ... now the local VSIs */
8338 for (i = 0; i < pf->num_alloc_vsi; i++)
8339 if (pf->vsi[i] && (pf->vsi[i]->uplink_seid == veb->seid))
8340 i40e_vsi_link_event(pf->vsi[i], link_up);
8341 }
8342
8343 /**
8344 * i40e_link_event - Update netif_carrier status
8345 * @pf: board private structure
8346 **/
8347 static void i40e_link_event(struct i40e_pf *pf)
8348 {
8349 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8350 u8 new_link_speed, old_link_speed;
8351 i40e_status status;
8352 bool new_link, old_link;
8353
8354 /* save off old link status information */
8355 pf->hw.phy.link_info_old = pf->hw.phy.link_info;
8356
8357 /* set this to force the get_link_status call to refresh state */
8358 pf->hw.phy.get_link_info = true;
8359
8360 old_link = (pf->hw.phy.link_info_old.link_info & I40E_AQ_LINK_UP);
8361
8362 status = i40e_get_link_status(&pf->hw, &new_link);
8363
8364 /* On success, disable temp link polling */
8365 if (status == I40E_SUCCESS) {
8366 if (pf->flags & I40E_FLAG_TEMP_LINK_POLLING)
8367 pf->flags &= ~I40E_FLAG_TEMP_LINK_POLLING;
8368 } else {
8369 /* Enable link polling temporarily until i40e_get_link_status
8370 * returns I40E_SUCCESS
8371 */
8372 pf->flags |= I40E_FLAG_TEMP_LINK_POLLING;
8373 dev_dbg(&pf->pdev->dev, "couldn't get link state, status: %d\n",
8374 status);
8375 return;
8376 }
8377
8378 old_link_speed = pf->hw.phy.link_info_old.link_speed;
8379 new_link_speed = pf->hw.phy.link_info.link_speed;
8380
8381 if (new_link == old_link &&
8382 new_link_speed == old_link_speed &&
8383 (test_bit(__I40E_VSI_DOWN, vsi->state) ||
8384 new_link == netif_carrier_ok(vsi->netdev)))
8385 return;
8386
8387 i40e_print_link_message(vsi, new_link);
8388
8389 /* Notify the base of the switch tree connected to
8390 * the link. Floating VEBs are not notified.
8391 */
8392 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
8393 i40e_veb_link_event(pf->veb[pf->lan_veb], new_link);
8394 else
8395 i40e_vsi_link_event(vsi, new_link);
8396
8397 if (pf->vf)
8398 i40e_vc_notify_link_state(pf);
8399
8400 if (pf->flags & I40E_FLAG_PTP)
8401 i40e_ptp_set_increment(pf);
8402 }
8403
8404 /**
8405 * i40e_watchdog_subtask - periodic checks not using event driven response
8406 * @pf: board private structure
8407 **/
8408 static void i40e_watchdog_subtask(struct i40e_pf *pf)
8409 {
8410 int i;
8411
8412 /* if interface is down do nothing */
8413 if (test_bit(__I40E_DOWN, pf->state) ||
8414 test_bit(__I40E_CONFIG_BUSY, pf->state))
8415 return;
8416
8417 /* make sure we don't do these things too often */
8418 if (time_before(jiffies, (pf->service_timer_previous +
8419 pf->service_timer_period)))
8420 return;
8421 pf->service_timer_previous = jiffies;
8422
8423 if ((pf->flags & I40E_FLAG_LINK_POLLING_ENABLED) ||
8424 (pf->flags & I40E_FLAG_TEMP_LINK_POLLING))
8425 i40e_link_event(pf);
8426
8427 /* Update the stats for active netdevs so the network stack
8428 * can look at updated numbers whenever it cares to
8429 */
8430 for (i = 0; i < pf->num_alloc_vsi; i++)
8431 if (pf->vsi[i] && pf->vsi[i]->netdev)
8432 i40e_update_stats(pf->vsi[i]);
8433
8434 if (pf->flags & I40E_FLAG_VEB_STATS_ENABLED) {
8435 /* Update the stats for the active switching components */
8436 for (i = 0; i < I40E_MAX_VEB; i++)
8437 if (pf->veb[i])
8438 i40e_update_veb_stats(pf->veb[i]);
8439 }
8440
8441 i40e_ptp_rx_hang(pf);
8442 i40e_ptp_tx_hang(pf);
8443 }
8444
8445 /**
8446 * i40e_reset_subtask - Set up for resetting the device and driver
8447 * @pf: board private structure
8448 **/
8449 static void i40e_reset_subtask(struct i40e_pf *pf)
8450 {
8451 u32 reset_flags = 0;
8452
8453 if (test_bit(__I40E_REINIT_REQUESTED, pf->state)) {
8454 reset_flags |= BIT(__I40E_REINIT_REQUESTED);
8455 clear_bit(__I40E_REINIT_REQUESTED, pf->state);
8456 }
8457 if (test_bit(__I40E_PF_RESET_REQUESTED, pf->state)) {
8458 reset_flags |= BIT(__I40E_PF_RESET_REQUESTED);
8459 clear_bit(__I40E_PF_RESET_REQUESTED, pf->state);
8460 }
8461 if (test_bit(__I40E_CORE_RESET_REQUESTED, pf->state)) {
8462 reset_flags |= BIT(__I40E_CORE_RESET_REQUESTED);
8463 clear_bit(__I40E_CORE_RESET_REQUESTED, pf->state);
8464 }
8465 if (test_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state)) {
8466 reset_flags |= BIT(__I40E_GLOBAL_RESET_REQUESTED);
8467 clear_bit(__I40E_GLOBAL_RESET_REQUESTED, pf->state);
8468 }
8469 if (test_bit(__I40E_DOWN_REQUESTED, pf->state)) {
8470 reset_flags |= BIT(__I40E_DOWN_REQUESTED);
8471 clear_bit(__I40E_DOWN_REQUESTED, pf->state);
8472 }
8473
8474 /* If there's a recovery already waiting, it takes
8475 * precedence before starting a new reset sequence.
8476 */
8477 if (test_bit(__I40E_RESET_INTR_RECEIVED, pf->state)) {
8478 i40e_prep_for_reset(pf, false);
8479 i40e_reset(pf);
8480 i40e_rebuild(pf, false, false);
8481 }
8482
8483 /* If we're already down or resetting, just bail */
8484 if (reset_flags &&
8485 !test_bit(__I40E_DOWN, pf->state) &&
8486 !test_bit(__I40E_CONFIG_BUSY, pf->state)) {
8487 i40e_do_reset(pf, reset_flags, false);
8488 }
8489 }
8490
8491 /**
8492 * i40e_handle_link_event - Handle link event
8493 * @pf: board private structure
8494 * @e: event info posted on ARQ
8495 **/
8496 static void i40e_handle_link_event(struct i40e_pf *pf,
8497 struct i40e_arq_event_info *e)
8498 {
8499 struct i40e_aqc_get_link_status *status =
8500 (struct i40e_aqc_get_link_status *)&e->desc.params.raw;
8501
8502 /* Do a new status request to re-enable LSE reporting
8503 * and load new status information into the hw struct
8504 * This completely ignores any state information
8505 * in the ARQ event info, instead choosing to always
8506 * issue the AQ update link status command.
8507 */
8508 i40e_link_event(pf);
8509
8510 /* Check if module meets thermal requirements */
8511 if (status->phy_type == I40E_PHY_TYPE_NOT_SUPPORTED_HIGH_TEMP) {
8512 dev_err(&pf->pdev->dev,
8513 "Rx/Tx is disabled on this device because the module does not meet thermal requirements.\n");
8514 dev_err(&pf->pdev->dev,
8515 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
8516 } else {
8517 /* check for unqualified module, if link is down, suppress
8518 * the message if link was forced to be down.
8519 */
8520 if ((status->link_info & I40E_AQ_MEDIA_AVAILABLE) &&
8521 (!(status->an_info & I40E_AQ_QUALIFIED_MODULE)) &&
8522 (!(status->link_info & I40E_AQ_LINK_UP)) &&
8523 (!(pf->flags & I40E_FLAG_LINK_DOWN_ON_CLOSE_ENABLED))) {
8524 dev_err(&pf->pdev->dev,
8525 "Rx/Tx is disabled on this device because an unsupported SFP module type was detected.\n");
8526 dev_err(&pf->pdev->dev,
8527 "Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
8528 }
8529 }
8530 }
8531
8532 /**
8533 * i40e_clean_adminq_subtask - Clean the AdminQ rings
8534 * @pf: board private structure
8535 **/
8536 static void i40e_clean_adminq_subtask(struct i40e_pf *pf)
8537 {
8538 struct i40e_arq_event_info event;
8539 struct i40e_hw *hw = &pf->hw;
8540 u16 pending, i = 0;
8541 i40e_status ret;
8542 u16 opcode;
8543 u32 oldval;
8544 u32 val;
8545
8546 /* Do not run clean AQ when PF reset fails */
8547 if (test_bit(__I40E_RESET_FAILED, pf->state))
8548 return;
8549
8550 /* check for error indications */
8551 val = rd32(&pf->hw, pf->hw.aq.arq.len);
8552 oldval = val;
8553 if (val & I40E_PF_ARQLEN_ARQVFE_MASK) {
8554 if (hw->debug_mask & I40E_DEBUG_AQ)
8555 dev_info(&pf->pdev->dev, "ARQ VF Error detected\n");
8556 val &= ~I40E_PF_ARQLEN_ARQVFE_MASK;
8557 }
8558 if (val & I40E_PF_ARQLEN_ARQOVFL_MASK) {
8559 if (hw->debug_mask & I40E_DEBUG_AQ)
8560 dev_info(&pf->pdev->dev, "ARQ Overflow Error detected\n");
8561 val &= ~I40E_PF_ARQLEN_ARQOVFL_MASK;
8562 pf->arq_overflows++;
8563 }
8564 if (val & I40E_PF_ARQLEN_ARQCRIT_MASK) {
8565 if (hw->debug_mask & I40E_DEBUG_AQ)
8566 dev_info(&pf->pdev->dev, "ARQ Critical Error detected\n");
8567 val &= ~I40E_PF_ARQLEN_ARQCRIT_MASK;
8568 }
8569 if (oldval != val)
8570 wr32(&pf->hw, pf->hw.aq.arq.len, val);
8571
8572 val = rd32(&pf->hw, pf->hw.aq.asq.len);
8573 oldval = val;
8574 if (val & I40E_PF_ATQLEN_ATQVFE_MASK) {
8575 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
8576 dev_info(&pf->pdev->dev, "ASQ VF Error detected\n");
8577 val &= ~I40E_PF_ATQLEN_ATQVFE_MASK;
8578 }
8579 if (val & I40E_PF_ATQLEN_ATQOVFL_MASK) {
8580 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
8581 dev_info(&pf->pdev->dev, "ASQ Overflow Error detected\n");
8582 val &= ~I40E_PF_ATQLEN_ATQOVFL_MASK;
8583 }
8584 if (val & I40E_PF_ATQLEN_ATQCRIT_MASK) {
8585 if (pf->hw.debug_mask & I40E_DEBUG_AQ)
8586 dev_info(&pf->pdev->dev, "ASQ Critical Error detected\n");
8587 val &= ~I40E_PF_ATQLEN_ATQCRIT_MASK;
8588 }
8589 if (oldval != val)
8590 wr32(&pf->hw, pf->hw.aq.asq.len, val);
8591
8592 event.buf_len = I40E_MAX_AQ_BUF_SIZE;
8593 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
8594 if (!event.msg_buf)
8595 return;
8596
8597 do {
8598 ret = i40e_clean_arq_element(hw, &event, &pending);
8599 if (ret == I40E_ERR_ADMIN_QUEUE_NO_WORK)
8600 break;
8601 else if (ret) {
8602 dev_info(&pf->pdev->dev, "ARQ event error %d\n", ret);
8603 break;
8604 }
8605
8606 opcode = le16_to_cpu(event.desc.opcode);
8607 switch (opcode) {
8608
8609 case i40e_aqc_opc_get_link_status:
8610 i40e_handle_link_event(pf, &event);
8611 break;
8612 case i40e_aqc_opc_send_msg_to_pf:
8613 ret = i40e_vc_process_vf_msg(pf,
8614 le16_to_cpu(event.desc.retval),
8615 le32_to_cpu(event.desc.cookie_high),
8616 le32_to_cpu(event.desc.cookie_low),
8617 event.msg_buf,
8618 event.msg_len);
8619 break;
8620 case i40e_aqc_opc_lldp_update_mib:
8621 dev_dbg(&pf->pdev->dev, "ARQ: Update LLDP MIB event received\n");
8622 #ifdef CONFIG_I40E_DCB
8623 rtnl_lock();
8624 ret = i40e_handle_lldp_event(pf, &event);
8625 rtnl_unlock();
8626 #endif /* CONFIG_I40E_DCB */
8627 break;
8628 case i40e_aqc_opc_event_lan_overflow:
8629 dev_dbg(&pf->pdev->dev, "ARQ LAN queue overflow event received\n");
8630 i40e_handle_lan_overflow_event(pf, &event);
8631 break;
8632 case i40e_aqc_opc_send_msg_to_peer:
8633 dev_info(&pf->pdev->dev, "ARQ: Msg from other pf\n");
8634 break;
8635 case i40e_aqc_opc_nvm_erase:
8636 case i40e_aqc_opc_nvm_update:
8637 case i40e_aqc_opc_oem_post_update:
8638 i40e_debug(&pf->hw, I40E_DEBUG_NVM,
8639 "ARQ NVM operation 0x%04x completed\n",
8640 opcode);
8641 break;
8642 default:
8643 dev_info(&pf->pdev->dev,
8644 "ARQ: Unknown event 0x%04x ignored\n",
8645 opcode);
8646 break;
8647 }
8648 } while (i++ < pf->adminq_work_limit);
8649
8650 if (i < pf->adminq_work_limit)
8651 clear_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state);
8652
8653 /* re-enable Admin queue interrupt cause */
8654 val = rd32(hw, I40E_PFINT_ICR0_ENA);
8655 val |= I40E_PFINT_ICR0_ENA_ADMINQ_MASK;
8656 wr32(hw, I40E_PFINT_ICR0_ENA, val);
8657 i40e_flush(hw);
8658
8659 kfree(event.msg_buf);
8660 }
8661
8662 /**
8663 * i40e_verify_eeprom - make sure eeprom is good to use
8664 * @pf: board private structure
8665 **/
8666 static void i40e_verify_eeprom(struct i40e_pf *pf)
8667 {
8668 int err;
8669
8670 err = i40e_diag_eeprom_test(&pf->hw);
8671 if (err) {
8672 /* retry in case of garbage read */
8673 err = i40e_diag_eeprom_test(&pf->hw);
8674 if (err) {
8675 dev_info(&pf->pdev->dev, "eeprom check failed (%d), Tx/Rx traffic disabled\n",
8676 err);
8677 set_bit(__I40E_BAD_EEPROM, pf->state);
8678 }
8679 }
8680
8681 if (!err && test_bit(__I40E_BAD_EEPROM, pf->state)) {
8682 dev_info(&pf->pdev->dev, "eeprom check passed, Tx/Rx traffic enabled\n");
8683 clear_bit(__I40E_BAD_EEPROM, pf->state);
8684 }
8685 }
8686
8687 /**
8688 * i40e_enable_pf_switch_lb
8689 * @pf: pointer to the PF structure
8690 *
8691 * enable switch loop back or die - no point in a return value
8692 **/
8693 static void i40e_enable_pf_switch_lb(struct i40e_pf *pf)
8694 {
8695 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8696 struct i40e_vsi_context ctxt;
8697 int ret;
8698
8699 ctxt.seid = pf->main_vsi_seid;
8700 ctxt.pf_num = pf->hw.pf_id;
8701 ctxt.vf_num = 0;
8702 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
8703 if (ret) {
8704 dev_info(&pf->pdev->dev,
8705 "couldn't get PF vsi config, err %s aq_err %s\n",
8706 i40e_stat_str(&pf->hw, ret),
8707 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8708 return;
8709 }
8710 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
8711 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
8712 ctxt.info.switch_id |= cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
8713
8714 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
8715 if (ret) {
8716 dev_info(&pf->pdev->dev,
8717 "update vsi switch failed, err %s aq_err %s\n",
8718 i40e_stat_str(&pf->hw, ret),
8719 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8720 }
8721 }
8722
8723 /**
8724 * i40e_disable_pf_switch_lb
8725 * @pf: pointer to the PF structure
8726 *
8727 * disable switch loop back or die - no point in a return value
8728 **/
8729 static void i40e_disable_pf_switch_lb(struct i40e_pf *pf)
8730 {
8731 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
8732 struct i40e_vsi_context ctxt;
8733 int ret;
8734
8735 ctxt.seid = pf->main_vsi_seid;
8736 ctxt.pf_num = pf->hw.pf_id;
8737 ctxt.vf_num = 0;
8738 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
8739 if (ret) {
8740 dev_info(&pf->pdev->dev,
8741 "couldn't get PF vsi config, err %s aq_err %s\n",
8742 i40e_stat_str(&pf->hw, ret),
8743 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8744 return;
8745 }
8746 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
8747 ctxt.info.valid_sections = cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
8748 ctxt.info.switch_id &= ~cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
8749
8750 ret = i40e_aq_update_vsi_params(&vsi->back->hw, &ctxt, NULL);
8751 if (ret) {
8752 dev_info(&pf->pdev->dev,
8753 "update vsi switch failed, err %s aq_err %s\n",
8754 i40e_stat_str(&pf->hw, ret),
8755 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
8756 }
8757 }
8758
8759 /**
8760 * i40e_config_bridge_mode - Configure the HW bridge mode
8761 * @veb: pointer to the bridge instance
8762 *
8763 * Configure the loop back mode for the LAN VSI that is downlink to the
8764 * specified HW bridge instance. It is expected this function is called
8765 * when a new HW bridge is instantiated.
8766 **/
8767 static void i40e_config_bridge_mode(struct i40e_veb *veb)
8768 {
8769 struct i40e_pf *pf = veb->pf;
8770
8771 if (pf->hw.debug_mask & I40E_DEBUG_LAN)
8772 dev_info(&pf->pdev->dev, "enabling bridge mode: %s\n",
8773 veb->bridge_mode == BRIDGE_MODE_VEPA ? "VEPA" : "VEB");
8774 if (veb->bridge_mode & BRIDGE_MODE_VEPA)
8775 i40e_disable_pf_switch_lb(pf);
8776 else
8777 i40e_enable_pf_switch_lb(pf);
8778 }
8779
8780 /**
8781 * i40e_reconstitute_veb - rebuild the VEB and anything connected to it
8782 * @veb: pointer to the VEB instance
8783 *
8784 * This is a recursive function that first builds the attached VSIs then
8785 * recurses in to build the next layer of VEB. We track the connections
8786 * through our own index numbers because the seid's from the HW could
8787 * change across the reset.
8788 **/
8789 static int i40e_reconstitute_veb(struct i40e_veb *veb)
8790 {
8791 struct i40e_vsi *ctl_vsi = NULL;
8792 struct i40e_pf *pf = veb->pf;
8793 int v, veb_idx;
8794 int ret;
8795
8796 /* build VSI that owns this VEB, temporarily attached to base VEB */
8797 for (v = 0; v < pf->num_alloc_vsi && !ctl_vsi; v++) {
8798 if (pf->vsi[v] &&
8799 pf->vsi[v]->veb_idx == veb->idx &&
8800 pf->vsi[v]->flags & I40E_VSI_FLAG_VEB_OWNER) {
8801 ctl_vsi = pf->vsi[v];
8802 break;
8803 }
8804 }
8805 if (!ctl_vsi) {
8806 dev_info(&pf->pdev->dev,
8807 "missing owner VSI for veb_idx %d\n", veb->idx);
8808 ret = -ENOENT;
8809 goto end_reconstitute;
8810 }
8811 if (ctl_vsi != pf->vsi[pf->lan_vsi])
8812 ctl_vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
8813 ret = i40e_add_vsi(ctl_vsi);
8814 if (ret) {
8815 dev_info(&pf->pdev->dev,
8816 "rebuild of veb_idx %d owner VSI failed: %d\n",
8817 veb->idx, ret);
8818 goto end_reconstitute;
8819 }
8820 i40e_vsi_reset_stats(ctl_vsi);
8821
8822 /* create the VEB in the switch and move the VSI onto the VEB */
8823 ret = i40e_add_veb(veb, ctl_vsi);
8824 if (ret)
8825 goto end_reconstitute;
8826
8827 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED)
8828 veb->bridge_mode = BRIDGE_MODE_VEB;
8829 else
8830 veb->bridge_mode = BRIDGE_MODE_VEPA;
8831 i40e_config_bridge_mode(veb);
8832
8833 /* create the remaining VSIs attached to this VEB */
8834 for (v = 0; v < pf->num_alloc_vsi; v++) {
8835 if (!pf->vsi[v] || pf->vsi[v] == ctl_vsi)
8836 continue;
8837
8838 if (pf->vsi[v]->veb_idx == veb->idx) {
8839 struct i40e_vsi *vsi = pf->vsi[v];
8840
8841 vsi->uplink_seid = veb->seid;
8842 ret = i40e_add_vsi(vsi);
8843 if (ret) {
8844 dev_info(&pf->pdev->dev,
8845 "rebuild of vsi_idx %d failed: %d\n",
8846 v, ret);
8847 goto end_reconstitute;
8848 }
8849 i40e_vsi_reset_stats(vsi);
8850 }
8851 }
8852
8853 /* create any VEBs attached to this VEB - RECURSION */
8854 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
8855 if (pf->veb[veb_idx] && pf->veb[veb_idx]->veb_idx == veb->idx) {
8856 pf->veb[veb_idx]->uplink_seid = veb->seid;
8857 ret = i40e_reconstitute_veb(pf->veb[veb_idx]);
8858 if (ret)
8859 break;
8860 }
8861 }
8862
8863 end_reconstitute:
8864 return ret;
8865 }
8866
8867 /**
8868 * i40e_get_capabilities - get info about the HW
8869 * @pf: the PF struct
8870 **/
8871 static int i40e_get_capabilities(struct i40e_pf *pf,
8872 enum i40e_admin_queue_opc list_type)
8873 {
8874 struct i40e_aqc_list_capabilities_element_resp *cap_buf;
8875 u16 data_size;
8876 int buf_len;
8877 int err;
8878
8879 buf_len = 40 * sizeof(struct i40e_aqc_list_capabilities_element_resp);
8880 do {
8881 cap_buf = kzalloc(buf_len, GFP_KERNEL);
8882 if (!cap_buf)
8883 return -ENOMEM;
8884
8885 /* this loads the data into the hw struct for us */
8886 err = i40e_aq_discover_capabilities(&pf->hw, cap_buf, buf_len,
8887 &data_size, list_type,
8888 NULL);
8889 /* data loaded, buffer no longer needed */
8890 kfree(cap_buf);
8891
8892 if (pf->hw.aq.asq_last_status == I40E_AQ_RC_ENOMEM) {
8893 /* retry with a larger buffer */
8894 buf_len = data_size;
8895 } else if (pf->hw.aq.asq_last_status != I40E_AQ_RC_OK) {
8896 dev_info(&pf->pdev->dev,
8897 "capability discovery failed, err %s aq_err %s\n",
8898 i40e_stat_str(&pf->hw, err),
8899 i40e_aq_str(&pf->hw,
8900 pf->hw.aq.asq_last_status));
8901 return -ENODEV;
8902 }
8903 } while (err);
8904
8905 if (pf->hw.debug_mask & I40E_DEBUG_USER) {
8906 if (list_type == i40e_aqc_opc_list_func_capabilities) {
8907 dev_info(&pf->pdev->dev,
8908 "pf=%d, num_vfs=%d, msix_pf=%d, msix_vf=%d, fd_g=%d, fd_b=%d, pf_max_q=%d num_vsi=%d\n",
8909 pf->hw.pf_id, pf->hw.func_caps.num_vfs,
8910 pf->hw.func_caps.num_msix_vectors,
8911 pf->hw.func_caps.num_msix_vectors_vf,
8912 pf->hw.func_caps.fd_filters_guaranteed,
8913 pf->hw.func_caps.fd_filters_best_effort,
8914 pf->hw.func_caps.num_tx_qp,
8915 pf->hw.func_caps.num_vsis);
8916 } else if (list_type == i40e_aqc_opc_list_dev_capabilities) {
8917 dev_info(&pf->pdev->dev,
8918 "switch_mode=0x%04x, function_valid=0x%08x\n",
8919 pf->hw.dev_caps.switch_mode,
8920 pf->hw.dev_caps.valid_functions);
8921 dev_info(&pf->pdev->dev,
8922 "SR-IOV=%d, num_vfs for all function=%u\n",
8923 pf->hw.dev_caps.sr_iov_1_1,
8924 pf->hw.dev_caps.num_vfs);
8925 dev_info(&pf->pdev->dev,
8926 "num_vsis=%u, num_rx:%u, num_tx=%u\n",
8927 pf->hw.dev_caps.num_vsis,
8928 pf->hw.dev_caps.num_rx_qp,
8929 pf->hw.dev_caps.num_tx_qp);
8930 }
8931 }
8932 if (list_type == i40e_aqc_opc_list_func_capabilities) {
8933 #define DEF_NUM_VSI (1 + (pf->hw.func_caps.fcoe ? 1 : 0) \
8934 + pf->hw.func_caps.num_vfs)
8935 if (pf->hw.revision_id == 0 &&
8936 pf->hw.func_caps.num_vsis < DEF_NUM_VSI) {
8937 dev_info(&pf->pdev->dev,
8938 "got num_vsis %d, setting num_vsis to %d\n",
8939 pf->hw.func_caps.num_vsis, DEF_NUM_VSI);
8940 pf->hw.func_caps.num_vsis = DEF_NUM_VSI;
8941 }
8942 }
8943 return 0;
8944 }
8945
8946 static int i40e_vsi_clear(struct i40e_vsi *vsi);
8947
8948 /**
8949 * i40e_fdir_sb_setup - initialize the Flow Director resources for Sideband
8950 * @pf: board private structure
8951 **/
8952 static void i40e_fdir_sb_setup(struct i40e_pf *pf)
8953 {
8954 struct i40e_vsi *vsi;
8955
8956 /* quick workaround for an NVM issue that leaves a critical register
8957 * uninitialized
8958 */
8959 if (!rd32(&pf->hw, I40E_GLQF_HKEY(0))) {
8960 static const u32 hkey[] = {
8961 0xe640d33f, 0xcdfe98ab, 0x73fa7161, 0x0d7a7d36,
8962 0xeacb7d61, 0xaa4f05b6, 0x9c5c89ed, 0xfc425ddb,
8963 0xa4654832, 0xfc7461d4, 0x8f827619, 0xf5c63c21,
8964 0x95b3a76d};
8965 int i;
8966
8967 for (i = 0; i <= I40E_GLQF_HKEY_MAX_INDEX; i++)
8968 wr32(&pf->hw, I40E_GLQF_HKEY(i), hkey[i]);
8969 }
8970
8971 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
8972 return;
8973
8974 /* find existing VSI and see if it needs configuring */
8975 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
8976
8977 /* create a new VSI if none exists */
8978 if (!vsi) {
8979 vsi = i40e_vsi_setup(pf, I40E_VSI_FDIR,
8980 pf->vsi[pf->lan_vsi]->seid, 0);
8981 if (!vsi) {
8982 dev_info(&pf->pdev->dev, "Couldn't create FDir VSI\n");
8983 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
8984 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
8985 return;
8986 }
8987 }
8988
8989 i40e_vsi_setup_irqhandler(vsi, i40e_fdir_clean_ring);
8990 }
8991
8992 /**
8993 * i40e_fdir_teardown - release the Flow Director resources
8994 * @pf: board private structure
8995 **/
8996 static void i40e_fdir_teardown(struct i40e_pf *pf)
8997 {
8998 struct i40e_vsi *vsi;
8999
9000 i40e_fdir_filter_exit(pf);
9001 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
9002 if (vsi)
9003 i40e_vsi_release(vsi);
9004 }
9005
9006 /**
9007 * i40e_rebuild_cloud_filters - Rebuilds cloud filters for VSIs
9008 * @vsi: PF main vsi
9009 * @seid: seid of main or channel VSIs
9010 *
9011 * Rebuilds cloud filters associated with main VSI and channel VSIs if they
9012 * existed before reset
9013 **/
9014 static int i40e_rebuild_cloud_filters(struct i40e_vsi *vsi, u16 seid)
9015 {
9016 struct i40e_cloud_filter *cfilter;
9017 struct i40e_pf *pf = vsi->back;
9018 struct hlist_node *node;
9019 i40e_status ret;
9020
9021 /* Add cloud filters back if they exist */
9022 hlist_for_each_entry_safe(cfilter, node, &pf->cloud_filter_list,
9023 cloud_node) {
9024 if (cfilter->seid != seid)
9025 continue;
9026
9027 if (cfilter->dst_port)
9028 ret = i40e_add_del_cloud_filter_big_buf(vsi, cfilter,
9029 true);
9030 else
9031 ret = i40e_add_del_cloud_filter(vsi, cfilter, true);
9032
9033 if (ret) {
9034 dev_dbg(&pf->pdev->dev,
9035 "Failed to rebuild cloud filter, err %s aq_err %s\n",
9036 i40e_stat_str(&pf->hw, ret),
9037 i40e_aq_str(&pf->hw,
9038 pf->hw.aq.asq_last_status));
9039 return ret;
9040 }
9041 }
9042 return 0;
9043 }
9044
9045 /**
9046 * i40e_rebuild_channels - Rebuilds channel VSIs if they existed before reset
9047 * @vsi: PF main vsi
9048 *
9049 * Rebuilds channel VSIs if they existed before reset
9050 **/
9051 static int i40e_rebuild_channels(struct i40e_vsi *vsi)
9052 {
9053 struct i40e_channel *ch, *ch_tmp;
9054 i40e_status ret;
9055
9056 if (list_empty(&vsi->ch_list))
9057 return 0;
9058
9059 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
9060 if (!ch->initialized)
9061 break;
9062 /* Proceed with creation of channel (VMDq2) VSI */
9063 ret = i40e_add_channel(vsi->back, vsi->uplink_seid, ch);
9064 if (ret) {
9065 dev_info(&vsi->back->pdev->dev,
9066 "failed to rebuild channels using uplink_seid %u\n",
9067 vsi->uplink_seid);
9068 return ret;
9069 }
9070 if (ch->max_tx_rate) {
9071 u64 credits = ch->max_tx_rate;
9072
9073 if (i40e_set_bw_limit(vsi, ch->seid,
9074 ch->max_tx_rate))
9075 return -EINVAL;
9076
9077 do_div(credits, I40E_BW_CREDIT_DIVISOR);
9078 dev_dbg(&vsi->back->pdev->dev,
9079 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
9080 ch->max_tx_rate,
9081 credits,
9082 ch->seid);
9083 }
9084 ret = i40e_rebuild_cloud_filters(vsi, ch->seid);
9085 if (ret) {
9086 dev_dbg(&vsi->back->pdev->dev,
9087 "Failed to rebuild cloud filters for channel VSI %u\n",
9088 ch->seid);
9089 return ret;
9090 }
9091 }
9092 return 0;
9093 }
9094
9095 /**
9096 * i40e_prep_for_reset - prep for the core to reset
9097 * @pf: board private structure
9098 * @lock_acquired: indicates whether or not the lock has been acquired
9099 * before this function was called.
9100 *
9101 * Close up the VFs and other things in prep for PF Reset.
9102 **/
9103 static void i40e_prep_for_reset(struct i40e_pf *pf, bool lock_acquired)
9104 {
9105 struct i40e_hw *hw = &pf->hw;
9106 i40e_status ret = 0;
9107 u32 v;
9108
9109 clear_bit(__I40E_RESET_INTR_RECEIVED, pf->state);
9110 if (test_and_set_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
9111 return;
9112 if (i40e_check_asq_alive(&pf->hw))
9113 i40e_vc_notify_reset(pf);
9114
9115 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
9116
9117 /* quiesce the VSIs and their queues that are not already DOWN */
9118 /* pf_quiesce_all_vsi modifies netdev structures -rtnl_lock needed */
9119 if (!lock_acquired)
9120 rtnl_lock();
9121 i40e_pf_quiesce_all_vsi(pf);
9122 if (!lock_acquired)
9123 rtnl_unlock();
9124
9125 for (v = 0; v < pf->num_alloc_vsi; v++) {
9126 if (pf->vsi[v])
9127 pf->vsi[v]->seid = 0;
9128 }
9129
9130 i40e_shutdown_adminq(&pf->hw);
9131
9132 /* call shutdown HMC */
9133 if (hw->hmc.hmc_obj) {
9134 ret = i40e_shutdown_lan_hmc(hw);
9135 if (ret)
9136 dev_warn(&pf->pdev->dev,
9137 "shutdown_lan_hmc failed: %d\n", ret);
9138 }
9139 }
9140
9141 /**
9142 * i40e_send_version - update firmware with driver version
9143 * @pf: PF struct
9144 */
9145 static void i40e_send_version(struct i40e_pf *pf)
9146 {
9147 struct i40e_driver_version dv;
9148
9149 dv.major_version = DRV_VERSION_MAJOR;
9150 dv.minor_version = DRV_VERSION_MINOR;
9151 dv.build_version = DRV_VERSION_BUILD;
9152 dv.subbuild_version = 0;
9153 strlcpy(dv.driver_string, DRV_VERSION, sizeof(dv.driver_string));
9154 i40e_aq_send_driver_version(&pf->hw, &dv, NULL);
9155 }
9156
9157 /**
9158 * i40e_get_oem_version - get OEM specific version information
9159 * @hw: pointer to the hardware structure
9160 **/
9161 static void i40e_get_oem_version(struct i40e_hw *hw)
9162 {
9163 u16 block_offset = 0xffff;
9164 u16 block_length = 0;
9165 u16 capabilities = 0;
9166 u16 gen_snap = 0;
9167 u16 release = 0;
9168
9169 #define I40E_SR_NVM_OEM_VERSION_PTR 0x1B
9170 #define I40E_NVM_OEM_LENGTH_OFFSET 0x00
9171 #define I40E_NVM_OEM_CAPABILITIES_OFFSET 0x01
9172 #define I40E_NVM_OEM_GEN_OFFSET 0x02
9173 #define I40E_NVM_OEM_RELEASE_OFFSET 0x03
9174 #define I40E_NVM_OEM_CAPABILITIES_MASK 0x000F
9175 #define I40E_NVM_OEM_LENGTH 3
9176
9177 /* Check if pointer to OEM version block is valid. */
9178 i40e_read_nvm_word(hw, I40E_SR_NVM_OEM_VERSION_PTR, &block_offset);
9179 if (block_offset == 0xffff)
9180 return;
9181
9182 /* Check if OEM version block has correct length. */
9183 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_LENGTH_OFFSET,
9184 &block_length);
9185 if (block_length < I40E_NVM_OEM_LENGTH)
9186 return;
9187
9188 /* Check if OEM version format is as expected. */
9189 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_CAPABILITIES_OFFSET,
9190 &capabilities);
9191 if ((capabilities & I40E_NVM_OEM_CAPABILITIES_MASK) != 0)
9192 return;
9193
9194 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_GEN_OFFSET,
9195 &gen_snap);
9196 i40e_read_nvm_word(hw, block_offset + I40E_NVM_OEM_RELEASE_OFFSET,
9197 &release);
9198 hw->nvm.oem_ver = (gen_snap << I40E_OEM_SNAP_SHIFT) | release;
9199 hw->nvm.eetrack = I40E_OEM_EETRACK_ID;
9200 }
9201
9202 /**
9203 * i40e_reset - wait for core reset to finish reset, reset pf if corer not seen
9204 * @pf: board private structure
9205 **/
9206 static int i40e_reset(struct i40e_pf *pf)
9207 {
9208 struct i40e_hw *hw = &pf->hw;
9209 i40e_status ret;
9210
9211 ret = i40e_pf_reset(hw);
9212 if (ret) {
9213 dev_info(&pf->pdev->dev, "PF reset failed, %d\n", ret);
9214 set_bit(__I40E_RESET_FAILED, pf->state);
9215 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
9216 } else {
9217 pf->pfr_count++;
9218 }
9219 return ret;
9220 }
9221
9222 /**
9223 * i40e_rebuild - rebuild using a saved config
9224 * @pf: board private structure
9225 * @reinit: if the Main VSI needs to re-initialized.
9226 * @lock_acquired: indicates whether or not the lock has been acquired
9227 * before this function was called.
9228 **/
9229 static void i40e_rebuild(struct i40e_pf *pf, bool reinit, bool lock_acquired)
9230 {
9231 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
9232 struct i40e_hw *hw = &pf->hw;
9233 u8 set_fc_aq_fail = 0;
9234 i40e_status ret;
9235 u32 val;
9236 int v;
9237
9238 if (test_bit(__I40E_DOWN, pf->state))
9239 goto clear_recovery;
9240 dev_dbg(&pf->pdev->dev, "Rebuilding internal switch\n");
9241
9242 /* rebuild the basics for the AdminQ, HMC, and initial HW switch */
9243 ret = i40e_init_adminq(&pf->hw);
9244 if (ret) {
9245 dev_info(&pf->pdev->dev, "Rebuild AdminQ failed, err %s aq_err %s\n",
9246 i40e_stat_str(&pf->hw, ret),
9247 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
9248 goto clear_recovery;
9249 }
9250 i40e_get_oem_version(&pf->hw);
9251
9252 /* re-verify the eeprom if we just had an EMP reset */
9253 if (test_and_clear_bit(__I40E_EMP_RESET_INTR_RECEIVED, pf->state))
9254 i40e_verify_eeprom(pf);
9255
9256 i40e_clear_pxe_mode(hw);
9257 ret = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
9258 if (ret)
9259 goto end_core_reset;
9260
9261 ret = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
9262 hw->func_caps.num_rx_qp, 0, 0);
9263 if (ret) {
9264 dev_info(&pf->pdev->dev, "init_lan_hmc failed: %d\n", ret);
9265 goto end_core_reset;
9266 }
9267 ret = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
9268 if (ret) {
9269 dev_info(&pf->pdev->dev, "configure_lan_hmc failed: %d\n", ret);
9270 goto end_core_reset;
9271 }
9272
9273 #ifdef CONFIG_I40E_DCB
9274 ret = i40e_init_pf_dcb(pf);
9275 if (ret) {
9276 dev_info(&pf->pdev->dev, "DCB init failed %d, disabled\n", ret);
9277 pf->flags &= ~I40E_FLAG_DCB_CAPABLE;
9278 /* Continue without DCB enabled */
9279 }
9280 #endif /* CONFIG_I40E_DCB */
9281 /* do basic switch setup */
9282 if (!lock_acquired)
9283 rtnl_lock();
9284 ret = i40e_setup_pf_switch(pf, reinit);
9285 if (ret)
9286 goto end_unlock;
9287
9288 /* The driver only wants link up/down and module qualification
9289 * reports from firmware. Note the negative logic.
9290 */
9291 ret = i40e_aq_set_phy_int_mask(&pf->hw,
9292 ~(I40E_AQ_EVENT_LINK_UPDOWN |
9293 I40E_AQ_EVENT_MEDIA_NA |
9294 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
9295 if (ret)
9296 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n",
9297 i40e_stat_str(&pf->hw, ret),
9298 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
9299
9300 /* make sure our flow control settings are restored */
9301 ret = i40e_set_fc(&pf->hw, &set_fc_aq_fail, true);
9302 if (ret)
9303 dev_dbg(&pf->pdev->dev, "setting flow control: ret = %s last_status = %s\n",
9304 i40e_stat_str(&pf->hw, ret),
9305 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
9306
9307 /* Rebuild the VSIs and VEBs that existed before reset.
9308 * They are still in our local switch element arrays, so only
9309 * need to rebuild the switch model in the HW.
9310 *
9311 * If there were VEBs but the reconstitution failed, we'll try
9312 * try to recover minimal use by getting the basic PF VSI working.
9313 */
9314 if (vsi->uplink_seid != pf->mac_seid) {
9315 dev_dbg(&pf->pdev->dev, "attempting to rebuild switch\n");
9316 /* find the one VEB connected to the MAC, and find orphans */
9317 for (v = 0; v < I40E_MAX_VEB; v++) {
9318 if (!pf->veb[v])
9319 continue;
9320
9321 if (pf->veb[v]->uplink_seid == pf->mac_seid ||
9322 pf->veb[v]->uplink_seid == 0) {
9323 ret = i40e_reconstitute_veb(pf->veb[v]);
9324
9325 if (!ret)
9326 continue;
9327
9328 /* If Main VEB failed, we're in deep doodoo,
9329 * so give up rebuilding the switch and set up
9330 * for minimal rebuild of PF VSI.
9331 * If orphan failed, we'll report the error
9332 * but try to keep going.
9333 */
9334 if (pf->veb[v]->uplink_seid == pf->mac_seid) {
9335 dev_info(&pf->pdev->dev,
9336 "rebuild of switch failed: %d, will try to set up simple PF connection\n",
9337 ret);
9338 vsi->uplink_seid = pf->mac_seid;
9339 break;
9340 } else if (pf->veb[v]->uplink_seid == 0) {
9341 dev_info(&pf->pdev->dev,
9342 "rebuild of orphan VEB failed: %d\n",
9343 ret);
9344 }
9345 }
9346 }
9347 }
9348
9349 if (vsi->uplink_seid == pf->mac_seid) {
9350 dev_dbg(&pf->pdev->dev, "attempting to rebuild PF VSI\n");
9351 /* no VEB, so rebuild only the Main VSI */
9352 ret = i40e_add_vsi(vsi);
9353 if (ret) {
9354 dev_info(&pf->pdev->dev,
9355 "rebuild of Main VSI failed: %d\n", ret);
9356 goto end_unlock;
9357 }
9358 }
9359
9360 if (vsi->mqprio_qopt.max_rate[0]) {
9361 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
9362 u64 credits = 0;
9363
9364 do_div(max_tx_rate, I40E_BW_MBPS_DIVISOR);
9365 ret = i40e_set_bw_limit(vsi, vsi->seid, max_tx_rate);
9366 if (ret)
9367 goto end_unlock;
9368
9369 credits = max_tx_rate;
9370 do_div(credits, I40E_BW_CREDIT_DIVISOR);
9371 dev_dbg(&vsi->back->pdev->dev,
9372 "Set tx rate of %llu Mbps (count of 50Mbps %llu) for vsi->seid %u\n",
9373 max_tx_rate,
9374 credits,
9375 vsi->seid);
9376 }
9377
9378 ret = i40e_rebuild_cloud_filters(vsi, vsi->seid);
9379 if (ret)
9380 goto end_unlock;
9381
9382 /* PF Main VSI is rebuild by now, go ahead and rebuild channel VSIs
9383 * for this main VSI if they exist
9384 */
9385 ret = i40e_rebuild_channels(vsi);
9386 if (ret)
9387 goto end_unlock;
9388
9389 /* Reconfigure hardware for allowing smaller MSS in the case
9390 * of TSO, so that we avoid the MDD being fired and causing
9391 * a reset in the case of small MSS+TSO.
9392 */
9393 #define I40E_REG_MSS 0x000E64DC
9394 #define I40E_REG_MSS_MIN_MASK 0x3FF0000
9395 #define I40E_64BYTE_MSS 0x400000
9396 val = rd32(hw, I40E_REG_MSS);
9397 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
9398 val &= ~I40E_REG_MSS_MIN_MASK;
9399 val |= I40E_64BYTE_MSS;
9400 wr32(hw, I40E_REG_MSS, val);
9401 }
9402
9403 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) {
9404 msleep(75);
9405 ret = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
9406 if (ret)
9407 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n",
9408 i40e_stat_str(&pf->hw, ret),
9409 i40e_aq_str(&pf->hw,
9410 pf->hw.aq.asq_last_status));
9411 }
9412 /* reinit the misc interrupt */
9413 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
9414 ret = i40e_setup_misc_vector(pf);
9415
9416 /* Add a filter to drop all Flow control frames from any VSI from being
9417 * transmitted. By doing so we stop a malicious VF from sending out
9418 * PAUSE or PFC frames and potentially controlling traffic for other
9419 * PF/VF VSIs.
9420 * The FW can still send Flow control frames if enabled.
9421 */
9422 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
9423 pf->main_vsi_seid);
9424
9425 /* restart the VSIs that were rebuilt and running before the reset */
9426 i40e_pf_unquiesce_all_vsi(pf);
9427
9428 /* Release the RTNL lock before we start resetting VFs */
9429 if (!lock_acquired)
9430 rtnl_unlock();
9431
9432 i40e_reset_all_vfs(pf, true);
9433
9434 /* tell the firmware that we're starting */
9435 i40e_send_version(pf);
9436
9437 /* We've already released the lock, so don't do it again */
9438 goto end_core_reset;
9439
9440 end_unlock:
9441 if (!lock_acquired)
9442 rtnl_unlock();
9443 end_core_reset:
9444 clear_bit(__I40E_RESET_FAILED, pf->state);
9445 clear_recovery:
9446 clear_bit(__I40E_RESET_RECOVERY_PENDING, pf->state);
9447 }
9448
9449 /**
9450 * i40e_reset_and_rebuild - reset and rebuild using a saved config
9451 * @pf: board private structure
9452 * @reinit: if the Main VSI needs to re-initialized.
9453 * @lock_acquired: indicates whether or not the lock has been acquired
9454 * before this function was called.
9455 **/
9456 static void i40e_reset_and_rebuild(struct i40e_pf *pf, bool reinit,
9457 bool lock_acquired)
9458 {
9459 int ret;
9460 /* Now we wait for GRST to settle out.
9461 * We don't have to delete the VEBs or VSIs from the hw switch
9462 * because the reset will make them disappear.
9463 */
9464 ret = i40e_reset(pf);
9465 if (!ret)
9466 i40e_rebuild(pf, reinit, lock_acquired);
9467 }
9468
9469 /**
9470 * i40e_handle_reset_warning - prep for the PF to reset, reset and rebuild
9471 * @pf: board private structure
9472 *
9473 * Close up the VFs and other things in prep for a Core Reset,
9474 * then get ready to rebuild the world.
9475 * @lock_acquired: indicates whether or not the lock has been acquired
9476 * before this function was called.
9477 **/
9478 static void i40e_handle_reset_warning(struct i40e_pf *pf, bool lock_acquired)
9479 {
9480 i40e_prep_for_reset(pf, lock_acquired);
9481 i40e_reset_and_rebuild(pf, false, lock_acquired);
9482 }
9483
9484 /**
9485 * i40e_handle_mdd_event
9486 * @pf: pointer to the PF structure
9487 *
9488 * Called from the MDD irq handler to identify possibly malicious vfs
9489 **/
9490 static void i40e_handle_mdd_event(struct i40e_pf *pf)
9491 {
9492 struct i40e_hw *hw = &pf->hw;
9493 bool mdd_detected = false;
9494 bool pf_mdd_detected = false;
9495 struct i40e_vf *vf;
9496 u32 reg;
9497 int i;
9498
9499 if (!test_bit(__I40E_MDD_EVENT_PENDING, pf->state))
9500 return;
9501
9502 /* find what triggered the MDD event */
9503 reg = rd32(hw, I40E_GL_MDET_TX);
9504 if (reg & I40E_GL_MDET_TX_VALID_MASK) {
9505 u8 pf_num = (reg & I40E_GL_MDET_TX_PF_NUM_MASK) >>
9506 I40E_GL_MDET_TX_PF_NUM_SHIFT;
9507 u16 vf_num = (reg & I40E_GL_MDET_TX_VF_NUM_MASK) >>
9508 I40E_GL_MDET_TX_VF_NUM_SHIFT;
9509 u8 event = (reg & I40E_GL_MDET_TX_EVENT_MASK) >>
9510 I40E_GL_MDET_TX_EVENT_SHIFT;
9511 u16 queue = ((reg & I40E_GL_MDET_TX_QUEUE_MASK) >>
9512 I40E_GL_MDET_TX_QUEUE_SHIFT) -
9513 pf->hw.func_caps.base_queue;
9514 if (netif_msg_tx_err(pf))
9515 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on TX queue %d PF number 0x%02x VF number 0x%02x\n",
9516 event, queue, pf_num, vf_num);
9517 wr32(hw, I40E_GL_MDET_TX, 0xffffffff);
9518 mdd_detected = true;
9519 }
9520 reg = rd32(hw, I40E_GL_MDET_RX);
9521 if (reg & I40E_GL_MDET_RX_VALID_MASK) {
9522 u8 func = (reg & I40E_GL_MDET_RX_FUNCTION_MASK) >>
9523 I40E_GL_MDET_RX_FUNCTION_SHIFT;
9524 u8 event = (reg & I40E_GL_MDET_RX_EVENT_MASK) >>
9525 I40E_GL_MDET_RX_EVENT_SHIFT;
9526 u16 queue = ((reg & I40E_GL_MDET_RX_QUEUE_MASK) >>
9527 I40E_GL_MDET_RX_QUEUE_SHIFT) -
9528 pf->hw.func_caps.base_queue;
9529 if (netif_msg_rx_err(pf))
9530 dev_info(&pf->pdev->dev, "Malicious Driver Detection event 0x%02x on RX queue %d of function 0x%02x\n",
9531 event, queue, func);
9532 wr32(hw, I40E_GL_MDET_RX, 0xffffffff);
9533 mdd_detected = true;
9534 }
9535
9536 if (mdd_detected) {
9537 reg = rd32(hw, I40E_PF_MDET_TX);
9538 if (reg & I40E_PF_MDET_TX_VALID_MASK) {
9539 wr32(hw, I40E_PF_MDET_TX, 0xFFFF);
9540 dev_info(&pf->pdev->dev, "TX driver issue detected, PF reset issued\n");
9541 pf_mdd_detected = true;
9542 }
9543 reg = rd32(hw, I40E_PF_MDET_RX);
9544 if (reg & I40E_PF_MDET_RX_VALID_MASK) {
9545 wr32(hw, I40E_PF_MDET_RX, 0xFFFF);
9546 dev_info(&pf->pdev->dev, "RX driver issue detected, PF reset issued\n");
9547 pf_mdd_detected = true;
9548 }
9549 /* Queue belongs to the PF, initiate a reset */
9550 if (pf_mdd_detected) {
9551 set_bit(__I40E_PF_RESET_REQUESTED, pf->state);
9552 i40e_service_event_schedule(pf);
9553 }
9554 }
9555
9556 /* see if one of the VFs needs its hand slapped */
9557 for (i = 0; i < pf->num_alloc_vfs && mdd_detected; i++) {
9558 vf = &(pf->vf[i]);
9559 reg = rd32(hw, I40E_VP_MDET_TX(i));
9560 if (reg & I40E_VP_MDET_TX_VALID_MASK) {
9561 wr32(hw, I40E_VP_MDET_TX(i), 0xFFFF);
9562 vf->num_mdd_events++;
9563 dev_info(&pf->pdev->dev, "TX driver issue detected on VF %d\n",
9564 i);
9565 }
9566
9567 reg = rd32(hw, I40E_VP_MDET_RX(i));
9568 if (reg & I40E_VP_MDET_RX_VALID_MASK) {
9569 wr32(hw, I40E_VP_MDET_RX(i), 0xFFFF);
9570 vf->num_mdd_events++;
9571 dev_info(&pf->pdev->dev, "RX driver issue detected on VF %d\n",
9572 i);
9573 }
9574
9575 if (vf->num_mdd_events > I40E_DEFAULT_NUM_MDD_EVENTS_ALLOWED) {
9576 dev_info(&pf->pdev->dev,
9577 "Too many MDD events on VF %d, disabled\n", i);
9578 dev_info(&pf->pdev->dev,
9579 "Use PF Control I/F to re-enable the VF\n");
9580 set_bit(I40E_VF_STATE_DISABLED, &vf->vf_states);
9581 }
9582 }
9583
9584 /* re-enable mdd interrupt cause */
9585 clear_bit(__I40E_MDD_EVENT_PENDING, pf->state);
9586 reg = rd32(hw, I40E_PFINT_ICR0_ENA);
9587 reg |= I40E_PFINT_ICR0_ENA_MAL_DETECT_MASK;
9588 wr32(hw, I40E_PFINT_ICR0_ENA, reg);
9589 i40e_flush(hw);
9590 }
9591
9592 static const char *i40e_tunnel_name(struct i40e_udp_port_config *port)
9593 {
9594 switch (port->type) {
9595 case UDP_TUNNEL_TYPE_VXLAN:
9596 return "vxlan";
9597 case UDP_TUNNEL_TYPE_GENEVE:
9598 return "geneve";
9599 default:
9600 return "unknown";
9601 }
9602 }
9603
9604 /**
9605 * i40e_sync_udp_filters - Trigger a sync event for existing UDP filters
9606 * @pf: board private structure
9607 **/
9608 static void i40e_sync_udp_filters(struct i40e_pf *pf)
9609 {
9610 int i;
9611
9612 /* loop through and set pending bit for all active UDP filters */
9613 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
9614 if (pf->udp_ports[i].port)
9615 pf->pending_udp_bitmap |= BIT_ULL(i);
9616 }
9617
9618 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
9619 }
9620
9621 /**
9622 * i40e_sync_udp_filters_subtask - Sync the VSI filter list with HW
9623 * @pf: board private structure
9624 **/
9625 static void i40e_sync_udp_filters_subtask(struct i40e_pf *pf)
9626 {
9627 struct i40e_hw *hw = &pf->hw;
9628 i40e_status ret;
9629 u16 port;
9630 int i;
9631
9632 if (!(pf->flags & I40E_FLAG_UDP_FILTER_SYNC))
9633 return;
9634
9635 pf->flags &= ~I40E_FLAG_UDP_FILTER_SYNC;
9636
9637 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
9638 if (pf->pending_udp_bitmap & BIT_ULL(i)) {
9639 pf->pending_udp_bitmap &= ~BIT_ULL(i);
9640 port = pf->udp_ports[i].port;
9641 if (port)
9642 ret = i40e_aq_add_udp_tunnel(hw, port,
9643 pf->udp_ports[i].type,
9644 NULL, NULL);
9645 else
9646 ret = i40e_aq_del_udp_tunnel(hw, i, NULL);
9647
9648 if (ret) {
9649 dev_info(&pf->pdev->dev,
9650 "%s %s port %d, index %d failed, err %s aq_err %s\n",
9651 i40e_tunnel_name(&pf->udp_ports[i]),
9652 port ? "add" : "delete",
9653 port, i,
9654 i40e_stat_str(&pf->hw, ret),
9655 i40e_aq_str(&pf->hw,
9656 pf->hw.aq.asq_last_status));
9657 pf->udp_ports[i].port = 0;
9658 }
9659 }
9660 }
9661 }
9662
9663 /**
9664 * i40e_service_task - Run the driver's async subtasks
9665 * @work: pointer to work_struct containing our data
9666 **/
9667 static void i40e_service_task(struct work_struct *work)
9668 {
9669 struct i40e_pf *pf = container_of(work,
9670 struct i40e_pf,
9671 service_task);
9672 unsigned long start_time = jiffies;
9673
9674 /* don't bother with service tasks if a reset is in progress */
9675 if (test_bit(__I40E_RESET_RECOVERY_PENDING, pf->state))
9676 return;
9677
9678 if (test_and_set_bit(__I40E_SERVICE_SCHED, pf->state))
9679 return;
9680
9681 i40e_detect_recover_hung(pf);
9682 i40e_sync_filters_subtask(pf);
9683 i40e_reset_subtask(pf);
9684 i40e_handle_mdd_event(pf);
9685 i40e_vc_process_vflr_event(pf);
9686 i40e_watchdog_subtask(pf);
9687 i40e_fdir_reinit_subtask(pf);
9688 if (pf->flags & I40E_FLAG_CLIENT_RESET) {
9689 /* Client subtask will reopen next time through. */
9690 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], true);
9691 pf->flags &= ~I40E_FLAG_CLIENT_RESET;
9692 } else {
9693 i40e_client_subtask(pf);
9694 if (pf->flags & I40E_FLAG_CLIENT_L2_CHANGE) {
9695 i40e_notify_client_of_l2_param_changes(
9696 pf->vsi[pf->lan_vsi]);
9697 pf->flags &= ~I40E_FLAG_CLIENT_L2_CHANGE;
9698 }
9699 }
9700 i40e_sync_filters_subtask(pf);
9701 i40e_sync_udp_filters_subtask(pf);
9702 i40e_clean_adminq_subtask(pf);
9703
9704 /* flush memory to make sure state is correct before next watchdog */
9705 smp_mb__before_atomic();
9706 clear_bit(__I40E_SERVICE_SCHED, pf->state);
9707
9708 /* If the tasks have taken longer than one timer cycle or there
9709 * is more work to be done, reschedule the service task now
9710 * rather than wait for the timer to tick again.
9711 */
9712 if (time_after(jiffies, (start_time + pf->service_timer_period)) ||
9713 test_bit(__I40E_ADMINQ_EVENT_PENDING, pf->state) ||
9714 test_bit(__I40E_MDD_EVENT_PENDING, pf->state) ||
9715 test_bit(__I40E_VFLR_EVENT_PENDING, pf->state))
9716 i40e_service_event_schedule(pf);
9717 }
9718
9719 /**
9720 * i40e_service_timer - timer callback
9721 * @data: pointer to PF struct
9722 **/
9723 static void i40e_service_timer(struct timer_list *t)
9724 {
9725 struct i40e_pf *pf = from_timer(pf, t, service_timer);
9726
9727 mod_timer(&pf->service_timer,
9728 round_jiffies(jiffies + pf->service_timer_period));
9729 i40e_service_event_schedule(pf);
9730 }
9731
9732 /**
9733 * i40e_set_num_rings_in_vsi - Determine number of rings in the VSI
9734 * @vsi: the VSI being configured
9735 **/
9736 static int i40e_set_num_rings_in_vsi(struct i40e_vsi *vsi)
9737 {
9738 struct i40e_pf *pf = vsi->back;
9739
9740 switch (vsi->type) {
9741 case I40E_VSI_MAIN:
9742 vsi->alloc_queue_pairs = pf->num_lan_qps;
9743 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
9744 I40E_REQ_DESCRIPTOR_MULTIPLE);
9745 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
9746 vsi->num_q_vectors = pf->num_lan_msix;
9747 else
9748 vsi->num_q_vectors = 1;
9749
9750 break;
9751
9752 case I40E_VSI_FDIR:
9753 vsi->alloc_queue_pairs = 1;
9754 vsi->num_desc = ALIGN(I40E_FDIR_RING_COUNT,
9755 I40E_REQ_DESCRIPTOR_MULTIPLE);
9756 vsi->num_q_vectors = pf->num_fdsb_msix;
9757 break;
9758
9759 case I40E_VSI_VMDQ2:
9760 vsi->alloc_queue_pairs = pf->num_vmdq_qps;
9761 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
9762 I40E_REQ_DESCRIPTOR_MULTIPLE);
9763 vsi->num_q_vectors = pf->num_vmdq_msix;
9764 break;
9765
9766 case I40E_VSI_SRIOV:
9767 vsi->alloc_queue_pairs = pf->num_vf_qps;
9768 vsi->num_desc = ALIGN(I40E_DEFAULT_NUM_DESCRIPTORS,
9769 I40E_REQ_DESCRIPTOR_MULTIPLE);
9770 break;
9771
9772 default:
9773 WARN_ON(1);
9774 return -ENODATA;
9775 }
9776
9777 return 0;
9778 }
9779
9780 /**
9781 * i40e_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
9782 * @vsi: VSI pointer
9783 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
9784 *
9785 * On error: returns error code (negative)
9786 * On success: returns 0
9787 **/
9788 static int i40e_vsi_alloc_arrays(struct i40e_vsi *vsi, bool alloc_qvectors)
9789 {
9790 struct i40e_ring **next_rings;
9791 int size;
9792 int ret = 0;
9793
9794 /* allocate memory for both Tx, XDP Tx and Rx ring pointers */
9795 size = sizeof(struct i40e_ring *) * vsi->alloc_queue_pairs *
9796 (i40e_enabled_xdp_vsi(vsi) ? 3 : 2);
9797 vsi->tx_rings = kzalloc(size, GFP_KERNEL);
9798 if (!vsi->tx_rings)
9799 return -ENOMEM;
9800 next_rings = vsi->tx_rings + vsi->alloc_queue_pairs;
9801 if (i40e_enabled_xdp_vsi(vsi)) {
9802 vsi->xdp_rings = next_rings;
9803 next_rings += vsi->alloc_queue_pairs;
9804 }
9805 vsi->rx_rings = next_rings;
9806
9807 if (alloc_qvectors) {
9808 /* allocate memory for q_vector pointers */
9809 size = sizeof(struct i40e_q_vector *) * vsi->num_q_vectors;
9810 vsi->q_vectors = kzalloc(size, GFP_KERNEL);
9811 if (!vsi->q_vectors) {
9812 ret = -ENOMEM;
9813 goto err_vectors;
9814 }
9815 }
9816 return ret;
9817
9818 err_vectors:
9819 kfree(vsi->tx_rings);
9820 return ret;
9821 }
9822
9823 /**
9824 * i40e_vsi_mem_alloc - Allocates the next available struct vsi in the PF
9825 * @pf: board private structure
9826 * @type: type of VSI
9827 *
9828 * On error: returns error code (negative)
9829 * On success: returns vsi index in PF (positive)
9830 **/
9831 static int i40e_vsi_mem_alloc(struct i40e_pf *pf, enum i40e_vsi_type type)
9832 {
9833 int ret = -ENODEV;
9834 struct i40e_vsi *vsi;
9835 int vsi_idx;
9836 int i;
9837
9838 /* Need to protect the allocation of the VSIs at the PF level */
9839 mutex_lock(&pf->switch_mutex);
9840
9841 /* VSI list may be fragmented if VSI creation/destruction has
9842 * been happening. We can afford to do a quick scan to look
9843 * for any free VSIs in the list.
9844 *
9845 * find next empty vsi slot, looping back around if necessary
9846 */
9847 i = pf->next_vsi;
9848 while (i < pf->num_alloc_vsi && pf->vsi[i])
9849 i++;
9850 if (i >= pf->num_alloc_vsi) {
9851 i = 0;
9852 while (i < pf->next_vsi && pf->vsi[i])
9853 i++;
9854 }
9855
9856 if (i < pf->num_alloc_vsi && !pf->vsi[i]) {
9857 vsi_idx = i; /* Found one! */
9858 } else {
9859 ret = -ENODEV;
9860 goto unlock_pf; /* out of VSI slots! */
9861 }
9862 pf->next_vsi = ++i;
9863
9864 vsi = kzalloc(sizeof(*vsi), GFP_KERNEL);
9865 if (!vsi) {
9866 ret = -ENOMEM;
9867 goto unlock_pf;
9868 }
9869 vsi->type = type;
9870 vsi->back = pf;
9871 set_bit(__I40E_VSI_DOWN, vsi->state);
9872 vsi->flags = 0;
9873 vsi->idx = vsi_idx;
9874 vsi->int_rate_limit = 0;
9875 vsi->rss_table_size = (vsi->type == I40E_VSI_MAIN) ?
9876 pf->rss_table_size : 64;
9877 vsi->netdev_registered = false;
9878 vsi->work_limit = I40E_DEFAULT_IRQ_WORK;
9879 hash_init(vsi->mac_filter_hash);
9880 vsi->irqs_ready = false;
9881
9882 ret = i40e_set_num_rings_in_vsi(vsi);
9883 if (ret)
9884 goto err_rings;
9885
9886 ret = i40e_vsi_alloc_arrays(vsi, true);
9887 if (ret)
9888 goto err_rings;
9889
9890 /* Setup default MSIX irq handler for VSI */
9891 i40e_vsi_setup_irqhandler(vsi, i40e_msix_clean_rings);
9892
9893 /* Initialize VSI lock */
9894 spin_lock_init(&vsi->mac_filter_hash_lock);
9895 pf->vsi[vsi_idx] = vsi;
9896 ret = vsi_idx;
9897 goto unlock_pf;
9898
9899 err_rings:
9900 pf->next_vsi = i - 1;
9901 kfree(vsi);
9902 unlock_pf:
9903 mutex_unlock(&pf->switch_mutex);
9904 return ret;
9905 }
9906
9907 /**
9908 * i40e_vsi_free_arrays - Free queue and vector pointer arrays for the VSI
9909 * @type: VSI pointer
9910 * @free_qvectors: a bool to specify if q_vectors need to be freed.
9911 *
9912 * On error: returns error code (negative)
9913 * On success: returns 0
9914 **/
9915 static void i40e_vsi_free_arrays(struct i40e_vsi *vsi, bool free_qvectors)
9916 {
9917 /* free the ring and vector containers */
9918 if (free_qvectors) {
9919 kfree(vsi->q_vectors);
9920 vsi->q_vectors = NULL;
9921 }
9922 kfree(vsi->tx_rings);
9923 vsi->tx_rings = NULL;
9924 vsi->rx_rings = NULL;
9925 vsi->xdp_rings = NULL;
9926 }
9927
9928 /**
9929 * i40e_clear_rss_config_user - clear the user configured RSS hash keys
9930 * and lookup table
9931 * @vsi: Pointer to VSI structure
9932 */
9933 static void i40e_clear_rss_config_user(struct i40e_vsi *vsi)
9934 {
9935 if (!vsi)
9936 return;
9937
9938 kfree(vsi->rss_hkey_user);
9939 vsi->rss_hkey_user = NULL;
9940
9941 kfree(vsi->rss_lut_user);
9942 vsi->rss_lut_user = NULL;
9943 }
9944
9945 /**
9946 * i40e_vsi_clear - Deallocate the VSI provided
9947 * @vsi: the VSI being un-configured
9948 **/
9949 static int i40e_vsi_clear(struct i40e_vsi *vsi)
9950 {
9951 struct i40e_pf *pf;
9952
9953 if (!vsi)
9954 return 0;
9955
9956 if (!vsi->back)
9957 goto free_vsi;
9958 pf = vsi->back;
9959
9960 mutex_lock(&pf->switch_mutex);
9961 if (!pf->vsi[vsi->idx]) {
9962 dev_err(&pf->pdev->dev, "pf->vsi[%d] is NULL, just free vsi[%d](%p,type %d)\n",
9963 vsi->idx, vsi->idx, vsi, vsi->type);
9964 goto unlock_vsi;
9965 }
9966
9967 if (pf->vsi[vsi->idx] != vsi) {
9968 dev_err(&pf->pdev->dev,
9969 "pf->vsi[%d](%p, type %d) != vsi[%d](%p,type %d): no free!\n",
9970 pf->vsi[vsi->idx]->idx,
9971 pf->vsi[vsi->idx],
9972 pf->vsi[vsi->idx]->type,
9973 vsi->idx, vsi, vsi->type);
9974 goto unlock_vsi;
9975 }
9976
9977 /* updates the PF for this cleared vsi */
9978 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
9979 i40e_put_lump(pf->irq_pile, vsi->base_vector, vsi->idx);
9980
9981 i40e_vsi_free_arrays(vsi, true);
9982 i40e_clear_rss_config_user(vsi);
9983
9984 pf->vsi[vsi->idx] = NULL;
9985 if (vsi->idx < pf->next_vsi)
9986 pf->next_vsi = vsi->idx;
9987
9988 unlock_vsi:
9989 mutex_unlock(&pf->switch_mutex);
9990 free_vsi:
9991 kfree(vsi);
9992
9993 return 0;
9994 }
9995
9996 /**
9997 * i40e_vsi_clear_rings - Deallocates the Rx and Tx rings for the provided VSI
9998 * @vsi: the VSI being cleaned
9999 **/
10000 static void i40e_vsi_clear_rings(struct i40e_vsi *vsi)
10001 {
10002 int i;
10003
10004 if (vsi->tx_rings && vsi->tx_rings[0]) {
10005 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
10006 kfree_rcu(vsi->tx_rings[i], rcu);
10007 vsi->tx_rings[i] = NULL;
10008 vsi->rx_rings[i] = NULL;
10009 if (vsi->xdp_rings)
10010 vsi->xdp_rings[i] = NULL;
10011 }
10012 }
10013 }
10014
10015 /**
10016 * i40e_alloc_rings - Allocates the Rx and Tx rings for the provided VSI
10017 * @vsi: the VSI being configured
10018 **/
10019 static int i40e_alloc_rings(struct i40e_vsi *vsi)
10020 {
10021 int i, qpv = i40e_enabled_xdp_vsi(vsi) ? 3 : 2;
10022 struct i40e_pf *pf = vsi->back;
10023 struct i40e_ring *ring;
10024
10025 /* Set basic values in the rings to be used later during open() */
10026 for (i = 0; i < vsi->alloc_queue_pairs; i++) {
10027 /* allocate space for both Tx and Rx in one shot */
10028 ring = kcalloc(qpv, sizeof(struct i40e_ring), GFP_KERNEL);
10029 if (!ring)
10030 goto err_out;
10031
10032 ring->queue_index = i;
10033 ring->reg_idx = vsi->base_queue + i;
10034 ring->ring_active = false;
10035 ring->vsi = vsi;
10036 ring->netdev = vsi->netdev;
10037 ring->dev = &pf->pdev->dev;
10038 ring->count = vsi->num_desc;
10039 ring->size = 0;
10040 ring->dcb_tc = 0;
10041 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE)
10042 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
10043 ring->tx_itr_setting = pf->tx_itr_default;
10044 vsi->tx_rings[i] = ring++;
10045
10046 if (!i40e_enabled_xdp_vsi(vsi))
10047 goto setup_rx;
10048
10049 ring->queue_index = vsi->alloc_queue_pairs + i;
10050 ring->reg_idx = vsi->base_queue + ring->queue_index;
10051 ring->ring_active = false;
10052 ring->vsi = vsi;
10053 ring->netdev = NULL;
10054 ring->dev = &pf->pdev->dev;
10055 ring->count = vsi->num_desc;
10056 ring->size = 0;
10057 ring->dcb_tc = 0;
10058 if (vsi->back->hw_features & I40E_HW_WB_ON_ITR_CAPABLE)
10059 ring->flags = I40E_TXR_FLAGS_WB_ON_ITR;
10060 set_ring_xdp(ring);
10061 ring->tx_itr_setting = pf->tx_itr_default;
10062 vsi->xdp_rings[i] = ring++;
10063
10064 setup_rx:
10065 ring->queue_index = i;
10066 ring->reg_idx = vsi->base_queue + i;
10067 ring->ring_active = false;
10068 ring->vsi = vsi;
10069 ring->netdev = vsi->netdev;
10070 ring->dev = &pf->pdev->dev;
10071 ring->count = vsi->num_desc;
10072 ring->size = 0;
10073 ring->dcb_tc = 0;
10074 ring->rx_itr_setting = pf->rx_itr_default;
10075 vsi->rx_rings[i] = ring;
10076 }
10077
10078 return 0;
10079
10080 err_out:
10081 i40e_vsi_clear_rings(vsi);
10082 return -ENOMEM;
10083 }
10084
10085 /**
10086 * i40e_reserve_msix_vectors - Reserve MSI-X vectors in the kernel
10087 * @pf: board private structure
10088 * @vectors: the number of MSI-X vectors to request
10089 *
10090 * Returns the number of vectors reserved, or error
10091 **/
10092 static int i40e_reserve_msix_vectors(struct i40e_pf *pf, int vectors)
10093 {
10094 vectors = pci_enable_msix_range(pf->pdev, pf->msix_entries,
10095 I40E_MIN_MSIX, vectors);
10096 if (vectors < 0) {
10097 dev_info(&pf->pdev->dev,
10098 "MSI-X vector reservation failed: %d\n", vectors);
10099 vectors = 0;
10100 }
10101
10102 return vectors;
10103 }
10104
10105 /**
10106 * i40e_init_msix - Setup the MSIX capability
10107 * @pf: board private structure
10108 *
10109 * Work with the OS to set up the MSIX vectors needed.
10110 *
10111 * Returns the number of vectors reserved or negative on failure
10112 **/
10113 static int i40e_init_msix(struct i40e_pf *pf)
10114 {
10115 struct i40e_hw *hw = &pf->hw;
10116 int cpus, extra_vectors;
10117 int vectors_left;
10118 int v_budget, i;
10119 int v_actual;
10120 int iwarp_requested = 0;
10121
10122 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
10123 return -ENODEV;
10124
10125 /* The number of vectors we'll request will be comprised of:
10126 * - Add 1 for "other" cause for Admin Queue events, etc.
10127 * - The number of LAN queue pairs
10128 * - Queues being used for RSS.
10129 * We don't need as many as max_rss_size vectors.
10130 * use rss_size instead in the calculation since that
10131 * is governed by number of cpus in the system.
10132 * - assumes symmetric Tx/Rx pairing
10133 * - The number of VMDq pairs
10134 * - The CPU count within the NUMA node if iWARP is enabled
10135 * Once we count this up, try the request.
10136 *
10137 * If we can't get what we want, we'll simplify to nearly nothing
10138 * and try again. If that still fails, we punt.
10139 */
10140 vectors_left = hw->func_caps.num_msix_vectors;
10141 v_budget = 0;
10142
10143 /* reserve one vector for miscellaneous handler */
10144 if (vectors_left) {
10145 v_budget++;
10146 vectors_left--;
10147 }
10148
10149 /* reserve some vectors for the main PF traffic queues. Initially we
10150 * only reserve at most 50% of the available vectors, in the case that
10151 * the number of online CPUs is large. This ensures that we can enable
10152 * extra features as well. Once we've enabled the other features, we
10153 * will use any remaining vectors to reach as close as we can to the
10154 * number of online CPUs.
10155 */
10156 cpus = num_online_cpus();
10157 pf->num_lan_msix = min_t(int, cpus, vectors_left / 2);
10158 vectors_left -= pf->num_lan_msix;
10159
10160 /* reserve one vector for sideband flow director */
10161 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
10162 if (vectors_left) {
10163 pf->num_fdsb_msix = 1;
10164 v_budget++;
10165 vectors_left--;
10166 } else {
10167 pf->num_fdsb_msix = 0;
10168 }
10169 }
10170
10171 /* can we reserve enough for iWARP? */
10172 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
10173 iwarp_requested = pf->num_iwarp_msix;
10174
10175 if (!vectors_left)
10176 pf->num_iwarp_msix = 0;
10177 else if (vectors_left < pf->num_iwarp_msix)
10178 pf->num_iwarp_msix = 1;
10179 v_budget += pf->num_iwarp_msix;
10180 vectors_left -= pf->num_iwarp_msix;
10181 }
10182
10183 /* any vectors left over go for VMDq support */
10184 if (pf->flags & I40E_FLAG_VMDQ_ENABLED) {
10185 int vmdq_vecs_wanted = pf->num_vmdq_vsis * pf->num_vmdq_qps;
10186 int vmdq_vecs = min_t(int, vectors_left, vmdq_vecs_wanted);
10187
10188 if (!vectors_left) {
10189 pf->num_vmdq_msix = 0;
10190 pf->num_vmdq_qps = 0;
10191 } else {
10192 /* if we're short on vectors for what's desired, we limit
10193 * the queues per vmdq. If this is still more than are
10194 * available, the user will need to change the number of
10195 * queues/vectors used by the PF later with the ethtool
10196 * channels command
10197 */
10198 if (vmdq_vecs < vmdq_vecs_wanted)
10199 pf->num_vmdq_qps = 1;
10200 pf->num_vmdq_msix = pf->num_vmdq_qps;
10201
10202 v_budget += vmdq_vecs;
10203 vectors_left -= vmdq_vecs;
10204 }
10205 }
10206
10207 /* On systems with a large number of SMP cores, we previously limited
10208 * the number of vectors for num_lan_msix to be at most 50% of the
10209 * available vectors, to allow for other features. Now, we add back
10210 * the remaining vectors. However, we ensure that the total
10211 * num_lan_msix will not exceed num_online_cpus(). To do this, we
10212 * calculate the number of vectors we can add without going over the
10213 * cap of CPUs. For systems with a small number of CPUs this will be
10214 * zero.
10215 */
10216 extra_vectors = min_t(int, cpus - pf->num_lan_msix, vectors_left);
10217 pf->num_lan_msix += extra_vectors;
10218 vectors_left -= extra_vectors;
10219
10220 WARN(vectors_left < 0,
10221 "Calculation of remaining vectors underflowed. This is an accounting bug when determining total MSI-X vectors.\n");
10222
10223 v_budget += pf->num_lan_msix;
10224 pf->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
10225 GFP_KERNEL);
10226 if (!pf->msix_entries)
10227 return -ENOMEM;
10228
10229 for (i = 0; i < v_budget; i++)
10230 pf->msix_entries[i].entry = i;
10231 v_actual = i40e_reserve_msix_vectors(pf, v_budget);
10232
10233 if (v_actual < I40E_MIN_MSIX) {
10234 pf->flags &= ~I40E_FLAG_MSIX_ENABLED;
10235 kfree(pf->msix_entries);
10236 pf->msix_entries = NULL;
10237 pci_disable_msix(pf->pdev);
10238 return -ENODEV;
10239
10240 } else if (v_actual == I40E_MIN_MSIX) {
10241 /* Adjust for minimal MSIX use */
10242 pf->num_vmdq_vsis = 0;
10243 pf->num_vmdq_qps = 0;
10244 pf->num_lan_qps = 1;
10245 pf->num_lan_msix = 1;
10246
10247 } else if (v_actual != v_budget) {
10248 /* If we have limited resources, we will start with no vectors
10249 * for the special features and then allocate vectors to some
10250 * of these features based on the policy and at the end disable
10251 * the features that did not get any vectors.
10252 */
10253 int vec;
10254
10255 dev_info(&pf->pdev->dev,
10256 "MSI-X vector limit reached with %d, wanted %d, attempting to redistribute vectors\n",
10257 v_actual, v_budget);
10258 /* reserve the misc vector */
10259 vec = v_actual - 1;
10260
10261 /* Scale vector usage down */
10262 pf->num_vmdq_msix = 1; /* force VMDqs to only one vector */
10263 pf->num_vmdq_vsis = 1;
10264 pf->num_vmdq_qps = 1;
10265
10266 /* partition out the remaining vectors */
10267 switch (vec) {
10268 case 2:
10269 pf->num_lan_msix = 1;
10270 break;
10271 case 3:
10272 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
10273 pf->num_lan_msix = 1;
10274 pf->num_iwarp_msix = 1;
10275 } else {
10276 pf->num_lan_msix = 2;
10277 }
10278 break;
10279 default:
10280 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
10281 pf->num_iwarp_msix = min_t(int, (vec / 3),
10282 iwarp_requested);
10283 pf->num_vmdq_vsis = min_t(int, (vec / 3),
10284 I40E_DEFAULT_NUM_VMDQ_VSI);
10285 } else {
10286 pf->num_vmdq_vsis = min_t(int, (vec / 2),
10287 I40E_DEFAULT_NUM_VMDQ_VSI);
10288 }
10289 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
10290 pf->num_fdsb_msix = 1;
10291 vec--;
10292 }
10293 pf->num_lan_msix = min_t(int,
10294 (vec - (pf->num_iwarp_msix + pf->num_vmdq_vsis)),
10295 pf->num_lan_msix);
10296 pf->num_lan_qps = pf->num_lan_msix;
10297 break;
10298 }
10299 }
10300
10301 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
10302 (pf->num_fdsb_msix == 0)) {
10303 dev_info(&pf->pdev->dev, "Sideband Flowdir disabled, not enough MSI-X vectors\n");
10304 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
10305 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
10306 }
10307 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) &&
10308 (pf->num_vmdq_msix == 0)) {
10309 dev_info(&pf->pdev->dev, "VMDq disabled, not enough MSI-X vectors\n");
10310 pf->flags &= ~I40E_FLAG_VMDQ_ENABLED;
10311 }
10312
10313 if ((pf->flags & I40E_FLAG_IWARP_ENABLED) &&
10314 (pf->num_iwarp_msix == 0)) {
10315 dev_info(&pf->pdev->dev, "IWARP disabled, not enough MSI-X vectors\n");
10316 pf->flags &= ~I40E_FLAG_IWARP_ENABLED;
10317 }
10318 i40e_debug(&pf->hw, I40E_DEBUG_INIT,
10319 "MSI-X vector distribution: PF %d, VMDq %d, FDSB %d, iWARP %d\n",
10320 pf->num_lan_msix,
10321 pf->num_vmdq_msix * pf->num_vmdq_vsis,
10322 pf->num_fdsb_msix,
10323 pf->num_iwarp_msix);
10324
10325 return v_actual;
10326 }
10327
10328 /**
10329 * i40e_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
10330 * @vsi: the VSI being configured
10331 * @v_idx: index of the vector in the vsi struct
10332 * @cpu: cpu to be used on affinity_mask
10333 *
10334 * We allocate one q_vector. If allocation fails we return -ENOMEM.
10335 **/
10336 static int i40e_vsi_alloc_q_vector(struct i40e_vsi *vsi, int v_idx, int cpu)
10337 {
10338 struct i40e_q_vector *q_vector;
10339
10340 /* allocate q_vector */
10341 q_vector = kzalloc(sizeof(struct i40e_q_vector), GFP_KERNEL);
10342 if (!q_vector)
10343 return -ENOMEM;
10344
10345 q_vector->vsi = vsi;
10346 q_vector->v_idx = v_idx;
10347 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
10348
10349 if (vsi->netdev)
10350 netif_napi_add(vsi->netdev, &q_vector->napi,
10351 i40e_napi_poll, NAPI_POLL_WEIGHT);
10352
10353 q_vector->rx.latency_range = I40E_LOW_LATENCY;
10354 q_vector->tx.latency_range = I40E_LOW_LATENCY;
10355
10356 /* tie q_vector and vsi together */
10357 vsi->q_vectors[v_idx] = q_vector;
10358
10359 return 0;
10360 }
10361
10362 /**
10363 * i40e_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
10364 * @vsi: the VSI being configured
10365 *
10366 * We allocate one q_vector per queue interrupt. If allocation fails we
10367 * return -ENOMEM.
10368 **/
10369 static int i40e_vsi_alloc_q_vectors(struct i40e_vsi *vsi)
10370 {
10371 struct i40e_pf *pf = vsi->back;
10372 int err, v_idx, num_q_vectors, current_cpu;
10373
10374 /* if not MSIX, give the one vector only to the LAN VSI */
10375 if (pf->flags & I40E_FLAG_MSIX_ENABLED)
10376 num_q_vectors = vsi->num_q_vectors;
10377 else if (vsi == pf->vsi[pf->lan_vsi])
10378 num_q_vectors = 1;
10379 else
10380 return -EINVAL;
10381
10382 current_cpu = cpumask_first(cpu_online_mask);
10383
10384 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
10385 err = i40e_vsi_alloc_q_vector(vsi, v_idx, current_cpu);
10386 if (err)
10387 goto err_out;
10388 current_cpu = cpumask_next(current_cpu, cpu_online_mask);
10389 if (unlikely(current_cpu >= nr_cpu_ids))
10390 current_cpu = cpumask_first(cpu_online_mask);
10391 }
10392
10393 return 0;
10394
10395 err_out:
10396 while (v_idx--)
10397 i40e_free_q_vector(vsi, v_idx);
10398
10399 return err;
10400 }
10401
10402 /**
10403 * i40e_init_interrupt_scheme - Determine proper interrupt scheme
10404 * @pf: board private structure to initialize
10405 **/
10406 static int i40e_init_interrupt_scheme(struct i40e_pf *pf)
10407 {
10408 int vectors = 0;
10409 ssize_t size;
10410
10411 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
10412 vectors = i40e_init_msix(pf);
10413 if (vectors < 0) {
10414 pf->flags &= ~(I40E_FLAG_MSIX_ENABLED |
10415 I40E_FLAG_IWARP_ENABLED |
10416 I40E_FLAG_RSS_ENABLED |
10417 I40E_FLAG_DCB_CAPABLE |
10418 I40E_FLAG_DCB_ENABLED |
10419 I40E_FLAG_SRIOV_ENABLED |
10420 I40E_FLAG_FD_SB_ENABLED |
10421 I40E_FLAG_FD_ATR_ENABLED |
10422 I40E_FLAG_VMDQ_ENABLED);
10423 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
10424
10425 /* rework the queue expectations without MSIX */
10426 i40e_determine_queue_usage(pf);
10427 }
10428 }
10429
10430 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED) &&
10431 (pf->flags & I40E_FLAG_MSI_ENABLED)) {
10432 dev_info(&pf->pdev->dev, "MSI-X not available, trying MSI\n");
10433 vectors = pci_enable_msi(pf->pdev);
10434 if (vectors < 0) {
10435 dev_info(&pf->pdev->dev, "MSI init failed - %d\n",
10436 vectors);
10437 pf->flags &= ~I40E_FLAG_MSI_ENABLED;
10438 }
10439 vectors = 1; /* one MSI or Legacy vector */
10440 }
10441
10442 if (!(pf->flags & (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED)))
10443 dev_info(&pf->pdev->dev, "MSI-X and MSI not available, falling back to Legacy IRQ\n");
10444
10445 /* set up vector assignment tracking */
10446 size = sizeof(struct i40e_lump_tracking) + (sizeof(u16) * vectors);
10447 pf->irq_pile = kzalloc(size, GFP_KERNEL);
10448 if (!pf->irq_pile) {
10449 dev_err(&pf->pdev->dev, "error allocating irq_pile memory\n");
10450 return -ENOMEM;
10451 }
10452 pf->irq_pile->num_entries = vectors;
10453 pf->irq_pile->search_hint = 0;
10454
10455 /* track first vector for misc interrupts, ignore return */
10456 (void)i40e_get_lump(pf, pf->irq_pile, 1, I40E_PILE_VALID_BIT - 1);
10457
10458 return 0;
10459 }
10460
10461 /**
10462 * i40e_restore_interrupt_scheme - Restore the interrupt scheme
10463 * @pf: private board data structure
10464 *
10465 * Restore the interrupt scheme that was cleared when we suspended the
10466 * device. This should be called during resume to re-allocate the q_vectors
10467 * and reacquire IRQs.
10468 */
10469 static int i40e_restore_interrupt_scheme(struct i40e_pf *pf)
10470 {
10471 int err, i;
10472
10473 /* We cleared the MSI and MSI-X flags when disabling the old interrupt
10474 * scheme. We need to re-enabled them here in order to attempt to
10475 * re-acquire the MSI or MSI-X vectors
10476 */
10477 pf->flags |= (I40E_FLAG_MSIX_ENABLED | I40E_FLAG_MSI_ENABLED);
10478
10479 err = i40e_init_interrupt_scheme(pf);
10480 if (err)
10481 return err;
10482
10483 /* Now that we've re-acquired IRQs, we need to remap the vectors and
10484 * rings together again.
10485 */
10486 for (i = 0; i < pf->num_alloc_vsi; i++) {
10487 if (pf->vsi[i]) {
10488 err = i40e_vsi_alloc_q_vectors(pf->vsi[i]);
10489 if (err)
10490 goto err_unwind;
10491 i40e_vsi_map_rings_to_vectors(pf->vsi[i]);
10492 }
10493 }
10494
10495 err = i40e_setup_misc_vector(pf);
10496 if (err)
10497 goto err_unwind;
10498
10499 return 0;
10500
10501 err_unwind:
10502 while (i--) {
10503 if (pf->vsi[i])
10504 i40e_vsi_free_q_vectors(pf->vsi[i]);
10505 }
10506
10507 return err;
10508 }
10509
10510 /**
10511 * i40e_setup_misc_vector - Setup the misc vector to handle non queue events
10512 * @pf: board private structure
10513 *
10514 * This sets up the handler for MSIX 0, which is used to manage the
10515 * non-queue interrupts, e.g. AdminQ and errors. This is not used
10516 * when in MSI or Legacy interrupt mode.
10517 **/
10518 static int i40e_setup_misc_vector(struct i40e_pf *pf)
10519 {
10520 struct i40e_hw *hw = &pf->hw;
10521 int err = 0;
10522
10523 /* Only request the IRQ once, the first time through. */
10524 if (!test_and_set_bit(__I40E_MISC_IRQ_REQUESTED, pf->state)) {
10525 err = request_irq(pf->msix_entries[0].vector,
10526 i40e_intr, 0, pf->int_name, pf);
10527 if (err) {
10528 clear_bit(__I40E_MISC_IRQ_REQUESTED, pf->state);
10529 dev_info(&pf->pdev->dev,
10530 "request_irq for %s failed: %d\n",
10531 pf->int_name, err);
10532 return -EFAULT;
10533 }
10534 }
10535
10536 i40e_enable_misc_int_causes(pf);
10537
10538 /* associate no queues to the misc vector */
10539 wr32(hw, I40E_PFINT_LNKLST0, I40E_QUEUE_END_OF_LIST);
10540 wr32(hw, I40E_PFINT_ITR0(I40E_RX_ITR), I40E_ITR_8K);
10541
10542 i40e_flush(hw);
10543
10544 i40e_irq_dynamic_enable_icr0(pf);
10545
10546 return err;
10547 }
10548
10549 /**
10550 * i40e_get_rss_aq - Get RSS keys and lut by using AQ commands
10551 * @vsi: Pointer to vsi structure
10552 * @seed: Buffter to store the hash keys
10553 * @lut: Buffer to store the lookup table entries
10554 * @lut_size: Size of buffer to store the lookup table entries
10555 *
10556 * Return 0 on success, negative on failure
10557 */
10558 static int i40e_get_rss_aq(struct i40e_vsi *vsi, const u8 *seed,
10559 u8 *lut, u16 lut_size)
10560 {
10561 struct i40e_pf *pf = vsi->back;
10562 struct i40e_hw *hw = &pf->hw;
10563 int ret = 0;
10564
10565 if (seed) {
10566 ret = i40e_aq_get_rss_key(hw, vsi->id,
10567 (struct i40e_aqc_get_set_rss_key_data *)seed);
10568 if (ret) {
10569 dev_info(&pf->pdev->dev,
10570 "Cannot get RSS key, err %s aq_err %s\n",
10571 i40e_stat_str(&pf->hw, ret),
10572 i40e_aq_str(&pf->hw,
10573 pf->hw.aq.asq_last_status));
10574 return ret;
10575 }
10576 }
10577
10578 if (lut) {
10579 bool pf_lut = vsi->type == I40E_VSI_MAIN ? true : false;
10580
10581 ret = i40e_aq_get_rss_lut(hw, vsi->id, pf_lut, lut, lut_size);
10582 if (ret) {
10583 dev_info(&pf->pdev->dev,
10584 "Cannot get RSS lut, err %s aq_err %s\n",
10585 i40e_stat_str(&pf->hw, ret),
10586 i40e_aq_str(&pf->hw,
10587 pf->hw.aq.asq_last_status));
10588 return ret;
10589 }
10590 }
10591
10592 return ret;
10593 }
10594
10595 /**
10596 * i40e_config_rss_reg - Configure RSS keys and lut by writing registers
10597 * @vsi: Pointer to vsi structure
10598 * @seed: RSS hash seed
10599 * @lut: Lookup table
10600 * @lut_size: Lookup table size
10601 *
10602 * Returns 0 on success, negative on failure
10603 **/
10604 static int i40e_config_rss_reg(struct i40e_vsi *vsi, const u8 *seed,
10605 const u8 *lut, u16 lut_size)
10606 {
10607 struct i40e_pf *pf = vsi->back;
10608 struct i40e_hw *hw = &pf->hw;
10609 u16 vf_id = vsi->vf_id;
10610 u8 i;
10611
10612 /* Fill out hash function seed */
10613 if (seed) {
10614 u32 *seed_dw = (u32 *)seed;
10615
10616 if (vsi->type == I40E_VSI_MAIN) {
10617 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
10618 wr32(hw, I40E_PFQF_HKEY(i), seed_dw[i]);
10619 } else if (vsi->type == I40E_VSI_SRIOV) {
10620 for (i = 0; i <= I40E_VFQF_HKEY1_MAX_INDEX; i++)
10621 wr32(hw, I40E_VFQF_HKEY1(i, vf_id), seed_dw[i]);
10622 } else {
10623 dev_err(&pf->pdev->dev, "Cannot set RSS seed - invalid VSI type\n");
10624 }
10625 }
10626
10627 if (lut) {
10628 u32 *lut_dw = (u32 *)lut;
10629
10630 if (vsi->type == I40E_VSI_MAIN) {
10631 if (lut_size != I40E_HLUT_ARRAY_SIZE)
10632 return -EINVAL;
10633 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
10634 wr32(hw, I40E_PFQF_HLUT(i), lut_dw[i]);
10635 } else if (vsi->type == I40E_VSI_SRIOV) {
10636 if (lut_size != I40E_VF_HLUT_ARRAY_SIZE)
10637 return -EINVAL;
10638 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
10639 wr32(hw, I40E_VFQF_HLUT1(i, vf_id), lut_dw[i]);
10640 } else {
10641 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
10642 }
10643 }
10644 i40e_flush(hw);
10645
10646 return 0;
10647 }
10648
10649 /**
10650 * i40e_get_rss_reg - Get the RSS keys and lut by reading registers
10651 * @vsi: Pointer to VSI structure
10652 * @seed: Buffer to store the keys
10653 * @lut: Buffer to store the lookup table entries
10654 * @lut_size: Size of buffer to store the lookup table entries
10655 *
10656 * Returns 0 on success, negative on failure
10657 */
10658 static int i40e_get_rss_reg(struct i40e_vsi *vsi, u8 *seed,
10659 u8 *lut, u16 lut_size)
10660 {
10661 struct i40e_pf *pf = vsi->back;
10662 struct i40e_hw *hw = &pf->hw;
10663 u16 i;
10664
10665 if (seed) {
10666 u32 *seed_dw = (u32 *)seed;
10667
10668 for (i = 0; i <= I40E_PFQF_HKEY_MAX_INDEX; i++)
10669 seed_dw[i] = i40e_read_rx_ctl(hw, I40E_PFQF_HKEY(i));
10670 }
10671 if (lut) {
10672 u32 *lut_dw = (u32 *)lut;
10673
10674 if (lut_size != I40E_HLUT_ARRAY_SIZE)
10675 return -EINVAL;
10676 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
10677 lut_dw[i] = rd32(hw, I40E_PFQF_HLUT(i));
10678 }
10679
10680 return 0;
10681 }
10682
10683 /**
10684 * i40e_config_rss - Configure RSS keys and lut
10685 * @vsi: Pointer to VSI structure
10686 * @seed: RSS hash seed
10687 * @lut: Lookup table
10688 * @lut_size: Lookup table size
10689 *
10690 * Returns 0 on success, negative on failure
10691 */
10692 int i40e_config_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
10693 {
10694 struct i40e_pf *pf = vsi->back;
10695
10696 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)
10697 return i40e_config_rss_aq(vsi, seed, lut, lut_size);
10698 else
10699 return i40e_config_rss_reg(vsi, seed, lut, lut_size);
10700 }
10701
10702 /**
10703 * i40e_get_rss - Get RSS keys and lut
10704 * @vsi: Pointer to VSI structure
10705 * @seed: Buffer to store the keys
10706 * @lut: Buffer to store the lookup table entries
10707 * lut_size: Size of buffer to store the lookup table entries
10708 *
10709 * Returns 0 on success, negative on failure
10710 */
10711 int i40e_get_rss(struct i40e_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
10712 {
10713 struct i40e_pf *pf = vsi->back;
10714
10715 if (pf->hw_features & I40E_HW_RSS_AQ_CAPABLE)
10716 return i40e_get_rss_aq(vsi, seed, lut, lut_size);
10717 else
10718 return i40e_get_rss_reg(vsi, seed, lut, lut_size);
10719 }
10720
10721 /**
10722 * i40e_fill_rss_lut - Fill the RSS lookup table with default values
10723 * @pf: Pointer to board private structure
10724 * @lut: Lookup table
10725 * @rss_table_size: Lookup table size
10726 * @rss_size: Range of queue number for hashing
10727 */
10728 void i40e_fill_rss_lut(struct i40e_pf *pf, u8 *lut,
10729 u16 rss_table_size, u16 rss_size)
10730 {
10731 u16 i;
10732
10733 for (i = 0; i < rss_table_size; i++)
10734 lut[i] = i % rss_size;
10735 }
10736
10737 /**
10738 * i40e_pf_config_rss - Prepare for RSS if used
10739 * @pf: board private structure
10740 **/
10741 static int i40e_pf_config_rss(struct i40e_pf *pf)
10742 {
10743 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
10744 u8 seed[I40E_HKEY_ARRAY_SIZE];
10745 u8 *lut;
10746 struct i40e_hw *hw = &pf->hw;
10747 u32 reg_val;
10748 u64 hena;
10749 int ret;
10750
10751 /* By default we enable TCP/UDP with IPv4/IPv6 ptypes */
10752 hena = (u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(0)) |
10753 ((u64)i40e_read_rx_ctl(hw, I40E_PFQF_HENA(1)) << 32);
10754 hena |= i40e_pf_get_default_rss_hena(pf);
10755
10756 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), (u32)hena);
10757 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), (u32)(hena >> 32));
10758
10759 /* Determine the RSS table size based on the hardware capabilities */
10760 reg_val = i40e_read_rx_ctl(hw, I40E_PFQF_CTL_0);
10761 reg_val = (pf->rss_table_size == 512) ?
10762 (reg_val | I40E_PFQF_CTL_0_HASHLUTSIZE_512) :
10763 (reg_val & ~I40E_PFQF_CTL_0_HASHLUTSIZE_512);
10764 i40e_write_rx_ctl(hw, I40E_PFQF_CTL_0, reg_val);
10765
10766 /* Determine the RSS size of the VSI */
10767 if (!vsi->rss_size) {
10768 u16 qcount;
10769
10770 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
10771 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
10772 }
10773 if (!vsi->rss_size)
10774 return -EINVAL;
10775
10776 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
10777 if (!lut)
10778 return -ENOMEM;
10779
10780 /* Use user configured lut if there is one, otherwise use default */
10781 if (vsi->rss_lut_user)
10782 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
10783 else
10784 i40e_fill_rss_lut(pf, lut, vsi->rss_table_size, vsi->rss_size);
10785
10786 /* Use user configured hash key if there is one, otherwise
10787 * use default.
10788 */
10789 if (vsi->rss_hkey_user)
10790 memcpy(seed, vsi->rss_hkey_user, I40E_HKEY_ARRAY_SIZE);
10791 else
10792 netdev_rss_key_fill((void *)seed, I40E_HKEY_ARRAY_SIZE);
10793 ret = i40e_config_rss(vsi, seed, lut, vsi->rss_table_size);
10794 kfree(lut);
10795
10796 return ret;
10797 }
10798
10799 /**
10800 * i40e_reconfig_rss_queues - change number of queues for rss and rebuild
10801 * @pf: board private structure
10802 * @queue_count: the requested queue count for rss.
10803 *
10804 * returns 0 if rss is not enabled, if enabled returns the final rss queue
10805 * count which may be different from the requested queue count.
10806 * Note: expects to be called while under rtnl_lock()
10807 **/
10808 int i40e_reconfig_rss_queues(struct i40e_pf *pf, int queue_count)
10809 {
10810 struct i40e_vsi *vsi = pf->vsi[pf->lan_vsi];
10811 int new_rss_size;
10812
10813 if (!(pf->flags & I40E_FLAG_RSS_ENABLED))
10814 return 0;
10815
10816 new_rss_size = min_t(int, queue_count, pf->rss_size_max);
10817
10818 if (queue_count != vsi->num_queue_pairs) {
10819 u16 qcount;
10820
10821 vsi->req_queue_pairs = queue_count;
10822 i40e_prep_for_reset(pf, true);
10823
10824 pf->alloc_rss_size = new_rss_size;
10825
10826 i40e_reset_and_rebuild(pf, true, true);
10827
10828 /* Discard the user configured hash keys and lut, if less
10829 * queues are enabled.
10830 */
10831 if (queue_count < vsi->rss_size) {
10832 i40e_clear_rss_config_user(vsi);
10833 dev_dbg(&pf->pdev->dev,
10834 "discard user configured hash keys and lut\n");
10835 }
10836
10837 /* Reset vsi->rss_size, as number of enabled queues changed */
10838 qcount = vsi->num_queue_pairs / vsi->tc_config.numtc;
10839 vsi->rss_size = min_t(int, pf->alloc_rss_size, qcount);
10840
10841 i40e_pf_config_rss(pf);
10842 }
10843 dev_info(&pf->pdev->dev, "User requested queue count/HW max RSS count: %d/%d\n",
10844 vsi->req_queue_pairs, pf->rss_size_max);
10845 return pf->alloc_rss_size;
10846 }
10847
10848 /**
10849 * i40e_get_partition_bw_setting - Retrieve BW settings for this PF partition
10850 * @pf: board private structure
10851 **/
10852 i40e_status i40e_get_partition_bw_setting(struct i40e_pf *pf)
10853 {
10854 i40e_status status;
10855 bool min_valid, max_valid;
10856 u32 max_bw, min_bw;
10857
10858 status = i40e_read_bw_from_alt_ram(&pf->hw, &max_bw, &min_bw,
10859 &min_valid, &max_valid);
10860
10861 if (!status) {
10862 if (min_valid)
10863 pf->min_bw = min_bw;
10864 if (max_valid)
10865 pf->max_bw = max_bw;
10866 }
10867
10868 return status;
10869 }
10870
10871 /**
10872 * i40e_set_partition_bw_setting - Set BW settings for this PF partition
10873 * @pf: board private structure
10874 **/
10875 i40e_status i40e_set_partition_bw_setting(struct i40e_pf *pf)
10876 {
10877 struct i40e_aqc_configure_partition_bw_data bw_data;
10878 i40e_status status;
10879
10880 /* Set the valid bit for this PF */
10881 bw_data.pf_valid_bits = cpu_to_le16(BIT(pf->hw.pf_id));
10882 bw_data.max_bw[pf->hw.pf_id] = pf->max_bw & I40E_ALT_BW_VALUE_MASK;
10883 bw_data.min_bw[pf->hw.pf_id] = pf->min_bw & I40E_ALT_BW_VALUE_MASK;
10884
10885 /* Set the new bandwidths */
10886 status = i40e_aq_configure_partition_bw(&pf->hw, &bw_data, NULL);
10887
10888 return status;
10889 }
10890
10891 /**
10892 * i40e_commit_partition_bw_setting - Commit BW settings for this PF partition
10893 * @pf: board private structure
10894 **/
10895 i40e_status i40e_commit_partition_bw_setting(struct i40e_pf *pf)
10896 {
10897 /* Commit temporary BW setting to permanent NVM image */
10898 enum i40e_admin_queue_err last_aq_status;
10899 i40e_status ret;
10900 u16 nvm_word;
10901
10902 if (pf->hw.partition_id != 1) {
10903 dev_info(&pf->pdev->dev,
10904 "Commit BW only works on partition 1! This is partition %d",
10905 pf->hw.partition_id);
10906 ret = I40E_NOT_SUPPORTED;
10907 goto bw_commit_out;
10908 }
10909
10910 /* Acquire NVM for read access */
10911 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_READ);
10912 last_aq_status = pf->hw.aq.asq_last_status;
10913 if (ret) {
10914 dev_info(&pf->pdev->dev,
10915 "Cannot acquire NVM for read access, err %s aq_err %s\n",
10916 i40e_stat_str(&pf->hw, ret),
10917 i40e_aq_str(&pf->hw, last_aq_status));
10918 goto bw_commit_out;
10919 }
10920
10921 /* Read word 0x10 of NVM - SW compatibility word 1 */
10922 ret = i40e_aq_read_nvm(&pf->hw,
10923 I40E_SR_NVM_CONTROL_WORD,
10924 0x10, sizeof(nvm_word), &nvm_word,
10925 false, NULL);
10926 /* Save off last admin queue command status before releasing
10927 * the NVM
10928 */
10929 last_aq_status = pf->hw.aq.asq_last_status;
10930 i40e_release_nvm(&pf->hw);
10931 if (ret) {
10932 dev_info(&pf->pdev->dev, "NVM read error, err %s aq_err %s\n",
10933 i40e_stat_str(&pf->hw, ret),
10934 i40e_aq_str(&pf->hw, last_aq_status));
10935 goto bw_commit_out;
10936 }
10937
10938 /* Wait a bit for NVM release to complete */
10939 msleep(50);
10940
10941 /* Acquire NVM for write access */
10942 ret = i40e_acquire_nvm(&pf->hw, I40E_RESOURCE_WRITE);
10943 last_aq_status = pf->hw.aq.asq_last_status;
10944 if (ret) {
10945 dev_info(&pf->pdev->dev,
10946 "Cannot acquire NVM for write access, err %s aq_err %s\n",
10947 i40e_stat_str(&pf->hw, ret),
10948 i40e_aq_str(&pf->hw, last_aq_status));
10949 goto bw_commit_out;
10950 }
10951 /* Write it back out unchanged to initiate update NVM,
10952 * which will force a write of the shadow (alt) RAM to
10953 * the NVM - thus storing the bandwidth values permanently.
10954 */
10955 ret = i40e_aq_update_nvm(&pf->hw,
10956 I40E_SR_NVM_CONTROL_WORD,
10957 0x10, sizeof(nvm_word),
10958 &nvm_word, true, NULL);
10959 /* Save off last admin queue command status before releasing
10960 * the NVM
10961 */
10962 last_aq_status = pf->hw.aq.asq_last_status;
10963 i40e_release_nvm(&pf->hw);
10964 if (ret)
10965 dev_info(&pf->pdev->dev,
10966 "BW settings NOT SAVED, err %s aq_err %s\n",
10967 i40e_stat_str(&pf->hw, ret),
10968 i40e_aq_str(&pf->hw, last_aq_status));
10969 bw_commit_out:
10970
10971 return ret;
10972 }
10973
10974 /**
10975 * i40e_sw_init - Initialize general software structures (struct i40e_pf)
10976 * @pf: board private structure to initialize
10977 *
10978 * i40e_sw_init initializes the Adapter private data structure.
10979 * Fields are initialized based on PCI device information and
10980 * OS network device settings (MTU size).
10981 **/
10982 static int i40e_sw_init(struct i40e_pf *pf)
10983 {
10984 int err = 0;
10985 int size;
10986
10987 /* Set default capability flags */
10988 pf->flags = I40E_FLAG_RX_CSUM_ENABLED |
10989 I40E_FLAG_MSI_ENABLED |
10990 I40E_FLAG_MSIX_ENABLED;
10991
10992 /* Set default ITR */
10993 pf->rx_itr_default = I40E_ITR_RX_DEF;
10994 pf->tx_itr_default = I40E_ITR_TX_DEF;
10995
10996 /* Depending on PF configurations, it is possible that the RSS
10997 * maximum might end up larger than the available queues
10998 */
10999 pf->rss_size_max = BIT(pf->hw.func_caps.rss_table_entry_width);
11000 pf->alloc_rss_size = 1;
11001 pf->rss_table_size = pf->hw.func_caps.rss_table_size;
11002 pf->rss_size_max = min_t(int, pf->rss_size_max,
11003 pf->hw.func_caps.num_tx_qp);
11004 if (pf->hw.func_caps.rss) {
11005 pf->flags |= I40E_FLAG_RSS_ENABLED;
11006 pf->alloc_rss_size = min_t(int, pf->rss_size_max,
11007 num_online_cpus());
11008 }
11009
11010 /* MFP mode enabled */
11011 if (pf->hw.func_caps.npar_enable || pf->hw.func_caps.flex10_enable) {
11012 pf->flags |= I40E_FLAG_MFP_ENABLED;
11013 dev_info(&pf->pdev->dev, "MFP mode Enabled\n");
11014 if (i40e_get_partition_bw_setting(pf)) {
11015 dev_warn(&pf->pdev->dev,
11016 "Could not get partition bw settings\n");
11017 } else {
11018 dev_info(&pf->pdev->dev,
11019 "Partition BW Min = %8.8x, Max = %8.8x\n",
11020 pf->min_bw, pf->max_bw);
11021
11022 /* nudge the Tx scheduler */
11023 i40e_set_partition_bw_setting(pf);
11024 }
11025 }
11026
11027 if ((pf->hw.func_caps.fd_filters_guaranteed > 0) ||
11028 (pf->hw.func_caps.fd_filters_best_effort > 0)) {
11029 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
11030 pf->atr_sample_rate = I40E_DEFAULT_ATR_SAMPLE_RATE;
11031 if (pf->flags & I40E_FLAG_MFP_ENABLED &&
11032 pf->hw.num_partitions > 1)
11033 dev_info(&pf->pdev->dev,
11034 "Flow Director Sideband mode Disabled in MFP mode\n");
11035 else
11036 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
11037 pf->fdir_pf_filter_count =
11038 pf->hw.func_caps.fd_filters_guaranteed;
11039 pf->hw.fdir_shared_filter_count =
11040 pf->hw.func_caps.fd_filters_best_effort;
11041 }
11042
11043 if (pf->hw.mac.type == I40E_MAC_X722) {
11044 pf->hw_features |= (I40E_HW_RSS_AQ_CAPABLE |
11045 I40E_HW_128_QP_RSS_CAPABLE |
11046 I40E_HW_ATR_EVICT_CAPABLE |
11047 I40E_HW_WB_ON_ITR_CAPABLE |
11048 I40E_HW_MULTIPLE_TCP_UDP_RSS_PCTYPE |
11049 I40E_HW_NO_PCI_LINK_CHECK |
11050 I40E_HW_USE_SET_LLDP_MIB |
11051 I40E_HW_GENEVE_OFFLOAD_CAPABLE |
11052 I40E_HW_PTP_L4_CAPABLE |
11053 I40E_HW_WOL_MC_MAGIC_PKT_WAKE |
11054 I40E_HW_OUTER_UDP_CSUM_CAPABLE);
11055
11056 #define I40E_FDEVICT_PCTYPE_DEFAULT 0xc03
11057 if (rd32(&pf->hw, I40E_GLQF_FDEVICTENA(1)) !=
11058 I40E_FDEVICT_PCTYPE_DEFAULT) {
11059 dev_warn(&pf->pdev->dev,
11060 "FD EVICT PCTYPES are not right, disable FD HW EVICT\n");
11061 pf->hw_features &= ~I40E_HW_ATR_EVICT_CAPABLE;
11062 }
11063 } else if ((pf->hw.aq.api_maj_ver > 1) ||
11064 ((pf->hw.aq.api_maj_ver == 1) &&
11065 (pf->hw.aq.api_min_ver > 4))) {
11066 /* Supported in FW API version higher than 1.4 */
11067 pf->hw_features |= I40E_HW_GENEVE_OFFLOAD_CAPABLE;
11068 }
11069
11070 /* Enable HW ATR eviction if possible */
11071 if (pf->hw_features & I40E_HW_ATR_EVICT_CAPABLE)
11072 pf->flags |= I40E_FLAG_HW_ATR_EVICT_ENABLED;
11073
11074 if ((pf->hw.mac.type == I40E_MAC_XL710) &&
11075 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 33)) ||
11076 (pf->hw.aq.fw_maj_ver < 4))) {
11077 pf->hw_features |= I40E_HW_RESTART_AUTONEG;
11078 /* No DCB support for FW < v4.33 */
11079 pf->hw_features |= I40E_HW_NO_DCB_SUPPORT;
11080 }
11081
11082 /* Disable FW LLDP if FW < v4.3 */
11083 if ((pf->hw.mac.type == I40E_MAC_XL710) &&
11084 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver < 3)) ||
11085 (pf->hw.aq.fw_maj_ver < 4)))
11086 pf->hw_features |= I40E_HW_STOP_FW_LLDP;
11087
11088 /* Use the FW Set LLDP MIB API if FW > v4.40 */
11089 if ((pf->hw.mac.type == I40E_MAC_XL710) &&
11090 (((pf->hw.aq.fw_maj_ver == 4) && (pf->hw.aq.fw_min_ver >= 40)) ||
11091 (pf->hw.aq.fw_maj_ver >= 5)))
11092 pf->hw_features |= I40E_HW_USE_SET_LLDP_MIB;
11093
11094 /* Enable PTP L4 if FW > v6.0 */
11095 if (pf->hw.mac.type == I40E_MAC_XL710 &&
11096 pf->hw.aq.fw_maj_ver >= 6)
11097 pf->hw_features |= I40E_HW_PTP_L4_CAPABLE;
11098
11099 if (pf->hw.func_caps.vmdq) {
11100 pf->num_vmdq_vsis = I40E_DEFAULT_NUM_VMDQ_VSI;
11101 pf->flags |= I40E_FLAG_VMDQ_ENABLED;
11102 pf->num_vmdq_qps = i40e_default_queues_per_vmdq(pf);
11103 }
11104
11105 if (pf->hw.func_caps.iwarp) {
11106 pf->flags |= I40E_FLAG_IWARP_ENABLED;
11107 /* IWARP needs one extra vector for CQP just like MISC.*/
11108 pf->num_iwarp_msix = (int)num_online_cpus() + 1;
11109 }
11110
11111 #ifdef CONFIG_PCI_IOV
11112 if (pf->hw.func_caps.num_vfs && pf->hw.partition_id == 1) {
11113 pf->num_vf_qps = I40E_DEFAULT_QUEUES_PER_VF;
11114 pf->flags |= I40E_FLAG_SRIOV_ENABLED;
11115 pf->num_req_vfs = min_t(int,
11116 pf->hw.func_caps.num_vfs,
11117 I40E_MAX_VF_COUNT);
11118 }
11119 #endif /* CONFIG_PCI_IOV */
11120 pf->eeprom_version = 0xDEAD;
11121 pf->lan_veb = I40E_NO_VEB;
11122 pf->lan_vsi = I40E_NO_VSI;
11123
11124 /* By default FW has this off for performance reasons */
11125 pf->flags &= ~I40E_FLAG_VEB_STATS_ENABLED;
11126
11127 /* set up queue assignment tracking */
11128 size = sizeof(struct i40e_lump_tracking)
11129 + (sizeof(u16) * pf->hw.func_caps.num_tx_qp);
11130 pf->qp_pile = kzalloc(size, GFP_KERNEL);
11131 if (!pf->qp_pile) {
11132 err = -ENOMEM;
11133 goto sw_init_done;
11134 }
11135 pf->qp_pile->num_entries = pf->hw.func_caps.num_tx_qp;
11136 pf->qp_pile->search_hint = 0;
11137
11138 pf->tx_timeout_recovery_level = 1;
11139
11140 mutex_init(&pf->switch_mutex);
11141
11142 sw_init_done:
11143 return err;
11144 }
11145
11146 /**
11147 * i40e_set_ntuple - set the ntuple feature flag and take action
11148 * @pf: board private structure to initialize
11149 * @features: the feature set that the stack is suggesting
11150 *
11151 * returns a bool to indicate if reset needs to happen
11152 **/
11153 bool i40e_set_ntuple(struct i40e_pf *pf, netdev_features_t features)
11154 {
11155 bool need_reset = false;
11156
11157 /* Check if Flow Director n-tuple support was enabled or disabled. If
11158 * the state changed, we need to reset.
11159 */
11160 if (features & NETIF_F_NTUPLE) {
11161 /* Enable filters and mark for reset */
11162 if (!(pf->flags & I40E_FLAG_FD_SB_ENABLED))
11163 need_reset = true;
11164 /* enable FD_SB only if there is MSI-X vector and no cloud
11165 * filters exist
11166 */
11167 if (pf->num_fdsb_msix > 0 && !pf->num_cloud_filters) {
11168 pf->flags |= I40E_FLAG_FD_SB_ENABLED;
11169 pf->flags &= ~I40E_FLAG_FD_SB_INACTIVE;
11170 }
11171 } else {
11172 /* turn off filters, mark for reset and clear SW filter list */
11173 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
11174 need_reset = true;
11175 i40e_fdir_filter_exit(pf);
11176 }
11177 pf->flags &= ~(I40E_FLAG_FD_SB_ENABLED |
11178 I40E_FLAG_FD_SB_AUTO_DISABLED);
11179 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
11180
11181 /* reset fd counters */
11182 pf->fd_add_err = 0;
11183 pf->fd_atr_cnt = 0;
11184 /* if ATR was auto disabled it can be re-enabled. */
11185 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED) {
11186 pf->flags &= ~I40E_FLAG_FD_ATR_AUTO_DISABLED;
11187 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
11188 (I40E_DEBUG_FD & pf->hw.debug_mask))
11189 dev_info(&pf->pdev->dev, "ATR re-enabled.\n");
11190 }
11191 }
11192 return need_reset;
11193 }
11194
11195 /**
11196 * i40e_clear_rss_lut - clear the rx hash lookup table
11197 * @vsi: the VSI being configured
11198 **/
11199 static void i40e_clear_rss_lut(struct i40e_vsi *vsi)
11200 {
11201 struct i40e_pf *pf = vsi->back;
11202 struct i40e_hw *hw = &pf->hw;
11203 u16 vf_id = vsi->vf_id;
11204 u8 i;
11205
11206 if (vsi->type == I40E_VSI_MAIN) {
11207 for (i = 0; i <= I40E_PFQF_HLUT_MAX_INDEX; i++)
11208 wr32(hw, I40E_PFQF_HLUT(i), 0);
11209 } else if (vsi->type == I40E_VSI_SRIOV) {
11210 for (i = 0; i <= I40E_VFQF_HLUT_MAX_INDEX; i++)
11211 i40e_write_rx_ctl(hw, I40E_VFQF_HLUT1(i, vf_id), 0);
11212 } else {
11213 dev_err(&pf->pdev->dev, "Cannot set RSS LUT - invalid VSI type\n");
11214 }
11215 }
11216
11217 /**
11218 * i40e_set_features - set the netdev feature flags
11219 * @netdev: ptr to the netdev being adjusted
11220 * @features: the feature set that the stack is suggesting
11221 * Note: expects to be called while under rtnl_lock()
11222 **/
11223 static int i40e_set_features(struct net_device *netdev,
11224 netdev_features_t features)
11225 {
11226 struct i40e_netdev_priv *np = netdev_priv(netdev);
11227 struct i40e_vsi *vsi = np->vsi;
11228 struct i40e_pf *pf = vsi->back;
11229 bool need_reset;
11230
11231 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
11232 i40e_pf_config_rss(pf);
11233 else if (!(features & NETIF_F_RXHASH) &&
11234 netdev->features & NETIF_F_RXHASH)
11235 i40e_clear_rss_lut(vsi);
11236
11237 if (features & NETIF_F_HW_VLAN_CTAG_RX)
11238 i40e_vlan_stripping_enable(vsi);
11239 else
11240 i40e_vlan_stripping_disable(vsi);
11241
11242 if (!(features & NETIF_F_HW_TC) && pf->num_cloud_filters) {
11243 dev_err(&pf->pdev->dev,
11244 "Offloaded tc filters active, can't turn hw_tc_offload off");
11245 return -EINVAL;
11246 }
11247
11248 need_reset = i40e_set_ntuple(pf, features);
11249
11250 if (need_reset)
11251 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
11252
11253 return 0;
11254 }
11255
11256 /**
11257 * i40e_get_udp_port_idx - Lookup a possibly offloaded for Rx UDP port
11258 * @pf: board private structure
11259 * @port: The UDP port to look up
11260 *
11261 * Returns the index number or I40E_MAX_PF_UDP_OFFLOAD_PORTS if port not found
11262 **/
11263 static u8 i40e_get_udp_port_idx(struct i40e_pf *pf, u16 port)
11264 {
11265 u8 i;
11266
11267 for (i = 0; i < I40E_MAX_PF_UDP_OFFLOAD_PORTS; i++) {
11268 if (pf->udp_ports[i].port == port)
11269 return i;
11270 }
11271
11272 return i;
11273 }
11274
11275 /**
11276 * i40e_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
11277 * @netdev: This physical port's netdev
11278 * @ti: Tunnel endpoint information
11279 **/
11280 static void i40e_udp_tunnel_add(struct net_device *netdev,
11281 struct udp_tunnel_info *ti)
11282 {
11283 struct i40e_netdev_priv *np = netdev_priv(netdev);
11284 struct i40e_vsi *vsi = np->vsi;
11285 struct i40e_pf *pf = vsi->back;
11286 u16 port = ntohs(ti->port);
11287 u8 next_idx;
11288 u8 idx;
11289
11290 idx = i40e_get_udp_port_idx(pf, port);
11291
11292 /* Check if port already exists */
11293 if (idx < I40E_MAX_PF_UDP_OFFLOAD_PORTS) {
11294 netdev_info(netdev, "port %d already offloaded\n", port);
11295 return;
11296 }
11297
11298 /* Now check if there is space to add the new port */
11299 next_idx = i40e_get_udp_port_idx(pf, 0);
11300
11301 if (next_idx == I40E_MAX_PF_UDP_OFFLOAD_PORTS) {
11302 netdev_info(netdev, "maximum number of offloaded UDP ports reached, not adding port %d\n",
11303 port);
11304 return;
11305 }
11306
11307 switch (ti->type) {
11308 case UDP_TUNNEL_TYPE_VXLAN:
11309 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_VXLAN;
11310 break;
11311 case UDP_TUNNEL_TYPE_GENEVE:
11312 if (!(pf->hw_features & I40E_HW_GENEVE_OFFLOAD_CAPABLE))
11313 return;
11314 pf->udp_ports[next_idx].type = I40E_AQC_TUNNEL_TYPE_NGE;
11315 break;
11316 default:
11317 return;
11318 }
11319
11320 /* New port: add it and mark its index in the bitmap */
11321 pf->udp_ports[next_idx].port = port;
11322 pf->pending_udp_bitmap |= BIT_ULL(next_idx);
11323 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
11324 }
11325
11326 /**
11327 * i40e_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
11328 * @netdev: This physical port's netdev
11329 * @ti: Tunnel endpoint information
11330 **/
11331 static void i40e_udp_tunnel_del(struct net_device *netdev,
11332 struct udp_tunnel_info *ti)
11333 {
11334 struct i40e_netdev_priv *np = netdev_priv(netdev);
11335 struct i40e_vsi *vsi = np->vsi;
11336 struct i40e_pf *pf = vsi->back;
11337 u16 port = ntohs(ti->port);
11338 u8 idx;
11339
11340 idx = i40e_get_udp_port_idx(pf, port);
11341
11342 /* Check if port already exists */
11343 if (idx >= I40E_MAX_PF_UDP_OFFLOAD_PORTS)
11344 goto not_found;
11345
11346 switch (ti->type) {
11347 case UDP_TUNNEL_TYPE_VXLAN:
11348 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_VXLAN)
11349 goto not_found;
11350 break;
11351 case UDP_TUNNEL_TYPE_GENEVE:
11352 if (pf->udp_ports[idx].type != I40E_AQC_TUNNEL_TYPE_NGE)
11353 goto not_found;
11354 break;
11355 default:
11356 goto not_found;
11357 }
11358
11359 /* if port exists, set it to 0 (mark for deletion)
11360 * and make it pending
11361 */
11362 pf->udp_ports[idx].port = 0;
11363 pf->pending_udp_bitmap |= BIT_ULL(idx);
11364 pf->flags |= I40E_FLAG_UDP_FILTER_SYNC;
11365
11366 return;
11367 not_found:
11368 netdev_warn(netdev, "UDP port %d was not found, not deleting\n",
11369 port);
11370 }
11371
11372 static int i40e_get_phys_port_id(struct net_device *netdev,
11373 struct netdev_phys_item_id *ppid)
11374 {
11375 struct i40e_netdev_priv *np = netdev_priv(netdev);
11376 struct i40e_pf *pf = np->vsi->back;
11377 struct i40e_hw *hw = &pf->hw;
11378
11379 if (!(pf->hw_features & I40E_HW_PORT_ID_VALID))
11380 return -EOPNOTSUPP;
11381
11382 ppid->id_len = min_t(int, sizeof(hw->mac.port_addr), sizeof(ppid->id));
11383 memcpy(ppid->id, hw->mac.port_addr, ppid->id_len);
11384
11385 return 0;
11386 }
11387
11388 /**
11389 * i40e_ndo_fdb_add - add an entry to the hardware database
11390 * @ndm: the input from the stack
11391 * @tb: pointer to array of nladdr (unused)
11392 * @dev: the net device pointer
11393 * @addr: the MAC address entry being added
11394 * @flags: instructions from stack about fdb operation
11395 */
11396 static int i40e_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
11397 struct net_device *dev,
11398 const unsigned char *addr, u16 vid,
11399 u16 flags)
11400 {
11401 struct i40e_netdev_priv *np = netdev_priv(dev);
11402 struct i40e_pf *pf = np->vsi->back;
11403 int err = 0;
11404
11405 if (!(pf->flags & I40E_FLAG_SRIOV_ENABLED))
11406 return -EOPNOTSUPP;
11407
11408 if (vid) {
11409 pr_info("%s: vlans aren't supported yet for dev_uc|mc_add()\n", dev->name);
11410 return -EINVAL;
11411 }
11412
11413 /* Hardware does not support aging addresses so if a
11414 * ndm_state is given only allow permanent addresses
11415 */
11416 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
11417 netdev_info(dev, "FDB only supports static addresses\n");
11418 return -EINVAL;
11419 }
11420
11421 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
11422 err = dev_uc_add_excl(dev, addr);
11423 else if (is_multicast_ether_addr(addr))
11424 err = dev_mc_add_excl(dev, addr);
11425 else
11426 err = -EINVAL;
11427
11428 /* Only return duplicate errors if NLM_F_EXCL is set */
11429 if (err == -EEXIST && !(flags & NLM_F_EXCL))
11430 err = 0;
11431
11432 return err;
11433 }
11434
11435 /**
11436 * i40e_ndo_bridge_setlink - Set the hardware bridge mode
11437 * @dev: the netdev being configured
11438 * @nlh: RTNL message
11439 *
11440 * Inserts a new hardware bridge if not already created and
11441 * enables the bridging mode requested (VEB or VEPA). If the
11442 * hardware bridge has already been inserted and the request
11443 * is to change the mode then that requires a PF reset to
11444 * allow rebuild of the components with required hardware
11445 * bridge mode enabled.
11446 *
11447 * Note: expects to be called while under rtnl_lock()
11448 **/
11449 static int i40e_ndo_bridge_setlink(struct net_device *dev,
11450 struct nlmsghdr *nlh,
11451 u16 flags)
11452 {
11453 struct i40e_netdev_priv *np = netdev_priv(dev);
11454 struct i40e_vsi *vsi = np->vsi;
11455 struct i40e_pf *pf = vsi->back;
11456 struct i40e_veb *veb = NULL;
11457 struct nlattr *attr, *br_spec;
11458 int i, rem;
11459
11460 /* Only for PF VSI for now */
11461 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
11462 return -EOPNOTSUPP;
11463
11464 /* Find the HW bridge for PF VSI */
11465 for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
11466 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
11467 veb = pf->veb[i];
11468 }
11469
11470 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
11471
11472 nla_for_each_nested(attr, br_spec, rem) {
11473 __u16 mode;
11474
11475 if (nla_type(attr) != IFLA_BRIDGE_MODE)
11476 continue;
11477
11478 mode = nla_get_u16(attr);
11479 if ((mode != BRIDGE_MODE_VEPA) &&
11480 (mode != BRIDGE_MODE_VEB))
11481 return -EINVAL;
11482
11483 /* Insert a new HW bridge */
11484 if (!veb) {
11485 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
11486 vsi->tc_config.enabled_tc);
11487 if (veb) {
11488 veb->bridge_mode = mode;
11489 i40e_config_bridge_mode(veb);
11490 } else {
11491 /* No Bridge HW offload available */
11492 return -ENOENT;
11493 }
11494 break;
11495 } else if (mode != veb->bridge_mode) {
11496 /* Existing HW bridge but different mode needs reset */
11497 veb->bridge_mode = mode;
11498 /* TODO: If no VFs or VMDq VSIs, disallow VEB mode */
11499 if (mode == BRIDGE_MODE_VEB)
11500 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
11501 else
11502 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED;
11503 i40e_do_reset(pf, I40E_PF_RESET_FLAG, true);
11504 break;
11505 }
11506 }
11507
11508 return 0;
11509 }
11510
11511 /**
11512 * i40e_ndo_bridge_getlink - Get the hardware bridge mode
11513 * @skb: skb buff
11514 * @pid: process id
11515 * @seq: RTNL message seq #
11516 * @dev: the netdev being configured
11517 * @filter_mask: unused
11518 * @nlflags: netlink flags passed in
11519 *
11520 * Return the mode in which the hardware bridge is operating in
11521 * i.e VEB or VEPA.
11522 **/
11523 static int i40e_ndo_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
11524 struct net_device *dev,
11525 u32 __always_unused filter_mask,
11526 int nlflags)
11527 {
11528 struct i40e_netdev_priv *np = netdev_priv(dev);
11529 struct i40e_vsi *vsi = np->vsi;
11530 struct i40e_pf *pf = vsi->back;
11531 struct i40e_veb *veb = NULL;
11532 int i;
11533
11534 /* Only for PF VSI for now */
11535 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid)
11536 return -EOPNOTSUPP;
11537
11538 /* Find the HW bridge for the PF VSI */
11539 for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
11540 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
11541 veb = pf->veb[i];
11542 }
11543
11544 if (!veb)
11545 return 0;
11546
11547 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, veb->bridge_mode,
11548 0, 0, nlflags, filter_mask, NULL);
11549 }
11550
11551 /**
11552 * i40e_features_check - Validate encapsulated packet conforms to limits
11553 * @skb: skb buff
11554 * @dev: This physical port's netdev
11555 * @features: Offload features that the stack believes apply
11556 **/
11557 static netdev_features_t i40e_features_check(struct sk_buff *skb,
11558 struct net_device *dev,
11559 netdev_features_t features)
11560 {
11561 size_t len;
11562
11563 /* No point in doing any of this if neither checksum nor GSO are
11564 * being requested for this frame. We can rule out both by just
11565 * checking for CHECKSUM_PARTIAL
11566 */
11567 if (skb->ip_summed != CHECKSUM_PARTIAL)
11568 return features;
11569
11570 /* We cannot support GSO if the MSS is going to be less than
11571 * 64 bytes. If it is then we need to drop support for GSO.
11572 */
11573 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
11574 features &= ~NETIF_F_GSO_MASK;
11575
11576 /* MACLEN can support at most 63 words */
11577 len = skb_network_header(skb) - skb->data;
11578 if (len & ~(63 * 2))
11579 goto out_err;
11580
11581 /* IPLEN and EIPLEN can support at most 127 dwords */
11582 len = skb_transport_header(skb) - skb_network_header(skb);
11583 if (len & ~(127 * 4))
11584 goto out_err;
11585
11586 if (skb->encapsulation) {
11587 /* L4TUNLEN can support 127 words */
11588 len = skb_inner_network_header(skb) - skb_transport_header(skb);
11589 if (len & ~(127 * 2))
11590 goto out_err;
11591
11592 /* IPLEN can support at most 127 dwords */
11593 len = skb_inner_transport_header(skb) -
11594 skb_inner_network_header(skb);
11595 if (len & ~(127 * 4))
11596 goto out_err;
11597 }
11598
11599 /* No need to validate L4LEN as TCP is the only protocol with a
11600 * a flexible value and we support all possible values supported
11601 * by TCP, which is at most 15 dwords
11602 */
11603
11604 return features;
11605 out_err:
11606 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
11607 }
11608
11609 /**
11610 * i40e_xdp_setup - add/remove an XDP program
11611 * @vsi: VSI to changed
11612 * @prog: XDP program
11613 **/
11614 static int i40e_xdp_setup(struct i40e_vsi *vsi,
11615 struct bpf_prog *prog)
11616 {
11617 int frame_size = vsi->netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
11618 struct i40e_pf *pf = vsi->back;
11619 struct bpf_prog *old_prog;
11620 bool need_reset;
11621 int i;
11622
11623 /* Don't allow frames that span over multiple buffers */
11624 if (frame_size > vsi->rx_buf_len)
11625 return -EINVAL;
11626
11627 if (!i40e_enabled_xdp_vsi(vsi) && !prog)
11628 return 0;
11629
11630 /* When turning XDP on->off/off->on we reset and rebuild the rings. */
11631 need_reset = (i40e_enabled_xdp_vsi(vsi) != !!prog);
11632
11633 if (need_reset)
11634 i40e_prep_for_reset(pf, true);
11635
11636 old_prog = xchg(&vsi->xdp_prog, prog);
11637
11638 if (need_reset)
11639 i40e_reset_and_rebuild(pf, true, true);
11640
11641 for (i = 0; i < vsi->num_queue_pairs; i++)
11642 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
11643
11644 if (old_prog)
11645 bpf_prog_put(old_prog);
11646
11647 return 0;
11648 }
11649
11650 /**
11651 * i40e_xdp - implements ndo_bpf for i40e
11652 * @dev: netdevice
11653 * @xdp: XDP command
11654 **/
11655 static int i40e_xdp(struct net_device *dev,
11656 struct netdev_bpf *xdp)
11657 {
11658 struct i40e_netdev_priv *np = netdev_priv(dev);
11659 struct i40e_vsi *vsi = np->vsi;
11660
11661 if (vsi->type != I40E_VSI_MAIN)
11662 return -EINVAL;
11663
11664 switch (xdp->command) {
11665 case XDP_SETUP_PROG:
11666 return i40e_xdp_setup(vsi, xdp->prog);
11667 case XDP_QUERY_PROG:
11668 xdp->prog_attached = i40e_enabled_xdp_vsi(vsi);
11669 xdp->prog_id = vsi->xdp_prog ? vsi->xdp_prog->aux->id : 0;
11670 return 0;
11671 default:
11672 return -EINVAL;
11673 }
11674 }
11675
11676 static const struct net_device_ops i40e_netdev_ops = {
11677 .ndo_open = i40e_open,
11678 .ndo_stop = i40e_close,
11679 .ndo_start_xmit = i40e_lan_xmit_frame,
11680 .ndo_get_stats64 = i40e_get_netdev_stats_struct,
11681 .ndo_set_rx_mode = i40e_set_rx_mode,
11682 .ndo_validate_addr = eth_validate_addr,
11683 .ndo_set_mac_address = i40e_set_mac,
11684 .ndo_change_mtu = i40e_change_mtu,
11685 .ndo_do_ioctl = i40e_ioctl,
11686 .ndo_tx_timeout = i40e_tx_timeout,
11687 .ndo_vlan_rx_add_vid = i40e_vlan_rx_add_vid,
11688 .ndo_vlan_rx_kill_vid = i40e_vlan_rx_kill_vid,
11689 #ifdef CONFIG_NET_POLL_CONTROLLER
11690 .ndo_poll_controller = i40e_netpoll,
11691 #endif
11692 .ndo_setup_tc = __i40e_setup_tc,
11693 .ndo_set_features = i40e_set_features,
11694 .ndo_set_vf_mac = i40e_ndo_set_vf_mac,
11695 .ndo_set_vf_vlan = i40e_ndo_set_vf_port_vlan,
11696 .ndo_set_vf_rate = i40e_ndo_set_vf_bw,
11697 .ndo_get_vf_config = i40e_ndo_get_vf_config,
11698 .ndo_set_vf_link_state = i40e_ndo_set_vf_link_state,
11699 .ndo_set_vf_spoofchk = i40e_ndo_set_vf_spoofchk,
11700 .ndo_set_vf_trust = i40e_ndo_set_vf_trust,
11701 .ndo_udp_tunnel_add = i40e_udp_tunnel_add,
11702 .ndo_udp_tunnel_del = i40e_udp_tunnel_del,
11703 .ndo_get_phys_port_id = i40e_get_phys_port_id,
11704 .ndo_fdb_add = i40e_ndo_fdb_add,
11705 .ndo_features_check = i40e_features_check,
11706 .ndo_bridge_getlink = i40e_ndo_bridge_getlink,
11707 .ndo_bridge_setlink = i40e_ndo_bridge_setlink,
11708 .ndo_bpf = i40e_xdp,
11709 };
11710
11711 /**
11712 * i40e_config_netdev - Setup the netdev flags
11713 * @vsi: the VSI being configured
11714 *
11715 * Returns 0 on success, negative value on failure
11716 **/
11717 static int i40e_config_netdev(struct i40e_vsi *vsi)
11718 {
11719 struct i40e_pf *pf = vsi->back;
11720 struct i40e_hw *hw = &pf->hw;
11721 struct i40e_netdev_priv *np;
11722 struct net_device *netdev;
11723 u8 broadcast[ETH_ALEN];
11724 u8 mac_addr[ETH_ALEN];
11725 int etherdev_size;
11726 netdev_features_t hw_enc_features;
11727 netdev_features_t hw_features;
11728
11729 etherdev_size = sizeof(struct i40e_netdev_priv);
11730 netdev = alloc_etherdev_mq(etherdev_size, vsi->alloc_queue_pairs);
11731 if (!netdev)
11732 return -ENOMEM;
11733
11734 vsi->netdev = netdev;
11735 np = netdev_priv(netdev);
11736 np->vsi = vsi;
11737
11738 hw_enc_features = NETIF_F_SG |
11739 NETIF_F_IP_CSUM |
11740 NETIF_F_IPV6_CSUM |
11741 NETIF_F_HIGHDMA |
11742 NETIF_F_SOFT_FEATURES |
11743 NETIF_F_TSO |
11744 NETIF_F_TSO_ECN |
11745 NETIF_F_TSO6 |
11746 NETIF_F_GSO_GRE |
11747 NETIF_F_GSO_GRE_CSUM |
11748 NETIF_F_GSO_PARTIAL |
11749 NETIF_F_GSO_UDP_TUNNEL |
11750 NETIF_F_GSO_UDP_TUNNEL_CSUM |
11751 NETIF_F_SCTP_CRC |
11752 NETIF_F_RXHASH |
11753 NETIF_F_RXCSUM |
11754 0;
11755
11756 if (!(pf->hw_features & I40E_HW_OUTER_UDP_CSUM_CAPABLE))
11757 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM;
11758
11759 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
11760
11761 netdev->hw_enc_features |= hw_enc_features;
11762
11763 /* record features VLANs can make use of */
11764 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
11765
11766 if (!(pf->flags & I40E_FLAG_MFP_ENABLED))
11767 netdev->hw_features |= NETIF_F_NTUPLE | NETIF_F_HW_TC;
11768
11769 hw_features = hw_enc_features |
11770 NETIF_F_HW_VLAN_CTAG_TX |
11771 NETIF_F_HW_VLAN_CTAG_RX;
11772
11773 netdev->hw_features |= hw_features;
11774
11775 netdev->features |= hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
11776 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
11777
11778 if (vsi->type == I40E_VSI_MAIN) {
11779 SET_NETDEV_DEV(netdev, &pf->pdev->dev);
11780 ether_addr_copy(mac_addr, hw->mac.perm_addr);
11781 /* The following steps are necessary for two reasons. First,
11782 * some older NVM configurations load a default MAC-VLAN
11783 * filter that will accept any tagged packet, and we want to
11784 * replace this with a normal filter. Additionally, it is
11785 * possible our MAC address was provided by the platform using
11786 * Open Firmware or similar.
11787 *
11788 * Thus, we need to remove the default filter and install one
11789 * specific to the MAC address.
11790 */
11791 i40e_rm_default_mac_filter(vsi, mac_addr);
11792 spin_lock_bh(&vsi->mac_filter_hash_lock);
11793 i40e_add_mac_filter(vsi, mac_addr);
11794 spin_unlock_bh(&vsi->mac_filter_hash_lock);
11795 } else {
11796 /* Relate the VSI_VMDQ name to the VSI_MAIN name. Note that we
11797 * are still limited by IFNAMSIZ, but we're adding 'v%d\0' to
11798 * the end, which is 4 bytes long, so force truncation of the
11799 * original name by IFNAMSIZ - 4
11800 */
11801 snprintf(netdev->name, IFNAMSIZ, "%.*sv%%d",
11802 IFNAMSIZ - 4,
11803 pf->vsi[pf->lan_vsi]->netdev->name);
11804 random_ether_addr(mac_addr);
11805
11806 spin_lock_bh(&vsi->mac_filter_hash_lock);
11807 i40e_add_mac_filter(vsi, mac_addr);
11808 spin_unlock_bh(&vsi->mac_filter_hash_lock);
11809 }
11810
11811 /* Add the broadcast filter so that we initially will receive
11812 * broadcast packets. Note that when a new VLAN is first added the
11813 * driver will convert all filters marked I40E_VLAN_ANY into VLAN
11814 * specific filters as part of transitioning into "vlan" operation.
11815 * When more VLANs are added, the driver will copy each existing MAC
11816 * filter and add it for the new VLAN.
11817 *
11818 * Broadcast filters are handled specially by
11819 * i40e_sync_filters_subtask, as the driver must to set the broadcast
11820 * promiscuous bit instead of adding this directly as a MAC/VLAN
11821 * filter. The subtask will update the correct broadcast promiscuous
11822 * bits as VLANs become active or inactive.
11823 */
11824 eth_broadcast_addr(broadcast);
11825 spin_lock_bh(&vsi->mac_filter_hash_lock);
11826 i40e_add_mac_filter(vsi, broadcast);
11827 spin_unlock_bh(&vsi->mac_filter_hash_lock);
11828
11829 ether_addr_copy(netdev->dev_addr, mac_addr);
11830 ether_addr_copy(netdev->perm_addr, mac_addr);
11831
11832 netdev->priv_flags |= IFF_UNICAST_FLT;
11833 netdev->priv_flags |= IFF_SUPP_NOFCS;
11834 /* Setup netdev TC information */
11835 i40e_vsi_config_netdev_tc(vsi, vsi->tc_config.enabled_tc);
11836
11837 netdev->netdev_ops = &i40e_netdev_ops;
11838 netdev->watchdog_timeo = 5 * HZ;
11839 i40e_set_ethtool_ops(netdev);
11840
11841 /* MTU range: 68 - 9706 */
11842 netdev->min_mtu = ETH_MIN_MTU;
11843 netdev->max_mtu = I40E_MAX_RXBUFFER - I40E_PACKET_HDR_PAD;
11844
11845 return 0;
11846 }
11847
11848 /**
11849 * i40e_vsi_delete - Delete a VSI from the switch
11850 * @vsi: the VSI being removed
11851 *
11852 * Returns 0 on success, negative value on failure
11853 **/
11854 static void i40e_vsi_delete(struct i40e_vsi *vsi)
11855 {
11856 /* remove default VSI is not allowed */
11857 if (vsi == vsi->back->vsi[vsi->back->lan_vsi])
11858 return;
11859
11860 i40e_aq_delete_element(&vsi->back->hw, vsi->seid, NULL);
11861 }
11862
11863 /**
11864 * i40e_is_vsi_uplink_mode_veb - Check if the VSI's uplink bridge mode is VEB
11865 * @vsi: the VSI being queried
11866 *
11867 * Returns 1 if HW bridge mode is VEB and return 0 in case of VEPA mode
11868 **/
11869 int i40e_is_vsi_uplink_mode_veb(struct i40e_vsi *vsi)
11870 {
11871 struct i40e_veb *veb;
11872 struct i40e_pf *pf = vsi->back;
11873
11874 /* Uplink is not a bridge so default to VEB */
11875 if (vsi->veb_idx == I40E_NO_VEB)
11876 return 1;
11877
11878 veb = pf->veb[vsi->veb_idx];
11879 if (!veb) {
11880 dev_info(&pf->pdev->dev,
11881 "There is no veb associated with the bridge\n");
11882 return -ENOENT;
11883 }
11884
11885 /* Uplink is a bridge in VEPA mode */
11886 if (veb->bridge_mode & BRIDGE_MODE_VEPA) {
11887 return 0;
11888 } else {
11889 /* Uplink is a bridge in VEB mode */
11890 return 1;
11891 }
11892
11893 /* VEPA is now default bridge, so return 0 */
11894 return 0;
11895 }
11896
11897 /**
11898 * i40e_add_vsi - Add a VSI to the switch
11899 * @vsi: the VSI being configured
11900 *
11901 * This initializes a VSI context depending on the VSI type to be added and
11902 * passes it down to the add_vsi aq command.
11903 **/
11904 static int i40e_add_vsi(struct i40e_vsi *vsi)
11905 {
11906 int ret = -ENODEV;
11907 struct i40e_pf *pf = vsi->back;
11908 struct i40e_hw *hw = &pf->hw;
11909 struct i40e_vsi_context ctxt;
11910 struct i40e_mac_filter *f;
11911 struct hlist_node *h;
11912 int bkt;
11913
11914 u8 enabled_tc = 0x1; /* TC0 enabled */
11915 int f_count = 0;
11916
11917 memset(&ctxt, 0, sizeof(ctxt));
11918 switch (vsi->type) {
11919 case I40E_VSI_MAIN:
11920 /* The PF's main VSI is already setup as part of the
11921 * device initialization, so we'll not bother with
11922 * the add_vsi call, but we will retrieve the current
11923 * VSI context.
11924 */
11925 ctxt.seid = pf->main_vsi_seid;
11926 ctxt.pf_num = pf->hw.pf_id;
11927 ctxt.vf_num = 0;
11928 ret = i40e_aq_get_vsi_params(&pf->hw, &ctxt, NULL);
11929 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
11930 if (ret) {
11931 dev_info(&pf->pdev->dev,
11932 "couldn't get PF vsi config, err %s aq_err %s\n",
11933 i40e_stat_str(&pf->hw, ret),
11934 i40e_aq_str(&pf->hw,
11935 pf->hw.aq.asq_last_status));
11936 return -ENOENT;
11937 }
11938 vsi->info = ctxt.info;
11939 vsi->info.valid_sections = 0;
11940
11941 vsi->seid = ctxt.seid;
11942 vsi->id = ctxt.vsi_number;
11943
11944 enabled_tc = i40e_pf_get_tc_map(pf);
11945
11946 /* Source pruning is enabled by default, so the flag is
11947 * negative logic - if it's set, we need to fiddle with
11948 * the VSI to disable source pruning.
11949 */
11950 if (pf->flags & I40E_FLAG_SOURCE_PRUNING_DISABLED) {
11951 memset(&ctxt, 0, sizeof(ctxt));
11952 ctxt.seid = pf->main_vsi_seid;
11953 ctxt.pf_num = pf->hw.pf_id;
11954 ctxt.vf_num = 0;
11955 ctxt.info.valid_sections |=
11956 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
11957 ctxt.info.switch_id =
11958 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_LOCAL_LB);
11959 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
11960 if (ret) {
11961 dev_info(&pf->pdev->dev,
11962 "update vsi failed, err %s aq_err %s\n",
11963 i40e_stat_str(&pf->hw, ret),
11964 i40e_aq_str(&pf->hw,
11965 pf->hw.aq.asq_last_status));
11966 ret = -ENOENT;
11967 goto err;
11968 }
11969 }
11970
11971 /* MFP mode setup queue map and update VSI */
11972 if ((pf->flags & I40E_FLAG_MFP_ENABLED) &&
11973 !(pf->hw.func_caps.iscsi)) { /* NIC type PF */
11974 memset(&ctxt, 0, sizeof(ctxt));
11975 ctxt.seid = pf->main_vsi_seid;
11976 ctxt.pf_num = pf->hw.pf_id;
11977 ctxt.vf_num = 0;
11978 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, false);
11979 ret = i40e_aq_update_vsi_params(hw, &ctxt, NULL);
11980 if (ret) {
11981 dev_info(&pf->pdev->dev,
11982 "update vsi failed, err %s aq_err %s\n",
11983 i40e_stat_str(&pf->hw, ret),
11984 i40e_aq_str(&pf->hw,
11985 pf->hw.aq.asq_last_status));
11986 ret = -ENOENT;
11987 goto err;
11988 }
11989 /* update the local VSI info queue map */
11990 i40e_vsi_update_queue_map(vsi, &ctxt);
11991 vsi->info.valid_sections = 0;
11992 } else {
11993 /* Default/Main VSI is only enabled for TC0
11994 * reconfigure it to enable all TCs that are
11995 * available on the port in SFP mode.
11996 * For MFP case the iSCSI PF would use this
11997 * flow to enable LAN+iSCSI TC.
11998 */
11999 ret = i40e_vsi_config_tc(vsi, enabled_tc);
12000 if (ret) {
12001 /* Single TC condition is not fatal,
12002 * message and continue
12003 */
12004 dev_info(&pf->pdev->dev,
12005 "failed to configure TCs for main VSI tc_map 0x%08x, err %s aq_err %s\n",
12006 enabled_tc,
12007 i40e_stat_str(&pf->hw, ret),
12008 i40e_aq_str(&pf->hw,
12009 pf->hw.aq.asq_last_status));
12010 }
12011 }
12012 break;
12013
12014 case I40E_VSI_FDIR:
12015 ctxt.pf_num = hw->pf_id;
12016 ctxt.vf_num = 0;
12017 ctxt.uplink_seid = vsi->uplink_seid;
12018 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
12019 ctxt.flags = I40E_AQ_VSI_TYPE_PF;
12020 if ((pf->flags & I40E_FLAG_VEB_MODE_ENABLED) &&
12021 (i40e_is_vsi_uplink_mode_veb(vsi))) {
12022 ctxt.info.valid_sections |=
12023 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
12024 ctxt.info.switch_id =
12025 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
12026 }
12027 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
12028 break;
12029
12030 case I40E_VSI_VMDQ2:
12031 ctxt.pf_num = hw->pf_id;
12032 ctxt.vf_num = 0;
12033 ctxt.uplink_seid = vsi->uplink_seid;
12034 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
12035 ctxt.flags = I40E_AQ_VSI_TYPE_VMDQ2;
12036
12037 /* This VSI is connected to VEB so the switch_id
12038 * should be set to zero by default.
12039 */
12040 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
12041 ctxt.info.valid_sections |=
12042 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
12043 ctxt.info.switch_id =
12044 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
12045 }
12046
12047 /* Setup the VSI tx/rx queue map for TC0 only for now */
12048 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
12049 break;
12050
12051 case I40E_VSI_SRIOV:
12052 ctxt.pf_num = hw->pf_id;
12053 ctxt.vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
12054 ctxt.uplink_seid = vsi->uplink_seid;
12055 ctxt.connection_type = I40E_AQ_VSI_CONN_TYPE_NORMAL;
12056 ctxt.flags = I40E_AQ_VSI_TYPE_VF;
12057
12058 /* This VSI is connected to VEB so the switch_id
12059 * should be set to zero by default.
12060 */
12061 if (i40e_is_vsi_uplink_mode_veb(vsi)) {
12062 ctxt.info.valid_sections |=
12063 cpu_to_le16(I40E_AQ_VSI_PROP_SWITCH_VALID);
12064 ctxt.info.switch_id =
12065 cpu_to_le16(I40E_AQ_VSI_SW_ID_FLAG_ALLOW_LB);
12066 }
12067
12068 if (vsi->back->flags & I40E_FLAG_IWARP_ENABLED) {
12069 ctxt.info.valid_sections |=
12070 cpu_to_le16(I40E_AQ_VSI_PROP_QUEUE_OPT_VALID);
12071 ctxt.info.queueing_opt_flags |=
12072 (I40E_AQ_VSI_QUE_OPT_TCP_ENA |
12073 I40E_AQ_VSI_QUE_OPT_RSS_LUT_VSI);
12074 }
12075
12076 ctxt.info.valid_sections |= cpu_to_le16(I40E_AQ_VSI_PROP_VLAN_VALID);
12077 ctxt.info.port_vlan_flags |= I40E_AQ_VSI_PVLAN_MODE_ALL;
12078 if (pf->vf[vsi->vf_id].spoofchk) {
12079 ctxt.info.valid_sections |=
12080 cpu_to_le16(I40E_AQ_VSI_PROP_SECURITY_VALID);
12081 ctxt.info.sec_flags |=
12082 (I40E_AQ_VSI_SEC_FLAG_ENABLE_VLAN_CHK |
12083 I40E_AQ_VSI_SEC_FLAG_ENABLE_MAC_CHK);
12084 }
12085 /* Setup the VSI tx/rx queue map for TC0 only for now */
12086 i40e_vsi_setup_queue_map(vsi, &ctxt, enabled_tc, true);
12087 break;
12088
12089 case I40E_VSI_IWARP:
12090 /* send down message to iWARP */
12091 break;
12092
12093 default:
12094 return -ENODEV;
12095 }
12096
12097 if (vsi->type != I40E_VSI_MAIN) {
12098 ret = i40e_aq_add_vsi(hw, &ctxt, NULL);
12099 if (ret) {
12100 dev_info(&vsi->back->pdev->dev,
12101 "add vsi failed, err %s aq_err %s\n",
12102 i40e_stat_str(&pf->hw, ret),
12103 i40e_aq_str(&pf->hw,
12104 pf->hw.aq.asq_last_status));
12105 ret = -ENOENT;
12106 goto err;
12107 }
12108 vsi->info = ctxt.info;
12109 vsi->info.valid_sections = 0;
12110 vsi->seid = ctxt.seid;
12111 vsi->id = ctxt.vsi_number;
12112 }
12113
12114 vsi->active_filters = 0;
12115 clear_bit(__I40E_VSI_OVERFLOW_PROMISC, vsi->state);
12116 spin_lock_bh(&vsi->mac_filter_hash_lock);
12117 /* If macvlan filters already exist, force them to get loaded */
12118 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist) {
12119 f->state = I40E_FILTER_NEW;
12120 f_count++;
12121 }
12122 spin_unlock_bh(&vsi->mac_filter_hash_lock);
12123
12124 if (f_count) {
12125 vsi->flags |= I40E_VSI_FLAG_FILTER_CHANGED;
12126 pf->flags |= I40E_FLAG_FILTER_SYNC;
12127 }
12128
12129 /* Update VSI BW information */
12130 ret = i40e_vsi_get_bw_info(vsi);
12131 if (ret) {
12132 dev_info(&pf->pdev->dev,
12133 "couldn't get vsi bw info, err %s aq_err %s\n",
12134 i40e_stat_str(&pf->hw, ret),
12135 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12136 /* VSI is already added so not tearing that up */
12137 ret = 0;
12138 }
12139
12140 err:
12141 return ret;
12142 }
12143
12144 /**
12145 * i40e_vsi_release - Delete a VSI and free its resources
12146 * @vsi: the VSI being removed
12147 *
12148 * Returns 0 on success or < 0 on error
12149 **/
12150 int i40e_vsi_release(struct i40e_vsi *vsi)
12151 {
12152 struct i40e_mac_filter *f;
12153 struct hlist_node *h;
12154 struct i40e_veb *veb = NULL;
12155 struct i40e_pf *pf;
12156 u16 uplink_seid;
12157 int i, n, bkt;
12158
12159 pf = vsi->back;
12160
12161 /* release of a VEB-owner or last VSI is not allowed */
12162 if (vsi->flags & I40E_VSI_FLAG_VEB_OWNER) {
12163 dev_info(&pf->pdev->dev, "VSI %d has existing VEB %d\n",
12164 vsi->seid, vsi->uplink_seid);
12165 return -ENODEV;
12166 }
12167 if (vsi == pf->vsi[pf->lan_vsi] &&
12168 !test_bit(__I40E_DOWN, pf->state)) {
12169 dev_info(&pf->pdev->dev, "Can't remove PF VSI\n");
12170 return -ENODEV;
12171 }
12172
12173 uplink_seid = vsi->uplink_seid;
12174 if (vsi->type != I40E_VSI_SRIOV) {
12175 if (vsi->netdev_registered) {
12176 vsi->netdev_registered = false;
12177 if (vsi->netdev) {
12178 /* results in a call to i40e_close() */
12179 unregister_netdev(vsi->netdev);
12180 }
12181 } else {
12182 i40e_vsi_close(vsi);
12183 }
12184 i40e_vsi_disable_irq(vsi);
12185 }
12186
12187 spin_lock_bh(&vsi->mac_filter_hash_lock);
12188
12189 /* clear the sync flag on all filters */
12190 if (vsi->netdev) {
12191 __dev_uc_unsync(vsi->netdev, NULL);
12192 __dev_mc_unsync(vsi->netdev, NULL);
12193 }
12194
12195 /* make sure any remaining filters are marked for deletion */
12196 hash_for_each_safe(vsi->mac_filter_hash, bkt, h, f, hlist)
12197 __i40e_del_filter(vsi, f);
12198
12199 spin_unlock_bh(&vsi->mac_filter_hash_lock);
12200
12201 i40e_sync_vsi_filters(vsi);
12202
12203 i40e_vsi_delete(vsi);
12204 i40e_vsi_free_q_vectors(vsi);
12205 if (vsi->netdev) {
12206 free_netdev(vsi->netdev);
12207 vsi->netdev = NULL;
12208 }
12209 i40e_vsi_clear_rings(vsi);
12210 i40e_vsi_clear(vsi);
12211
12212 /* If this was the last thing on the VEB, except for the
12213 * controlling VSI, remove the VEB, which puts the controlling
12214 * VSI onto the next level down in the switch.
12215 *
12216 * Well, okay, there's one more exception here: don't remove
12217 * the orphan VEBs yet. We'll wait for an explicit remove request
12218 * from up the network stack.
12219 */
12220 for (n = 0, i = 0; i < pf->num_alloc_vsi; i++) {
12221 if (pf->vsi[i] &&
12222 pf->vsi[i]->uplink_seid == uplink_seid &&
12223 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
12224 n++; /* count the VSIs */
12225 }
12226 }
12227 for (i = 0; i < I40E_MAX_VEB; i++) {
12228 if (!pf->veb[i])
12229 continue;
12230 if (pf->veb[i]->uplink_seid == uplink_seid)
12231 n++; /* count the VEBs */
12232 if (pf->veb[i]->seid == uplink_seid)
12233 veb = pf->veb[i];
12234 }
12235 if (n == 0 && veb && veb->uplink_seid != 0)
12236 i40e_veb_release(veb);
12237
12238 return 0;
12239 }
12240
12241 /**
12242 * i40e_vsi_setup_vectors - Set up the q_vectors for the given VSI
12243 * @vsi: ptr to the VSI
12244 *
12245 * This should only be called after i40e_vsi_mem_alloc() which allocates the
12246 * corresponding SW VSI structure and initializes num_queue_pairs for the
12247 * newly allocated VSI.
12248 *
12249 * Returns 0 on success or negative on failure
12250 **/
12251 static int i40e_vsi_setup_vectors(struct i40e_vsi *vsi)
12252 {
12253 int ret = -ENOENT;
12254 struct i40e_pf *pf = vsi->back;
12255
12256 if (vsi->q_vectors[0]) {
12257 dev_info(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
12258 vsi->seid);
12259 return -EEXIST;
12260 }
12261
12262 if (vsi->base_vector) {
12263 dev_info(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
12264 vsi->seid, vsi->base_vector);
12265 return -EEXIST;
12266 }
12267
12268 ret = i40e_vsi_alloc_q_vectors(vsi);
12269 if (ret) {
12270 dev_info(&pf->pdev->dev,
12271 "failed to allocate %d q_vector for VSI %d, ret=%d\n",
12272 vsi->num_q_vectors, vsi->seid, ret);
12273 vsi->num_q_vectors = 0;
12274 goto vector_setup_out;
12275 }
12276
12277 /* In Legacy mode, we do not have to get any other vector since we
12278 * piggyback on the misc/ICR0 for queue interrupts.
12279 */
12280 if (!(pf->flags & I40E_FLAG_MSIX_ENABLED))
12281 return ret;
12282 if (vsi->num_q_vectors)
12283 vsi->base_vector = i40e_get_lump(pf, pf->irq_pile,
12284 vsi->num_q_vectors, vsi->idx);
12285 if (vsi->base_vector < 0) {
12286 dev_info(&pf->pdev->dev,
12287 "failed to get tracking for %d vectors for VSI %d, err=%d\n",
12288 vsi->num_q_vectors, vsi->seid, vsi->base_vector);
12289 i40e_vsi_free_q_vectors(vsi);
12290 ret = -ENOENT;
12291 goto vector_setup_out;
12292 }
12293
12294 vector_setup_out:
12295 return ret;
12296 }
12297
12298 /**
12299 * i40e_vsi_reinit_setup - return and reallocate resources for a VSI
12300 * @vsi: pointer to the vsi.
12301 *
12302 * This re-allocates a vsi's queue resources.
12303 *
12304 * Returns pointer to the successfully allocated and configured VSI sw struct
12305 * on success, otherwise returns NULL on failure.
12306 **/
12307 static struct i40e_vsi *i40e_vsi_reinit_setup(struct i40e_vsi *vsi)
12308 {
12309 u16 alloc_queue_pairs;
12310 struct i40e_pf *pf;
12311 u8 enabled_tc;
12312 int ret;
12313
12314 if (!vsi)
12315 return NULL;
12316
12317 pf = vsi->back;
12318
12319 i40e_put_lump(pf->qp_pile, vsi->base_queue, vsi->idx);
12320 i40e_vsi_clear_rings(vsi);
12321
12322 i40e_vsi_free_arrays(vsi, false);
12323 i40e_set_num_rings_in_vsi(vsi);
12324 ret = i40e_vsi_alloc_arrays(vsi, false);
12325 if (ret)
12326 goto err_vsi;
12327
12328 alloc_queue_pairs = vsi->alloc_queue_pairs *
12329 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
12330
12331 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
12332 if (ret < 0) {
12333 dev_info(&pf->pdev->dev,
12334 "failed to get tracking for %d queues for VSI %d err %d\n",
12335 alloc_queue_pairs, vsi->seid, ret);
12336 goto err_vsi;
12337 }
12338 vsi->base_queue = ret;
12339
12340 /* Update the FW view of the VSI. Force a reset of TC and queue
12341 * layout configurations.
12342 */
12343 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
12344 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
12345 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
12346 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
12347 if (vsi->type == I40E_VSI_MAIN)
12348 i40e_rm_default_mac_filter(vsi, pf->hw.mac.perm_addr);
12349
12350 /* assign it some queues */
12351 ret = i40e_alloc_rings(vsi);
12352 if (ret)
12353 goto err_rings;
12354
12355 /* map all of the rings to the q_vectors */
12356 i40e_vsi_map_rings_to_vectors(vsi);
12357 return vsi;
12358
12359 err_rings:
12360 i40e_vsi_free_q_vectors(vsi);
12361 if (vsi->netdev_registered) {
12362 vsi->netdev_registered = false;
12363 unregister_netdev(vsi->netdev);
12364 free_netdev(vsi->netdev);
12365 vsi->netdev = NULL;
12366 }
12367 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
12368 err_vsi:
12369 i40e_vsi_clear(vsi);
12370 return NULL;
12371 }
12372
12373 /**
12374 * i40e_vsi_setup - Set up a VSI by a given type
12375 * @pf: board private structure
12376 * @type: VSI type
12377 * @uplink_seid: the switch element to link to
12378 * @param1: usage depends upon VSI type. For VF types, indicates VF id
12379 *
12380 * This allocates the sw VSI structure and its queue resources, then add a VSI
12381 * to the identified VEB.
12382 *
12383 * Returns pointer to the successfully allocated and configure VSI sw struct on
12384 * success, otherwise returns NULL on failure.
12385 **/
12386 struct i40e_vsi *i40e_vsi_setup(struct i40e_pf *pf, u8 type,
12387 u16 uplink_seid, u32 param1)
12388 {
12389 struct i40e_vsi *vsi = NULL;
12390 struct i40e_veb *veb = NULL;
12391 u16 alloc_queue_pairs;
12392 int ret, i;
12393 int v_idx;
12394
12395 /* The requested uplink_seid must be either
12396 * - the PF's port seid
12397 * no VEB is needed because this is the PF
12398 * or this is a Flow Director special case VSI
12399 * - seid of an existing VEB
12400 * - seid of a VSI that owns an existing VEB
12401 * - seid of a VSI that doesn't own a VEB
12402 * a new VEB is created and the VSI becomes the owner
12403 * - seid of the PF VSI, which is what creates the first VEB
12404 * this is a special case of the previous
12405 *
12406 * Find which uplink_seid we were given and create a new VEB if needed
12407 */
12408 for (i = 0; i < I40E_MAX_VEB; i++) {
12409 if (pf->veb[i] && pf->veb[i]->seid == uplink_seid) {
12410 veb = pf->veb[i];
12411 break;
12412 }
12413 }
12414
12415 if (!veb && uplink_seid != pf->mac_seid) {
12416
12417 for (i = 0; i < pf->num_alloc_vsi; i++) {
12418 if (pf->vsi[i] && pf->vsi[i]->seid == uplink_seid) {
12419 vsi = pf->vsi[i];
12420 break;
12421 }
12422 }
12423 if (!vsi) {
12424 dev_info(&pf->pdev->dev, "no such uplink_seid %d\n",
12425 uplink_seid);
12426 return NULL;
12427 }
12428
12429 if (vsi->uplink_seid == pf->mac_seid)
12430 veb = i40e_veb_setup(pf, 0, pf->mac_seid, vsi->seid,
12431 vsi->tc_config.enabled_tc);
12432 else if ((vsi->flags & I40E_VSI_FLAG_VEB_OWNER) == 0)
12433 veb = i40e_veb_setup(pf, 0, vsi->uplink_seid, vsi->seid,
12434 vsi->tc_config.enabled_tc);
12435 if (veb) {
12436 if (vsi->seid != pf->vsi[pf->lan_vsi]->seid) {
12437 dev_info(&vsi->back->pdev->dev,
12438 "New VSI creation error, uplink seid of LAN VSI expected.\n");
12439 return NULL;
12440 }
12441 /* We come up by default in VEPA mode if SRIOV is not
12442 * already enabled, in which case we can't force VEPA
12443 * mode.
12444 */
12445 if (!(pf->flags & I40E_FLAG_VEB_MODE_ENABLED)) {
12446 veb->bridge_mode = BRIDGE_MODE_VEPA;
12447 pf->flags &= ~I40E_FLAG_VEB_MODE_ENABLED;
12448 }
12449 i40e_config_bridge_mode(veb);
12450 }
12451 for (i = 0; i < I40E_MAX_VEB && !veb; i++) {
12452 if (pf->veb[i] && pf->veb[i]->seid == vsi->uplink_seid)
12453 veb = pf->veb[i];
12454 }
12455 if (!veb) {
12456 dev_info(&pf->pdev->dev, "couldn't add VEB\n");
12457 return NULL;
12458 }
12459
12460 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
12461 uplink_seid = veb->seid;
12462 }
12463
12464 /* get vsi sw struct */
12465 v_idx = i40e_vsi_mem_alloc(pf, type);
12466 if (v_idx < 0)
12467 goto err_alloc;
12468 vsi = pf->vsi[v_idx];
12469 if (!vsi)
12470 goto err_alloc;
12471 vsi->type = type;
12472 vsi->veb_idx = (veb ? veb->idx : I40E_NO_VEB);
12473
12474 if (type == I40E_VSI_MAIN)
12475 pf->lan_vsi = v_idx;
12476 else if (type == I40E_VSI_SRIOV)
12477 vsi->vf_id = param1;
12478 /* assign it some queues */
12479 alloc_queue_pairs = vsi->alloc_queue_pairs *
12480 (i40e_enabled_xdp_vsi(vsi) ? 2 : 1);
12481
12482 ret = i40e_get_lump(pf, pf->qp_pile, alloc_queue_pairs, vsi->idx);
12483 if (ret < 0) {
12484 dev_info(&pf->pdev->dev,
12485 "failed to get tracking for %d queues for VSI %d err=%d\n",
12486 alloc_queue_pairs, vsi->seid, ret);
12487 goto err_vsi;
12488 }
12489 vsi->base_queue = ret;
12490
12491 /* get a VSI from the hardware */
12492 vsi->uplink_seid = uplink_seid;
12493 ret = i40e_add_vsi(vsi);
12494 if (ret)
12495 goto err_vsi;
12496
12497 switch (vsi->type) {
12498 /* setup the netdev if needed */
12499 case I40E_VSI_MAIN:
12500 case I40E_VSI_VMDQ2:
12501 ret = i40e_config_netdev(vsi);
12502 if (ret)
12503 goto err_netdev;
12504 ret = register_netdev(vsi->netdev);
12505 if (ret)
12506 goto err_netdev;
12507 vsi->netdev_registered = true;
12508 netif_carrier_off(vsi->netdev);
12509 #ifdef CONFIG_I40E_DCB
12510 /* Setup DCB netlink interface */
12511 i40e_dcbnl_setup(vsi);
12512 #endif /* CONFIG_I40E_DCB */
12513 /* fall through */
12514
12515 case I40E_VSI_FDIR:
12516 /* set up vectors and rings if needed */
12517 ret = i40e_vsi_setup_vectors(vsi);
12518 if (ret)
12519 goto err_msix;
12520
12521 ret = i40e_alloc_rings(vsi);
12522 if (ret)
12523 goto err_rings;
12524
12525 /* map all of the rings to the q_vectors */
12526 i40e_vsi_map_rings_to_vectors(vsi);
12527
12528 i40e_vsi_reset_stats(vsi);
12529 break;
12530
12531 default:
12532 /* no netdev or rings for the other VSI types */
12533 break;
12534 }
12535
12536 if ((pf->hw_features & I40E_HW_RSS_AQ_CAPABLE) &&
12537 (vsi->type == I40E_VSI_VMDQ2)) {
12538 ret = i40e_vsi_config_rss(vsi);
12539 }
12540 return vsi;
12541
12542 err_rings:
12543 i40e_vsi_free_q_vectors(vsi);
12544 err_msix:
12545 if (vsi->netdev_registered) {
12546 vsi->netdev_registered = false;
12547 unregister_netdev(vsi->netdev);
12548 free_netdev(vsi->netdev);
12549 vsi->netdev = NULL;
12550 }
12551 err_netdev:
12552 i40e_aq_delete_element(&pf->hw, vsi->seid, NULL);
12553 err_vsi:
12554 i40e_vsi_clear(vsi);
12555 err_alloc:
12556 return NULL;
12557 }
12558
12559 /**
12560 * i40e_veb_get_bw_info - Query VEB BW information
12561 * @veb: the veb to query
12562 *
12563 * Query the Tx scheduler BW configuration data for given VEB
12564 **/
12565 static int i40e_veb_get_bw_info(struct i40e_veb *veb)
12566 {
12567 struct i40e_aqc_query_switching_comp_ets_config_resp ets_data;
12568 struct i40e_aqc_query_switching_comp_bw_config_resp bw_data;
12569 struct i40e_pf *pf = veb->pf;
12570 struct i40e_hw *hw = &pf->hw;
12571 u32 tc_bw_max;
12572 int ret = 0;
12573 int i;
12574
12575 ret = i40e_aq_query_switch_comp_bw_config(hw, veb->seid,
12576 &bw_data, NULL);
12577 if (ret) {
12578 dev_info(&pf->pdev->dev,
12579 "query veb bw config failed, err %s aq_err %s\n",
12580 i40e_stat_str(&pf->hw, ret),
12581 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
12582 goto out;
12583 }
12584
12585 ret = i40e_aq_query_switch_comp_ets_config(hw, veb->seid,
12586 &ets_data, NULL);
12587 if (ret) {
12588 dev_info(&pf->pdev->dev,
12589 "query veb bw ets config failed, err %s aq_err %s\n",
12590 i40e_stat_str(&pf->hw, ret),
12591 i40e_aq_str(&pf->hw, hw->aq.asq_last_status));
12592 goto out;
12593 }
12594
12595 veb->bw_limit = le16_to_cpu(ets_data.port_bw_limit);
12596 veb->bw_max_quanta = ets_data.tc_bw_max;
12597 veb->is_abs_credits = bw_data.absolute_credits_enable;
12598 veb->enabled_tc = ets_data.tc_valid_bits;
12599 tc_bw_max = le16_to_cpu(bw_data.tc_bw_max[0]) |
12600 (le16_to_cpu(bw_data.tc_bw_max[1]) << 16);
12601 for (i = 0; i < I40E_MAX_TRAFFIC_CLASS; i++) {
12602 veb->bw_tc_share_credits[i] = bw_data.tc_bw_share_credits[i];
12603 veb->bw_tc_limit_credits[i] =
12604 le16_to_cpu(bw_data.tc_bw_limits[i]);
12605 veb->bw_tc_max_quanta[i] = ((tc_bw_max >> (i*4)) & 0x7);
12606 }
12607
12608 out:
12609 return ret;
12610 }
12611
12612 /**
12613 * i40e_veb_mem_alloc - Allocates the next available struct veb in the PF
12614 * @pf: board private structure
12615 *
12616 * On error: returns error code (negative)
12617 * On success: returns vsi index in PF (positive)
12618 **/
12619 static int i40e_veb_mem_alloc(struct i40e_pf *pf)
12620 {
12621 int ret = -ENOENT;
12622 struct i40e_veb *veb;
12623 int i;
12624
12625 /* Need to protect the allocation of switch elements at the PF level */
12626 mutex_lock(&pf->switch_mutex);
12627
12628 /* VEB list may be fragmented if VEB creation/destruction has
12629 * been happening. We can afford to do a quick scan to look
12630 * for any free slots in the list.
12631 *
12632 * find next empty veb slot, looping back around if necessary
12633 */
12634 i = 0;
12635 while ((i < I40E_MAX_VEB) && (pf->veb[i] != NULL))
12636 i++;
12637 if (i >= I40E_MAX_VEB) {
12638 ret = -ENOMEM;
12639 goto err_alloc_veb; /* out of VEB slots! */
12640 }
12641
12642 veb = kzalloc(sizeof(*veb), GFP_KERNEL);
12643 if (!veb) {
12644 ret = -ENOMEM;
12645 goto err_alloc_veb;
12646 }
12647 veb->pf = pf;
12648 veb->idx = i;
12649 veb->enabled_tc = 1;
12650
12651 pf->veb[i] = veb;
12652 ret = i;
12653 err_alloc_veb:
12654 mutex_unlock(&pf->switch_mutex);
12655 return ret;
12656 }
12657
12658 /**
12659 * i40e_switch_branch_release - Delete a branch of the switch tree
12660 * @branch: where to start deleting
12661 *
12662 * This uses recursion to find the tips of the branch to be
12663 * removed, deleting until we get back to and can delete this VEB.
12664 **/
12665 static void i40e_switch_branch_release(struct i40e_veb *branch)
12666 {
12667 struct i40e_pf *pf = branch->pf;
12668 u16 branch_seid = branch->seid;
12669 u16 veb_idx = branch->idx;
12670 int i;
12671
12672 /* release any VEBs on this VEB - RECURSION */
12673 for (i = 0; i < I40E_MAX_VEB; i++) {
12674 if (!pf->veb[i])
12675 continue;
12676 if (pf->veb[i]->uplink_seid == branch->seid)
12677 i40e_switch_branch_release(pf->veb[i]);
12678 }
12679
12680 /* Release the VSIs on this VEB, but not the owner VSI.
12681 *
12682 * NOTE: Removing the last VSI on a VEB has the SIDE EFFECT of removing
12683 * the VEB itself, so don't use (*branch) after this loop.
12684 */
12685 for (i = 0; i < pf->num_alloc_vsi; i++) {
12686 if (!pf->vsi[i])
12687 continue;
12688 if (pf->vsi[i]->uplink_seid == branch_seid &&
12689 (pf->vsi[i]->flags & I40E_VSI_FLAG_VEB_OWNER) == 0) {
12690 i40e_vsi_release(pf->vsi[i]);
12691 }
12692 }
12693
12694 /* There's one corner case where the VEB might not have been
12695 * removed, so double check it here and remove it if needed.
12696 * This case happens if the veb was created from the debugfs
12697 * commands and no VSIs were added to it.
12698 */
12699 if (pf->veb[veb_idx])
12700 i40e_veb_release(pf->veb[veb_idx]);
12701 }
12702
12703 /**
12704 * i40e_veb_clear - remove veb struct
12705 * @veb: the veb to remove
12706 **/
12707 static void i40e_veb_clear(struct i40e_veb *veb)
12708 {
12709 if (!veb)
12710 return;
12711
12712 if (veb->pf) {
12713 struct i40e_pf *pf = veb->pf;
12714
12715 mutex_lock(&pf->switch_mutex);
12716 if (pf->veb[veb->idx] == veb)
12717 pf->veb[veb->idx] = NULL;
12718 mutex_unlock(&pf->switch_mutex);
12719 }
12720
12721 kfree(veb);
12722 }
12723
12724 /**
12725 * i40e_veb_release - Delete a VEB and free its resources
12726 * @veb: the VEB being removed
12727 **/
12728 void i40e_veb_release(struct i40e_veb *veb)
12729 {
12730 struct i40e_vsi *vsi = NULL;
12731 struct i40e_pf *pf;
12732 int i, n = 0;
12733
12734 pf = veb->pf;
12735
12736 /* find the remaining VSI and check for extras */
12737 for (i = 0; i < pf->num_alloc_vsi; i++) {
12738 if (pf->vsi[i] && pf->vsi[i]->uplink_seid == veb->seid) {
12739 n++;
12740 vsi = pf->vsi[i];
12741 }
12742 }
12743 if (n != 1) {
12744 dev_info(&pf->pdev->dev,
12745 "can't remove VEB %d with %d VSIs left\n",
12746 veb->seid, n);
12747 return;
12748 }
12749
12750 /* move the remaining VSI to uplink veb */
12751 vsi->flags &= ~I40E_VSI_FLAG_VEB_OWNER;
12752 if (veb->uplink_seid) {
12753 vsi->uplink_seid = veb->uplink_seid;
12754 if (veb->uplink_seid == pf->mac_seid)
12755 vsi->veb_idx = I40E_NO_VEB;
12756 else
12757 vsi->veb_idx = veb->veb_idx;
12758 } else {
12759 /* floating VEB */
12760 vsi->uplink_seid = pf->vsi[pf->lan_vsi]->uplink_seid;
12761 vsi->veb_idx = pf->vsi[pf->lan_vsi]->veb_idx;
12762 }
12763
12764 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
12765 i40e_veb_clear(veb);
12766 }
12767
12768 /**
12769 * i40e_add_veb - create the VEB in the switch
12770 * @veb: the VEB to be instantiated
12771 * @vsi: the controlling VSI
12772 **/
12773 static int i40e_add_veb(struct i40e_veb *veb, struct i40e_vsi *vsi)
12774 {
12775 struct i40e_pf *pf = veb->pf;
12776 bool enable_stats = !!(pf->flags & I40E_FLAG_VEB_STATS_ENABLED);
12777 int ret;
12778
12779 ret = i40e_aq_add_veb(&pf->hw, veb->uplink_seid, vsi->seid,
12780 veb->enabled_tc, false,
12781 &veb->seid, enable_stats, NULL);
12782
12783 /* get a VEB from the hardware */
12784 if (ret) {
12785 dev_info(&pf->pdev->dev,
12786 "couldn't add VEB, err %s aq_err %s\n",
12787 i40e_stat_str(&pf->hw, ret),
12788 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12789 return -EPERM;
12790 }
12791
12792 /* get statistics counter */
12793 ret = i40e_aq_get_veb_parameters(&pf->hw, veb->seid, NULL, NULL,
12794 &veb->stats_idx, NULL, NULL, NULL);
12795 if (ret) {
12796 dev_info(&pf->pdev->dev,
12797 "couldn't get VEB statistics idx, err %s aq_err %s\n",
12798 i40e_stat_str(&pf->hw, ret),
12799 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12800 return -EPERM;
12801 }
12802 ret = i40e_veb_get_bw_info(veb);
12803 if (ret) {
12804 dev_info(&pf->pdev->dev,
12805 "couldn't get VEB bw info, err %s aq_err %s\n",
12806 i40e_stat_str(&pf->hw, ret),
12807 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
12808 i40e_aq_delete_element(&pf->hw, veb->seid, NULL);
12809 return -ENOENT;
12810 }
12811
12812 vsi->uplink_seid = veb->seid;
12813 vsi->veb_idx = veb->idx;
12814 vsi->flags |= I40E_VSI_FLAG_VEB_OWNER;
12815
12816 return 0;
12817 }
12818
12819 /**
12820 * i40e_veb_setup - Set up a VEB
12821 * @pf: board private structure
12822 * @flags: VEB setup flags
12823 * @uplink_seid: the switch element to link to
12824 * @vsi_seid: the initial VSI seid
12825 * @enabled_tc: Enabled TC bit-map
12826 *
12827 * This allocates the sw VEB structure and links it into the switch
12828 * It is possible and legal for this to be a duplicate of an already
12829 * existing VEB. It is also possible for both uplink and vsi seids
12830 * to be zero, in order to create a floating VEB.
12831 *
12832 * Returns pointer to the successfully allocated VEB sw struct on
12833 * success, otherwise returns NULL on failure.
12834 **/
12835 struct i40e_veb *i40e_veb_setup(struct i40e_pf *pf, u16 flags,
12836 u16 uplink_seid, u16 vsi_seid,
12837 u8 enabled_tc)
12838 {
12839 struct i40e_veb *veb, *uplink_veb = NULL;
12840 int vsi_idx, veb_idx;
12841 int ret;
12842
12843 /* if one seid is 0, the other must be 0 to create a floating relay */
12844 if ((uplink_seid == 0 || vsi_seid == 0) &&
12845 (uplink_seid + vsi_seid != 0)) {
12846 dev_info(&pf->pdev->dev,
12847 "one, not both seid's are 0: uplink=%d vsi=%d\n",
12848 uplink_seid, vsi_seid);
12849 return NULL;
12850 }
12851
12852 /* make sure there is such a vsi and uplink */
12853 for (vsi_idx = 0; vsi_idx < pf->num_alloc_vsi; vsi_idx++)
12854 if (pf->vsi[vsi_idx] && pf->vsi[vsi_idx]->seid == vsi_seid)
12855 break;
12856 if (vsi_idx >= pf->num_alloc_vsi && vsi_seid != 0) {
12857 dev_info(&pf->pdev->dev, "vsi seid %d not found\n",
12858 vsi_seid);
12859 return NULL;
12860 }
12861
12862 if (uplink_seid && uplink_seid != pf->mac_seid) {
12863 for (veb_idx = 0; veb_idx < I40E_MAX_VEB; veb_idx++) {
12864 if (pf->veb[veb_idx] &&
12865 pf->veb[veb_idx]->seid == uplink_seid) {
12866 uplink_veb = pf->veb[veb_idx];
12867 break;
12868 }
12869 }
12870 if (!uplink_veb) {
12871 dev_info(&pf->pdev->dev,
12872 "uplink seid %d not found\n", uplink_seid);
12873 return NULL;
12874 }
12875 }
12876
12877 /* get veb sw struct */
12878 veb_idx = i40e_veb_mem_alloc(pf);
12879 if (veb_idx < 0)
12880 goto err_alloc;
12881 veb = pf->veb[veb_idx];
12882 veb->flags = flags;
12883 veb->uplink_seid = uplink_seid;
12884 veb->veb_idx = (uplink_veb ? uplink_veb->idx : I40E_NO_VEB);
12885 veb->enabled_tc = (enabled_tc ? enabled_tc : 0x1);
12886
12887 /* create the VEB in the switch */
12888 ret = i40e_add_veb(veb, pf->vsi[vsi_idx]);
12889 if (ret)
12890 goto err_veb;
12891 if (vsi_idx == pf->lan_vsi)
12892 pf->lan_veb = veb->idx;
12893
12894 return veb;
12895
12896 err_veb:
12897 i40e_veb_clear(veb);
12898 err_alloc:
12899 return NULL;
12900 }
12901
12902 /**
12903 * i40e_setup_pf_switch_element - set PF vars based on switch type
12904 * @pf: board private structure
12905 * @ele: element we are building info from
12906 * @num_reported: total number of elements
12907 * @printconfig: should we print the contents
12908 *
12909 * helper function to assist in extracting a few useful SEID values.
12910 **/
12911 static void i40e_setup_pf_switch_element(struct i40e_pf *pf,
12912 struct i40e_aqc_switch_config_element_resp *ele,
12913 u16 num_reported, bool printconfig)
12914 {
12915 u16 downlink_seid = le16_to_cpu(ele->downlink_seid);
12916 u16 uplink_seid = le16_to_cpu(ele->uplink_seid);
12917 u8 element_type = ele->element_type;
12918 u16 seid = le16_to_cpu(ele->seid);
12919
12920 if (printconfig)
12921 dev_info(&pf->pdev->dev,
12922 "type=%d seid=%d uplink=%d downlink=%d\n",
12923 element_type, seid, uplink_seid, downlink_seid);
12924
12925 switch (element_type) {
12926 case I40E_SWITCH_ELEMENT_TYPE_MAC:
12927 pf->mac_seid = seid;
12928 break;
12929 case I40E_SWITCH_ELEMENT_TYPE_VEB:
12930 /* Main VEB? */
12931 if (uplink_seid != pf->mac_seid)
12932 break;
12933 if (pf->lan_veb == I40E_NO_VEB) {
12934 int v;
12935
12936 /* find existing or else empty VEB */
12937 for (v = 0; v < I40E_MAX_VEB; v++) {
12938 if (pf->veb[v] && (pf->veb[v]->seid == seid)) {
12939 pf->lan_veb = v;
12940 break;
12941 }
12942 }
12943 if (pf->lan_veb == I40E_NO_VEB) {
12944 v = i40e_veb_mem_alloc(pf);
12945 if (v < 0)
12946 break;
12947 pf->lan_veb = v;
12948 }
12949 }
12950
12951 pf->veb[pf->lan_veb]->seid = seid;
12952 pf->veb[pf->lan_veb]->uplink_seid = pf->mac_seid;
12953 pf->veb[pf->lan_veb]->pf = pf;
12954 pf->veb[pf->lan_veb]->veb_idx = I40E_NO_VEB;
12955 break;
12956 case I40E_SWITCH_ELEMENT_TYPE_VSI:
12957 if (num_reported != 1)
12958 break;
12959 /* This is immediately after a reset so we can assume this is
12960 * the PF's VSI
12961 */
12962 pf->mac_seid = uplink_seid;
12963 pf->pf_seid = downlink_seid;
12964 pf->main_vsi_seid = seid;
12965 if (printconfig)
12966 dev_info(&pf->pdev->dev,
12967 "pf_seid=%d main_vsi_seid=%d\n",
12968 pf->pf_seid, pf->main_vsi_seid);
12969 break;
12970 case I40E_SWITCH_ELEMENT_TYPE_PF:
12971 case I40E_SWITCH_ELEMENT_TYPE_VF:
12972 case I40E_SWITCH_ELEMENT_TYPE_EMP:
12973 case I40E_SWITCH_ELEMENT_TYPE_BMC:
12974 case I40E_SWITCH_ELEMENT_TYPE_PE:
12975 case I40E_SWITCH_ELEMENT_TYPE_PA:
12976 /* ignore these for now */
12977 break;
12978 default:
12979 dev_info(&pf->pdev->dev, "unknown element type=%d seid=%d\n",
12980 element_type, seid);
12981 break;
12982 }
12983 }
12984
12985 /**
12986 * i40e_fetch_switch_configuration - Get switch config from firmware
12987 * @pf: board private structure
12988 * @printconfig: should we print the contents
12989 *
12990 * Get the current switch configuration from the device and
12991 * extract a few useful SEID values.
12992 **/
12993 int i40e_fetch_switch_configuration(struct i40e_pf *pf, bool printconfig)
12994 {
12995 struct i40e_aqc_get_switch_config_resp *sw_config;
12996 u16 next_seid = 0;
12997 int ret = 0;
12998 u8 *aq_buf;
12999 int i;
13000
13001 aq_buf = kzalloc(I40E_AQ_LARGE_BUF, GFP_KERNEL);
13002 if (!aq_buf)
13003 return -ENOMEM;
13004
13005 sw_config = (struct i40e_aqc_get_switch_config_resp *)aq_buf;
13006 do {
13007 u16 num_reported, num_total;
13008
13009 ret = i40e_aq_get_switch_config(&pf->hw, sw_config,
13010 I40E_AQ_LARGE_BUF,
13011 &next_seid, NULL);
13012 if (ret) {
13013 dev_info(&pf->pdev->dev,
13014 "get switch config failed err %s aq_err %s\n",
13015 i40e_stat_str(&pf->hw, ret),
13016 i40e_aq_str(&pf->hw,
13017 pf->hw.aq.asq_last_status));
13018 kfree(aq_buf);
13019 return -ENOENT;
13020 }
13021
13022 num_reported = le16_to_cpu(sw_config->header.num_reported);
13023 num_total = le16_to_cpu(sw_config->header.num_total);
13024
13025 if (printconfig)
13026 dev_info(&pf->pdev->dev,
13027 "header: %d reported %d total\n",
13028 num_reported, num_total);
13029
13030 for (i = 0; i < num_reported; i++) {
13031 struct i40e_aqc_switch_config_element_resp *ele =
13032 &sw_config->element[i];
13033
13034 i40e_setup_pf_switch_element(pf, ele, num_reported,
13035 printconfig);
13036 }
13037 } while (next_seid != 0);
13038
13039 kfree(aq_buf);
13040 return ret;
13041 }
13042
13043 /**
13044 * i40e_setup_pf_switch - Setup the HW switch on startup or after reset
13045 * @pf: board private structure
13046 * @reinit: if the Main VSI needs to re-initialized.
13047 *
13048 * Returns 0 on success, negative value on failure
13049 **/
13050 static int i40e_setup_pf_switch(struct i40e_pf *pf, bool reinit)
13051 {
13052 u16 flags = 0;
13053 int ret;
13054
13055 /* find out what's out there already */
13056 ret = i40e_fetch_switch_configuration(pf, false);
13057 if (ret) {
13058 dev_info(&pf->pdev->dev,
13059 "couldn't fetch switch config, err %s aq_err %s\n",
13060 i40e_stat_str(&pf->hw, ret),
13061 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13062 return ret;
13063 }
13064 i40e_pf_reset_stats(pf);
13065
13066 /* set the switch config bit for the whole device to
13067 * support limited promisc or true promisc
13068 * when user requests promisc. The default is limited
13069 * promisc.
13070 */
13071
13072 if ((pf->hw.pf_id == 0) &&
13073 !(pf->flags & I40E_FLAG_TRUE_PROMISC_SUPPORT)) {
13074 flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
13075 pf->last_sw_conf_flags = flags;
13076 }
13077
13078 if (pf->hw.pf_id == 0) {
13079 u16 valid_flags;
13080
13081 valid_flags = I40E_AQ_SET_SWITCH_CFG_PROMISC;
13082 ret = i40e_aq_set_switch_config(&pf->hw, flags, valid_flags, 0,
13083 NULL);
13084 if (ret && pf->hw.aq.asq_last_status != I40E_AQ_RC_ESRCH) {
13085 dev_info(&pf->pdev->dev,
13086 "couldn't set switch config bits, err %s aq_err %s\n",
13087 i40e_stat_str(&pf->hw, ret),
13088 i40e_aq_str(&pf->hw,
13089 pf->hw.aq.asq_last_status));
13090 /* not a fatal problem, just keep going */
13091 }
13092 pf->last_sw_conf_valid_flags = valid_flags;
13093 }
13094
13095 /* first time setup */
13096 if (pf->lan_vsi == I40E_NO_VSI || reinit) {
13097 struct i40e_vsi *vsi = NULL;
13098 u16 uplink_seid;
13099
13100 /* Set up the PF VSI associated with the PF's main VSI
13101 * that is already in the HW switch
13102 */
13103 if (pf->lan_veb != I40E_NO_VEB && pf->veb[pf->lan_veb])
13104 uplink_seid = pf->veb[pf->lan_veb]->seid;
13105 else
13106 uplink_seid = pf->mac_seid;
13107 if (pf->lan_vsi == I40E_NO_VSI)
13108 vsi = i40e_vsi_setup(pf, I40E_VSI_MAIN, uplink_seid, 0);
13109 else if (reinit)
13110 vsi = i40e_vsi_reinit_setup(pf->vsi[pf->lan_vsi]);
13111 if (!vsi) {
13112 dev_info(&pf->pdev->dev, "setup of MAIN VSI failed\n");
13113 i40e_cloud_filter_exit(pf);
13114 i40e_fdir_teardown(pf);
13115 return -EAGAIN;
13116 }
13117 } else {
13118 /* force a reset of TC and queue layout configurations */
13119 u8 enabled_tc = pf->vsi[pf->lan_vsi]->tc_config.enabled_tc;
13120
13121 pf->vsi[pf->lan_vsi]->tc_config.enabled_tc = 0;
13122 pf->vsi[pf->lan_vsi]->seid = pf->main_vsi_seid;
13123 i40e_vsi_config_tc(pf->vsi[pf->lan_vsi], enabled_tc);
13124 }
13125 i40e_vlan_stripping_disable(pf->vsi[pf->lan_vsi]);
13126
13127 i40e_fdir_sb_setup(pf);
13128
13129 /* Setup static PF queue filter control settings */
13130 ret = i40e_setup_pf_filter_control(pf);
13131 if (ret) {
13132 dev_info(&pf->pdev->dev, "setup_pf_filter_control failed: %d\n",
13133 ret);
13134 /* Failure here should not stop continuing other steps */
13135 }
13136
13137 /* enable RSS in the HW, even for only one queue, as the stack can use
13138 * the hash
13139 */
13140 if ((pf->flags & I40E_FLAG_RSS_ENABLED))
13141 i40e_pf_config_rss(pf);
13142
13143 /* fill in link information and enable LSE reporting */
13144 i40e_link_event(pf);
13145
13146 /* Initialize user-specific link properties */
13147 pf->fc_autoneg_status = ((pf->hw.phy.link_info.an_info &
13148 I40E_AQ_AN_COMPLETED) ? true : false);
13149
13150 i40e_ptp_init(pf);
13151
13152 /* repopulate tunnel port filters */
13153 i40e_sync_udp_filters(pf);
13154
13155 return ret;
13156 }
13157
13158 /**
13159 * i40e_determine_queue_usage - Work out queue distribution
13160 * @pf: board private structure
13161 **/
13162 static void i40e_determine_queue_usage(struct i40e_pf *pf)
13163 {
13164 int queues_left;
13165 int q_max;
13166
13167 pf->num_lan_qps = 0;
13168
13169 /* Find the max queues to be put into basic use. We'll always be
13170 * using TC0, whether or not DCB is running, and TC0 will get the
13171 * big RSS set.
13172 */
13173 queues_left = pf->hw.func_caps.num_tx_qp;
13174
13175 if ((queues_left == 1) ||
13176 !(pf->flags & I40E_FLAG_MSIX_ENABLED)) {
13177 /* one qp for PF, no queues for anything else */
13178 queues_left = 0;
13179 pf->alloc_rss_size = pf->num_lan_qps = 1;
13180
13181 /* make sure all the fancies are disabled */
13182 pf->flags &= ~(I40E_FLAG_RSS_ENABLED |
13183 I40E_FLAG_IWARP_ENABLED |
13184 I40E_FLAG_FD_SB_ENABLED |
13185 I40E_FLAG_FD_ATR_ENABLED |
13186 I40E_FLAG_DCB_CAPABLE |
13187 I40E_FLAG_DCB_ENABLED |
13188 I40E_FLAG_SRIOV_ENABLED |
13189 I40E_FLAG_VMDQ_ENABLED);
13190 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
13191 } else if (!(pf->flags & (I40E_FLAG_RSS_ENABLED |
13192 I40E_FLAG_FD_SB_ENABLED |
13193 I40E_FLAG_FD_ATR_ENABLED |
13194 I40E_FLAG_DCB_CAPABLE))) {
13195 /* one qp for PF */
13196 pf->alloc_rss_size = pf->num_lan_qps = 1;
13197 queues_left -= pf->num_lan_qps;
13198
13199 pf->flags &= ~(I40E_FLAG_RSS_ENABLED |
13200 I40E_FLAG_IWARP_ENABLED |
13201 I40E_FLAG_FD_SB_ENABLED |
13202 I40E_FLAG_FD_ATR_ENABLED |
13203 I40E_FLAG_DCB_ENABLED |
13204 I40E_FLAG_VMDQ_ENABLED);
13205 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
13206 } else {
13207 /* Not enough queues for all TCs */
13208 if ((pf->flags & I40E_FLAG_DCB_CAPABLE) &&
13209 (queues_left < I40E_MAX_TRAFFIC_CLASS)) {
13210 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE |
13211 I40E_FLAG_DCB_ENABLED);
13212 dev_info(&pf->pdev->dev, "not enough queues for DCB. DCB is disabled.\n");
13213 }
13214
13215 /* limit lan qps to the smaller of qps, cpus or msix */
13216 q_max = max_t(int, pf->rss_size_max, num_online_cpus());
13217 q_max = min_t(int, q_max, pf->hw.func_caps.num_tx_qp);
13218 q_max = min_t(int, q_max, pf->hw.func_caps.num_msix_vectors);
13219 pf->num_lan_qps = q_max;
13220
13221 queues_left -= pf->num_lan_qps;
13222 }
13223
13224 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
13225 if (queues_left > 1) {
13226 queues_left -= 1; /* save 1 queue for FD */
13227 } else {
13228 pf->flags &= ~I40E_FLAG_FD_SB_ENABLED;
13229 pf->flags |= I40E_FLAG_FD_SB_INACTIVE;
13230 dev_info(&pf->pdev->dev, "not enough queues for Flow Director. Flow Director feature is disabled\n");
13231 }
13232 }
13233
13234 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
13235 pf->num_vf_qps && pf->num_req_vfs && queues_left) {
13236 pf->num_req_vfs = min_t(int, pf->num_req_vfs,
13237 (queues_left / pf->num_vf_qps));
13238 queues_left -= (pf->num_req_vfs * pf->num_vf_qps);
13239 }
13240
13241 if ((pf->flags & I40E_FLAG_VMDQ_ENABLED) &&
13242 pf->num_vmdq_vsis && pf->num_vmdq_qps && queues_left) {
13243 pf->num_vmdq_vsis = min_t(int, pf->num_vmdq_vsis,
13244 (queues_left / pf->num_vmdq_qps));
13245 queues_left -= (pf->num_vmdq_vsis * pf->num_vmdq_qps);
13246 }
13247
13248 pf->queues_left = queues_left;
13249 dev_dbg(&pf->pdev->dev,
13250 "qs_avail=%d FD SB=%d lan_qs=%d lan_tc0=%d vf=%d*%d vmdq=%d*%d, remaining=%d\n",
13251 pf->hw.func_caps.num_tx_qp,
13252 !!(pf->flags & I40E_FLAG_FD_SB_ENABLED),
13253 pf->num_lan_qps, pf->alloc_rss_size, pf->num_req_vfs,
13254 pf->num_vf_qps, pf->num_vmdq_vsis, pf->num_vmdq_qps,
13255 queues_left);
13256 }
13257
13258 /**
13259 * i40e_setup_pf_filter_control - Setup PF static filter control
13260 * @pf: PF to be setup
13261 *
13262 * i40e_setup_pf_filter_control sets up a PF's initial filter control
13263 * settings. If PE/FCoE are enabled then it will also set the per PF
13264 * based filter sizes required for them. It also enables Flow director,
13265 * ethertype and macvlan type filter settings for the pf.
13266 *
13267 * Returns 0 on success, negative on failure
13268 **/
13269 static int i40e_setup_pf_filter_control(struct i40e_pf *pf)
13270 {
13271 struct i40e_filter_control_settings *settings = &pf->filter_settings;
13272
13273 settings->hash_lut_size = I40E_HASH_LUT_SIZE_128;
13274
13275 /* Flow Director is enabled */
13276 if (pf->flags & (I40E_FLAG_FD_SB_ENABLED | I40E_FLAG_FD_ATR_ENABLED))
13277 settings->enable_fdir = true;
13278
13279 /* Ethtype and MACVLAN filters enabled for PF */
13280 settings->enable_ethtype = true;
13281 settings->enable_macvlan = true;
13282
13283 if (i40e_set_filter_control(&pf->hw, settings))
13284 return -ENOENT;
13285
13286 return 0;
13287 }
13288
13289 #define INFO_STRING_LEN 255
13290 #define REMAIN(__x) (INFO_STRING_LEN - (__x))
13291 static void i40e_print_features(struct i40e_pf *pf)
13292 {
13293 struct i40e_hw *hw = &pf->hw;
13294 char *buf;
13295 int i;
13296
13297 buf = kmalloc(INFO_STRING_LEN, GFP_KERNEL);
13298 if (!buf)
13299 return;
13300
13301 i = snprintf(buf, INFO_STRING_LEN, "Features: PF-id[%d]", hw->pf_id);
13302 #ifdef CONFIG_PCI_IOV
13303 i += snprintf(&buf[i], REMAIN(i), " VFs: %d", pf->num_req_vfs);
13304 #endif
13305 i += snprintf(&buf[i], REMAIN(i), " VSIs: %d QP: %d",
13306 pf->hw.func_caps.num_vsis,
13307 pf->vsi[pf->lan_vsi]->num_queue_pairs);
13308 if (pf->flags & I40E_FLAG_RSS_ENABLED)
13309 i += snprintf(&buf[i], REMAIN(i), " RSS");
13310 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED)
13311 i += snprintf(&buf[i], REMAIN(i), " FD_ATR");
13312 if (pf->flags & I40E_FLAG_FD_SB_ENABLED) {
13313 i += snprintf(&buf[i], REMAIN(i), " FD_SB");
13314 i += snprintf(&buf[i], REMAIN(i), " NTUPLE");
13315 }
13316 if (pf->flags & I40E_FLAG_DCB_CAPABLE)
13317 i += snprintf(&buf[i], REMAIN(i), " DCB");
13318 i += snprintf(&buf[i], REMAIN(i), " VxLAN");
13319 i += snprintf(&buf[i], REMAIN(i), " Geneve");
13320 if (pf->flags & I40E_FLAG_PTP)
13321 i += snprintf(&buf[i], REMAIN(i), " PTP");
13322 if (pf->flags & I40E_FLAG_VEB_MODE_ENABLED)
13323 i += snprintf(&buf[i], REMAIN(i), " VEB");
13324 else
13325 i += snprintf(&buf[i], REMAIN(i), " VEPA");
13326
13327 dev_info(&pf->pdev->dev, "%s\n", buf);
13328 kfree(buf);
13329 WARN_ON(i > INFO_STRING_LEN);
13330 }
13331
13332 /**
13333 * i40e_get_platform_mac_addr - get platform-specific MAC address
13334 * @pdev: PCI device information struct
13335 * @pf: board private structure
13336 *
13337 * Look up the MAC address for the device. First we'll try
13338 * eth_platform_get_mac_address, which will check Open Firmware, or arch
13339 * specific fallback. Otherwise, we'll default to the stored value in
13340 * firmware.
13341 **/
13342 static void i40e_get_platform_mac_addr(struct pci_dev *pdev, struct i40e_pf *pf)
13343 {
13344 if (eth_platform_get_mac_address(&pdev->dev, pf->hw.mac.addr))
13345 i40e_get_mac_addr(&pf->hw, pf->hw.mac.addr);
13346 }
13347
13348 /**
13349 * i40e_probe - Device initialization routine
13350 * @pdev: PCI device information struct
13351 * @ent: entry in i40e_pci_tbl
13352 *
13353 * i40e_probe initializes a PF identified by a pci_dev structure.
13354 * The OS initialization, configuring of the PF private structure,
13355 * and a hardware reset occur.
13356 *
13357 * Returns 0 on success, negative on failure
13358 **/
13359 static int i40e_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
13360 {
13361 struct i40e_aq_get_phy_abilities_resp abilities;
13362 struct i40e_pf *pf;
13363 struct i40e_hw *hw;
13364 static u16 pfs_found;
13365 u16 wol_nvm_bits;
13366 u16 link_status;
13367 int err;
13368 u32 val;
13369 u32 i;
13370 u8 set_fc_aq_fail;
13371
13372 err = pci_enable_device_mem(pdev);
13373 if (err)
13374 return err;
13375
13376 /* set up for high or low dma */
13377 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
13378 if (err) {
13379 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
13380 if (err) {
13381 dev_err(&pdev->dev,
13382 "DMA configuration failed: 0x%x\n", err);
13383 goto err_dma;
13384 }
13385 }
13386
13387 /* set up pci connections */
13388 err = pci_request_mem_regions(pdev, i40e_driver_name);
13389 if (err) {
13390 dev_info(&pdev->dev,
13391 "pci_request_selected_regions failed %d\n", err);
13392 goto err_pci_reg;
13393 }
13394
13395 pci_enable_pcie_error_reporting(pdev);
13396 pci_set_master(pdev);
13397
13398 /* Now that we have a PCI connection, we need to do the
13399 * low level device setup. This is primarily setting up
13400 * the Admin Queue structures and then querying for the
13401 * device's current profile information.
13402 */
13403 pf = kzalloc(sizeof(*pf), GFP_KERNEL);
13404 if (!pf) {
13405 err = -ENOMEM;
13406 goto err_pf_alloc;
13407 }
13408 pf->next_vsi = 0;
13409 pf->pdev = pdev;
13410 set_bit(__I40E_DOWN, pf->state);
13411
13412 hw = &pf->hw;
13413 hw->back = pf;
13414
13415 pf->ioremap_len = min_t(int, pci_resource_len(pdev, 0),
13416 I40E_MAX_CSR_SPACE);
13417
13418 hw->hw_addr = ioremap(pci_resource_start(pdev, 0), pf->ioremap_len);
13419 if (!hw->hw_addr) {
13420 err = -EIO;
13421 dev_info(&pdev->dev, "ioremap(0x%04x, 0x%04x) failed: 0x%x\n",
13422 (unsigned int)pci_resource_start(pdev, 0),
13423 pf->ioremap_len, err);
13424 goto err_ioremap;
13425 }
13426 hw->vendor_id = pdev->vendor;
13427 hw->device_id = pdev->device;
13428 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
13429 hw->subsystem_vendor_id = pdev->subsystem_vendor;
13430 hw->subsystem_device_id = pdev->subsystem_device;
13431 hw->bus.device = PCI_SLOT(pdev->devfn);
13432 hw->bus.func = PCI_FUNC(pdev->devfn);
13433 hw->bus.bus_id = pdev->bus->number;
13434 pf->instance = pfs_found;
13435
13436 /* Select something other than the 802.1ad ethertype for the
13437 * switch to use internally and drop on ingress.
13438 */
13439 hw->switch_tag = 0xffff;
13440 hw->first_tag = ETH_P_8021AD;
13441 hw->second_tag = ETH_P_8021Q;
13442
13443 INIT_LIST_HEAD(&pf->l3_flex_pit_list);
13444 INIT_LIST_HEAD(&pf->l4_flex_pit_list);
13445
13446 /* set up the locks for the AQ, do this only once in probe
13447 * and destroy them only once in remove
13448 */
13449 mutex_init(&hw->aq.asq_mutex);
13450 mutex_init(&hw->aq.arq_mutex);
13451
13452 pf->msg_enable = netif_msg_init(debug,
13453 NETIF_MSG_DRV |
13454 NETIF_MSG_PROBE |
13455 NETIF_MSG_LINK);
13456 if (debug < -1)
13457 pf->hw.debug_mask = debug;
13458
13459 /* do a special CORER for clearing PXE mode once at init */
13460 if (hw->revision_id == 0 &&
13461 (rd32(hw, I40E_GLLAN_RCTL_0) & I40E_GLLAN_RCTL_0_PXE_MODE_MASK)) {
13462 wr32(hw, I40E_GLGEN_RTRIG, I40E_GLGEN_RTRIG_CORER_MASK);
13463 i40e_flush(hw);
13464 msleep(200);
13465 pf->corer_count++;
13466
13467 i40e_clear_pxe_mode(hw);
13468 }
13469
13470 /* Reset here to make sure all is clean and to define PF 'n' */
13471 i40e_clear_hw(hw);
13472 err = i40e_pf_reset(hw);
13473 if (err) {
13474 dev_info(&pdev->dev, "Initial pf_reset failed: %d\n", err);
13475 goto err_pf_reset;
13476 }
13477 pf->pfr_count++;
13478
13479 hw->aq.num_arq_entries = I40E_AQ_LEN;
13480 hw->aq.num_asq_entries = I40E_AQ_LEN;
13481 hw->aq.arq_buf_size = I40E_MAX_AQ_BUF_SIZE;
13482 hw->aq.asq_buf_size = I40E_MAX_AQ_BUF_SIZE;
13483 pf->adminq_work_limit = I40E_AQ_WORK_LIMIT;
13484
13485 snprintf(pf->int_name, sizeof(pf->int_name) - 1,
13486 "%s-%s:misc",
13487 dev_driver_string(&pf->pdev->dev), dev_name(&pdev->dev));
13488
13489 err = i40e_init_shared_code(hw);
13490 if (err) {
13491 dev_warn(&pdev->dev, "unidentified MAC or BLANK NVM: %d\n",
13492 err);
13493 goto err_pf_reset;
13494 }
13495
13496 /* set up a default setting for link flow control */
13497 pf->hw.fc.requested_mode = I40E_FC_NONE;
13498
13499 err = i40e_init_adminq(hw);
13500 if (err) {
13501 if (err == I40E_ERR_FIRMWARE_API_VERSION)
13502 dev_info(&pdev->dev,
13503 "The driver for the device stopped because the NVM image is newer than expected. You must install the most recent version of the network driver.\n");
13504 else
13505 dev_info(&pdev->dev,
13506 "The driver for the device stopped because the device firmware failed to init. Try updating your NVM image.\n");
13507
13508 goto err_pf_reset;
13509 }
13510 i40e_get_oem_version(hw);
13511
13512 /* provide nvm, fw, api versions */
13513 dev_info(&pdev->dev, "fw %d.%d.%05d api %d.%d nvm %s\n",
13514 hw->aq.fw_maj_ver, hw->aq.fw_min_ver, hw->aq.fw_build,
13515 hw->aq.api_maj_ver, hw->aq.api_min_ver,
13516 i40e_nvm_version_str(hw));
13517
13518 if (hw->aq.api_maj_ver == I40E_FW_API_VERSION_MAJOR &&
13519 hw->aq.api_min_ver > I40E_FW_MINOR_VERSION(hw))
13520 dev_info(&pdev->dev,
13521 "The driver for the device detected a newer version of the NVM image than expected. Please install the most recent version of the network driver.\n");
13522 else if (hw->aq.api_maj_ver == 1 && hw->aq.api_min_ver < 4)
13523 dev_info(&pdev->dev,
13524 "The driver for the device detected an older version of the NVM image than expected. Please update the NVM image.\n");
13525
13526 i40e_verify_eeprom(pf);
13527
13528 /* Rev 0 hardware was never productized */
13529 if (hw->revision_id < 1)
13530 dev_warn(&pdev->dev, "This device is a pre-production adapter/LOM. Please be aware there may be issues with your hardware. If you are experiencing problems please contact your Intel or hardware representative who provided you with this hardware.\n");
13531
13532 i40e_clear_pxe_mode(hw);
13533 err = i40e_get_capabilities(pf, i40e_aqc_opc_list_func_capabilities);
13534 if (err)
13535 goto err_adminq_setup;
13536
13537 err = i40e_sw_init(pf);
13538 if (err) {
13539 dev_info(&pdev->dev, "sw_init failed: %d\n", err);
13540 goto err_sw_init;
13541 }
13542
13543 err = i40e_init_lan_hmc(hw, hw->func_caps.num_tx_qp,
13544 hw->func_caps.num_rx_qp, 0, 0);
13545 if (err) {
13546 dev_info(&pdev->dev, "init_lan_hmc failed: %d\n", err);
13547 goto err_init_lan_hmc;
13548 }
13549
13550 err = i40e_configure_lan_hmc(hw, I40E_HMC_MODEL_DIRECT_ONLY);
13551 if (err) {
13552 dev_info(&pdev->dev, "configure_lan_hmc failed: %d\n", err);
13553 err = -ENOENT;
13554 goto err_configure_lan_hmc;
13555 }
13556
13557 /* Disable LLDP for NICs that have firmware versions lower than v4.3.
13558 * Ignore error return codes because if it was already disabled via
13559 * hardware settings this will fail
13560 */
13561 if (pf->hw_features & I40E_HW_STOP_FW_LLDP) {
13562 dev_info(&pdev->dev, "Stopping firmware LLDP agent.\n");
13563 i40e_aq_stop_lldp(hw, true, NULL);
13564 }
13565
13566 /* allow a platform config to override the HW addr */
13567 i40e_get_platform_mac_addr(pdev, pf);
13568
13569 if (!is_valid_ether_addr(hw->mac.addr)) {
13570 dev_info(&pdev->dev, "invalid MAC address %pM\n", hw->mac.addr);
13571 err = -EIO;
13572 goto err_mac_addr;
13573 }
13574 dev_info(&pdev->dev, "MAC address: %pM\n", hw->mac.addr);
13575 ether_addr_copy(hw->mac.perm_addr, hw->mac.addr);
13576 i40e_get_port_mac_addr(hw, hw->mac.port_addr);
13577 if (is_valid_ether_addr(hw->mac.port_addr))
13578 pf->hw_features |= I40E_HW_PORT_ID_VALID;
13579
13580 pci_set_drvdata(pdev, pf);
13581 pci_save_state(pdev);
13582 #ifdef CONFIG_I40E_DCB
13583 err = i40e_init_pf_dcb(pf);
13584 if (err) {
13585 dev_info(&pdev->dev, "DCB init failed %d, disabled\n", err);
13586 pf->flags &= ~(I40E_FLAG_DCB_CAPABLE | I40E_FLAG_DCB_ENABLED);
13587 /* Continue without DCB enabled */
13588 }
13589 #endif /* CONFIG_I40E_DCB */
13590
13591 /* set up periodic task facility */
13592 timer_setup(&pf->service_timer, i40e_service_timer, 0);
13593 pf->service_timer_period = HZ;
13594
13595 INIT_WORK(&pf->service_task, i40e_service_task);
13596 clear_bit(__I40E_SERVICE_SCHED, pf->state);
13597
13598 /* NVM bit on means WoL disabled for the port */
13599 i40e_read_nvm_word(hw, I40E_SR_NVM_WAKE_ON_LAN, &wol_nvm_bits);
13600 if (BIT (hw->port) & wol_nvm_bits || hw->partition_id != 1)
13601 pf->wol_en = false;
13602 else
13603 pf->wol_en = true;
13604 device_set_wakeup_enable(&pf->pdev->dev, pf->wol_en);
13605
13606 /* set up the main switch operations */
13607 i40e_determine_queue_usage(pf);
13608 err = i40e_init_interrupt_scheme(pf);
13609 if (err)
13610 goto err_switch_setup;
13611
13612 /* The number of VSIs reported by the FW is the minimum guaranteed
13613 * to us; HW supports far more and we share the remaining pool with
13614 * the other PFs. We allocate space for more than the guarantee with
13615 * the understanding that we might not get them all later.
13616 */
13617 if (pf->hw.func_caps.num_vsis < I40E_MIN_VSI_ALLOC)
13618 pf->num_alloc_vsi = I40E_MIN_VSI_ALLOC;
13619 else
13620 pf->num_alloc_vsi = pf->hw.func_caps.num_vsis;
13621
13622 /* Set up the *vsi struct and our local tracking of the MAIN PF vsi. */
13623 pf->vsi = kcalloc(pf->num_alloc_vsi, sizeof(struct i40e_vsi *),
13624 GFP_KERNEL);
13625 if (!pf->vsi) {
13626 err = -ENOMEM;
13627 goto err_switch_setup;
13628 }
13629
13630 #ifdef CONFIG_PCI_IOV
13631 /* prep for VF support */
13632 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
13633 (pf->flags & I40E_FLAG_MSIX_ENABLED) &&
13634 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
13635 if (pci_num_vf(pdev))
13636 pf->flags |= I40E_FLAG_VEB_MODE_ENABLED;
13637 }
13638 #endif
13639 err = i40e_setup_pf_switch(pf, false);
13640 if (err) {
13641 dev_info(&pdev->dev, "setup_pf_switch failed: %d\n", err);
13642 goto err_vsis;
13643 }
13644 INIT_LIST_HEAD(&pf->vsi[pf->lan_vsi]->ch_list);
13645
13646 /* Make sure flow control is set according to current settings */
13647 err = i40e_set_fc(hw, &set_fc_aq_fail, true);
13648 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_GET)
13649 dev_dbg(&pf->pdev->dev,
13650 "Set fc with err %s aq_err %s on get_phy_cap\n",
13651 i40e_stat_str(hw, err),
13652 i40e_aq_str(hw, hw->aq.asq_last_status));
13653 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_SET)
13654 dev_dbg(&pf->pdev->dev,
13655 "Set fc with err %s aq_err %s on set_phy_config\n",
13656 i40e_stat_str(hw, err),
13657 i40e_aq_str(hw, hw->aq.asq_last_status));
13658 if (set_fc_aq_fail & I40E_SET_FC_AQ_FAIL_UPDATE)
13659 dev_dbg(&pf->pdev->dev,
13660 "Set fc with err %s aq_err %s on get_link_info\n",
13661 i40e_stat_str(hw, err),
13662 i40e_aq_str(hw, hw->aq.asq_last_status));
13663
13664 /* if FDIR VSI was set up, start it now */
13665 for (i = 0; i < pf->num_alloc_vsi; i++) {
13666 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR) {
13667 i40e_vsi_open(pf->vsi[i]);
13668 break;
13669 }
13670 }
13671
13672 /* The driver only wants link up/down and module qualification
13673 * reports from firmware. Note the negative logic.
13674 */
13675 err = i40e_aq_set_phy_int_mask(&pf->hw,
13676 ~(I40E_AQ_EVENT_LINK_UPDOWN |
13677 I40E_AQ_EVENT_MEDIA_NA |
13678 I40E_AQ_EVENT_MODULE_QUAL_FAIL), NULL);
13679 if (err)
13680 dev_info(&pf->pdev->dev, "set phy mask fail, err %s aq_err %s\n",
13681 i40e_stat_str(&pf->hw, err),
13682 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13683
13684 /* Reconfigure hardware for allowing smaller MSS in the case
13685 * of TSO, so that we avoid the MDD being fired and causing
13686 * a reset in the case of small MSS+TSO.
13687 */
13688 val = rd32(hw, I40E_REG_MSS);
13689 if ((val & I40E_REG_MSS_MIN_MASK) > I40E_64BYTE_MSS) {
13690 val &= ~I40E_REG_MSS_MIN_MASK;
13691 val |= I40E_64BYTE_MSS;
13692 wr32(hw, I40E_REG_MSS, val);
13693 }
13694
13695 if (pf->hw_features & I40E_HW_RESTART_AUTONEG) {
13696 msleep(75);
13697 err = i40e_aq_set_link_restart_an(&pf->hw, true, NULL);
13698 if (err)
13699 dev_info(&pf->pdev->dev, "link restart failed, err %s aq_err %s\n",
13700 i40e_stat_str(&pf->hw, err),
13701 i40e_aq_str(&pf->hw,
13702 pf->hw.aq.asq_last_status));
13703 }
13704 /* The main driver is (mostly) up and happy. We need to set this state
13705 * before setting up the misc vector or we get a race and the vector
13706 * ends up disabled forever.
13707 */
13708 clear_bit(__I40E_DOWN, pf->state);
13709
13710 /* In case of MSIX we are going to setup the misc vector right here
13711 * to handle admin queue events etc. In case of legacy and MSI
13712 * the misc functionality and queue processing is combined in
13713 * the same vector and that gets setup at open.
13714 */
13715 if (pf->flags & I40E_FLAG_MSIX_ENABLED) {
13716 err = i40e_setup_misc_vector(pf);
13717 if (err) {
13718 dev_info(&pdev->dev,
13719 "setup of misc vector failed: %d\n", err);
13720 goto err_vsis;
13721 }
13722 }
13723
13724 #ifdef CONFIG_PCI_IOV
13725 /* prep for VF support */
13726 if ((pf->flags & I40E_FLAG_SRIOV_ENABLED) &&
13727 (pf->flags & I40E_FLAG_MSIX_ENABLED) &&
13728 !test_bit(__I40E_BAD_EEPROM, pf->state)) {
13729 /* disable link interrupts for VFs */
13730 val = rd32(hw, I40E_PFGEN_PORTMDIO_NUM);
13731 val &= ~I40E_PFGEN_PORTMDIO_NUM_VFLINK_STAT_ENA_MASK;
13732 wr32(hw, I40E_PFGEN_PORTMDIO_NUM, val);
13733 i40e_flush(hw);
13734
13735 if (pci_num_vf(pdev)) {
13736 dev_info(&pdev->dev,
13737 "Active VFs found, allocating resources.\n");
13738 err = i40e_alloc_vfs(pf, pci_num_vf(pdev));
13739 if (err)
13740 dev_info(&pdev->dev,
13741 "Error %d allocating resources for existing VFs\n",
13742 err);
13743 }
13744 }
13745 #endif /* CONFIG_PCI_IOV */
13746
13747 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
13748 pf->iwarp_base_vector = i40e_get_lump(pf, pf->irq_pile,
13749 pf->num_iwarp_msix,
13750 I40E_IWARP_IRQ_PILE_ID);
13751 if (pf->iwarp_base_vector < 0) {
13752 dev_info(&pdev->dev,
13753 "failed to get tracking for %d vectors for IWARP err=%d\n",
13754 pf->num_iwarp_msix, pf->iwarp_base_vector);
13755 pf->flags &= ~I40E_FLAG_IWARP_ENABLED;
13756 }
13757 }
13758
13759 i40e_dbg_pf_init(pf);
13760
13761 /* tell the firmware that we're starting */
13762 i40e_send_version(pf);
13763
13764 /* since everything's happy, start the service_task timer */
13765 mod_timer(&pf->service_timer,
13766 round_jiffies(jiffies + pf->service_timer_period));
13767
13768 /* add this PF to client device list and launch a client service task */
13769 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
13770 err = i40e_lan_add_device(pf);
13771 if (err)
13772 dev_info(&pdev->dev, "Failed to add PF to client API service list: %d\n",
13773 err);
13774 }
13775
13776 #define PCI_SPEED_SIZE 8
13777 #define PCI_WIDTH_SIZE 8
13778 /* Devices on the IOSF bus do not have this information
13779 * and will report PCI Gen 1 x 1 by default so don't bother
13780 * checking them.
13781 */
13782 if (!(pf->hw_features & I40E_HW_NO_PCI_LINK_CHECK)) {
13783 char speed[PCI_SPEED_SIZE] = "Unknown";
13784 char width[PCI_WIDTH_SIZE] = "Unknown";
13785
13786 /* Get the negotiated link width and speed from PCI config
13787 * space
13788 */
13789 pcie_capability_read_word(pf->pdev, PCI_EXP_LNKSTA,
13790 &link_status);
13791
13792 i40e_set_pci_config_data(hw, link_status);
13793
13794 switch (hw->bus.speed) {
13795 case i40e_bus_speed_8000:
13796 strncpy(speed, "8.0", PCI_SPEED_SIZE); break;
13797 case i40e_bus_speed_5000:
13798 strncpy(speed, "5.0", PCI_SPEED_SIZE); break;
13799 case i40e_bus_speed_2500:
13800 strncpy(speed, "2.5", PCI_SPEED_SIZE); break;
13801 default:
13802 break;
13803 }
13804 switch (hw->bus.width) {
13805 case i40e_bus_width_pcie_x8:
13806 strncpy(width, "8", PCI_WIDTH_SIZE); break;
13807 case i40e_bus_width_pcie_x4:
13808 strncpy(width, "4", PCI_WIDTH_SIZE); break;
13809 case i40e_bus_width_pcie_x2:
13810 strncpy(width, "2", PCI_WIDTH_SIZE); break;
13811 case i40e_bus_width_pcie_x1:
13812 strncpy(width, "1", PCI_WIDTH_SIZE); break;
13813 default:
13814 break;
13815 }
13816
13817 dev_info(&pdev->dev, "PCI-Express: Speed %sGT/s Width x%s\n",
13818 speed, width);
13819
13820 if (hw->bus.width < i40e_bus_width_pcie_x8 ||
13821 hw->bus.speed < i40e_bus_speed_8000) {
13822 dev_warn(&pdev->dev, "PCI-Express bandwidth available for this device may be insufficient for optimal performance.\n");
13823 dev_warn(&pdev->dev, "Please move the device to a different PCI-e link with more lanes and/or higher transfer rate.\n");
13824 }
13825 }
13826
13827 /* get the requested speeds from the fw */
13828 err = i40e_aq_get_phy_capabilities(hw, false, false, &abilities, NULL);
13829 if (err)
13830 dev_dbg(&pf->pdev->dev, "get requested speeds ret = %s last_status = %s\n",
13831 i40e_stat_str(&pf->hw, err),
13832 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13833 pf->hw.phy.link_info.requested_speeds = abilities.link_speed;
13834
13835 /* get the supported phy types from the fw */
13836 err = i40e_aq_get_phy_capabilities(hw, false, true, &abilities, NULL);
13837 if (err)
13838 dev_dbg(&pf->pdev->dev, "get supported phy types ret = %s last_status = %s\n",
13839 i40e_stat_str(&pf->hw, err),
13840 i40e_aq_str(&pf->hw, pf->hw.aq.asq_last_status));
13841
13842 /* Add a filter to drop all Flow control frames from any VSI from being
13843 * transmitted. By doing so we stop a malicious VF from sending out
13844 * PAUSE or PFC frames and potentially controlling traffic for other
13845 * PF/VF VSIs.
13846 * The FW can still send Flow control frames if enabled.
13847 */
13848 i40e_add_filter_to_drop_tx_flow_control_frames(&pf->hw,
13849 pf->main_vsi_seid);
13850
13851 if ((pf->hw.device_id == I40E_DEV_ID_10G_BASE_T) ||
13852 (pf->hw.device_id == I40E_DEV_ID_10G_BASE_T4))
13853 pf->hw_features |= I40E_HW_PHY_CONTROLS_LEDS;
13854 if (pf->hw.device_id == I40E_DEV_ID_SFP_I_X722)
13855 pf->hw_features |= I40E_HW_HAVE_CRT_RETIMER;
13856 /* print a string summarizing features */
13857 i40e_print_features(pf);
13858
13859 return 0;
13860
13861 /* Unwind what we've done if something failed in the setup */
13862 err_vsis:
13863 set_bit(__I40E_DOWN, pf->state);
13864 i40e_clear_interrupt_scheme(pf);
13865 kfree(pf->vsi);
13866 err_switch_setup:
13867 i40e_reset_interrupt_capability(pf);
13868 del_timer_sync(&pf->service_timer);
13869 err_mac_addr:
13870 err_configure_lan_hmc:
13871 (void)i40e_shutdown_lan_hmc(hw);
13872 err_init_lan_hmc:
13873 kfree(pf->qp_pile);
13874 err_sw_init:
13875 err_adminq_setup:
13876 err_pf_reset:
13877 iounmap(hw->hw_addr);
13878 err_ioremap:
13879 kfree(pf);
13880 err_pf_alloc:
13881 pci_disable_pcie_error_reporting(pdev);
13882 pci_release_mem_regions(pdev);
13883 err_pci_reg:
13884 err_dma:
13885 pci_disable_device(pdev);
13886 return err;
13887 }
13888
13889 /**
13890 * i40e_remove - Device removal routine
13891 * @pdev: PCI device information struct
13892 *
13893 * i40e_remove is called by the PCI subsystem to alert the driver
13894 * that is should release a PCI device. This could be caused by a
13895 * Hot-Plug event, or because the driver is going to be removed from
13896 * memory.
13897 **/
13898 static void i40e_remove(struct pci_dev *pdev)
13899 {
13900 struct i40e_pf *pf = pci_get_drvdata(pdev);
13901 struct i40e_hw *hw = &pf->hw;
13902 i40e_status ret_code;
13903 int i;
13904
13905 i40e_dbg_pf_exit(pf);
13906
13907 i40e_ptp_stop(pf);
13908
13909 /* Disable RSS in hw */
13910 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(0), 0);
13911 i40e_write_rx_ctl(hw, I40E_PFQF_HENA(1), 0);
13912
13913 /* no more scheduling of any task */
13914 set_bit(__I40E_SUSPENDED, pf->state);
13915 set_bit(__I40E_DOWN, pf->state);
13916 if (pf->service_timer.function)
13917 del_timer_sync(&pf->service_timer);
13918 if (pf->service_task.func)
13919 cancel_work_sync(&pf->service_task);
13920
13921 /* Client close must be called explicitly here because the timer
13922 * has been stopped.
13923 */
13924 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
13925
13926 if (pf->flags & I40E_FLAG_SRIOV_ENABLED) {
13927 i40e_free_vfs(pf);
13928 pf->flags &= ~I40E_FLAG_SRIOV_ENABLED;
13929 }
13930
13931 i40e_fdir_teardown(pf);
13932
13933 /* If there is a switch structure or any orphans, remove them.
13934 * This will leave only the PF's VSI remaining.
13935 */
13936 for (i = 0; i < I40E_MAX_VEB; i++) {
13937 if (!pf->veb[i])
13938 continue;
13939
13940 if (pf->veb[i]->uplink_seid == pf->mac_seid ||
13941 pf->veb[i]->uplink_seid == 0)
13942 i40e_switch_branch_release(pf->veb[i]);
13943 }
13944
13945 /* Now we can shutdown the PF's VSI, just before we kill
13946 * adminq and hmc.
13947 */
13948 if (pf->vsi[pf->lan_vsi])
13949 i40e_vsi_release(pf->vsi[pf->lan_vsi]);
13950
13951 i40e_cloud_filter_exit(pf);
13952
13953 /* remove attached clients */
13954 if (pf->flags & I40E_FLAG_IWARP_ENABLED) {
13955 ret_code = i40e_lan_del_device(pf);
13956 if (ret_code)
13957 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
13958 ret_code);
13959 }
13960
13961 /* shutdown and destroy the HMC */
13962 if (hw->hmc.hmc_obj) {
13963 ret_code = i40e_shutdown_lan_hmc(hw);
13964 if (ret_code)
13965 dev_warn(&pdev->dev,
13966 "Failed to destroy the HMC resources: %d\n",
13967 ret_code);
13968 }
13969
13970 /* shutdown the adminq */
13971 i40e_shutdown_adminq(hw);
13972
13973 /* destroy the locks only once, here */
13974 mutex_destroy(&hw->aq.arq_mutex);
13975 mutex_destroy(&hw->aq.asq_mutex);
13976
13977 /* Clear all dynamic memory lists of rings, q_vectors, and VSIs */
13978 i40e_clear_interrupt_scheme(pf);
13979 for (i = 0; i < pf->num_alloc_vsi; i++) {
13980 if (pf->vsi[i]) {
13981 i40e_vsi_clear_rings(pf->vsi[i]);
13982 i40e_vsi_clear(pf->vsi[i]);
13983 pf->vsi[i] = NULL;
13984 }
13985 }
13986
13987 for (i = 0; i < I40E_MAX_VEB; i++) {
13988 kfree(pf->veb[i]);
13989 pf->veb[i] = NULL;
13990 }
13991
13992 kfree(pf->qp_pile);
13993 kfree(pf->vsi);
13994
13995 iounmap(hw->hw_addr);
13996 kfree(pf);
13997 pci_release_mem_regions(pdev);
13998
13999 pci_disable_pcie_error_reporting(pdev);
14000 pci_disable_device(pdev);
14001 }
14002
14003 /**
14004 * i40e_pci_error_detected - warning that something funky happened in PCI land
14005 * @pdev: PCI device information struct
14006 *
14007 * Called to warn that something happened and the error handling steps
14008 * are in progress. Allows the driver to quiesce things, be ready for
14009 * remediation.
14010 **/
14011 static pci_ers_result_t i40e_pci_error_detected(struct pci_dev *pdev,
14012 enum pci_channel_state error)
14013 {
14014 struct i40e_pf *pf = pci_get_drvdata(pdev);
14015
14016 dev_info(&pdev->dev, "%s: error %d\n", __func__, error);
14017
14018 if (!pf) {
14019 dev_info(&pdev->dev,
14020 "Cannot recover - error happened during device probe\n");
14021 return PCI_ERS_RESULT_DISCONNECT;
14022 }
14023
14024 /* shutdown all operations */
14025 if (!test_bit(__I40E_SUSPENDED, pf->state))
14026 i40e_prep_for_reset(pf, false);
14027
14028 /* Request a slot reset */
14029 return PCI_ERS_RESULT_NEED_RESET;
14030 }
14031
14032 /**
14033 * i40e_pci_error_slot_reset - a PCI slot reset just happened
14034 * @pdev: PCI device information struct
14035 *
14036 * Called to find if the driver can work with the device now that
14037 * the pci slot has been reset. If a basic connection seems good
14038 * (registers are readable and have sane content) then return a
14039 * happy little PCI_ERS_RESULT_xxx.
14040 **/
14041 static pci_ers_result_t i40e_pci_error_slot_reset(struct pci_dev *pdev)
14042 {
14043 struct i40e_pf *pf = pci_get_drvdata(pdev);
14044 pci_ers_result_t result;
14045 int err;
14046 u32 reg;
14047
14048 dev_dbg(&pdev->dev, "%s\n", __func__);
14049 if (pci_enable_device_mem(pdev)) {
14050 dev_info(&pdev->dev,
14051 "Cannot re-enable PCI device after reset.\n");
14052 result = PCI_ERS_RESULT_DISCONNECT;
14053 } else {
14054 pci_set_master(pdev);
14055 pci_restore_state(pdev);
14056 pci_save_state(pdev);
14057 pci_wake_from_d3(pdev, false);
14058
14059 reg = rd32(&pf->hw, I40E_GLGEN_RTRIG);
14060 if (reg == 0)
14061 result = PCI_ERS_RESULT_RECOVERED;
14062 else
14063 result = PCI_ERS_RESULT_DISCONNECT;
14064 }
14065
14066 err = pci_cleanup_aer_uncorrect_error_status(pdev);
14067 if (err) {
14068 dev_info(&pdev->dev,
14069 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
14070 err);
14071 /* non-fatal, continue */
14072 }
14073
14074 return result;
14075 }
14076
14077 /**
14078 * i40e_pci_error_reset_prepare - prepare device driver for pci reset
14079 * @pdev: PCI device information struct
14080 */
14081 static void i40e_pci_error_reset_prepare(struct pci_dev *pdev)
14082 {
14083 struct i40e_pf *pf = pci_get_drvdata(pdev);
14084
14085 i40e_prep_for_reset(pf, false);
14086 }
14087
14088 /**
14089 * i40e_pci_error_reset_done - pci reset done, device driver reset can begin
14090 * @pdev: PCI device information struct
14091 */
14092 static void i40e_pci_error_reset_done(struct pci_dev *pdev)
14093 {
14094 struct i40e_pf *pf = pci_get_drvdata(pdev);
14095
14096 i40e_reset_and_rebuild(pf, false, false);
14097 }
14098
14099 /**
14100 * i40e_pci_error_resume - restart operations after PCI error recovery
14101 * @pdev: PCI device information struct
14102 *
14103 * Called to allow the driver to bring things back up after PCI error
14104 * and/or reset recovery has finished.
14105 **/
14106 static void i40e_pci_error_resume(struct pci_dev *pdev)
14107 {
14108 struct i40e_pf *pf = pci_get_drvdata(pdev);
14109
14110 dev_dbg(&pdev->dev, "%s\n", __func__);
14111 if (test_bit(__I40E_SUSPENDED, pf->state))
14112 return;
14113
14114 i40e_handle_reset_warning(pf, false);
14115 }
14116
14117 /**
14118 * i40e_enable_mc_magic_wake - enable multicast magic packet wake up
14119 * using the mac_address_write admin q function
14120 * @pf: pointer to i40e_pf struct
14121 **/
14122 static void i40e_enable_mc_magic_wake(struct i40e_pf *pf)
14123 {
14124 struct i40e_hw *hw = &pf->hw;
14125 i40e_status ret;
14126 u8 mac_addr[6];
14127 u16 flags = 0;
14128
14129 /* Get current MAC address in case it's an LAA */
14130 if (pf->vsi[pf->lan_vsi] && pf->vsi[pf->lan_vsi]->netdev) {
14131 ether_addr_copy(mac_addr,
14132 pf->vsi[pf->lan_vsi]->netdev->dev_addr);
14133 } else {
14134 dev_err(&pf->pdev->dev,
14135 "Failed to retrieve MAC address; using default\n");
14136 ether_addr_copy(mac_addr, hw->mac.addr);
14137 }
14138
14139 /* The FW expects the mac address write cmd to first be called with
14140 * one of these flags before calling it again with the multicast
14141 * enable flags.
14142 */
14143 flags = I40E_AQC_WRITE_TYPE_LAA_WOL;
14144
14145 if (hw->func_caps.flex10_enable && hw->partition_id != 1)
14146 flags = I40E_AQC_WRITE_TYPE_LAA_ONLY;
14147
14148 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
14149 if (ret) {
14150 dev_err(&pf->pdev->dev,
14151 "Failed to update MAC address registers; cannot enable Multicast Magic packet wake up");
14152 return;
14153 }
14154
14155 flags = I40E_AQC_MC_MAG_EN
14156 | I40E_AQC_WOL_PRESERVE_ON_PFR
14157 | I40E_AQC_WRITE_TYPE_UPDATE_MC_MAG;
14158 ret = i40e_aq_mac_address_write(hw, flags, mac_addr, NULL);
14159 if (ret)
14160 dev_err(&pf->pdev->dev,
14161 "Failed to enable Multicast Magic Packet wake up\n");
14162 }
14163
14164 /**
14165 * i40e_shutdown - PCI callback for shutting down
14166 * @pdev: PCI device information struct
14167 **/
14168 static void i40e_shutdown(struct pci_dev *pdev)
14169 {
14170 struct i40e_pf *pf = pci_get_drvdata(pdev);
14171 struct i40e_hw *hw = &pf->hw;
14172
14173 set_bit(__I40E_SUSPENDED, pf->state);
14174 set_bit(__I40E_DOWN, pf->state);
14175 rtnl_lock();
14176 i40e_prep_for_reset(pf, true);
14177 rtnl_unlock();
14178
14179 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
14180 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
14181
14182 del_timer_sync(&pf->service_timer);
14183 cancel_work_sync(&pf->service_task);
14184 i40e_cloud_filter_exit(pf);
14185 i40e_fdir_teardown(pf);
14186
14187 /* Client close must be called explicitly here because the timer
14188 * has been stopped.
14189 */
14190 i40e_notify_client_of_netdev_close(pf->vsi[pf->lan_vsi], false);
14191
14192 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE))
14193 i40e_enable_mc_magic_wake(pf);
14194
14195 i40e_prep_for_reset(pf, false);
14196
14197 wr32(hw, I40E_PFPM_APM,
14198 (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
14199 wr32(hw, I40E_PFPM_WUFC,
14200 (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
14201
14202 i40e_clear_interrupt_scheme(pf);
14203
14204 if (system_state == SYSTEM_POWER_OFF) {
14205 pci_wake_from_d3(pdev, pf->wol_en);
14206 pci_set_power_state(pdev, PCI_D3hot);
14207 }
14208 }
14209
14210 /**
14211 * i40e_suspend - PM callback for moving to D3
14212 * @dev: generic device information structure
14213 **/
14214 static int __maybe_unused i40e_suspend(struct device *dev)
14215 {
14216 struct pci_dev *pdev = to_pci_dev(dev);
14217 struct i40e_pf *pf = pci_get_drvdata(pdev);
14218 struct i40e_hw *hw = &pf->hw;
14219
14220 /* If we're already suspended, then there is nothing to do */
14221 if (test_and_set_bit(__I40E_SUSPENDED, pf->state))
14222 return 0;
14223
14224 set_bit(__I40E_DOWN, pf->state);
14225
14226 /* Ensure service task will not be running */
14227 del_timer_sync(&pf->service_timer);
14228 cancel_work_sync(&pf->service_task);
14229
14230 if (pf->wol_en && (pf->hw_features & I40E_HW_WOL_MC_MAGIC_PKT_WAKE))
14231 i40e_enable_mc_magic_wake(pf);
14232
14233 i40e_prep_for_reset(pf, false);
14234
14235 wr32(hw, I40E_PFPM_APM, (pf->wol_en ? I40E_PFPM_APM_APME_MASK : 0));
14236 wr32(hw, I40E_PFPM_WUFC, (pf->wol_en ? I40E_PFPM_WUFC_MAG_MASK : 0));
14237
14238 /* Clear the interrupt scheme and release our IRQs so that the system
14239 * can safely hibernate even when there are a large number of CPUs.
14240 * Otherwise hibernation might fail when mapping all the vectors back
14241 * to CPU0.
14242 */
14243 i40e_clear_interrupt_scheme(pf);
14244
14245 return 0;
14246 }
14247
14248 /**
14249 * i40e_resume - PM callback for waking up from D3
14250 * @dev: generic device information structure
14251 **/
14252 static int __maybe_unused i40e_resume(struct device *dev)
14253 {
14254 struct pci_dev *pdev = to_pci_dev(dev);
14255 struct i40e_pf *pf = pci_get_drvdata(pdev);
14256 int err;
14257
14258 /* If we're not suspended, then there is nothing to do */
14259 if (!test_bit(__I40E_SUSPENDED, pf->state))
14260 return 0;
14261
14262 /* We cleared the interrupt scheme when we suspended, so we need to
14263 * restore it now to resume device functionality.
14264 */
14265 err = i40e_restore_interrupt_scheme(pf);
14266 if (err) {
14267 dev_err(&pdev->dev, "Cannot restore interrupt scheme: %d\n",
14268 err);
14269 }
14270
14271 clear_bit(__I40E_DOWN, pf->state);
14272 i40e_reset_and_rebuild(pf, false, false);
14273
14274 /* Clear suspended state last after everything is recovered */
14275 clear_bit(__I40E_SUSPENDED, pf->state);
14276
14277 /* Restart the service task */
14278 mod_timer(&pf->service_timer,
14279 round_jiffies(jiffies + pf->service_timer_period));
14280
14281 return 0;
14282 }
14283
14284 static const struct pci_error_handlers i40e_err_handler = {
14285 .error_detected = i40e_pci_error_detected,
14286 .slot_reset = i40e_pci_error_slot_reset,
14287 .reset_prepare = i40e_pci_error_reset_prepare,
14288 .reset_done = i40e_pci_error_reset_done,
14289 .resume = i40e_pci_error_resume,
14290 };
14291
14292 static SIMPLE_DEV_PM_OPS(i40e_pm_ops, i40e_suspend, i40e_resume);
14293
14294 static struct pci_driver i40e_driver = {
14295 .name = i40e_driver_name,
14296 .id_table = i40e_pci_tbl,
14297 .probe = i40e_probe,
14298 .remove = i40e_remove,
14299 .driver = {
14300 .pm = &i40e_pm_ops,
14301 },
14302 .shutdown = i40e_shutdown,
14303 .err_handler = &i40e_err_handler,
14304 .sriov_configure = i40e_pci_sriov_configure,
14305 };
14306
14307 /**
14308 * i40e_init_module - Driver registration routine
14309 *
14310 * i40e_init_module is the first routine called when the driver is
14311 * loaded. All it does is register with the PCI subsystem.
14312 **/
14313 static int __init i40e_init_module(void)
14314 {
14315 pr_info("%s: %s - version %s\n", i40e_driver_name,
14316 i40e_driver_string, i40e_driver_version_str);
14317 pr_info("%s: %s\n", i40e_driver_name, i40e_copyright);
14318
14319 /* There is no need to throttle the number of active tasks because
14320 * each device limits its own task using a state bit for scheduling
14321 * the service task, and the device tasks do not interfere with each
14322 * other, so we don't set a max task limit. We must set WQ_MEM_RECLAIM
14323 * since we need to be able to guarantee forward progress even under
14324 * memory pressure.
14325 */
14326 i40e_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, i40e_driver_name);
14327 if (!i40e_wq) {
14328 pr_err("%s: Failed to create workqueue\n", i40e_driver_name);
14329 return -ENOMEM;
14330 }
14331
14332 i40e_dbg_init();
14333 return pci_register_driver(&i40e_driver);
14334 }
14335 module_init(i40e_init_module);
14336
14337 /**
14338 * i40e_exit_module - Driver exit cleanup routine
14339 *
14340 * i40e_exit_module is called just before the driver is removed
14341 * from memory.
14342 **/
14343 static void __exit i40e_exit_module(void)
14344 {
14345 pci_unregister_driver(&i40e_driver);
14346 destroy_workqueue(i40e_wq);
14347 i40e_dbg_exit();
14348 }
14349 module_exit(i40e_exit_module);