]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/intel/i40e/i40e_txrx.c
8565495b86805b9c3efdcfffde78a1549addcfba
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / i40e / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Driver
4 * Copyright(c) 2013 - 2014 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29 #include "i40e.h"
30 #include "i40e_prototype.h"
31
32 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34 {
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40 }
41
42 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43 #define I40E_FD_CLEAN_DELAY 10
44 /**
45 * i40e_program_fdir_filter - Program a Flow Director filter
46 * @fdir_data: Packet data that will be filter parameters
47 * @raw_packet: the pre-allocated packet buffer for FDir
48 * @pf: The PF pointer
49 * @add: True for add/update, False for remove
50 **/
51 int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data, u8 *raw_packet,
52 struct i40e_pf *pf, bool add)
53 {
54 struct i40e_filter_program_desc *fdir_desc;
55 struct i40e_tx_buffer *tx_buf, *first;
56 struct i40e_tx_desc *tx_desc;
57 struct i40e_ring *tx_ring;
58 unsigned int fpt, dcc;
59 struct i40e_vsi *vsi;
60 struct device *dev;
61 dma_addr_t dma;
62 u32 td_cmd = 0;
63 u16 delay = 0;
64 u16 i;
65
66 /* find existing FDIR VSI */
67 vsi = NULL;
68 for (i = 0; i < pf->num_alloc_vsi; i++)
69 if (pf->vsi[i] && pf->vsi[i]->type == I40E_VSI_FDIR)
70 vsi = pf->vsi[i];
71 if (!vsi)
72 return -ENOENT;
73
74 tx_ring = vsi->tx_rings[0];
75 dev = tx_ring->dev;
76
77 /* we need two descriptors to add/del a filter and we can wait */
78 do {
79 if (I40E_DESC_UNUSED(tx_ring) > 1)
80 break;
81 msleep_interruptible(1);
82 delay++;
83 } while (delay < I40E_FD_CLEAN_DELAY);
84
85 if (!(I40E_DESC_UNUSED(tx_ring) > 1))
86 return -EAGAIN;
87
88 dma = dma_map_single(dev, raw_packet,
89 I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
90 if (dma_mapping_error(dev, dma))
91 goto dma_fail;
92
93 /* grab the next descriptor */
94 i = tx_ring->next_to_use;
95 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
96 first = &tx_ring->tx_bi[i];
97 memset(first, 0, sizeof(struct i40e_tx_buffer));
98
99 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
100
101 fpt = (fdir_data->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
102 I40E_TXD_FLTR_QW0_QINDEX_MASK;
103
104 fpt |= (fdir_data->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT) &
105 I40E_TXD_FLTR_QW0_FLEXOFF_MASK;
106
107 fpt |= (fdir_data->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) &
108 I40E_TXD_FLTR_QW0_PCTYPE_MASK;
109
110 /* Use LAN VSI Id if not programmed by user */
111 if (fdir_data->dest_vsi == 0)
112 fpt |= (pf->vsi[pf->lan_vsi]->id) <<
113 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
114 else
115 fpt |= ((u32)fdir_data->dest_vsi <<
116 I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT) &
117 I40E_TXD_FLTR_QW0_DEST_VSI_MASK;
118
119 dcc = I40E_TX_DESC_DTYPE_FILTER_PROG;
120
121 if (add)
122 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
123 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
124 else
125 dcc |= I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
126 I40E_TXD_FLTR_QW1_PCMD_SHIFT;
127
128 dcc |= (fdir_data->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT) &
129 I40E_TXD_FLTR_QW1_DEST_MASK;
130
131 dcc |= (fdir_data->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT) &
132 I40E_TXD_FLTR_QW1_FD_STATUS_MASK;
133
134 if (fdir_data->cnt_index != 0) {
135 dcc |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
136 dcc |= ((u32)fdir_data->cnt_index <<
137 I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
138 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
139 }
140
141 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(fpt);
142 fdir_desc->rsvd = cpu_to_le32(0);
143 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dcc);
144 fdir_desc->fd_id = cpu_to_le32(fdir_data->fd_id);
145
146 /* Now program a dummy descriptor */
147 i = tx_ring->next_to_use;
148 tx_desc = I40E_TX_DESC(tx_ring, i);
149 tx_buf = &tx_ring->tx_bi[i];
150
151 tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
152
153 memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
154
155 /* record length, and DMA address */
156 dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
157 dma_unmap_addr_set(tx_buf, dma, dma);
158
159 tx_desc->buffer_addr = cpu_to_le64(dma);
160 td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
161
162 tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
163 tx_buf->raw_buf = (void *)raw_packet;
164
165 tx_desc->cmd_type_offset_bsz =
166 build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
167
168 /* set the timestamp */
169 tx_buf->time_stamp = jiffies;
170
171 /* Force memory writes to complete before letting h/w
172 * know there are new descriptors to fetch.
173 */
174 wmb();
175
176 /* Mark the data descriptor to be watched */
177 first->next_to_watch = tx_desc;
178
179 writel(tx_ring->next_to_use, tx_ring->tail);
180 return 0;
181
182 dma_fail:
183 return -1;
184 }
185
186 #define IP_HEADER_OFFSET 14
187 #define I40E_UDPIP_DUMMY_PACKET_LEN 42
188 /**
189 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
190 * @vsi: pointer to the targeted VSI
191 * @fd_data: the flow director data required for the FDir descriptor
192 * @add: true adds a filter, false removes it
193 *
194 * Returns 0 if the filters were successfully added or removed
195 **/
196 static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
197 struct i40e_fdir_filter *fd_data,
198 bool add)
199 {
200 struct i40e_pf *pf = vsi->back;
201 struct udphdr *udp;
202 struct iphdr *ip;
203 bool err = false;
204 u8 *raw_packet;
205 int ret;
206 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
207 0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
208 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
209
210 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
211 if (!raw_packet)
212 return -ENOMEM;
213 memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
214
215 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
216 udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
217 + sizeof(struct iphdr));
218
219 ip->daddr = fd_data->dst_ip[0];
220 udp->dest = fd_data->dst_port;
221 ip->saddr = fd_data->src_ip[0];
222 udp->source = fd_data->src_port;
223
224 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
225 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
226 if (ret) {
227 dev_info(&pf->pdev->dev,
228 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
229 fd_data->pctype, fd_data->fd_id, ret);
230 err = true;
231 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
232 if (add)
233 dev_info(&pf->pdev->dev,
234 "Filter OK for PCTYPE %d loc = %d\n",
235 fd_data->pctype, fd_data->fd_id);
236 else
237 dev_info(&pf->pdev->dev,
238 "Filter deleted for PCTYPE %d loc = %d\n",
239 fd_data->pctype, fd_data->fd_id);
240 }
241 return err ? -EOPNOTSUPP : 0;
242 }
243
244 #define I40E_TCPIP_DUMMY_PACKET_LEN 54
245 /**
246 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
247 * @vsi: pointer to the targeted VSI
248 * @fd_data: the flow director data required for the FDir descriptor
249 * @add: true adds a filter, false removes it
250 *
251 * Returns 0 if the filters were successfully added or removed
252 **/
253 static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
254 struct i40e_fdir_filter *fd_data,
255 bool add)
256 {
257 struct i40e_pf *pf = vsi->back;
258 struct tcphdr *tcp;
259 struct iphdr *ip;
260 bool err = false;
261 u8 *raw_packet;
262 int ret;
263 /* Dummy packet */
264 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
265 0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
266 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
267 0x0, 0x72, 0, 0, 0, 0};
268
269 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
270 if (!raw_packet)
271 return -ENOMEM;
272 memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
273
274 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
275 tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
276 + sizeof(struct iphdr));
277
278 ip->daddr = fd_data->dst_ip[0];
279 tcp->dest = fd_data->dst_port;
280 ip->saddr = fd_data->src_ip[0];
281 tcp->source = fd_data->src_port;
282
283 if (add) {
284 pf->fd_tcp_rule++;
285 if (pf->flags & I40E_FLAG_FD_ATR_ENABLED) {
286 dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
287 pf->flags &= ~I40E_FLAG_FD_ATR_ENABLED;
288 }
289 } else {
290 pf->fd_tcp_rule = (pf->fd_tcp_rule > 0) ?
291 (pf->fd_tcp_rule - 1) : 0;
292 if (pf->fd_tcp_rule == 0) {
293 pf->flags |= I40E_FLAG_FD_ATR_ENABLED;
294 dev_info(&pf->pdev->dev, "ATR re-enabled due to no sideband TCP/IPv4 rules\n");
295 }
296 }
297
298 fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
299 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
300
301 if (ret) {
302 dev_info(&pf->pdev->dev,
303 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
304 fd_data->pctype, fd_data->fd_id, ret);
305 err = true;
306 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
307 if (add)
308 dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
309 fd_data->pctype, fd_data->fd_id);
310 else
311 dev_info(&pf->pdev->dev,
312 "Filter deleted for PCTYPE %d loc = %d\n",
313 fd_data->pctype, fd_data->fd_id);
314 }
315
316 return err ? -EOPNOTSUPP : 0;
317 }
318
319 /**
320 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
321 * a specific flow spec
322 * @vsi: pointer to the targeted VSI
323 * @fd_data: the flow director data required for the FDir descriptor
324 * @add: true adds a filter, false removes it
325 *
326 * Always returns -EOPNOTSUPP
327 **/
328 static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
329 struct i40e_fdir_filter *fd_data,
330 bool add)
331 {
332 return -EOPNOTSUPP;
333 }
334
335 #define I40E_IP_DUMMY_PACKET_LEN 34
336 /**
337 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
338 * a specific flow spec
339 * @vsi: pointer to the targeted VSI
340 * @fd_data: the flow director data required for the FDir descriptor
341 * @add: true adds a filter, false removes it
342 *
343 * Returns 0 if the filters were successfully added or removed
344 **/
345 static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
346 struct i40e_fdir_filter *fd_data,
347 bool add)
348 {
349 struct i40e_pf *pf = vsi->back;
350 struct iphdr *ip;
351 bool err = false;
352 u8 *raw_packet;
353 int ret;
354 int i;
355 static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
356 0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
357 0, 0, 0, 0};
358
359 for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
360 i <= I40E_FILTER_PCTYPE_FRAG_IPV4; i++) {
361 raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
362 if (!raw_packet)
363 return -ENOMEM;
364 memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
365 ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
366
367 ip->saddr = fd_data->src_ip[0];
368 ip->daddr = fd_data->dst_ip[0];
369 ip->protocol = 0;
370
371 fd_data->pctype = i;
372 ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
373
374 if (ret) {
375 dev_info(&pf->pdev->dev,
376 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
377 fd_data->pctype, fd_data->fd_id, ret);
378 err = true;
379 } else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
380 if (add)
381 dev_info(&pf->pdev->dev,
382 "Filter OK for PCTYPE %d loc = %d\n",
383 fd_data->pctype, fd_data->fd_id);
384 else
385 dev_info(&pf->pdev->dev,
386 "Filter deleted for PCTYPE %d loc = %d\n",
387 fd_data->pctype, fd_data->fd_id);
388 }
389 }
390
391 return err ? -EOPNOTSUPP : 0;
392 }
393
394 /**
395 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
396 * @vsi: pointer to the targeted VSI
397 * @cmd: command to get or set RX flow classification rules
398 * @add: true adds a filter, false removes it
399 *
400 **/
401 int i40e_add_del_fdir(struct i40e_vsi *vsi,
402 struct i40e_fdir_filter *input, bool add)
403 {
404 struct i40e_pf *pf = vsi->back;
405 int ret;
406
407 switch (input->flow_type & ~FLOW_EXT) {
408 case TCP_V4_FLOW:
409 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
410 break;
411 case UDP_V4_FLOW:
412 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
413 break;
414 case SCTP_V4_FLOW:
415 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
416 break;
417 case IPV4_FLOW:
418 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
419 break;
420 case IP_USER_FLOW:
421 switch (input->ip4_proto) {
422 case IPPROTO_TCP:
423 ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
424 break;
425 case IPPROTO_UDP:
426 ret = i40e_add_del_fdir_udpv4(vsi, input, add);
427 break;
428 case IPPROTO_SCTP:
429 ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
430 break;
431 default:
432 ret = i40e_add_del_fdir_ipv4(vsi, input, add);
433 break;
434 }
435 break;
436 default:
437 dev_info(&pf->pdev->dev, "Could not specify spec type %d\n",
438 input->flow_type);
439 ret = -EINVAL;
440 }
441
442 /* The buffer allocated here is freed by the i40e_clean_tx_ring() */
443 return ret;
444 }
445
446 /**
447 * i40e_fd_handle_status - check the Programming Status for FD
448 * @rx_ring: the Rx ring for this descriptor
449 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
450 * @prog_id: the id originally used for programming
451 *
452 * This is used to verify if the FD programming or invalidation
453 * requested by SW to the HW is successful or not and take actions accordingly.
454 **/
455 static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
456 union i40e_rx_desc *rx_desc, u8 prog_id)
457 {
458 struct i40e_pf *pf = rx_ring->vsi->back;
459 struct pci_dev *pdev = pf->pdev;
460 u32 fcnt_prog, fcnt_avail;
461 u32 error;
462 u64 qw;
463
464 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
465 error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
466 I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
467
468 if (error == (0x1 << I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
469 if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
470 (I40E_DEBUG_FD & pf->hw.debug_mask))
471 dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
472 rx_desc->wb.qword0.hi_dword.fd_id);
473
474 /* Check if the programming error is for ATR.
475 * If so, auto disable ATR and set a state for
476 * flush in progress. Next time we come here if flush is in
477 * progress do nothing, once flush is complete the state will
478 * be cleared.
479 */
480 if (test_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state))
481 return;
482
483 pf->fd_add_err++;
484 /* store the current atr filter count */
485 pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
486
487 if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
488 (pf->auto_disable_flags & I40E_FLAG_FD_SB_ENABLED)) {
489 pf->auto_disable_flags |= I40E_FLAG_FD_ATR_ENABLED;
490 set_bit(__I40E_FD_FLUSH_REQUESTED, &pf->state);
491 }
492
493 /* filter programming failed most likely due to table full */
494 fcnt_prog = i40e_get_global_fd_count(pf);
495 fcnt_avail = pf->fdir_pf_filter_count;
496 /* If ATR is running fcnt_prog can quickly change,
497 * if we are very close to full, it makes sense to disable
498 * FD ATR/SB and then re-enable it when there is room.
499 */
500 if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
501 if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
502 !(pf->auto_disable_flags &
503 I40E_FLAG_FD_SB_ENABLED)) {
504 dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
505 pf->auto_disable_flags |=
506 I40E_FLAG_FD_SB_ENABLED;
507 }
508 } else {
509 dev_info(&pdev->dev,
510 "FD filter programming failed due to incorrect filter parameters\n");
511 }
512 } else if (error ==
513 (0x1 << I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
514 if (I40E_DEBUG_FD & pf->hw.debug_mask)
515 dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
516 rx_desc->wb.qword0.hi_dword.fd_id);
517 }
518 }
519
520 /**
521 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
522 * @ring: the ring that owns the buffer
523 * @tx_buffer: the buffer to free
524 **/
525 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
526 struct i40e_tx_buffer *tx_buffer)
527 {
528 if (tx_buffer->skb) {
529 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
530 kfree(tx_buffer->raw_buf);
531 else
532 dev_kfree_skb_any(tx_buffer->skb);
533
534 if (dma_unmap_len(tx_buffer, len))
535 dma_unmap_single(ring->dev,
536 dma_unmap_addr(tx_buffer, dma),
537 dma_unmap_len(tx_buffer, len),
538 DMA_TO_DEVICE);
539 } else if (dma_unmap_len(tx_buffer, len)) {
540 dma_unmap_page(ring->dev,
541 dma_unmap_addr(tx_buffer, dma),
542 dma_unmap_len(tx_buffer, len),
543 DMA_TO_DEVICE);
544 }
545 tx_buffer->next_to_watch = NULL;
546 tx_buffer->skb = NULL;
547 dma_unmap_len_set(tx_buffer, len, 0);
548 /* tx_buffer must be completely set up in the transmit path */
549 }
550
551 /**
552 * i40e_clean_tx_ring - Free any empty Tx buffers
553 * @tx_ring: ring to be cleaned
554 **/
555 void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
556 {
557 unsigned long bi_size;
558 u16 i;
559
560 /* ring already cleared, nothing to do */
561 if (!tx_ring->tx_bi)
562 return;
563
564 /* Free all the Tx ring sk_buffs */
565 for (i = 0; i < tx_ring->count; i++)
566 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
567
568 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
569 memset(tx_ring->tx_bi, 0, bi_size);
570
571 /* Zero out the descriptor ring */
572 memset(tx_ring->desc, 0, tx_ring->size);
573
574 tx_ring->next_to_use = 0;
575 tx_ring->next_to_clean = 0;
576
577 if (!tx_ring->netdev)
578 return;
579
580 /* cleanup Tx queue statistics */
581 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
582 tx_ring->queue_index));
583 }
584
585 /**
586 * i40e_free_tx_resources - Free Tx resources per queue
587 * @tx_ring: Tx descriptor ring for a specific queue
588 *
589 * Free all transmit software resources
590 **/
591 void i40e_free_tx_resources(struct i40e_ring *tx_ring)
592 {
593 i40e_clean_tx_ring(tx_ring);
594 kfree(tx_ring->tx_bi);
595 tx_ring->tx_bi = NULL;
596
597 if (tx_ring->desc) {
598 dma_free_coherent(tx_ring->dev, tx_ring->size,
599 tx_ring->desc, tx_ring->dma);
600 tx_ring->desc = NULL;
601 }
602 }
603
604 /**
605 * i40e_get_head - Retrieve head from head writeback
606 * @tx_ring: tx ring to fetch head of
607 *
608 * Returns value of Tx ring head based on value stored
609 * in head write-back location
610 **/
611 static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
612 {
613 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
614
615 return le32_to_cpu(*(volatile __le32 *)head);
616 }
617
618 /**
619 * i40e_get_tx_pending - how many tx descriptors not processed
620 * @tx_ring: the ring of descriptors
621 *
622 * Since there is no access to the ring head register
623 * in XL710, we need to use our local copies
624 **/
625 static u32 i40e_get_tx_pending(struct i40e_ring *ring)
626 {
627 u32 head, tail;
628
629 head = i40e_get_head(ring);
630 tail = readl(ring->tail);
631
632 if (head != tail)
633 return (head < tail) ?
634 tail - head : (tail + ring->count - head);
635
636 return 0;
637 }
638
639 /**
640 * i40e_check_tx_hang - Is there a hang in the Tx queue
641 * @tx_ring: the ring of descriptors
642 **/
643 static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
644 {
645 u32 tx_done = tx_ring->stats.packets;
646 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
647 u32 tx_pending = i40e_get_tx_pending(tx_ring);
648 struct i40e_pf *pf = tx_ring->vsi->back;
649 bool ret = false;
650
651 clear_check_for_tx_hang(tx_ring);
652
653 /* Check for a hung queue, but be thorough. This verifies
654 * that a transmit has been completed since the previous
655 * check AND there is at least one packet pending. The
656 * ARMED bit is set to indicate a potential hang. The
657 * bit is cleared if a pause frame is received to remove
658 * false hang detection due to PFC or 802.3x frames. By
659 * requiring this to fail twice we avoid races with
660 * PFC clearing the ARMED bit and conditions where we
661 * run the check_tx_hang logic with a transmit completion
662 * pending but without time to complete it yet.
663 */
664 if ((tx_done_old == tx_done) && tx_pending) {
665 /* make sure it is true for two checks in a row */
666 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
667 &tx_ring->state);
668 } else if (tx_done_old == tx_done &&
669 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
670 if (I40E_DEBUG_FLOW & pf->hw.debug_mask)
671 dev_info(tx_ring->dev, "HW needs some more descs to do a cacheline flush. tx_pending %d, queue %d",
672 tx_pending, tx_ring->queue_index);
673 pf->tx_sluggish_count++;
674 } else {
675 /* update completed stats and disarm the hang check */
676 tx_ring->tx_stats.tx_done_old = tx_done;
677 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
678 }
679
680 return ret;
681 }
682
683 #define WB_STRIDE 0x3
684
685 /**
686 * i40e_clean_tx_irq - Reclaim resources after transmit completes
687 * @tx_ring: tx ring to clean
688 * @budget: how many cleans we're allowed
689 *
690 * Returns true if there's any budget left (e.g. the clean is finished)
691 **/
692 static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
693 {
694 u16 i = tx_ring->next_to_clean;
695 struct i40e_tx_buffer *tx_buf;
696 struct i40e_tx_desc *tx_head;
697 struct i40e_tx_desc *tx_desc;
698 unsigned int total_packets = 0;
699 unsigned int total_bytes = 0;
700
701 tx_buf = &tx_ring->tx_bi[i];
702 tx_desc = I40E_TX_DESC(tx_ring, i);
703 i -= tx_ring->count;
704
705 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
706
707 do {
708 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
709
710 /* if next_to_watch is not set then there is no work pending */
711 if (!eop_desc)
712 break;
713
714 /* prevent any other reads prior to eop_desc */
715 read_barrier_depends();
716
717 /* we have caught up to head, no work left to do */
718 if (tx_head == tx_desc)
719 break;
720
721 /* clear next_to_watch to prevent false hangs */
722 tx_buf->next_to_watch = NULL;
723
724 /* update the statistics for this packet */
725 total_bytes += tx_buf->bytecount;
726 total_packets += tx_buf->gso_segs;
727
728 /* free the skb */
729 dev_consume_skb_any(tx_buf->skb);
730
731 /* unmap skb header data */
732 dma_unmap_single(tx_ring->dev,
733 dma_unmap_addr(tx_buf, dma),
734 dma_unmap_len(tx_buf, len),
735 DMA_TO_DEVICE);
736
737 /* clear tx_buffer data */
738 tx_buf->skb = NULL;
739 dma_unmap_len_set(tx_buf, len, 0);
740
741 /* unmap remaining buffers */
742 while (tx_desc != eop_desc) {
743
744 tx_buf++;
745 tx_desc++;
746 i++;
747 if (unlikely(!i)) {
748 i -= tx_ring->count;
749 tx_buf = tx_ring->tx_bi;
750 tx_desc = I40E_TX_DESC(tx_ring, 0);
751 }
752
753 /* unmap any remaining paged data */
754 if (dma_unmap_len(tx_buf, len)) {
755 dma_unmap_page(tx_ring->dev,
756 dma_unmap_addr(tx_buf, dma),
757 dma_unmap_len(tx_buf, len),
758 DMA_TO_DEVICE);
759 dma_unmap_len_set(tx_buf, len, 0);
760 }
761 }
762
763 /* move us one more past the eop_desc for start of next pkt */
764 tx_buf++;
765 tx_desc++;
766 i++;
767 if (unlikely(!i)) {
768 i -= tx_ring->count;
769 tx_buf = tx_ring->tx_bi;
770 tx_desc = I40E_TX_DESC(tx_ring, 0);
771 }
772
773 prefetch(tx_desc);
774
775 /* update budget accounting */
776 budget--;
777 } while (likely(budget));
778
779 i += tx_ring->count;
780 tx_ring->next_to_clean = i;
781 u64_stats_update_begin(&tx_ring->syncp);
782 tx_ring->stats.bytes += total_bytes;
783 tx_ring->stats.packets += total_packets;
784 u64_stats_update_end(&tx_ring->syncp);
785 tx_ring->q_vector->tx.total_bytes += total_bytes;
786 tx_ring->q_vector->tx.total_packets += total_packets;
787
788 /* check to see if there are any non-cache aligned descriptors
789 * waiting to be written back, and kick the hardware to force
790 * them to be written back in case of napi polling
791 */
792 if (budget &&
793 !((i & WB_STRIDE) == WB_STRIDE) &&
794 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
795 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
796 tx_ring->arm_wb = true;
797 else
798 tx_ring->arm_wb = false;
799
800 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
801 /* schedule immediate reset if we believe we hung */
802 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
803 " VSI <%d>\n"
804 " Tx Queue <%d>\n"
805 " next_to_use <%x>\n"
806 " next_to_clean <%x>\n",
807 tx_ring->vsi->seid,
808 tx_ring->queue_index,
809 tx_ring->next_to_use, i);
810 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
811 " time_stamp <%lx>\n"
812 " jiffies <%lx>\n",
813 tx_ring->tx_bi[i].time_stamp, jiffies);
814
815 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
816
817 dev_info(tx_ring->dev,
818 "tx hang detected on queue %d, reset requested\n",
819 tx_ring->queue_index);
820
821 /* do not fire the reset immediately, wait for the stack to
822 * decide we are truly stuck, also prevents every queue from
823 * simultaneously requesting a reset
824 */
825
826 /* the adapter is about to reset, no point in enabling polling */
827 budget = 1;
828 }
829
830 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
831 tx_ring->queue_index),
832 total_packets, total_bytes);
833
834 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
835 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
836 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
837 /* Make sure that anybody stopping the queue after this
838 * sees the new next_to_clean.
839 */
840 smp_mb();
841 if (__netif_subqueue_stopped(tx_ring->netdev,
842 tx_ring->queue_index) &&
843 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
844 netif_wake_subqueue(tx_ring->netdev,
845 tx_ring->queue_index);
846 ++tx_ring->tx_stats.restart_queue;
847 }
848 }
849
850 return !!budget;
851 }
852
853 /**
854 * i40e_force_wb - Arm hardware to do a wb on noncache aligned descriptors
855 * @vsi: the VSI we care about
856 * @q_vector: the vector on which to force writeback
857 *
858 **/
859 static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
860 {
861 u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
862 I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
863 I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
864 I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
865 /* allow 00 to be written to the index */
866
867 wr32(&vsi->back->hw,
868 I40E_PFINT_DYN_CTLN(q_vector->v_idx + vsi->base_vector - 1),
869 val);
870 }
871
872 /**
873 * i40e_set_new_dynamic_itr - Find new ITR level
874 * @rc: structure containing ring performance data
875 *
876 * Stores a new ITR value based on packets and byte counts during
877 * the last interrupt. The advantage of per interrupt computation
878 * is faster updates and more accurate ITR for the current traffic
879 * pattern. Constants in this function were computed based on
880 * theoretical maximum wire speed and thresholds were set based on
881 * testing data as well as attempting to minimize response time
882 * while increasing bulk throughput.
883 **/
884 static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
885 {
886 enum i40e_latency_range new_latency_range = rc->latency_range;
887 u32 new_itr = rc->itr;
888 int bytes_per_int;
889
890 if (rc->total_packets == 0 || !rc->itr)
891 return;
892
893 /* simple throttlerate management
894 * 0-10MB/s lowest (100000 ints/s)
895 * 10-20MB/s low (20000 ints/s)
896 * 20-1249MB/s bulk (8000 ints/s)
897 */
898 bytes_per_int = rc->total_bytes / rc->itr;
899 switch (rc->itr) {
900 case I40E_LOWEST_LATENCY:
901 if (bytes_per_int > 10)
902 new_latency_range = I40E_LOW_LATENCY;
903 break;
904 case I40E_LOW_LATENCY:
905 if (bytes_per_int > 20)
906 new_latency_range = I40E_BULK_LATENCY;
907 else if (bytes_per_int <= 10)
908 new_latency_range = I40E_LOWEST_LATENCY;
909 break;
910 case I40E_BULK_LATENCY:
911 if (bytes_per_int <= 20)
912 rc->latency_range = I40E_LOW_LATENCY;
913 break;
914 }
915
916 switch (new_latency_range) {
917 case I40E_LOWEST_LATENCY:
918 new_itr = I40E_ITR_100K;
919 break;
920 case I40E_LOW_LATENCY:
921 new_itr = I40E_ITR_20K;
922 break;
923 case I40E_BULK_LATENCY:
924 new_itr = I40E_ITR_8K;
925 break;
926 default:
927 break;
928 }
929
930 if (new_itr != rc->itr) {
931 /* do an exponential smoothing */
932 new_itr = (10 * new_itr * rc->itr) /
933 ((9 * new_itr) + rc->itr);
934 rc->itr = new_itr & I40E_MAX_ITR;
935 }
936
937 rc->total_bytes = 0;
938 rc->total_packets = 0;
939 }
940
941 /**
942 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
943 * @q_vector: the vector to adjust
944 **/
945 static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
946 {
947 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
948 struct i40e_hw *hw = &q_vector->vsi->back->hw;
949 u32 reg_addr;
950 u16 old_itr;
951
952 reg_addr = I40E_PFINT_ITRN(I40E_RX_ITR, vector - 1);
953 old_itr = q_vector->rx.itr;
954 i40e_set_new_dynamic_itr(&q_vector->rx);
955 if (old_itr != q_vector->rx.itr)
956 wr32(hw, reg_addr, q_vector->rx.itr);
957
958 reg_addr = I40E_PFINT_ITRN(I40E_TX_ITR, vector - 1);
959 old_itr = q_vector->tx.itr;
960 i40e_set_new_dynamic_itr(&q_vector->tx);
961 if (old_itr != q_vector->tx.itr)
962 wr32(hw, reg_addr, q_vector->tx.itr);
963 }
964
965 /**
966 * i40e_clean_programming_status - clean the programming status descriptor
967 * @rx_ring: the rx ring that has this descriptor
968 * @rx_desc: the rx descriptor written back by HW
969 *
970 * Flow director should handle FD_FILTER_STATUS to check its filter programming
971 * status being successful or not and take actions accordingly. FCoE should
972 * handle its context/filter programming/invalidation status and take actions.
973 *
974 **/
975 static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
976 union i40e_rx_desc *rx_desc)
977 {
978 u64 qw;
979 u8 id;
980
981 qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
982 id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
983 I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
984
985 if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
986 i40e_fd_handle_status(rx_ring, rx_desc, id);
987 #ifdef I40E_FCOE
988 else if ((id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_PROG_STATUS) ||
989 (id == I40E_RX_PROG_STATUS_DESC_FCOE_CTXT_INVL_STATUS))
990 i40e_fcoe_handle_status(rx_ring, rx_desc, id);
991 #endif
992 }
993
994 /**
995 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
996 * @tx_ring: the tx ring to set up
997 *
998 * Return 0 on success, negative on error
999 **/
1000 int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1001 {
1002 struct device *dev = tx_ring->dev;
1003 int bi_size;
1004
1005 if (!dev)
1006 return -ENOMEM;
1007
1008 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1009 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1010 if (!tx_ring->tx_bi)
1011 goto err;
1012
1013 /* round up to nearest 4K */
1014 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1015 /* add u32 for head writeback, align after this takes care of
1016 * guaranteeing this is at least one cache line in size
1017 */
1018 tx_ring->size += sizeof(u32);
1019 tx_ring->size = ALIGN(tx_ring->size, 4096);
1020 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1021 &tx_ring->dma, GFP_KERNEL);
1022 if (!tx_ring->desc) {
1023 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1024 tx_ring->size);
1025 goto err;
1026 }
1027
1028 tx_ring->next_to_use = 0;
1029 tx_ring->next_to_clean = 0;
1030 return 0;
1031
1032 err:
1033 kfree(tx_ring->tx_bi);
1034 tx_ring->tx_bi = NULL;
1035 return -ENOMEM;
1036 }
1037
1038 /**
1039 * i40e_clean_rx_ring - Free Rx buffers
1040 * @rx_ring: ring to be cleaned
1041 **/
1042 void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1043 {
1044 struct device *dev = rx_ring->dev;
1045 struct i40e_rx_buffer *rx_bi;
1046 unsigned long bi_size;
1047 u16 i;
1048
1049 /* ring already cleared, nothing to do */
1050 if (!rx_ring->rx_bi)
1051 return;
1052
1053 if (ring_is_ps_enabled(rx_ring)) {
1054 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
1055
1056 rx_bi = &rx_ring->rx_bi[0];
1057 if (rx_bi->hdr_buf) {
1058 dma_free_coherent(dev,
1059 bufsz,
1060 rx_bi->hdr_buf,
1061 rx_bi->dma);
1062 for (i = 0; i < rx_ring->count; i++) {
1063 rx_bi = &rx_ring->rx_bi[i];
1064 rx_bi->dma = 0;
1065 rx_bi->hdr_buf = NULL;
1066 }
1067 }
1068 }
1069 /* Free all the Rx ring sk_buffs */
1070 for (i = 0; i < rx_ring->count; i++) {
1071 rx_bi = &rx_ring->rx_bi[i];
1072 if (rx_bi->dma) {
1073 dma_unmap_single(dev,
1074 rx_bi->dma,
1075 rx_ring->rx_buf_len,
1076 DMA_FROM_DEVICE);
1077 rx_bi->dma = 0;
1078 }
1079 if (rx_bi->skb) {
1080 dev_kfree_skb(rx_bi->skb);
1081 rx_bi->skb = NULL;
1082 }
1083 if (rx_bi->page) {
1084 if (rx_bi->page_dma) {
1085 dma_unmap_page(dev,
1086 rx_bi->page_dma,
1087 PAGE_SIZE / 2,
1088 DMA_FROM_DEVICE);
1089 rx_bi->page_dma = 0;
1090 }
1091 __free_page(rx_bi->page);
1092 rx_bi->page = NULL;
1093 rx_bi->page_offset = 0;
1094 }
1095 }
1096
1097 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1098 memset(rx_ring->rx_bi, 0, bi_size);
1099
1100 /* Zero out the descriptor ring */
1101 memset(rx_ring->desc, 0, rx_ring->size);
1102
1103 rx_ring->next_to_clean = 0;
1104 rx_ring->next_to_use = 0;
1105 }
1106
1107 /**
1108 * i40e_free_rx_resources - Free Rx resources
1109 * @rx_ring: ring to clean the resources from
1110 *
1111 * Free all receive software resources
1112 **/
1113 void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1114 {
1115 i40e_clean_rx_ring(rx_ring);
1116 kfree(rx_ring->rx_bi);
1117 rx_ring->rx_bi = NULL;
1118
1119 if (rx_ring->desc) {
1120 dma_free_coherent(rx_ring->dev, rx_ring->size,
1121 rx_ring->desc, rx_ring->dma);
1122 rx_ring->desc = NULL;
1123 }
1124 }
1125
1126 /**
1127 * i40e_alloc_rx_headers - allocate rx header buffers
1128 * @rx_ring: ring to alloc buffers
1129 *
1130 * Allocate rx header buffers for the entire ring. As these are static,
1131 * this is only called when setting up a new ring.
1132 **/
1133 void i40e_alloc_rx_headers(struct i40e_ring *rx_ring)
1134 {
1135 struct device *dev = rx_ring->dev;
1136 struct i40e_rx_buffer *rx_bi;
1137 dma_addr_t dma;
1138 void *buffer;
1139 int buf_size;
1140 int i;
1141
1142 if (rx_ring->rx_bi[0].hdr_buf)
1143 return;
1144 /* Make sure the buffers don't cross cache line boundaries. */
1145 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
1146 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
1147 &dma, GFP_KERNEL);
1148 if (!buffer)
1149 return;
1150 for (i = 0; i < rx_ring->count; i++) {
1151 rx_bi = &rx_ring->rx_bi[i];
1152 rx_bi->dma = dma + (i * buf_size);
1153 rx_bi->hdr_buf = buffer + (i * buf_size);
1154 }
1155 }
1156
1157 /**
1158 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1159 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1160 *
1161 * Returns 0 on success, negative on failure
1162 **/
1163 int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1164 {
1165 struct device *dev = rx_ring->dev;
1166 int bi_size;
1167
1168 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1169 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1170 if (!rx_ring->rx_bi)
1171 goto err;
1172
1173 u64_stats_init(&rx_ring->syncp);
1174
1175 /* Round up to nearest 4K */
1176 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
1177 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
1178 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1179 rx_ring->size = ALIGN(rx_ring->size, 4096);
1180 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1181 &rx_ring->dma, GFP_KERNEL);
1182
1183 if (!rx_ring->desc) {
1184 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1185 rx_ring->size);
1186 goto err;
1187 }
1188
1189 rx_ring->next_to_clean = 0;
1190 rx_ring->next_to_use = 0;
1191
1192 return 0;
1193 err:
1194 kfree(rx_ring->rx_bi);
1195 rx_ring->rx_bi = NULL;
1196 return -ENOMEM;
1197 }
1198
1199 /**
1200 * i40e_release_rx_desc - Store the new tail and head values
1201 * @rx_ring: ring to bump
1202 * @val: new head index
1203 **/
1204 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1205 {
1206 rx_ring->next_to_use = val;
1207 /* Force memory writes to complete before letting h/w
1208 * know there are new descriptors to fetch. (Only
1209 * applicable for weak-ordered memory model archs,
1210 * such as IA-64).
1211 */
1212 wmb();
1213 writel(val, rx_ring->tail);
1214 }
1215
1216 /**
1217 * i40e_alloc_rx_buffers_ps - Replace used receive buffers; packet split
1218 * @rx_ring: ring to place buffers on
1219 * @cleaned_count: number of buffers to replace
1220 **/
1221 void i40e_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
1222 {
1223 u16 i = rx_ring->next_to_use;
1224 union i40e_rx_desc *rx_desc;
1225 struct i40e_rx_buffer *bi;
1226
1227 /* do nothing if no valid netdev defined */
1228 if (!rx_ring->netdev || !cleaned_count)
1229 return;
1230
1231 while (cleaned_count--) {
1232 rx_desc = I40E_RX_DESC(rx_ring, i);
1233 bi = &rx_ring->rx_bi[i];
1234
1235 if (bi->skb) /* desc is in use */
1236 goto no_buffers;
1237 if (!bi->page) {
1238 bi->page = alloc_page(GFP_ATOMIC);
1239 if (!bi->page) {
1240 rx_ring->rx_stats.alloc_page_failed++;
1241 goto no_buffers;
1242 }
1243 }
1244
1245 if (!bi->page_dma) {
1246 /* use a half page if we're re-using */
1247 bi->page_offset ^= PAGE_SIZE / 2;
1248 bi->page_dma = dma_map_page(rx_ring->dev,
1249 bi->page,
1250 bi->page_offset,
1251 PAGE_SIZE / 2,
1252 DMA_FROM_DEVICE);
1253 if (dma_mapping_error(rx_ring->dev,
1254 bi->page_dma)) {
1255 rx_ring->rx_stats.alloc_page_failed++;
1256 bi->page_dma = 0;
1257 goto no_buffers;
1258 }
1259 }
1260
1261 dma_sync_single_range_for_device(rx_ring->dev,
1262 bi->dma,
1263 0,
1264 rx_ring->rx_hdr_len,
1265 DMA_FROM_DEVICE);
1266 /* Refresh the desc even if buffer_addrs didn't change
1267 * because each write-back erases this info.
1268 */
1269 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
1270 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
1271 i++;
1272 if (i == rx_ring->count)
1273 i = 0;
1274 }
1275
1276 no_buffers:
1277 if (rx_ring->next_to_use != i)
1278 i40e_release_rx_desc(rx_ring, i);
1279 }
1280
1281 /**
1282 * i40e_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
1283 * @rx_ring: ring to place buffers on
1284 * @cleaned_count: number of buffers to replace
1285 **/
1286 void i40e_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
1287 {
1288 u16 i = rx_ring->next_to_use;
1289 union i40e_rx_desc *rx_desc;
1290 struct i40e_rx_buffer *bi;
1291 struct sk_buff *skb;
1292
1293 /* do nothing if no valid netdev defined */
1294 if (!rx_ring->netdev || !cleaned_count)
1295 return;
1296
1297 while (cleaned_count--) {
1298 rx_desc = I40E_RX_DESC(rx_ring, i);
1299 bi = &rx_ring->rx_bi[i];
1300 skb = bi->skb;
1301
1302 if (!skb) {
1303 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1304 rx_ring->rx_buf_len);
1305 if (!skb) {
1306 rx_ring->rx_stats.alloc_buff_failed++;
1307 goto no_buffers;
1308 }
1309 /* initialize queue mapping */
1310 skb_record_rx_queue(skb, rx_ring->queue_index);
1311 bi->skb = skb;
1312 }
1313
1314 if (!bi->dma) {
1315 bi->dma = dma_map_single(rx_ring->dev,
1316 skb->data,
1317 rx_ring->rx_buf_len,
1318 DMA_FROM_DEVICE);
1319 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
1320 rx_ring->rx_stats.alloc_buff_failed++;
1321 bi->dma = 0;
1322 goto no_buffers;
1323 }
1324 }
1325
1326 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
1327 rx_desc->read.hdr_addr = 0;
1328 i++;
1329 if (i == rx_ring->count)
1330 i = 0;
1331 }
1332
1333 no_buffers:
1334 if (rx_ring->next_to_use != i)
1335 i40e_release_rx_desc(rx_ring, i);
1336 }
1337
1338 /**
1339 * i40e_receive_skb - Send a completed packet up the stack
1340 * @rx_ring: rx ring in play
1341 * @skb: packet to send up
1342 * @vlan_tag: vlan tag for packet
1343 **/
1344 static void i40e_receive_skb(struct i40e_ring *rx_ring,
1345 struct sk_buff *skb, u16 vlan_tag)
1346 {
1347 struct i40e_q_vector *q_vector = rx_ring->q_vector;
1348 struct i40e_vsi *vsi = rx_ring->vsi;
1349 u64 flags = vsi->back->flags;
1350
1351 if (vlan_tag & VLAN_VID_MASK)
1352 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1353
1354 if (flags & I40E_FLAG_IN_NETPOLL)
1355 netif_rx(skb);
1356 else
1357 napi_gro_receive(&q_vector->napi, skb);
1358 }
1359
1360 /**
1361 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1362 * @vsi: the VSI we care about
1363 * @skb: skb currently being received and modified
1364 * @rx_status: status value of last descriptor in packet
1365 * @rx_error: error value of last descriptor in packet
1366 * @rx_ptype: ptype value of last descriptor in packet
1367 **/
1368 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1369 struct sk_buff *skb,
1370 u32 rx_status,
1371 u32 rx_error,
1372 u16 rx_ptype)
1373 {
1374 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
1375 bool ipv4 = false, ipv6 = false;
1376 bool ipv4_tunnel, ipv6_tunnel;
1377 __wsum rx_udp_csum;
1378 struct iphdr *iph;
1379 __sum16 csum;
1380
1381 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
1382 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
1383 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
1384 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
1385
1386 skb->ip_summed = CHECKSUM_NONE;
1387
1388 /* Rx csum enabled and ip headers found? */
1389 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1390 return;
1391
1392 /* did the hardware decode the packet and checksum? */
1393 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1394 return;
1395
1396 /* both known and outer_ip must be set for the below code to work */
1397 if (!(decoded.known && decoded.outer_ip))
1398 return;
1399
1400 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1401 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
1402 ipv4 = true;
1403 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1404 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
1405 ipv6 = true;
1406
1407 if (ipv4 &&
1408 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
1409 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1410 goto checksum_fail;
1411
1412 /* likely incorrect csum if alternate IP extension headers found */
1413 if (ipv6 &&
1414 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1415 /* don't increment checksum err here, non-fatal err */
1416 return;
1417
1418 /* there was some L4 error, count error and punt packet to the stack */
1419 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
1420 goto checksum_fail;
1421
1422 /* handle packets that were not able to be checksummed due
1423 * to arrival speed, in this case the stack can compute
1424 * the csum.
1425 */
1426 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
1427 return;
1428
1429 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
1430 * it in the driver, hardware does not do it for us.
1431 * Since L3L4P bit was set we assume a valid IHL value (>=5)
1432 * so the total length of IPv4 header is IHL*4 bytes
1433 * The UDP_0 bit *may* bet set if the *inner* header is UDP
1434 */
1435 if (ipv4_tunnel) {
1436 skb->transport_header = skb->mac_header +
1437 sizeof(struct ethhdr) +
1438 (ip_hdr(skb)->ihl * 4);
1439
1440 /* Add 4 bytes for VLAN tagged packets */
1441 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
1442 skb->protocol == htons(ETH_P_8021AD))
1443 ? VLAN_HLEN : 0;
1444
1445 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
1446 (udp_hdr(skb)->check != 0)) {
1447 rx_udp_csum = udp_csum(skb);
1448 iph = ip_hdr(skb);
1449 csum = csum_tcpudp_magic(
1450 iph->saddr, iph->daddr,
1451 (skb->len - skb_transport_offset(skb)),
1452 IPPROTO_UDP, rx_udp_csum);
1453
1454 if (udp_hdr(skb)->check != csum)
1455 goto checksum_fail;
1456
1457 } /* else its GRE and so no outer UDP header */
1458 }
1459
1460 skb->ip_summed = CHECKSUM_UNNECESSARY;
1461 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
1462
1463 return;
1464
1465 checksum_fail:
1466 vsi->back->hw_csum_rx_error++;
1467 }
1468
1469 /**
1470 * i40e_rx_hash - returns the hash value from the Rx descriptor
1471 * @ring: descriptor ring
1472 * @rx_desc: specific descriptor
1473 **/
1474 static inline u32 i40e_rx_hash(struct i40e_ring *ring,
1475 union i40e_rx_desc *rx_desc)
1476 {
1477 const __le64 rss_mask =
1478 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1479 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1480
1481 if ((ring->netdev->features & NETIF_F_RXHASH) &&
1482 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
1483 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1484 else
1485 return 0;
1486 }
1487
1488 /**
1489 * i40e_ptype_to_hash - get a hash type
1490 * @ptype: the ptype value from the descriptor
1491 *
1492 * Returns a hash type to be used by skb_set_hash
1493 **/
1494 static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
1495 {
1496 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1497
1498 if (!decoded.known)
1499 return PKT_HASH_TYPE_NONE;
1500
1501 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1502 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1503 return PKT_HASH_TYPE_L4;
1504 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1505 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1506 return PKT_HASH_TYPE_L3;
1507 else
1508 return PKT_HASH_TYPE_L2;
1509 }
1510
1511 /**
1512 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
1513 * @rx_ring: rx ring to clean
1514 * @budget: how many cleans we're allowed
1515 *
1516 * Returns true if there's any budget left (e.g. the clean is finished)
1517 **/
1518 static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
1519 {
1520 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1521 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1522 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1523 const int current_node = numa_node_id();
1524 struct i40e_vsi *vsi = rx_ring->vsi;
1525 u16 i = rx_ring->next_to_clean;
1526 union i40e_rx_desc *rx_desc;
1527 u32 rx_error, rx_status;
1528 u8 rx_ptype;
1529 u64 qword;
1530
1531 if (budget <= 0)
1532 return 0;
1533
1534 do {
1535 struct i40e_rx_buffer *rx_bi;
1536 struct sk_buff *skb;
1537 u16 vlan_tag;
1538 /* return some buffers to hardware, one at a time is too slow */
1539 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1540 i40e_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1541 cleaned_count = 0;
1542 }
1543
1544 i = rx_ring->next_to_clean;
1545 rx_desc = I40E_RX_DESC(rx_ring, i);
1546 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1547 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1548 I40E_RXD_QW1_STATUS_SHIFT;
1549
1550 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1551 break;
1552
1553 /* This memory barrier is needed to keep us from reading
1554 * any other fields out of the rx_desc until we know the
1555 * DD bit is set.
1556 */
1557 dma_rmb();
1558 if (i40e_rx_is_programming_status(qword)) {
1559 i40e_clean_programming_status(rx_ring, rx_desc);
1560 I40E_RX_INCREMENT(rx_ring, i);
1561 continue;
1562 }
1563 rx_bi = &rx_ring->rx_bi[i];
1564 skb = rx_bi->skb;
1565 if (likely(!skb)) {
1566 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1567 rx_ring->rx_hdr_len);
1568 if (!skb) {
1569 rx_ring->rx_stats.alloc_buff_failed++;
1570 break;
1571 }
1572
1573 /* initialize queue mapping */
1574 skb_record_rx_queue(skb, rx_ring->queue_index);
1575 /* we are reusing so sync this buffer for CPU use */
1576 dma_sync_single_range_for_cpu(rx_ring->dev,
1577 rx_bi->dma,
1578 0,
1579 rx_ring->rx_hdr_len,
1580 DMA_FROM_DEVICE);
1581 }
1582 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1583 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1584 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1585 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1586 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1587 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1588
1589 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1590 I40E_RXD_QW1_ERROR_SHIFT;
1591 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1592 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1593
1594 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1595 I40E_RXD_QW1_PTYPE_SHIFT;
1596 prefetch(rx_bi->page);
1597 rx_bi->skb = NULL;
1598 cleaned_count++;
1599 if (rx_hbo || rx_sph) {
1600 int len;
1601 if (rx_hbo)
1602 len = I40E_RX_HDR_SIZE;
1603 else
1604 len = rx_header_len;
1605 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1606 } else if (skb->len == 0) {
1607 int len;
1608
1609 len = (rx_packet_len > skb_headlen(skb) ?
1610 skb_headlen(skb) : rx_packet_len);
1611 memcpy(__skb_put(skb, len),
1612 rx_bi->page + rx_bi->page_offset,
1613 len);
1614 rx_bi->page_offset += len;
1615 rx_packet_len -= len;
1616 }
1617
1618 /* Get the rest of the data if this was a header split */
1619 if (rx_packet_len) {
1620 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1621 rx_bi->page,
1622 rx_bi->page_offset,
1623 rx_packet_len);
1624
1625 skb->len += rx_packet_len;
1626 skb->data_len += rx_packet_len;
1627 skb->truesize += rx_packet_len;
1628
1629 if ((page_count(rx_bi->page) == 1) &&
1630 (page_to_nid(rx_bi->page) == current_node))
1631 get_page(rx_bi->page);
1632 else
1633 rx_bi->page = NULL;
1634
1635 dma_unmap_page(rx_ring->dev,
1636 rx_bi->page_dma,
1637 PAGE_SIZE / 2,
1638 DMA_FROM_DEVICE);
1639 rx_bi->page_dma = 0;
1640 }
1641 I40E_RX_INCREMENT(rx_ring, i);
1642
1643 if (unlikely(
1644 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1645 struct i40e_rx_buffer *next_buffer;
1646
1647 next_buffer = &rx_ring->rx_bi[i];
1648 next_buffer->skb = skb;
1649 rx_ring->rx_stats.non_eop_descs++;
1650 continue;
1651 }
1652
1653 /* ERR_MASK will only have valid bits if EOP set */
1654 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1655 dev_kfree_skb_any(skb);
1656 /* TODO: shouldn't we increment a counter indicating the
1657 * drop?
1658 */
1659 continue;
1660 }
1661
1662 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1663 i40e_ptype_to_hash(rx_ptype));
1664 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1665 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1666 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1667 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1668 rx_ring->last_rx_timestamp = jiffies;
1669 }
1670
1671 /* probably a little skewed due to removing CRC */
1672 total_rx_bytes += skb->len;
1673 total_rx_packets++;
1674
1675 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1676
1677 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1678
1679 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1680 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1681 : 0;
1682 #ifdef I40E_FCOE
1683 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1684 dev_kfree_skb_any(skb);
1685 continue;
1686 }
1687 #endif
1688 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
1689 i40e_receive_skb(rx_ring, skb, vlan_tag);
1690
1691 rx_desc->wb.qword1.status_error_len = 0;
1692
1693 } while (likely(total_rx_packets < budget));
1694
1695 u64_stats_update_begin(&rx_ring->syncp);
1696 rx_ring->stats.packets += total_rx_packets;
1697 rx_ring->stats.bytes += total_rx_bytes;
1698 u64_stats_update_end(&rx_ring->syncp);
1699 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1700 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1701
1702 return total_rx_packets;
1703 }
1704
1705 /**
1706 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1707 * @rx_ring: rx ring to clean
1708 * @budget: how many cleans we're allowed
1709 *
1710 * Returns number of packets cleaned
1711 **/
1712 static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1713 {
1714 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1715 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1716 struct i40e_vsi *vsi = rx_ring->vsi;
1717 union i40e_rx_desc *rx_desc;
1718 u32 rx_error, rx_status;
1719 u16 rx_packet_len;
1720 u8 rx_ptype;
1721 u64 qword;
1722 u16 i;
1723
1724 do {
1725 struct i40e_rx_buffer *rx_bi;
1726 struct sk_buff *skb;
1727 u16 vlan_tag;
1728 /* return some buffers to hardware, one at a time is too slow */
1729 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1730 i40e_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
1731 cleaned_count = 0;
1732 }
1733
1734 i = rx_ring->next_to_clean;
1735 rx_desc = I40E_RX_DESC(rx_ring, i);
1736 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1737 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1738 I40E_RXD_QW1_STATUS_SHIFT;
1739
1740 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1741 break;
1742
1743 /* This memory barrier is needed to keep us from reading
1744 * any other fields out of the rx_desc until we know the
1745 * DD bit is set.
1746 */
1747 dma_rmb();
1748
1749 if (i40e_rx_is_programming_status(qword)) {
1750 i40e_clean_programming_status(rx_ring, rx_desc);
1751 I40E_RX_INCREMENT(rx_ring, i);
1752 continue;
1753 }
1754 rx_bi = &rx_ring->rx_bi[i];
1755 skb = rx_bi->skb;
1756 prefetch(skb->data);
1757
1758 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1759 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1760
1761 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1762 I40E_RXD_QW1_ERROR_SHIFT;
1763 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1764
1765 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1766 I40E_RXD_QW1_PTYPE_SHIFT;
1767 rx_bi->skb = NULL;
1768 cleaned_count++;
1769
1770 /* Get the header and possibly the whole packet
1771 * If this is an skb from previous receive dma will be 0
1772 */
1773 skb_put(skb, rx_packet_len);
1774 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1775 DMA_FROM_DEVICE);
1776 rx_bi->dma = 0;
1777
1778 I40E_RX_INCREMENT(rx_ring, i);
1779
1780 if (unlikely(
1781 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1782 rx_ring->rx_stats.non_eop_descs++;
1783 continue;
1784 }
1785
1786 /* ERR_MASK will only have valid bits if EOP set */
1787 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1788 dev_kfree_skb_any(skb);
1789 /* TODO: shouldn't we increment a counter indicating the
1790 * drop?
1791 */
1792 continue;
1793 }
1794
1795 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1796 i40e_ptype_to_hash(rx_ptype));
1797 if (unlikely(rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK)) {
1798 i40e_ptp_rx_hwtstamp(vsi->back, skb, (rx_status &
1799 I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1800 I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT);
1801 rx_ring->last_rx_timestamp = jiffies;
1802 }
1803
1804 /* probably a little skewed due to removing CRC */
1805 total_rx_bytes += skb->len;
1806 total_rx_packets++;
1807
1808 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1809
1810 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1811
1812 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1813 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1814 : 0;
1815 #ifdef I40E_FCOE
1816 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1817 dev_kfree_skb_any(skb);
1818 continue;
1819 }
1820 #endif
1821 i40e_receive_skb(rx_ring, skb, vlan_tag);
1822
1823 rx_desc->wb.qword1.status_error_len = 0;
1824 } while (likely(total_rx_packets < budget));
1825
1826 u64_stats_update_begin(&rx_ring->syncp);
1827 rx_ring->stats.packets += total_rx_packets;
1828 rx_ring->stats.bytes += total_rx_bytes;
1829 u64_stats_update_end(&rx_ring->syncp);
1830 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1831 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1832
1833 return total_rx_packets;
1834 }
1835
1836 /**
1837 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
1838 * @napi: napi struct with our devices info in it
1839 * @budget: amount of work driver is allowed to do this pass, in packets
1840 *
1841 * This function will clean all queues associated with a q_vector.
1842 *
1843 * Returns the amount of work done
1844 **/
1845 int i40e_napi_poll(struct napi_struct *napi, int budget)
1846 {
1847 struct i40e_q_vector *q_vector =
1848 container_of(napi, struct i40e_q_vector, napi);
1849 struct i40e_vsi *vsi = q_vector->vsi;
1850 struct i40e_ring *ring;
1851 bool clean_complete = true;
1852 bool arm_wb = false;
1853 int budget_per_ring;
1854 int cleaned;
1855
1856 if (test_bit(__I40E_DOWN, &vsi->state)) {
1857 napi_complete(napi);
1858 return 0;
1859 }
1860
1861 /* Since the actual Tx work is minimal, we can give the Tx a larger
1862 * budget and be more aggressive about cleaning up the Tx descriptors.
1863 */
1864 i40e_for_each_ring(ring, q_vector->tx) {
1865 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1866 arm_wb |= ring->arm_wb;
1867 }
1868
1869 /* We attempt to distribute budget to each Rx queue fairly, but don't
1870 * allow the budget to go below 1 because that would exit polling early.
1871 */
1872 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1873
1874 i40e_for_each_ring(ring, q_vector->rx) {
1875 if (ring_is_ps_enabled(ring))
1876 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1877 else
1878 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1879 /* if we didn't clean as many as budgeted, we must be done */
1880 clean_complete &= (budget_per_ring != cleaned);
1881 }
1882
1883 /* If work not completed, return budget and polling will return */
1884 if (!clean_complete) {
1885 if (arm_wb)
1886 i40e_force_wb(vsi, q_vector);
1887 return budget;
1888 }
1889
1890 /* Work is done so exit the polling mode and re-enable the interrupt */
1891 napi_complete(napi);
1892 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1893 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1894 i40e_update_dynamic_itr(q_vector);
1895
1896 if (!test_bit(__I40E_DOWN, &vsi->state)) {
1897 if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
1898 i40e_irq_dynamic_enable(vsi,
1899 q_vector->v_idx + vsi->base_vector);
1900 } else {
1901 struct i40e_hw *hw = &vsi->back->hw;
1902 /* We re-enable the queue 0 cause, but
1903 * don't worry about dynamic_enable
1904 * because we left it on for the other
1905 * possible interrupts during napi
1906 */
1907 u32 qval = rd32(hw, I40E_QINT_RQCTL(0));
1908 qval |= I40E_QINT_RQCTL_CAUSE_ENA_MASK;
1909 wr32(hw, I40E_QINT_RQCTL(0), qval);
1910
1911 qval = rd32(hw, I40E_QINT_TQCTL(0));
1912 qval |= I40E_QINT_TQCTL_CAUSE_ENA_MASK;
1913 wr32(hw, I40E_QINT_TQCTL(0), qval);
1914
1915 i40e_irq_dynamic_enable_icr0(vsi->back);
1916 }
1917 }
1918
1919 return 0;
1920 }
1921
1922 /**
1923 * i40e_atr - Add a Flow Director ATR filter
1924 * @tx_ring: ring to add programming descriptor to
1925 * @skb: send buffer
1926 * @tx_flags: send tx flags
1927 * @protocol: wire protocol
1928 **/
1929 static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
1930 u32 tx_flags, __be16 protocol)
1931 {
1932 struct i40e_filter_program_desc *fdir_desc;
1933 struct i40e_pf *pf = tx_ring->vsi->back;
1934 union {
1935 unsigned char *network;
1936 struct iphdr *ipv4;
1937 struct ipv6hdr *ipv6;
1938 } hdr;
1939 struct tcphdr *th;
1940 unsigned int hlen;
1941 u32 flex_ptype, dtype_cmd;
1942 u16 i;
1943
1944 /* make sure ATR is enabled */
1945 if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
1946 return;
1947
1948 if ((pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1949 return;
1950
1951 /* if sampling is disabled do nothing */
1952 if (!tx_ring->atr_sample_rate)
1953 return;
1954
1955 if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
1956 return;
1957
1958 if (!(tx_flags & I40E_TX_FLAGS_VXLAN_TUNNEL)) {
1959 /* snag network header to get L4 type and address */
1960 hdr.network = skb_network_header(skb);
1961
1962 /* Currently only IPv4/IPv6 with TCP is supported
1963 * access ihl as u8 to avoid unaligned access on ia64
1964 */
1965 if (tx_flags & I40E_TX_FLAGS_IPV4)
1966 hlen = (hdr.network[0] & 0x0F) << 2;
1967 else if (protocol == htons(ETH_P_IPV6))
1968 hlen = sizeof(struct ipv6hdr);
1969 else
1970 return;
1971 } else {
1972 hdr.network = skb_inner_network_header(skb);
1973 hlen = skb_inner_network_header_len(skb);
1974 }
1975
1976 /* Currently only IPv4/IPv6 with TCP is supported
1977 * Note: tx_flags gets modified to reflect inner protocols in
1978 * tx_enable_csum function if encap is enabled.
1979 */
1980 if ((tx_flags & I40E_TX_FLAGS_IPV4) &&
1981 (hdr.ipv4->protocol != IPPROTO_TCP))
1982 return;
1983 else if ((tx_flags & I40E_TX_FLAGS_IPV6) &&
1984 (hdr.ipv6->nexthdr != IPPROTO_TCP))
1985 return;
1986
1987 th = (struct tcphdr *)(hdr.network + hlen);
1988
1989 /* Due to lack of space, no more new filters can be programmed */
1990 if (th->syn && (pf->auto_disable_flags & I40E_FLAG_FD_ATR_ENABLED))
1991 return;
1992
1993 tx_ring->atr_count++;
1994
1995 /* sample on all syn/fin/rst packets or once every atr sample rate */
1996 if (!th->fin &&
1997 !th->syn &&
1998 !th->rst &&
1999 (tx_ring->atr_count < tx_ring->atr_sample_rate))
2000 return;
2001
2002 tx_ring->atr_count = 0;
2003
2004 /* grab the next descriptor */
2005 i = tx_ring->next_to_use;
2006 fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2007
2008 i++;
2009 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2010
2011 flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2012 I40E_TXD_FLTR_QW0_QINDEX_MASK;
2013 flex_ptype |= (protocol == htons(ETH_P_IP)) ?
2014 (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2015 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2016 (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2017 I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2018
2019 flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2020
2021 dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2022
2023 dtype_cmd |= (th->fin || th->rst) ?
2024 (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2025 I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2026 (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2027 I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2028
2029 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2030 I40E_TXD_FLTR_QW1_DEST_SHIFT;
2031
2032 dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2033 I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2034
2035 dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2036 dtype_cmd |=
2037 ((u32)pf->fd_atr_cnt_idx << I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2038 I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2039
2040 fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2041 fdir_desc->rsvd = cpu_to_le32(0);
2042 fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2043 fdir_desc->fd_id = cpu_to_le32(0);
2044 }
2045
2046 /**
2047 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2048 * @skb: send buffer
2049 * @tx_ring: ring to send buffer on
2050 * @flags: the tx flags to be set
2051 *
2052 * Checks the skb and set up correspondingly several generic transmit flags
2053 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2054 *
2055 * Returns error code indicate the frame should be dropped upon error and the
2056 * otherwise returns 0 to indicate the flags has been set properly.
2057 **/
2058 #ifdef I40E_FCOE
2059 int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2060 struct i40e_ring *tx_ring,
2061 u32 *flags)
2062 #else
2063 static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2064 struct i40e_ring *tx_ring,
2065 u32 *flags)
2066 #endif
2067 {
2068 __be16 protocol = skb->protocol;
2069 u32 tx_flags = 0;
2070
2071 if (protocol == htons(ETH_P_8021Q) &&
2072 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2073 /* When HW VLAN acceleration is turned off by the user the
2074 * stack sets the protocol to 8021q so that the driver
2075 * can take any steps required to support the SW only
2076 * VLAN handling. In our case the driver doesn't need
2077 * to take any further steps so just set the protocol
2078 * to the encapsulated ethertype.
2079 */
2080 skb->protocol = vlan_get_protocol(skb);
2081 goto out;
2082 }
2083
2084 /* if we have a HW VLAN tag being added, default to the HW one */
2085 if (skb_vlan_tag_present(skb)) {
2086 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2087 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2088 /* else if it is a SW VLAN, check the next protocol and store the tag */
2089 } else if (protocol == htons(ETH_P_8021Q)) {
2090 struct vlan_hdr *vhdr, _vhdr;
2091 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2092 if (!vhdr)
2093 return -EINVAL;
2094
2095 protocol = vhdr->h_vlan_encapsulated_proto;
2096 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2097 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2098 }
2099
2100 if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2101 goto out;
2102
2103 /* Insert 802.1p priority into VLAN header */
2104 if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2105 (skb->priority != TC_PRIO_CONTROL)) {
2106 tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2107 tx_flags |= (skb->priority & 0x7) <<
2108 I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2109 if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2110 struct vlan_ethhdr *vhdr;
2111 int rc;
2112
2113 rc = skb_cow_head(skb, 0);
2114 if (rc < 0)
2115 return rc;
2116 vhdr = (struct vlan_ethhdr *)skb->data;
2117 vhdr->h_vlan_TCI = htons(tx_flags >>
2118 I40E_TX_FLAGS_VLAN_SHIFT);
2119 } else {
2120 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2121 }
2122 }
2123
2124 out:
2125 *flags = tx_flags;
2126 return 0;
2127 }
2128
2129 /**
2130 * i40e_tso - set up the tso context descriptor
2131 * @tx_ring: ptr to the ring to send
2132 * @skb: ptr to the skb we're sending
2133 * @hdr_len: ptr to the size of the packet header
2134 * @cd_tunneling: ptr to context descriptor bits
2135 *
2136 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2137 **/
2138 static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
2139 u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
2140 u32 *cd_tunneling)
2141 {
2142 u32 cd_cmd, cd_tso_len, cd_mss;
2143 struct ipv6hdr *ipv6h;
2144 struct tcphdr *tcph;
2145 struct iphdr *iph;
2146 u32 l4len;
2147 int err;
2148
2149 if (!skb_is_gso(skb))
2150 return 0;
2151
2152 err = skb_cow_head(skb, 0);
2153 if (err < 0)
2154 return err;
2155
2156 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
2157 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
2158
2159 if (iph->version == 4) {
2160 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2161 iph->tot_len = 0;
2162 iph->check = 0;
2163 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
2164 0, IPPROTO_TCP, 0);
2165 } else if (ipv6h->version == 6) {
2166 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
2167 ipv6h->payload_len = 0;
2168 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
2169 0, IPPROTO_TCP, 0);
2170 }
2171
2172 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
2173 *hdr_len = (skb->encapsulation
2174 ? (skb_inner_transport_header(skb) - skb->data)
2175 : skb_transport_offset(skb)) + l4len;
2176
2177 /* find the field values */
2178 cd_cmd = I40E_TX_CTX_DESC_TSO;
2179 cd_tso_len = skb->len - *hdr_len;
2180 cd_mss = skb_shinfo(skb)->gso_size;
2181 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2182 ((u64)cd_tso_len <<
2183 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2184 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2185 return 1;
2186 }
2187
2188 /**
2189 * i40e_tsyn - set up the tsyn context descriptor
2190 * @tx_ring: ptr to the ring to send
2191 * @skb: ptr to the skb we're sending
2192 * @tx_flags: the collected send information
2193 *
2194 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2195 **/
2196 static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2197 u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2198 {
2199 struct i40e_pf *pf;
2200
2201 if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2202 return 0;
2203
2204 /* Tx timestamps cannot be sampled when doing TSO */
2205 if (tx_flags & I40E_TX_FLAGS_TSO)
2206 return 0;
2207
2208 /* only timestamp the outbound packet if the user has requested it and
2209 * we are not already transmitting a packet to be timestamped
2210 */
2211 pf = i40e_netdev_to_pf(tx_ring->netdev);
2212 if (!(pf->flags & I40E_FLAG_PTP))
2213 return 0;
2214
2215 if (pf->ptp_tx &&
2216 !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, &pf->state)) {
2217 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2218 pf->ptp_tx_skb = skb_get(skb);
2219 } else {
2220 return 0;
2221 }
2222
2223 *cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
2224 I40E_TXD_CTX_QW1_CMD_SHIFT;
2225
2226 return 1;
2227 }
2228
2229 /**
2230 * i40e_tx_enable_csum - Enable Tx checksum offloads
2231 * @skb: send buffer
2232 * @tx_flags: pointer to Tx flags currently set
2233 * @td_cmd: Tx descriptor command bits to set
2234 * @td_offset: Tx descriptor header offsets to set
2235 * @cd_tunneling: ptr to context desc bits
2236 **/
2237 static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
2238 u32 *td_cmd, u32 *td_offset,
2239 struct i40e_ring *tx_ring,
2240 u32 *cd_tunneling)
2241 {
2242 struct ipv6hdr *this_ipv6_hdr;
2243 unsigned int this_tcp_hdrlen;
2244 struct iphdr *this_ip_hdr;
2245 u32 network_hdr_len;
2246 u8 l4_hdr = 0;
2247 u32 l4_tunnel = 0;
2248
2249 if (skb->encapsulation) {
2250 switch (ip_hdr(skb)->protocol) {
2251 case IPPROTO_UDP:
2252 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
2253 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
2254 break;
2255 default:
2256 return;
2257 }
2258 network_hdr_len = skb_inner_network_header_len(skb);
2259 this_ip_hdr = inner_ip_hdr(skb);
2260 this_ipv6_hdr = inner_ipv6_hdr(skb);
2261 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
2262
2263 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2264 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2265 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
2266 ip_hdr(skb)->check = 0;
2267 } else {
2268 *cd_tunneling |=
2269 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
2270 }
2271 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2272 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
2273 if (*tx_flags & I40E_TX_FLAGS_TSO)
2274 ip_hdr(skb)->check = 0;
2275 }
2276
2277 /* Now set the ctx descriptor fields */
2278 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
2279 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
2280 l4_tunnel |
2281 ((skb_inner_network_offset(skb) -
2282 skb_transport_offset(skb)) >> 1) <<
2283 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
2284 if (this_ip_hdr->version == 6) {
2285 *tx_flags &= ~I40E_TX_FLAGS_IPV4;
2286 *tx_flags |= I40E_TX_FLAGS_IPV6;
2287 }
2288 } else {
2289 network_hdr_len = skb_network_header_len(skb);
2290 this_ip_hdr = ip_hdr(skb);
2291 this_ipv6_hdr = ipv6_hdr(skb);
2292 this_tcp_hdrlen = tcp_hdrlen(skb);
2293 }
2294
2295 /* Enable IP checksum offloads */
2296 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
2297 l4_hdr = this_ip_hdr->protocol;
2298 /* the stack computes the IP header already, the only time we
2299 * need the hardware to recompute it is in the case of TSO.
2300 */
2301 if (*tx_flags & I40E_TX_FLAGS_TSO) {
2302 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
2303 this_ip_hdr->check = 0;
2304 } else {
2305 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
2306 }
2307 /* Now set the td_offset for IP header length */
2308 *td_offset = (network_hdr_len >> 2) <<
2309 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2310 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
2311 l4_hdr = this_ipv6_hdr->nexthdr;
2312 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
2313 /* Now set the td_offset for IP header length */
2314 *td_offset = (network_hdr_len >> 2) <<
2315 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
2316 }
2317 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
2318 *td_offset |= (skb_network_offset(skb) >> 1) <<
2319 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
2320
2321 /* Enable L4 checksum offloads */
2322 switch (l4_hdr) {
2323 case IPPROTO_TCP:
2324 /* enable checksum offloads */
2325 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
2326 *td_offset |= (this_tcp_hdrlen >> 2) <<
2327 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2328 break;
2329 case IPPROTO_SCTP:
2330 /* enable SCTP checksum offload */
2331 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
2332 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
2333 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2334 break;
2335 case IPPROTO_UDP:
2336 /* enable UDP checksum offload */
2337 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
2338 *td_offset |= (sizeof(struct udphdr) >> 2) <<
2339 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
2340 break;
2341 default:
2342 break;
2343 }
2344 }
2345
2346 /**
2347 * i40e_create_tx_ctx Build the Tx context descriptor
2348 * @tx_ring: ring to create the descriptor on
2349 * @cd_type_cmd_tso_mss: Quad Word 1
2350 * @cd_tunneling: Quad Word 0 - bits 0-31
2351 * @cd_l2tag2: Quad Word 0 - bits 32-63
2352 **/
2353 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
2354 const u64 cd_type_cmd_tso_mss,
2355 const u32 cd_tunneling, const u32 cd_l2tag2)
2356 {
2357 struct i40e_tx_context_desc *context_desc;
2358 int i = tx_ring->next_to_use;
2359
2360 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
2361 !cd_tunneling && !cd_l2tag2)
2362 return;
2363
2364 /* grab the next descriptor */
2365 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
2366
2367 i++;
2368 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2369
2370 /* cpu_to_le32 and assign to struct fields */
2371 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
2372 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
2373 context_desc->rsvd = cpu_to_le16(0);
2374 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
2375 }
2376
2377 /**
2378 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
2379 * @tx_ring: the ring to be checked
2380 * @size: the size buffer we want to assure is available
2381 *
2382 * Returns -EBUSY if a stop is needed, else 0
2383 **/
2384 static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2385 {
2386 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2387 /* Memory barrier before checking head and tail */
2388 smp_mb();
2389
2390 /* Check again in a case another CPU has just made room available. */
2391 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2392 return -EBUSY;
2393
2394 /* A reprieve! - use start_queue because it doesn't call schedule */
2395 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2396 ++tx_ring->tx_stats.restart_queue;
2397 return 0;
2398 }
2399
2400 /**
2401 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
2402 * @tx_ring: the ring to be checked
2403 * @size: the size buffer we want to assure is available
2404 *
2405 * Returns 0 if stop is not needed
2406 **/
2407 #ifdef I40E_FCOE
2408 int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2409 #else
2410 static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2411 #endif
2412 {
2413 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
2414 return 0;
2415 return __i40e_maybe_stop_tx(tx_ring, size);
2416 }
2417
2418 /**
2419 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
2420 * @skb: send buffer
2421 * @tx_flags: collected send information
2422 * @hdr_len: size of the packet header
2423 *
2424 * Note: Our HW can't scatter-gather more than 8 fragments to build
2425 * a packet on the wire and so we need to figure out the cases where we
2426 * need to linearize the skb.
2427 **/
2428 static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags,
2429 const u8 hdr_len)
2430 {
2431 struct skb_frag_struct *frag;
2432 bool linearize = false;
2433 unsigned int size = 0;
2434 u16 num_frags;
2435 u16 gso_segs;
2436
2437 num_frags = skb_shinfo(skb)->nr_frags;
2438 gso_segs = skb_shinfo(skb)->gso_segs;
2439
2440 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
2441 u16 j = 1;
2442
2443 if (num_frags < (I40E_MAX_BUFFER_TXD))
2444 goto linearize_chk_done;
2445 /* try the simple math, if we have too many frags per segment */
2446 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
2447 I40E_MAX_BUFFER_TXD) {
2448 linearize = true;
2449 goto linearize_chk_done;
2450 }
2451 frag = &skb_shinfo(skb)->frags[0];
2452 size = hdr_len;
2453 /* we might still have more fragments per segment */
2454 do {
2455 size += skb_frag_size(frag);
2456 frag++; j++;
2457 if (j == I40E_MAX_BUFFER_TXD) {
2458 if (size < skb_shinfo(skb)->gso_size) {
2459 linearize = true;
2460 break;
2461 }
2462 j = 1;
2463 size -= skb_shinfo(skb)->gso_size;
2464 if (size)
2465 j++;
2466 size += hdr_len;
2467 }
2468 num_frags--;
2469 } while (num_frags);
2470 } else {
2471 if (num_frags >= I40E_MAX_BUFFER_TXD)
2472 linearize = true;
2473 }
2474
2475 linearize_chk_done:
2476 return linearize;
2477 }
2478
2479 /**
2480 * i40e_tx_map - Build the Tx descriptor
2481 * @tx_ring: ring to send buffer on
2482 * @skb: send buffer
2483 * @first: first buffer info buffer to use
2484 * @tx_flags: collected send information
2485 * @hdr_len: size of the packet header
2486 * @td_cmd: the command field in the descriptor
2487 * @td_offset: offset for checksum or crc
2488 **/
2489 #ifdef I40E_FCOE
2490 void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2491 struct i40e_tx_buffer *first, u32 tx_flags,
2492 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2493 #else
2494 static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2495 struct i40e_tx_buffer *first, u32 tx_flags,
2496 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2497 #endif
2498 {
2499 unsigned int data_len = skb->data_len;
2500 unsigned int size = skb_headlen(skb);
2501 struct skb_frag_struct *frag;
2502 struct i40e_tx_buffer *tx_bi;
2503 struct i40e_tx_desc *tx_desc;
2504 u16 i = tx_ring->next_to_use;
2505 u32 td_tag = 0;
2506 dma_addr_t dma;
2507 u16 gso_segs;
2508
2509 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2510 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2511 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2512 I40E_TX_FLAGS_VLAN_SHIFT;
2513 }
2514
2515 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
2516 gso_segs = skb_shinfo(skb)->gso_segs;
2517 else
2518 gso_segs = 1;
2519
2520 /* multiply data chunks by size of headers */
2521 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
2522 first->gso_segs = gso_segs;
2523 first->skb = skb;
2524 first->tx_flags = tx_flags;
2525
2526 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2527
2528 tx_desc = I40E_TX_DESC(tx_ring, i);
2529 tx_bi = first;
2530
2531 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2532 if (dma_mapping_error(tx_ring->dev, dma))
2533 goto dma_error;
2534
2535 /* record length, and DMA address */
2536 dma_unmap_len_set(tx_bi, len, size);
2537 dma_unmap_addr_set(tx_bi, dma, dma);
2538
2539 tx_desc->buffer_addr = cpu_to_le64(dma);
2540
2541 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2542 tx_desc->cmd_type_offset_bsz =
2543 build_ctob(td_cmd, td_offset,
2544 I40E_MAX_DATA_PER_TXD, td_tag);
2545
2546 tx_desc++;
2547 i++;
2548 if (i == tx_ring->count) {
2549 tx_desc = I40E_TX_DESC(tx_ring, 0);
2550 i = 0;
2551 }
2552
2553 dma += I40E_MAX_DATA_PER_TXD;
2554 size -= I40E_MAX_DATA_PER_TXD;
2555
2556 tx_desc->buffer_addr = cpu_to_le64(dma);
2557 }
2558
2559 if (likely(!data_len))
2560 break;
2561
2562 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2563 size, td_tag);
2564
2565 tx_desc++;
2566 i++;
2567 if (i == tx_ring->count) {
2568 tx_desc = I40E_TX_DESC(tx_ring, 0);
2569 i = 0;
2570 }
2571
2572 size = skb_frag_size(frag);
2573 data_len -= size;
2574
2575 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2576 DMA_TO_DEVICE);
2577
2578 tx_bi = &tx_ring->tx_bi[i];
2579 }
2580
2581 /* Place RS bit on last descriptor of any packet that spans across the
2582 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
2583 */
2584 if (((i & WB_STRIDE) != WB_STRIDE) &&
2585 (first <= &tx_ring->tx_bi[i]) &&
2586 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
2587 tx_desc->cmd_type_offset_bsz =
2588 build_ctob(td_cmd, td_offset, size, td_tag) |
2589 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
2590 I40E_TXD_QW1_CMD_SHIFT);
2591 } else {
2592 tx_desc->cmd_type_offset_bsz =
2593 build_ctob(td_cmd, td_offset, size, td_tag) |
2594 cpu_to_le64((u64)I40E_TXD_CMD <<
2595 I40E_TXD_QW1_CMD_SHIFT);
2596 }
2597
2598 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
2599 tx_ring->queue_index),
2600 first->bytecount);
2601
2602 /* set the timestamp */
2603 first->time_stamp = jiffies;
2604
2605 /* Force memory writes to complete before letting h/w
2606 * know there are new descriptors to fetch. (Only
2607 * applicable for weak-ordered memory model archs,
2608 * such as IA-64).
2609 */
2610 wmb();
2611
2612 /* set next_to_watch value indicating a packet is present */
2613 first->next_to_watch = tx_desc;
2614
2615 i++;
2616 if (i == tx_ring->count)
2617 i = 0;
2618
2619 tx_ring->next_to_use = i;
2620
2621 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2622 /* notify HW of packet */
2623 if (!skb->xmit_more ||
2624 netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
2625 tx_ring->queue_index)))
2626 writel(i, tx_ring->tail);
2627
2628 return;
2629
2630 dma_error:
2631 dev_info(tx_ring->dev, "TX DMA map failed\n");
2632
2633 /* clear dma mappings for failed tx_bi map */
2634 for (;;) {
2635 tx_bi = &tx_ring->tx_bi[i];
2636 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2637 if (tx_bi == first)
2638 break;
2639 if (i == 0)
2640 i = tx_ring->count;
2641 i--;
2642 }
2643
2644 tx_ring->next_to_use = i;
2645 }
2646
2647 /**
2648 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
2649 * @skb: send buffer
2650 * @tx_ring: ring to send buffer on
2651 *
2652 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
2653 * there is not enough descriptors available in this ring since we need at least
2654 * one descriptor.
2655 **/
2656 #ifdef I40E_FCOE
2657 int i40e_xmit_descriptor_count(struct sk_buff *skb,
2658 struct i40e_ring *tx_ring)
2659 #else
2660 static int i40e_xmit_descriptor_count(struct sk_buff *skb,
2661 struct i40e_ring *tx_ring)
2662 #endif
2663 {
2664 unsigned int f;
2665 int count = 0;
2666
2667 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2668 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2669 * + 4 desc gap to avoid the cache line where head is,
2670 * + 1 desc for context descriptor,
2671 * otherwise try next time
2672 */
2673 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
2674 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
2675
2676 count += TXD_USE_COUNT(skb_headlen(skb));
2677 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2678 tx_ring->tx_stats.tx_busy++;
2679 return 0;
2680 }
2681 return count;
2682 }
2683
2684 /**
2685 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2686 * @skb: send buffer
2687 * @tx_ring: ring to send buffer on
2688 *
2689 * Returns NETDEV_TX_OK if sent, else an error code
2690 **/
2691 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2692 struct i40e_ring *tx_ring)
2693 {
2694 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2695 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2696 struct i40e_tx_buffer *first;
2697 u32 td_offset = 0;
2698 u32 tx_flags = 0;
2699 __be16 protocol;
2700 u32 td_cmd = 0;
2701 u8 hdr_len = 0;
2702 int tsyn;
2703 int tso;
2704 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
2705 return NETDEV_TX_BUSY;
2706
2707 /* prepare the xmit flags */
2708 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2709 goto out_drop;
2710
2711 /* obtain protocol of skb */
2712 protocol = vlan_get_protocol(skb);
2713
2714 /* record the location of the first descriptor for this packet */
2715 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2716
2717 /* setup IPv4/IPv6 offloads */
2718 if (protocol == htons(ETH_P_IP))
2719 tx_flags |= I40E_TX_FLAGS_IPV4;
2720 else if (protocol == htons(ETH_P_IPV6))
2721 tx_flags |= I40E_TX_FLAGS_IPV6;
2722
2723 tso = i40e_tso(tx_ring, skb, &hdr_len,
2724 &cd_type_cmd_tso_mss, &cd_tunneling);
2725
2726 if (tso < 0)
2727 goto out_drop;
2728 else if (tso)
2729 tx_flags |= I40E_TX_FLAGS_TSO;
2730
2731 tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
2732
2733 if (tsyn)
2734 tx_flags |= I40E_TX_FLAGS_TSYN;
2735
2736 if (i40e_chk_linearize(skb, tx_flags, hdr_len))
2737 if (skb_linearize(skb))
2738 goto out_drop;
2739
2740 skb_tx_timestamp(skb);
2741
2742 /* always enable CRC insertion offload */
2743 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2744
2745 /* Always offload the checksum, since it's in the data descriptor */
2746 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2747 tx_flags |= I40E_TX_FLAGS_CSUM;
2748
2749 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2750 tx_ring, &cd_tunneling);
2751 }
2752
2753 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2754 cd_tunneling, cd_l2tag2);
2755
2756 /* Add Flow Director ATR if it's enabled.
2757 *
2758 * NOTE: this must always be directly before the data descriptor.
2759 */
2760 i40e_atr(tx_ring, skb, tx_flags, protocol);
2761
2762 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2763 td_cmd, td_offset);
2764
2765 return NETDEV_TX_OK;
2766
2767 out_drop:
2768 dev_kfree_skb_any(skb);
2769 return NETDEV_TX_OK;
2770 }
2771
2772 /**
2773 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2774 * @skb: send buffer
2775 * @netdev: network interface device structure
2776 *
2777 * Returns NETDEV_TX_OK if sent, else an error code
2778 **/
2779 netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2780 {
2781 struct i40e_netdev_priv *np = netdev_priv(netdev);
2782 struct i40e_vsi *vsi = np->vsi;
2783 struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
2784
2785 /* hardware can't handle really short frames, hardware padding works
2786 * beyond this point
2787 */
2788 if (skb_put_padto(skb, I40E_MIN_TX_LEN))
2789 return NETDEV_TX_OK;
2790
2791 return i40e_xmit_frame_ring(skb, tx_ring);
2792 }