]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/i40evf/i40e_txrx.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
1 /*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
4 * Copyright(c) 2013 - 2016 Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27 #include <linux/prefetch.h>
28 #include <net/busy_poll.h>
29
30 #include "i40evf.h"
31 #include "i40e_trace.h"
32 #include "i40e_prototype.h"
33
34 static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
35 u32 td_tag)
36 {
37 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
38 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
39 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
40 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
41 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
42 }
43
44 #define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
45
46 /**
47 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
48 * @ring: the ring that owns the buffer
49 * @tx_buffer: the buffer to free
50 **/
51 static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
52 struct i40e_tx_buffer *tx_buffer)
53 {
54 if (tx_buffer->skb) {
55 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
56 kfree(tx_buffer->raw_buf);
57 else
58 dev_kfree_skb_any(tx_buffer->skb);
59 if (dma_unmap_len(tx_buffer, len))
60 dma_unmap_single(ring->dev,
61 dma_unmap_addr(tx_buffer, dma),
62 dma_unmap_len(tx_buffer, len),
63 DMA_TO_DEVICE);
64 } else if (dma_unmap_len(tx_buffer, len)) {
65 dma_unmap_page(ring->dev,
66 dma_unmap_addr(tx_buffer, dma),
67 dma_unmap_len(tx_buffer, len),
68 DMA_TO_DEVICE);
69 }
70
71 tx_buffer->next_to_watch = NULL;
72 tx_buffer->skb = NULL;
73 dma_unmap_len_set(tx_buffer, len, 0);
74 /* tx_buffer must be completely set up in the transmit path */
75 }
76
77 /**
78 * i40evf_clean_tx_ring - Free any empty Tx buffers
79 * @tx_ring: ring to be cleaned
80 **/
81 void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
82 {
83 unsigned long bi_size;
84 u16 i;
85
86 /* ring already cleared, nothing to do */
87 if (!tx_ring->tx_bi)
88 return;
89
90 /* Free all the Tx ring sk_buffs */
91 for (i = 0; i < tx_ring->count; i++)
92 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
93
94 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
95 memset(tx_ring->tx_bi, 0, bi_size);
96
97 /* Zero out the descriptor ring */
98 memset(tx_ring->desc, 0, tx_ring->size);
99
100 tx_ring->next_to_use = 0;
101 tx_ring->next_to_clean = 0;
102
103 if (!tx_ring->netdev)
104 return;
105
106 /* cleanup Tx queue statistics */
107 netdev_tx_reset_queue(txring_txq(tx_ring));
108 }
109
110 /**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116 void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117 {
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127 }
128
129 /**
130 * i40evf_get_tx_pending - how many Tx descriptors not processed
131 * @tx_ring: the ring of descriptors
132 * @in_sw: is tx_pending being checked in SW or HW
133 *
134 * Since there is no access to the ring head register
135 * in XL710, we need to use our local copies
136 **/
137 u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
138 {
139 u32 head, tail;
140
141 head = ring->next_to_clean;
142 tail = readl(ring->tail);
143
144 if (head != tail)
145 return (head < tail) ?
146 tail - head : (tail + ring->count - head);
147
148 return 0;
149 }
150
151 #define WB_STRIDE 4
152
153 /**
154 * i40e_clean_tx_irq - Reclaim resources after transmit completes
155 * @vsi: the VSI we care about
156 * @tx_ring: Tx ring to clean
157 * @napi_budget: Used to determine if we are in netpoll
158 *
159 * Returns true if there's any budget left (e.g. the clean is finished)
160 **/
161 static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
162 struct i40e_ring *tx_ring, int napi_budget)
163 {
164 u16 i = tx_ring->next_to_clean;
165 struct i40e_tx_buffer *tx_buf;
166 struct i40e_tx_desc *tx_desc;
167 unsigned int total_bytes = 0, total_packets = 0;
168 unsigned int budget = vsi->work_limit;
169
170 tx_buf = &tx_ring->tx_bi[i];
171 tx_desc = I40E_TX_DESC(tx_ring, i);
172 i -= tx_ring->count;
173
174 do {
175 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
176
177 /* if next_to_watch is not set then there is no work pending */
178 if (!eop_desc)
179 break;
180
181 /* prevent any other reads prior to eop_desc */
182 read_barrier_depends();
183
184 i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
185 /* if the descriptor isn't done, no work yet to do */
186 if (!(eop_desc->cmd_type_offset_bsz &
187 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
188 break;
189
190 /* clear next_to_watch to prevent false hangs */
191 tx_buf->next_to_watch = NULL;
192
193 /* update the statistics for this packet */
194 total_bytes += tx_buf->bytecount;
195 total_packets += tx_buf->gso_segs;
196
197 /* free the skb */
198 napi_consume_skb(tx_buf->skb, napi_budget);
199
200 /* unmap skb header data */
201 dma_unmap_single(tx_ring->dev,
202 dma_unmap_addr(tx_buf, dma),
203 dma_unmap_len(tx_buf, len),
204 DMA_TO_DEVICE);
205
206 /* clear tx_buffer data */
207 tx_buf->skb = NULL;
208 dma_unmap_len_set(tx_buf, len, 0);
209
210 /* unmap remaining buffers */
211 while (tx_desc != eop_desc) {
212 i40e_trace(clean_tx_irq_unmap,
213 tx_ring, tx_desc, tx_buf);
214
215 tx_buf++;
216 tx_desc++;
217 i++;
218 if (unlikely(!i)) {
219 i -= tx_ring->count;
220 tx_buf = tx_ring->tx_bi;
221 tx_desc = I40E_TX_DESC(tx_ring, 0);
222 }
223
224 /* unmap any remaining paged data */
225 if (dma_unmap_len(tx_buf, len)) {
226 dma_unmap_page(tx_ring->dev,
227 dma_unmap_addr(tx_buf, dma),
228 dma_unmap_len(tx_buf, len),
229 DMA_TO_DEVICE);
230 dma_unmap_len_set(tx_buf, len, 0);
231 }
232 }
233
234 /* move us one more past the eop_desc for start of next pkt */
235 tx_buf++;
236 tx_desc++;
237 i++;
238 if (unlikely(!i)) {
239 i -= tx_ring->count;
240 tx_buf = tx_ring->tx_bi;
241 tx_desc = I40E_TX_DESC(tx_ring, 0);
242 }
243
244 prefetch(tx_desc);
245
246 /* update budget accounting */
247 budget--;
248 } while (likely(budget));
249
250 i += tx_ring->count;
251 tx_ring->next_to_clean = i;
252 u64_stats_update_begin(&tx_ring->syncp);
253 tx_ring->stats.bytes += total_bytes;
254 tx_ring->stats.packets += total_packets;
255 u64_stats_update_end(&tx_ring->syncp);
256 tx_ring->q_vector->tx.total_bytes += total_bytes;
257 tx_ring->q_vector->tx.total_packets += total_packets;
258
259 if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
260 /* check to see if there are < 4 descriptors
261 * waiting to be written back, then kick the hardware to force
262 * them to be written back in case we stay in NAPI.
263 * In this mode on X722 we do not enable Interrupt.
264 */
265 unsigned int j = i40evf_get_tx_pending(tx_ring, false);
266
267 if (budget &&
268 ((j / WB_STRIDE) == 0) && (j > 0) &&
269 !test_bit(__I40E_VSI_DOWN, vsi->state) &&
270 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
271 tx_ring->arm_wb = true;
272 }
273
274 /* notify netdev of completed buffers */
275 netdev_tx_completed_queue(txring_txq(tx_ring),
276 total_packets, total_bytes);
277
278 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
279 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
280 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
281 /* Make sure that anybody stopping the queue after this
282 * sees the new next_to_clean.
283 */
284 smp_mb();
285 if (__netif_subqueue_stopped(tx_ring->netdev,
286 tx_ring->queue_index) &&
287 !test_bit(__I40E_VSI_DOWN, vsi->state)) {
288 netif_wake_subqueue(tx_ring->netdev,
289 tx_ring->queue_index);
290 ++tx_ring->tx_stats.restart_queue;
291 }
292 }
293
294 return !!budget;
295 }
296
297 /**
298 * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
299 * @vsi: the VSI we care about
300 * @q_vector: the vector on which to enable writeback
301 *
302 **/
303 static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
304 struct i40e_q_vector *q_vector)
305 {
306 u16 flags = q_vector->tx.ring[0].flags;
307 u32 val;
308
309 if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
310 return;
311
312 if (q_vector->arm_wb_state)
313 return;
314
315 val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
316 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
317
318 wr32(&vsi->back->hw,
319 I40E_VFINT_DYN_CTLN1(q_vector->v_idx +
320 vsi->base_vector - 1), val);
321 q_vector->arm_wb_state = true;
322 }
323
324 /**
325 * i40evf_force_wb - Issue SW Interrupt so HW does a wb
326 * @vsi: the VSI we care about
327 * @q_vector: the vector on which to force writeback
328 *
329 **/
330 void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
331 {
332 u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
333 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
334 I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
335 I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
336 /* allow 00 to be written to the index */;
337
338 wr32(&vsi->back->hw,
339 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
340 val);
341 }
342
343 /**
344 * i40e_set_new_dynamic_itr - Find new ITR level
345 * @rc: structure containing ring performance data
346 *
347 * Returns true if ITR changed, false if not
348 *
349 * Stores a new ITR value based on packets and byte counts during
350 * the last interrupt. The advantage of per interrupt computation
351 * is faster updates and more accurate ITR for the current traffic
352 * pattern. Constants in this function were computed based on
353 * theoretical maximum wire speed and thresholds were set based on
354 * testing data as well as attempting to minimize response time
355 * while increasing bulk throughput.
356 **/
357 static bool i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
358 {
359 enum i40e_latency_range new_latency_range = rc->latency_range;
360 struct i40e_q_vector *qv = rc->ring->q_vector;
361 u32 new_itr = rc->itr;
362 int bytes_per_int;
363 int usecs;
364
365 if (rc->total_packets == 0 || !rc->itr)
366 return false;
367
368 /* simple throttlerate management
369 * 0-10MB/s lowest (50000 ints/s)
370 * 10-20MB/s low (20000 ints/s)
371 * 20-1249MB/s bulk (18000 ints/s)
372 * > 40000 Rx packets per second (8000 ints/s)
373 *
374 * The math works out because the divisor is in 10^(-6) which
375 * turns the bytes/us input value into MB/s values, but
376 * make sure to use usecs, as the register values written
377 * are in 2 usec increments in the ITR registers, and make sure
378 * to use the smoothed values that the countdown timer gives us.
379 */
380 usecs = (rc->itr << 1) * ITR_COUNTDOWN_START;
381 bytes_per_int = rc->total_bytes / usecs;
382
383 switch (new_latency_range) {
384 case I40E_LOWEST_LATENCY:
385 if (bytes_per_int > 10)
386 new_latency_range = I40E_LOW_LATENCY;
387 break;
388 case I40E_LOW_LATENCY:
389 if (bytes_per_int > 20)
390 new_latency_range = I40E_BULK_LATENCY;
391 else if (bytes_per_int <= 10)
392 new_latency_range = I40E_LOWEST_LATENCY;
393 break;
394 case I40E_BULK_LATENCY:
395 case I40E_ULTRA_LATENCY:
396 default:
397 if (bytes_per_int <= 20)
398 new_latency_range = I40E_LOW_LATENCY;
399 break;
400 }
401
402 /* this is to adjust RX more aggressively when streaming small
403 * packets. The value of 40000 was picked as it is just beyond
404 * what the hardware can receive per second if in low latency
405 * mode.
406 */
407 #define RX_ULTRA_PACKET_RATE 40000
408
409 if ((((rc->total_packets * 1000000) / usecs) > RX_ULTRA_PACKET_RATE) &&
410 (&qv->rx == rc))
411 new_latency_range = I40E_ULTRA_LATENCY;
412
413 rc->latency_range = new_latency_range;
414
415 switch (new_latency_range) {
416 case I40E_LOWEST_LATENCY:
417 new_itr = I40E_ITR_50K;
418 break;
419 case I40E_LOW_LATENCY:
420 new_itr = I40E_ITR_20K;
421 break;
422 case I40E_BULK_LATENCY:
423 new_itr = I40E_ITR_18K;
424 break;
425 case I40E_ULTRA_LATENCY:
426 new_itr = I40E_ITR_8K;
427 break;
428 default:
429 break;
430 }
431
432 rc->total_bytes = 0;
433 rc->total_packets = 0;
434
435 if (new_itr != rc->itr) {
436 rc->itr = new_itr;
437 return true;
438 }
439
440 return false;
441 }
442
443 /**
444 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
445 * @tx_ring: the tx ring to set up
446 *
447 * Return 0 on success, negative on error
448 **/
449 int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
450 {
451 struct device *dev = tx_ring->dev;
452 int bi_size;
453
454 if (!dev)
455 return -ENOMEM;
456
457 /* warn if we are about to overwrite the pointer */
458 WARN_ON(tx_ring->tx_bi);
459 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
460 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
461 if (!tx_ring->tx_bi)
462 goto err;
463
464 /* round up to nearest 4K */
465 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
466 tx_ring->size = ALIGN(tx_ring->size, 4096);
467 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
468 &tx_ring->dma, GFP_KERNEL);
469 if (!tx_ring->desc) {
470 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
471 tx_ring->size);
472 goto err;
473 }
474
475 tx_ring->next_to_use = 0;
476 tx_ring->next_to_clean = 0;
477 return 0;
478
479 err:
480 kfree(tx_ring->tx_bi);
481 tx_ring->tx_bi = NULL;
482 return -ENOMEM;
483 }
484
485 /**
486 * i40evf_clean_rx_ring - Free Rx buffers
487 * @rx_ring: ring to be cleaned
488 **/
489 void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
490 {
491 unsigned long bi_size;
492 u16 i;
493
494 /* ring already cleared, nothing to do */
495 if (!rx_ring->rx_bi)
496 return;
497
498 if (rx_ring->skb) {
499 dev_kfree_skb(rx_ring->skb);
500 rx_ring->skb = NULL;
501 }
502
503 /* Free all the Rx ring sk_buffs */
504 for (i = 0; i < rx_ring->count; i++) {
505 struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
506
507 if (!rx_bi->page)
508 continue;
509
510 /* Invalidate cache lines that may have been written to by
511 * device so that we avoid corrupting memory.
512 */
513 dma_sync_single_range_for_cpu(rx_ring->dev,
514 rx_bi->dma,
515 rx_bi->page_offset,
516 rx_ring->rx_buf_len,
517 DMA_FROM_DEVICE);
518
519 /* free resources associated with mapping */
520 dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
521 i40e_rx_pg_size(rx_ring),
522 DMA_FROM_DEVICE,
523 I40E_RX_DMA_ATTR);
524
525 __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
526
527 rx_bi->page = NULL;
528 rx_bi->page_offset = 0;
529 }
530
531 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
532 memset(rx_ring->rx_bi, 0, bi_size);
533
534 /* Zero out the descriptor ring */
535 memset(rx_ring->desc, 0, rx_ring->size);
536
537 rx_ring->next_to_alloc = 0;
538 rx_ring->next_to_clean = 0;
539 rx_ring->next_to_use = 0;
540 }
541
542 /**
543 * i40evf_free_rx_resources - Free Rx resources
544 * @rx_ring: ring to clean the resources from
545 *
546 * Free all receive software resources
547 **/
548 void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
549 {
550 i40evf_clean_rx_ring(rx_ring);
551 kfree(rx_ring->rx_bi);
552 rx_ring->rx_bi = NULL;
553
554 if (rx_ring->desc) {
555 dma_free_coherent(rx_ring->dev, rx_ring->size,
556 rx_ring->desc, rx_ring->dma);
557 rx_ring->desc = NULL;
558 }
559 }
560
561 /**
562 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
563 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
564 *
565 * Returns 0 on success, negative on failure
566 **/
567 int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
568 {
569 struct device *dev = rx_ring->dev;
570 int bi_size;
571
572 /* warn if we are about to overwrite the pointer */
573 WARN_ON(rx_ring->rx_bi);
574 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
575 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
576 if (!rx_ring->rx_bi)
577 goto err;
578
579 u64_stats_init(&rx_ring->syncp);
580
581 /* Round up to nearest 4K */
582 rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
583 rx_ring->size = ALIGN(rx_ring->size, 4096);
584 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
585 &rx_ring->dma, GFP_KERNEL);
586
587 if (!rx_ring->desc) {
588 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
589 rx_ring->size);
590 goto err;
591 }
592
593 rx_ring->next_to_alloc = 0;
594 rx_ring->next_to_clean = 0;
595 rx_ring->next_to_use = 0;
596
597 return 0;
598 err:
599 kfree(rx_ring->rx_bi);
600 rx_ring->rx_bi = NULL;
601 return -ENOMEM;
602 }
603
604 /**
605 * i40e_release_rx_desc - Store the new tail and head values
606 * @rx_ring: ring to bump
607 * @val: new head index
608 **/
609 static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
610 {
611 rx_ring->next_to_use = val;
612
613 /* update next to alloc since we have filled the ring */
614 rx_ring->next_to_alloc = val;
615
616 /* Force memory writes to complete before letting h/w
617 * know there are new descriptors to fetch. (Only
618 * applicable for weak-ordered memory model archs,
619 * such as IA-64).
620 */
621 wmb();
622 writel(val, rx_ring->tail);
623 }
624
625 /**
626 * i40e_rx_offset - Return expected offset into page to access data
627 * @rx_ring: Ring we are requesting offset of
628 *
629 * Returns the offset value for ring into the data buffer.
630 */
631 static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
632 {
633 return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
634 }
635
636 /**
637 * i40e_alloc_mapped_page - recycle or make a new page
638 * @rx_ring: ring to use
639 * @bi: rx_buffer struct to modify
640 *
641 * Returns true if the page was successfully allocated or
642 * reused.
643 **/
644 static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
645 struct i40e_rx_buffer *bi)
646 {
647 struct page *page = bi->page;
648 dma_addr_t dma;
649
650 /* since we are recycling buffers we should seldom need to alloc */
651 if (likely(page)) {
652 rx_ring->rx_stats.page_reuse_count++;
653 return true;
654 }
655
656 /* alloc new page for storage */
657 page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
658 if (unlikely(!page)) {
659 rx_ring->rx_stats.alloc_page_failed++;
660 return false;
661 }
662
663 /* map page for use */
664 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
665 i40e_rx_pg_size(rx_ring),
666 DMA_FROM_DEVICE,
667 I40E_RX_DMA_ATTR);
668
669 /* if mapping failed free memory back to system since
670 * there isn't much point in holding memory we can't use
671 */
672 if (dma_mapping_error(rx_ring->dev, dma)) {
673 __free_pages(page, i40e_rx_pg_order(rx_ring));
674 rx_ring->rx_stats.alloc_page_failed++;
675 return false;
676 }
677
678 bi->dma = dma;
679 bi->page = page;
680 bi->page_offset = i40e_rx_offset(rx_ring);
681
682 /* initialize pagecnt_bias to 1 representing we fully own page */
683 bi->pagecnt_bias = 1;
684
685 return true;
686 }
687
688 /**
689 * i40e_receive_skb - Send a completed packet up the stack
690 * @rx_ring: rx ring in play
691 * @skb: packet to send up
692 * @vlan_tag: vlan tag for packet
693 **/
694 static void i40e_receive_skb(struct i40e_ring *rx_ring,
695 struct sk_buff *skb, u16 vlan_tag)
696 {
697 struct i40e_q_vector *q_vector = rx_ring->q_vector;
698
699 if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
700 (vlan_tag & VLAN_VID_MASK))
701 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
702
703 napi_gro_receive(&q_vector->napi, skb);
704 }
705
706 /**
707 * i40evf_alloc_rx_buffers - Replace used receive buffers
708 * @rx_ring: ring to place buffers on
709 * @cleaned_count: number of buffers to replace
710 *
711 * Returns false if all allocations were successful, true if any fail
712 **/
713 bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
714 {
715 u16 ntu = rx_ring->next_to_use;
716 union i40e_rx_desc *rx_desc;
717 struct i40e_rx_buffer *bi;
718
719 /* do nothing if no valid netdev defined */
720 if (!rx_ring->netdev || !cleaned_count)
721 return false;
722
723 rx_desc = I40E_RX_DESC(rx_ring, ntu);
724 bi = &rx_ring->rx_bi[ntu];
725
726 do {
727 if (!i40e_alloc_mapped_page(rx_ring, bi))
728 goto no_buffers;
729
730 /* sync the buffer for use by the device */
731 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
732 bi->page_offset,
733 rx_ring->rx_buf_len,
734 DMA_FROM_DEVICE);
735
736 /* Refresh the desc even if buffer_addrs didn't change
737 * because each write-back erases this info.
738 */
739 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
740
741 rx_desc++;
742 bi++;
743 ntu++;
744 if (unlikely(ntu == rx_ring->count)) {
745 rx_desc = I40E_RX_DESC(rx_ring, 0);
746 bi = rx_ring->rx_bi;
747 ntu = 0;
748 }
749
750 /* clear the status bits for the next_to_use descriptor */
751 rx_desc->wb.qword1.status_error_len = 0;
752
753 cleaned_count--;
754 } while (cleaned_count);
755
756 if (rx_ring->next_to_use != ntu)
757 i40e_release_rx_desc(rx_ring, ntu);
758
759 return false;
760
761 no_buffers:
762 if (rx_ring->next_to_use != ntu)
763 i40e_release_rx_desc(rx_ring, ntu);
764
765 /* make sure to come back via polling to try again after
766 * allocation failure
767 */
768 return true;
769 }
770
771 /**
772 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
773 * @vsi: the VSI we care about
774 * @skb: skb currently being received and modified
775 * @rx_desc: the receive descriptor
776 **/
777 static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
778 struct sk_buff *skb,
779 union i40e_rx_desc *rx_desc)
780 {
781 struct i40e_rx_ptype_decoded decoded;
782 u32 rx_error, rx_status;
783 bool ipv4, ipv6;
784 u8 ptype;
785 u64 qword;
786
787 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
788 ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
789 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
790 I40E_RXD_QW1_ERROR_SHIFT;
791 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
792 I40E_RXD_QW1_STATUS_SHIFT;
793 decoded = decode_rx_desc_ptype(ptype);
794
795 skb->ip_summed = CHECKSUM_NONE;
796
797 skb_checksum_none_assert(skb);
798
799 /* Rx csum enabled and ip headers found? */
800 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
801 return;
802
803 /* did the hardware decode the packet and checksum? */
804 if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
805 return;
806
807 /* both known and outer_ip must be set for the below code to work */
808 if (!(decoded.known && decoded.outer_ip))
809 return;
810
811 ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
812 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
813 ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
814 (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
815
816 if (ipv4 &&
817 (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
818 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
819 goto checksum_fail;
820
821 /* likely incorrect csum if alternate IP extension headers found */
822 if (ipv6 &&
823 rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
824 /* don't increment checksum err here, non-fatal err */
825 return;
826
827 /* there was some L4 error, count error and punt packet to the stack */
828 if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
829 goto checksum_fail;
830
831 /* handle packets that were not able to be checksummed due
832 * to arrival speed, in this case the stack can compute
833 * the csum.
834 */
835 if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
836 return;
837
838 /* Only report checksum unnecessary for TCP, UDP, or SCTP */
839 switch (decoded.inner_prot) {
840 case I40E_RX_PTYPE_INNER_PROT_TCP:
841 case I40E_RX_PTYPE_INNER_PROT_UDP:
842 case I40E_RX_PTYPE_INNER_PROT_SCTP:
843 skb->ip_summed = CHECKSUM_UNNECESSARY;
844 /* fall though */
845 default:
846 break;
847 }
848
849 return;
850
851 checksum_fail:
852 vsi->back->hw_csum_rx_error++;
853 }
854
855 /**
856 * i40e_ptype_to_htype - get a hash type
857 * @ptype: the ptype value from the descriptor
858 *
859 * Returns a hash type to be used by skb_set_hash
860 **/
861 static inline int i40e_ptype_to_htype(u8 ptype)
862 {
863 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
864
865 if (!decoded.known)
866 return PKT_HASH_TYPE_NONE;
867
868 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
869 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
870 return PKT_HASH_TYPE_L4;
871 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
872 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
873 return PKT_HASH_TYPE_L3;
874 else
875 return PKT_HASH_TYPE_L2;
876 }
877
878 /**
879 * i40e_rx_hash - set the hash value in the skb
880 * @ring: descriptor ring
881 * @rx_desc: specific descriptor
882 **/
883 static inline void i40e_rx_hash(struct i40e_ring *ring,
884 union i40e_rx_desc *rx_desc,
885 struct sk_buff *skb,
886 u8 rx_ptype)
887 {
888 u32 hash;
889 const __le64 rss_mask =
890 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
891 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
892
893 if (ring->netdev->features & NETIF_F_RXHASH)
894 return;
895
896 if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
897 hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
898 skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
899 }
900 }
901
902 /**
903 * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
904 * @rx_ring: rx descriptor ring packet is being transacted on
905 * @rx_desc: pointer to the EOP Rx descriptor
906 * @skb: pointer to current skb being populated
907 * @rx_ptype: the packet type decoded by hardware
908 *
909 * This function checks the ring, descriptor, and packet information in
910 * order to populate the hash, checksum, VLAN, protocol, and
911 * other fields within the skb.
912 **/
913 static inline
914 void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
915 union i40e_rx_desc *rx_desc, struct sk_buff *skb,
916 u8 rx_ptype)
917 {
918 i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
919
920 i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
921
922 skb_record_rx_queue(skb, rx_ring->queue_index);
923
924 /* modifies the skb - consumes the enet header */
925 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
926 }
927
928 /**
929 * i40e_cleanup_headers - Correct empty headers
930 * @rx_ring: rx descriptor ring packet is being transacted on
931 * @skb: pointer to current skb being fixed
932 *
933 * Also address the case where we are pulling data in on pages only
934 * and as such no data is present in the skb header.
935 *
936 * In addition if skb is not at least 60 bytes we need to pad it so that
937 * it is large enough to qualify as a valid Ethernet frame.
938 *
939 * Returns true if an error was encountered and skb was freed.
940 **/
941 static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
942 {
943 /* if eth_skb_pad returns an error the skb was freed */
944 if (eth_skb_pad(skb))
945 return true;
946
947 return false;
948 }
949
950 /**
951 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
952 * @rx_ring: rx descriptor ring to store buffers on
953 * @old_buff: donor buffer to have page reused
954 *
955 * Synchronizes page for reuse by the adapter
956 **/
957 static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
958 struct i40e_rx_buffer *old_buff)
959 {
960 struct i40e_rx_buffer *new_buff;
961 u16 nta = rx_ring->next_to_alloc;
962
963 new_buff = &rx_ring->rx_bi[nta];
964
965 /* update, and store next to alloc */
966 nta++;
967 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
968
969 /* transfer page from old buffer to new buffer */
970 new_buff->dma = old_buff->dma;
971 new_buff->page = old_buff->page;
972 new_buff->page_offset = old_buff->page_offset;
973 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
974 }
975
976 /**
977 * i40e_page_is_reusable - check if any reuse is possible
978 * @page: page struct to check
979 *
980 * A page is not reusable if it was allocated under low memory
981 * conditions, or it's not in the same NUMA node as this CPU.
982 */
983 static inline bool i40e_page_is_reusable(struct page *page)
984 {
985 return (page_to_nid(page) == numa_mem_id()) &&
986 !page_is_pfmemalloc(page);
987 }
988
989 /**
990 * i40e_can_reuse_rx_page - Determine if this page can be reused by
991 * the adapter for another receive
992 *
993 * @rx_buffer: buffer containing the page
994 *
995 * If page is reusable, rx_buffer->page_offset is adjusted to point to
996 * an unused region in the page.
997 *
998 * For small pages, @truesize will be a constant value, half the size
999 * of the memory at page. We'll attempt to alternate between high and
1000 * low halves of the page, with one half ready for use by the hardware
1001 * and the other half being consumed by the stack. We use the page
1002 * ref count to determine whether the stack has finished consuming the
1003 * portion of this page that was passed up with a previous packet. If
1004 * the page ref count is >1, we'll assume the "other" half page is
1005 * still busy, and this page cannot be reused.
1006 *
1007 * For larger pages, @truesize will be the actual space used by the
1008 * received packet (adjusted upward to an even multiple of the cache
1009 * line size). This will advance through the page by the amount
1010 * actually consumed by the received packets while there is still
1011 * space for a buffer. Each region of larger pages will be used at
1012 * most once, after which the page will not be reused.
1013 *
1014 * In either case, if the page is reusable its refcount is increased.
1015 **/
1016 static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1017 {
1018 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1019 struct page *page = rx_buffer->page;
1020
1021 /* Is any reuse possible? */
1022 if (unlikely(!i40e_page_is_reusable(page)))
1023 return false;
1024
1025 #if (PAGE_SIZE < 8192)
1026 /* if we are only owner of page we can reuse it */
1027 if (unlikely((page_count(page) - pagecnt_bias) > 1))
1028 return false;
1029 #else
1030 #define I40E_LAST_OFFSET \
1031 (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1032 if (rx_buffer->page_offset > I40E_LAST_OFFSET)
1033 return false;
1034 #endif
1035
1036 /* If we have drained the page fragment pool we need to update
1037 * the pagecnt_bias and page count so that we fully restock the
1038 * number of references the driver holds.
1039 */
1040 if (unlikely(!pagecnt_bias)) {
1041 page_ref_add(page, USHRT_MAX);
1042 rx_buffer->pagecnt_bias = USHRT_MAX;
1043 }
1044
1045 return true;
1046 }
1047
1048 /**
1049 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1050 * @rx_ring: rx descriptor ring to transact packets on
1051 * @rx_buffer: buffer containing page to add
1052 * @skb: sk_buff to place the data into
1053 * @size: packet length from rx_desc
1054 *
1055 * This function will add the data contained in rx_buffer->page to the skb.
1056 * It will just attach the page as a frag to the skb.
1057 *
1058 * The function will then update the page offset.
1059 **/
1060 static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1061 struct i40e_rx_buffer *rx_buffer,
1062 struct sk_buff *skb,
1063 unsigned int size)
1064 {
1065 #if (PAGE_SIZE < 8192)
1066 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1067 #else
1068 unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1069 #endif
1070
1071 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1072 rx_buffer->page_offset, size, truesize);
1073
1074 /* page is being used so we must update the page offset */
1075 #if (PAGE_SIZE < 8192)
1076 rx_buffer->page_offset ^= truesize;
1077 #else
1078 rx_buffer->page_offset += truesize;
1079 #endif
1080 }
1081
1082 /**
1083 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
1084 * @rx_ring: rx descriptor ring to transact packets on
1085 * @size: size of buffer to add to skb
1086 *
1087 * This function will pull an Rx buffer from the ring and synchronize it
1088 * for use by the CPU.
1089 */
1090 static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
1091 const unsigned int size)
1092 {
1093 struct i40e_rx_buffer *rx_buffer;
1094
1095 rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
1096 prefetchw(rx_buffer->page);
1097
1098 /* we are reusing so sync this buffer for CPU use */
1099 dma_sync_single_range_for_cpu(rx_ring->dev,
1100 rx_buffer->dma,
1101 rx_buffer->page_offset,
1102 size,
1103 DMA_FROM_DEVICE);
1104
1105 /* We have pulled a buffer for use, so decrement pagecnt_bias */
1106 rx_buffer->pagecnt_bias--;
1107
1108 return rx_buffer;
1109 }
1110
1111 /**
1112 * i40e_construct_skb - Allocate skb and populate it
1113 * @rx_ring: rx descriptor ring to transact packets on
1114 * @rx_buffer: rx buffer to pull data from
1115 * @size: size of buffer to add to skb
1116 *
1117 * This function allocates an skb. It then populates it with the page
1118 * data from the current receive descriptor, taking care to set up the
1119 * skb correctly.
1120 */
1121 static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
1122 struct i40e_rx_buffer *rx_buffer,
1123 unsigned int size)
1124 {
1125 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1126 #if (PAGE_SIZE < 8192)
1127 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1128 #else
1129 unsigned int truesize = SKB_DATA_ALIGN(size);
1130 #endif
1131 unsigned int headlen;
1132 struct sk_buff *skb;
1133
1134 /* prefetch first cache line of first page */
1135 prefetch(va);
1136 #if L1_CACHE_BYTES < 128
1137 prefetch(va + L1_CACHE_BYTES);
1138 #endif
1139
1140 /* allocate a skb to store the frags */
1141 skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
1142 I40E_RX_HDR_SIZE,
1143 GFP_ATOMIC | __GFP_NOWARN);
1144 if (unlikely(!skb))
1145 return NULL;
1146
1147 /* Determine available headroom for copy */
1148 headlen = size;
1149 if (headlen > I40E_RX_HDR_SIZE)
1150 headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
1151
1152 /* align pull length to size of long to optimize memcpy performance */
1153 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1154
1155 /* update all of the pointers */
1156 size -= headlen;
1157 if (size) {
1158 skb_add_rx_frag(skb, 0, rx_buffer->page,
1159 rx_buffer->page_offset + headlen,
1160 size, truesize);
1161
1162 /* buffer is used by skb, update page_offset */
1163 #if (PAGE_SIZE < 8192)
1164 rx_buffer->page_offset ^= truesize;
1165 #else
1166 rx_buffer->page_offset += truesize;
1167 #endif
1168 } else {
1169 /* buffer is unused, reset bias back to rx_buffer */
1170 rx_buffer->pagecnt_bias++;
1171 }
1172
1173 return skb;
1174 }
1175
1176 /**
1177 * i40e_build_skb - Build skb around an existing buffer
1178 * @rx_ring: Rx descriptor ring to transact packets on
1179 * @rx_buffer: Rx buffer to pull data from
1180 * @size: size of buffer to add to skb
1181 *
1182 * This function builds an skb around an existing Rx buffer, taking care
1183 * to set up the skb correctly and avoid any memcpy overhead.
1184 */
1185 static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
1186 struct i40e_rx_buffer *rx_buffer,
1187 unsigned int size)
1188 {
1189 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1190 #if (PAGE_SIZE < 8192)
1191 unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1192 #else
1193 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1194 SKB_DATA_ALIGN(I40E_SKB_PAD + size);
1195 #endif
1196 struct sk_buff *skb;
1197
1198 /* prefetch first cache line of first page */
1199 prefetch(va);
1200 #if L1_CACHE_BYTES < 128
1201 prefetch(va + L1_CACHE_BYTES);
1202 #endif
1203 /* build an skb around the page buffer */
1204 skb = build_skb(va - I40E_SKB_PAD, truesize);
1205 if (unlikely(!skb))
1206 return NULL;
1207
1208 /* update pointers within the skb to store the data */
1209 skb_reserve(skb, I40E_SKB_PAD);
1210 __skb_put(skb, size);
1211
1212 /* buffer is used by skb, update page_offset */
1213 #if (PAGE_SIZE < 8192)
1214 rx_buffer->page_offset ^= truesize;
1215 #else
1216 rx_buffer->page_offset += truesize;
1217 #endif
1218
1219 return skb;
1220 }
1221
1222 /**
1223 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
1224 * @rx_ring: rx descriptor ring to transact packets on
1225 * @rx_buffer: rx buffer to pull data from
1226 *
1227 * This function will clean up the contents of the rx_buffer. It will
1228 * either recycle the bufer or unmap it and free the associated resources.
1229 */
1230 static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
1231 struct i40e_rx_buffer *rx_buffer)
1232 {
1233 if (i40e_can_reuse_rx_page(rx_buffer)) {
1234 /* hand second half of page back to the ring */
1235 i40e_reuse_rx_page(rx_ring, rx_buffer);
1236 rx_ring->rx_stats.page_reuse_count++;
1237 } else {
1238 /* we are not reusing the buffer so unmap it */
1239 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1240 i40e_rx_pg_size(rx_ring),
1241 DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
1242 __page_frag_cache_drain(rx_buffer->page,
1243 rx_buffer->pagecnt_bias);
1244 }
1245
1246 /* clear contents of buffer_info */
1247 rx_buffer->page = NULL;
1248 }
1249
1250 /**
1251 * i40e_is_non_eop - process handling of non-EOP buffers
1252 * @rx_ring: Rx ring being processed
1253 * @rx_desc: Rx descriptor for current buffer
1254 * @skb: Current socket buffer containing buffer in progress
1255 *
1256 * This function updates next to clean. If the buffer is an EOP buffer
1257 * this function exits returning false, otherwise it will place the
1258 * sk_buff in the next buffer to be chained and return true indicating
1259 * that this is in fact a non-EOP buffer.
1260 **/
1261 static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
1262 union i40e_rx_desc *rx_desc,
1263 struct sk_buff *skb)
1264 {
1265 u32 ntc = rx_ring->next_to_clean + 1;
1266
1267 /* fetch, update, and store next to clean */
1268 ntc = (ntc < rx_ring->count) ? ntc : 0;
1269 rx_ring->next_to_clean = ntc;
1270
1271 prefetch(I40E_RX_DESC(rx_ring, ntc));
1272
1273 /* if we are the last buffer then there is nothing else to do */
1274 #define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
1275 if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
1276 return false;
1277
1278 rx_ring->rx_stats.non_eop_descs++;
1279
1280 return true;
1281 }
1282
1283 /**
1284 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1285 * @rx_ring: rx descriptor ring to transact packets on
1286 * @budget: Total limit on number of packets to process
1287 *
1288 * This function provides a "bounce buffer" approach to Rx interrupt
1289 * processing. The advantage to this is that on systems that have
1290 * expensive overhead for IOMMU access this provides a means of avoiding
1291 * it by maintaining the mapping of the page to the system.
1292 *
1293 * Returns amount of work completed
1294 **/
1295 static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
1296 {
1297 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1298 struct sk_buff *skb = rx_ring->skb;
1299 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1300 bool failure = false;
1301
1302 while (likely(total_rx_packets < budget)) {
1303 struct i40e_rx_buffer *rx_buffer;
1304 union i40e_rx_desc *rx_desc;
1305 unsigned int size;
1306 u16 vlan_tag;
1307 u8 rx_ptype;
1308 u64 qword;
1309
1310 /* return some buffers to hardware, one at a time is too slow */
1311 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1312 failure = failure ||
1313 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1314 cleaned_count = 0;
1315 }
1316
1317 rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
1318
1319 /* status_error_len will always be zero for unused descriptors
1320 * because it's cleared in cleanup, and overlaps with hdr_addr
1321 * which is always zero because packet split isn't used, if the
1322 * hardware wrote DD then the length will be non-zero
1323 */
1324 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1325
1326 /* This memory barrier is needed to keep us from reading
1327 * any other fields out of the rx_desc until we have
1328 * verified the descriptor has been written back.
1329 */
1330 dma_rmb();
1331
1332 size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1333 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1334 if (!size)
1335 break;
1336
1337 i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
1338 rx_buffer = i40e_get_rx_buffer(rx_ring, size);
1339
1340 /* retrieve a buffer from the ring */
1341 if (skb)
1342 i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
1343 else if (ring_uses_build_skb(rx_ring))
1344 skb = i40e_build_skb(rx_ring, rx_buffer, size);
1345 else
1346 skb = i40e_construct_skb(rx_ring, rx_buffer, size);
1347
1348 /* exit if we failed to retrieve a buffer */
1349 if (!skb) {
1350 rx_ring->rx_stats.alloc_buff_failed++;
1351 rx_buffer->pagecnt_bias++;
1352 break;
1353 }
1354
1355 i40e_put_rx_buffer(rx_ring, rx_buffer);
1356 cleaned_count++;
1357
1358 if (i40e_is_non_eop(rx_ring, rx_desc, skb))
1359 continue;
1360
1361 /* ERR_MASK will only have valid bits if EOP set, and
1362 * what we are doing here is actually checking
1363 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1364 * the error field
1365 */
1366 if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1367 dev_kfree_skb_any(skb);
1368 skb = NULL;
1369 continue;
1370 }
1371
1372 if (i40e_cleanup_headers(rx_ring, skb)) {
1373 skb = NULL;
1374 continue;
1375 }
1376
1377 /* probably a little skewed due to removing CRC */
1378 total_rx_bytes += skb->len;
1379
1380 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1381 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1382 I40E_RXD_QW1_PTYPE_SHIFT;
1383
1384 /* populate checksum, VLAN, and protocol */
1385 i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1386
1387
1388 vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
1389 le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
1390
1391 i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
1392 i40e_receive_skb(rx_ring, skb, vlan_tag);
1393 skb = NULL;
1394
1395 /* update budget accounting */
1396 total_rx_packets++;
1397 }
1398
1399 rx_ring->skb = skb;
1400
1401 u64_stats_update_begin(&rx_ring->syncp);
1402 rx_ring->stats.packets += total_rx_packets;
1403 rx_ring->stats.bytes += total_rx_bytes;
1404 u64_stats_update_end(&rx_ring->syncp);
1405 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1406 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1407
1408 /* guarantee a trip back through this routine if there was a failure */
1409 return failure ? budget : total_rx_packets;
1410 }
1411
1412 static u32 i40e_buildreg_itr(const int type, const u16 itr)
1413 {
1414 u32 val;
1415
1416 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
1417 /* Don't clear PBA because that can cause lost interrupts that
1418 * came in while we were cleaning/polling
1419 */
1420 (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
1421 (itr << I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT);
1422
1423 return val;
1424 }
1425
1426 /* a small macro to shorten up some long lines */
1427 #define INTREG I40E_VFINT_DYN_CTLN1
1428 static inline int get_rx_itr(struct i40e_vsi *vsi, int idx)
1429 {
1430 struct i40evf_adapter *adapter = vsi->back;
1431
1432 return adapter->rx_rings[idx].rx_itr_setting;
1433 }
1434
1435 static inline int get_tx_itr(struct i40e_vsi *vsi, int idx)
1436 {
1437 struct i40evf_adapter *adapter = vsi->back;
1438
1439 return adapter->tx_rings[idx].tx_itr_setting;
1440 }
1441
1442 /**
1443 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
1444 * @vsi: the VSI we care about
1445 * @q_vector: q_vector for which itr is being updated and interrupt enabled
1446 *
1447 **/
1448 static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
1449 struct i40e_q_vector *q_vector)
1450 {
1451 struct i40e_hw *hw = &vsi->back->hw;
1452 bool rx = false, tx = false;
1453 u32 rxval, txval;
1454 int vector;
1455 int idx = q_vector->v_idx;
1456 int rx_itr_setting, tx_itr_setting;
1457
1458 vector = (q_vector->v_idx + vsi->base_vector);
1459
1460 /* avoid dynamic calculation if in countdown mode OR if
1461 * all dynamic is disabled
1462 */
1463 rxval = txval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
1464
1465 rx_itr_setting = get_rx_itr(vsi, idx);
1466 tx_itr_setting = get_tx_itr(vsi, idx);
1467
1468 if (q_vector->itr_countdown > 0 ||
1469 (!ITR_IS_DYNAMIC(rx_itr_setting) &&
1470 !ITR_IS_DYNAMIC(tx_itr_setting))) {
1471 goto enable_int;
1472 }
1473
1474 if (ITR_IS_DYNAMIC(rx_itr_setting)) {
1475 rx = i40e_set_new_dynamic_itr(&q_vector->rx);
1476 rxval = i40e_buildreg_itr(I40E_RX_ITR, q_vector->rx.itr);
1477 }
1478
1479 if (ITR_IS_DYNAMIC(tx_itr_setting)) {
1480 tx = i40e_set_new_dynamic_itr(&q_vector->tx);
1481 txval = i40e_buildreg_itr(I40E_TX_ITR, q_vector->tx.itr);
1482 }
1483
1484 if (rx || tx) {
1485 /* get the higher of the two ITR adjustments and
1486 * use the same value for both ITR registers
1487 * when in adaptive mode (Rx and/or Tx)
1488 */
1489 u16 itr = max(q_vector->tx.itr, q_vector->rx.itr);
1490
1491 q_vector->tx.itr = q_vector->rx.itr = itr;
1492 txval = i40e_buildreg_itr(I40E_TX_ITR, itr);
1493 tx = true;
1494 rxval = i40e_buildreg_itr(I40E_RX_ITR, itr);
1495 rx = true;
1496 }
1497
1498 /* only need to enable the interrupt once, but need
1499 * to possibly update both ITR values
1500 */
1501 if (rx) {
1502 /* set the INTENA_MSK_MASK so that this first write
1503 * won't actually enable the interrupt, instead just
1504 * updating the ITR (it's bit 31 PF and VF)
1505 */
1506 rxval |= BIT(31);
1507 /* don't check _DOWN because interrupt isn't being enabled */
1508 wr32(hw, INTREG(vector - 1), rxval);
1509 }
1510
1511 enable_int:
1512 if (!test_bit(__I40E_VSI_DOWN, vsi->state))
1513 wr32(hw, INTREG(vector - 1), txval);
1514
1515 if (q_vector->itr_countdown)
1516 q_vector->itr_countdown--;
1517 else
1518 q_vector->itr_countdown = ITR_COUNTDOWN_START;
1519 }
1520
1521 /**
1522 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1523 * @napi: napi struct with our devices info in it
1524 * @budget: amount of work driver is allowed to do this pass, in packets
1525 *
1526 * This function will clean all queues associated with a q_vector.
1527 *
1528 * Returns the amount of work done
1529 **/
1530 int i40evf_napi_poll(struct napi_struct *napi, int budget)
1531 {
1532 struct i40e_q_vector *q_vector =
1533 container_of(napi, struct i40e_q_vector, napi);
1534 struct i40e_vsi *vsi = q_vector->vsi;
1535 struct i40e_ring *ring;
1536 bool clean_complete = true;
1537 bool arm_wb = false;
1538 int budget_per_ring;
1539 int work_done = 0;
1540
1541 if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
1542 napi_complete(napi);
1543 return 0;
1544 }
1545
1546 /* Since the actual Tx work is minimal, we can give the Tx a larger
1547 * budget and be more aggressive about cleaning up the Tx descriptors.
1548 */
1549 i40e_for_each_ring(ring, q_vector->tx) {
1550 if (!i40e_clean_tx_irq(vsi, ring, budget)) {
1551 clean_complete = false;
1552 continue;
1553 }
1554 arm_wb |= ring->arm_wb;
1555 ring->arm_wb = false;
1556 }
1557
1558 /* Handle case where we are called by netpoll with a budget of 0 */
1559 if (budget <= 0)
1560 goto tx_only;
1561
1562 /* We attempt to distribute budget to each Rx queue fairly, but don't
1563 * allow the budget to go below 1 because that would exit polling early.
1564 */
1565 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1566
1567 i40e_for_each_ring(ring, q_vector->rx) {
1568 int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
1569
1570 work_done += cleaned;
1571 /* if we clean as many as budgeted, we must not be done */
1572 if (cleaned >= budget_per_ring)
1573 clean_complete = false;
1574 }
1575
1576 /* If work not completed, return budget and polling will return */
1577 if (!clean_complete) {
1578 const cpumask_t *aff_mask = &q_vector->affinity_mask;
1579 int cpu_id = smp_processor_id();
1580
1581 /* It is possible that the interrupt affinity has changed but,
1582 * if the cpu is pegged at 100%, polling will never exit while
1583 * traffic continues and the interrupt will be stuck on this
1584 * cpu. We check to make sure affinity is correct before we
1585 * continue to poll, otherwise we must stop polling so the
1586 * interrupt can move to the correct cpu.
1587 */
1588 if (likely(cpumask_test_cpu(cpu_id, aff_mask))) {
1589 tx_only:
1590 if (arm_wb) {
1591 q_vector->tx.ring[0].tx_stats.tx_force_wb++;
1592 i40e_enable_wb_on_itr(vsi, q_vector);
1593 }
1594 return budget;
1595 }
1596 }
1597
1598 if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
1599 q_vector->arm_wb_state = false;
1600
1601 /* Work is done so exit the polling mode and re-enable the interrupt */
1602 napi_complete_done(napi, work_done);
1603
1604 /* If we're prematurely stopping polling to fix the interrupt
1605 * affinity we want to make sure polling starts back up so we
1606 * issue a call to i40evf_force_wb which triggers a SW interrupt.
1607 */
1608 if (!clean_complete)
1609 i40evf_force_wb(vsi, q_vector);
1610 else
1611 i40e_update_enable_itr(vsi, q_vector);
1612
1613 return min(work_done, budget - 1);
1614 }
1615
1616 /**
1617 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1618 * @skb: send buffer
1619 * @tx_ring: ring to send buffer on
1620 * @flags: the tx flags to be set
1621 *
1622 * Checks the skb and set up correspondingly several generic transmit flags
1623 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1624 *
1625 * Returns error code indicate the frame should be dropped upon error and the
1626 * otherwise returns 0 to indicate the flags has been set properly.
1627 **/
1628 static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1629 struct i40e_ring *tx_ring,
1630 u32 *flags)
1631 {
1632 __be16 protocol = skb->protocol;
1633 u32 tx_flags = 0;
1634
1635 if (protocol == htons(ETH_P_8021Q) &&
1636 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1637 /* When HW VLAN acceleration is turned off by the user the
1638 * stack sets the protocol to 8021q so that the driver
1639 * can take any steps required to support the SW only
1640 * VLAN handling. In our case the driver doesn't need
1641 * to take any further steps so just set the protocol
1642 * to the encapsulated ethertype.
1643 */
1644 skb->protocol = vlan_get_protocol(skb);
1645 goto out;
1646 }
1647
1648 /* if we have a HW VLAN tag being added, default to the HW one */
1649 if (skb_vlan_tag_present(skb)) {
1650 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1651 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1652 /* else if it is a SW VLAN, check the next protocol and store the tag */
1653 } else if (protocol == htons(ETH_P_8021Q)) {
1654 struct vlan_hdr *vhdr, _vhdr;
1655
1656 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1657 if (!vhdr)
1658 return -EINVAL;
1659
1660 protocol = vhdr->h_vlan_encapsulated_proto;
1661 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1662 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1663 }
1664
1665 out:
1666 *flags = tx_flags;
1667 return 0;
1668 }
1669
1670 /**
1671 * i40e_tso - set up the tso context descriptor
1672 * @first: pointer to first Tx buffer for xmit
1673 * @hdr_len: ptr to the size of the packet header
1674 * @cd_type_cmd_tso_mss: Quad Word 1
1675 *
1676 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1677 **/
1678 static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
1679 u64 *cd_type_cmd_tso_mss)
1680 {
1681 struct sk_buff *skb = first->skb;
1682 u64 cd_cmd, cd_tso_len, cd_mss;
1683 union {
1684 struct iphdr *v4;
1685 struct ipv6hdr *v6;
1686 unsigned char *hdr;
1687 } ip;
1688 union {
1689 struct tcphdr *tcp;
1690 struct udphdr *udp;
1691 unsigned char *hdr;
1692 } l4;
1693 u32 paylen, l4_offset;
1694 u16 gso_segs, gso_size;
1695 int err;
1696
1697 if (skb->ip_summed != CHECKSUM_PARTIAL)
1698 return 0;
1699
1700 if (!skb_is_gso(skb))
1701 return 0;
1702
1703 err = skb_cow_head(skb, 0);
1704 if (err < 0)
1705 return err;
1706
1707 ip.hdr = skb_network_header(skb);
1708 l4.hdr = skb_transport_header(skb);
1709
1710 /* initialize outer IP header fields */
1711 if (ip.v4->version == 4) {
1712 ip.v4->tot_len = 0;
1713 ip.v4->check = 0;
1714 } else {
1715 ip.v6->payload_len = 0;
1716 }
1717
1718 if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
1719 SKB_GSO_GRE_CSUM |
1720 SKB_GSO_IPXIP4 |
1721 SKB_GSO_IPXIP6 |
1722 SKB_GSO_UDP_TUNNEL |
1723 SKB_GSO_UDP_TUNNEL_CSUM)) {
1724 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1725 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
1726 l4.udp->len = 0;
1727
1728 /* determine offset of outer transport header */
1729 l4_offset = l4.hdr - skb->data;
1730
1731 /* remove payload length from outer checksum */
1732 paylen = skb->len - l4_offset;
1733 csum_replace_by_diff(&l4.udp->check,
1734 (__force __wsum)htonl(paylen));
1735 }
1736
1737 /* reset pointers to inner headers */
1738 ip.hdr = skb_inner_network_header(skb);
1739 l4.hdr = skb_inner_transport_header(skb);
1740
1741 /* initialize inner IP header fields */
1742 if (ip.v4->version == 4) {
1743 ip.v4->tot_len = 0;
1744 ip.v4->check = 0;
1745 } else {
1746 ip.v6->payload_len = 0;
1747 }
1748 }
1749
1750 /* determine offset of inner transport header */
1751 l4_offset = l4.hdr - skb->data;
1752
1753 /* remove payload length from inner checksum */
1754 paylen = skb->len - l4_offset;
1755 csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
1756
1757 /* compute length of segmentation header */
1758 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1759
1760 /* pull values out of skb_shinfo */
1761 gso_size = skb_shinfo(skb)->gso_size;
1762 gso_segs = skb_shinfo(skb)->gso_segs;
1763
1764 /* update GSO size and bytecount with header size */
1765 first->gso_segs = gso_segs;
1766 first->bytecount += (first->gso_segs - 1) * *hdr_len;
1767
1768 /* find the field values */
1769 cd_cmd = I40E_TX_CTX_DESC_TSO;
1770 cd_tso_len = skb->len - *hdr_len;
1771 cd_mss = gso_size;
1772 *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1773 (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1774 (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1775 return 1;
1776 }
1777
1778 /**
1779 * i40e_tx_enable_csum - Enable Tx checksum offloads
1780 * @skb: send buffer
1781 * @tx_flags: pointer to Tx flags currently set
1782 * @td_cmd: Tx descriptor command bits to set
1783 * @td_offset: Tx descriptor header offsets to set
1784 * @tx_ring: Tx descriptor ring
1785 * @cd_tunneling: ptr to context desc bits
1786 **/
1787 static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
1788 u32 *td_cmd, u32 *td_offset,
1789 struct i40e_ring *tx_ring,
1790 u32 *cd_tunneling)
1791 {
1792 union {
1793 struct iphdr *v4;
1794 struct ipv6hdr *v6;
1795 unsigned char *hdr;
1796 } ip;
1797 union {
1798 struct tcphdr *tcp;
1799 struct udphdr *udp;
1800 unsigned char *hdr;
1801 } l4;
1802 unsigned char *exthdr;
1803 u32 offset, cmd = 0;
1804 __be16 frag_off;
1805 u8 l4_proto = 0;
1806
1807 if (skb->ip_summed != CHECKSUM_PARTIAL)
1808 return 0;
1809
1810 ip.hdr = skb_network_header(skb);
1811 l4.hdr = skb_transport_header(skb);
1812
1813 /* compute outer L2 header size */
1814 offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1815
1816 if (skb->encapsulation) {
1817 u32 tunnel = 0;
1818 /* define outer network header type */
1819 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1820 tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1821 I40E_TX_CTX_EXT_IP_IPV4 :
1822 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1823
1824 l4_proto = ip.v4->protocol;
1825 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1826 tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
1827
1828 exthdr = ip.hdr + sizeof(*ip.v6);
1829 l4_proto = ip.v6->nexthdr;
1830 if (l4.hdr != exthdr)
1831 ipv6_skip_exthdr(skb, exthdr - skb->data,
1832 &l4_proto, &frag_off);
1833 }
1834
1835 /* define outer transport */
1836 switch (l4_proto) {
1837 case IPPROTO_UDP:
1838 tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
1839 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1840 break;
1841 case IPPROTO_GRE:
1842 tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
1843 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1844 break;
1845 case IPPROTO_IPIP:
1846 case IPPROTO_IPV6:
1847 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
1848 l4.hdr = skb_inner_network_header(skb);
1849 break;
1850 default:
1851 if (*tx_flags & I40E_TX_FLAGS_TSO)
1852 return -1;
1853
1854 skb_checksum_help(skb);
1855 return 0;
1856 }
1857
1858 /* compute outer L3 header size */
1859 tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1860 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
1861
1862 /* switch IP header pointer from outer to inner header */
1863 ip.hdr = skb_inner_network_header(skb);
1864
1865 /* compute tunnel header size */
1866 tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1867 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1868
1869 /* indicate if we need to offload outer UDP header */
1870 if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
1871 !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
1872 (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1873 tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
1874
1875 /* record tunnel offload values */
1876 *cd_tunneling |= tunnel;
1877
1878 /* switch L4 header pointer from outer to inner */
1879 l4.hdr = skb_inner_transport_header(skb);
1880 l4_proto = 0;
1881
1882 /* reset type as we transition from outer to inner headers */
1883 *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
1884 if (ip.v4->version == 4)
1885 *tx_flags |= I40E_TX_FLAGS_IPV4;
1886 if (ip.v6->version == 6)
1887 *tx_flags |= I40E_TX_FLAGS_IPV6;
1888 }
1889
1890 /* Enable IP checksum offloads */
1891 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1892 l4_proto = ip.v4->protocol;
1893 /* the stack computes the IP header already, the only time we
1894 * need the hardware to recompute it is in the case of TSO.
1895 */
1896 cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
1897 I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
1898 I40E_TX_DESC_CMD_IIPT_IPV4;
1899 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
1900 cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1901
1902 exthdr = ip.hdr + sizeof(*ip.v6);
1903 l4_proto = ip.v6->nexthdr;
1904 if (l4.hdr != exthdr)
1905 ipv6_skip_exthdr(skb, exthdr - skb->data,
1906 &l4_proto, &frag_off);
1907 }
1908
1909 /* compute inner L3 header size */
1910 offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1911
1912 /* Enable L4 checksum offloads */
1913 switch (l4_proto) {
1914 case IPPROTO_TCP:
1915 /* enable checksum offloads */
1916 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1917 offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1918 break;
1919 case IPPROTO_SCTP:
1920 /* enable SCTP checksum offload */
1921 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1922 offset |= (sizeof(struct sctphdr) >> 2) <<
1923 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1924 break;
1925 case IPPROTO_UDP:
1926 /* enable UDP checksum offload */
1927 cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1928 offset |= (sizeof(struct udphdr) >> 2) <<
1929 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1930 break;
1931 default:
1932 if (*tx_flags & I40E_TX_FLAGS_TSO)
1933 return -1;
1934 skb_checksum_help(skb);
1935 return 0;
1936 }
1937
1938 *td_cmd |= cmd;
1939 *td_offset |= offset;
1940
1941 return 1;
1942 }
1943
1944 /**
1945 * i40e_create_tx_ctx Build the Tx context descriptor
1946 * @tx_ring: ring to create the descriptor on
1947 * @cd_type_cmd_tso_mss: Quad Word 1
1948 * @cd_tunneling: Quad Word 0 - bits 0-31
1949 * @cd_l2tag2: Quad Word 0 - bits 32-63
1950 **/
1951 static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1952 const u64 cd_type_cmd_tso_mss,
1953 const u32 cd_tunneling, const u32 cd_l2tag2)
1954 {
1955 struct i40e_tx_context_desc *context_desc;
1956 int i = tx_ring->next_to_use;
1957
1958 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1959 !cd_tunneling && !cd_l2tag2)
1960 return;
1961
1962 /* grab the next descriptor */
1963 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1964
1965 i++;
1966 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1967
1968 /* cpu_to_le32 and assign to struct fields */
1969 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1970 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1971 context_desc->rsvd = cpu_to_le16(0);
1972 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1973 }
1974
1975 /**
1976 * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
1977 * @skb: send buffer
1978 *
1979 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
1980 * and so we need to figure out the cases where we need to linearize the skb.
1981 *
1982 * For TSO we need to count the TSO header and segment payload separately.
1983 * As such we need to check cases where we have 7 fragments or more as we
1984 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
1985 * the segment payload in the first descriptor, and another 7 for the
1986 * fragments.
1987 **/
1988 bool __i40evf_chk_linearize(struct sk_buff *skb)
1989 {
1990 const struct skb_frag_struct *frag, *stale;
1991 int nr_frags, sum;
1992
1993 /* no need to check if number of frags is less than 7 */
1994 nr_frags = skb_shinfo(skb)->nr_frags;
1995 if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
1996 return false;
1997
1998 /* We need to walk through the list and validate that each group
1999 * of 6 fragments totals at least gso_size.
2000 */
2001 nr_frags -= I40E_MAX_BUFFER_TXD - 2;
2002 frag = &skb_shinfo(skb)->frags[0];
2003
2004 /* Initialize size to the negative value of gso_size minus 1. We
2005 * use this as the worst case scenerio in which the frag ahead
2006 * of us only provides one byte which is why we are limited to 6
2007 * descriptors for a single transmit as the header and previous
2008 * fragment are already consuming 2 descriptors.
2009 */
2010 sum = 1 - skb_shinfo(skb)->gso_size;
2011
2012 /* Add size of frags 0 through 4 to create our initial sum */
2013 sum += skb_frag_size(frag++);
2014 sum += skb_frag_size(frag++);
2015 sum += skb_frag_size(frag++);
2016 sum += skb_frag_size(frag++);
2017 sum += skb_frag_size(frag++);
2018
2019 /* Walk through fragments adding latest fragment, testing it, and
2020 * then removing stale fragments from the sum.
2021 */
2022 stale = &skb_shinfo(skb)->frags[0];
2023 for (;;) {
2024 sum += skb_frag_size(frag++);
2025
2026 /* if sum is negative we failed to make sufficient progress */
2027 if (sum < 0)
2028 return true;
2029
2030 if (!nr_frags--)
2031 break;
2032
2033 sum -= skb_frag_size(stale++);
2034 }
2035
2036 return false;
2037 }
2038
2039 /**
2040 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
2041 * @tx_ring: the ring to be checked
2042 * @size: the size buffer we want to assure is available
2043 *
2044 * Returns -EBUSY if a stop is needed, else 0
2045 **/
2046 int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
2047 {
2048 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
2049 /* Memory barrier before checking head and tail */
2050 smp_mb();
2051
2052 /* Check again in a case another CPU has just made room available. */
2053 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
2054 return -EBUSY;
2055
2056 /* A reprieve! - use start_queue because it doesn't call schedule */
2057 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
2058 ++tx_ring->tx_stats.restart_queue;
2059 return 0;
2060 }
2061
2062 /**
2063 * i40evf_tx_map - Build the Tx descriptor
2064 * @tx_ring: ring to send buffer on
2065 * @skb: send buffer
2066 * @first: first buffer info buffer to use
2067 * @tx_flags: collected send information
2068 * @hdr_len: size of the packet header
2069 * @td_cmd: the command field in the descriptor
2070 * @td_offset: offset for checksum or crc
2071 **/
2072 static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
2073 struct i40e_tx_buffer *first, u32 tx_flags,
2074 const u8 hdr_len, u32 td_cmd, u32 td_offset)
2075 {
2076 unsigned int data_len = skb->data_len;
2077 unsigned int size = skb_headlen(skb);
2078 struct skb_frag_struct *frag;
2079 struct i40e_tx_buffer *tx_bi;
2080 struct i40e_tx_desc *tx_desc;
2081 u16 i = tx_ring->next_to_use;
2082 u32 td_tag = 0;
2083 dma_addr_t dma;
2084
2085 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
2086 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
2087 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
2088 I40E_TX_FLAGS_VLAN_SHIFT;
2089 }
2090
2091 first->tx_flags = tx_flags;
2092
2093 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
2094
2095 tx_desc = I40E_TX_DESC(tx_ring, i);
2096 tx_bi = first;
2097
2098 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
2099 unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2100
2101 if (dma_mapping_error(tx_ring->dev, dma))
2102 goto dma_error;
2103
2104 /* record length, and DMA address */
2105 dma_unmap_len_set(tx_bi, len, size);
2106 dma_unmap_addr_set(tx_bi, dma, dma);
2107
2108 /* align size to end of page */
2109 max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
2110 tx_desc->buffer_addr = cpu_to_le64(dma);
2111
2112 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
2113 tx_desc->cmd_type_offset_bsz =
2114 build_ctob(td_cmd, td_offset,
2115 max_data, td_tag);
2116
2117 tx_desc++;
2118 i++;
2119
2120 if (i == tx_ring->count) {
2121 tx_desc = I40E_TX_DESC(tx_ring, 0);
2122 i = 0;
2123 }
2124
2125 dma += max_data;
2126 size -= max_data;
2127
2128 max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
2129 tx_desc->buffer_addr = cpu_to_le64(dma);
2130 }
2131
2132 if (likely(!data_len))
2133 break;
2134
2135 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
2136 size, td_tag);
2137
2138 tx_desc++;
2139 i++;
2140
2141 if (i == tx_ring->count) {
2142 tx_desc = I40E_TX_DESC(tx_ring, 0);
2143 i = 0;
2144 }
2145
2146 size = skb_frag_size(frag);
2147 data_len -= size;
2148
2149 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
2150 DMA_TO_DEVICE);
2151
2152 tx_bi = &tx_ring->tx_bi[i];
2153 }
2154
2155 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
2156
2157 i++;
2158 if (i == tx_ring->count)
2159 i = 0;
2160
2161 tx_ring->next_to_use = i;
2162
2163 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
2164
2165 /* write last descriptor with RS and EOP bits */
2166 td_cmd |= I40E_TXD_CMD;
2167 tx_desc->cmd_type_offset_bsz =
2168 build_ctob(td_cmd, td_offset, size, td_tag);
2169
2170 /* Force memory writes to complete before letting h/w know there
2171 * are new descriptors to fetch.
2172 *
2173 * We also use this memory barrier to make certain all of the
2174 * status bits have been updated before next_to_watch is written.
2175 */
2176 wmb();
2177
2178 /* set next_to_watch value indicating a packet is present */
2179 first->next_to_watch = tx_desc;
2180
2181 /* notify HW of packet */
2182 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
2183 writel(i, tx_ring->tail);
2184
2185 /* we need this if more than one processor can write to our tail
2186 * at a time, it synchronizes IO on IA64/Altix systems
2187 */
2188 mmiowb();
2189 }
2190
2191 return;
2192
2193 dma_error:
2194 dev_info(tx_ring->dev, "TX DMA map failed\n");
2195
2196 /* clear dma mappings for failed tx_bi map */
2197 for (;;) {
2198 tx_bi = &tx_ring->tx_bi[i];
2199 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
2200 if (tx_bi == first)
2201 break;
2202 if (i == 0)
2203 i = tx_ring->count;
2204 i--;
2205 }
2206
2207 tx_ring->next_to_use = i;
2208 }
2209
2210 /**
2211 * i40e_xmit_frame_ring - Sends buffer on Tx ring
2212 * @skb: send buffer
2213 * @tx_ring: ring to send buffer on
2214 *
2215 * Returns NETDEV_TX_OK if sent, else an error code
2216 **/
2217 static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
2218 struct i40e_ring *tx_ring)
2219 {
2220 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
2221 u32 cd_tunneling = 0, cd_l2tag2 = 0;
2222 struct i40e_tx_buffer *first;
2223 u32 td_offset = 0;
2224 u32 tx_flags = 0;
2225 __be16 protocol;
2226 u32 td_cmd = 0;
2227 u8 hdr_len = 0;
2228 int tso, count;
2229
2230 /* prefetch the data, we'll need it later */
2231 prefetch(skb->data);
2232
2233 i40e_trace(xmit_frame_ring, skb, tx_ring);
2234
2235 count = i40e_xmit_descriptor_count(skb);
2236 if (i40e_chk_linearize(skb, count)) {
2237 if (__skb_linearize(skb)) {
2238 dev_kfree_skb_any(skb);
2239 return NETDEV_TX_OK;
2240 }
2241 count = i40e_txd_use_count(skb->len);
2242 tx_ring->tx_stats.tx_linearize++;
2243 }
2244
2245 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
2246 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
2247 * + 4 desc gap to avoid the cache line where head is,
2248 * + 1 desc for context descriptor,
2249 * otherwise try next time
2250 */
2251 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
2252 tx_ring->tx_stats.tx_busy++;
2253 return NETDEV_TX_BUSY;
2254 }
2255
2256 /* record the location of the first descriptor for this packet */
2257 first = &tx_ring->tx_bi[tx_ring->next_to_use];
2258 first->skb = skb;
2259 first->bytecount = skb->len;
2260 first->gso_segs = 1;
2261
2262 /* prepare the xmit flags */
2263 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
2264 goto out_drop;
2265
2266 /* obtain protocol of skb */
2267 protocol = vlan_get_protocol(skb);
2268
2269 /* setup IPv4/IPv6 offloads */
2270 if (protocol == htons(ETH_P_IP))
2271 tx_flags |= I40E_TX_FLAGS_IPV4;
2272 else if (protocol == htons(ETH_P_IPV6))
2273 tx_flags |= I40E_TX_FLAGS_IPV6;
2274
2275 tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
2276
2277 if (tso < 0)
2278 goto out_drop;
2279 else if (tso)
2280 tx_flags |= I40E_TX_FLAGS_TSO;
2281
2282 /* Always offload the checksum, since it's in the data descriptor */
2283 tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
2284 tx_ring, &cd_tunneling);
2285 if (tso < 0)
2286 goto out_drop;
2287
2288 skb_tx_timestamp(skb);
2289
2290 /* always enable CRC insertion offload */
2291 td_cmd |= I40E_TX_DESC_CMD_ICRC;
2292
2293 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
2294 cd_tunneling, cd_l2tag2);
2295
2296 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
2297 td_cmd, td_offset);
2298
2299 return NETDEV_TX_OK;
2300
2301 out_drop:
2302 i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
2303 dev_kfree_skb_any(first->skb);
2304 first->skb = NULL;
2305 return NETDEV_TX_OK;
2306 }
2307
2308 /**
2309 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
2310 * @skb: send buffer
2311 * @netdev: network interface device structure
2312 *
2313 * Returns NETDEV_TX_OK if sent, else an error code
2314 **/
2315 netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2316 {
2317 struct i40evf_adapter *adapter = netdev_priv(netdev);
2318 struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
2319
2320 /* hardware can't handle really short frames, hardware padding works
2321 * beyond this point
2322 */
2323 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
2324 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
2325 return NETDEV_TX_OK;
2326 skb->len = I40E_MIN_TX_LEN;
2327 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
2328 }
2329
2330 return i40e_xmit_frame_ring(skb, tx_ring);
2331 }