]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
i40e: add correct exception tracing for XDP
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include <linux/prefetch.h>
5 #include <linux/bpf_trace.h>
6 #include <net/xdp.h>
7 #include "i40e.h"
8 #include "i40e_trace.h"
9 #include "i40e_prototype.h"
10 #include "i40e_txrx_common.h"
11 #include "i40e_xsk.h"
12
13 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
14 /**
15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
16 * @tx_ring: Tx ring to send buffer on
17 * @fdata: Flow director filter data
18 * @add: Indicate if we are adding a rule or deleting one
19 *
20 **/
21 static void i40e_fdir(struct i40e_ring *tx_ring,
22 struct i40e_fdir_filter *fdata, bool add)
23 {
24 struct i40e_filter_program_desc *fdir_desc;
25 struct i40e_pf *pf = tx_ring->vsi->back;
26 u32 flex_ptype, dtype_cmd;
27 u16 i;
28
29 /* grab the next descriptor */
30 i = tx_ring->next_to_use;
31 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
32
33 i++;
34 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
35
36 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
37 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
38
39 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
40 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
41
42 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
43 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
44
45 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
46 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
47
48 /* Use LAN VSI Id if not programmed by user */
49 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
50 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
51 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
52
53 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
54
55 dtype_cmd |= add ?
56 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
57 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
58 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
59 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
60
61 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
62 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
63
64 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
65 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
66
67 if (fdata->cnt_index) {
68 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
69 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
70 ((u32)fdata->cnt_index <<
71 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
72 }
73
74 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
75 fdir_desc->rsvd = cpu_to_le32(0);
76 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
77 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
78 }
79
80 #define I40E_FD_CLEAN_DELAY 10
81 /**
82 * i40e_program_fdir_filter - Program a Flow Director filter
83 * @fdir_data: Packet data that will be filter parameters
84 * @raw_packet: the pre-allocated packet buffer for FDir
85 * @pf: The PF pointer
86 * @add: True for add/update, False for remove
87 **/
88 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
89 u8 *raw_packet, struct i40e_pf *pf,
90 bool add)
91 {
92 struct i40e_tx_buffer *tx_buf, *first;
93 struct i40e_tx_desc *tx_desc;
94 struct i40e_ring *tx_ring;
95 struct i40e_vsi *vsi;
96 struct device *dev;
97 dma_addr_t dma;
98 u32 td_cmd = 0;
99 u16 i;
100
101 /* find existing FDIR VSI */
102 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
103 if (!vsi)
104 return -ENOENT;
105
106 tx_ring = vsi->tx_rings[0];
107 dev = tx_ring->dev;
108
109 /* we need two descriptors to add/del a filter and we can wait */
110 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
111 if (!i)
112 return -EAGAIN;
113 msleep_interruptible(1);
114 }
115
116 dma = dma_map_single(dev, raw_packet,
117 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
118 if (dma_mapping_error(dev, dma))
119 goto dma_fail;
120
121 /* grab the next descriptor */
122 i = tx_ring->next_to_use;
123 first = &tx_ring->tx_bi[i];
124 i40e_fdir(tx_ring, fdir_data, add);
125
126 /* Now program a dummy descriptor */
127 i = tx_ring->next_to_use;
128 tx_desc = I40E_TX_DESC(tx_ring, i);
129 tx_buf = &tx_ring->tx_bi[i];
130
131 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
132
133 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
134
135 /* record length, and DMA address */
136 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
137 dma_unmap_addr_set(tx_buf, dma, dma);
138
139 tx_desc->buffer_addr = cpu_to_le64(dma);
140 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
141
142 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
143 tx_buf->raw_buf = (void *)raw_packet;
144
145 tx_desc->cmd_type_offset_bsz =
146 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
147
148 /* Force memory writes to complete before letting h/w
149 * know there are new descriptors to fetch.
150 */
151 wmb();
152
153 /* Mark the data descriptor to be watched */
154 first->next_to_watch = tx_desc;
155
156 writel(tx_ring->next_to_use, tx_ring->tail);
157 return 0;
158
159 dma_fail:
160 return -1;
161 }
162
163 #define IP_HEADER_OFFSET 14
164 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
165 /**
166 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
167 * @vsi: pointer to the targeted VSI
168 * @fd_data: the flow director data required for the FDir descriptor
169 * @add: true adds a filter, false removes it
170 *
171 * Returns 0 if the filters were successfully added or removed
172 **/
173 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
174 struct i40e_fdir_filter *fd_data,
175 bool add)
176 {
177 struct i40e_pf *pf = vsi->back;
178 struct udphdr *udp;
179 struct iphdr *ip;
180 u8 *raw_packet;
181 int ret;
182 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
183 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
184 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
185
186 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
187 if (!raw_packet)
188 return -ENOMEM;
189 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
190
191 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
192 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
193 + sizeof(struct iphdr));
194
195 ip->daddr = fd_data->dst_ip;
196 udp->dest = fd_data->dst_port;
197 ip->saddr = fd_data->src_ip;
198 udp->source = fd_data->src_port;
199
200 if (fd_data->flex_filter) {
201 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
202 __be16 pattern = fd_data->flex_word;
203 u16 off = fd_data->flex_offset;
204
205 *((__force __be16 *)(payload + off)) = pattern;
206 }
207
208 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
209 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
210 if (ret) {
211 dev_info(&pf->pdev->dev,
212 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
213 fd_data->pctype, fd_data->fd_id, ret);
214 /* Free the packet buffer since it wasn't added to the ring */
215 kfree(raw_packet);
216 return -EOPNOTSUPP;
217 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
218 if (add)
219 dev_info(&pf->pdev->dev,
220 "Filter OK for PCTYPE %d loc = %d\n",
221 fd_data->pctype, fd_data->fd_id);
222 else
223 dev_info(&pf->pdev->dev,
224 "Filter deleted for PCTYPE %d loc = %d\n",
225 fd_data->pctype, fd_data->fd_id);
226 }
227
228 if (add)
229 pf->fd_udp4_filter_cnt++;
230 else
231 pf->fd_udp4_filter_cnt--;
232
233 return 0;
234 }
235
236 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
237 /**
238 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
239 * @vsi: pointer to the targeted VSI
240 * @fd_data: the flow director data required for the FDir descriptor
241 * @add: true adds a filter, false removes it
242 *
243 * Returns 0 if the filters were successfully added or removed
244 **/
245 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
246 struct i40e_fdir_filter *fd_data,
247 bool add)
248 {
249 struct i40e_pf *pf = vsi->back;
250 struct tcphdr *tcp;
251 struct iphdr *ip;
252 u8 *raw_packet;
253 int ret;
254 /* Dummy packet */
255 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
256 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
258 0x0, 0x72, 0, 0, 0, 0};
259
260 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
261 if (!raw_packet)
262 return -ENOMEM;
263 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
264
265 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
266 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
267 + sizeof(struct iphdr));
268
269 ip->daddr = fd_data->dst_ip;
270 tcp->dest = fd_data->dst_port;
271 ip->saddr = fd_data->src_ip;
272 tcp->source = fd_data->src_port;
273
274 if (fd_data->flex_filter) {
275 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
276 __be16 pattern = fd_data->flex_word;
277 u16 off = fd_data->flex_offset;
278
279 *((__force __be16 *)(payload + off)) = pattern;
280 }
281
282 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
283 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
284 if (ret) {
285 dev_info(&pf->pdev->dev,
286 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
287 fd_data->pctype, fd_data->fd_id, ret);
288 /* Free the packet buffer since it wasn't added to the ring */
289 kfree(raw_packet);
290 return -EOPNOTSUPP;
291 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
292 if (add)
293 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
294 fd_data->pctype, fd_data->fd_id);
295 else
296 dev_info(&pf->pdev->dev,
297 "Filter deleted for PCTYPE %d loc = %d\n",
298 fd_data->pctype, fd_data->fd_id);
299 }
300
301 if (add) {
302 pf->fd_tcp4_filter_cnt++;
303 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
304 I40E_DEBUG_FD & pf->hw.debug_mask)
305 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
306 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
307 } else {
308 pf->fd_tcp4_filter_cnt--;
309 }
310
311 return 0;
312 }
313
314 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
315 /**
316 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
317 * a specific flow spec
318 * @vsi: pointer to the targeted VSI
319 * @fd_data: the flow director data required for the FDir descriptor
320 * @add: true adds a filter, false removes it
321 *
322 * Returns 0 if the filters were successfully added or removed
323 **/
324 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
325 struct i40e_fdir_filter *fd_data,
326 bool add)
327 {
328 struct i40e_pf *pf = vsi->back;
329 struct sctphdr *sctp;
330 struct iphdr *ip;
331 u8 *raw_packet;
332 int ret;
333 /* Dummy packet */
334 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
335 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
336 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
337
338 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
339 if (!raw_packet)
340 return -ENOMEM;
341 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
342
343 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
344 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
345 + sizeof(struct iphdr));
346
347 ip->daddr = fd_data->dst_ip;
348 sctp->dest = fd_data->dst_port;
349 ip->saddr = fd_data->src_ip;
350 sctp->source = fd_data->src_port;
351
352 if (fd_data->flex_filter) {
353 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
354 __be16 pattern = fd_data->flex_word;
355 u16 off = fd_data->flex_offset;
356
357 *((__force __be16 *)(payload + off)) = pattern;
358 }
359
360 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
361 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
362 if (ret) {
363 dev_info(&pf->pdev->dev,
364 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
365 fd_data->pctype, fd_data->fd_id, ret);
366 /* Free the packet buffer since it wasn't added to the ring */
367 kfree(raw_packet);
368 return -EOPNOTSUPP;
369 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
370 if (add)
371 dev_info(&pf->pdev->dev,
372 "Filter OK for PCTYPE %d loc = %d\n",
373 fd_data->pctype, fd_data->fd_id);
374 else
375 dev_info(&pf->pdev->dev,
376 "Filter deleted for PCTYPE %d loc = %d\n",
377 fd_data->pctype, fd_data->fd_id);
378 }
379
380 if (add)
381 pf->fd_sctp4_filter_cnt++;
382 else
383 pf->fd_sctp4_filter_cnt--;
384
385 return 0;
386 }
387
388 #define I40E_IP_DUMMY_PACKET_LEN 34
389 /**
390 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
391 * a specific flow spec
392 * @vsi: pointer to the targeted VSI
393 * @fd_data: the flow director data required for the FDir descriptor
394 * @add: true adds a filter, false removes it
395 *
396 * Returns 0 if the filters were successfully added or removed
397 **/
398 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
399 struct i40e_fdir_filter *fd_data,
400 bool add)
401 {
402 struct i40e_pf *pf = vsi->back;
403 struct iphdr *ip;
404 u8 *raw_packet;
405 int ret;
406 int i;
407 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
408 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
409 0, 0, 0, 0};
410
411 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
412 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
413 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
414 if (!raw_packet)
415 return -ENOMEM;
416 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
417 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
418
419 ip->saddr = fd_data->src_ip;
420 ip->daddr = fd_data->dst_ip;
421 ip->protocol = 0;
422
423 if (fd_data->flex_filter) {
424 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
425 __be16 pattern = fd_data->flex_word;
426 u16 off = fd_data->flex_offset;
427
428 *((__force __be16 *)(payload + off)) = pattern;
429 }
430
431 fd_data->pctype = i;
432 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
433 if (ret) {
434 dev_info(&pf->pdev->dev,
435 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
436 fd_data->pctype, fd_data->fd_id, ret);
437 /* The packet buffer wasn't added to the ring so we
438 * need to free it now.
439 */
440 kfree(raw_packet);
441 return -EOPNOTSUPP;
442 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
443 if (add)
444 dev_info(&pf->pdev->dev,
445 "Filter OK for PCTYPE %d loc = %d\n",
446 fd_data->pctype, fd_data->fd_id);
447 else
448 dev_info(&pf->pdev->dev,
449 "Filter deleted for PCTYPE %d loc = %d\n",
450 fd_data->pctype, fd_data->fd_id);
451 }
452 }
453
454 if (add)
455 pf->fd_ip4_filter_cnt++;
456 else
457 pf->fd_ip4_filter_cnt--;
458
459 return 0;
460 }
461
462 /**
463 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
464 * @vsi: pointer to the targeted VSI
465 * @input: filter to add or delete
466 * @add: true adds a filter, false removes it
467 *
468 **/
469 int i40e_add_del_fdir(struct i40e_vsi *vsi,
470 struct i40e_fdir_filter *input, bool add)
471 {
472 struct i40e_pf *pf = vsi->back;
473 int ret;
474
475 switch (input->flow_type & ~FLOW_EXT) {
476 case TCP_V4_FLOW:
477 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
478 break;
479 case UDP_V4_FLOW:
480 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
481 break;
482 case SCTP_V4_FLOW:
483 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
484 break;
485 case IP_USER_FLOW:
486 switch (input->ip4_proto) {
487 case IPPROTO_TCP:
488 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
489 break;
490 case IPPROTO_UDP:
491 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
492 break;
493 case IPPROTO_SCTP:
494 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
495 break;
496 case IPPROTO_IP:
497 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
498 break;
499 default:
500 /* We cannot support masking based on protocol */
501 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
502 input->ip4_proto);
503 return -EINVAL;
504 }
505 break;
506 default:
507 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
508 input->flow_type);
509 return -EINVAL;
510 }
511
512 /* The buffer allocated here will be normally be freed by
513 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
514 * completion. In the event of an error adding the buffer to the FDIR
515 * ring, it will immediately be freed. It may also be freed by
516 * i40e_clean_tx_ring() when closing the VSI.
517 */
518 return ret;
519 }
520
521 /**
522 * i40e_fd_handle_status - check the Programming Status for FD
523 * @rx_ring: the Rx ring for this descriptor
524 * @qword0_raw: qword0
525 * @qword1: qword1 after le_to_cpu
526 * @prog_id: the id originally used for programming
527 *
528 * This is used to verify if the FD programming or invalidation
529 * requested by SW to the HW is successful or not and take actions accordingly.
530 **/
531 static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
532 u64 qword1, u8 prog_id)
533 {
534 struct i40e_pf *pf = rx_ring->vsi->back;
535 struct pci_dev *pdev = pf->pdev;
536 struct i40e_16b_rx_wb_qw0 *qw0;
537 u32 fcnt_prog, fcnt_avail;
538 u32 error;
539
540 qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
541 error = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
542 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
543
544 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
545 pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
546 if (qw0->hi_dword.fd_id != 0 ||
547 (I40E_DEBUG_FD & pf->hw.debug_mask))
548 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
549 pf->fd_inv);
550
551 /* Check if the programming error is for ATR.
552 * If so, auto disable ATR and set a state for
553 * flush in progress. Next time we come here if flush is in
554 * progress do nothing, once flush is complete the state will
555 * be cleared.
556 */
557 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
558 return;
559
560 pf->fd_add_err++;
561 /* store the current atr filter count */
562 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
563
564 if (qw0->hi_dword.fd_id == 0 &&
565 test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
566 /* These set_bit() calls aren't atomic with the
567 * test_bit() here, but worse case we potentially
568 * disable ATR and queue a flush right after SB
569 * support is re-enabled. That shouldn't cause an
570 * issue in practice
571 */
572 set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
573 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
574 }
575
576 /* filter programming failed most likely due to table full */
577 fcnt_prog = i40e_get_global_fd_count(pf);
578 fcnt_avail = pf->fdir_pf_filter_count;
579 /* If ATR is running fcnt_prog can quickly change,
580 * if we are very close to full, it makes sense to disable
581 * FD ATR/SB and then re-enable it when there is room.
582 */
583 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
584 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
585 !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
586 pf->state))
587 if (I40E_DEBUG_FD & pf->hw.debug_mask)
588 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
589 }
590 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
591 if (I40E_DEBUG_FD & pf->hw.debug_mask)
592 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
593 qw0->hi_dword.fd_id);
594 }
595 }
596
597 /**
598 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
599 * @ring: the ring that owns the buffer
600 * @tx_buffer: the buffer to free
601 **/
602 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
603 struct i40e_tx_buffer *tx_buffer)
604 {
605 if (tx_buffer->skb) {
606 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
607 kfree(tx_buffer->raw_buf);
608 else if (ring_is_xdp(ring))
609 xdp_return_frame(tx_buffer->xdpf);
610 else
611 dev_kfree_skb_any(tx_buffer->skb);
612 if (dma_unmap_len(tx_buffer, len))
613 dma_unmap_single(ring->dev,
614 dma_unmap_addr(tx_buffer, dma),
615 dma_unmap_len(tx_buffer, len),
616 DMA_TO_DEVICE);
617 } else if (dma_unmap_len(tx_buffer, len)) {
618 dma_unmap_page(ring->dev,
619 dma_unmap_addr(tx_buffer, dma),
620 dma_unmap_len(tx_buffer, len),
621 DMA_TO_DEVICE);
622 }
623
624 tx_buffer->next_to_watch = NULL;
625 tx_buffer->skb = NULL;
626 dma_unmap_len_set(tx_buffer, len, 0);
627 /* tx_buffer must be completely set up in the transmit path */
628 }
629
630 /**
631 * i40e_clean_tx_ring - Free any empty Tx buffers
632 * @tx_ring: ring to be cleaned
633 **/
634 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
635 {
636 unsigned long bi_size;
637 u16 i;
638
639 if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
640 i40e_xsk_clean_tx_ring(tx_ring);
641 } else {
642 /* ring already cleared, nothing to do */
643 if (!tx_ring->tx_bi)
644 return;
645
646 /* Free all the Tx ring sk_buffs */
647 for (i = 0; i < tx_ring->count; i++)
648 i40e_unmap_and_free_tx_resource(tx_ring,
649 &tx_ring->tx_bi[i]);
650 }
651
652 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
653 memset(tx_ring->tx_bi, 0, bi_size);
654
655 /* Zero out the descriptor ring */
656 memset(tx_ring->desc, 0, tx_ring->size);
657
658 tx_ring->next_to_use = 0;
659 tx_ring->next_to_clean = 0;
660
661 if (!tx_ring->netdev)
662 return;
663
664 /* cleanup Tx queue statistics */
665 netdev_tx_reset_queue(txring_txq(tx_ring));
666 }
667
668 /**
669 * i40e_free_tx_resources - Free Tx resources per queue
670 * @tx_ring: Tx descriptor ring for a specific queue
671 *
672 * Free all transmit software resources
673 **/
674 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
675 {
676 i40e_clean_tx_ring(tx_ring);
677 kfree(tx_ring->tx_bi);
678 tx_ring->tx_bi = NULL;
679 kfree(tx_ring->xsk_descs);
680 tx_ring->xsk_descs = NULL;
681
682 if (tx_ring->desc) {
683 dma_free_coherent(tx_ring->dev, tx_ring->size,
684 tx_ring->desc, tx_ring->dma);
685 tx_ring->desc = NULL;
686 }
687 }
688
689 /**
690 * i40e_get_tx_pending - how many tx descriptors not processed
691 * @ring: the ring of descriptors
692 * @in_sw: use SW variables
693 *
694 * Since there is no access to the ring head register
695 * in XL710, we need to use our local copies
696 **/
697 u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
698 {
699 u32 head, tail;
700
701 if (!in_sw) {
702 head = i40e_get_head(ring);
703 tail = readl(ring->tail);
704 } else {
705 head = ring->next_to_clean;
706 tail = ring->next_to_use;
707 }
708
709 if (head != tail)
710 return (head < tail) ?
711 tail - head : (tail + ring->count - head);
712
713 return 0;
714 }
715
716 /**
717 * i40e_detect_recover_hung - Function to detect and recover hung_queues
718 * @vsi: pointer to vsi struct with tx queues
719 *
720 * VSI has netdev and netdev has TX queues. This function is to check each of
721 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
722 **/
723 void i40e_detect_recover_hung(struct i40e_vsi *vsi)
724 {
725 struct i40e_ring *tx_ring = NULL;
726 struct net_device *netdev;
727 unsigned int i;
728 int packets;
729
730 if (!vsi)
731 return;
732
733 if (test_bit(__I40E_VSI_DOWN, vsi->state))
734 return;
735
736 netdev = vsi->netdev;
737 if (!netdev)
738 return;
739
740 if (!netif_carrier_ok(netdev))
741 return;
742
743 for (i = 0; i < vsi->num_queue_pairs; i++) {
744 tx_ring = vsi->tx_rings[i];
745 if (tx_ring && tx_ring->desc) {
746 /* If packet counter has not changed the queue is
747 * likely stalled, so force an interrupt for this
748 * queue.
749 *
750 * prev_pkt_ctr would be negative if there was no
751 * pending work.
752 */
753 packets = tx_ring->stats.packets & INT_MAX;
754 if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
755 i40e_force_wb(vsi, tx_ring->q_vector);
756 continue;
757 }
758
759 /* Memory barrier between read of packet count and call
760 * to i40e_get_tx_pending()
761 */
762 smp_rmb();
763 tx_ring->tx_stats.prev_pkt_ctr =
764 i40e_get_tx_pending(tx_ring, true) ? packets : -1;
765 }
766 }
767 }
768
769 /**
770 * i40e_clean_tx_irq - Reclaim resources after transmit completes
771 * @vsi: the VSI we care about
772 * @tx_ring: Tx ring to clean
773 * @napi_budget: Used to determine if we are in netpoll
774 *
775 * Returns true if there's any budget left (e.g. the clean is finished)
776 **/
777 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
778 struct i40e_ring *tx_ring, int napi_budget)
779 {
780 int i = tx_ring->next_to_clean;
781 struct i40e_tx_buffer *tx_buf;
782 struct i40e_tx_desc *tx_head;
783 struct i40e_tx_desc *tx_desc;
784 unsigned int total_bytes = 0, total_packets = 0;
785 unsigned int budget = vsi->work_limit;
786
787 tx_buf = &tx_ring->tx_bi[i];
788 tx_desc = I40E_TX_DESC(tx_ring, i);
789 i -= tx_ring->count;
790
791 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
792
793 do {
794 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
795
796 /* if next_to_watch is not set then there is no work pending */
797 if (!eop_desc)
798 break;
799
800 /* prevent any other reads prior to eop_desc */
801 smp_rmb();
802
803 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
804 /* we have caught up to head, no work left to do */
805 if (tx_head == tx_desc)
806 break;
807
808 /* clear next_to_watch to prevent false hangs */
809 tx_buf->next_to_watch = NULL;
810
811 /* update the statistics for this packet */
812 total_bytes += tx_buf->bytecount;
813 total_packets += tx_buf->gso_segs;
814
815 /* free the skb/XDP data */
816 if (ring_is_xdp(tx_ring))
817 xdp_return_frame(tx_buf->xdpf);
818 else
819 napi_consume_skb(tx_buf->skb, napi_budget);
820
821 /* unmap skb header data */
822 dma_unmap_single(tx_ring->dev,
823 dma_unmap_addr(tx_buf, dma),
824 dma_unmap_len(tx_buf, len),
825 DMA_TO_DEVICE);
826
827 /* clear tx_buffer data */
828 tx_buf->skb = NULL;
829 dma_unmap_len_set(tx_buf, len, 0);
830
831 /* unmap remaining buffers */
832 while (tx_desc != eop_desc) {
833 i40e_trace(clean_tx_irq_unmap,
834 tx_ring, tx_desc, tx_buf);
835
836 tx_buf++;
837 tx_desc++;
838 i++;
839 if (unlikely(!i)) {
840 i -= tx_ring->count;
841 tx_buf = tx_ring->tx_bi;
842 tx_desc = I40E_TX_DESC(tx_ring, 0);
843 }
844
845 /* unmap any remaining paged data */
846 if (dma_unmap_len(tx_buf, len)) {
847 dma_unmap_page(tx_ring->dev,
848 dma_unmap_addr(tx_buf, dma),
849 dma_unmap_len(tx_buf, len),
850 DMA_TO_DEVICE);
851 dma_unmap_len_set(tx_buf, len, 0);
852 }
853 }
854
855 /* move us one more past the eop_desc for start of next pkt */
856 tx_buf++;
857 tx_desc++;
858 i++;
859 if (unlikely(!i)) {
860 i -= tx_ring->count;
861 tx_buf = tx_ring->tx_bi;
862 tx_desc = I40E_TX_DESC(tx_ring, 0);
863 }
864
865 prefetch(tx_desc);
866
867 /* update budget accounting */
868 budget--;
869 } while (likely(budget));
870
871 i += tx_ring->count;
872 tx_ring->next_to_clean = i;
873 i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
874 i40e_arm_wb(tx_ring, vsi, budget);
875
876 if (ring_is_xdp(tx_ring))
877 return !!budget;
878
879 /* notify netdev of completed buffers */
880 netdev_tx_completed_queue(txring_txq(tx_ring),
881 total_packets, total_bytes);
882
883 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
884 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
885 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
886 /* Make sure that anybody stopping the queue after this
887 * sees the new next_to_clean.
888 */
889 smp_mb();
890 if (__netif_subqueue_stopped(tx_ring->netdev,
891 tx_ring->queue_index) &&
892 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
893 netif_wake_subqueue(tx_ring->netdev,
894 tx_ring->queue_index);
895 ++tx_ring->tx_stats.restart_queue;
896 }
897 }
898
899 return !!budget;
900 }
901
902 /**
903 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
904 * @vsi: the VSI we care about
905 * @q_vector: the vector on which to enable writeback
906 *
907 **/
908 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
909 struct i40e_q_vector *q_vector)
910 {
911 u16 flags = q_vector->tx.ring[0].flags;
912 u32 val;
913
914 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
915 return;
916
917 if (q_vector->arm_wb_state)
918 return;
919
920 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
921 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
922 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
923
924 wr32(&vsi->back->hw,
925 I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
926 val);
927 } else {
928 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
929 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
930
931 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
932 }
933 q_vector->arm_wb_state = true;
934 }
935
936 /**
937 * i40e_force_wb - Issue SW Interrupt so HW does a wb
938 * @vsi: the VSI we care about
939 * @q_vector: the vector on which to force writeback
940 *
941 **/
942 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
943 {
944 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
945 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
946 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
947 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
948 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
949 /* allow 00 to be written to the index */
950
951 wr32(&vsi->back->hw,
952 I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
953 } else {
954 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
955 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
956 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
957 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
958 /* allow 00 to be written to the index */
959
960 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
961 }
962 }
963
964 static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
965 struct i40e_ring_container *rc)
966 {
967 return &q_vector->rx == rc;
968 }
969
970 static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
971 {
972 unsigned int divisor;
973
974 switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
975 case I40E_LINK_SPEED_40GB:
976 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
977 break;
978 case I40E_LINK_SPEED_25GB:
979 case I40E_LINK_SPEED_20GB:
980 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
981 break;
982 default:
983 case I40E_LINK_SPEED_10GB:
984 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
985 break;
986 case I40E_LINK_SPEED_1GB:
987 case I40E_LINK_SPEED_100MB:
988 divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
989 break;
990 }
991
992 return divisor;
993 }
994
995 /**
996 * i40e_update_itr - update the dynamic ITR value based on statistics
997 * @q_vector: structure containing interrupt and ring information
998 * @rc: structure containing ring performance data
999 *
1000 * Stores a new ITR value based on packets and byte
1001 * counts during the last interrupt. The advantage of per interrupt
1002 * computation is faster updates and more accurate ITR for the current
1003 * traffic pattern. Constants in this function were computed
1004 * based on theoretical maximum wire speed and thresholds were set based
1005 * on testing data as well as attempting to minimize response time
1006 * while increasing bulk throughput.
1007 **/
1008 static void i40e_update_itr(struct i40e_q_vector *q_vector,
1009 struct i40e_ring_container *rc)
1010 {
1011 unsigned int avg_wire_size, packets, bytes, itr;
1012 unsigned long next_update = jiffies;
1013
1014 /* If we don't have any rings just leave ourselves set for maximum
1015 * possible latency so we take ourselves out of the equation.
1016 */
1017 if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1018 return;
1019
1020 /* For Rx we want to push the delay up and default to low latency.
1021 * for Tx we want to pull the delay down and default to high latency.
1022 */
1023 itr = i40e_container_is_rx(q_vector, rc) ?
1024 I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1025 I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1026
1027 /* If we didn't update within up to 1 - 2 jiffies we can assume
1028 * that either packets are coming in so slow there hasn't been
1029 * any work, or that there is so much work that NAPI is dealing
1030 * with interrupt moderation and we don't need to do anything.
1031 */
1032 if (time_after(next_update, rc->next_update))
1033 goto clear_counts;
1034
1035 /* If itr_countdown is set it means we programmed an ITR within
1036 * the last 4 interrupt cycles. This has a side effect of us
1037 * potentially firing an early interrupt. In order to work around
1038 * this we need to throw out any data received for a few
1039 * interrupts following the update.
1040 */
1041 if (q_vector->itr_countdown) {
1042 itr = rc->target_itr;
1043 goto clear_counts;
1044 }
1045
1046 packets = rc->total_packets;
1047 bytes = rc->total_bytes;
1048
1049 if (i40e_container_is_rx(q_vector, rc)) {
1050 /* If Rx there are 1 to 4 packets and bytes are less than
1051 * 9000 assume insufficient data to use bulk rate limiting
1052 * approach unless Tx is already in bulk rate limiting. We
1053 * are likely latency driven.
1054 */
1055 if (packets && packets < 4 && bytes < 9000 &&
1056 (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1057 itr = I40E_ITR_ADAPTIVE_LATENCY;
1058 goto adjust_by_size;
1059 }
1060 } else if (packets < 4) {
1061 /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1062 * bulk mode and we are receiving 4 or fewer packets just
1063 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1064 * that the Rx can relax.
1065 */
1066 if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1067 (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1068 I40E_ITR_ADAPTIVE_MAX_USECS)
1069 goto clear_counts;
1070 } else if (packets > 32) {
1071 /* If we have processed over 32 packets in a single interrupt
1072 * for Tx assume we need to switch over to "bulk" mode.
1073 */
1074 rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1075 }
1076
1077 /* We have no packets to actually measure against. This means
1078 * either one of the other queues on this vector is active or
1079 * we are a Tx queue doing TSO with too high of an interrupt rate.
1080 *
1081 * Between 4 and 56 we can assume that our current interrupt delay
1082 * is only slightly too low. As such we should increase it by a small
1083 * fixed amount.
1084 */
1085 if (packets < 56) {
1086 itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1087 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1088 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1089 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1090 }
1091 goto clear_counts;
1092 }
1093
1094 if (packets <= 256) {
1095 itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1096 itr &= I40E_ITR_MASK;
1097
1098 /* Between 56 and 112 is our "goldilocks" zone where we are
1099 * working out "just right". Just report that our current
1100 * ITR is good for us.
1101 */
1102 if (packets <= 112)
1103 goto clear_counts;
1104
1105 /* If packet count is 128 or greater we are likely looking
1106 * at a slight overrun of the delay we want. Try halving
1107 * our delay to see if that will cut the number of packets
1108 * in half per interrupt.
1109 */
1110 itr /= 2;
1111 itr &= I40E_ITR_MASK;
1112 if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1113 itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1114
1115 goto clear_counts;
1116 }
1117
1118 /* The paths below assume we are dealing with a bulk ITR since
1119 * number of packets is greater than 256. We are just going to have
1120 * to compute a value and try to bring the count under control,
1121 * though for smaller packet sizes there isn't much we can do as
1122 * NAPI polling will likely be kicking in sooner rather than later.
1123 */
1124 itr = I40E_ITR_ADAPTIVE_BULK;
1125
1126 adjust_by_size:
1127 /* If packet counts are 256 or greater we can assume we have a gross
1128 * overestimation of what the rate should be. Instead of trying to fine
1129 * tune it just use the formula below to try and dial in an exact value
1130 * give the current packet size of the frame.
1131 */
1132 avg_wire_size = bytes / packets;
1133
1134 /* The following is a crude approximation of:
1135 * wmem_default / (size + overhead) = desired_pkts_per_int
1136 * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1137 * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1138 *
1139 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1140 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1141 * formula down to
1142 *
1143 * (170 * (size + 24)) / (size + 640) = ITR
1144 *
1145 * We first do some math on the packet size and then finally bitshift
1146 * by 8 after rounding up. We also have to account for PCIe link speed
1147 * difference as ITR scales based on this.
1148 */
1149 if (avg_wire_size <= 60) {
1150 /* Start at 250k ints/sec */
1151 avg_wire_size = 4096;
1152 } else if (avg_wire_size <= 380) {
1153 /* 250K ints/sec to 60K ints/sec */
1154 avg_wire_size *= 40;
1155 avg_wire_size += 1696;
1156 } else if (avg_wire_size <= 1084) {
1157 /* 60K ints/sec to 36K ints/sec */
1158 avg_wire_size *= 15;
1159 avg_wire_size += 11452;
1160 } else if (avg_wire_size <= 1980) {
1161 /* 36K ints/sec to 30K ints/sec */
1162 avg_wire_size *= 5;
1163 avg_wire_size += 22420;
1164 } else {
1165 /* plateau at a limit of 30K ints/sec */
1166 avg_wire_size = 32256;
1167 }
1168
1169 /* If we are in low latency mode halve our delay which doubles the
1170 * rate to somewhere between 100K to 16K ints/sec
1171 */
1172 if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1173 avg_wire_size /= 2;
1174
1175 /* Resultant value is 256 times larger than it needs to be. This
1176 * gives us room to adjust the value as needed to either increase
1177 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1178 *
1179 * Use addition as we have already recorded the new latency flag
1180 * for the ITR value.
1181 */
1182 itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1183 I40E_ITR_ADAPTIVE_MIN_INC;
1184
1185 if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1186 itr &= I40E_ITR_ADAPTIVE_LATENCY;
1187 itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1188 }
1189
1190 clear_counts:
1191 /* write back value */
1192 rc->target_itr = itr;
1193
1194 /* next update should occur within next jiffy */
1195 rc->next_update = next_update + 1;
1196
1197 rc->total_bytes = 0;
1198 rc->total_packets = 0;
1199 }
1200
1201 static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1202 {
1203 return &rx_ring->rx_bi[idx];
1204 }
1205
1206 /**
1207 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1208 * @rx_ring: rx descriptor ring to store buffers on
1209 * @old_buff: donor buffer to have page reused
1210 *
1211 * Synchronizes page for reuse by the adapter
1212 **/
1213 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1214 struct i40e_rx_buffer *old_buff)
1215 {
1216 struct i40e_rx_buffer *new_buff;
1217 u16 nta = rx_ring->next_to_alloc;
1218
1219 new_buff = i40e_rx_bi(rx_ring, nta);
1220
1221 /* update, and store next to alloc */
1222 nta++;
1223 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1224
1225 /* transfer page from old buffer to new buffer */
1226 new_buff->dma = old_buff->dma;
1227 new_buff->page = old_buff->page;
1228 new_buff->page_offset = old_buff->page_offset;
1229 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1230
1231 rx_ring->rx_stats.page_reuse_count++;
1232
1233 /* clear contents of buffer_info */
1234 old_buff->page = NULL;
1235 }
1236
1237 /**
1238 * i40e_clean_programming_status - clean the programming status descriptor
1239 * @rx_ring: the rx ring that has this descriptor
1240 * @qword0_raw: qword0
1241 * @qword1: qword1 representing status_error_len in CPU ordering
1242 *
1243 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1244 * status being successful or not and take actions accordingly. FCoE should
1245 * handle its context/filter programming/invalidation status and take actions.
1246 *
1247 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1248 **/
1249 void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1250 u64 qword1)
1251 {
1252 u8 id;
1253
1254 id = (qword1 & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1255 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1256
1257 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1258 i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1259 }
1260
1261 /**
1262 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1263 * @tx_ring: the tx ring to set up
1264 *
1265 * Return 0 on success, negative on error
1266 **/
1267 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1268 {
1269 struct device *dev = tx_ring->dev;
1270 int bi_size;
1271
1272 if (!dev)
1273 return -ENOMEM;
1274
1275 /* warn if we are about to overwrite the pointer */
1276 WARN_ON(tx_ring->tx_bi);
1277 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1278 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1279 if (!tx_ring->tx_bi)
1280 goto err;
1281
1282 if (ring_is_xdp(tx_ring)) {
1283 tx_ring->xsk_descs = kcalloc(I40E_MAX_NUM_DESCRIPTORS, sizeof(*tx_ring->xsk_descs),
1284 GFP_KERNEL);
1285 if (!tx_ring->xsk_descs)
1286 goto err;
1287 }
1288
1289 u64_stats_init(&tx_ring->syncp);
1290
1291 /* round up to nearest 4K */
1292 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1293 /* add u32 for head writeback, align after this takes care of
1294 * guaranteeing this is at least one cache line in size
1295 */
1296 tx_ring->size += sizeof(u32);
1297 tx_ring->size = ALIGN(tx_ring->size, 4096);
1298 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1299 &tx_ring->dma, GFP_KERNEL);
1300 if (!tx_ring->desc) {
1301 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1302 tx_ring->size);
1303 goto err;
1304 }
1305
1306 tx_ring->next_to_use = 0;
1307 tx_ring->next_to_clean = 0;
1308 tx_ring->tx_stats.prev_pkt_ctr = -1;
1309 return 0;
1310
1311 err:
1312 kfree(tx_ring->xsk_descs);
1313 tx_ring->xsk_descs = NULL;
1314 kfree(tx_ring->tx_bi);
1315 tx_ring->tx_bi = NULL;
1316 return -ENOMEM;
1317 }
1318
1319 int i40e_alloc_rx_bi(struct i40e_ring *rx_ring)
1320 {
1321 unsigned long sz = sizeof(*rx_ring->rx_bi) * rx_ring->count;
1322
1323 rx_ring->rx_bi = kzalloc(sz, GFP_KERNEL);
1324 return rx_ring->rx_bi ? 0 : -ENOMEM;
1325 }
1326
1327 static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1328 {
1329 memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1330 }
1331
1332 /**
1333 * i40e_clean_rx_ring - Free Rx buffers
1334 * @rx_ring: ring to be cleaned
1335 **/
1336 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1337 {
1338 u16 i;
1339
1340 /* ring already cleared, nothing to do */
1341 if (!rx_ring->rx_bi)
1342 return;
1343
1344 if (rx_ring->skb) {
1345 dev_kfree_skb(rx_ring->skb);
1346 rx_ring->skb = NULL;
1347 }
1348
1349 if (rx_ring->xsk_pool) {
1350 i40e_xsk_clean_rx_ring(rx_ring);
1351 goto skip_free;
1352 }
1353
1354 /* Free all the Rx ring sk_buffs */
1355 for (i = 0; i < rx_ring->count; i++) {
1356 struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1357
1358 if (!rx_bi->page)
1359 continue;
1360
1361 /* Invalidate cache lines that may have been written to by
1362 * device so that we avoid corrupting memory.
1363 */
1364 dma_sync_single_range_for_cpu(rx_ring->dev,
1365 rx_bi->dma,
1366 rx_bi->page_offset,
1367 rx_ring->rx_buf_len,
1368 DMA_FROM_DEVICE);
1369
1370 /* free resources associated with mapping */
1371 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1372 i40e_rx_pg_size(rx_ring),
1373 DMA_FROM_DEVICE,
1374 I40E_RX_DMA_ATTR);
1375
1376 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1377
1378 rx_bi->page = NULL;
1379 rx_bi->page_offset = 0;
1380 }
1381
1382 skip_free:
1383 if (rx_ring->xsk_pool)
1384 i40e_clear_rx_bi_zc(rx_ring);
1385 else
1386 i40e_clear_rx_bi(rx_ring);
1387
1388 /* Zero out the descriptor ring */
1389 memset(rx_ring->desc, 0, rx_ring->size);
1390
1391 rx_ring->next_to_alloc = 0;
1392 rx_ring->next_to_clean = 0;
1393 rx_ring->next_to_use = 0;
1394 }
1395
1396 /**
1397 * i40e_free_rx_resources - Free Rx resources
1398 * @rx_ring: ring to clean the resources from
1399 *
1400 * Free all receive software resources
1401 **/
1402 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1403 {
1404 i40e_clean_rx_ring(rx_ring);
1405 if (rx_ring->vsi->type == I40E_VSI_MAIN)
1406 xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1407 rx_ring->xdp_prog = NULL;
1408 kfree(rx_ring->rx_bi);
1409 rx_ring->rx_bi = NULL;
1410
1411 if (rx_ring->desc) {
1412 dma_free_coherent(rx_ring->dev, rx_ring->size,
1413 rx_ring->desc, rx_ring->dma);
1414 rx_ring->desc = NULL;
1415 }
1416 }
1417
1418 /**
1419 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1420 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1421 *
1422 * Returns 0 on success, negative on failure
1423 **/
1424 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1425 {
1426 struct device *dev = rx_ring->dev;
1427 int err;
1428
1429 u64_stats_init(&rx_ring->syncp);
1430
1431 /* Round up to nearest 4K */
1432 rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1433 rx_ring->size = ALIGN(rx_ring->size, 4096);
1434 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1435 &rx_ring->dma, GFP_KERNEL);
1436
1437 if (!rx_ring->desc) {
1438 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1439 rx_ring->size);
1440 return -ENOMEM;
1441 }
1442
1443 rx_ring->next_to_alloc = 0;
1444 rx_ring->next_to_clean = 0;
1445 rx_ring->next_to_use = 0;
1446
1447 /* XDP RX-queue info only needed for RX rings exposed to XDP */
1448 if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1449 err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1450 rx_ring->queue_index, rx_ring->q_vector->napi.napi_id);
1451 if (err < 0)
1452 return err;
1453 }
1454
1455 rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
1456
1457 return 0;
1458 }
1459
1460 /**
1461 * i40e_release_rx_desc - Store the new tail and head values
1462 * @rx_ring: ring to bump
1463 * @val: new head index
1464 **/
1465 void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1466 {
1467 rx_ring->next_to_use = val;
1468
1469 /* update next to alloc since we have filled the ring */
1470 rx_ring->next_to_alloc = val;
1471
1472 /* Force memory writes to complete before letting h/w
1473 * know there are new descriptors to fetch. (Only
1474 * applicable for weak-ordered memory model archs,
1475 * such as IA-64).
1476 */
1477 wmb();
1478 writel(val, rx_ring->tail);
1479 }
1480
1481 /**
1482 * i40e_rx_offset - Return expected offset into page to access data
1483 * @rx_ring: Ring we are requesting offset of
1484 *
1485 * Returns the offset value for ring into the data buffer.
1486 */
1487 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1488 {
1489 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1490 }
1491
1492 static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1493 unsigned int size)
1494 {
1495 unsigned int truesize;
1496
1497 #if (PAGE_SIZE < 8192)
1498 truesize = i40e_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
1499 #else
1500 truesize = i40e_rx_offset(rx_ring) ?
1501 SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring)) +
1502 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1503 SKB_DATA_ALIGN(size);
1504 #endif
1505 return truesize;
1506 }
1507
1508 /**
1509 * i40e_alloc_mapped_page - recycle or make a new page
1510 * @rx_ring: ring to use
1511 * @bi: rx_buffer struct to modify
1512 *
1513 * Returns true if the page was successfully allocated or
1514 * reused.
1515 **/
1516 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1517 struct i40e_rx_buffer *bi)
1518 {
1519 struct page *page = bi->page;
1520 dma_addr_t dma;
1521
1522 /* since we are recycling buffers we should seldom need to alloc */
1523 if (likely(page)) {
1524 rx_ring->rx_stats.page_reuse_count++;
1525 return true;
1526 }
1527
1528 /* alloc new page for storage */
1529 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1530 if (unlikely(!page)) {
1531 rx_ring->rx_stats.alloc_page_failed++;
1532 return false;
1533 }
1534
1535 /* map page for use */
1536 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1537 i40e_rx_pg_size(rx_ring),
1538 DMA_FROM_DEVICE,
1539 I40E_RX_DMA_ATTR);
1540
1541 /* if mapping failed free memory back to system since
1542 * there isn't much point in holding memory we can't use
1543 */
1544 if (dma_mapping_error(rx_ring->dev, dma)) {
1545 __free_pages(page, i40e_rx_pg_order(rx_ring));
1546 rx_ring->rx_stats.alloc_page_failed++;
1547 return false;
1548 }
1549
1550 bi->dma = dma;
1551 bi->page = page;
1552 bi->page_offset = i40e_rx_offset(rx_ring);
1553 page_ref_add(page, USHRT_MAX - 1);
1554 bi->pagecnt_bias = USHRT_MAX;
1555
1556 return true;
1557 }
1558
1559 /**
1560 * i40e_alloc_rx_buffers - Replace used receive buffers
1561 * @rx_ring: ring to place buffers on
1562 * @cleaned_count: number of buffers to replace
1563 *
1564 * Returns false if all allocations were successful, true if any fail
1565 **/
1566 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1567 {
1568 u16 ntu = rx_ring->next_to_use;
1569 union i40e_rx_desc *rx_desc;
1570 struct i40e_rx_buffer *bi;
1571
1572 /* do nothing if no valid netdev defined */
1573 if (!rx_ring->netdev || !cleaned_count)
1574 return false;
1575
1576 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1577 bi = i40e_rx_bi(rx_ring, ntu);
1578
1579 do {
1580 if (!i40e_alloc_mapped_page(rx_ring, bi))
1581 goto no_buffers;
1582
1583 /* sync the buffer for use by the device */
1584 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1585 bi->page_offset,
1586 rx_ring->rx_buf_len,
1587 DMA_FROM_DEVICE);
1588
1589 /* Refresh the desc even if buffer_addrs didn't change
1590 * because each write-back erases this info.
1591 */
1592 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1593
1594 rx_desc++;
1595 bi++;
1596 ntu++;
1597 if (unlikely(ntu == rx_ring->count)) {
1598 rx_desc = I40E_RX_DESC(rx_ring, 0);
1599 bi = i40e_rx_bi(rx_ring, 0);
1600 ntu = 0;
1601 }
1602
1603 /* clear the status bits for the next_to_use descriptor */
1604 rx_desc->wb.qword1.status_error_len = 0;
1605
1606 cleaned_count--;
1607 } while (cleaned_count);
1608
1609 if (rx_ring->next_to_use != ntu)
1610 i40e_release_rx_desc(rx_ring, ntu);
1611
1612 return false;
1613
1614 no_buffers:
1615 if (rx_ring->next_to_use != ntu)
1616 i40e_release_rx_desc(rx_ring, ntu);
1617
1618 /* make sure to come back via polling to try again after
1619 * allocation failure
1620 */
1621 return true;
1622 }
1623
1624 /**
1625 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1626 * @vsi: the VSI we care about
1627 * @skb: skb currently being received and modified
1628 * @rx_desc: the receive descriptor
1629 **/
1630 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1631 struct sk_buff *skb,
1632 union i40e_rx_desc *rx_desc)
1633 {
1634 struct i40e_rx_ptype_decoded decoded;
1635 u32 rx_error, rx_status;
1636 bool ipv4, ipv6;
1637 u8 ptype;
1638 u64 qword;
1639
1640 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1641 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1642 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1643 I40E_RXD_QW1_ERROR_SHIFT;
1644 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1645 I40E_RXD_QW1_STATUS_SHIFT;
1646 decoded = decode_rx_desc_ptype(ptype);
1647
1648 skb->ip_summed = CHECKSUM_NONE;
1649
1650 skb_checksum_none_assert(skb);
1651
1652 /* Rx csum enabled and ip headers found? */
1653 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1654 return;
1655
1656 /* did the hardware decode the packet and checksum? */
1657 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1658 return;
1659
1660 /* both known and outer_ip must be set for the below code to work */
1661 if (!(decoded.known && decoded.outer_ip))
1662 return;
1663
1664 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1665 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1666 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1667 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1668
1669 if (ipv4 &&
1670 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1671 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1672 goto checksum_fail;
1673
1674 /* likely incorrect csum if alternate IP extension headers found */
1675 if (ipv6 &&
1676 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1677 /* don't increment checksum err here, non-fatal err */
1678 return;
1679
1680 /* there was some L4 error, count error and punt packet to the stack */
1681 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1682 goto checksum_fail;
1683
1684 /* handle packets that were not able to be checksummed due
1685 * to arrival speed, in this case the stack can compute
1686 * the csum.
1687 */
1688 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1689 return;
1690
1691 /* If there is an outer header present that might contain a checksum
1692 * we need to bump the checksum level by 1 to reflect the fact that
1693 * we are indicating we validated the inner checksum.
1694 */
1695 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1696 skb->csum_level = 1;
1697
1698 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1699 switch (decoded.inner_prot) {
1700 case I40E_RX_PTYPE_INNER_PROT_TCP:
1701 case I40E_RX_PTYPE_INNER_PROT_UDP:
1702 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1703 skb->ip_summed = CHECKSUM_UNNECESSARY;
1704 fallthrough;
1705 default:
1706 break;
1707 }
1708
1709 return;
1710
1711 checksum_fail:
1712 vsi->back->hw_csum_rx_error++;
1713 }
1714
1715 /**
1716 * i40e_ptype_to_htype - get a hash type
1717 * @ptype: the ptype value from the descriptor
1718 *
1719 * Returns a hash type to be used by skb_set_hash
1720 **/
1721 static inline int i40e_ptype_to_htype(u8 ptype)
1722 {
1723 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1724
1725 if (!decoded.known)
1726 return PKT_HASH_TYPE_NONE;
1727
1728 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1729 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1730 return PKT_HASH_TYPE_L4;
1731 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1732 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1733 return PKT_HASH_TYPE_L3;
1734 else
1735 return PKT_HASH_TYPE_L2;
1736 }
1737
1738 /**
1739 * i40e_rx_hash - set the hash value in the skb
1740 * @ring: descriptor ring
1741 * @rx_desc: specific descriptor
1742 * @skb: skb currently being received and modified
1743 * @rx_ptype: Rx packet type
1744 **/
1745 static inline void i40e_rx_hash(struct i40e_ring *ring,
1746 union i40e_rx_desc *rx_desc,
1747 struct sk_buff *skb,
1748 u8 rx_ptype)
1749 {
1750 u32 hash;
1751 const __le64 rss_mask =
1752 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1753 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1754
1755 if (!(ring->netdev->features & NETIF_F_RXHASH))
1756 return;
1757
1758 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1759 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1760 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1761 }
1762 }
1763
1764 /**
1765 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1766 * @rx_ring: rx descriptor ring packet is being transacted on
1767 * @rx_desc: pointer to the EOP Rx descriptor
1768 * @skb: pointer to current skb being populated
1769 *
1770 * This function checks the ring, descriptor, and packet information in
1771 * order to populate the hash, checksum, VLAN, protocol, and
1772 * other fields within the skb.
1773 **/
1774 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1775 union i40e_rx_desc *rx_desc, struct sk_buff *skb)
1776 {
1777 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1778 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1779 I40E_RXD_QW1_STATUS_SHIFT;
1780 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1781 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1782 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1783 u8 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1784 I40E_RXD_QW1_PTYPE_SHIFT;
1785
1786 if (unlikely(tsynvalid))
1787 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1788
1789 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1790
1791 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1792
1793 skb_record_rx_queue(skb, rx_ring->queue_index);
1794
1795 if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1796 __le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1797
1798 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1799 le16_to_cpu(vlan_tag));
1800 }
1801
1802 /* modifies the skb - consumes the enet header */
1803 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1804 }
1805
1806 /**
1807 * i40e_cleanup_headers - Correct empty headers
1808 * @rx_ring: rx descriptor ring packet is being transacted on
1809 * @skb: pointer to current skb being fixed
1810 * @rx_desc: pointer to the EOP Rx descriptor
1811 *
1812 * Also address the case where we are pulling data in on pages only
1813 * and as such no data is present in the skb header.
1814 *
1815 * In addition if skb is not at least 60 bytes we need to pad it so that
1816 * it is large enough to qualify as a valid Ethernet frame.
1817 *
1818 * Returns true if an error was encountered and skb was freed.
1819 **/
1820 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1821 union i40e_rx_desc *rx_desc)
1822
1823 {
1824 /* ERR_MASK will only have valid bits if EOP set, and
1825 * what we are doing here is actually checking
1826 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1827 * the error field
1828 */
1829 if (unlikely(i40e_test_staterr(rx_desc,
1830 BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1831 dev_kfree_skb_any(skb);
1832 return true;
1833 }
1834
1835 /* if eth_skb_pad returns an error the skb was freed */
1836 if (eth_skb_pad(skb))
1837 return true;
1838
1839 return false;
1840 }
1841
1842 /**
1843 * i40e_page_is_reusable - check if any reuse is possible
1844 * @page: page struct to check
1845 *
1846 * A page is not reusable if it was allocated under low memory
1847 * conditions, or it's not in the same NUMA node as this CPU.
1848 */
1849 static inline bool i40e_page_is_reusable(struct page *page)
1850 {
1851 return (page_to_nid(page) == numa_mem_id()) &&
1852 !page_is_pfmemalloc(page);
1853 }
1854
1855 /**
1856 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1857 * the adapter for another receive
1858 *
1859 * @rx_buffer: buffer containing the page
1860 * @rx_buffer_pgcnt: buffer page refcount pre xdp_do_redirect() call
1861 *
1862 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1863 * an unused region in the page.
1864 *
1865 * For small pages, @truesize will be a constant value, half the size
1866 * of the memory at page. We'll attempt to alternate between high and
1867 * low halves of the page, with one half ready for use by the hardware
1868 * and the other half being consumed by the stack. We use the page
1869 * ref count to determine whether the stack has finished consuming the
1870 * portion of this page that was passed up with a previous packet. If
1871 * the page ref count is >1, we'll assume the "other" half page is
1872 * still busy, and this page cannot be reused.
1873 *
1874 * For larger pages, @truesize will be the actual space used by the
1875 * received packet (adjusted upward to an even multiple of the cache
1876 * line size). This will advance through the page by the amount
1877 * actually consumed by the received packets while there is still
1878 * space for a buffer. Each region of larger pages will be used at
1879 * most once, after which the page will not be reused.
1880 *
1881 * In either case, if the page is reusable its refcount is increased.
1882 **/
1883 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1884 int rx_buffer_pgcnt)
1885 {
1886 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1887 struct page *page = rx_buffer->page;
1888
1889 /* Is any reuse possible? */
1890 if (unlikely(!i40e_page_is_reusable(page)))
1891 return false;
1892
1893 #if (PAGE_SIZE < 8192)
1894 /* if we are only owner of page we can reuse it */
1895 if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1896 return false;
1897 #else
1898 #define I40E_LAST_OFFSET \
1899 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1900 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1901 return false;
1902 #endif
1903
1904 /* If we have drained the page fragment pool we need to update
1905 * the pagecnt_bias and page count so that we fully restock the
1906 * number of references the driver holds.
1907 */
1908 if (unlikely(pagecnt_bias == 1)) {
1909 page_ref_add(page, USHRT_MAX - 1);
1910 rx_buffer->pagecnt_bias = USHRT_MAX;
1911 }
1912
1913 return true;
1914 }
1915
1916 /**
1917 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1918 * @rx_ring: rx descriptor ring to transact packets on
1919 * @rx_buffer: buffer containing page to add
1920 * @skb: sk_buff to place the data into
1921 * @size: packet length from rx_desc
1922 *
1923 * This function will add the data contained in rx_buffer->page to the skb.
1924 * It will just attach the page as a frag to the skb.
1925 *
1926 * The function will then update the page offset.
1927 **/
1928 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1929 struct i40e_rx_buffer *rx_buffer,
1930 struct sk_buff *skb,
1931 unsigned int size)
1932 {
1933 #if (PAGE_SIZE < 8192)
1934 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1935 #else
1936 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1937 #endif
1938
1939 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1940 rx_buffer->page_offset, size, truesize);
1941
1942 /* page is being used so we must update the page offset */
1943 #if (PAGE_SIZE < 8192)
1944 rx_buffer->page_offset ^= truesize;
1945 #else
1946 rx_buffer->page_offset += truesize;
1947 #endif
1948 }
1949
1950 /**
1951 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1952 * @rx_ring: rx descriptor ring to transact packets on
1953 * @size: size of buffer to add to skb
1954 * @rx_buffer_pgcnt: buffer page refcount
1955 *
1956 * This function will pull an Rx buffer from the ring and synchronize it
1957 * for use by the CPU.
1958 */
1959 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1960 const unsigned int size,
1961 int *rx_buffer_pgcnt)
1962 {
1963 struct i40e_rx_buffer *rx_buffer;
1964
1965 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
1966 *rx_buffer_pgcnt =
1967 #if (PAGE_SIZE < 8192)
1968 page_count(rx_buffer->page);
1969 #else
1970 0;
1971 #endif
1972 prefetch_page_address(rx_buffer->page);
1973
1974 /* we are reusing so sync this buffer for CPU use */
1975 dma_sync_single_range_for_cpu(rx_ring->dev,
1976 rx_buffer->dma,
1977 rx_buffer->page_offset,
1978 size,
1979 DMA_FROM_DEVICE);
1980
1981 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1982 rx_buffer->pagecnt_bias--;
1983
1984 return rx_buffer;
1985 }
1986
1987 /**
1988 * i40e_construct_skb - Allocate skb and populate it
1989 * @rx_ring: rx descriptor ring to transact packets on
1990 * @rx_buffer: rx buffer to pull data from
1991 * @xdp: xdp_buff pointing to the data
1992 *
1993 * This function allocates an skb. It then populates it with the page
1994 * data from the current receive descriptor, taking care to set up the
1995 * skb correctly.
1996 */
1997 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1998 struct i40e_rx_buffer *rx_buffer,
1999 struct xdp_buff *xdp)
2000 {
2001 unsigned int size = xdp->data_end - xdp->data;
2002 #if (PAGE_SIZE < 8192)
2003 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2004 #else
2005 unsigned int truesize = SKB_DATA_ALIGN(size);
2006 #endif
2007 unsigned int headlen;
2008 struct sk_buff *skb;
2009
2010 /* prefetch first cache line of first page */
2011 net_prefetch(xdp->data);
2012
2013 /* Note, we get here by enabling legacy-rx via:
2014 *
2015 * ethtool --set-priv-flags <dev> legacy-rx on
2016 *
2017 * In this mode, we currently get 0 extra XDP headroom as
2018 * opposed to having legacy-rx off, where we process XDP
2019 * packets going to stack via i40e_build_skb(). The latter
2020 * provides us currently with 192 bytes of headroom.
2021 *
2022 * For i40e_construct_skb() mode it means that the
2023 * xdp->data_meta will always point to xdp->data, since
2024 * the helper cannot expand the head. Should this ever
2025 * change in future for legacy-rx mode on, then lets also
2026 * add xdp->data_meta handling here.
2027 */
2028
2029 /* allocate a skb to store the frags */
2030 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2031 I40E_RX_HDR_SIZE,
2032 GFP_ATOMIC | __GFP_NOWARN);
2033 if (unlikely(!skb))
2034 return NULL;
2035
2036 /* Determine available headroom for copy */
2037 headlen = size;
2038 if (headlen > I40E_RX_HDR_SIZE)
2039 headlen = eth_get_headlen(skb->dev, xdp->data,
2040 I40E_RX_HDR_SIZE);
2041
2042 /* align pull length to size of long to optimize memcpy performance */
2043 memcpy(__skb_put(skb, headlen), xdp->data,
2044 ALIGN(headlen, sizeof(long)));
2045
2046 /* update all of the pointers */
2047 size -= headlen;
2048 if (size) {
2049 skb_add_rx_frag(skb, 0, rx_buffer->page,
2050 rx_buffer->page_offset + headlen,
2051 size, truesize);
2052
2053 /* buffer is used by skb, update page_offset */
2054 #if (PAGE_SIZE < 8192)
2055 rx_buffer->page_offset ^= truesize;
2056 #else
2057 rx_buffer->page_offset += truesize;
2058 #endif
2059 } else {
2060 /* buffer is unused, reset bias back to rx_buffer */
2061 rx_buffer->pagecnt_bias++;
2062 }
2063
2064 return skb;
2065 }
2066
2067 /**
2068 * i40e_build_skb - Build skb around an existing buffer
2069 * @rx_ring: Rx descriptor ring to transact packets on
2070 * @rx_buffer: Rx buffer to pull data from
2071 * @xdp: xdp_buff pointing to the data
2072 *
2073 * This function builds an skb around an existing Rx buffer, taking care
2074 * to set up the skb correctly and avoid any memcpy overhead.
2075 */
2076 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2077 struct i40e_rx_buffer *rx_buffer,
2078 struct xdp_buff *xdp)
2079 {
2080 unsigned int metasize = xdp->data - xdp->data_meta;
2081 #if (PAGE_SIZE < 8192)
2082 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2083 #else
2084 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2085 SKB_DATA_ALIGN(xdp->data_end -
2086 xdp->data_hard_start);
2087 #endif
2088 struct sk_buff *skb;
2089
2090 /* Prefetch first cache line of first page. If xdp->data_meta
2091 * is unused, this points exactly as xdp->data, otherwise we
2092 * likely have a consumer accessing first few bytes of meta
2093 * data, and then actual data.
2094 */
2095 net_prefetch(xdp->data_meta);
2096
2097 /* build an skb around the page buffer */
2098 skb = build_skb(xdp->data_hard_start, truesize);
2099 if (unlikely(!skb))
2100 return NULL;
2101
2102 /* update pointers within the skb to store the data */
2103 skb_reserve(skb, xdp->data - xdp->data_hard_start);
2104 __skb_put(skb, xdp->data_end - xdp->data);
2105 if (metasize)
2106 skb_metadata_set(skb, metasize);
2107
2108 /* buffer is used by skb, update page_offset */
2109 #if (PAGE_SIZE < 8192)
2110 rx_buffer->page_offset ^= truesize;
2111 #else
2112 rx_buffer->page_offset += truesize;
2113 #endif
2114
2115 return skb;
2116 }
2117
2118 /**
2119 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2120 * @rx_ring: rx descriptor ring to transact packets on
2121 * @rx_buffer: rx buffer to pull data from
2122 * @rx_buffer_pgcnt: rx buffer page refcount pre xdp_do_redirect() call
2123 *
2124 * This function will clean up the contents of the rx_buffer. It will
2125 * either recycle the buffer or unmap it and free the associated resources.
2126 */
2127 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2128 struct i40e_rx_buffer *rx_buffer,
2129 int rx_buffer_pgcnt)
2130 {
2131 if (i40e_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
2132 /* hand second half of page back to the ring */
2133 i40e_reuse_rx_page(rx_ring, rx_buffer);
2134 } else {
2135 /* we are not reusing the buffer so unmap it */
2136 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2137 i40e_rx_pg_size(rx_ring),
2138 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2139 __page_frag_cache_drain(rx_buffer->page,
2140 rx_buffer->pagecnt_bias);
2141 /* clear contents of buffer_info */
2142 rx_buffer->page = NULL;
2143 }
2144 }
2145
2146 /**
2147 * i40e_is_non_eop - process handling of non-EOP buffers
2148 * @rx_ring: Rx ring being processed
2149 * @rx_desc: Rx descriptor for current buffer
2150 * @skb: Current socket buffer containing buffer in progress
2151 *
2152 * This function updates next to clean. If the buffer is an EOP buffer
2153 * this function exits returning false, otherwise it will place the
2154 * sk_buff in the next buffer to be chained and return true indicating
2155 * that this is in fact a non-EOP buffer.
2156 **/
2157 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2158 union i40e_rx_desc *rx_desc,
2159 struct sk_buff *skb)
2160 {
2161 u32 ntc = rx_ring->next_to_clean + 1;
2162
2163 /* fetch, update, and store next to clean */
2164 ntc = (ntc < rx_ring->count) ? ntc : 0;
2165 rx_ring->next_to_clean = ntc;
2166
2167 prefetch(I40E_RX_DESC(rx_ring, ntc));
2168
2169 /* if we are the last buffer then there is nothing else to do */
2170 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2171 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2172 return false;
2173
2174 rx_ring->rx_stats.non_eop_descs++;
2175
2176 return true;
2177 }
2178
2179 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2180 struct i40e_ring *xdp_ring);
2181
2182 int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2183 {
2184 struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2185
2186 if (unlikely(!xdpf))
2187 return I40E_XDP_CONSUMED;
2188
2189 return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2190 }
2191
2192 /**
2193 * i40e_run_xdp - run an XDP program
2194 * @rx_ring: Rx ring being processed
2195 * @xdp: XDP buffer containing the frame
2196 **/
2197 static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp)
2198 {
2199 int err, result = I40E_XDP_PASS;
2200 struct i40e_ring *xdp_ring;
2201 struct bpf_prog *xdp_prog;
2202 u32 act;
2203
2204 rcu_read_lock();
2205 xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2206
2207 if (!xdp_prog)
2208 goto xdp_out;
2209
2210 prefetchw(xdp->data_hard_start); /* xdp_frame write */
2211
2212 act = bpf_prog_run_xdp(xdp_prog, xdp);
2213 switch (act) {
2214 case XDP_PASS:
2215 break;
2216 case XDP_TX:
2217 xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2218 result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2219 if (result == I40E_XDP_CONSUMED)
2220 goto out_failure;
2221 break;
2222 case XDP_REDIRECT:
2223 err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2224 if (err)
2225 goto out_failure;
2226 result = I40E_XDP_REDIR;
2227 break;
2228 default:
2229 bpf_warn_invalid_xdp_action(act);
2230 fallthrough;
2231 case XDP_ABORTED:
2232 out_failure:
2233 trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2234 fallthrough; /* handle aborts by dropping packet */
2235 case XDP_DROP:
2236 result = I40E_XDP_CONSUMED;
2237 break;
2238 }
2239 xdp_out:
2240 rcu_read_unlock();
2241 return result;
2242 }
2243
2244 /**
2245 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
2246 * @rx_ring: Rx ring
2247 * @rx_buffer: Rx buffer to adjust
2248 * @size: Size of adjustment
2249 **/
2250 static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2251 struct i40e_rx_buffer *rx_buffer,
2252 unsigned int size)
2253 {
2254 unsigned int truesize = i40e_rx_frame_truesize(rx_ring, size);
2255
2256 #if (PAGE_SIZE < 8192)
2257 rx_buffer->page_offset ^= truesize;
2258 #else
2259 rx_buffer->page_offset += truesize;
2260 #endif
2261 }
2262
2263 /**
2264 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2265 * @xdp_ring: XDP Tx ring
2266 *
2267 * This function updates the XDP Tx ring tail register.
2268 **/
2269 void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2270 {
2271 /* Force memory writes to complete before letting h/w
2272 * know there are new descriptors to fetch.
2273 */
2274 wmb();
2275 writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2276 }
2277
2278 /**
2279 * i40e_update_rx_stats - Update Rx ring statistics
2280 * @rx_ring: rx descriptor ring
2281 * @total_rx_bytes: number of bytes received
2282 * @total_rx_packets: number of packets received
2283 *
2284 * This function updates the Rx ring statistics.
2285 **/
2286 void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2287 unsigned int total_rx_bytes,
2288 unsigned int total_rx_packets)
2289 {
2290 u64_stats_update_begin(&rx_ring->syncp);
2291 rx_ring->stats.packets += total_rx_packets;
2292 rx_ring->stats.bytes += total_rx_bytes;
2293 u64_stats_update_end(&rx_ring->syncp);
2294 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2295 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2296 }
2297
2298 /**
2299 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2300 * @rx_ring: Rx ring
2301 * @xdp_res: Result of the receive batch
2302 *
2303 * This function bumps XDP Tx tail and/or flush redirect map, and
2304 * should be called when a batch of packets has been processed in the
2305 * napi loop.
2306 **/
2307 void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
2308 {
2309 if (xdp_res & I40E_XDP_REDIR)
2310 xdp_do_flush_map();
2311
2312 if (xdp_res & I40E_XDP_TX) {
2313 struct i40e_ring *xdp_ring =
2314 rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2315
2316 i40e_xdp_ring_update_tail(xdp_ring);
2317 }
2318 }
2319
2320 /**
2321 * i40e_inc_ntc: Advance the next_to_clean index
2322 * @rx_ring: Rx ring
2323 **/
2324 static void i40e_inc_ntc(struct i40e_ring *rx_ring)
2325 {
2326 u32 ntc = rx_ring->next_to_clean + 1;
2327
2328 ntc = (ntc < rx_ring->count) ? ntc : 0;
2329 rx_ring->next_to_clean = ntc;
2330 prefetch(I40E_RX_DESC(rx_ring, ntc));
2331 }
2332
2333 /**
2334 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2335 * @rx_ring: rx descriptor ring to transact packets on
2336 * @budget: Total limit on number of packets to process
2337 *
2338 * This function provides a "bounce buffer" approach to Rx interrupt
2339 * processing. The advantage to this is that on systems that have
2340 * expensive overhead for IOMMU access this provides a means of avoiding
2341 * it by maintaining the mapping of the page to the system.
2342 *
2343 * Returns amount of work completed
2344 **/
2345 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
2346 {
2347 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2348 struct sk_buff *skb = rx_ring->skb;
2349 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2350 unsigned int xdp_xmit = 0;
2351 bool failure = false;
2352 struct xdp_buff xdp;
2353 int xdp_res = 0;
2354
2355 #if (PAGE_SIZE < 8192)
2356 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, 0);
2357 #endif
2358 xdp.rxq = &rx_ring->xdp_rxq;
2359
2360 while (likely(total_rx_packets < (unsigned int)budget)) {
2361 struct i40e_rx_buffer *rx_buffer;
2362 union i40e_rx_desc *rx_desc;
2363 int rx_buffer_pgcnt;
2364 unsigned int size;
2365 u64 qword;
2366
2367 /* return some buffers to hardware, one at a time is too slow */
2368 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2369 failure = failure ||
2370 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2371 cleaned_count = 0;
2372 }
2373
2374 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2375
2376 /* status_error_len will always be zero for unused descriptors
2377 * because it's cleared in cleanup, and overlaps with hdr_addr
2378 * which is always zero because packet split isn't used, if the
2379 * hardware wrote DD then the length will be non-zero
2380 */
2381 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2382
2383 /* This memory barrier is needed to keep us from reading
2384 * any other fields out of the rx_desc until we have
2385 * verified the descriptor has been written back.
2386 */
2387 dma_rmb();
2388
2389 if (i40e_rx_is_programming_status(qword)) {
2390 i40e_clean_programming_status(rx_ring,
2391 rx_desc->raw.qword[0],
2392 qword);
2393 rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2394 i40e_inc_ntc(rx_ring);
2395 i40e_reuse_rx_page(rx_ring, rx_buffer);
2396 cleaned_count++;
2397 continue;
2398 }
2399
2400 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2401 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2402 if (!size)
2403 break;
2404
2405 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2406 rx_buffer = i40e_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2407
2408 /* retrieve a buffer from the ring */
2409 if (!skb) {
2410 xdp.data = page_address(rx_buffer->page) +
2411 rx_buffer->page_offset;
2412 xdp.data_meta = xdp.data;
2413 xdp.data_hard_start = xdp.data -
2414 i40e_rx_offset(rx_ring);
2415 xdp.data_end = xdp.data + size;
2416 #if (PAGE_SIZE > 4096)
2417 /* At larger PAGE_SIZE, frame_sz depend on len size */
2418 xdp.frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2419 #endif
2420 xdp_res = i40e_run_xdp(rx_ring, &xdp);
2421 }
2422
2423 if (xdp_res) {
2424 if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2425 xdp_xmit |= xdp_res;
2426 i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
2427 } else {
2428 rx_buffer->pagecnt_bias++;
2429 }
2430 total_rx_bytes += size;
2431 total_rx_packets++;
2432 } else if (skb) {
2433 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2434 } else if (ring_uses_build_skb(rx_ring)) {
2435 skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2436 } else {
2437 skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2438 }
2439
2440 /* exit if we failed to retrieve a buffer */
2441 if (!xdp_res && !skb) {
2442 rx_ring->rx_stats.alloc_buff_failed++;
2443 rx_buffer->pagecnt_bias++;
2444 break;
2445 }
2446
2447 i40e_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2448 cleaned_count++;
2449
2450 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2451 continue;
2452
2453 if (xdp_res || i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2454 skb = NULL;
2455 continue;
2456 }
2457
2458 /* probably a little skewed due to removing CRC */
2459 total_rx_bytes += skb->len;
2460
2461 /* populate checksum, VLAN, and protocol */
2462 i40e_process_skb_fields(rx_ring, rx_desc, skb);
2463
2464 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2465 napi_gro_receive(&rx_ring->q_vector->napi, skb);
2466 skb = NULL;
2467
2468 /* update budget accounting */
2469 total_rx_packets++;
2470 }
2471
2472 i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
2473 rx_ring->skb = skb;
2474
2475 i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
2476
2477 /* guarantee a trip back through this routine if there was a failure */
2478 return failure ? budget : (int)total_rx_packets;
2479 }
2480
2481 static inline u32 i40e_buildreg_itr(const int type, u16 itr)
2482 {
2483 u32 val;
2484
2485 /* We don't bother with setting the CLEARPBA bit as the data sheet
2486 * points out doing so is "meaningless since it was already
2487 * auto-cleared". The auto-clearing happens when the interrupt is
2488 * asserted.
2489 *
2490 * Hardware errata 28 for also indicates that writing to a
2491 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2492 * an event in the PBA anyway so we need to rely on the automask
2493 * to hold pending events for us until the interrupt is re-enabled
2494 *
2495 * The itr value is reported in microseconds, and the register
2496 * value is recorded in 2 microsecond units. For this reason we
2497 * only need to shift by the interval shift - 1 instead of the
2498 * full value.
2499 */
2500 itr &= I40E_ITR_MASK;
2501
2502 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2503 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2504 (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
2505
2506 return val;
2507 }
2508
2509 /* a small macro to shorten up some long lines */
2510 #define INTREG I40E_PFINT_DYN_CTLN
2511
2512 /* The act of updating the ITR will cause it to immediately trigger. In order
2513 * to prevent this from throwing off adaptive update statistics we defer the
2514 * update so that it can only happen so often. So after either Tx or Rx are
2515 * updated we make the adaptive scheme wait until either the ITR completely
2516 * expires via the next_update expiration or we have been through at least
2517 * 3 interrupts.
2518 */
2519 #define ITR_COUNTDOWN_START 3
2520
2521 /**
2522 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2523 * @vsi: the VSI we care about
2524 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2525 *
2526 **/
2527 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2528 struct i40e_q_vector *q_vector)
2529 {
2530 struct i40e_hw *hw = &vsi->back->hw;
2531 u32 intval;
2532
2533 /* If we don't have MSIX, then we only need to re-enable icr0 */
2534 if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2535 i40e_irq_dynamic_enable_icr0(vsi->back);
2536 return;
2537 }
2538
2539 /* These will do nothing if dynamic updates are not enabled */
2540 i40e_update_itr(q_vector, &q_vector->tx);
2541 i40e_update_itr(q_vector, &q_vector->rx);
2542
2543 /* This block of logic allows us to get away with only updating
2544 * one ITR value with each interrupt. The idea is to perform a
2545 * pseudo-lazy update with the following criteria.
2546 *
2547 * 1. Rx is given higher priority than Tx if both are in same state
2548 * 2. If we must reduce an ITR that is given highest priority.
2549 * 3. We then give priority to increasing ITR based on amount.
2550 */
2551 if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2552 /* Rx ITR needs to be reduced, this is highest priority */
2553 intval = i40e_buildreg_itr(I40E_RX_ITR,
2554 q_vector->rx.target_itr);
2555 q_vector->rx.current_itr = q_vector->rx.target_itr;
2556 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2557 } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2558 ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2559 (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2560 /* Tx ITR needs to be reduced, this is second priority
2561 * Tx ITR needs to be increased more than Rx, fourth priority
2562 */
2563 intval = i40e_buildreg_itr(I40E_TX_ITR,
2564 q_vector->tx.target_itr);
2565 q_vector->tx.current_itr = q_vector->tx.target_itr;
2566 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2567 } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2568 /* Rx ITR needs to be increased, third priority */
2569 intval = i40e_buildreg_itr(I40E_RX_ITR,
2570 q_vector->rx.target_itr);
2571 q_vector->rx.current_itr = q_vector->rx.target_itr;
2572 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2573 } else {
2574 /* No ITR update, lowest priority */
2575 intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2576 if (q_vector->itr_countdown)
2577 q_vector->itr_countdown--;
2578 }
2579
2580 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2581 wr32(hw, INTREG(q_vector->reg_idx), intval);
2582 }
2583
2584 /**
2585 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2586 * @napi: napi struct with our devices info in it
2587 * @budget: amount of work driver is allowed to do this pass, in packets
2588 *
2589 * This function will clean all queues associated with a q_vector.
2590 *
2591 * Returns the amount of work done
2592 **/
2593 int i40e_napi_poll(struct napi_struct *napi, int budget)
2594 {
2595 struct i40e_q_vector *q_vector =
2596 container_of(napi, struct i40e_q_vector, napi);
2597 struct i40e_vsi *vsi = q_vector->vsi;
2598 struct i40e_ring *ring;
2599 bool clean_complete = true;
2600 bool arm_wb = false;
2601 int budget_per_ring;
2602 int work_done = 0;
2603
2604 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2605 napi_complete(napi);
2606 return 0;
2607 }
2608
2609 /* Since the actual Tx work is minimal, we can give the Tx a larger
2610 * budget and be more aggressive about cleaning up the Tx descriptors.
2611 */
2612 i40e_for_each_ring(ring, q_vector->tx) {
2613 bool wd = ring->xsk_pool ?
2614 i40e_clean_xdp_tx_irq(vsi, ring) :
2615 i40e_clean_tx_irq(vsi, ring, budget);
2616
2617 if (!wd) {
2618 clean_complete = false;
2619 continue;
2620 }
2621 arm_wb |= ring->arm_wb;
2622 ring->arm_wb = false;
2623 }
2624
2625 /* Handle case where we are called by netpoll with a budget of 0 */
2626 if (budget <= 0)
2627 goto tx_only;
2628
2629 /* normally we have 1 Rx ring per q_vector */
2630 if (unlikely(q_vector->num_ringpairs > 1))
2631 /* We attempt to distribute budget to each Rx queue fairly, but
2632 * don't allow the budget to go below 1 because that would exit
2633 * polling early.
2634 */
2635 budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2636 else
2637 /* Max of 1 Rx ring in this q_vector so give it the budget */
2638 budget_per_ring = budget;
2639
2640 i40e_for_each_ring(ring, q_vector->rx) {
2641 int cleaned = ring->xsk_pool ?
2642 i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2643 i40e_clean_rx_irq(ring, budget_per_ring);
2644
2645 work_done += cleaned;
2646 /* if we clean as many as budgeted, we must not be done */
2647 if (cleaned >= budget_per_ring)
2648 clean_complete = false;
2649 }
2650
2651 /* If work not completed, return budget and polling will return */
2652 if (!clean_complete) {
2653 int cpu_id = smp_processor_id();
2654
2655 /* It is possible that the interrupt affinity has changed but,
2656 * if the cpu is pegged at 100%, polling will never exit while
2657 * traffic continues and the interrupt will be stuck on this
2658 * cpu. We check to make sure affinity is correct before we
2659 * continue to poll, otherwise we must stop polling so the
2660 * interrupt can move to the correct cpu.
2661 */
2662 if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2663 /* Tell napi that we are done polling */
2664 napi_complete_done(napi, work_done);
2665
2666 /* Force an interrupt */
2667 i40e_force_wb(vsi, q_vector);
2668
2669 /* Return budget-1 so that polling stops */
2670 return budget - 1;
2671 }
2672 tx_only:
2673 if (arm_wb) {
2674 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2675 i40e_enable_wb_on_itr(vsi, q_vector);
2676 }
2677 return budget;
2678 }
2679
2680 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2681 q_vector->arm_wb_state = false;
2682
2683 /* Exit the polling mode, but don't re-enable interrupts if stack might
2684 * poll us due to busy-polling
2685 */
2686 if (likely(napi_complete_done(napi, work_done)))
2687 i40e_update_enable_itr(vsi, q_vector);
2688
2689 return min(work_done, budget - 1);
2690 }
2691
2692 /**
2693 * i40e_atr - Add a Flow Director ATR filter
2694 * @tx_ring: ring to add programming descriptor to
2695 * @skb: send buffer
2696 * @tx_flags: send tx flags
2697 **/
2698 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2699 u32 tx_flags)
2700 {
2701 struct i40e_filter_program_desc *fdir_desc;
2702 struct i40e_pf *pf = tx_ring->vsi->back;
2703 union {
2704 unsigned char *network;
2705 struct iphdr *ipv4;
2706 struct ipv6hdr *ipv6;
2707 } hdr;
2708 struct tcphdr *th;
2709 unsigned int hlen;
2710 u32 flex_ptype, dtype_cmd;
2711 int l4_proto;
2712 u16 i;
2713
2714 /* make sure ATR is enabled */
2715 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2716 return;
2717
2718 if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2719 return;
2720
2721 /* if sampling is disabled do nothing */
2722 if (!tx_ring->atr_sample_rate)
2723 return;
2724
2725 /* Currently only IPv4/IPv6 with TCP is supported */
2726 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2727 return;
2728
2729 /* snag network header to get L4 type and address */
2730 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2731 skb_inner_network_header(skb) : skb_network_header(skb);
2732
2733 /* Note: tx_flags gets modified to reflect inner protocols in
2734 * tx_enable_csum function if encap is enabled.
2735 */
2736 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2737 /* access ihl as u8 to avoid unaligned access on ia64 */
2738 hlen = (hdr.network[0] & 0x0F) << 2;
2739 l4_proto = hdr.ipv4->protocol;
2740 } else {
2741 /* find the start of the innermost ipv6 header */
2742 unsigned int inner_hlen = hdr.network - skb->data;
2743 unsigned int h_offset = inner_hlen;
2744
2745 /* this function updates h_offset to the end of the header */
2746 l4_proto =
2747 ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2748 /* hlen will contain our best estimate of the tcp header */
2749 hlen = h_offset - inner_hlen;
2750 }
2751
2752 if (l4_proto != IPPROTO_TCP)
2753 return;
2754
2755 th = (struct tcphdr *)(hdr.network + hlen);
2756
2757 /* Due to lack of space, no more new filters can be programmed */
2758 if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2759 return;
2760 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2761 /* HW ATR eviction will take care of removing filters on FIN
2762 * and RST packets.
2763 */
2764 if (th->fin || th->rst)
2765 return;
2766 }
2767
2768 tx_ring->atr_count++;
2769
2770 /* sample on all syn/fin/rst packets or once every atr sample rate */
2771 if (!th->fin &&
2772 !th->syn &&
2773 !th->rst &&
2774 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2775 return;
2776
2777 tx_ring->atr_count = 0;
2778
2779 /* grab the next descriptor */
2780 i = tx_ring->next_to_use;
2781 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2782
2783 i++;
2784 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2785
2786 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2787 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2788 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2789 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2790 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2791 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2792 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2793
2794 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2795
2796 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2797
2798 dtype_cmd |= (th->fin || th->rst) ?
2799 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2800 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2801 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2802 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2803
2804 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2805 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2806
2807 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2808 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2809
2810 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2811 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2812 dtype_cmd |=
2813 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2814 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2815 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2816 else
2817 dtype_cmd |=
2818 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2819 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2820 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2821
2822 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2823 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2824
2825 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2826 fdir_desc->rsvd = cpu_to_le32(0);
2827 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2828 fdir_desc->fd_id = cpu_to_le32(0);
2829 }
2830
2831 /**
2832 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2833 * @skb: send buffer
2834 * @tx_ring: ring to send buffer on
2835 * @flags: the tx flags to be set
2836 *
2837 * Checks the skb and set up correspondingly several generic transmit flags
2838 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2839 *
2840 * Returns error code indicate the frame should be dropped upon error and the
2841 * otherwise returns 0 to indicate the flags has been set properly.
2842 **/
2843 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2844 struct i40e_ring *tx_ring,
2845 u32 *flags)
2846 {
2847 __be16 protocol = skb->protocol;
2848 u32 tx_flags = 0;
2849
2850 if (protocol == htons(ETH_P_8021Q) &&
2851 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2852 /* When HW VLAN acceleration is turned off by the user the
2853 * stack sets the protocol to 8021q so that the driver
2854 * can take any steps required to support the SW only
2855 * VLAN handling. In our case the driver doesn't need
2856 * to take any further steps so just set the protocol
2857 * to the encapsulated ethertype.
2858 */
2859 skb->protocol = vlan_get_protocol(skb);
2860 goto out;
2861 }
2862
2863 /* if we have a HW VLAN tag being added, default to the HW one */
2864 if (skb_vlan_tag_present(skb)) {
2865 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2866 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2867 /* else if it is a SW VLAN, check the next protocol and store the tag */
2868 } else if (protocol == htons(ETH_P_8021Q)) {
2869 struct vlan_hdr *vhdr, _vhdr;
2870
2871 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2872 if (!vhdr)
2873 return -EINVAL;
2874
2875 protocol = vhdr->h_vlan_encapsulated_proto;
2876 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2877 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2878 }
2879
2880 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2881 goto out;
2882
2883 /* Insert 802.1p priority into VLAN header */
2884 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2885 (skb->priority != TC_PRIO_CONTROL)) {
2886 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2887 tx_flags |= (skb->priority & 0x7) <<
2888 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2889 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2890 struct vlan_ethhdr *vhdr;
2891 int rc;
2892
2893 rc = skb_cow_head(skb, 0);
2894 if (rc < 0)
2895 return rc;
2896 vhdr = (struct vlan_ethhdr *)skb->data;
2897 vhdr->h_vlan_TCI = htons(tx_flags >>
2898 I40E_TX_FLAGS_VLAN_SHIFT);
2899 } else {
2900 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2901 }
2902 }
2903
2904 out:
2905 *flags = tx_flags;
2906 return 0;
2907 }
2908
2909 /**
2910 * i40e_tso - set up the tso context descriptor
2911 * @first: pointer to first Tx buffer for xmit
2912 * @hdr_len: ptr to the size of the packet header
2913 * @cd_type_cmd_tso_mss: Quad Word 1
2914 *
2915 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2916 **/
2917 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2918 u64 *cd_type_cmd_tso_mss)
2919 {
2920 struct sk_buff *skb = first->skb;
2921 u64 cd_cmd, cd_tso_len, cd_mss;
2922 union {
2923 struct iphdr *v4;
2924 struct ipv6hdr *v6;
2925 unsigned char *hdr;
2926 } ip;
2927 union {
2928 struct tcphdr *tcp;
2929 struct udphdr *udp;
2930 unsigned char *hdr;
2931 } l4;
2932 u32 paylen, l4_offset;
2933 u16 gso_segs, gso_size;
2934 int err;
2935
2936 if (skb->ip_summed != CHECKSUM_PARTIAL)
2937 return 0;
2938
2939 if (!skb_is_gso(skb))
2940 return 0;
2941
2942 err = skb_cow_head(skb, 0);
2943 if (err < 0)
2944 return err;
2945
2946 ip.hdr = skb_network_header(skb);
2947 l4.hdr = skb_transport_header(skb);
2948
2949 /* initialize outer IP header fields */
2950 if (ip.v4->version == 4) {
2951 ip.v4->tot_len = 0;
2952 ip.v4->check = 0;
2953 } else {
2954 ip.v6->payload_len = 0;
2955 }
2956
2957 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2958 SKB_GSO_GRE_CSUM |
2959 SKB_GSO_IPXIP4 |
2960 SKB_GSO_IPXIP6 |
2961 SKB_GSO_UDP_TUNNEL |
2962 SKB_GSO_UDP_TUNNEL_CSUM)) {
2963 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2964 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2965 l4.udp->len = 0;
2966
2967 /* determine offset of outer transport header */
2968 l4_offset = l4.hdr - skb->data;
2969
2970 /* remove payload length from outer checksum */
2971 paylen = skb->len - l4_offset;
2972 csum_replace_by_diff(&l4.udp->check,
2973 (__force __wsum)htonl(paylen));
2974 }
2975
2976 /* reset pointers to inner headers */
2977 ip.hdr = skb_inner_network_header(skb);
2978 l4.hdr = skb_inner_transport_header(skb);
2979
2980 /* initialize inner IP header fields */
2981 if (ip.v4->version == 4) {
2982 ip.v4->tot_len = 0;
2983 ip.v4->check = 0;
2984 } else {
2985 ip.v6->payload_len = 0;
2986 }
2987 }
2988
2989 /* determine offset of inner transport header */
2990 l4_offset = l4.hdr - skb->data;
2991
2992 /* remove payload length from inner checksum */
2993 paylen = skb->len - l4_offset;
2994
2995 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2996 csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
2997 /* compute length of segmentation header */
2998 *hdr_len = sizeof(*l4.udp) + l4_offset;
2999 } else {
3000 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3001 /* compute length of segmentation header */
3002 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
3003 }
3004
3005 /* pull values out of skb_shinfo */
3006 gso_size = skb_shinfo(skb)->gso_size;
3007 gso_segs = skb_shinfo(skb)->gso_segs;
3008
3009 /* update GSO size and bytecount with header size */
3010 first->gso_segs = gso_segs;
3011 first->bytecount += (first->gso_segs - 1) * *hdr_len;
3012
3013 /* find the field values */
3014 cd_cmd = I40E_TX_CTX_DESC_TSO;
3015 cd_tso_len = skb->len - *hdr_len;
3016 cd_mss = gso_size;
3017 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3018 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3019 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3020 return 1;
3021 }
3022
3023 /**
3024 * i40e_tsyn - set up the tsyn context descriptor
3025 * @tx_ring: ptr to the ring to send
3026 * @skb: ptr to the skb we're sending
3027 * @tx_flags: the collected send information
3028 * @cd_type_cmd_tso_mss: Quad Word 1
3029 *
3030 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3031 **/
3032 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3033 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3034 {
3035 struct i40e_pf *pf;
3036
3037 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3038 return 0;
3039
3040 /* Tx timestamps cannot be sampled when doing TSO */
3041 if (tx_flags & I40E_TX_FLAGS_TSO)
3042 return 0;
3043
3044 /* only timestamp the outbound packet if the user has requested it and
3045 * we are not already transmitting a packet to be timestamped
3046 */
3047 pf = i40e_netdev_to_pf(tx_ring->netdev);
3048 if (!(pf->flags & I40E_FLAG_PTP))
3049 return 0;
3050
3051 if (pf->ptp_tx &&
3052 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3053 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3054 pf->ptp_tx_start = jiffies;
3055 pf->ptp_tx_skb = skb_get(skb);
3056 } else {
3057 pf->tx_hwtstamp_skipped++;
3058 return 0;
3059 }
3060
3061 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3062 I40E_TXD_CTX_QW1_CMD_SHIFT;
3063
3064 return 1;
3065 }
3066
3067 /**
3068 * i40e_tx_enable_csum - Enable Tx checksum offloads
3069 * @skb: send buffer
3070 * @tx_flags: pointer to Tx flags currently set
3071 * @td_cmd: Tx descriptor command bits to set
3072 * @td_offset: Tx descriptor header offsets to set
3073 * @tx_ring: Tx descriptor ring
3074 * @cd_tunneling: ptr to context desc bits
3075 **/
3076 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3077 u32 *td_cmd, u32 *td_offset,
3078 struct i40e_ring *tx_ring,
3079 u32 *cd_tunneling)
3080 {
3081 union {
3082 struct iphdr *v4;
3083 struct ipv6hdr *v6;
3084 unsigned char *hdr;
3085 } ip;
3086 union {
3087 struct tcphdr *tcp;
3088 struct udphdr *udp;
3089 unsigned char *hdr;
3090 } l4;
3091 unsigned char *exthdr;
3092 u32 offset, cmd = 0;
3093 __be16 frag_off;
3094 u8 l4_proto = 0;
3095
3096 if (skb->ip_summed != CHECKSUM_PARTIAL)
3097 return 0;
3098
3099 ip.hdr = skb_network_header(skb);
3100 l4.hdr = skb_transport_header(skb);
3101
3102 /* compute outer L2 header size */
3103 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3104
3105 if (skb->encapsulation) {
3106 u32 tunnel = 0;
3107 /* define outer network header type */
3108 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3109 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3110 I40E_TX_CTX_EXT_IP_IPV4 :
3111 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3112
3113 l4_proto = ip.v4->protocol;
3114 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3115 int ret;
3116
3117 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3118
3119 exthdr = ip.hdr + sizeof(*ip.v6);
3120 l4_proto = ip.v6->nexthdr;
3121 ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3122 &l4_proto, &frag_off);
3123 if (ret < 0)
3124 return -1;
3125 }
3126
3127 /* define outer transport */
3128 switch (l4_proto) {
3129 case IPPROTO_UDP:
3130 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3131 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3132 break;
3133 case IPPROTO_GRE:
3134 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3135 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3136 break;
3137 case IPPROTO_IPIP:
3138 case IPPROTO_IPV6:
3139 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3140 l4.hdr = skb_inner_network_header(skb);
3141 break;
3142 default:
3143 if (*tx_flags & I40E_TX_FLAGS_TSO)
3144 return -1;
3145
3146 skb_checksum_help(skb);
3147 return 0;
3148 }
3149
3150 /* compute outer L3 header size */
3151 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3152 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3153
3154 /* switch IP header pointer from outer to inner header */
3155 ip.hdr = skb_inner_network_header(skb);
3156
3157 /* compute tunnel header size */
3158 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3159 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3160
3161 /* indicate if we need to offload outer UDP header */
3162 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3163 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3164 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3165 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3166
3167 /* record tunnel offload values */
3168 *cd_tunneling |= tunnel;
3169
3170 /* switch L4 header pointer from outer to inner */
3171 l4.hdr = skb_inner_transport_header(skb);
3172 l4_proto = 0;
3173
3174 /* reset type as we transition from outer to inner headers */
3175 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3176 if (ip.v4->version == 4)
3177 *tx_flags |= I40E_TX_FLAGS_IPV4;
3178 if (ip.v6->version == 6)
3179 *tx_flags |= I40E_TX_FLAGS_IPV6;
3180 }
3181
3182 /* Enable IP checksum offloads */
3183 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3184 l4_proto = ip.v4->protocol;
3185 /* the stack computes the IP header already, the only time we
3186 * need the hardware to recompute it is in the case of TSO.
3187 */
3188 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3189 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3190 I40E_TX_DESC_CMD_IIPT_IPV4;
3191 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3192 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3193
3194 exthdr = ip.hdr + sizeof(*ip.v6);
3195 l4_proto = ip.v6->nexthdr;
3196 if (l4.hdr != exthdr)
3197 ipv6_skip_exthdr(skb, exthdr - skb->data,
3198 &l4_proto, &frag_off);
3199 }
3200
3201 /* compute inner L3 header size */
3202 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3203
3204 /* Enable L4 checksum offloads */
3205 switch (l4_proto) {
3206 case IPPROTO_TCP:
3207 /* enable checksum offloads */
3208 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3209 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3210 break;
3211 case IPPROTO_SCTP:
3212 /* enable SCTP checksum offload */
3213 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3214 offset |= (sizeof(struct sctphdr) >> 2) <<
3215 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3216 break;
3217 case IPPROTO_UDP:
3218 /* enable UDP checksum offload */
3219 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3220 offset |= (sizeof(struct udphdr) >> 2) <<
3221 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3222 break;
3223 default:
3224 if (*tx_flags & I40E_TX_FLAGS_TSO)
3225 return -1;
3226 skb_checksum_help(skb);
3227 return 0;
3228 }
3229
3230 *td_cmd |= cmd;
3231 *td_offset |= offset;
3232
3233 return 1;
3234 }
3235
3236 /**
3237 * i40e_create_tx_ctx Build the Tx context descriptor
3238 * @tx_ring: ring to create the descriptor on
3239 * @cd_type_cmd_tso_mss: Quad Word 1
3240 * @cd_tunneling: Quad Word 0 - bits 0-31
3241 * @cd_l2tag2: Quad Word 0 - bits 32-63
3242 **/
3243 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3244 const u64 cd_type_cmd_tso_mss,
3245 const u32 cd_tunneling, const u32 cd_l2tag2)
3246 {
3247 struct i40e_tx_context_desc *context_desc;
3248 int i = tx_ring->next_to_use;
3249
3250 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3251 !cd_tunneling && !cd_l2tag2)
3252 return;
3253
3254 /* grab the next descriptor */
3255 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3256
3257 i++;
3258 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3259
3260 /* cpu_to_le32 and assign to struct fields */
3261 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3262 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3263 context_desc->rsvd = cpu_to_le16(0);
3264 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3265 }
3266
3267 /**
3268 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3269 * @tx_ring: the ring to be checked
3270 * @size: the size buffer we want to assure is available
3271 *
3272 * Returns -EBUSY if a stop is needed, else 0
3273 **/
3274 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3275 {
3276 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3277 /* Memory barrier before checking head and tail */
3278 smp_mb();
3279
3280 /* Check again in a case another CPU has just made room available. */
3281 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3282 return -EBUSY;
3283
3284 /* A reprieve! - use start_queue because it doesn't call schedule */
3285 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3286 ++tx_ring->tx_stats.restart_queue;
3287 return 0;
3288 }
3289
3290 /**
3291 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3292 * @skb: send buffer
3293 *
3294 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3295 * and so we need to figure out the cases where we need to linearize the skb.
3296 *
3297 * For TSO we need to count the TSO header and segment payload separately.
3298 * As such we need to check cases where we have 7 fragments or more as we
3299 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3300 * the segment payload in the first descriptor, and another 7 for the
3301 * fragments.
3302 **/
3303 bool __i40e_chk_linearize(struct sk_buff *skb)
3304 {
3305 const skb_frag_t *frag, *stale;
3306 int nr_frags, sum;
3307
3308 /* no need to check if number of frags is less than 7 */
3309 nr_frags = skb_shinfo(skb)->nr_frags;
3310 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3311 return false;
3312
3313 /* We need to walk through the list and validate that each group
3314 * of 6 fragments totals at least gso_size.
3315 */
3316 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3317 frag = &skb_shinfo(skb)->frags[0];
3318
3319 /* Initialize size to the negative value of gso_size minus 1. We
3320 * use this as the worst case scenerio in which the frag ahead
3321 * of us only provides one byte which is why we are limited to 6
3322 * descriptors for a single transmit as the header and previous
3323 * fragment are already consuming 2 descriptors.
3324 */
3325 sum = 1 - skb_shinfo(skb)->gso_size;
3326
3327 /* Add size of frags 0 through 4 to create our initial sum */
3328 sum += skb_frag_size(frag++);
3329 sum += skb_frag_size(frag++);
3330 sum += skb_frag_size(frag++);
3331 sum += skb_frag_size(frag++);
3332 sum += skb_frag_size(frag++);
3333
3334 /* Walk through fragments adding latest fragment, testing it, and
3335 * then removing stale fragments from the sum.
3336 */
3337 for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3338 int stale_size = skb_frag_size(stale);
3339
3340 sum += skb_frag_size(frag++);
3341
3342 /* The stale fragment may present us with a smaller
3343 * descriptor than the actual fragment size. To account
3344 * for that we need to remove all the data on the front and
3345 * figure out what the remainder would be in the last
3346 * descriptor associated with the fragment.
3347 */
3348 if (stale_size > I40E_MAX_DATA_PER_TXD) {
3349 int align_pad = -(skb_frag_off(stale)) &
3350 (I40E_MAX_READ_REQ_SIZE - 1);
3351
3352 sum -= align_pad;
3353 stale_size -= align_pad;
3354
3355 do {
3356 sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3357 stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3358 } while (stale_size > I40E_MAX_DATA_PER_TXD);
3359 }
3360
3361 /* if sum is negative we failed to make sufficient progress */
3362 if (sum < 0)
3363 return true;
3364
3365 if (!nr_frags--)
3366 break;
3367
3368 sum -= stale_size;
3369 }
3370
3371 return false;
3372 }
3373
3374 /**
3375 * i40e_tx_map - Build the Tx descriptor
3376 * @tx_ring: ring to send buffer on
3377 * @skb: send buffer
3378 * @first: first buffer info buffer to use
3379 * @tx_flags: collected send information
3380 * @hdr_len: size of the packet header
3381 * @td_cmd: the command field in the descriptor
3382 * @td_offset: offset for checksum or crc
3383 *
3384 * Returns 0 on success, -1 on failure to DMA
3385 **/
3386 static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3387 struct i40e_tx_buffer *first, u32 tx_flags,
3388 const u8 hdr_len, u32 td_cmd, u32 td_offset)
3389 {
3390 unsigned int data_len = skb->data_len;
3391 unsigned int size = skb_headlen(skb);
3392 skb_frag_t *frag;
3393 struct i40e_tx_buffer *tx_bi;
3394 struct i40e_tx_desc *tx_desc;
3395 u16 i = tx_ring->next_to_use;
3396 u32 td_tag = 0;
3397 dma_addr_t dma;
3398 u16 desc_count = 1;
3399
3400 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3401 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3402 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3403 I40E_TX_FLAGS_VLAN_SHIFT;
3404 }
3405
3406 first->tx_flags = tx_flags;
3407
3408 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3409
3410 tx_desc = I40E_TX_DESC(tx_ring, i);
3411 tx_bi = first;
3412
3413 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3414 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3415
3416 if (dma_mapping_error(tx_ring->dev, dma))
3417 goto dma_error;
3418
3419 /* record length, and DMA address */
3420 dma_unmap_len_set(tx_bi, len, size);
3421 dma_unmap_addr_set(tx_bi, dma, dma);
3422
3423 /* align size to end of page */
3424 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3425 tx_desc->buffer_addr = cpu_to_le64(dma);
3426
3427 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3428 tx_desc->cmd_type_offset_bsz =
3429 build_ctob(td_cmd, td_offset,
3430 max_data, td_tag);
3431
3432 tx_desc++;
3433 i++;
3434 desc_count++;
3435
3436 if (i == tx_ring->count) {
3437 tx_desc = I40E_TX_DESC(tx_ring, 0);
3438 i = 0;
3439 }
3440
3441 dma += max_data;
3442 size -= max_data;
3443
3444 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3445 tx_desc->buffer_addr = cpu_to_le64(dma);
3446 }
3447
3448 if (likely(!data_len))
3449 break;
3450
3451 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3452 size, td_tag);
3453
3454 tx_desc++;
3455 i++;
3456 desc_count++;
3457
3458 if (i == tx_ring->count) {
3459 tx_desc = I40E_TX_DESC(tx_ring, 0);
3460 i = 0;
3461 }
3462
3463 size = skb_frag_size(frag);
3464 data_len -= size;
3465
3466 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3467 DMA_TO_DEVICE);
3468
3469 tx_bi = &tx_ring->tx_bi[i];
3470 }
3471
3472 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3473
3474 i++;
3475 if (i == tx_ring->count)
3476 i = 0;
3477
3478 tx_ring->next_to_use = i;
3479
3480 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3481
3482 /* write last descriptor with EOP bit */
3483 td_cmd |= I40E_TX_DESC_CMD_EOP;
3484
3485 /* We OR these values together to check both against 4 (WB_STRIDE)
3486 * below. This is safe since we don't re-use desc_count afterwards.
3487 */
3488 desc_count |= ++tx_ring->packet_stride;
3489
3490 if (desc_count >= WB_STRIDE) {
3491 /* write last descriptor with RS bit set */
3492 td_cmd |= I40E_TX_DESC_CMD_RS;
3493 tx_ring->packet_stride = 0;
3494 }
3495
3496 tx_desc->cmd_type_offset_bsz =
3497 build_ctob(td_cmd, td_offset, size, td_tag);
3498
3499 skb_tx_timestamp(skb);
3500
3501 /* Force memory writes to complete before letting h/w know there
3502 * are new descriptors to fetch.
3503 *
3504 * We also use this memory barrier to make certain all of the
3505 * status bits have been updated before next_to_watch is written.
3506 */
3507 wmb();
3508
3509 /* set next_to_watch value indicating a packet is present */
3510 first->next_to_watch = tx_desc;
3511
3512 /* notify HW of packet */
3513 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3514 writel(i, tx_ring->tail);
3515 }
3516
3517 return 0;
3518
3519 dma_error:
3520 dev_info(tx_ring->dev, "TX DMA map failed\n");
3521
3522 /* clear dma mappings for failed tx_bi map */
3523 for (;;) {
3524 tx_bi = &tx_ring->tx_bi[i];
3525 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3526 if (tx_bi == first)
3527 break;
3528 if (i == 0)
3529 i = tx_ring->count;
3530 i--;
3531 }
3532
3533 tx_ring->next_to_use = i;
3534
3535 return -1;
3536 }
3537
3538 /**
3539 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3540 * @xdpf: data to transmit
3541 * @xdp_ring: XDP Tx ring
3542 **/
3543 static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3544 struct i40e_ring *xdp_ring)
3545 {
3546 u16 i = xdp_ring->next_to_use;
3547 struct i40e_tx_buffer *tx_bi;
3548 struct i40e_tx_desc *tx_desc;
3549 void *data = xdpf->data;
3550 u32 size = xdpf->len;
3551 dma_addr_t dma;
3552
3553 if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3554 xdp_ring->tx_stats.tx_busy++;
3555 return I40E_XDP_CONSUMED;
3556 }
3557 dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3558 if (dma_mapping_error(xdp_ring->dev, dma))
3559 return I40E_XDP_CONSUMED;
3560
3561 tx_bi = &xdp_ring->tx_bi[i];
3562 tx_bi->bytecount = size;
3563 tx_bi->gso_segs = 1;
3564 tx_bi->xdpf = xdpf;
3565
3566 /* record length, and DMA address */
3567 dma_unmap_len_set(tx_bi, len, size);
3568 dma_unmap_addr_set(tx_bi, dma, dma);
3569
3570 tx_desc = I40E_TX_DESC(xdp_ring, i);
3571 tx_desc->buffer_addr = cpu_to_le64(dma);
3572 tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3573 | I40E_TXD_CMD,
3574 0, size, 0);
3575
3576 /* Make certain all of the status bits have been updated
3577 * before next_to_watch is written.
3578 */
3579 smp_wmb();
3580
3581 xdp_ring->xdp_tx_active++;
3582 i++;
3583 if (i == xdp_ring->count)
3584 i = 0;
3585
3586 tx_bi->next_to_watch = tx_desc;
3587 xdp_ring->next_to_use = i;
3588
3589 return I40E_XDP_TX;
3590 }
3591
3592 /**
3593 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3594 * @skb: send buffer
3595 * @tx_ring: ring to send buffer on
3596 *
3597 * Returns NETDEV_TX_OK if sent, else an error code
3598 **/
3599 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3600 struct i40e_ring *tx_ring)
3601 {
3602 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3603 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3604 struct i40e_tx_buffer *first;
3605 u32 td_offset = 0;
3606 u32 tx_flags = 0;
3607 __be16 protocol;
3608 u32 td_cmd = 0;
3609 u8 hdr_len = 0;
3610 int tso, count;
3611 int tsyn;
3612
3613 /* prefetch the data, we'll need it later */
3614 prefetch(skb->data);
3615
3616 i40e_trace(xmit_frame_ring, skb, tx_ring);
3617
3618 count = i40e_xmit_descriptor_count(skb);
3619 if (i40e_chk_linearize(skb, count)) {
3620 if (__skb_linearize(skb)) {
3621 dev_kfree_skb_any(skb);
3622 return NETDEV_TX_OK;
3623 }
3624 count = i40e_txd_use_count(skb->len);
3625 tx_ring->tx_stats.tx_linearize++;
3626 }
3627
3628 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3629 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3630 * + 4 desc gap to avoid the cache line where head is,
3631 * + 1 desc for context descriptor,
3632 * otherwise try next time
3633 */
3634 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3635 tx_ring->tx_stats.tx_busy++;
3636 return NETDEV_TX_BUSY;
3637 }
3638
3639 /* record the location of the first descriptor for this packet */
3640 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3641 first->skb = skb;
3642 first->bytecount = skb->len;
3643 first->gso_segs = 1;
3644
3645 /* prepare the xmit flags */
3646 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3647 goto out_drop;
3648
3649 /* obtain protocol of skb */
3650 protocol = vlan_get_protocol(skb);
3651
3652 /* setup IPv4/IPv6 offloads */
3653 if (protocol == htons(ETH_P_IP))
3654 tx_flags |= I40E_TX_FLAGS_IPV4;
3655 else if (protocol == htons(ETH_P_IPV6))
3656 tx_flags |= I40E_TX_FLAGS_IPV6;
3657
3658 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3659
3660 if (tso < 0)
3661 goto out_drop;
3662 else if (tso)
3663 tx_flags |= I40E_TX_FLAGS_TSO;
3664
3665 /* Always offload the checksum, since it's in the data descriptor */
3666 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3667 tx_ring, &cd_tunneling);
3668 if (tso < 0)
3669 goto out_drop;
3670
3671 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3672
3673 if (tsyn)
3674 tx_flags |= I40E_TX_FLAGS_TSYN;
3675
3676 /* always enable CRC insertion offload */
3677 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3678
3679 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3680 cd_tunneling, cd_l2tag2);
3681
3682 /* Add Flow Director ATR if it's enabled.
3683 *
3684 * NOTE: this must always be directly before the data descriptor.
3685 */
3686 i40e_atr(tx_ring, skb, tx_flags);
3687
3688 if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3689 td_cmd, td_offset))
3690 goto cleanup_tx_tstamp;
3691
3692 return NETDEV_TX_OK;
3693
3694 out_drop:
3695 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3696 dev_kfree_skb_any(first->skb);
3697 first->skb = NULL;
3698 cleanup_tx_tstamp:
3699 if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3700 struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3701
3702 dev_kfree_skb_any(pf->ptp_tx_skb);
3703 pf->ptp_tx_skb = NULL;
3704 clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3705 }
3706
3707 return NETDEV_TX_OK;
3708 }
3709
3710 /**
3711 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3712 * @skb: send buffer
3713 * @netdev: network interface device structure
3714 *
3715 * Returns NETDEV_TX_OK if sent, else an error code
3716 **/
3717 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3718 {
3719 struct i40e_netdev_priv *np = netdev_priv(netdev);
3720 struct i40e_vsi *vsi = np->vsi;
3721 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3722
3723 /* hardware can't handle really short frames, hardware padding works
3724 * beyond this point
3725 */
3726 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3727 return NETDEV_TX_OK;
3728
3729 return i40e_xmit_frame_ring(skb, tx_ring);
3730 }
3731
3732 /**
3733 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3734 * @dev: netdev
3735 * @n: number of frames
3736 * @frames: array of XDP buffer pointers
3737 * @flags: XDP extra info
3738 *
3739 * Returns number of frames successfully sent. Frames that fail are
3740 * free'ed via XDP return API.
3741 *
3742 * For error cases, a negative errno code is returned and no-frames
3743 * are transmitted (caller must handle freeing frames).
3744 **/
3745 int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
3746 u32 flags)
3747 {
3748 struct i40e_netdev_priv *np = netdev_priv(dev);
3749 unsigned int queue_index = smp_processor_id();
3750 struct i40e_vsi *vsi = np->vsi;
3751 struct i40e_pf *pf = vsi->back;
3752 struct i40e_ring *xdp_ring;
3753 int drops = 0;
3754 int i;
3755
3756 if (test_bit(__I40E_VSI_DOWN, vsi->state))
3757 return -ENETDOWN;
3758
3759 if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
3760 test_bit(__I40E_CONFIG_BUSY, pf->state))
3761 return -ENXIO;
3762
3763 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3764 return -EINVAL;
3765
3766 xdp_ring = vsi->xdp_rings[queue_index];
3767
3768 for (i = 0; i < n; i++) {
3769 struct xdp_frame *xdpf = frames[i];
3770 int err;
3771
3772 err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
3773 if (err != I40E_XDP_TX) {
3774 xdp_return_frame_rx_napi(xdpf);
3775 drops++;
3776 }
3777 }
3778
3779 if (unlikely(flags & XDP_XMIT_FLUSH))
3780 i40e_xdp_ring_update_tail(xdp_ring);
3781
3782 return n - drops;
3783 }