]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_trace.h"
31 #include "i40e_prototype.h"
32
33 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35 {
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41 }
42
43 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44 /**
45 * i40e_fdir - Generate a Flow Director descriptor based on fdata
46 * @tx_ring: Tx ring to send buffer on
47 * @fdata: Flow director filter data
48 * @add: Indicate if we are adding a rule or deleting one
49 *
50 **/
51 static void i40e_fdir(struct i40e_ring *tx_ring,
52 struct i40e_fdir_filter *fdata, bool add)
53 {
54 struct i40e_filter_program_desc *fdir_desc;
55 struct i40e_pf *pf = tx_ring->vsi->back;
56 u32 flex_ptype, dtype_cmd;
57 u16 i;
58
59 /* grab the next descriptor */
60 i = tx_ring->next_to_use;
61 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
62
63 i++;
64 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
65
66 flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
67 (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
68
69 flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
70 (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
71
72 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
73 (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
74
75 flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
76 (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
77
78 /* Use LAN VSI Id if not programmed by user */
79 flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
80 ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
81 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
82
83 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
84
85 dtype_cmd |= add ?
86 I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
87 I40E_TXD_FLTR_QW1_PCMD_SHIFT :
88 I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
89 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
90
91 dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
92 (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
93
94 dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
95 (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
96
97 if (fdata->cnt_index) {
98 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
99 dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
100 ((u32)fdata->cnt_index <<
101 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
102 }
103
104 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
105 fdir_desc->rsvd = cpu_to_le32(0);
106 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
107 fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
108 }
109
110 #define I40E_FD_CLEAN_DELAY 10
111 /**
112 * i40e_program_fdir_filter - Program a Flow Director filter
113 * @fdir_data: Packet data that will be filter parameters
114 * @raw_packet: the pre-allocated packet buffer for FDir
115 * @pf: The PF pointer
116 * @add: True for add/update, False for remove
117 **/
118 static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
119 u8 *raw_packet, struct i40e_pf *pf,
120 bool add)
121 {
122 struct i40e_tx_buffer *tx_buf, *first;
123 struct i40e_tx_desc *tx_desc;
124 struct i40e_ring *tx_ring;
125 struct i40e_vsi *vsi;
126 struct device *dev;
127 dma_addr_t dma;
128 u32 td_cmd = 0;
129 u16 i;
130
131 /* find existing FDIR VSI */
132 vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
133 if (!vsi)
134 return -ENOENT;
135
136 tx_ring = vsi->tx_rings[0];
137 dev = tx_ring->dev;
138
139 /* we need two descriptors to add/del a filter and we can wait */
140 for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
141 if (!i)
142 return -EAGAIN;
143 msleep_interruptible(1);
144 }
145
146 dma = dma_map_single(dev, raw_packet,
147 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
148 if (dma_mapping_error(dev, dma))
149 goto dma_fail;
150
151 /* grab the next descriptor */
152 i = tx_ring->next_to_use;
153 first = &tx_ring->tx_bi[i];
154 i40e_fdir(tx_ring, fdir_data, add);
155
156 /* Now program a dummy descriptor */
157 i = tx_ring->next_to_use;
158 tx_desc = I40E_TX_DESC(tx_ring, i);
159 tx_buf = &tx_ring->tx_bi[i];
160
161 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
162
163 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
164
165 /* record length, and DMA address */
166 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
167 dma_unmap_addr_set(tx_buf, dma, dma);
168
169 tx_desc->buffer_addr = cpu_to_le64(dma);
170 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
171
172 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
173 tx_buf->raw_buf = (void *)raw_packet;
174
175 tx_desc->cmd_type_offset_bsz =
176 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
177
178 /* Force memory writes to complete before letting h/w
179 * know there are new descriptors to fetch.
180 */
181 wmb();
182
183 /* Mark the data descriptor to be watched */
184 first->next_to_watch = tx_desc;
185
186 writel(tx_ring->next_to_use, tx_ring->tail);
187 return 0;
188
189 dma_fail:
190 return -1;
191 }
192
193 #define IP_HEADER_OFFSET 14
194 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
195 /**
196 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
197 * @vsi: pointer to the targeted VSI
198 * @fd_data: the flow director data required for the FDir descriptor
199 * @add: true adds a filter, false removes it
200 *
201 * Returns 0 if the filters were successfully added or removed
202 **/
203 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
204 struct i40e_fdir_filter *fd_data,
205 bool add)
206 {
207 struct i40e_pf *pf = vsi->back;
208 struct udphdr *udp;
209 struct iphdr *ip;
210 u8 *raw_packet;
211 int ret;
212 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
213 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
214 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
215
216 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
217 if (!raw_packet)
218 return -ENOMEM;
219 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
220
221 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
222 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
223 + sizeof(struct iphdr));
224
225 ip->daddr = fd_data->dst_ip;
226 udp->dest = fd_data->dst_port;
227 ip->saddr = fd_data->src_ip;
228 udp->source = fd_data->src_port;
229
230 if (fd_data->flex_filter) {
231 u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
232 __be16 pattern = fd_data->flex_word;
233 u16 off = fd_data->flex_offset;
234
235 *((__force __be16 *)(payload + off)) = pattern;
236 }
237
238 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
239 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
240 if (ret) {
241 dev_info(&pf->pdev->dev,
242 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
243 fd_data->pctype, fd_data->fd_id, ret);
244 /* Free the packet buffer since it wasn't added to the ring */
245 kfree(raw_packet);
246 return -EOPNOTSUPP;
247 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
248 if (add)
249 dev_info(&pf->pdev->dev,
250 "Filter OK for PCTYPE %d loc = %d\n",
251 fd_data->pctype, fd_data->fd_id);
252 else
253 dev_info(&pf->pdev->dev,
254 "Filter deleted for PCTYPE %d loc = %d\n",
255 fd_data->pctype, fd_data->fd_id);
256 }
257
258 if (add)
259 pf->fd_udp4_filter_cnt++;
260 else
261 pf->fd_udp4_filter_cnt--;
262
263 return 0;
264 }
265
266 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
267 /**
268 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
269 * @vsi: pointer to the targeted VSI
270 * @fd_data: the flow director data required for the FDir descriptor
271 * @add: true adds a filter, false removes it
272 *
273 * Returns 0 if the filters were successfully added or removed
274 **/
275 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
276 struct i40e_fdir_filter *fd_data,
277 bool add)
278 {
279 struct i40e_pf *pf = vsi->back;
280 struct tcphdr *tcp;
281 struct iphdr *ip;
282 u8 *raw_packet;
283 int ret;
284 /* Dummy packet */
285 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
286 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
287 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
288 0x0, 0x72, 0, 0, 0, 0};
289
290 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
291 if (!raw_packet)
292 return -ENOMEM;
293 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
294
295 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
296 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
297 + sizeof(struct iphdr));
298
299 ip->daddr = fd_data->dst_ip;
300 tcp->dest = fd_data->dst_port;
301 ip->saddr = fd_data->src_ip;
302 tcp->source = fd_data->src_port;
303
304 if (fd_data->flex_filter) {
305 u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
306 __be16 pattern = fd_data->flex_word;
307 u16 off = fd_data->flex_offset;
308
309 *((__force __be16 *)(payload + off)) = pattern;
310 }
311
312 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
313 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
314 if (ret) {
315 dev_info(&pf->pdev->dev,
316 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
317 fd_data->pctype, fd_data->fd_id, ret);
318 /* Free the packet buffer since it wasn't added to the ring */
319 kfree(raw_packet);
320 return -EOPNOTSUPP;
321 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
322 if (add)
323 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
324 fd_data->pctype, fd_data->fd_id);
325 else
326 dev_info(&pf->pdev->dev,
327 "Filter deleted for PCTYPE %d loc = %d\n",
328 fd_data->pctype, fd_data->fd_id);
329 }
330
331 if (add) {
332 pf->fd_tcp4_filter_cnt++;
333 if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
334 I40E_DEBUG_FD & pf->hw.debug_mask)
335 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
336 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
337 } else {
338 pf->fd_tcp4_filter_cnt--;
339 }
340
341 return 0;
342 }
343
344 #define I40E_SCTPIP_DUMMY_PACKET_LEN 46
345 /**
346 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
347 * a specific flow spec
348 * @vsi: pointer to the targeted VSI
349 * @fd_data: the flow director data required for the FDir descriptor
350 * @add: true adds a filter, false removes it
351 *
352 * Returns 0 if the filters were successfully added or removed
353 **/
354 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
355 struct i40e_fdir_filter *fd_data,
356 bool add)
357 {
358 struct i40e_pf *pf = vsi->back;
359 struct sctphdr *sctp;
360 struct iphdr *ip;
361 u8 *raw_packet;
362 int ret;
363 /* Dummy packet */
364 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
365 0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
366 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
367
368 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
369 if (!raw_packet)
370 return -ENOMEM;
371 memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
372
373 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
374 sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
375 + sizeof(struct iphdr));
376
377 ip->daddr = fd_data->dst_ip;
378 sctp->dest = fd_data->dst_port;
379 ip->saddr = fd_data->src_ip;
380 sctp->source = fd_data->src_port;
381
382 if (fd_data->flex_filter) {
383 u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
384 __be16 pattern = fd_data->flex_word;
385 u16 off = fd_data->flex_offset;
386
387 *((__force __be16 *)(payload + off)) = pattern;
388 }
389
390 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
391 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
392 if (ret) {
393 dev_info(&pf->pdev->dev,
394 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
395 fd_data->pctype, fd_data->fd_id, ret);
396 /* Free the packet buffer since it wasn't added to the ring */
397 kfree(raw_packet);
398 return -EOPNOTSUPP;
399 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
400 if (add)
401 dev_info(&pf->pdev->dev,
402 "Filter OK for PCTYPE %d loc = %d\n",
403 fd_data->pctype, fd_data->fd_id);
404 else
405 dev_info(&pf->pdev->dev,
406 "Filter deleted for PCTYPE %d loc = %d\n",
407 fd_data->pctype, fd_data->fd_id);
408 }
409
410 if (add)
411 pf->fd_sctp4_filter_cnt++;
412 else
413 pf->fd_sctp4_filter_cnt--;
414
415 return 0;
416 }
417
418 #define I40E_IP_DUMMY_PACKET_LEN 34
419 /**
420 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
421 * a specific flow spec
422 * @vsi: pointer to the targeted VSI
423 * @fd_data: the flow director data required for the FDir descriptor
424 * @add: true adds a filter, false removes it
425 *
426 * Returns 0 if the filters were successfully added or removed
427 **/
428 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
429 struct i40e_fdir_filter *fd_data,
430 bool add)
431 {
432 struct i40e_pf *pf = vsi->back;
433 struct iphdr *ip;
434 u8 *raw_packet;
435 int ret;
436 int i;
437 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
438 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
439 0, 0, 0, 0};
440
441 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
442 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
443 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
444 if (!raw_packet)
445 return -ENOMEM;
446 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
447 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
448
449 ip->saddr = fd_data->src_ip;
450 ip->daddr = fd_data->dst_ip;
451 ip->protocol = 0;
452
453 if (fd_data->flex_filter) {
454 u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
455 __be16 pattern = fd_data->flex_word;
456 u16 off = fd_data->flex_offset;
457
458 *((__force __be16 *)(payload + off)) = pattern;
459 }
460
461 fd_data->pctype = i;
462 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
463 if (ret) {
464 dev_info(&pf->pdev->dev,
465 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
466 fd_data->pctype, fd_data->fd_id, ret);
467 /* The packet buffer wasn't added to the ring so we
468 * need to free it now.
469 */
470 kfree(raw_packet);
471 return -EOPNOTSUPP;
472 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
473 if (add)
474 dev_info(&pf->pdev->dev,
475 "Filter OK for PCTYPE %d loc = %d\n",
476 fd_data->pctype, fd_data->fd_id);
477 else
478 dev_info(&pf->pdev->dev,
479 "Filter deleted for PCTYPE %d loc = %d\n",
480 fd_data->pctype, fd_data->fd_id);
481 }
482 }
483
484 if (add)
485 pf->fd_ip4_filter_cnt++;
486 else
487 pf->fd_ip4_filter_cnt--;
488
489 return 0;
490 }
491
492 /**
493 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
494 * @vsi: pointer to the targeted VSI
495 * @cmd: command to get or set RX flow classification rules
496 * @add: true adds a filter, false removes it
497 *
498 **/
499 int i40e_add_del_fdir(struct i40e_vsi *vsi,
500 struct i40e_fdir_filter *input, bool add)
501 {
502 struct i40e_pf *pf = vsi->back;
503 int ret;
504
505 switch (input->flow_type & ~FLOW_EXT) {
506 case TCP_V4_FLOW:
507 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
508 break;
509 case UDP_V4_FLOW:
510 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
511 break;
512 case SCTP_V4_FLOW:
513 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
514 break;
515 case IP_USER_FLOW:
516 switch (input->ip4_proto) {
517 case IPPROTO_TCP:
518 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
519 break;
520 case IPPROTO_UDP:
521 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
522 break;
523 case IPPROTO_SCTP:
524 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
525 break;
526 case IPPROTO_IP:
527 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
528 break;
529 default:
530 /* We cannot support masking based on protocol */
531 dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
532 input->ip4_proto);
533 return -EINVAL;
534 }
535 break;
536 default:
537 dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
538 input->flow_type);
539 return -EINVAL;
540 }
541
542 /* The buffer allocated here will be normally be freed by
543 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
544 * completion. In the event of an error adding the buffer to the FDIR
545 * ring, it will immediately be freed. It may also be freed by
546 * i40e_clean_tx_ring() when closing the VSI.
547 */
548 return ret;
549 }
550
551 /**
552 * i40e_fd_handle_status - check the Programming Status for FD
553 * @rx_ring: the Rx ring for this descriptor
554 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
555 * @prog_id: the id originally used for programming
556 *
557 * This is used to verify if the FD programming or invalidation
558 * requested by SW to the HW is successful or not and take actions accordingly.
559 **/
560 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
561 union i40e_rx_desc *rx_desc, u8 prog_id)
562 {
563 struct i40e_pf *pf = rx_ring->vsi->back;
564 struct pci_dev *pdev = pf->pdev;
565 u32 fcnt_prog, fcnt_avail;
566 u32 error;
567 u64 qw;
568
569 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
570 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
571 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
572
573 if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
574 pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
575 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
576 (I40E_DEBUG_FD & pf->hw.debug_mask))
577 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
578 pf->fd_inv);
579
580 /* Check if the programming error is for ATR.
581 * If so, auto disable ATR and set a state for
582 * flush in progress. Next time we come here if flush is in
583 * progress do nothing, once flush is complete the state will
584 * be cleared.
585 */
586 if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
587 return;
588
589 pf->fd_add_err++;
590 /* store the current atr filter count */
591 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
592
593 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
594 pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED) {
595 pf->flags |= I40E_FLAG_FD_ATR_AUTO_DISABLED;
596 set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
597 }
598
599 /* filter programming failed most likely due to table full */
600 fcnt_prog = i40e_get_global_fd_count(pf);
601 fcnt_avail = pf->fdir_pf_filter_count;
602 /* If ATR is running fcnt_prog can quickly change,
603 * if we are very close to full, it makes sense to disable
604 * FD ATR/SB and then re-enable it when there is room.
605 */
606 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
607 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
608 !(pf->flags & I40E_FLAG_FD_SB_AUTO_DISABLED)) {
609 pf->flags |= I40E_FLAG_FD_SB_AUTO_DISABLED;
610 if (I40E_DEBUG_FD & pf->hw.debug_mask)
611 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
612 }
613 }
614 } else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
615 if (I40E_DEBUG_FD & pf->hw.debug_mask)
616 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
617 rx_desc->wb.qword0.hi_dword.fd_id);
618 }
619 }
620
621 /**
622 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
623 * @ring: the ring that owns the buffer
624 * @tx_buffer: the buffer to free
625 **/
626 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
627 struct i40e_tx_buffer *tx_buffer)
628 {
629 if (tx_buffer->skb) {
630 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
631 kfree(tx_buffer->raw_buf);
632 else
633 dev_kfree_skb_any(tx_buffer->skb);
634 if (dma_unmap_len(tx_buffer, len))
635 dma_unmap_single(ring->dev,
636 dma_unmap_addr(tx_buffer, dma),
637 dma_unmap_len(tx_buffer, len),
638 DMA_TO_DEVICE);
639 } else if (dma_unmap_len(tx_buffer, len)) {
640 dma_unmap_page(ring->dev,
641 dma_unmap_addr(tx_buffer, dma),
642 dma_unmap_len(tx_buffer, len),
643 DMA_TO_DEVICE);
644 }
645
646 tx_buffer->next_to_watch = NULL;
647 tx_buffer->skb = NULL;
648 dma_unmap_len_set(tx_buffer, len, 0);
649 /* tx_buffer must be completely set up in the transmit path */
650 }
651
652 /**
653 * i40e_clean_tx_ring - Free any empty Tx buffers
654 * @tx_ring: ring to be cleaned
655 **/
656 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
657 {
658 unsigned long bi_size;
659 u16 i;
660
661 /* ring already cleared, nothing to do */
662 if (!tx_ring->tx_bi)
663 return;
664
665 /* Free all the Tx ring sk_buffs */
666 for (i = 0; i < tx_ring->count; i++)
667 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
668
669 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
670 memset(tx_ring->tx_bi, 0, bi_size);
671
672 /* Zero out the descriptor ring */
673 memset(tx_ring->desc, 0, tx_ring->size);
674
675 tx_ring->next_to_use = 0;
676 tx_ring->next_to_clean = 0;
677
678 if (!tx_ring->netdev)
679 return;
680
681 /* cleanup Tx queue statistics */
682 netdev_tx_reset_queue(txring_txq(tx_ring));
683 }
684
685 /**
686 * i40e_free_tx_resources - Free Tx resources per queue
687 * @tx_ring: Tx descriptor ring for a specific queue
688 *
689 * Free all transmit software resources
690 **/
691 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
692 {
693 i40e_clean_tx_ring(tx_ring);
694 kfree(tx_ring->tx_bi);
695 tx_ring->tx_bi = NULL;
696
697 if (tx_ring->desc) {
698 dma_free_coherent(tx_ring->dev, tx_ring->size,
699 tx_ring->desc, tx_ring->dma);
700 tx_ring->desc = NULL;
701 }
702 }
703
704 /**
705 * i40e_get_tx_pending - how many tx descriptors not processed
706 * @tx_ring: the ring of descriptors
707 *
708 * Since there is no access to the ring head register
709 * in XL710, we need to use our local copies
710 **/
711 u32 i40e_get_tx_pending(struct i40e_ring *ring)
712 {
713 u32 head, tail;
714
715 head = i40e_get_head(ring);
716 tail = readl(ring->tail);
717
718 if (head != tail)
719 return (head < tail) ?
720 tail - head : (tail + ring->count - head);
721
722 return 0;
723 }
724
725 #define WB_STRIDE 4
726
727 /**
728 * i40e_clean_tx_irq - Reclaim resources after transmit completes
729 * @vsi: the VSI we care about
730 * @tx_ring: Tx ring to clean
731 * @napi_budget: Used to determine if we are in netpoll
732 *
733 * Returns true if there's any budget left (e.g. the clean is finished)
734 **/
735 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
736 struct i40e_ring *tx_ring, int napi_budget)
737 {
738 u16 i = tx_ring->next_to_clean;
739 struct i40e_tx_buffer *tx_buf;
740 struct i40e_tx_desc *tx_head;
741 struct i40e_tx_desc *tx_desc;
742 unsigned int total_bytes = 0, total_packets = 0;
743 unsigned int budget = vsi->work_limit;
744
745 tx_buf = &tx_ring->tx_bi[i];
746 tx_desc = I40E_TX_DESC(tx_ring, i);
747 i -= tx_ring->count;
748
749 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
750
751 do {
752 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
753
754 /* if next_to_watch is not set then there is no work pending */
755 if (!eop_desc)
756 break;
757
758 /* prevent any other reads prior to eop_desc */
759 read_barrier_depends();
760
761 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
762 /* we have caught up to head, no work left to do */
763 if (tx_head == tx_desc)
764 break;
765
766 /* clear next_to_watch to prevent false hangs */
767 tx_buf->next_to_watch = NULL;
768
769 /* update the statistics for this packet */
770 total_bytes += tx_buf->bytecount;
771 total_packets += tx_buf->gso_segs;
772
773 /* free the skb */
774 napi_consume_skb(tx_buf->skb, napi_budget);
775
776 /* unmap skb header data */
777 dma_unmap_single(tx_ring->dev,
778 dma_unmap_addr(tx_buf, dma),
779 dma_unmap_len(tx_buf, len),
780 DMA_TO_DEVICE);
781
782 /* clear tx_buffer data */
783 tx_buf->skb = NULL;
784 dma_unmap_len_set(tx_buf, len, 0);
785
786 /* unmap remaining buffers */
787 while (tx_desc != eop_desc) {
788 i40e_trace(clean_tx_irq_unmap,
789 tx_ring, tx_desc, tx_buf);
790
791 tx_buf++;
792 tx_desc++;
793 i++;
794 if (unlikely(!i)) {
795 i -= tx_ring->count;
796 tx_buf = tx_ring->tx_bi;
797 tx_desc = I40E_TX_DESC(tx_ring, 0);
798 }
799
800 /* unmap any remaining paged data */
801 if (dma_unmap_len(tx_buf, len)) {
802 dma_unmap_page(tx_ring->dev,
803 dma_unmap_addr(tx_buf, dma),
804 dma_unmap_len(tx_buf, len),
805 DMA_TO_DEVICE);
806 dma_unmap_len_set(tx_buf, len, 0);
807 }
808 }
809
810 /* move us one more past the eop_desc for start of next pkt */
811 tx_buf++;
812 tx_desc++;
813 i++;
814 if (unlikely(!i)) {
815 i -= tx_ring->count;
816 tx_buf = tx_ring->tx_bi;
817 tx_desc = I40E_TX_DESC(tx_ring, 0);
818 }
819
820 prefetch(tx_desc);
821
822 /* update budget accounting */
823 budget--;
824 } while (likely(budget));
825
826 i += tx_ring->count;
827 tx_ring->next_to_clean = i;
828 u64_stats_update_begin(&tx_ring->syncp);
829 tx_ring->stats.bytes += total_bytes;
830 tx_ring->stats.packets += total_packets;
831 u64_stats_update_end(&tx_ring->syncp);
832 tx_ring->q_vector->tx.total_bytes += total_bytes;
833 tx_ring->q_vector->tx.total_packets += total_packets;
834
835 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
836 /* check to see if there are < 4 descriptors
837 * waiting to be written back, then kick the hardware to force
838 * them to be written back in case we stay in NAPI.
839 * In this mode on X722 we do not enable Interrupt.
840 */
841 unsigned int j = i40e_get_tx_pending(tx_ring);
842
843 if (budget &&
844 ((j / WB_STRIDE) == 0) && (j > 0) &&
845 !test_bit(__I40E_VSI_DOWN, vsi->state) &&
846 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
847 tx_ring->arm_wb = true;
848 }
849
850 /* notify netdev of completed buffers */
851 netdev_tx_completed_queue(txring_txq(tx_ring),
852 total_packets, total_bytes);
853
854 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
855 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
856 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
857 /* Make sure that anybody stopping the queue after this
858 * sees the new next_to_clean.
859 */
860 smp_mb();
861 if (__netif_subqueue_stopped(tx_ring->netdev,
862 tx_ring->queue_index) &&
863 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
864 netif_wake_subqueue(tx_ring->netdev,
865 tx_ring->queue_index);
866 ++tx_ring->tx_stats.restart_queue;
867 }
868 }
869
870 return !!budget;
871 }
872
873 /**
874 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
875 * @vsi: the VSI we care about
876 * @q_vector: the vector on which to enable writeback
877 *
878 **/
879 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
880 struct i40e_q_vector *q_vector)
881 {
882 u16 flags = q_vector->tx.ring[0].flags;
883 u32 val;
884
885 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
886 return;
887
888 if (q_vector->arm_wb_state)
889 return;
890
891 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
892 val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
893 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
894
895 wr32(&vsi->back->hw,
896 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
897 val);
898 } else {
899 val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
900 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
901
902 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
903 }
904 q_vector->arm_wb_state = true;
905 }
906
907 /**
908 * i40e_force_wb - Issue SW Interrupt so HW does a wb
909 * @vsi: the VSI we care about
910 * @q_vector: the vector on which to force writeback
911 *
912 **/
913 void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
914 {
915 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
916 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
917 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
918 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
919 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
920 /* allow 00 to be written to the index */
921
922 wr32(&vsi->back->hw,
923 I40E_PFINT_DYN_CTLN(q_vector->v_idx +
924 vsi->base_vector - 1), val);
925 } else {
926 u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
927 I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
928 I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
929 I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
930 /* allow 00 to be written to the index */
931
932 wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
933 }
934 }
935
936 /**
937 * i40e_set_new_dynamic_itr - Find new ITR level
938 * @rc: structure containing ring performance data
939 *
940 * Returns true if ITR changed, false if not
941 *
942 * Stores a new ITR value based on packets and byte counts during
943 * the last interrupt. The advantage of per interrupt computation
944 * is faster updates and more accurate ITR for the current traffic
945 * pattern. Constants in this function were computed based on
946 * theoretical maximum wire speed and thresholds were set based on
947 * testing data as well as attempting to minimize response time
948 * while increasing bulk throughput.
949 **/
950 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
951 {
952 enum i40e_latency_range new_latency_range = rc->latency_range;
953 struct i40e_q_vector *qv = rc->ring->q_vector;
954 u32 new_itr = rc->itr;
955 int bytes_per_int;
956 int usecs;
957
958 if (rc->total_packets == 0 || !rc->itr)
959 return false;
960
961 /* simple throttlerate management
962 * 0-10MB/s lowest (50000 ints/s)
963 * 10-20MB/s low (20000 ints/s)
964 * 20-1249MB/s bulk (18000 ints/s)
965 * > 40000 Rx packets per second (8000 ints/s)
966 *
967 * The math works out because the divisor is in 10^(-6) which
968 * turns the bytes/us input value into MB/s values, but
969 * make sure to use usecs, as the register values written
970 * are in 2 usec increments in the ITR registers, and make sure
971 * to use the smoothed values that the countdown timer gives us.
972 */
973 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
974 bytes_per_int = rc->total_bytes / usecs;
975
976 switch (new_latency_range) {
977 case I40E_LOWEST_LATENCY:
978 if (bytes_per_int > 10)
979 new_latency_range = I40E_LOW_LATENCY;
980 break;
981 case I40E_LOW_LATENCY:
982 if (bytes_per_int > 20)
983 new_latency_range = I40E_BULK_LATENCY;
984 else if (bytes_per_int <= 10)
985 new_latency_range = I40E_LOWEST_LATENCY;
986 break;
987 case I40E_BULK_LATENCY:
988 case I40E_ULTRA_LATENCY:
989 default:
990 if (bytes_per_int <= 20)
991 new_latency_range = I40E_LOW_LATENCY;
992 break;
993 }
994
995 /* this is to adjust RX more aggressively when streaming small
996 * packets. The value of 40000 was picked as it is just beyond
997 * what the hardware can receive per second if in low latency
998 * mode.
999 */
1000 #define RX_ULTRA_PACKET_RATE 40000
1001
1002 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
1003 (&qv->rx == rc))
1004 new_latency_range = I40E_ULTRA_LATENCY;
1005
1006 rc->latency_range = new_latency_range;
1007
1008 switch (new_latency_range) {
1009 case I40E_LOWEST_LATENCY:
1010 new_itr = I40E_ITR_50K;
1011 break;
1012 case I40E_LOW_LATENCY:
1013 new_itr = I40E_ITR_20K;
1014 break;
1015 case I40E_BULK_LATENCY:
1016 new_itr = I40E_ITR_18K;
1017 break;
1018 case I40E_ULTRA_LATENCY:
1019 new_itr = I40E_ITR_8K;
1020 break;
1021 default:
1022 break;
1023 }
1024
1025 rc->total_bytes = 0;
1026 rc->total_packets = 0;
1027
1028 if (new_itr != rc->itr) {
1029 rc->itr = new_itr;
1030 return true;
1031 }
1032
1033 return false;
1034 }
1035
1036 /**
1037 * i40e_rx_is_programming_status - check for programming status descriptor
1038 * @qw: qword representing status_error_len in CPU ordering
1039 *
1040 * The value of in the descriptor length field indicate if this
1041 * is a programming status descriptor for flow director or FCoE
1042 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1043 * it is a packet descriptor.
1044 **/
1045 static inline bool i40e_rx_is_programming_status(u64 qw)
1046 {
1047 /* The Rx filter programming status and SPH bit occupy the same
1048 * spot in the descriptor. Since we don't support packet split we
1049 * can just reuse the bit as an indication that this is a
1050 * programming status descriptor.
1051 */
1052 return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1053 }
1054
1055 /**
1056 * i40e_clean_programming_status - clean the programming status descriptor
1057 * @rx_ring: the rx ring that has this descriptor
1058 * @rx_desc: the rx descriptor written back by HW
1059 * @qw: qword representing status_error_len in CPU ordering
1060 *
1061 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1062 * status being successful or not and take actions accordingly. FCoE should
1063 * handle its context/filter programming/invalidation status and take actions.
1064 *
1065 **/
1066 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1067 union i40e_rx_desc *rx_desc,
1068 u64 qw)
1069 {
1070 u32 ntc = rx_ring->next_to_clean + 1;
1071 u8 id;
1072
1073 /* fetch, update, and store next to clean */
1074 ntc = (ntc < rx_ring->count) ? ntc : 0;
1075 rx_ring->next_to_clean = ntc;
1076
1077 prefetch(I40E_RX_DESC(rx_ring, ntc));
1078
1079 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1080 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1081
1082 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1083 i40e_fd_handle_status(rx_ring, rx_desc, id);
1084 }
1085
1086 /**
1087 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1088 * @tx_ring: the tx ring to set up
1089 *
1090 * Return 0 on success, negative on error
1091 **/
1092 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1093 {
1094 struct device *dev = tx_ring->dev;
1095 int bi_size;
1096
1097 if (!dev)
1098 return -ENOMEM;
1099
1100 /* warn if we are about to overwrite the pointer */
1101 WARN_ON(tx_ring->tx_bi);
1102 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1103 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1104 if (!tx_ring->tx_bi)
1105 goto err;
1106
1107 /* round up to nearest 4K */
1108 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1109 /* add u32 for head writeback, align after this takes care of
1110 * guaranteeing this is at least one cache line in size
1111 */
1112 tx_ring->size += sizeof(u32);
1113 tx_ring->size = ALIGN(tx_ring->size, 4096);
1114 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1115 &tx_ring->dma, GFP_KERNEL);
1116 if (!tx_ring->desc) {
1117 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1118 tx_ring->size);
1119 goto err;
1120 }
1121
1122 tx_ring->next_to_use = 0;
1123 tx_ring->next_to_clean = 0;
1124 return 0;
1125
1126 err:
1127 kfree(tx_ring->tx_bi);
1128 tx_ring->tx_bi = NULL;
1129 return -ENOMEM;
1130 }
1131
1132 /**
1133 * i40e_clean_rx_ring - Free Rx buffers
1134 * @rx_ring: ring to be cleaned
1135 **/
1136 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1137 {
1138 unsigned long bi_size;
1139 u16 i;
1140
1141 /* ring already cleared, nothing to do */
1142 if (!rx_ring->rx_bi)
1143 return;
1144
1145 if (rx_ring->skb) {
1146 dev_kfree_skb(rx_ring->skb);
1147 rx_ring->skb = NULL;
1148 }
1149
1150 /* Free all the Rx ring sk_buffs */
1151 for (i = 0; i < rx_ring->count; i++) {
1152 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1153
1154 if (!rx_bi->page)
1155 continue;
1156
1157 /* Invalidate cache lines that may have been written to by
1158 * device so that we avoid corrupting memory.
1159 */
1160 dma_sync_single_range_for_cpu(rx_ring->dev,
1161 rx_bi->dma,
1162 rx_bi->page_offset,
1163 rx_ring->rx_buf_len,
1164 DMA_FROM_DEVICE);
1165
1166 /* free resources associated with mapping */
1167 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1168 i40e_rx_pg_size(rx_ring),
1169 DMA_FROM_DEVICE,
1170 I40E_RX_DMA_ATTR);
1171
1172 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1173
1174 rx_bi->page = NULL;
1175 rx_bi->page_offset = 0;
1176 }
1177
1178 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1179 memset(rx_ring->rx_bi, 0, bi_size);
1180
1181 /* Zero out the descriptor ring */
1182 memset(rx_ring->desc, 0, rx_ring->size);
1183
1184 rx_ring->next_to_alloc = 0;
1185 rx_ring->next_to_clean = 0;
1186 rx_ring->next_to_use = 0;
1187 }
1188
1189 /**
1190 * i40e_free_rx_resources - Free Rx resources
1191 * @rx_ring: ring to clean the resources from
1192 *
1193 * Free all receive software resources
1194 **/
1195 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1196 {
1197 i40e_clean_rx_ring(rx_ring);
1198 kfree(rx_ring->rx_bi);
1199 rx_ring->rx_bi = NULL;
1200
1201 if (rx_ring->desc) {
1202 dma_free_coherent(rx_ring->dev, rx_ring->size,
1203 rx_ring->desc, rx_ring->dma);
1204 rx_ring->desc = NULL;
1205 }
1206 }
1207
1208 /**
1209 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1210 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1211 *
1212 * Returns 0 on success, negative on failure
1213 **/
1214 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1215 {
1216 struct device *dev = rx_ring->dev;
1217 int bi_size;
1218
1219 /* warn if we are about to overwrite the pointer */
1220 WARN_ON(rx_ring->rx_bi);
1221 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1222 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1223 if (!rx_ring->rx_bi)
1224 goto err;
1225
1226 u64_stats_init(&rx_ring->syncp);
1227
1228 /* Round up to nearest 4K */
1229 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1230 rx_ring->size = ALIGN(rx_ring->size, 4096);
1231 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1232 &rx_ring->dma, GFP_KERNEL);
1233
1234 if (!rx_ring->desc) {
1235 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1236 rx_ring->size);
1237 goto err;
1238 }
1239
1240 rx_ring->next_to_alloc = 0;
1241 rx_ring->next_to_clean = 0;
1242 rx_ring->next_to_use = 0;
1243
1244 return 0;
1245 err:
1246 kfree(rx_ring->rx_bi);
1247 rx_ring->rx_bi = NULL;
1248 return -ENOMEM;
1249 }
1250
1251 /**
1252 * i40e_release_rx_desc - Store the new tail and head values
1253 * @rx_ring: ring to bump
1254 * @val: new head index
1255 **/
1256 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1257 {
1258 rx_ring->next_to_use = val;
1259
1260 /* update next to alloc since we have filled the ring */
1261 rx_ring->next_to_alloc = val;
1262
1263 /* Force memory writes to complete before letting h/w
1264 * know there are new descriptors to fetch. (Only
1265 * applicable for weak-ordered memory model archs,
1266 * such as IA-64).
1267 */
1268 wmb();
1269 writel(val, rx_ring->tail);
1270 }
1271
1272 /**
1273 * i40e_rx_offset - Return expected offset into page to access data
1274 * @rx_ring: Ring we are requesting offset of
1275 *
1276 * Returns the offset value for ring into the data buffer.
1277 */
1278 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1279 {
1280 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
1281 }
1282
1283 /**
1284 * i40e_alloc_mapped_page - recycle or make a new page
1285 * @rx_ring: ring to use
1286 * @bi: rx_buffer struct to modify
1287 *
1288 * Returns true if the page was successfully allocated or
1289 * reused.
1290 **/
1291 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1292 struct i40e_rx_buffer *bi)
1293 {
1294 struct page *page = bi->page;
1295 dma_addr_t dma;
1296
1297 /* since we are recycling buffers we should seldom need to alloc */
1298 if (likely(page)) {
1299 rx_ring->rx_stats.page_reuse_count++;
1300 return true;
1301 }
1302
1303 /* alloc new page for storage */
1304 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1305 if (unlikely(!page)) {
1306 rx_ring->rx_stats.alloc_page_failed++;
1307 return false;
1308 }
1309
1310 /* map page for use */
1311 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1312 i40e_rx_pg_size(rx_ring),
1313 DMA_FROM_DEVICE,
1314 I40E_RX_DMA_ATTR);
1315
1316 /* if mapping failed free memory back to system since
1317 * there isn't much point in holding memory we can't use
1318 */
1319 if (dma_mapping_error(rx_ring->dev, dma)) {
1320 __free_pages(page, i40e_rx_pg_order(rx_ring));
1321 rx_ring->rx_stats.alloc_page_failed++;
1322 return false;
1323 }
1324
1325 bi->dma = dma;
1326 bi->page = page;
1327 bi->page_offset = i40e_rx_offset(rx_ring);
1328
1329 /* initialize pagecnt_bias to 1 representing we fully own page */
1330 bi->pagecnt_bias = 1;
1331
1332 return true;
1333 }
1334
1335 /**
1336 * i40e_receive_skb - Send a completed packet up the stack
1337 * @rx_ring: rx ring in play
1338 * @skb: packet to send up
1339 * @vlan_tag: vlan tag for packet
1340 **/
1341 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1342 struct sk_buff *skb, u16 vlan_tag)
1343 {
1344 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1345
1346 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1347 (vlan_tag & VLAN_VID_MASK))
1348 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1349
1350 napi_gro_receive(&q_vector->napi, skb);
1351 }
1352
1353 /**
1354 * i40e_alloc_rx_buffers - Replace used receive buffers
1355 * @rx_ring: ring to place buffers on
1356 * @cleaned_count: number of buffers to replace
1357 *
1358 * Returns false if all allocations were successful, true if any fail
1359 **/
1360 bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1361 {
1362 u16 ntu = rx_ring->next_to_use;
1363 union i40e_rx_desc *rx_desc;
1364 struct i40e_rx_buffer *bi;
1365
1366 /* do nothing if no valid netdev defined */
1367 if (!rx_ring->netdev || !cleaned_count)
1368 return false;
1369
1370 rx_desc = I40E_RX_DESC(rx_ring, ntu);
1371 bi = &rx_ring->rx_bi[ntu];
1372
1373 do {
1374 if (!i40e_alloc_mapped_page(rx_ring, bi))
1375 goto no_buffers;
1376
1377 /* sync the buffer for use by the device */
1378 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1379 bi->page_offset,
1380 rx_ring->rx_buf_len,
1381 DMA_FROM_DEVICE);
1382
1383 /* Refresh the desc even if buffer_addrs didn't change
1384 * because each write-back erases this info.
1385 */
1386 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1387
1388 rx_desc++;
1389 bi++;
1390 ntu++;
1391 if (unlikely(ntu == rx_ring->count)) {
1392 rx_desc = I40E_RX_DESC(rx_ring, 0);
1393 bi = rx_ring->rx_bi;
1394 ntu = 0;
1395 }
1396
1397 /* clear the status bits for the next_to_use descriptor */
1398 rx_desc->wb.qword1.status_error_len = 0;
1399
1400 cleaned_count--;
1401 } while (cleaned_count);
1402
1403 if (rx_ring->next_to_use != ntu)
1404 i40e_release_rx_desc(rx_ring, ntu);
1405
1406 return false;
1407
1408 no_buffers:
1409 if (rx_ring->next_to_use != ntu)
1410 i40e_release_rx_desc(rx_ring, ntu);
1411
1412 /* make sure to come back via polling to try again after
1413 * allocation failure
1414 */
1415 return true;
1416 }
1417
1418 /**
1419 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1420 * @vsi: the VSI we care about
1421 * @skb: skb currently being received and modified
1422 * @rx_desc: the receive descriptor
1423 **/
1424 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1425 struct sk_buff *skb,
1426 union i40e_rx_desc *rx_desc)
1427 {
1428 struct i40e_rx_ptype_decoded decoded;
1429 u32 rx_error, rx_status;
1430 bool ipv4, ipv6;
1431 u8 ptype;
1432 u64 qword;
1433
1434 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1435 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1436 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1437 I40E_RXD_QW1_ERROR_SHIFT;
1438 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1439 I40E_RXD_QW1_STATUS_SHIFT;
1440 decoded = decode_rx_desc_ptype(ptype);
1441
1442 skb->ip_summed = CHECKSUM_NONE;
1443
1444 skb_checksum_none_assert(skb);
1445
1446 /* Rx csum enabled and ip headers found? */
1447 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1448 return;
1449
1450 /* did the hardware decode the packet and checksum? */
1451 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1452 return;
1453
1454 /* both known and outer_ip must be set for the below code to work */
1455 if (!(decoded.known && decoded.outer_ip))
1456 return;
1457
1458 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1459 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1460 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1461 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1462
1463 if (ipv4 &&
1464 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1465 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1466 goto checksum_fail;
1467
1468 /* likely incorrect csum if alternate IP extension headers found */
1469 if (ipv6 &&
1470 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1471 /* don't increment checksum err here, non-fatal err */
1472 return;
1473
1474 /* there was some L4 error, count error and punt packet to the stack */
1475 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1476 goto checksum_fail;
1477
1478 /* handle packets that were not able to be checksummed due
1479 * to arrival speed, in this case the stack can compute
1480 * the csum.
1481 */
1482 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1483 return;
1484
1485 /* If there is an outer header present that might contain a checksum
1486 * we need to bump the checksum level by 1 to reflect the fact that
1487 * we are indicating we validated the inner checksum.
1488 */
1489 if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1490 skb->csum_level = 1;
1491
1492 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
1493 switch (decoded.inner_prot) {
1494 case I40E_RX_PTYPE_INNER_PROT_TCP:
1495 case I40E_RX_PTYPE_INNER_PROT_UDP:
1496 case I40E_RX_PTYPE_INNER_PROT_SCTP:
1497 skb->ip_summed = CHECKSUM_UNNECESSARY;
1498 /* fall though */
1499 default:
1500 break;
1501 }
1502
1503 return;
1504
1505 checksum_fail:
1506 vsi->back->hw_csum_rx_error++;
1507 }
1508
1509 /**
1510 * i40e_ptype_to_htype - get a hash type
1511 * @ptype: the ptype value from the descriptor
1512 *
1513 * Returns a hash type to be used by skb_set_hash
1514 **/
1515 static inline int i40e_ptype_to_htype(u8 ptype)
1516 {
1517 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1518
1519 if (!decoded.known)
1520 return PKT_HASH_TYPE_NONE;
1521
1522 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1523 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1524 return PKT_HASH_TYPE_L4;
1525 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1526 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1527 return PKT_HASH_TYPE_L3;
1528 else
1529 return PKT_HASH_TYPE_L2;
1530 }
1531
1532 /**
1533 * i40e_rx_hash - set the hash value in the skb
1534 * @ring: descriptor ring
1535 * @rx_desc: specific descriptor
1536 **/
1537 static inline void i40e_rx_hash(struct i40e_ring *ring,
1538 union i40e_rx_desc *rx_desc,
1539 struct sk_buff *skb,
1540 u8 rx_ptype)
1541 {
1542 u32 hash;
1543 const __le64 rss_mask =
1544 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1545 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1546
1547 if (!(ring->netdev->features & NETIF_F_RXHASH))
1548 return;
1549
1550 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1551 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1552 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1553 }
1554 }
1555
1556 /**
1557 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1558 * @rx_ring: rx descriptor ring packet is being transacted on
1559 * @rx_desc: pointer to the EOP Rx descriptor
1560 * @skb: pointer to current skb being populated
1561 * @rx_ptype: the packet type decoded by hardware
1562 *
1563 * This function checks the ring, descriptor, and packet information in
1564 * order to populate the hash, checksum, VLAN, protocol, and
1565 * other fields within the skb.
1566 **/
1567 static inline
1568 void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1569 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1570 u8 rx_ptype)
1571 {
1572 u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1573 u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1574 I40E_RXD_QW1_STATUS_SHIFT;
1575 u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1576 u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1577 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1578
1579 if (unlikely(tsynvalid))
1580 i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1581
1582 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1583
1584 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1585
1586 skb_record_rx_queue(skb, rx_ring->queue_index);
1587
1588 /* modifies the skb - consumes the enet header */
1589 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1590 }
1591
1592 /**
1593 * i40e_cleanup_headers - Correct empty headers
1594 * @rx_ring: rx descriptor ring packet is being transacted on
1595 * @skb: pointer to current skb being fixed
1596 *
1597 * Also address the case where we are pulling data in on pages only
1598 * and as such no data is present in the skb header.
1599 *
1600 * In addition if skb is not at least 60 bytes we need to pad it so that
1601 * it is large enough to qualify as a valid Ethernet frame.
1602 *
1603 * Returns true if an error was encountered and skb was freed.
1604 **/
1605 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
1606 {
1607 /* if eth_skb_pad returns an error the skb was freed */
1608 if (eth_skb_pad(skb))
1609 return true;
1610
1611 return false;
1612 }
1613
1614 /**
1615 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1616 * @rx_ring: rx descriptor ring to store buffers on
1617 * @old_buff: donor buffer to have page reused
1618 *
1619 * Synchronizes page for reuse by the adapter
1620 **/
1621 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1622 struct i40e_rx_buffer *old_buff)
1623 {
1624 struct i40e_rx_buffer *new_buff;
1625 u16 nta = rx_ring->next_to_alloc;
1626
1627 new_buff = &rx_ring->rx_bi[nta];
1628
1629 /* update, and store next to alloc */
1630 nta++;
1631 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1632
1633 /* transfer page from old buffer to new buffer */
1634 new_buff->dma = old_buff->dma;
1635 new_buff->page = old_buff->page;
1636 new_buff->page_offset = old_buff->page_offset;
1637 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1638 }
1639
1640 /**
1641 * i40e_page_is_reusable - check if any reuse is possible
1642 * @page: page struct to check
1643 *
1644 * A page is not reusable if it was allocated under low memory
1645 * conditions, or it's not in the same NUMA node as this CPU.
1646 */
1647 static inline bool i40e_page_is_reusable(struct page *page)
1648 {
1649 return (page_to_nid(page) == numa_mem_id()) &&
1650 !page_is_pfmemalloc(page);
1651 }
1652
1653 /**
1654 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1655 * the adapter for another receive
1656 *
1657 * @rx_buffer: buffer containing the page
1658 *
1659 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1660 * an unused region in the page.
1661 *
1662 * For small pages, @truesize will be a constant value, half the size
1663 * of the memory at page. We'll attempt to alternate between high and
1664 * low halves of the page, with one half ready for use by the hardware
1665 * and the other half being consumed by the stack. We use the page
1666 * ref count to determine whether the stack has finished consuming the
1667 * portion of this page that was passed up with a previous packet. If
1668 * the page ref count is >1, we'll assume the "other" half page is
1669 * still busy, and this page cannot be reused.
1670 *
1671 * For larger pages, @truesize will be the actual space used by the
1672 * received packet (adjusted upward to an even multiple of the cache
1673 * line size). This will advance through the page by the amount
1674 * actually consumed by the received packets while there is still
1675 * space for a buffer. Each region of larger pages will be used at
1676 * most once, after which the page will not be reused.
1677 *
1678 * In either case, if the page is reusable its refcount is increased.
1679 **/
1680 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1681 {
1682 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1683 struct page *page = rx_buffer->page;
1684
1685 /* Is any reuse possible? */
1686 if (unlikely(!i40e_page_is_reusable(page)))
1687 return false;
1688
1689 #if (PAGE_SIZE < 8192)
1690 /* if we are only owner of page we can reuse it */
1691 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1692 return false;
1693 #else
1694 #define I40E_LAST_OFFSET \
1695 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1696 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1697 return false;
1698 #endif
1699
1700 /* If we have drained the page fragment pool we need to update
1701 * the pagecnt_bias and page count so that we fully restock the
1702 * number of references the driver holds.
1703 */
1704 if (unlikely(!pagecnt_bias)) {
1705 page_ref_add(page, USHRT_MAX);
1706 rx_buffer->pagecnt_bias = USHRT_MAX;
1707 }
1708
1709 return true;
1710 }
1711
1712 /**
1713 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1714 * @rx_ring: rx descriptor ring to transact packets on
1715 * @rx_buffer: buffer containing page to add
1716 * @skb: sk_buff to place the data into
1717 * @size: packet length from rx_desc
1718 *
1719 * This function will add the data contained in rx_buffer->page to the skb.
1720 * It will just attach the page as a frag to the skb.
1721 *
1722 * The function will then update the page offset.
1723 **/
1724 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1725 struct i40e_rx_buffer *rx_buffer,
1726 struct sk_buff *skb,
1727 unsigned int size)
1728 {
1729 #if (PAGE_SIZE < 8192)
1730 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1731 #else
1732 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1733 #endif
1734
1735 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1736 rx_buffer->page_offset, size, truesize);
1737
1738 /* page is being used so we must update the page offset */
1739 #if (PAGE_SIZE < 8192)
1740 rx_buffer->page_offset ^= truesize;
1741 #else
1742 rx_buffer->page_offset += truesize;
1743 #endif
1744 }
1745
1746 /**
1747 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1748 * @rx_ring: rx descriptor ring to transact packets on
1749 * @size: size of buffer to add to skb
1750 *
1751 * This function will pull an Rx buffer from the ring and synchronize it
1752 * for use by the CPU.
1753 */
1754 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1755 const unsigned int size)
1756 {
1757 struct i40e_rx_buffer *rx_buffer;
1758
1759 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1760 prefetchw(rx_buffer->page);
1761
1762 /* we are reusing so sync this buffer for CPU use */
1763 dma_sync_single_range_for_cpu(rx_ring->dev,
1764 rx_buffer->dma,
1765 rx_buffer->page_offset,
1766 size,
1767 DMA_FROM_DEVICE);
1768
1769 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1770 rx_buffer->pagecnt_bias--;
1771
1772 return rx_buffer;
1773 }
1774
1775 /**
1776 * i40e_construct_skb - Allocate skb and populate it
1777 * @rx_ring: rx descriptor ring to transact packets on
1778 * @rx_buffer: rx buffer to pull data from
1779 * @size: size of buffer to add to skb
1780 *
1781 * This function allocates an skb. It then populates it with the page
1782 * data from the current receive descriptor, taking care to set up the
1783 * skb correctly.
1784 */
1785 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1786 struct i40e_rx_buffer *rx_buffer,
1787 unsigned int size)
1788 {
1789 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1790 #if (PAGE_SIZE < 8192)
1791 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1792 #else
1793 unsigned int truesize = SKB_DATA_ALIGN(size);
1794 #endif
1795 unsigned int headlen;
1796 struct sk_buff *skb;
1797
1798 /* prefetch first cache line of first page */
1799 prefetch(va);
1800 #if L1_CACHE_BYTES < 128
1801 prefetch(va + L1_CACHE_BYTES);
1802 #endif
1803
1804 /* allocate a skb to store the frags */
1805 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1806 I40E_RX_HDR_SIZE,
1807 GFP_ATOMIC | __GFP_NOWARN);
1808 if (unlikely(!skb))
1809 return NULL;
1810
1811 /* Determine available headroom for copy */
1812 headlen = size;
1813 if (headlen > I40E_RX_HDR_SIZE)
1814 headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1815
1816 /* align pull length to size of long to optimize memcpy performance */
1817 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1818
1819 /* update all of the pointers */
1820 size -= headlen;
1821 if (size) {
1822 skb_add_rx_frag(skb, 0, rx_buffer->page,
1823 rx_buffer->page_offset + headlen,
1824 size, truesize);
1825
1826 /* buffer is used by skb, update page_offset */
1827 #if (PAGE_SIZE < 8192)
1828 rx_buffer->page_offset ^= truesize;
1829 #else
1830 rx_buffer->page_offset += truesize;
1831 #endif
1832 } else {
1833 /* buffer is unused, reset bias back to rx_buffer */
1834 rx_buffer->pagecnt_bias++;
1835 }
1836
1837 return skb;
1838 }
1839
1840 /**
1841 * i40e_build_skb - Build skb around an existing buffer
1842 * @rx_ring: Rx descriptor ring to transact packets on
1843 * @rx_buffer: Rx buffer to pull data from
1844 * @size: size of buffer to add to skb
1845 *
1846 * This function builds an skb around an existing Rx buffer, taking care
1847 * to set up the skb correctly and avoid any memcpy overhead.
1848 */
1849 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1850 struct i40e_rx_buffer *rx_buffer,
1851 unsigned int size)
1852 {
1853 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1854 #if (PAGE_SIZE < 8192)
1855 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1856 #else
1857 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1858 SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1859 #endif
1860 struct sk_buff *skb;
1861
1862 /* prefetch first cache line of first page */
1863 prefetch(va);
1864 #if L1_CACHE_BYTES < 128
1865 prefetch(va + L1_CACHE_BYTES);
1866 #endif
1867 /* build an skb around the page buffer */
1868 skb = build_skb(va - I40E_SKB_PAD, truesize);
1869 if (unlikely(!skb))
1870 return NULL;
1871
1872 /* update pointers within the skb to store the data */
1873 skb_reserve(skb, I40E_SKB_PAD);
1874 __skb_put(skb, size);
1875
1876 /* buffer is used by skb, update page_offset */
1877 #if (PAGE_SIZE < 8192)
1878 rx_buffer->page_offset ^= truesize;
1879 #else
1880 rx_buffer->page_offset += truesize;
1881 #endif
1882
1883 return skb;
1884 }
1885
1886 /**
1887 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1888 * @rx_ring: rx descriptor ring to transact packets on
1889 * @rx_buffer: rx buffer to pull data from
1890 *
1891 * This function will clean up the contents of the rx_buffer. It will
1892 * either recycle the bufer or unmap it and free the associated resources.
1893 */
1894 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1895 struct i40e_rx_buffer *rx_buffer)
1896 {
1897 if (i40e_can_reuse_rx_page(rx_buffer)) {
1898 /* hand second half of page back to the ring */
1899 i40e_reuse_rx_page(rx_ring, rx_buffer);
1900 rx_ring->rx_stats.page_reuse_count++;
1901 } else {
1902 /* we are not reusing the buffer so unmap it */
1903 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1904 i40e_rx_pg_size(rx_ring),
1905 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1906 __page_frag_cache_drain(rx_buffer->page,
1907 rx_buffer->pagecnt_bias);
1908 }
1909
1910 /* clear contents of buffer_info */
1911 rx_buffer->page = NULL;
1912 }
1913
1914 /**
1915 * i40e_is_non_eop - process handling of non-EOP buffers
1916 * @rx_ring: Rx ring being processed
1917 * @rx_desc: Rx descriptor for current buffer
1918 * @skb: Current socket buffer containing buffer in progress
1919 *
1920 * This function updates next to clean. If the buffer is an EOP buffer
1921 * this function exits returning false, otherwise it will place the
1922 * sk_buff in the next buffer to be chained and return true indicating
1923 * that this is in fact a non-EOP buffer.
1924 **/
1925 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1926 union i40e_rx_desc *rx_desc,
1927 struct sk_buff *skb)
1928 {
1929 u32 ntc = rx_ring->next_to_clean + 1;
1930
1931 /* fetch, update, and store next to clean */
1932 ntc = (ntc < rx_ring->count) ? ntc : 0;
1933 rx_ring->next_to_clean = ntc;
1934
1935 prefetch(I40E_RX_DESC(rx_ring, ntc));
1936
1937 /* if we are the last buffer then there is nothing else to do */
1938 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1939 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1940 return false;
1941
1942 rx_ring->rx_stats.non_eop_descs++;
1943
1944 return true;
1945 }
1946
1947 /**
1948 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1949 * @rx_ring: rx descriptor ring to transact packets on
1950 * @budget: Total limit on number of packets to process
1951 *
1952 * This function provides a "bounce buffer" approach to Rx interrupt
1953 * processing. The advantage to this is that on systems that have
1954 * expensive overhead for IOMMU access this provides a means of avoiding
1955 * it by maintaining the mapping of the page to the system.
1956 *
1957 * Returns amount of work completed
1958 **/
1959 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1960 {
1961 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1962 struct sk_buff *skb = rx_ring->skb;
1963 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1964 bool failure = false;
1965
1966 while (likely(total_rx_packets < budget)) {
1967 struct i40e_rx_buffer *rx_buffer;
1968 union i40e_rx_desc *rx_desc;
1969 unsigned int size;
1970 u16 vlan_tag;
1971 u8 rx_ptype;
1972 u64 qword;
1973
1974 /* return some buffers to hardware, one at a time is too slow */
1975 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1976 failure = failure ||
1977 i40e_alloc_rx_buffers(rx_ring, cleaned_count);
1978 cleaned_count = 0;
1979 }
1980
1981 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1982
1983 /* status_error_len will always be zero for unused descriptors
1984 * because it's cleared in cleanup, and overlaps with hdr_addr
1985 * which is always zero because packet split isn't used, if the
1986 * hardware wrote DD then the length will be non-zero
1987 */
1988 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1989
1990 /* This memory barrier is needed to keep us from reading
1991 * any other fields out of the rx_desc until we have
1992 * verified the descriptor has been written back.
1993 */
1994 dma_rmb();
1995
1996 if (unlikely(i40e_rx_is_programming_status(qword))) {
1997 i40e_clean_programming_status(rx_ring, rx_desc, qword);
1998 continue;
1999 }
2000 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2001 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2002 if (!size)
2003 break;
2004
2005 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
2006 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2007
2008 /* retrieve a buffer from the ring */
2009 if (skb)
2010 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2011 else if (ring_uses_build_skb(rx_ring))
2012 skb = i40e_build_skb(rx_ring, rx_buffer, size);
2013 else
2014 skb = i40e_construct_skb(rx_ring, rx_buffer, size);
2015
2016 /* exit if we failed to retrieve a buffer */
2017 if (!skb) {
2018 rx_ring->rx_stats.alloc_buff_failed++;
2019 rx_buffer->pagecnt_bias++;
2020 break;
2021 }
2022
2023 i40e_put_rx_buffer(rx_ring, rx_buffer);
2024 cleaned_count++;
2025
2026 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2027 continue;
2028
2029 /* ERR_MASK will only have valid bits if EOP set, and
2030 * what we are doing here is actually checking
2031 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
2032 * the error field
2033 */
2034 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
2035 dev_kfree_skb_any(skb);
2036 skb = NULL;
2037 continue;
2038 }
2039
2040 if (i40e_cleanup_headers(rx_ring, skb)) {
2041 skb = NULL;
2042 continue;
2043 }
2044
2045 /* probably a little skewed due to removing CRC */
2046 total_rx_bytes += skb->len;
2047
2048 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2049 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2050 I40E_RXD_QW1_PTYPE_SHIFT;
2051
2052 /* populate checksum, VLAN, and protocol */
2053 i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2054
2055 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2056 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2057
2058 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2059 i40e_receive_skb(rx_ring, skb, vlan_tag);
2060 skb = NULL;
2061
2062 /* update budget accounting */
2063 total_rx_packets++;
2064 }
2065
2066 rx_ring->skb = skb;
2067
2068 u64_stats_update_begin(&rx_ring->syncp);
2069 rx_ring->stats.packets += total_rx_packets;
2070 rx_ring->stats.bytes += total_rx_bytes;
2071 u64_stats_update_end(&rx_ring->syncp);
2072 rx_ring->q_vector->rx.total_packets += total_rx_packets;
2073 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2074
2075 /* guarantee a trip back through this routine if there was a failure */
2076 return failure ? budget : total_rx_packets;
2077 }
2078
2079 static u32 i40e_buildreg_itr(const int type, const u16 itr)
2080 {
2081 u32 val;
2082
2083 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2084 /* Don't clear PBA because that can cause lost interrupts that
2085 * came in while we were cleaning/polling
2086 */
2087 (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2088 (itr << I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT);
2089
2090 return val;
2091 }
2092
2093 /* a small macro to shorten up some long lines */
2094 #define INTREG I40E_PFINT_DYN_CTLN
2095 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
2096 {
2097 return vsi->rx_rings[idx]->rx_itr_setting;
2098 }
2099
2100 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
2101 {
2102 return vsi->tx_rings[idx]->tx_itr_setting;
2103 }
2104
2105 /**
2106 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2107 * @vsi: the VSI we care about
2108 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2109 *
2110 **/
2111 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2112 struct i40e_q_vector *q_vector)
2113 {
2114 struct i40e_hw *hw = &vsi->back->hw;
2115 bool rx = false, tx = false;
2116 u32 rxval, txval;
2117 int vector;
2118 int idx = q_vector->v_idx;
2119 int rx_itr_setting, tx_itr_setting;
2120
2121 vector = (q_vector->v_idx + vsi->base_vector);
2122
2123 /* avoid dynamic calculation if in countdown mode OR if
2124 * all dynamic is disabled
2125 */
2126 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2127
2128 rx_itr_setting = get_rx_itr(vsi, idx);
2129 tx_itr_setting = get_tx_itr(vsi, idx);
2130
2131 if (q_vector->itr_countdown > 0 ||
2132 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
2133 !ITR_IS_DYNAMIC(tx_itr_setting))) {
2134 goto enable_int;
2135 }
2136
2137 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2138 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
2139 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
2140 }
2141
2142 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
2143 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
2144 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
2145 }
2146
2147 if (rx || tx) {
2148 /* get the higher of the two ITR adjustments and
2149 * use the same value for both ITR registers
2150 * when in adaptive mode (Rx and/or Tx)
2151 */
2152 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
2153
2154 q_vector->tx.itr = q_vector->rx.itr = itr;
2155 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
2156 tx = true;
2157 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
2158 rx = true;
2159 }
2160
2161 /* only need to enable the interrupt once, but need
2162 * to possibly update both ITR values
2163 */
2164 if (rx) {
2165 /* set the INTENA_MSK_MASK so that this first write
2166 * won't actually enable the interrupt, instead just
2167 * updating the ITR (it's bit 31 PF and VF)
2168 */
2169 rxval |= BIT(31);
2170 /* don't check _DOWN because interrupt isn't being enabled */
2171 wr32(hw, INTREG(vector - 1), rxval);
2172 }
2173
2174 enable_int:
2175 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2176 wr32(hw, INTREG(vector - 1), txval);
2177
2178 if (q_vector->itr_countdown)
2179 q_vector->itr_countdown--;
2180 else
2181 q_vector->itr_countdown = ITR_COUNTDOWN_START;
2182 }
2183
2184 /**
2185 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2186 * @napi: napi struct with our devices info in it
2187 * @budget: amount of work driver is allowed to do this pass, in packets
2188 *
2189 * This function will clean all queues associated with a q_vector.
2190 *
2191 * Returns the amount of work done
2192 **/
2193 int i40e_napi_poll(struct napi_struct *napi, int budget)
2194 {
2195 struct i40e_q_vector *q_vector =
2196 container_of(napi, struct i40e_q_vector, napi);
2197 struct i40e_vsi *vsi = q_vector->vsi;
2198 struct i40e_ring *ring;
2199 bool clean_complete = true;
2200 bool arm_wb = false;
2201 int budget_per_ring;
2202 int work_done = 0;
2203
2204 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2205 napi_complete(napi);
2206 return 0;
2207 }
2208
2209 /* Since the actual Tx work is minimal, we can give the Tx a larger
2210 * budget and be more aggressive about cleaning up the Tx descriptors.
2211 */
2212 i40e_for_each_ring(ring, q_vector->tx) {
2213 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2214 clean_complete = false;
2215 continue;
2216 }
2217 arm_wb |= ring->arm_wb;
2218 ring->arm_wb = false;
2219 }
2220
2221 /* Handle case where we are called by netpoll with a budget of 0 */
2222 if (budget <= 0)
2223 goto tx_only;
2224
2225 /* We attempt to distribute budget to each Rx queue fairly, but don't
2226 * allow the budget to go below 1 because that would exit polling early.
2227 */
2228 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
2229
2230 i40e_for_each_ring(ring, q_vector->rx) {
2231 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
2232
2233 work_done += cleaned;
2234 /* if we clean as many as budgeted, we must not be done */
2235 if (cleaned >= budget_per_ring)
2236 clean_complete = false;
2237 }
2238
2239 /* If work not completed, return budget and polling will return */
2240 if (!clean_complete) {
2241 const cpumask_t *aff_mask = &q_vector->affinity_mask;
2242 int cpu_id = smp_processor_id();
2243
2244 /* It is possible that the interrupt affinity has changed but,
2245 * if the cpu is pegged at 100%, polling will never exit while
2246 * traffic continues and the interrupt will be stuck on this
2247 * cpu. We check to make sure affinity is correct before we
2248 * continue to poll, otherwise we must stop polling so the
2249 * interrupt can move to the correct cpu.
2250 */
2251 if (likely(cpumask_test_cpu(cpu_id, aff_mask) ||
2252 !(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))) {
2253 tx_only:
2254 if (arm_wb) {
2255 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2256 i40e_enable_wb_on_itr(vsi, q_vector);
2257 }
2258 return budget;
2259 }
2260 }
2261
2262 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2263 q_vector->arm_wb_state = false;
2264
2265 /* Work is done so exit the polling mode and re-enable the interrupt */
2266 napi_complete_done(napi, work_done);
2267
2268 /* If we're prematurely stopping polling to fix the interrupt
2269 * affinity we want to make sure polling starts back up so we
2270 * issue a call to i40e_force_wb which triggers a SW interrupt.
2271 */
2272 if (!clean_complete)
2273 i40e_force_wb(vsi, q_vector);
2274 else if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED))
2275 i40e_irq_dynamic_enable_icr0(vsi->back, false);
2276 else
2277 i40e_update_enable_itr(vsi, q_vector);
2278
2279 return min(work_done, budget - 1);
2280 }
2281
2282 /**
2283 * i40e_atr - Add a Flow Director ATR filter
2284 * @tx_ring: ring to add programming descriptor to
2285 * @skb: send buffer
2286 * @tx_flags: send tx flags
2287 **/
2288 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2289 u32 tx_flags)
2290 {
2291 struct i40e_filter_program_desc *fdir_desc;
2292 struct i40e_pf *pf = tx_ring->vsi->back;
2293 union {
2294 unsigned char *network;
2295 struct iphdr *ipv4;
2296 struct ipv6hdr *ipv6;
2297 } hdr;
2298 struct tcphdr *th;
2299 unsigned int hlen;
2300 u32 flex_ptype, dtype_cmd;
2301 int l4_proto;
2302 u16 i;
2303
2304 /* make sure ATR is enabled */
2305 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2306 return;
2307
2308 if (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED)
2309 return;
2310
2311 /* if sampling is disabled do nothing */
2312 if (!tx_ring->atr_sample_rate)
2313 return;
2314
2315 /* Currently only IPv4/IPv6 with TCP is supported */
2316 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2317 return;
2318
2319 /* snag network header to get L4 type and address */
2320 hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2321 skb_inner_network_header(skb) : skb_network_header(skb);
2322
2323 /* Note: tx_flags gets modified to reflect inner protocols in
2324 * tx_enable_csum function if encap is enabled.
2325 */
2326 if (tx_flags & I40E_TX_FLAGS_IPV4) {
2327 /* access ihl as u8 to avoid unaligned access on ia64 */
2328 hlen = (hdr.network[0] & 0x0F) << 2;
2329 l4_proto = hdr.ipv4->protocol;
2330 } else {
2331 hlen = hdr.network - skb->data;
2332 l4_proto = ipv6_find_hdr(skb, &hlen, IPPROTO_TCP, NULL, NULL);
2333 hlen -= hdr.network - skb->data;
2334 }
2335
2336 if (l4_proto != IPPROTO_TCP)
2337 return;
2338
2339 th = (struct tcphdr *)(hdr.network + hlen);
2340
2341 /* Due to lack of space, no more new filters can be programmed */
2342 if (th->syn && (pf->flags & I40E_FLAG_FD_ATR_AUTO_DISABLED))
2343 return;
2344 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2345 /* HW ATR eviction will take care of removing filters on FIN
2346 * and RST packets.
2347 */
2348 if (th->fin || th->rst)
2349 return;
2350 }
2351
2352 tx_ring->atr_count++;
2353
2354 /* sample on all syn/fin/rst packets or once every atr sample rate */
2355 if (!th->fin &&
2356 !th->syn &&
2357 !th->rst &&
2358 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2359 return;
2360
2361 tx_ring->atr_count = 0;
2362
2363 /* grab the next descriptor */
2364 i = tx_ring->next_to_use;
2365 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2366
2367 i++;
2368 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2369
2370 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2371 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2372 flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2373 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2374 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2375 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2376 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2377
2378 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2379
2380 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2381
2382 dtype_cmd |= (th->fin || th->rst) ?
2383 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2384 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2385 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2386 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2387
2388 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2389 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2390
2391 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2392 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2393
2394 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2395 if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2396 dtype_cmd |=
2397 ((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2398 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2399 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2400 else
2401 dtype_cmd |=
2402 ((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2403 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2404 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2405
2406 if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2407 dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2408
2409 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2410 fdir_desc->rsvd = cpu_to_le32(0);
2411 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2412 fdir_desc->fd_id = cpu_to_le32(0);
2413 }
2414
2415 /**
2416 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2417 * @skb: send buffer
2418 * @tx_ring: ring to send buffer on
2419 * @flags: the tx flags to be set
2420 *
2421 * Checks the skb and set up correspondingly several generic transmit flags
2422 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2423 *
2424 * Returns error code indicate the frame should be dropped upon error and the
2425 * otherwise returns 0 to indicate the flags has been set properly.
2426 **/
2427 static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2428 struct i40e_ring *tx_ring,
2429 u32 *flags)
2430 {
2431 __be16 protocol = skb->protocol;
2432 u32 tx_flags = 0;
2433
2434 if (protocol == htons(ETH_P_8021Q) &&
2435 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2436 /* When HW VLAN acceleration is turned off by the user the
2437 * stack sets the protocol to 8021q so that the driver
2438 * can take any steps required to support the SW only
2439 * VLAN handling. In our case the driver doesn't need
2440 * to take any further steps so just set the protocol
2441 * to the encapsulated ethertype.
2442 */
2443 skb->protocol = vlan_get_protocol(skb);
2444 goto out;
2445 }
2446
2447 /* if we have a HW VLAN tag being added, default to the HW one */
2448 if (skb_vlan_tag_present(skb)) {
2449 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2450 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2451 /* else if it is a SW VLAN, check the next protocol and store the tag */
2452 } else if (protocol == htons(ETH_P_8021Q)) {
2453 struct vlan_hdr *vhdr, _vhdr;
2454
2455 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2456 if (!vhdr)
2457 return -EINVAL;
2458
2459 protocol = vhdr->h_vlan_encapsulated_proto;
2460 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2461 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2462 }
2463
2464 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2465 goto out;
2466
2467 /* Insert 802.1p priority into VLAN header */
2468 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2469 (skb->priority != TC_PRIO_CONTROL)) {
2470 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2471 tx_flags |= (skb->priority & 0x7) <<
2472 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2473 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2474 struct vlan_ethhdr *vhdr;
2475 int rc;
2476
2477 rc = skb_cow_head(skb, 0);
2478 if (rc < 0)
2479 return rc;
2480 vhdr = (struct vlan_ethhdr *)skb->data;
2481 vhdr->h_vlan_TCI = htons(tx_flags >>
2482 I40E_TX_FLAGS_VLAN_SHIFT);
2483 } else {
2484 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2485 }
2486 }
2487
2488 out:
2489 *flags = tx_flags;
2490 return 0;
2491 }
2492
2493 /**
2494 * i40e_tso - set up the tso context descriptor
2495 * @first: pointer to first Tx buffer for xmit
2496 * @hdr_len: ptr to the size of the packet header
2497 * @cd_type_cmd_tso_mss: Quad Word 1
2498 *
2499 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2500 **/
2501 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2502 u64 *cd_type_cmd_tso_mss)
2503 {
2504 struct sk_buff *skb = first->skb;
2505 u64 cd_cmd, cd_tso_len, cd_mss;
2506 union {
2507 struct iphdr *v4;
2508 struct ipv6hdr *v6;
2509 unsigned char *hdr;
2510 } ip;
2511 union {
2512 struct tcphdr *tcp;
2513 struct udphdr *udp;
2514 unsigned char *hdr;
2515 } l4;
2516 u32 paylen, l4_offset;
2517 u16 gso_segs, gso_size;
2518 int err;
2519
2520 if (skb->ip_summed != CHECKSUM_PARTIAL)
2521 return 0;
2522
2523 if (!skb_is_gso(skb))
2524 return 0;
2525
2526 err = skb_cow_head(skb, 0);
2527 if (err < 0)
2528 return err;
2529
2530 ip.hdr = skb_network_header(skb);
2531 l4.hdr = skb_transport_header(skb);
2532
2533 /* initialize outer IP header fields */
2534 if (ip.v4->version == 4) {
2535 ip.v4->tot_len = 0;
2536 ip.v4->check = 0;
2537 } else {
2538 ip.v6->payload_len = 0;
2539 }
2540
2541 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2542 SKB_GSO_GRE_CSUM |
2543 SKB_GSO_IPXIP4 |
2544 SKB_GSO_IPXIP6 |
2545 SKB_GSO_UDP_TUNNEL |
2546 SKB_GSO_UDP_TUNNEL_CSUM)) {
2547 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2548 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2549 l4.udp->len = 0;
2550
2551 /* determine offset of outer transport header */
2552 l4_offset = l4.hdr - skb->data;
2553
2554 /* remove payload length from outer checksum */
2555 paylen = skb->len - l4_offset;
2556 csum_replace_by_diff(&l4.udp->check,
2557 (__force __wsum)htonl(paylen));
2558 }
2559
2560 /* reset pointers to inner headers */
2561 ip.hdr = skb_inner_network_header(skb);
2562 l4.hdr = skb_inner_transport_header(skb);
2563
2564 /* initialize inner IP header fields */
2565 if (ip.v4->version == 4) {
2566 ip.v4->tot_len = 0;
2567 ip.v4->check = 0;
2568 } else {
2569 ip.v6->payload_len = 0;
2570 }
2571 }
2572
2573 /* determine offset of inner transport header */
2574 l4_offset = l4.hdr - skb->data;
2575
2576 /* remove payload length from inner checksum */
2577 paylen = skb->len - l4_offset;
2578 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2579
2580 /* compute length of segmentation header */
2581 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
2582
2583 /* pull values out of skb_shinfo */
2584 gso_size = skb_shinfo(skb)->gso_size;
2585 gso_segs = skb_shinfo(skb)->gso_segs;
2586
2587 /* update GSO size and bytecount with header size */
2588 first->gso_segs = gso_segs;
2589 first->bytecount += (first->gso_segs - 1) * *hdr_len;
2590
2591 /* find the field values */
2592 cd_cmd = I40E_TX_CTX_DESC_TSO;
2593 cd_tso_len = skb->len - *hdr_len;
2594 cd_mss = gso_size;
2595 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2596 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2597 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2598 return 1;
2599 }
2600
2601 /**
2602 * i40e_tsyn - set up the tsyn context descriptor
2603 * @tx_ring: ptr to the ring to send
2604 * @skb: ptr to the skb we're sending
2605 * @tx_flags: the collected send information
2606 * @cd_type_cmd_tso_mss: Quad Word 1
2607 *
2608 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2609 **/
2610 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2611 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2612 {
2613 struct i40e_pf *pf;
2614
2615 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2616 return 0;
2617
2618 /* Tx timestamps cannot be sampled when doing TSO */
2619 if (tx_flags & I40E_TX_FLAGS_TSO)
2620 return 0;
2621
2622 /* only timestamp the outbound packet if the user has requested it and
2623 * we are not already transmitting a packet to be timestamped
2624 */
2625 pf = i40e_netdev_to_pf(tx_ring->netdev);
2626 if (!(pf->flags & I40E_FLAG_PTP))
2627 return 0;
2628
2629 if (pf->ptp_tx &&
2630 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2631 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2632 pf->ptp_tx_skb = skb_get(skb);
2633 } else {
2634 return 0;
2635 }
2636
2637 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2638 I40E_TXD_CTX_QW1_CMD_SHIFT;
2639
2640 return 1;
2641 }
2642
2643 /**
2644 * i40e_tx_enable_csum - Enable Tx checksum offloads
2645 * @skb: send buffer
2646 * @tx_flags: pointer to Tx flags currently set
2647 * @td_cmd: Tx descriptor command bits to set
2648 * @td_offset: Tx descriptor header offsets to set
2649 * @tx_ring: Tx descriptor ring
2650 * @cd_tunneling: ptr to context desc bits
2651 **/
2652 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2653 u32 *td_cmd, u32 *td_offset,
2654 struct i40e_ring *tx_ring,
2655 u32 *cd_tunneling)
2656 {
2657 union {
2658 struct iphdr *v4;
2659 struct ipv6hdr *v6;
2660 unsigned char *hdr;
2661 } ip;
2662 union {
2663 struct tcphdr *tcp;
2664 struct udphdr *udp;
2665 unsigned char *hdr;
2666 } l4;
2667 unsigned char *exthdr;
2668 u32 offset, cmd = 0;
2669 __be16 frag_off;
2670 u8 l4_proto = 0;
2671
2672 if (skb->ip_summed != CHECKSUM_PARTIAL)
2673 return 0;
2674
2675 ip.hdr = skb_network_header(skb);
2676 l4.hdr = skb_transport_header(skb);
2677
2678 /* compute outer L2 header size */
2679 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2680
2681 if (skb->encapsulation) {
2682 u32 tunnel = 0;
2683 /* define outer network header type */
2684 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2685 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2686 I40E_TX_CTX_EXT_IP_IPV4 :
2687 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2688
2689 l4_proto = ip.v4->protocol;
2690 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2691 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
2692
2693 exthdr = ip.hdr + sizeof(*ip.v6);
2694 l4_proto = ip.v6->nexthdr;
2695 if (l4.hdr != exthdr)
2696 ipv6_skip_exthdr(skb, exthdr - skb->data,
2697 &l4_proto, &frag_off);
2698 }
2699
2700 /* define outer transport */
2701 switch (l4_proto) {
2702 case IPPROTO_UDP:
2703 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
2704 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2705 break;
2706 case IPPROTO_GRE:
2707 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
2708 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2709 break;
2710 case IPPROTO_IPIP:
2711 case IPPROTO_IPV6:
2712 *tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
2713 l4.hdr = skb_inner_network_header(skb);
2714 break;
2715 default:
2716 if (*tx_flags & I40E_TX_FLAGS_TSO)
2717 return -1;
2718
2719 skb_checksum_help(skb);
2720 return 0;
2721 }
2722
2723 /* compute outer L3 header size */
2724 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
2725 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
2726
2727 /* switch IP header pointer from outer to inner header */
2728 ip.hdr = skb_inner_network_header(skb);
2729
2730 /* compute tunnel header size */
2731 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
2732 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2733
2734 /* indicate if we need to offload outer UDP header */
2735 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
2736 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2737 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
2738 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
2739
2740 /* record tunnel offload values */
2741 *cd_tunneling |= tunnel;
2742
2743 /* switch L4 header pointer from outer to inner */
2744 l4.hdr = skb_inner_transport_header(skb);
2745 l4_proto = 0;
2746
2747 /* reset type as we transition from outer to inner headers */
2748 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
2749 if (ip.v4->version == 4)
2750 *tx_flags |= I40E_TX_FLAGS_IPV4;
2751 if (ip.v6->version == 6)
2752 *tx_flags |= I40E_TX_FLAGS_IPV6;
2753 }
2754
2755 /* Enable IP checksum offloads */
2756 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2757 l4_proto = ip.v4->protocol;
2758 /* the stack computes the IP header already, the only time we
2759 * need the hardware to recompute it is in the case of TSO.
2760 */
2761 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
2762 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
2763 I40E_TX_DESC_CMD_IIPT_IPV4;
2764 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2765 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2766
2767 exthdr = ip.hdr + sizeof(*ip.v6);
2768 l4_proto = ip.v6->nexthdr;
2769 if (l4.hdr != exthdr)
2770 ipv6_skip_exthdr(skb, exthdr - skb->data,
2771 &l4_proto, &frag_off);
2772 }
2773
2774 /* compute inner L3 header size */
2775 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2776
2777 /* Enable L4 checksum offloads */
2778 switch (l4_proto) {
2779 case IPPROTO_TCP:
2780 /* enable checksum offloads */
2781 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2782 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2783 break;
2784 case IPPROTO_SCTP:
2785 /* enable SCTP checksum offload */
2786 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2787 offset |= (sizeof(struct sctphdr) >> 2) <<
2788 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2789 break;
2790 case IPPROTO_UDP:
2791 /* enable UDP checksum offload */
2792 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2793 offset |= (sizeof(struct udphdr) >> 2) <<
2794 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2795 break;
2796 default:
2797 if (*tx_flags & I40E_TX_FLAGS_TSO)
2798 return -1;
2799 skb_checksum_help(skb);
2800 return 0;
2801 }
2802
2803 *td_cmd |= cmd;
2804 *td_offset |= offset;
2805
2806 return 1;
2807 }
2808
2809 /**
2810 * i40e_create_tx_ctx Build the Tx context descriptor
2811 * @tx_ring: ring to create the descriptor on
2812 * @cd_type_cmd_tso_mss: Quad Word 1
2813 * @cd_tunneling: Quad Word 0 - bits 0-31
2814 * @cd_l2tag2: Quad Word 0 - bits 32-63
2815 **/
2816 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2817 const u64 cd_type_cmd_tso_mss,
2818 const u32 cd_tunneling, const u32 cd_l2tag2)
2819 {
2820 struct i40e_tx_context_desc *context_desc;
2821 int i = tx_ring->next_to_use;
2822
2823 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2824 !cd_tunneling && !cd_l2tag2)
2825 return;
2826
2827 /* grab the next descriptor */
2828 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2829
2830 i++;
2831 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2832
2833 /* cpu_to_le32 and assign to struct fields */
2834 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2835 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2836 context_desc->rsvd = cpu_to_le16(0);
2837 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2838 }
2839
2840 /**
2841 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2842 * @tx_ring: the ring to be checked
2843 * @size: the size buffer we want to assure is available
2844 *
2845 * Returns -EBUSY if a stop is needed, else 0
2846 **/
2847 int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2848 {
2849 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2850 /* Memory barrier before checking head and tail */
2851 smp_mb();
2852
2853 /* Check again in a case another CPU has just made room available. */
2854 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2855 return -EBUSY;
2856
2857 /* A reprieve! - use start_queue because it doesn't call schedule */
2858 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2859 ++tx_ring->tx_stats.restart_queue;
2860 return 0;
2861 }
2862
2863 /**
2864 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
2865 * @skb: send buffer
2866 *
2867 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
2868 * and so we need to figure out the cases where we need to linearize the skb.
2869 *
2870 * For TSO we need to count the TSO header and segment payload separately.
2871 * As such we need to check cases where we have 7 fragments or more as we
2872 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2873 * the segment payload in the first descriptor, and another 7 for the
2874 * fragments.
2875 **/
2876 bool __i40e_chk_linearize(struct sk_buff *skb)
2877 {
2878 const struct skb_frag_struct *frag, *stale;
2879 int nr_frags, sum;
2880
2881 /* no need to check if number of frags is less than 7 */
2882 nr_frags = skb_shinfo(skb)->nr_frags;
2883 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
2884 return false;
2885
2886 /* We need to walk through the list and validate that each group
2887 * of 6 fragments totals at least gso_size.
2888 */
2889 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2890 frag = &skb_shinfo(skb)->frags[0];
2891
2892 /* Initialize size to the negative value of gso_size minus 1. We
2893 * use this as the worst case scenerio in which the frag ahead
2894 * of us only provides one byte which is why we are limited to 6
2895 * descriptors for a single transmit as the header and previous
2896 * fragment are already consuming 2 descriptors.
2897 */
2898 sum = 1 - skb_shinfo(skb)->gso_size;
2899
2900 /* Add size of frags 0 through 4 to create our initial sum */
2901 sum += skb_frag_size(frag++);
2902 sum += skb_frag_size(frag++);
2903 sum += skb_frag_size(frag++);
2904 sum += skb_frag_size(frag++);
2905 sum += skb_frag_size(frag++);
2906
2907 /* Walk through fragments adding latest fragment, testing it, and
2908 * then removing stale fragments from the sum.
2909 */
2910 stale = &skb_shinfo(skb)->frags[0];
2911 for (;;) {
2912 sum += skb_frag_size(frag++);
2913
2914 /* if sum is negative we failed to make sufficient progress */
2915 if (sum < 0)
2916 return true;
2917
2918 if (!nr_frags--)
2919 break;
2920
2921 sum -= skb_frag_size(stale++);
2922 }
2923
2924 return false;
2925 }
2926
2927 /**
2928 * i40e_tx_map - Build the Tx descriptor
2929 * @tx_ring: ring to send buffer on
2930 * @skb: send buffer
2931 * @first: first buffer info buffer to use
2932 * @tx_flags: collected send information
2933 * @hdr_len: size of the packet header
2934 * @td_cmd: the command field in the descriptor
2935 * @td_offset: offset for checksum or crc
2936 **/
2937 static inline void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2938 struct i40e_tx_buffer *first, u32 tx_flags,
2939 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2940 {
2941 unsigned int data_len = skb->data_len;
2942 unsigned int size = skb_headlen(skb);
2943 struct skb_frag_struct *frag;
2944 struct i40e_tx_buffer *tx_bi;
2945 struct i40e_tx_desc *tx_desc;
2946 u16 i = tx_ring->next_to_use;
2947 u32 td_tag = 0;
2948 dma_addr_t dma;
2949 u16 desc_count = 1;
2950
2951 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2952 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2953 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2954 I40E_TX_FLAGS_VLAN_SHIFT;
2955 }
2956
2957 first->tx_flags = tx_flags;
2958
2959 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2960
2961 tx_desc = I40E_TX_DESC(tx_ring, i);
2962 tx_bi = first;
2963
2964 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2965 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2966
2967 if (dma_mapping_error(tx_ring->dev, dma))
2968 goto dma_error;
2969
2970 /* record length, and DMA address */
2971 dma_unmap_len_set(tx_bi, len, size);
2972 dma_unmap_addr_set(tx_bi, dma, dma);
2973
2974 /* align size to end of page */
2975 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2976 tx_desc->buffer_addr = cpu_to_le64(dma);
2977
2978 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2979 tx_desc->cmd_type_offset_bsz =
2980 build_ctob(td_cmd, td_offset,
2981 max_data, td_tag);
2982
2983 tx_desc++;
2984 i++;
2985 desc_count++;
2986
2987 if (i == tx_ring->count) {
2988 tx_desc = I40E_TX_DESC(tx_ring, 0);
2989 i = 0;
2990 }
2991
2992 dma += max_data;
2993 size -= max_data;
2994
2995 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2996 tx_desc->buffer_addr = cpu_to_le64(dma);
2997 }
2998
2999 if (likely(!data_len))
3000 break;
3001
3002 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3003 size, td_tag);
3004
3005 tx_desc++;
3006 i++;
3007 desc_count++;
3008
3009 if (i == tx_ring->count) {
3010 tx_desc = I40E_TX_DESC(tx_ring, 0);
3011 i = 0;
3012 }
3013
3014 size = skb_frag_size(frag);
3015 data_len -= size;
3016
3017 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3018 DMA_TO_DEVICE);
3019
3020 tx_bi = &tx_ring->tx_bi[i];
3021 }
3022
3023 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3024
3025 i++;
3026 if (i == tx_ring->count)
3027 i = 0;
3028
3029 tx_ring->next_to_use = i;
3030
3031 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3032
3033 /* write last descriptor with EOP bit */
3034 td_cmd |= I40E_TX_DESC_CMD_EOP;
3035
3036 /* We can OR these values together as they both are checked against
3037 * 4 below and at this point desc_count will be used as a boolean value
3038 * after this if/else block.
3039 */
3040 desc_count |= ++tx_ring->packet_stride;
3041
3042 /* Algorithm to optimize tail and RS bit setting:
3043 * if queue is stopped
3044 * mark RS bit
3045 * reset packet counter
3046 * else if xmit_more is supported and is true
3047 * advance packet counter to 4
3048 * reset desc_count to 0
3049 *
3050 * if desc_count >= 4
3051 * mark RS bit
3052 * reset packet counter
3053 * if desc_count > 0
3054 * update tail
3055 *
3056 * Note: If there are less than 4 descriptors
3057 * pending and interrupts were disabled the service task will
3058 * trigger a force WB.
3059 */
3060 if (netif_xmit_stopped(txring_txq(tx_ring))) {
3061 goto do_rs;
3062 } else if (skb->xmit_more) {
3063 /* set stride to arm on next packet and reset desc_count */
3064 tx_ring->packet_stride = WB_STRIDE;
3065 desc_count = 0;
3066 } else if (desc_count >= WB_STRIDE) {
3067 do_rs:
3068 /* write last descriptor with RS bit set */
3069 td_cmd |= I40E_TX_DESC_CMD_RS;
3070 tx_ring->packet_stride = 0;
3071 }
3072
3073 tx_desc->cmd_type_offset_bsz =
3074 build_ctob(td_cmd, td_offset, size, td_tag);
3075
3076 /* Force memory writes to complete before letting h/w know there
3077 * are new descriptors to fetch.
3078 *
3079 * We also use this memory barrier to make certain all of the
3080 * status bits have been updated before next_to_watch is written.
3081 */
3082 wmb();
3083
3084 /* set next_to_watch value indicating a packet is present */
3085 first->next_to_watch = tx_desc;
3086
3087 /* notify HW of packet */
3088 if (desc_count) {
3089 writel(i, tx_ring->tail);
3090
3091 /* we need this if more than one processor can write to our tail
3092 * at a time, it synchronizes IO on IA64/Altix systems
3093 */
3094 mmiowb();
3095 }
3096
3097 return;
3098
3099 dma_error:
3100 dev_info(tx_ring->dev, "TX DMA map failed\n");
3101
3102 /* clear dma mappings for failed tx_bi map */
3103 for (;;) {
3104 tx_bi = &tx_ring->tx_bi[i];
3105 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3106 if (tx_bi == first)
3107 break;
3108 if (i == 0)
3109 i = tx_ring->count;
3110 i--;
3111 }
3112
3113 tx_ring->next_to_use = i;
3114 }
3115
3116 /**
3117 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3118 * @skb: send buffer
3119 * @tx_ring: ring to send buffer on
3120 *
3121 * Returns NETDEV_TX_OK if sent, else an error code
3122 **/
3123 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3124 struct i40e_ring *tx_ring)
3125 {
3126 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3127 u32 cd_tunneling = 0, cd_l2tag2 = 0;
3128 struct i40e_tx_buffer *first;
3129 u32 td_offset = 0;
3130 u32 tx_flags = 0;
3131 __be16 protocol;
3132 u32 td_cmd = 0;
3133 u8 hdr_len = 0;
3134 int tso, count;
3135 int tsyn;
3136
3137 /* prefetch the data, we'll need it later */
3138 prefetch(skb->data);
3139
3140 i40e_trace(xmit_frame_ring, skb, tx_ring);
3141
3142 count = i40e_xmit_descriptor_count(skb);
3143 if (i40e_chk_linearize(skb, count)) {
3144 if (__skb_linearize(skb)) {
3145 dev_kfree_skb_any(skb);
3146 return NETDEV_TX_OK;
3147 }
3148 count = i40e_txd_use_count(skb->len);
3149 tx_ring->tx_stats.tx_linearize++;
3150 }
3151
3152 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3153 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3154 * + 4 desc gap to avoid the cache line where head is,
3155 * + 1 desc for context descriptor,
3156 * otherwise try next time
3157 */
3158 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3159 tx_ring->tx_stats.tx_busy++;
3160 return NETDEV_TX_BUSY;
3161 }
3162
3163 /* record the location of the first descriptor for this packet */
3164 first = &tx_ring->tx_bi[tx_ring->next_to_use];
3165 first->skb = skb;
3166 first->bytecount = skb->len;
3167 first->gso_segs = 1;
3168
3169 /* prepare the xmit flags */
3170 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3171 goto out_drop;
3172
3173 /* obtain protocol of skb */
3174 protocol = vlan_get_protocol(skb);
3175
3176 /* setup IPv4/IPv6 offloads */
3177 if (protocol == htons(ETH_P_IP))
3178 tx_flags |= I40E_TX_FLAGS_IPV4;
3179 else if (protocol == htons(ETH_P_IPV6))
3180 tx_flags |= I40E_TX_FLAGS_IPV6;
3181
3182 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3183
3184 if (tso < 0)
3185 goto out_drop;
3186 else if (tso)
3187 tx_flags |= I40E_TX_FLAGS_TSO;
3188
3189 /* Always offload the checksum, since it's in the data descriptor */
3190 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3191 tx_ring, &cd_tunneling);
3192 if (tso < 0)
3193 goto out_drop;
3194
3195 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3196
3197 if (tsyn)
3198 tx_flags |= I40E_TX_FLAGS_TSYN;
3199
3200 skb_tx_timestamp(skb);
3201
3202 /* always enable CRC insertion offload */
3203 td_cmd |= I40E_TX_DESC_CMD_ICRC;
3204
3205 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3206 cd_tunneling, cd_l2tag2);
3207
3208 /* Add Flow Director ATR if it's enabled.
3209 *
3210 * NOTE: this must always be directly before the data descriptor.
3211 */
3212 i40e_atr(tx_ring, skb, tx_flags);
3213
3214 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3215 td_cmd, td_offset);
3216
3217 return NETDEV_TX_OK;
3218
3219 out_drop:
3220 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3221 dev_kfree_skb_any(first->skb);
3222 first->skb = NULL;
3223 return NETDEV_TX_OK;
3224 }
3225
3226 /**
3227 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3228 * @skb: send buffer
3229 * @netdev: network interface device structure
3230 *
3231 * Returns NETDEV_TX_OK if sent, else an error code
3232 **/
3233 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3234 {
3235 struct i40e_netdev_priv *np = netdev_priv(netdev);
3236 struct i40e_vsi *vsi = np->vsi;
3237 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3238
3239 /* hardware can't handle really short frames, hardware padding works
3240 * beyond this point
3241 */
3242 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3243 return NETDEV_TX_OK;
3244
3245 return i40e_xmit_frame_ring(skb, tx_ring);
3246 }