]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/intel/i40e/i40e_nvm.c
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_nvm.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include "i40e_prototype.h"
28
29 /**
30 * i40e_init_nvm_ops - Initialize NVM function pointers
31 * @hw: pointer to the HW structure
32 *
33 * Setup the function pointers and the NVM info structure. Should be called
34 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
35 * Please notice that the NVM term is used here (& in all methods covered
36 * in this file) as an equivalent of the FLASH part mapped into the SR.
37 * We are accessing FLASH always thru the Shadow RAM.
38 **/
39 i40e_status i40e_init_nvm(struct i40e_hw *hw)
40 {
41 struct i40e_nvm_info *nvm = &hw->nvm;
42 i40e_status ret_code = 0;
43 u32 fla, gens;
44 u8 sr_size;
45
46 /* The SR size is stored regardless of the nvm programming mode
47 * as the blank mode may be used in the factory line.
48 */
49 gens = rd32(hw, I40E_GLNVM_GENS);
50 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
51 I40E_GLNVM_GENS_SR_SIZE_SHIFT);
52 /* Switching to words (sr_size contains power of 2KB) */
53 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
54
55 /* Check if we are in the normal or blank NVM programming mode */
56 fla = rd32(hw, I40E_GLNVM_FLA);
57 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
58 /* Max NVM timeout */
59 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
60 nvm->blank_nvm_mode = false;
61 } else { /* Blank programming mode */
62 nvm->blank_nvm_mode = true;
63 ret_code = I40E_ERR_NVM_BLANK_MODE;
64 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
65 }
66
67 return ret_code;
68 }
69
70 /**
71 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
72 * @hw: pointer to the HW structure
73 * @access: NVM access type (read or write)
74 *
75 * This function will request NVM ownership for reading
76 * via the proper Admin Command.
77 **/
78 i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
79 enum i40e_aq_resource_access_type access)
80 {
81 i40e_status ret_code = 0;
82 u64 gtime, timeout;
83 u64 time_left = 0;
84
85 if (hw->nvm.blank_nvm_mode)
86 goto i40e_i40e_acquire_nvm_exit;
87
88 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
89 0, &time_left, NULL);
90 /* Reading the Global Device Timer */
91 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
92
93 /* Store the timeout */
94 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
95
96 if (ret_code)
97 i40e_debug(hw, I40E_DEBUG_NVM,
98 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
99 access, time_left, ret_code, hw->aq.asq_last_status);
100
101 if (ret_code && time_left) {
102 /* Poll until the current NVM owner timeouts */
103 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
104 while ((gtime < timeout) && time_left) {
105 usleep_range(10000, 20000);
106 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
107 ret_code = i40e_aq_request_resource(hw,
108 I40E_NVM_RESOURCE_ID,
109 access, 0, &time_left,
110 NULL);
111 if (!ret_code) {
112 hw->nvm.hw_semaphore_timeout =
113 I40E_MS_TO_GTIME(time_left) + gtime;
114 break;
115 }
116 }
117 if (ret_code) {
118 hw->nvm.hw_semaphore_timeout = 0;
119 i40e_debug(hw, I40E_DEBUG_NVM,
120 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
121 time_left, ret_code, hw->aq.asq_last_status);
122 }
123 }
124
125 i40e_i40e_acquire_nvm_exit:
126 return ret_code;
127 }
128
129 /**
130 * i40e_release_nvm - Generic request for releasing the NVM ownership
131 * @hw: pointer to the HW structure
132 *
133 * This function will release NVM resource via the proper Admin Command.
134 **/
135 void i40e_release_nvm(struct i40e_hw *hw)
136 {
137 i40e_status ret_code = I40E_SUCCESS;
138 u32 total_delay = 0;
139
140 if (hw->nvm.blank_nvm_mode)
141 return;
142
143 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
144
145 /* there are some rare cases when trying to release the resource
146 * results in an admin Q timeout, so handle them correctly
147 */
148 while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
149 (total_delay < hw->aq.asq_cmd_timeout)) {
150 usleep_range(1000, 2000);
151 ret_code = i40e_aq_release_resource(hw,
152 I40E_NVM_RESOURCE_ID,
153 0, NULL);
154 total_delay++;
155 }
156 }
157
158 /**
159 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
160 * @hw: pointer to the HW structure
161 *
162 * Polls the SRCTL Shadow RAM register done bit.
163 **/
164 static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
165 {
166 i40e_status ret_code = I40E_ERR_TIMEOUT;
167 u32 srctl, wait_cnt;
168
169 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
170 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
171 srctl = rd32(hw, I40E_GLNVM_SRCTL);
172 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
173 ret_code = 0;
174 break;
175 }
176 udelay(5);
177 }
178 if (ret_code == I40E_ERR_TIMEOUT)
179 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
180 return ret_code;
181 }
182
183 /**
184 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
185 * @hw: pointer to the HW structure
186 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
187 * @data: word read from the Shadow RAM
188 *
189 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
190 **/
191 static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
192 u16 *data)
193 {
194 i40e_status ret_code = I40E_ERR_TIMEOUT;
195 u32 sr_reg;
196
197 if (offset >= hw->nvm.sr_size) {
198 i40e_debug(hw, I40E_DEBUG_NVM,
199 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
200 offset, hw->nvm.sr_size);
201 ret_code = I40E_ERR_PARAM;
202 goto read_nvm_exit;
203 }
204
205 /* Poll the done bit first */
206 ret_code = i40e_poll_sr_srctl_done_bit(hw);
207 if (!ret_code) {
208 /* Write the address and start reading */
209 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
210 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
211 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
212
213 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
214 ret_code = i40e_poll_sr_srctl_done_bit(hw);
215 if (!ret_code) {
216 sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
217 *data = (u16)((sr_reg &
218 I40E_GLNVM_SRDATA_RDDATA_MASK)
219 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
220 }
221 }
222 if (ret_code)
223 i40e_debug(hw, I40E_DEBUG_NVM,
224 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
225 offset);
226
227 read_nvm_exit:
228 return ret_code;
229 }
230
231 /**
232 * i40e_read_nvm_aq - Read Shadow RAM.
233 * @hw: pointer to the HW structure.
234 * @module_pointer: module pointer location in words from the NVM beginning
235 * @offset: offset in words from module start
236 * @words: number of words to write
237 * @data: buffer with words to write to the Shadow RAM
238 * @last_command: tells the AdminQ that this is the last command
239 *
240 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
241 **/
242 static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
243 u32 offset, u16 words, void *data,
244 bool last_command)
245 {
246 i40e_status ret_code = I40E_ERR_NVM;
247 struct i40e_asq_cmd_details cmd_details;
248
249 memset(&cmd_details, 0, sizeof(cmd_details));
250 cmd_details.wb_desc = &hw->nvm_wb_desc;
251
252 /* Here we are checking the SR limit only for the flat memory model.
253 * We cannot do it for the module-based model, as we did not acquire
254 * the NVM resource yet (we cannot get the module pointer value).
255 * Firmware will check the module-based model.
256 */
257 if ((offset + words) > hw->nvm.sr_size)
258 i40e_debug(hw, I40E_DEBUG_NVM,
259 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
260 (offset + words), hw->nvm.sr_size);
261 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
262 /* We can write only up to 4KB (one sector), in one AQ write */
263 i40e_debug(hw, I40E_DEBUG_NVM,
264 "NVM write fail error: tried to write %d words, limit is %d.\n",
265 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
266 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
267 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
268 /* A single write cannot spread over two sectors */
269 i40e_debug(hw, I40E_DEBUG_NVM,
270 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
271 offset, words);
272 else
273 ret_code = i40e_aq_read_nvm(hw, module_pointer,
274 2 * offset, /*bytes*/
275 2 * words, /*bytes*/
276 data, last_command, &cmd_details);
277
278 return ret_code;
279 }
280
281 /**
282 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
283 * @hw: pointer to the HW structure
284 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
285 * @data: word read from the Shadow RAM
286 *
287 * Reads one 16 bit word from the Shadow RAM using the AdminQ
288 **/
289 static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
290 u16 *data)
291 {
292 i40e_status ret_code = I40E_ERR_TIMEOUT;
293
294 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
295 *data = le16_to_cpu(*(__le16 *)data);
296
297 return ret_code;
298 }
299
300 /**
301 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
302 * @hw: pointer to the HW structure
303 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
304 * @data: word read from the Shadow RAM
305 *
306 * Reads one 16 bit word from the Shadow RAM.
307 *
308 * Do not use this function except in cases where the nvm lock is already
309 * taken via i40e_acquire_nvm().
310 **/
311 static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
312 u16 offset, u16 *data)
313 {
314 i40e_status ret_code = 0;
315
316 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
317 ret_code = i40e_read_nvm_word_aq(hw, offset, data);
318 else
319 ret_code = i40e_read_nvm_word_srctl(hw, offset, data);
320 return ret_code;
321 }
322
323 /**
324 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
325 * @hw: pointer to the HW structure
326 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
327 * @data: word read from the Shadow RAM
328 *
329 * Reads one 16 bit word from the Shadow RAM.
330 **/
331 i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
332 u16 *data)
333 {
334 i40e_status ret_code = 0;
335
336 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
337 if (ret_code)
338 return ret_code;
339
340 ret_code = __i40e_read_nvm_word(hw, offset, data);
341
342 i40e_release_nvm(hw);
343
344 return ret_code;
345 }
346
347 /**
348 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
349 * @hw: pointer to the HW structure
350 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
351 * @words: (in) number of words to read; (out) number of words actually read
352 * @data: words read from the Shadow RAM
353 *
354 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
355 * method. The buffer read is preceded by the NVM ownership take
356 * and followed by the release.
357 **/
358 static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
359 u16 *words, u16 *data)
360 {
361 i40e_status ret_code = 0;
362 u16 index, word;
363
364 /* Loop thru the selected region */
365 for (word = 0; word < *words; word++) {
366 index = offset + word;
367 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
368 if (ret_code)
369 break;
370 }
371
372 /* Update the number of words read from the Shadow RAM */
373 *words = word;
374
375 return ret_code;
376 }
377
378 /**
379 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
380 * @hw: pointer to the HW structure
381 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
382 * @words: (in) number of words to read; (out) number of words actually read
383 * @data: words read from the Shadow RAM
384 *
385 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
386 * method. The buffer read is preceded by the NVM ownership take
387 * and followed by the release.
388 **/
389 static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
390 u16 *words, u16 *data)
391 {
392 i40e_status ret_code;
393 u16 read_size = *words;
394 bool last_cmd = false;
395 u16 words_read = 0;
396 u16 i = 0;
397
398 do {
399 /* Calculate number of bytes we should read in this step.
400 * FVL AQ do not allow to read more than one page at a time or
401 * to cross page boundaries.
402 */
403 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
404 read_size = min(*words,
405 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
406 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
407 else
408 read_size = min((*words - words_read),
409 I40E_SR_SECTOR_SIZE_IN_WORDS);
410
411 /* Check if this is last command, if so set proper flag */
412 if ((words_read + read_size) >= *words)
413 last_cmd = true;
414
415 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
416 data + words_read, last_cmd);
417 if (ret_code)
418 goto read_nvm_buffer_aq_exit;
419
420 /* Increment counter for words already read and move offset to
421 * new read location
422 */
423 words_read += read_size;
424 offset += read_size;
425 } while (words_read < *words);
426
427 for (i = 0; i < *words; i++)
428 data[i] = le16_to_cpu(((__le16 *)data)[i]);
429
430 read_nvm_buffer_aq_exit:
431 *words = words_read;
432 return ret_code;
433 }
434
435 /**
436 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
437 * @hw: pointer to the HW structure
438 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
439 * @words: (in) number of words to read; (out) number of words actually read
440 * @data: words read from the Shadow RAM
441 *
442 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
443 * method.
444 **/
445 static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
446 u16 offset, u16 *words,
447 u16 *data)
448 {
449 i40e_status ret_code = 0;
450
451 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
452 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words, data);
453 else
454 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
455 return ret_code;
456 }
457
458 /**
459 * i40e_write_nvm_aq - Writes Shadow RAM.
460 * @hw: pointer to the HW structure.
461 * @module_pointer: module pointer location in words from the NVM beginning
462 * @offset: offset in words from module start
463 * @words: number of words to write
464 * @data: buffer with words to write to the Shadow RAM
465 * @last_command: tells the AdminQ that this is the last command
466 *
467 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
468 **/
469 static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
470 u32 offset, u16 words, void *data,
471 bool last_command)
472 {
473 i40e_status ret_code = I40E_ERR_NVM;
474 struct i40e_asq_cmd_details cmd_details;
475
476 memset(&cmd_details, 0, sizeof(cmd_details));
477 cmd_details.wb_desc = &hw->nvm_wb_desc;
478
479 /* Here we are checking the SR limit only for the flat memory model.
480 * We cannot do it for the module-based model, as we did not acquire
481 * the NVM resource yet (we cannot get the module pointer value).
482 * Firmware will check the module-based model.
483 */
484 if ((offset + words) > hw->nvm.sr_size)
485 i40e_debug(hw, I40E_DEBUG_NVM,
486 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
487 (offset + words), hw->nvm.sr_size);
488 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
489 /* We can write only up to 4KB (one sector), in one AQ write */
490 i40e_debug(hw, I40E_DEBUG_NVM,
491 "NVM write fail error: tried to write %d words, limit is %d.\n",
492 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
493 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
494 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
495 /* A single write cannot spread over two sectors */
496 i40e_debug(hw, I40E_DEBUG_NVM,
497 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
498 offset, words);
499 else
500 ret_code = i40e_aq_update_nvm(hw, module_pointer,
501 2 * offset, /*bytes*/
502 2 * words, /*bytes*/
503 data, last_command, &cmd_details);
504
505 return ret_code;
506 }
507
508 /**
509 * i40e_calc_nvm_checksum - Calculates and returns the checksum
510 * @hw: pointer to hardware structure
511 * @checksum: pointer to the checksum
512 *
513 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
514 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
515 * is customer specific and unknown. Therefore, this function skips all maximum
516 * possible size of VPD (1kB).
517 **/
518 static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
519 u16 *checksum)
520 {
521 i40e_status ret_code;
522 struct i40e_virt_mem vmem;
523 u16 pcie_alt_module = 0;
524 u16 checksum_local = 0;
525 u16 vpd_module = 0;
526 u16 *data;
527 u16 i = 0;
528
529 ret_code = i40e_allocate_virt_mem(hw, &vmem,
530 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
531 if (ret_code)
532 goto i40e_calc_nvm_checksum_exit;
533 data = (u16 *)vmem.va;
534
535 /* read pointer to VPD area */
536 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
537 if (ret_code) {
538 ret_code = I40E_ERR_NVM_CHECKSUM;
539 goto i40e_calc_nvm_checksum_exit;
540 }
541
542 /* read pointer to PCIe Alt Auto-load module */
543 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
544 &pcie_alt_module);
545 if (ret_code) {
546 ret_code = I40E_ERR_NVM_CHECKSUM;
547 goto i40e_calc_nvm_checksum_exit;
548 }
549
550 /* Calculate SW checksum that covers the whole 64kB shadow RAM
551 * except the VPD and PCIe ALT Auto-load modules
552 */
553 for (i = 0; i < hw->nvm.sr_size; i++) {
554 /* Read SR page */
555 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
556 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
557
558 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
559 if (ret_code) {
560 ret_code = I40E_ERR_NVM_CHECKSUM;
561 goto i40e_calc_nvm_checksum_exit;
562 }
563 }
564
565 /* Skip Checksum word */
566 if (i == I40E_SR_SW_CHECKSUM_WORD)
567 continue;
568 /* Skip VPD module (convert byte size to word count) */
569 if ((i >= (u32)vpd_module) &&
570 (i < ((u32)vpd_module +
571 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
572 continue;
573 }
574 /* Skip PCIe ALT module (convert byte size to word count) */
575 if ((i >= (u32)pcie_alt_module) &&
576 (i < ((u32)pcie_alt_module +
577 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
578 continue;
579 }
580
581 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
582 }
583
584 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
585
586 i40e_calc_nvm_checksum_exit:
587 i40e_free_virt_mem(hw, &vmem);
588 return ret_code;
589 }
590
591 /**
592 * i40e_update_nvm_checksum - Updates the NVM checksum
593 * @hw: pointer to hardware structure
594 *
595 * NVM ownership must be acquired before calling this function and released
596 * on ARQ completion event reception by caller.
597 * This function will commit SR to NVM.
598 **/
599 i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
600 {
601 i40e_status ret_code;
602 u16 checksum;
603 __le16 le_sum;
604
605 ret_code = i40e_calc_nvm_checksum(hw, &checksum);
606 if (!ret_code) {
607 le_sum = cpu_to_le16(checksum);
608 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
609 1, &le_sum, true);
610 }
611
612 return ret_code;
613 }
614
615 /**
616 * i40e_validate_nvm_checksum - Validate EEPROM checksum
617 * @hw: pointer to hardware structure
618 * @checksum: calculated checksum
619 *
620 * Performs checksum calculation and validates the NVM SW checksum. If the
621 * caller does not need checksum, the value can be NULL.
622 **/
623 i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
624 u16 *checksum)
625 {
626 i40e_status ret_code = 0;
627 u16 checksum_sr = 0;
628 u16 checksum_local = 0;
629
630 /* We must acquire the NVM lock in order to correctly synchronize the
631 * NVM accesses across multiple PFs. Without doing so it is possible
632 * for one of the PFs to read invalid data potentially indicating that
633 * the checksum is invalid.
634 */
635 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
636 if (ret_code)
637 return ret_code;
638 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
639 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
640 i40e_release_nvm(hw);
641 if (ret_code)
642 return ret_code;
643
644 /* Verify read checksum from EEPROM is the same as
645 * calculated checksum
646 */
647 if (checksum_local != checksum_sr)
648 ret_code = I40E_ERR_NVM_CHECKSUM;
649
650 /* If the user cares, return the calculated checksum */
651 if (checksum)
652 *checksum = checksum_local;
653
654 return ret_code;
655 }
656
657 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
658 struct i40e_nvm_access *cmd,
659 u8 *bytes, int *perrno);
660 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
661 struct i40e_nvm_access *cmd,
662 u8 *bytes, int *perrno);
663 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
664 struct i40e_nvm_access *cmd,
665 u8 *bytes, int *errno);
666 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
667 struct i40e_nvm_access *cmd,
668 int *perrno);
669 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
670 struct i40e_nvm_access *cmd,
671 int *perrno);
672 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
673 struct i40e_nvm_access *cmd,
674 u8 *bytes, int *perrno);
675 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
676 struct i40e_nvm_access *cmd,
677 u8 *bytes, int *perrno);
678 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
679 struct i40e_nvm_access *cmd,
680 u8 *bytes, int *perrno);
681 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
682 struct i40e_nvm_access *cmd,
683 u8 *bytes, int *perrno);
684 static inline u8 i40e_nvmupd_get_module(u32 val)
685 {
686 return (u8)(val & I40E_NVM_MOD_PNT_MASK);
687 }
688 static inline u8 i40e_nvmupd_get_transaction(u32 val)
689 {
690 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
691 }
692
693 static const char * const i40e_nvm_update_state_str[] = {
694 "I40E_NVMUPD_INVALID",
695 "I40E_NVMUPD_READ_CON",
696 "I40E_NVMUPD_READ_SNT",
697 "I40E_NVMUPD_READ_LCB",
698 "I40E_NVMUPD_READ_SA",
699 "I40E_NVMUPD_WRITE_ERA",
700 "I40E_NVMUPD_WRITE_CON",
701 "I40E_NVMUPD_WRITE_SNT",
702 "I40E_NVMUPD_WRITE_LCB",
703 "I40E_NVMUPD_WRITE_SA",
704 "I40E_NVMUPD_CSUM_CON",
705 "I40E_NVMUPD_CSUM_SA",
706 "I40E_NVMUPD_CSUM_LCB",
707 "I40E_NVMUPD_STATUS",
708 "I40E_NVMUPD_EXEC_AQ",
709 "I40E_NVMUPD_GET_AQ_RESULT",
710 };
711
712 /**
713 * i40e_nvmupd_command - Process an NVM update command
714 * @hw: pointer to hardware structure
715 * @cmd: pointer to nvm update command
716 * @bytes: pointer to the data buffer
717 * @perrno: pointer to return error code
718 *
719 * Dispatches command depending on what update state is current
720 **/
721 i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
722 struct i40e_nvm_access *cmd,
723 u8 *bytes, int *perrno)
724 {
725 i40e_status status;
726 enum i40e_nvmupd_cmd upd_cmd;
727
728 /* assume success */
729 *perrno = 0;
730
731 /* early check for status command and debug msgs */
732 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
733
734 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
735 i40e_nvm_update_state_str[upd_cmd],
736 hw->nvmupd_state,
737 hw->nvm_release_on_done, hw->nvm_wait_opcode,
738 cmd->command, cmd->config, cmd->offset, cmd->data_size);
739
740 if (upd_cmd == I40E_NVMUPD_INVALID) {
741 *perrno = -EFAULT;
742 i40e_debug(hw, I40E_DEBUG_NVM,
743 "i40e_nvmupd_validate_command returns %d errno %d\n",
744 upd_cmd, *perrno);
745 }
746
747 /* a status request returns immediately rather than
748 * going into the state machine
749 */
750 if (upd_cmd == I40E_NVMUPD_STATUS) {
751 if (!cmd->data_size) {
752 *perrno = -EFAULT;
753 return I40E_ERR_BUF_TOO_SHORT;
754 }
755
756 bytes[0] = hw->nvmupd_state;
757
758 if (cmd->data_size >= 4) {
759 bytes[1] = 0;
760 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
761 }
762
763 /* Clear error status on read */
764 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
765 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
766
767 return 0;
768 }
769
770 /* Clear status even it is not read and log */
771 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
772 i40e_debug(hw, I40E_DEBUG_NVM,
773 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
774 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
775 }
776
777 /* Acquire lock to prevent race condition where adminq_task
778 * can execute after i40e_nvmupd_nvm_read/write but before state
779 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
780 *
781 * During NVMUpdate, it is observed that lock could be held for
782 * ~5ms for most commands. However lock is held for ~60ms for
783 * NVMUPD_CSUM_LCB command.
784 */
785 mutex_lock(&hw->aq.arq_mutex);
786 switch (hw->nvmupd_state) {
787 case I40E_NVMUPD_STATE_INIT:
788 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
789 break;
790
791 case I40E_NVMUPD_STATE_READING:
792 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
793 break;
794
795 case I40E_NVMUPD_STATE_WRITING:
796 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
797 break;
798
799 case I40E_NVMUPD_STATE_INIT_WAIT:
800 case I40E_NVMUPD_STATE_WRITE_WAIT:
801 /* if we need to stop waiting for an event, clear
802 * the wait info and return before doing anything else
803 */
804 if (cmd->offset == 0xffff) {
805 i40e_nvmupd_check_wait_event(hw, hw->nvm_wait_opcode);
806 status = 0;
807 goto exit;
808 }
809
810 status = I40E_ERR_NOT_READY;
811 *perrno = -EBUSY;
812 break;
813
814 default:
815 /* invalid state, should never happen */
816 i40e_debug(hw, I40E_DEBUG_NVM,
817 "NVMUPD: no such state %d\n", hw->nvmupd_state);
818 status = I40E_NOT_SUPPORTED;
819 *perrno = -ESRCH;
820 break;
821 }
822 exit:
823 mutex_unlock(&hw->aq.arq_mutex);
824 return status;
825 }
826
827 /**
828 * i40e_nvmupd_state_init - Handle NVM update state Init
829 * @hw: pointer to hardware structure
830 * @cmd: pointer to nvm update command buffer
831 * @bytes: pointer to the data buffer
832 * @perrno: pointer to return error code
833 *
834 * Process legitimate commands of the Init state and conditionally set next
835 * state. Reject all other commands.
836 **/
837 static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
838 struct i40e_nvm_access *cmd,
839 u8 *bytes, int *perrno)
840 {
841 i40e_status status = 0;
842 enum i40e_nvmupd_cmd upd_cmd;
843
844 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
845
846 switch (upd_cmd) {
847 case I40E_NVMUPD_READ_SA:
848 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
849 if (status) {
850 *perrno = i40e_aq_rc_to_posix(status,
851 hw->aq.asq_last_status);
852 } else {
853 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
854 i40e_release_nvm(hw);
855 }
856 break;
857
858 case I40E_NVMUPD_READ_SNT:
859 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
860 if (status) {
861 *perrno = i40e_aq_rc_to_posix(status,
862 hw->aq.asq_last_status);
863 } else {
864 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
865 if (status)
866 i40e_release_nvm(hw);
867 else
868 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
869 }
870 break;
871
872 case I40E_NVMUPD_WRITE_ERA:
873 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
874 if (status) {
875 *perrno = i40e_aq_rc_to_posix(status,
876 hw->aq.asq_last_status);
877 } else {
878 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
879 if (status) {
880 i40e_release_nvm(hw);
881 } else {
882 hw->nvm_release_on_done = true;
883 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
884 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
885 }
886 }
887 break;
888
889 case I40E_NVMUPD_WRITE_SA:
890 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
891 if (status) {
892 *perrno = i40e_aq_rc_to_posix(status,
893 hw->aq.asq_last_status);
894 } else {
895 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
896 if (status) {
897 i40e_release_nvm(hw);
898 } else {
899 hw->nvm_release_on_done = true;
900 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
901 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
902 }
903 }
904 break;
905
906 case I40E_NVMUPD_WRITE_SNT:
907 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
908 if (status) {
909 *perrno = i40e_aq_rc_to_posix(status,
910 hw->aq.asq_last_status);
911 } else {
912 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
913 if (status) {
914 i40e_release_nvm(hw);
915 } else {
916 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
917 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
918 }
919 }
920 break;
921
922 case I40E_NVMUPD_CSUM_SA:
923 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
924 if (status) {
925 *perrno = i40e_aq_rc_to_posix(status,
926 hw->aq.asq_last_status);
927 } else {
928 status = i40e_update_nvm_checksum(hw);
929 if (status) {
930 *perrno = hw->aq.asq_last_status ?
931 i40e_aq_rc_to_posix(status,
932 hw->aq.asq_last_status) :
933 -EIO;
934 i40e_release_nvm(hw);
935 } else {
936 hw->nvm_release_on_done = true;
937 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
938 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
939 }
940 }
941 break;
942
943 case I40E_NVMUPD_EXEC_AQ:
944 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
945 break;
946
947 case I40E_NVMUPD_GET_AQ_RESULT:
948 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
949 break;
950
951 default:
952 i40e_debug(hw, I40E_DEBUG_NVM,
953 "NVMUPD: bad cmd %s in init state\n",
954 i40e_nvm_update_state_str[upd_cmd]);
955 status = I40E_ERR_NVM;
956 *perrno = -ESRCH;
957 break;
958 }
959 return status;
960 }
961
962 /**
963 * i40e_nvmupd_state_reading - Handle NVM update state Reading
964 * @hw: pointer to hardware structure
965 * @cmd: pointer to nvm update command buffer
966 * @bytes: pointer to the data buffer
967 * @perrno: pointer to return error code
968 *
969 * NVM ownership is already held. Process legitimate commands and set any
970 * change in state; reject all other commands.
971 **/
972 static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
973 struct i40e_nvm_access *cmd,
974 u8 *bytes, int *perrno)
975 {
976 i40e_status status = 0;
977 enum i40e_nvmupd_cmd upd_cmd;
978
979 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
980
981 switch (upd_cmd) {
982 case I40E_NVMUPD_READ_SA:
983 case I40E_NVMUPD_READ_CON:
984 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
985 break;
986
987 case I40E_NVMUPD_READ_LCB:
988 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
989 i40e_release_nvm(hw);
990 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
991 break;
992
993 default:
994 i40e_debug(hw, I40E_DEBUG_NVM,
995 "NVMUPD: bad cmd %s in reading state.\n",
996 i40e_nvm_update_state_str[upd_cmd]);
997 status = I40E_NOT_SUPPORTED;
998 *perrno = -ESRCH;
999 break;
1000 }
1001 return status;
1002 }
1003
1004 /**
1005 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1006 * @hw: pointer to hardware structure
1007 * @cmd: pointer to nvm update command buffer
1008 * @bytes: pointer to the data buffer
1009 * @perrno: pointer to return error code
1010 *
1011 * NVM ownership is already held. Process legitimate commands and set any
1012 * change in state; reject all other commands
1013 **/
1014 static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1015 struct i40e_nvm_access *cmd,
1016 u8 *bytes, int *perrno)
1017 {
1018 i40e_status status = 0;
1019 enum i40e_nvmupd_cmd upd_cmd;
1020 bool retry_attempt = false;
1021
1022 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1023
1024 retry:
1025 switch (upd_cmd) {
1026 case I40E_NVMUPD_WRITE_CON:
1027 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1028 if (!status) {
1029 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1030 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1031 }
1032 break;
1033
1034 case I40E_NVMUPD_WRITE_LCB:
1035 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1036 if (status) {
1037 *perrno = hw->aq.asq_last_status ?
1038 i40e_aq_rc_to_posix(status,
1039 hw->aq.asq_last_status) :
1040 -EIO;
1041 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1042 } else {
1043 hw->nvm_release_on_done = true;
1044 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1045 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1046 }
1047 break;
1048
1049 case I40E_NVMUPD_CSUM_CON:
1050 /* Assumes the caller has acquired the nvm */
1051 status = i40e_update_nvm_checksum(hw);
1052 if (status) {
1053 *perrno = hw->aq.asq_last_status ?
1054 i40e_aq_rc_to_posix(status,
1055 hw->aq.asq_last_status) :
1056 -EIO;
1057 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1058 } else {
1059 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1060 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1061 }
1062 break;
1063
1064 case I40E_NVMUPD_CSUM_LCB:
1065 /* Assumes the caller has acquired the nvm */
1066 status = i40e_update_nvm_checksum(hw);
1067 if (status) {
1068 *perrno = hw->aq.asq_last_status ?
1069 i40e_aq_rc_to_posix(status,
1070 hw->aq.asq_last_status) :
1071 -EIO;
1072 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1073 } else {
1074 hw->nvm_release_on_done = true;
1075 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1076 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1077 }
1078 break;
1079
1080 default:
1081 i40e_debug(hw, I40E_DEBUG_NVM,
1082 "NVMUPD: bad cmd %s in writing state.\n",
1083 i40e_nvm_update_state_str[upd_cmd]);
1084 status = I40E_NOT_SUPPORTED;
1085 *perrno = -ESRCH;
1086 break;
1087 }
1088
1089 /* In some circumstances, a multi-write transaction takes longer
1090 * than the default 3 minute timeout on the write semaphore. If
1091 * the write failed with an EBUSY status, this is likely the problem,
1092 * so here we try to reacquire the semaphore then retry the write.
1093 * We only do one retry, then give up.
1094 */
1095 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1096 !retry_attempt) {
1097 i40e_status old_status = status;
1098 u32 old_asq_status = hw->aq.asq_last_status;
1099 u32 gtime;
1100
1101 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1102 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1103 i40e_debug(hw, I40E_DEBUG_ALL,
1104 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1105 gtime, hw->nvm.hw_semaphore_timeout);
1106 i40e_release_nvm(hw);
1107 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1108 if (status) {
1109 i40e_debug(hw, I40E_DEBUG_ALL,
1110 "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1111 hw->aq.asq_last_status);
1112 status = old_status;
1113 hw->aq.asq_last_status = old_asq_status;
1114 } else {
1115 retry_attempt = true;
1116 goto retry;
1117 }
1118 }
1119 }
1120
1121 return status;
1122 }
1123
1124 /**
1125 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1126 * @hw: pointer to the hardware structure
1127 * @opcode: the event that just happened
1128 **/
1129 void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode)
1130 {
1131 if (opcode == hw->nvm_wait_opcode) {
1132 i40e_debug(hw, I40E_DEBUG_NVM,
1133 "NVMUPD: clearing wait on opcode 0x%04x\n", opcode);
1134 if (hw->nvm_release_on_done) {
1135 i40e_release_nvm(hw);
1136 hw->nvm_release_on_done = false;
1137 }
1138 hw->nvm_wait_opcode = 0;
1139
1140 if (hw->aq.arq_last_status) {
1141 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1142 return;
1143 }
1144
1145 switch (hw->nvmupd_state) {
1146 case I40E_NVMUPD_STATE_INIT_WAIT:
1147 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1148 break;
1149
1150 case I40E_NVMUPD_STATE_WRITE_WAIT:
1151 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1152 break;
1153
1154 default:
1155 break;
1156 }
1157 }
1158 }
1159
1160 /**
1161 * i40e_nvmupd_validate_command - Validate given command
1162 * @hw: pointer to hardware structure
1163 * @cmd: pointer to nvm update command buffer
1164 * @perrno: pointer to return error code
1165 *
1166 * Return one of the valid command types or I40E_NVMUPD_INVALID
1167 **/
1168 static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1169 struct i40e_nvm_access *cmd,
1170 int *perrno)
1171 {
1172 enum i40e_nvmupd_cmd upd_cmd;
1173 u8 module, transaction;
1174
1175 /* anything that doesn't match a recognized case is an error */
1176 upd_cmd = I40E_NVMUPD_INVALID;
1177
1178 transaction = i40e_nvmupd_get_transaction(cmd->config);
1179 module = i40e_nvmupd_get_module(cmd->config);
1180
1181 /* limits on data size */
1182 if ((cmd->data_size < 1) ||
1183 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1184 i40e_debug(hw, I40E_DEBUG_NVM,
1185 "i40e_nvmupd_validate_command data_size %d\n",
1186 cmd->data_size);
1187 *perrno = -EFAULT;
1188 return I40E_NVMUPD_INVALID;
1189 }
1190
1191 switch (cmd->command) {
1192 case I40E_NVM_READ:
1193 switch (transaction) {
1194 case I40E_NVM_CON:
1195 upd_cmd = I40E_NVMUPD_READ_CON;
1196 break;
1197 case I40E_NVM_SNT:
1198 upd_cmd = I40E_NVMUPD_READ_SNT;
1199 break;
1200 case I40E_NVM_LCB:
1201 upd_cmd = I40E_NVMUPD_READ_LCB;
1202 break;
1203 case I40E_NVM_SA:
1204 upd_cmd = I40E_NVMUPD_READ_SA;
1205 break;
1206 case I40E_NVM_EXEC:
1207 if (module == 0xf)
1208 upd_cmd = I40E_NVMUPD_STATUS;
1209 else if (module == 0)
1210 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1211 break;
1212 }
1213 break;
1214
1215 case I40E_NVM_WRITE:
1216 switch (transaction) {
1217 case I40E_NVM_CON:
1218 upd_cmd = I40E_NVMUPD_WRITE_CON;
1219 break;
1220 case I40E_NVM_SNT:
1221 upd_cmd = I40E_NVMUPD_WRITE_SNT;
1222 break;
1223 case I40E_NVM_LCB:
1224 upd_cmd = I40E_NVMUPD_WRITE_LCB;
1225 break;
1226 case I40E_NVM_SA:
1227 upd_cmd = I40E_NVMUPD_WRITE_SA;
1228 break;
1229 case I40E_NVM_ERA:
1230 upd_cmd = I40E_NVMUPD_WRITE_ERA;
1231 break;
1232 case I40E_NVM_CSUM:
1233 upd_cmd = I40E_NVMUPD_CSUM_CON;
1234 break;
1235 case (I40E_NVM_CSUM|I40E_NVM_SA):
1236 upd_cmd = I40E_NVMUPD_CSUM_SA;
1237 break;
1238 case (I40E_NVM_CSUM|I40E_NVM_LCB):
1239 upd_cmd = I40E_NVMUPD_CSUM_LCB;
1240 break;
1241 case I40E_NVM_EXEC:
1242 if (module == 0)
1243 upd_cmd = I40E_NVMUPD_EXEC_AQ;
1244 break;
1245 }
1246 break;
1247 }
1248
1249 return upd_cmd;
1250 }
1251
1252 /**
1253 * i40e_nvmupd_exec_aq - Run an AQ command
1254 * @hw: pointer to hardware structure
1255 * @cmd: pointer to nvm update command buffer
1256 * @bytes: pointer to the data buffer
1257 * @perrno: pointer to return error code
1258 *
1259 * cmd structure contains identifiers and data buffer
1260 **/
1261 static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1262 struct i40e_nvm_access *cmd,
1263 u8 *bytes, int *perrno)
1264 {
1265 struct i40e_asq_cmd_details cmd_details;
1266 i40e_status status;
1267 struct i40e_aq_desc *aq_desc;
1268 u32 buff_size = 0;
1269 u8 *buff = NULL;
1270 u32 aq_desc_len;
1271 u32 aq_data_len;
1272
1273 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1274 memset(&cmd_details, 0, sizeof(cmd_details));
1275 cmd_details.wb_desc = &hw->nvm_wb_desc;
1276
1277 aq_desc_len = sizeof(struct i40e_aq_desc);
1278 memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1279
1280 /* get the aq descriptor */
1281 if (cmd->data_size < aq_desc_len) {
1282 i40e_debug(hw, I40E_DEBUG_NVM,
1283 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1284 cmd->data_size, aq_desc_len);
1285 *perrno = -EINVAL;
1286 return I40E_ERR_PARAM;
1287 }
1288 aq_desc = (struct i40e_aq_desc *)bytes;
1289
1290 /* if data buffer needed, make sure it's ready */
1291 aq_data_len = cmd->data_size - aq_desc_len;
1292 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1293 if (buff_size) {
1294 if (!hw->nvm_buff.va) {
1295 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1296 hw->aq.asq_buf_size);
1297 if (status)
1298 i40e_debug(hw, I40E_DEBUG_NVM,
1299 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1300 status);
1301 }
1302
1303 if (hw->nvm_buff.va) {
1304 buff = hw->nvm_buff.va;
1305 memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1306 }
1307 }
1308
1309 /* and away we go! */
1310 status = i40e_asq_send_command(hw, aq_desc, buff,
1311 buff_size, &cmd_details);
1312 if (status) {
1313 i40e_debug(hw, I40E_DEBUG_NVM,
1314 "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1315 i40e_stat_str(hw, status),
1316 i40e_aq_str(hw, hw->aq.asq_last_status));
1317 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1318 }
1319
1320 /* should we wait for a followup event? */
1321 if (cmd->offset) {
1322 hw->nvm_wait_opcode = cmd->offset;
1323 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1324 }
1325
1326 return status;
1327 }
1328
1329 /**
1330 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1331 * @hw: pointer to hardware structure
1332 * @cmd: pointer to nvm update command buffer
1333 * @bytes: pointer to the data buffer
1334 * @perrno: pointer to return error code
1335 *
1336 * cmd structure contains identifiers and data buffer
1337 **/
1338 static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1339 struct i40e_nvm_access *cmd,
1340 u8 *bytes, int *perrno)
1341 {
1342 u32 aq_total_len;
1343 u32 aq_desc_len;
1344 int remainder;
1345 u8 *buff;
1346
1347 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1348
1349 aq_desc_len = sizeof(struct i40e_aq_desc);
1350 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1351
1352 /* check offset range */
1353 if (cmd->offset > aq_total_len) {
1354 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1355 __func__, cmd->offset, aq_total_len);
1356 *perrno = -EINVAL;
1357 return I40E_ERR_PARAM;
1358 }
1359
1360 /* check copylength range */
1361 if (cmd->data_size > (aq_total_len - cmd->offset)) {
1362 int new_len = aq_total_len - cmd->offset;
1363
1364 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1365 __func__, cmd->data_size, new_len);
1366 cmd->data_size = new_len;
1367 }
1368
1369 remainder = cmd->data_size;
1370 if (cmd->offset < aq_desc_len) {
1371 u32 len = aq_desc_len - cmd->offset;
1372
1373 len = min(len, cmd->data_size);
1374 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1375 __func__, cmd->offset, cmd->offset + len);
1376
1377 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1378 memcpy(bytes, buff, len);
1379
1380 bytes += len;
1381 remainder -= len;
1382 buff = hw->nvm_buff.va;
1383 } else {
1384 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1385 }
1386
1387 if (remainder > 0) {
1388 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1389
1390 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1391 __func__, start_byte, start_byte + remainder);
1392 memcpy(bytes, buff, remainder);
1393 }
1394
1395 return 0;
1396 }
1397
1398 /**
1399 * i40e_nvmupd_nvm_read - Read NVM
1400 * @hw: pointer to hardware structure
1401 * @cmd: pointer to nvm update command buffer
1402 * @bytes: pointer to the data buffer
1403 * @perrno: pointer to return error code
1404 *
1405 * cmd structure contains identifiers and data buffer
1406 **/
1407 static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1408 struct i40e_nvm_access *cmd,
1409 u8 *bytes, int *perrno)
1410 {
1411 struct i40e_asq_cmd_details cmd_details;
1412 i40e_status status;
1413 u8 module, transaction;
1414 bool last;
1415
1416 transaction = i40e_nvmupd_get_transaction(cmd->config);
1417 module = i40e_nvmupd_get_module(cmd->config);
1418 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1419
1420 memset(&cmd_details, 0, sizeof(cmd_details));
1421 cmd_details.wb_desc = &hw->nvm_wb_desc;
1422
1423 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1424 bytes, last, &cmd_details);
1425 if (status) {
1426 i40e_debug(hw, I40E_DEBUG_NVM,
1427 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n",
1428 module, cmd->offset, cmd->data_size);
1429 i40e_debug(hw, I40E_DEBUG_NVM,
1430 "i40e_nvmupd_nvm_read status %d aq %d\n",
1431 status, hw->aq.asq_last_status);
1432 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1433 }
1434
1435 return status;
1436 }
1437
1438 /**
1439 * i40e_nvmupd_nvm_erase - Erase an NVM module
1440 * @hw: pointer to hardware structure
1441 * @cmd: pointer to nvm update command buffer
1442 * @perrno: pointer to return error code
1443 *
1444 * module, offset, data_size and data are in cmd structure
1445 **/
1446 static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1447 struct i40e_nvm_access *cmd,
1448 int *perrno)
1449 {
1450 i40e_status status = 0;
1451 struct i40e_asq_cmd_details cmd_details;
1452 u8 module, transaction;
1453 bool last;
1454
1455 transaction = i40e_nvmupd_get_transaction(cmd->config);
1456 module = i40e_nvmupd_get_module(cmd->config);
1457 last = (transaction & I40E_NVM_LCB);
1458
1459 memset(&cmd_details, 0, sizeof(cmd_details));
1460 cmd_details.wb_desc = &hw->nvm_wb_desc;
1461
1462 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1463 last, &cmd_details);
1464 if (status) {
1465 i40e_debug(hw, I40E_DEBUG_NVM,
1466 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n",
1467 module, cmd->offset, cmd->data_size);
1468 i40e_debug(hw, I40E_DEBUG_NVM,
1469 "i40e_nvmupd_nvm_erase status %d aq %d\n",
1470 status, hw->aq.asq_last_status);
1471 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1472 }
1473
1474 return status;
1475 }
1476
1477 /**
1478 * i40e_nvmupd_nvm_write - Write NVM
1479 * @hw: pointer to hardware structure
1480 * @cmd: pointer to nvm update command buffer
1481 * @bytes: pointer to the data buffer
1482 * @perrno: pointer to return error code
1483 *
1484 * module, offset, data_size and data are in cmd structure
1485 **/
1486 static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1487 struct i40e_nvm_access *cmd,
1488 u8 *bytes, int *perrno)
1489 {
1490 i40e_status status = 0;
1491 struct i40e_asq_cmd_details cmd_details;
1492 u8 module, transaction;
1493 bool last;
1494
1495 transaction = i40e_nvmupd_get_transaction(cmd->config);
1496 module = i40e_nvmupd_get_module(cmd->config);
1497 last = (transaction & I40E_NVM_LCB);
1498
1499 memset(&cmd_details, 0, sizeof(cmd_details));
1500 cmd_details.wb_desc = &hw->nvm_wb_desc;
1501
1502 status = i40e_aq_update_nvm(hw, module, cmd->offset,
1503 (u16)cmd->data_size, bytes, last,
1504 &cmd_details);
1505 if (status) {
1506 i40e_debug(hw, I40E_DEBUG_NVM,
1507 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1508 module, cmd->offset, cmd->data_size);
1509 i40e_debug(hw, I40E_DEBUG_NVM,
1510 "i40e_nvmupd_nvm_write status %d aq %d\n",
1511 status, hw->aq.asq_last_status);
1512 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1513 }
1514
1515 return status;
1516 }