]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/iavf/iavf_main.c
iavf: initialize ITRN registers with correct values
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / iavf / iavf_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4 #include "iavf.h"
5 #include "iavf_prototype.h"
6 #include "iavf_client.h"
7 /* All iavf tracepoints are defined by the include below, which must
8 * be included exactly once across the whole kernel with
9 * CREATE_TRACE_POINTS defined
10 */
11 #define CREATE_TRACE_POINTS
12 #include "iavf_trace.h"
13
14 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter);
15 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter);
16 static int iavf_close(struct net_device *netdev);
17 static int iavf_init_get_resources(struct iavf_adapter *adapter);
18 static int iavf_check_reset_complete(struct iavf_hw *hw);
19
20 char iavf_driver_name[] = "iavf";
21 static const char iavf_driver_string[] =
22 "Intel(R) Ethernet Adaptive Virtual Function Network Driver";
23
24 #define DRV_KERN "-k"
25
26 #define DRV_VERSION_MAJOR 3
27 #define DRV_VERSION_MINOR 2
28 #define DRV_VERSION_BUILD 3
29 #define DRV_VERSION __stringify(DRV_VERSION_MAJOR) "." \
30 __stringify(DRV_VERSION_MINOR) "." \
31 __stringify(DRV_VERSION_BUILD) \
32 DRV_KERN
33 const char iavf_driver_version[] = DRV_VERSION;
34 static const char iavf_copyright[] =
35 "Copyright (c) 2013 - 2018 Intel Corporation.";
36
37 /* iavf_pci_tbl - PCI Device ID Table
38 *
39 * Wildcard entries (PCI_ANY_ID) should come last
40 * Last entry must be all 0s
41 *
42 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
43 * Class, Class Mask, private data (not used) }
44 */
45 static const struct pci_device_id iavf_pci_tbl[] = {
46 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF), 0},
47 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_VF_HV), 0},
48 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_X722_VF), 0},
49 {PCI_VDEVICE(INTEL, IAVF_DEV_ID_ADAPTIVE_VF), 0},
50 /* required last entry */
51 {0, }
52 };
53
54 MODULE_DEVICE_TABLE(pci, iavf_pci_tbl);
55
56 MODULE_ALIAS("i40evf");
57 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
58 MODULE_DESCRIPTION("Intel(R) Ethernet Adaptive Virtual Function Network Driver");
59 MODULE_LICENSE("GPL v2");
60 MODULE_VERSION(DRV_VERSION);
61
62 static const struct net_device_ops iavf_netdev_ops;
63 struct workqueue_struct *iavf_wq;
64
65 /**
66 * iavf_allocate_dma_mem_d - OS specific memory alloc for shared code
67 * @hw: pointer to the HW structure
68 * @mem: ptr to mem struct to fill out
69 * @size: size of memory requested
70 * @alignment: what to align the allocation to
71 **/
72 enum iavf_status iavf_allocate_dma_mem_d(struct iavf_hw *hw,
73 struct iavf_dma_mem *mem,
74 u64 size, u32 alignment)
75 {
76 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
77
78 if (!mem)
79 return IAVF_ERR_PARAM;
80
81 mem->size = ALIGN(size, alignment);
82 mem->va = dma_alloc_coherent(&adapter->pdev->dev, mem->size,
83 (dma_addr_t *)&mem->pa, GFP_KERNEL);
84 if (mem->va)
85 return 0;
86 else
87 return IAVF_ERR_NO_MEMORY;
88 }
89
90 /**
91 * iavf_free_dma_mem_d - OS specific memory free for shared code
92 * @hw: pointer to the HW structure
93 * @mem: ptr to mem struct to free
94 **/
95 enum iavf_status iavf_free_dma_mem_d(struct iavf_hw *hw,
96 struct iavf_dma_mem *mem)
97 {
98 struct iavf_adapter *adapter = (struct iavf_adapter *)hw->back;
99
100 if (!mem || !mem->va)
101 return IAVF_ERR_PARAM;
102 dma_free_coherent(&adapter->pdev->dev, mem->size,
103 mem->va, (dma_addr_t)mem->pa);
104 return 0;
105 }
106
107 /**
108 * iavf_allocate_virt_mem_d - OS specific memory alloc for shared code
109 * @hw: pointer to the HW structure
110 * @mem: ptr to mem struct to fill out
111 * @size: size of memory requested
112 **/
113 enum iavf_status iavf_allocate_virt_mem_d(struct iavf_hw *hw,
114 struct iavf_virt_mem *mem, u32 size)
115 {
116 if (!mem)
117 return IAVF_ERR_PARAM;
118
119 mem->size = size;
120 mem->va = kzalloc(size, GFP_KERNEL);
121
122 if (mem->va)
123 return 0;
124 else
125 return IAVF_ERR_NO_MEMORY;
126 }
127
128 /**
129 * iavf_free_virt_mem_d - OS specific memory free for shared code
130 * @hw: pointer to the HW structure
131 * @mem: ptr to mem struct to free
132 **/
133 enum iavf_status iavf_free_virt_mem_d(struct iavf_hw *hw,
134 struct iavf_virt_mem *mem)
135 {
136 if (!mem)
137 return IAVF_ERR_PARAM;
138
139 /* it's ok to kfree a NULL pointer */
140 kfree(mem->va);
141
142 return 0;
143 }
144
145 /**
146 * iavf_schedule_reset - Set the flags and schedule a reset event
147 * @adapter: board private structure
148 **/
149 void iavf_schedule_reset(struct iavf_adapter *adapter)
150 {
151 if (!(adapter->flags &
152 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED))) {
153 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
154 queue_work(iavf_wq, &adapter->reset_task);
155 }
156 }
157
158 /**
159 * iavf_tx_timeout - Respond to a Tx Hang
160 * @netdev: network interface device structure
161 **/
162 static void iavf_tx_timeout(struct net_device *netdev)
163 {
164 struct iavf_adapter *adapter = netdev_priv(netdev);
165
166 adapter->tx_timeout_count++;
167 iavf_schedule_reset(adapter);
168 }
169
170 /**
171 * iavf_misc_irq_disable - Mask off interrupt generation on the NIC
172 * @adapter: board private structure
173 **/
174 static void iavf_misc_irq_disable(struct iavf_adapter *adapter)
175 {
176 struct iavf_hw *hw = &adapter->hw;
177
178 if (!adapter->msix_entries)
179 return;
180
181 wr32(hw, IAVF_VFINT_DYN_CTL01, 0);
182
183 iavf_flush(hw);
184
185 synchronize_irq(adapter->msix_entries[0].vector);
186 }
187
188 /**
189 * iavf_misc_irq_enable - Enable default interrupt generation settings
190 * @adapter: board private structure
191 **/
192 static void iavf_misc_irq_enable(struct iavf_adapter *adapter)
193 {
194 struct iavf_hw *hw = &adapter->hw;
195
196 wr32(hw, IAVF_VFINT_DYN_CTL01, IAVF_VFINT_DYN_CTL01_INTENA_MASK |
197 IAVF_VFINT_DYN_CTL01_ITR_INDX_MASK);
198 wr32(hw, IAVF_VFINT_ICR0_ENA1, IAVF_VFINT_ICR0_ENA1_ADMINQ_MASK);
199
200 iavf_flush(hw);
201 }
202
203 /**
204 * iavf_irq_disable - Mask off interrupt generation on the NIC
205 * @adapter: board private structure
206 **/
207 static void iavf_irq_disable(struct iavf_adapter *adapter)
208 {
209 int i;
210 struct iavf_hw *hw = &adapter->hw;
211
212 if (!adapter->msix_entries)
213 return;
214
215 for (i = 1; i < adapter->num_msix_vectors; i++) {
216 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1), 0);
217 synchronize_irq(adapter->msix_entries[i].vector);
218 }
219 iavf_flush(hw);
220 }
221
222 /**
223 * iavf_irq_enable_queues - Enable interrupt for specified queues
224 * @adapter: board private structure
225 * @mask: bitmap of queues to enable
226 **/
227 void iavf_irq_enable_queues(struct iavf_adapter *adapter, u32 mask)
228 {
229 struct iavf_hw *hw = &adapter->hw;
230 int i;
231
232 for (i = 1; i < adapter->num_msix_vectors; i++) {
233 if (mask & BIT(i - 1)) {
234 wr32(hw, IAVF_VFINT_DYN_CTLN1(i - 1),
235 IAVF_VFINT_DYN_CTLN1_INTENA_MASK |
236 IAVF_VFINT_DYN_CTLN1_ITR_INDX_MASK);
237 }
238 }
239 }
240
241 /**
242 * iavf_irq_enable - Enable default interrupt generation settings
243 * @adapter: board private structure
244 * @flush: boolean value whether to run rd32()
245 **/
246 void iavf_irq_enable(struct iavf_adapter *adapter, bool flush)
247 {
248 struct iavf_hw *hw = &adapter->hw;
249
250 iavf_misc_irq_enable(adapter);
251 iavf_irq_enable_queues(adapter, ~0);
252
253 if (flush)
254 iavf_flush(hw);
255 }
256
257 /**
258 * iavf_msix_aq - Interrupt handler for vector 0
259 * @irq: interrupt number
260 * @data: pointer to netdev
261 **/
262 static irqreturn_t iavf_msix_aq(int irq, void *data)
263 {
264 struct net_device *netdev = data;
265 struct iavf_adapter *adapter = netdev_priv(netdev);
266 struct iavf_hw *hw = &adapter->hw;
267
268 /* handle non-queue interrupts, these reads clear the registers */
269 rd32(hw, IAVF_VFINT_ICR01);
270 rd32(hw, IAVF_VFINT_ICR0_ENA1);
271
272 /* schedule work on the private workqueue */
273 queue_work(iavf_wq, &adapter->adminq_task);
274
275 return IRQ_HANDLED;
276 }
277
278 /**
279 * iavf_msix_clean_rings - MSIX mode Interrupt Handler
280 * @irq: interrupt number
281 * @data: pointer to a q_vector
282 **/
283 static irqreturn_t iavf_msix_clean_rings(int irq, void *data)
284 {
285 struct iavf_q_vector *q_vector = data;
286
287 if (!q_vector->tx.ring && !q_vector->rx.ring)
288 return IRQ_HANDLED;
289
290 napi_schedule_irqoff(&q_vector->napi);
291
292 return IRQ_HANDLED;
293 }
294
295 /**
296 * iavf_map_vector_to_rxq - associate irqs with rx queues
297 * @adapter: board private structure
298 * @v_idx: interrupt number
299 * @r_idx: queue number
300 **/
301 static void
302 iavf_map_vector_to_rxq(struct iavf_adapter *adapter, int v_idx, int r_idx)
303 {
304 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
305 struct iavf_ring *rx_ring = &adapter->rx_rings[r_idx];
306 struct iavf_hw *hw = &adapter->hw;
307
308 rx_ring->q_vector = q_vector;
309 rx_ring->next = q_vector->rx.ring;
310 rx_ring->vsi = &adapter->vsi;
311 q_vector->rx.ring = rx_ring;
312 q_vector->rx.count++;
313 q_vector->rx.next_update = jiffies + 1;
314 q_vector->rx.target_itr = ITR_TO_REG(rx_ring->itr_setting);
315 q_vector->ring_mask |= BIT(r_idx);
316 wr32(hw, IAVF_VFINT_ITRN1(IAVF_RX_ITR, q_vector->reg_idx),
317 q_vector->rx.current_itr >> 1);
318 q_vector->rx.current_itr = q_vector->rx.target_itr;
319 }
320
321 /**
322 * iavf_map_vector_to_txq - associate irqs with tx queues
323 * @adapter: board private structure
324 * @v_idx: interrupt number
325 * @t_idx: queue number
326 **/
327 static void
328 iavf_map_vector_to_txq(struct iavf_adapter *adapter, int v_idx, int t_idx)
329 {
330 struct iavf_q_vector *q_vector = &adapter->q_vectors[v_idx];
331 struct iavf_ring *tx_ring = &adapter->tx_rings[t_idx];
332 struct iavf_hw *hw = &adapter->hw;
333
334 tx_ring->q_vector = q_vector;
335 tx_ring->next = q_vector->tx.ring;
336 tx_ring->vsi = &adapter->vsi;
337 q_vector->tx.ring = tx_ring;
338 q_vector->tx.count++;
339 q_vector->tx.next_update = jiffies + 1;
340 q_vector->tx.target_itr = ITR_TO_REG(tx_ring->itr_setting);
341 q_vector->num_ringpairs++;
342 wr32(hw, IAVF_VFINT_ITRN1(IAVF_TX_ITR, q_vector->reg_idx),
343 q_vector->tx.target_itr >> 1);
344 q_vector->tx.current_itr = q_vector->tx.target_itr;
345 }
346
347 /**
348 * iavf_map_rings_to_vectors - Maps descriptor rings to vectors
349 * @adapter: board private structure to initialize
350 *
351 * This function maps descriptor rings to the queue-specific vectors
352 * we were allotted through the MSI-X enabling code. Ideally, we'd have
353 * one vector per ring/queue, but on a constrained vector budget, we
354 * group the rings as "efficiently" as possible. You would add new
355 * mapping configurations in here.
356 **/
357 static void iavf_map_rings_to_vectors(struct iavf_adapter *adapter)
358 {
359 int rings_remaining = adapter->num_active_queues;
360 int ridx = 0, vidx = 0;
361 int q_vectors;
362
363 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
364
365 for (; ridx < rings_remaining; ridx++) {
366 iavf_map_vector_to_rxq(adapter, vidx, ridx);
367 iavf_map_vector_to_txq(adapter, vidx, ridx);
368
369 /* In the case where we have more queues than vectors, continue
370 * round-robin on vectors until all queues are mapped.
371 */
372 if (++vidx >= q_vectors)
373 vidx = 0;
374 }
375
376 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
377 }
378
379 /**
380 * iavf_irq_affinity_notify - Callback for affinity changes
381 * @notify: context as to what irq was changed
382 * @mask: the new affinity mask
383 *
384 * This is a callback function used by the irq_set_affinity_notifier function
385 * so that we may register to receive changes to the irq affinity masks.
386 **/
387 static void iavf_irq_affinity_notify(struct irq_affinity_notify *notify,
388 const cpumask_t *mask)
389 {
390 struct iavf_q_vector *q_vector =
391 container_of(notify, struct iavf_q_vector, affinity_notify);
392
393 cpumask_copy(&q_vector->affinity_mask, mask);
394 }
395
396 /**
397 * iavf_irq_affinity_release - Callback for affinity notifier release
398 * @ref: internal core kernel usage
399 *
400 * This is a callback function used by the irq_set_affinity_notifier function
401 * to inform the current notification subscriber that they will no longer
402 * receive notifications.
403 **/
404 static void iavf_irq_affinity_release(struct kref *ref) {}
405
406 /**
407 * iavf_request_traffic_irqs - Initialize MSI-X interrupts
408 * @adapter: board private structure
409 * @basename: device basename
410 *
411 * Allocates MSI-X vectors for tx and rx handling, and requests
412 * interrupts from the kernel.
413 **/
414 static int
415 iavf_request_traffic_irqs(struct iavf_adapter *adapter, char *basename)
416 {
417 unsigned int vector, q_vectors;
418 unsigned int rx_int_idx = 0, tx_int_idx = 0;
419 int irq_num, err;
420 int cpu;
421
422 iavf_irq_disable(adapter);
423 /* Decrement for Other and TCP Timer vectors */
424 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
425
426 for (vector = 0; vector < q_vectors; vector++) {
427 struct iavf_q_vector *q_vector = &adapter->q_vectors[vector];
428
429 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
430
431 if (q_vector->tx.ring && q_vector->rx.ring) {
432 snprintf(q_vector->name, sizeof(q_vector->name),
433 "iavf-%s-TxRx-%d", basename, rx_int_idx++);
434 tx_int_idx++;
435 } else if (q_vector->rx.ring) {
436 snprintf(q_vector->name, sizeof(q_vector->name),
437 "iavf-%s-rx-%d", basename, rx_int_idx++);
438 } else if (q_vector->tx.ring) {
439 snprintf(q_vector->name, sizeof(q_vector->name),
440 "iavf-%s-tx-%d", basename, tx_int_idx++);
441 } else {
442 /* skip this unused q_vector */
443 continue;
444 }
445 err = request_irq(irq_num,
446 iavf_msix_clean_rings,
447 0,
448 q_vector->name,
449 q_vector);
450 if (err) {
451 dev_info(&adapter->pdev->dev,
452 "Request_irq failed, error: %d\n", err);
453 goto free_queue_irqs;
454 }
455 /* register for affinity change notifications */
456 q_vector->affinity_notify.notify = iavf_irq_affinity_notify;
457 q_vector->affinity_notify.release =
458 iavf_irq_affinity_release;
459 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
460 /* Spread the IRQ affinity hints across online CPUs. Note that
461 * get_cpu_mask returns a mask with a permanent lifetime so
462 * it's safe to use as a hint for irq_set_affinity_hint.
463 */
464 cpu = cpumask_local_spread(q_vector->v_idx, -1);
465 irq_set_affinity_hint(irq_num, get_cpu_mask(cpu));
466 }
467
468 return 0;
469
470 free_queue_irqs:
471 while (vector) {
472 vector--;
473 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
474 irq_set_affinity_notifier(irq_num, NULL);
475 irq_set_affinity_hint(irq_num, NULL);
476 free_irq(irq_num, &adapter->q_vectors[vector]);
477 }
478 return err;
479 }
480
481 /**
482 * iavf_request_misc_irq - Initialize MSI-X interrupts
483 * @adapter: board private structure
484 *
485 * Allocates MSI-X vector 0 and requests interrupts from the kernel. This
486 * vector is only for the admin queue, and stays active even when the netdev
487 * is closed.
488 **/
489 static int iavf_request_misc_irq(struct iavf_adapter *adapter)
490 {
491 struct net_device *netdev = adapter->netdev;
492 int err;
493
494 snprintf(adapter->misc_vector_name,
495 sizeof(adapter->misc_vector_name) - 1, "iavf-%s:mbx",
496 dev_name(&adapter->pdev->dev));
497 err = request_irq(adapter->msix_entries[0].vector,
498 &iavf_msix_aq, 0,
499 adapter->misc_vector_name, netdev);
500 if (err) {
501 dev_err(&adapter->pdev->dev,
502 "request_irq for %s failed: %d\n",
503 adapter->misc_vector_name, err);
504 free_irq(adapter->msix_entries[0].vector, netdev);
505 }
506 return err;
507 }
508
509 /**
510 * iavf_free_traffic_irqs - Free MSI-X interrupts
511 * @adapter: board private structure
512 *
513 * Frees all MSI-X vectors other than 0.
514 **/
515 static void iavf_free_traffic_irqs(struct iavf_adapter *adapter)
516 {
517 int vector, irq_num, q_vectors;
518
519 if (!adapter->msix_entries)
520 return;
521
522 q_vectors = adapter->num_msix_vectors - NONQ_VECS;
523
524 for (vector = 0; vector < q_vectors; vector++) {
525 irq_num = adapter->msix_entries[vector + NONQ_VECS].vector;
526 irq_set_affinity_notifier(irq_num, NULL);
527 irq_set_affinity_hint(irq_num, NULL);
528 free_irq(irq_num, &adapter->q_vectors[vector]);
529 }
530 }
531
532 /**
533 * iavf_free_misc_irq - Free MSI-X miscellaneous vector
534 * @adapter: board private structure
535 *
536 * Frees MSI-X vector 0.
537 **/
538 static void iavf_free_misc_irq(struct iavf_adapter *adapter)
539 {
540 struct net_device *netdev = adapter->netdev;
541
542 if (!adapter->msix_entries)
543 return;
544
545 free_irq(adapter->msix_entries[0].vector, netdev);
546 }
547
548 /**
549 * iavf_configure_tx - Configure Transmit Unit after Reset
550 * @adapter: board private structure
551 *
552 * Configure the Tx unit of the MAC after a reset.
553 **/
554 static void iavf_configure_tx(struct iavf_adapter *adapter)
555 {
556 struct iavf_hw *hw = &adapter->hw;
557 int i;
558
559 for (i = 0; i < adapter->num_active_queues; i++)
560 adapter->tx_rings[i].tail = hw->hw_addr + IAVF_QTX_TAIL1(i);
561 }
562
563 /**
564 * iavf_configure_rx - Configure Receive Unit after Reset
565 * @adapter: board private structure
566 *
567 * Configure the Rx unit of the MAC after a reset.
568 **/
569 static void iavf_configure_rx(struct iavf_adapter *adapter)
570 {
571 unsigned int rx_buf_len = IAVF_RXBUFFER_2048;
572 struct iavf_hw *hw = &adapter->hw;
573 int i;
574
575 /* Legacy Rx will always default to a 2048 buffer size. */
576 #if (PAGE_SIZE < 8192)
577 if (!(adapter->flags & IAVF_FLAG_LEGACY_RX)) {
578 struct net_device *netdev = adapter->netdev;
579
580 /* For jumbo frames on systems with 4K pages we have to use
581 * an order 1 page, so we might as well increase the size
582 * of our Rx buffer to make better use of the available space
583 */
584 rx_buf_len = IAVF_RXBUFFER_3072;
585
586 /* We use a 1536 buffer size for configurations with
587 * standard Ethernet mtu. On x86 this gives us enough room
588 * for shared info and 192 bytes of padding.
589 */
590 if (!IAVF_2K_TOO_SMALL_WITH_PADDING &&
591 (netdev->mtu <= ETH_DATA_LEN))
592 rx_buf_len = IAVF_RXBUFFER_1536 - NET_IP_ALIGN;
593 }
594 #endif
595
596 for (i = 0; i < adapter->num_active_queues; i++) {
597 adapter->rx_rings[i].tail = hw->hw_addr + IAVF_QRX_TAIL1(i);
598 adapter->rx_rings[i].rx_buf_len = rx_buf_len;
599
600 if (adapter->flags & IAVF_FLAG_LEGACY_RX)
601 clear_ring_build_skb_enabled(&adapter->rx_rings[i]);
602 else
603 set_ring_build_skb_enabled(&adapter->rx_rings[i]);
604 }
605 }
606
607 /**
608 * iavf_find_vlan - Search filter list for specific vlan filter
609 * @adapter: board private structure
610 * @vlan: vlan tag
611 *
612 * Returns ptr to the filter object or NULL. Must be called while holding the
613 * mac_vlan_list_lock.
614 **/
615 static struct
616 iavf_vlan_filter *iavf_find_vlan(struct iavf_adapter *adapter, u16 vlan)
617 {
618 struct iavf_vlan_filter *f;
619
620 list_for_each_entry(f, &adapter->vlan_filter_list, list) {
621 if (vlan == f->vlan)
622 return f;
623 }
624 return NULL;
625 }
626
627 /**
628 * iavf_add_vlan - Add a vlan filter to the list
629 * @adapter: board private structure
630 * @vlan: VLAN tag
631 *
632 * Returns ptr to the filter object or NULL when no memory available.
633 **/
634 static struct
635 iavf_vlan_filter *iavf_add_vlan(struct iavf_adapter *adapter, u16 vlan)
636 {
637 struct iavf_vlan_filter *f = NULL;
638
639 spin_lock_bh(&adapter->mac_vlan_list_lock);
640
641 f = iavf_find_vlan(adapter, vlan);
642 if (!f) {
643 f = kzalloc(sizeof(*f), GFP_ATOMIC);
644 if (!f)
645 goto clearout;
646
647 f->vlan = vlan;
648
649 list_add_tail(&f->list, &adapter->vlan_filter_list);
650 f->add = true;
651 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
652 }
653
654 clearout:
655 spin_unlock_bh(&adapter->mac_vlan_list_lock);
656 return f;
657 }
658
659 /**
660 * iavf_del_vlan - Remove a vlan filter from the list
661 * @adapter: board private structure
662 * @vlan: VLAN tag
663 **/
664 static void iavf_del_vlan(struct iavf_adapter *adapter, u16 vlan)
665 {
666 struct iavf_vlan_filter *f;
667
668 spin_lock_bh(&adapter->mac_vlan_list_lock);
669
670 f = iavf_find_vlan(adapter, vlan);
671 if (f) {
672 f->remove = true;
673 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
674 }
675
676 spin_unlock_bh(&adapter->mac_vlan_list_lock);
677 }
678
679 /**
680 * iavf_vlan_rx_add_vid - Add a VLAN filter to a device
681 * @netdev: network device struct
682 * @proto: unused protocol data
683 * @vid: VLAN tag
684 **/
685 static int iavf_vlan_rx_add_vid(struct net_device *netdev,
686 __always_unused __be16 proto, u16 vid)
687 {
688 struct iavf_adapter *adapter = netdev_priv(netdev);
689
690 if (!VLAN_ALLOWED(adapter))
691 return -EIO;
692 if (iavf_add_vlan(adapter, vid) == NULL)
693 return -ENOMEM;
694 return 0;
695 }
696
697 /**
698 * iavf_vlan_rx_kill_vid - Remove a VLAN filter from a device
699 * @netdev: network device struct
700 * @proto: unused protocol data
701 * @vid: VLAN tag
702 **/
703 static int iavf_vlan_rx_kill_vid(struct net_device *netdev,
704 __always_unused __be16 proto, u16 vid)
705 {
706 struct iavf_adapter *adapter = netdev_priv(netdev);
707
708 if (VLAN_ALLOWED(adapter)) {
709 iavf_del_vlan(adapter, vid);
710 return 0;
711 }
712 return -EIO;
713 }
714
715 /**
716 * iavf_find_filter - Search filter list for specific mac filter
717 * @adapter: board private structure
718 * @macaddr: the MAC address
719 *
720 * Returns ptr to the filter object or NULL. Must be called while holding the
721 * mac_vlan_list_lock.
722 **/
723 static struct
724 iavf_mac_filter *iavf_find_filter(struct iavf_adapter *adapter,
725 const u8 *macaddr)
726 {
727 struct iavf_mac_filter *f;
728
729 if (!macaddr)
730 return NULL;
731
732 list_for_each_entry(f, &adapter->mac_filter_list, list) {
733 if (ether_addr_equal(macaddr, f->macaddr))
734 return f;
735 }
736 return NULL;
737 }
738
739 /**
740 * iavf_add_filter - Add a mac filter to the filter list
741 * @adapter: board private structure
742 * @macaddr: the MAC address
743 *
744 * Returns ptr to the filter object or NULL when no memory available.
745 **/
746 static struct
747 iavf_mac_filter *iavf_add_filter(struct iavf_adapter *adapter,
748 const u8 *macaddr)
749 {
750 struct iavf_mac_filter *f;
751
752 if (!macaddr)
753 return NULL;
754
755 f = iavf_find_filter(adapter, macaddr);
756 if (!f) {
757 f = kzalloc(sizeof(*f), GFP_ATOMIC);
758 if (!f)
759 return f;
760
761 ether_addr_copy(f->macaddr, macaddr);
762
763 list_add_tail(&f->list, &adapter->mac_filter_list);
764 f->add = true;
765 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
766 } else {
767 f->remove = false;
768 }
769
770 return f;
771 }
772
773 /**
774 * iavf_set_mac - NDO callback to set port mac address
775 * @netdev: network interface device structure
776 * @p: pointer to an address structure
777 *
778 * Returns 0 on success, negative on failure
779 **/
780 static int iavf_set_mac(struct net_device *netdev, void *p)
781 {
782 struct iavf_adapter *adapter = netdev_priv(netdev);
783 struct iavf_hw *hw = &adapter->hw;
784 struct iavf_mac_filter *f;
785 struct sockaddr *addr = p;
786
787 if (!is_valid_ether_addr(addr->sa_data))
788 return -EADDRNOTAVAIL;
789
790 if (ether_addr_equal(netdev->dev_addr, addr->sa_data))
791 return 0;
792
793 spin_lock_bh(&adapter->mac_vlan_list_lock);
794
795 f = iavf_find_filter(adapter, hw->mac.addr);
796 if (f) {
797 f->remove = true;
798 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
799 }
800
801 f = iavf_add_filter(adapter, addr->sa_data);
802
803 spin_unlock_bh(&adapter->mac_vlan_list_lock);
804
805 if (f) {
806 ether_addr_copy(hw->mac.addr, addr->sa_data);
807 }
808
809 return (f == NULL) ? -ENOMEM : 0;
810 }
811
812 /**
813 * iavf_addr_sync - Callback for dev_(mc|uc)_sync to add address
814 * @netdev: the netdevice
815 * @addr: address to add
816 *
817 * Called by __dev_(mc|uc)_sync when an address needs to be added. We call
818 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
819 */
820 static int iavf_addr_sync(struct net_device *netdev, const u8 *addr)
821 {
822 struct iavf_adapter *adapter = netdev_priv(netdev);
823
824 if (iavf_add_filter(adapter, addr))
825 return 0;
826 else
827 return -ENOMEM;
828 }
829
830 /**
831 * iavf_addr_unsync - Callback for dev_(mc|uc)_sync to remove address
832 * @netdev: the netdevice
833 * @addr: address to add
834 *
835 * Called by __dev_(mc|uc)_sync when an address needs to be removed. We call
836 * __dev_(uc|mc)_sync from .set_rx_mode and guarantee to hold the hash lock.
837 */
838 static int iavf_addr_unsync(struct net_device *netdev, const u8 *addr)
839 {
840 struct iavf_adapter *adapter = netdev_priv(netdev);
841 struct iavf_mac_filter *f;
842
843 /* Under some circumstances, we might receive a request to delete
844 * our own device address from our uc list. Because we store the
845 * device address in the VSI's MAC/VLAN filter list, we need to ignore
846 * such requests and not delete our device address from this list.
847 */
848 if (ether_addr_equal(addr, netdev->dev_addr))
849 return 0;
850
851 f = iavf_find_filter(adapter, addr);
852 if (f) {
853 f->remove = true;
854 adapter->aq_required |= IAVF_FLAG_AQ_DEL_MAC_FILTER;
855 }
856 return 0;
857 }
858
859 /**
860 * iavf_set_rx_mode - NDO callback to set the netdev filters
861 * @netdev: network interface device structure
862 **/
863 static void iavf_set_rx_mode(struct net_device *netdev)
864 {
865 struct iavf_adapter *adapter = netdev_priv(netdev);
866
867 spin_lock_bh(&adapter->mac_vlan_list_lock);
868 __dev_uc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
869 __dev_mc_sync(netdev, iavf_addr_sync, iavf_addr_unsync);
870 spin_unlock_bh(&adapter->mac_vlan_list_lock);
871
872 if (netdev->flags & IFF_PROMISC &&
873 !(adapter->flags & IAVF_FLAG_PROMISC_ON))
874 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_PROMISC;
875 else if (!(netdev->flags & IFF_PROMISC) &&
876 adapter->flags & IAVF_FLAG_PROMISC_ON)
877 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_PROMISC;
878
879 if (netdev->flags & IFF_ALLMULTI &&
880 !(adapter->flags & IAVF_FLAG_ALLMULTI_ON))
881 adapter->aq_required |= IAVF_FLAG_AQ_REQUEST_ALLMULTI;
882 else if (!(netdev->flags & IFF_ALLMULTI) &&
883 adapter->flags & IAVF_FLAG_ALLMULTI_ON)
884 adapter->aq_required |= IAVF_FLAG_AQ_RELEASE_ALLMULTI;
885 }
886
887 /**
888 * iavf_napi_enable_all - enable NAPI on all queue vectors
889 * @adapter: board private structure
890 **/
891 static void iavf_napi_enable_all(struct iavf_adapter *adapter)
892 {
893 int q_idx;
894 struct iavf_q_vector *q_vector;
895 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
896
897 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
898 struct napi_struct *napi;
899
900 q_vector = &adapter->q_vectors[q_idx];
901 napi = &q_vector->napi;
902 napi_enable(napi);
903 }
904 }
905
906 /**
907 * iavf_napi_disable_all - disable NAPI on all queue vectors
908 * @adapter: board private structure
909 **/
910 static void iavf_napi_disable_all(struct iavf_adapter *adapter)
911 {
912 int q_idx;
913 struct iavf_q_vector *q_vector;
914 int q_vectors = adapter->num_msix_vectors - NONQ_VECS;
915
916 for (q_idx = 0; q_idx < q_vectors; q_idx++) {
917 q_vector = &adapter->q_vectors[q_idx];
918 napi_disable(&q_vector->napi);
919 }
920 }
921
922 /**
923 * iavf_configure - set up transmit and receive data structures
924 * @adapter: board private structure
925 **/
926 static void iavf_configure(struct iavf_adapter *adapter)
927 {
928 struct net_device *netdev = adapter->netdev;
929 int i;
930
931 iavf_set_rx_mode(netdev);
932
933 iavf_configure_tx(adapter);
934 iavf_configure_rx(adapter);
935 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_QUEUES;
936
937 for (i = 0; i < adapter->num_active_queues; i++) {
938 struct iavf_ring *ring = &adapter->rx_rings[i];
939
940 iavf_alloc_rx_buffers(ring, IAVF_DESC_UNUSED(ring));
941 }
942 }
943
944 /**
945 * iavf_up_complete - Finish the last steps of bringing up a connection
946 * @adapter: board private structure
947 *
948 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
949 **/
950 static void iavf_up_complete(struct iavf_adapter *adapter)
951 {
952 adapter->state = __IAVF_RUNNING;
953 clear_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
954
955 iavf_napi_enable_all(adapter);
956
957 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_QUEUES;
958 if (CLIENT_ENABLED(adapter))
959 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_OPEN;
960 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
961 }
962
963 /**
964 * iavf_down - Shutdown the connection processing
965 * @adapter: board private structure
966 *
967 * Expects to be called while holding the __IAVF_IN_CRITICAL_TASK bit lock.
968 **/
969 void iavf_down(struct iavf_adapter *adapter)
970 {
971 struct net_device *netdev = adapter->netdev;
972 struct iavf_vlan_filter *vlf;
973 struct iavf_mac_filter *f;
974 struct iavf_cloud_filter *cf;
975
976 if (adapter->state <= __IAVF_DOWN_PENDING)
977 return;
978
979 netif_carrier_off(netdev);
980 netif_tx_disable(netdev);
981 adapter->link_up = false;
982 iavf_napi_disable_all(adapter);
983 iavf_irq_disable(adapter);
984
985 spin_lock_bh(&adapter->mac_vlan_list_lock);
986
987 /* clear the sync flag on all filters */
988 __dev_uc_unsync(adapter->netdev, NULL);
989 __dev_mc_unsync(adapter->netdev, NULL);
990
991 /* remove all MAC filters */
992 list_for_each_entry(f, &adapter->mac_filter_list, list) {
993 f->remove = true;
994 }
995
996 /* remove all VLAN filters */
997 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
998 vlf->remove = true;
999 }
1000
1001 spin_unlock_bh(&adapter->mac_vlan_list_lock);
1002
1003 /* remove all cloud filters */
1004 spin_lock_bh(&adapter->cloud_filter_list_lock);
1005 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
1006 cf->del = true;
1007 }
1008 spin_unlock_bh(&adapter->cloud_filter_list_lock);
1009
1010 if (!(adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) &&
1011 adapter->state != __IAVF_RESETTING) {
1012 /* cancel any current operation */
1013 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1014 /* Schedule operations to close down the HW. Don't wait
1015 * here for this to complete. The watchdog is still running
1016 * and it will take care of this.
1017 */
1018 adapter->aq_required = IAVF_FLAG_AQ_DEL_MAC_FILTER;
1019 adapter->aq_required |= IAVF_FLAG_AQ_DEL_VLAN_FILTER;
1020 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
1021 adapter->aq_required |= IAVF_FLAG_AQ_DISABLE_QUEUES;
1022 }
1023
1024 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 0);
1025 }
1026
1027 /**
1028 * iavf_acquire_msix_vectors - Setup the MSIX capability
1029 * @adapter: board private structure
1030 * @vectors: number of vectors to request
1031 *
1032 * Work with the OS to set up the MSIX vectors needed.
1033 *
1034 * Returns 0 on success, negative on failure
1035 **/
1036 static int
1037 iavf_acquire_msix_vectors(struct iavf_adapter *adapter, int vectors)
1038 {
1039 int err, vector_threshold;
1040
1041 /* We'll want at least 3 (vector_threshold):
1042 * 0) Other (Admin Queue and link, mostly)
1043 * 1) TxQ[0] Cleanup
1044 * 2) RxQ[0] Cleanup
1045 */
1046 vector_threshold = MIN_MSIX_COUNT;
1047
1048 /* The more we get, the more we will assign to Tx/Rx Cleanup
1049 * for the separate queues...where Rx Cleanup >= Tx Cleanup.
1050 * Right now, we simply care about how many we'll get; we'll
1051 * set them up later while requesting irq's.
1052 */
1053 err = pci_enable_msix_range(adapter->pdev, adapter->msix_entries,
1054 vector_threshold, vectors);
1055 if (err < 0) {
1056 dev_err(&adapter->pdev->dev, "Unable to allocate MSI-X interrupts\n");
1057 kfree(adapter->msix_entries);
1058 adapter->msix_entries = NULL;
1059 return err;
1060 }
1061
1062 /* Adjust for only the vectors we'll use, which is minimum
1063 * of max_msix_q_vectors + NONQ_VECS, or the number of
1064 * vectors we were allocated.
1065 */
1066 adapter->num_msix_vectors = err;
1067 return 0;
1068 }
1069
1070 /**
1071 * iavf_free_queues - Free memory for all rings
1072 * @adapter: board private structure to initialize
1073 *
1074 * Free all of the memory associated with queue pairs.
1075 **/
1076 static void iavf_free_queues(struct iavf_adapter *adapter)
1077 {
1078 if (!adapter->vsi_res)
1079 return;
1080 adapter->num_active_queues = 0;
1081 kfree(adapter->tx_rings);
1082 adapter->tx_rings = NULL;
1083 kfree(adapter->rx_rings);
1084 adapter->rx_rings = NULL;
1085 }
1086
1087 /**
1088 * iavf_alloc_queues - Allocate memory for all rings
1089 * @adapter: board private structure to initialize
1090 *
1091 * We allocate one ring per queue at run-time since we don't know the
1092 * number of queues at compile-time. The polling_netdev array is
1093 * intended for Multiqueue, but should work fine with a single queue.
1094 **/
1095 static int iavf_alloc_queues(struct iavf_adapter *adapter)
1096 {
1097 int i, num_active_queues;
1098
1099 /* If we're in reset reallocating queues we don't actually know yet for
1100 * certain the PF gave us the number of queues we asked for but we'll
1101 * assume it did. Once basic reset is finished we'll confirm once we
1102 * start negotiating config with PF.
1103 */
1104 if (adapter->num_req_queues)
1105 num_active_queues = adapter->num_req_queues;
1106 else if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1107 adapter->num_tc)
1108 num_active_queues = adapter->ch_config.total_qps;
1109 else
1110 num_active_queues = min_t(int,
1111 adapter->vsi_res->num_queue_pairs,
1112 (int)(num_online_cpus()));
1113
1114
1115 adapter->tx_rings = kcalloc(num_active_queues,
1116 sizeof(struct iavf_ring), GFP_KERNEL);
1117 if (!adapter->tx_rings)
1118 goto err_out;
1119 adapter->rx_rings = kcalloc(num_active_queues,
1120 sizeof(struct iavf_ring), GFP_KERNEL);
1121 if (!adapter->rx_rings)
1122 goto err_out;
1123
1124 for (i = 0; i < num_active_queues; i++) {
1125 struct iavf_ring *tx_ring;
1126 struct iavf_ring *rx_ring;
1127
1128 tx_ring = &adapter->tx_rings[i];
1129
1130 tx_ring->queue_index = i;
1131 tx_ring->netdev = adapter->netdev;
1132 tx_ring->dev = &adapter->pdev->dev;
1133 tx_ring->count = adapter->tx_desc_count;
1134 tx_ring->itr_setting = IAVF_ITR_TX_DEF;
1135 if (adapter->flags & IAVF_FLAG_WB_ON_ITR_CAPABLE)
1136 tx_ring->flags |= IAVF_TXR_FLAGS_WB_ON_ITR;
1137
1138 rx_ring = &adapter->rx_rings[i];
1139 rx_ring->queue_index = i;
1140 rx_ring->netdev = adapter->netdev;
1141 rx_ring->dev = &adapter->pdev->dev;
1142 rx_ring->count = adapter->rx_desc_count;
1143 rx_ring->itr_setting = IAVF_ITR_RX_DEF;
1144 }
1145
1146 adapter->num_active_queues = num_active_queues;
1147
1148 return 0;
1149
1150 err_out:
1151 iavf_free_queues(adapter);
1152 return -ENOMEM;
1153 }
1154
1155 /**
1156 * iavf_set_interrupt_capability - set MSI-X or FAIL if not supported
1157 * @adapter: board private structure to initialize
1158 *
1159 * Attempt to configure the interrupts using the best available
1160 * capabilities of the hardware and the kernel.
1161 **/
1162 static int iavf_set_interrupt_capability(struct iavf_adapter *adapter)
1163 {
1164 int vector, v_budget;
1165 int pairs = 0;
1166 int err = 0;
1167
1168 if (!adapter->vsi_res) {
1169 err = -EIO;
1170 goto out;
1171 }
1172 pairs = adapter->num_active_queues;
1173
1174 /* It's easy to be greedy for MSI-X vectors, but it really doesn't do
1175 * us much good if we have more vectors than CPUs. However, we already
1176 * limit the total number of queues by the number of CPUs so we do not
1177 * need any further limiting here.
1178 */
1179 v_budget = min_t(int, pairs + NONQ_VECS,
1180 (int)adapter->vf_res->max_vectors);
1181
1182 adapter->msix_entries = kcalloc(v_budget,
1183 sizeof(struct msix_entry), GFP_KERNEL);
1184 if (!adapter->msix_entries) {
1185 err = -ENOMEM;
1186 goto out;
1187 }
1188
1189 for (vector = 0; vector < v_budget; vector++)
1190 adapter->msix_entries[vector].entry = vector;
1191
1192 err = iavf_acquire_msix_vectors(adapter, v_budget);
1193
1194 out:
1195 netif_set_real_num_rx_queues(adapter->netdev, pairs);
1196 netif_set_real_num_tx_queues(adapter->netdev, pairs);
1197 return err;
1198 }
1199
1200 /**
1201 * iavf_config_rss_aq - Configure RSS keys and lut by using AQ commands
1202 * @adapter: board private structure
1203 *
1204 * Return 0 on success, negative on failure
1205 **/
1206 static int iavf_config_rss_aq(struct iavf_adapter *adapter)
1207 {
1208 struct iavf_aqc_get_set_rss_key_data *rss_key =
1209 (struct iavf_aqc_get_set_rss_key_data *)adapter->rss_key;
1210 struct iavf_hw *hw = &adapter->hw;
1211 int ret = 0;
1212
1213 if (adapter->current_op != VIRTCHNL_OP_UNKNOWN) {
1214 /* bail because we already have a command pending */
1215 dev_err(&adapter->pdev->dev, "Cannot configure RSS, command %d pending\n",
1216 adapter->current_op);
1217 return -EBUSY;
1218 }
1219
1220 ret = iavf_aq_set_rss_key(hw, adapter->vsi.id, rss_key);
1221 if (ret) {
1222 dev_err(&adapter->pdev->dev, "Cannot set RSS key, err %s aq_err %s\n",
1223 iavf_stat_str(hw, ret),
1224 iavf_aq_str(hw, hw->aq.asq_last_status));
1225 return ret;
1226
1227 }
1228
1229 ret = iavf_aq_set_rss_lut(hw, adapter->vsi.id, false,
1230 adapter->rss_lut, adapter->rss_lut_size);
1231 if (ret) {
1232 dev_err(&adapter->pdev->dev, "Cannot set RSS lut, err %s aq_err %s\n",
1233 iavf_stat_str(hw, ret),
1234 iavf_aq_str(hw, hw->aq.asq_last_status));
1235 }
1236
1237 return ret;
1238
1239 }
1240
1241 /**
1242 * iavf_config_rss_reg - Configure RSS keys and lut by writing registers
1243 * @adapter: board private structure
1244 *
1245 * Returns 0 on success, negative on failure
1246 **/
1247 static int iavf_config_rss_reg(struct iavf_adapter *adapter)
1248 {
1249 struct iavf_hw *hw = &adapter->hw;
1250 u32 *dw;
1251 u16 i;
1252
1253 dw = (u32 *)adapter->rss_key;
1254 for (i = 0; i <= adapter->rss_key_size / 4; i++)
1255 wr32(hw, IAVF_VFQF_HKEY(i), dw[i]);
1256
1257 dw = (u32 *)adapter->rss_lut;
1258 for (i = 0; i <= adapter->rss_lut_size / 4; i++)
1259 wr32(hw, IAVF_VFQF_HLUT(i), dw[i]);
1260
1261 iavf_flush(hw);
1262
1263 return 0;
1264 }
1265
1266 /**
1267 * iavf_config_rss - Configure RSS keys and lut
1268 * @adapter: board private structure
1269 *
1270 * Returns 0 on success, negative on failure
1271 **/
1272 int iavf_config_rss(struct iavf_adapter *adapter)
1273 {
1274
1275 if (RSS_PF(adapter)) {
1276 adapter->aq_required |= IAVF_FLAG_AQ_SET_RSS_LUT |
1277 IAVF_FLAG_AQ_SET_RSS_KEY;
1278 return 0;
1279 } else if (RSS_AQ(adapter)) {
1280 return iavf_config_rss_aq(adapter);
1281 } else {
1282 return iavf_config_rss_reg(adapter);
1283 }
1284 }
1285
1286 /**
1287 * iavf_fill_rss_lut - Fill the lut with default values
1288 * @adapter: board private structure
1289 **/
1290 static void iavf_fill_rss_lut(struct iavf_adapter *adapter)
1291 {
1292 u16 i;
1293
1294 for (i = 0; i < adapter->rss_lut_size; i++)
1295 adapter->rss_lut[i] = i % adapter->num_active_queues;
1296 }
1297
1298 /**
1299 * iavf_init_rss - Prepare for RSS
1300 * @adapter: board private structure
1301 *
1302 * Return 0 on success, negative on failure
1303 **/
1304 static int iavf_init_rss(struct iavf_adapter *adapter)
1305 {
1306 struct iavf_hw *hw = &adapter->hw;
1307 int ret;
1308
1309 if (!RSS_PF(adapter)) {
1310 /* Enable PCTYPES for RSS, TCP/UDP with IPv4/IPv6 */
1311 if (adapter->vf_res->vf_cap_flags &
1312 VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
1313 adapter->hena = IAVF_DEFAULT_RSS_HENA_EXPANDED;
1314 else
1315 adapter->hena = IAVF_DEFAULT_RSS_HENA;
1316
1317 wr32(hw, IAVF_VFQF_HENA(0), (u32)adapter->hena);
1318 wr32(hw, IAVF_VFQF_HENA(1), (u32)(adapter->hena >> 32));
1319 }
1320
1321 iavf_fill_rss_lut(adapter);
1322 netdev_rss_key_fill((void *)adapter->rss_key, adapter->rss_key_size);
1323 ret = iavf_config_rss(adapter);
1324
1325 return ret;
1326 }
1327
1328 /**
1329 * iavf_alloc_q_vectors - Allocate memory for interrupt vectors
1330 * @adapter: board private structure to initialize
1331 *
1332 * We allocate one q_vector per queue interrupt. If allocation fails we
1333 * return -ENOMEM.
1334 **/
1335 static int iavf_alloc_q_vectors(struct iavf_adapter *adapter)
1336 {
1337 int q_idx = 0, num_q_vectors;
1338 struct iavf_q_vector *q_vector;
1339
1340 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1341 adapter->q_vectors = kcalloc(num_q_vectors, sizeof(*q_vector),
1342 GFP_KERNEL);
1343 if (!adapter->q_vectors)
1344 return -ENOMEM;
1345
1346 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1347 q_vector = &adapter->q_vectors[q_idx];
1348 q_vector->adapter = adapter;
1349 q_vector->vsi = &adapter->vsi;
1350 q_vector->v_idx = q_idx;
1351 q_vector->reg_idx = q_idx;
1352 cpumask_copy(&q_vector->affinity_mask, cpu_possible_mask);
1353 netif_napi_add(adapter->netdev, &q_vector->napi,
1354 iavf_napi_poll, NAPI_POLL_WEIGHT);
1355 }
1356
1357 return 0;
1358 }
1359
1360 /**
1361 * iavf_free_q_vectors - Free memory allocated for interrupt vectors
1362 * @adapter: board private structure to initialize
1363 *
1364 * This function frees the memory allocated to the q_vectors. In addition if
1365 * NAPI is enabled it will delete any references to the NAPI struct prior
1366 * to freeing the q_vector.
1367 **/
1368 static void iavf_free_q_vectors(struct iavf_adapter *adapter)
1369 {
1370 int q_idx, num_q_vectors;
1371 int napi_vectors;
1372
1373 if (!adapter->q_vectors)
1374 return;
1375
1376 num_q_vectors = adapter->num_msix_vectors - NONQ_VECS;
1377 napi_vectors = adapter->num_active_queues;
1378
1379 for (q_idx = 0; q_idx < num_q_vectors; q_idx++) {
1380 struct iavf_q_vector *q_vector = &adapter->q_vectors[q_idx];
1381
1382 if (q_idx < napi_vectors)
1383 netif_napi_del(&q_vector->napi);
1384 }
1385 kfree(adapter->q_vectors);
1386 adapter->q_vectors = NULL;
1387 }
1388
1389 /**
1390 * iavf_reset_interrupt_capability - Reset MSIX setup
1391 * @adapter: board private structure
1392 *
1393 **/
1394 void iavf_reset_interrupt_capability(struct iavf_adapter *adapter)
1395 {
1396 if (!adapter->msix_entries)
1397 return;
1398
1399 pci_disable_msix(adapter->pdev);
1400 kfree(adapter->msix_entries);
1401 adapter->msix_entries = NULL;
1402 }
1403
1404 /**
1405 * iavf_init_interrupt_scheme - Determine if MSIX is supported and init
1406 * @adapter: board private structure to initialize
1407 *
1408 **/
1409 int iavf_init_interrupt_scheme(struct iavf_adapter *adapter)
1410 {
1411 int err;
1412
1413 err = iavf_alloc_queues(adapter);
1414 if (err) {
1415 dev_err(&adapter->pdev->dev,
1416 "Unable to allocate memory for queues\n");
1417 goto err_alloc_queues;
1418 }
1419
1420 rtnl_lock();
1421 err = iavf_set_interrupt_capability(adapter);
1422 rtnl_unlock();
1423 if (err) {
1424 dev_err(&adapter->pdev->dev,
1425 "Unable to setup interrupt capabilities\n");
1426 goto err_set_interrupt;
1427 }
1428
1429 err = iavf_alloc_q_vectors(adapter);
1430 if (err) {
1431 dev_err(&adapter->pdev->dev,
1432 "Unable to allocate memory for queue vectors\n");
1433 goto err_alloc_q_vectors;
1434 }
1435
1436 /* If we've made it so far while ADq flag being ON, then we haven't
1437 * bailed out anywhere in middle. And ADq isn't just enabled but actual
1438 * resources have been allocated in the reset path.
1439 * Now we can truly claim that ADq is enabled.
1440 */
1441 if ((adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
1442 adapter->num_tc)
1443 dev_info(&adapter->pdev->dev, "ADq Enabled, %u TCs created",
1444 adapter->num_tc);
1445
1446 dev_info(&adapter->pdev->dev, "Multiqueue %s: Queue pair count = %u",
1447 (adapter->num_active_queues > 1) ? "Enabled" : "Disabled",
1448 adapter->num_active_queues);
1449
1450 return 0;
1451 err_alloc_q_vectors:
1452 iavf_reset_interrupt_capability(adapter);
1453 err_set_interrupt:
1454 iavf_free_queues(adapter);
1455 err_alloc_queues:
1456 return err;
1457 }
1458
1459 /**
1460 * iavf_free_rss - Free memory used by RSS structs
1461 * @adapter: board private structure
1462 **/
1463 static void iavf_free_rss(struct iavf_adapter *adapter)
1464 {
1465 kfree(adapter->rss_key);
1466 adapter->rss_key = NULL;
1467
1468 kfree(adapter->rss_lut);
1469 adapter->rss_lut = NULL;
1470 }
1471
1472 /**
1473 * iavf_reinit_interrupt_scheme - Reallocate queues and vectors
1474 * @adapter: board private structure
1475 *
1476 * Returns 0 on success, negative on failure
1477 **/
1478 static int iavf_reinit_interrupt_scheme(struct iavf_adapter *adapter)
1479 {
1480 struct net_device *netdev = adapter->netdev;
1481 int err;
1482
1483 if (netif_running(netdev))
1484 iavf_free_traffic_irqs(adapter);
1485 iavf_free_misc_irq(adapter);
1486 iavf_reset_interrupt_capability(adapter);
1487 iavf_free_q_vectors(adapter);
1488 iavf_free_queues(adapter);
1489
1490 err = iavf_init_interrupt_scheme(adapter);
1491 if (err)
1492 goto err;
1493
1494 netif_tx_stop_all_queues(netdev);
1495
1496 err = iavf_request_misc_irq(adapter);
1497 if (err)
1498 goto err;
1499
1500 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1501
1502 iavf_map_rings_to_vectors(adapter);
1503
1504 if (RSS_AQ(adapter))
1505 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1506 else
1507 err = iavf_init_rss(adapter);
1508 err:
1509 return err;
1510 }
1511
1512 /**
1513 * iavf_process_aq_command - process aq_required flags
1514 * and sends aq command
1515 * @adapter: pointer to iavf adapter structure
1516 *
1517 * Returns 0 on success
1518 * Returns error code if no command was sent
1519 * or error code if the command failed.
1520 **/
1521 static int iavf_process_aq_command(struct iavf_adapter *adapter)
1522 {
1523 if (adapter->aq_required & IAVF_FLAG_AQ_GET_CONFIG)
1524 return iavf_send_vf_config_msg(adapter);
1525 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_QUEUES) {
1526 iavf_disable_queues(adapter);
1527 return 0;
1528 }
1529
1530 if (adapter->aq_required & IAVF_FLAG_AQ_MAP_VECTORS) {
1531 iavf_map_queues(adapter);
1532 return 0;
1533 }
1534
1535 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_MAC_FILTER) {
1536 iavf_add_ether_addrs(adapter);
1537 return 0;
1538 }
1539
1540 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_VLAN_FILTER) {
1541 iavf_add_vlans(adapter);
1542 return 0;
1543 }
1544
1545 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_MAC_FILTER) {
1546 iavf_del_ether_addrs(adapter);
1547 return 0;
1548 }
1549
1550 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_VLAN_FILTER) {
1551 iavf_del_vlans(adapter);
1552 return 0;
1553 }
1554
1555 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING) {
1556 iavf_enable_vlan_stripping(adapter);
1557 return 0;
1558 }
1559
1560 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING) {
1561 iavf_disable_vlan_stripping(adapter);
1562 return 0;
1563 }
1564
1565 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_QUEUES) {
1566 iavf_configure_queues(adapter);
1567 return 0;
1568 }
1569
1570 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_QUEUES) {
1571 iavf_enable_queues(adapter);
1572 return 0;
1573 }
1574
1575 if (adapter->aq_required & IAVF_FLAG_AQ_CONFIGURE_RSS) {
1576 /* This message goes straight to the firmware, not the
1577 * PF, so we don't have to set current_op as we will
1578 * not get a response through the ARQ.
1579 */
1580 adapter->aq_required &= ~IAVF_FLAG_AQ_CONFIGURE_RSS;
1581 return 0;
1582 }
1583 if (adapter->aq_required & IAVF_FLAG_AQ_GET_HENA) {
1584 iavf_get_hena(adapter);
1585 return 0;
1586 }
1587 if (adapter->aq_required & IAVF_FLAG_AQ_SET_HENA) {
1588 iavf_set_hena(adapter);
1589 return 0;
1590 }
1591 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_KEY) {
1592 iavf_set_rss_key(adapter);
1593 return 0;
1594 }
1595 if (adapter->aq_required & IAVF_FLAG_AQ_SET_RSS_LUT) {
1596 iavf_set_rss_lut(adapter);
1597 return 0;
1598 }
1599
1600 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_PROMISC) {
1601 iavf_set_promiscuous(adapter, FLAG_VF_UNICAST_PROMISC |
1602 FLAG_VF_MULTICAST_PROMISC);
1603 return 0;
1604 }
1605
1606 if (adapter->aq_required & IAVF_FLAG_AQ_REQUEST_ALLMULTI) {
1607 iavf_set_promiscuous(adapter, FLAG_VF_MULTICAST_PROMISC);
1608 return 0;
1609 }
1610
1611 if ((adapter->aq_required & IAVF_FLAG_AQ_RELEASE_PROMISC) &&
1612 (adapter->aq_required & IAVF_FLAG_AQ_RELEASE_ALLMULTI)) {
1613 iavf_set_promiscuous(adapter, 0);
1614 return 0;
1615 }
1616
1617 if (adapter->aq_required & IAVF_FLAG_AQ_ENABLE_CHANNELS) {
1618 iavf_enable_channels(adapter);
1619 return 0;
1620 }
1621
1622 if (adapter->aq_required & IAVF_FLAG_AQ_DISABLE_CHANNELS) {
1623 iavf_disable_channels(adapter);
1624 return 0;
1625 }
1626 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1627 iavf_add_cloud_filter(adapter);
1628 return 0;
1629 }
1630
1631 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1632 iavf_del_cloud_filter(adapter);
1633 return 0;
1634 }
1635 if (adapter->aq_required & IAVF_FLAG_AQ_DEL_CLOUD_FILTER) {
1636 iavf_del_cloud_filter(adapter);
1637 return 0;
1638 }
1639 if (adapter->aq_required & IAVF_FLAG_AQ_ADD_CLOUD_FILTER) {
1640 iavf_add_cloud_filter(adapter);
1641 return 0;
1642 }
1643 return -EAGAIN;
1644 }
1645
1646 /**
1647 * iavf_startup - first step of driver startup
1648 * @adapter: board private structure
1649 *
1650 * Function process __IAVF_STARTUP driver state.
1651 * When success the state is changed to __IAVF_INIT_VERSION_CHECK
1652 * when fails it returns -EAGAIN
1653 **/
1654 static int iavf_startup(struct iavf_adapter *adapter)
1655 {
1656 struct pci_dev *pdev = adapter->pdev;
1657 struct iavf_hw *hw = &adapter->hw;
1658 int err;
1659
1660 WARN_ON(adapter->state != __IAVF_STARTUP);
1661
1662 /* driver loaded, probe complete */
1663 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1664 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
1665 err = iavf_set_mac_type(hw);
1666 if (err) {
1667 dev_err(&pdev->dev, "Failed to set MAC type (%d)\n", err);
1668 goto err;
1669 }
1670
1671 err = iavf_check_reset_complete(hw);
1672 if (err) {
1673 dev_info(&pdev->dev, "Device is still in reset (%d), retrying\n",
1674 err);
1675 goto err;
1676 }
1677 hw->aq.num_arq_entries = IAVF_AQ_LEN;
1678 hw->aq.num_asq_entries = IAVF_AQ_LEN;
1679 hw->aq.arq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1680 hw->aq.asq_buf_size = IAVF_MAX_AQ_BUF_SIZE;
1681
1682 err = iavf_init_adminq(hw);
1683 if (err) {
1684 dev_err(&pdev->dev, "Failed to init Admin Queue (%d)\n", err);
1685 goto err;
1686 }
1687 err = iavf_send_api_ver(adapter);
1688 if (err) {
1689 dev_err(&pdev->dev, "Unable to send to PF (%d)\n", err);
1690 iavf_shutdown_adminq(hw);
1691 goto err;
1692 }
1693 adapter->state = __IAVF_INIT_VERSION_CHECK;
1694 err:
1695 return err;
1696 }
1697
1698 /**
1699 * iavf_init_version_check - second step of driver startup
1700 * @adapter: board private structure
1701 *
1702 * Function process __IAVF_INIT_VERSION_CHECK driver state.
1703 * When success the state is changed to __IAVF_INIT_GET_RESOURCES
1704 * when fails it returns -EAGAIN
1705 **/
1706 static int iavf_init_version_check(struct iavf_adapter *adapter)
1707 {
1708 struct pci_dev *pdev = adapter->pdev;
1709 struct iavf_hw *hw = &adapter->hw;
1710 int err = -EAGAIN;
1711
1712 WARN_ON(adapter->state != __IAVF_INIT_VERSION_CHECK);
1713
1714 if (!iavf_asq_done(hw)) {
1715 dev_err(&pdev->dev, "Admin queue command never completed\n");
1716 iavf_shutdown_adminq(hw);
1717 adapter->state = __IAVF_STARTUP;
1718 goto err;
1719 }
1720
1721 /* aq msg sent, awaiting reply */
1722 err = iavf_verify_api_ver(adapter);
1723 if (err) {
1724 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK)
1725 err = iavf_send_api_ver(adapter);
1726 else
1727 dev_err(&pdev->dev, "Unsupported PF API version %d.%d, expected %d.%d\n",
1728 adapter->pf_version.major,
1729 adapter->pf_version.minor,
1730 VIRTCHNL_VERSION_MAJOR,
1731 VIRTCHNL_VERSION_MINOR);
1732 goto err;
1733 }
1734 err = iavf_send_vf_config_msg(adapter);
1735 if (err) {
1736 dev_err(&pdev->dev, "Unable to send config request (%d)\n",
1737 err);
1738 goto err;
1739 }
1740 adapter->state = __IAVF_INIT_GET_RESOURCES;
1741
1742 err:
1743 return err;
1744 }
1745
1746 /**
1747 * iavf_init_get_resources - third step of driver startup
1748 * @adapter: board private structure
1749 *
1750 * Function process __IAVF_INIT_GET_RESOURCES driver state and
1751 * finishes driver initialization procedure.
1752 * When success the state is changed to __IAVF_DOWN
1753 * when fails it returns -EAGAIN
1754 **/
1755 static int iavf_init_get_resources(struct iavf_adapter *adapter)
1756 {
1757 struct net_device *netdev = adapter->netdev;
1758 struct pci_dev *pdev = adapter->pdev;
1759 struct iavf_hw *hw = &adapter->hw;
1760 int err = 0, bufsz;
1761
1762 WARN_ON(adapter->state != __IAVF_INIT_GET_RESOURCES);
1763 /* aq msg sent, awaiting reply */
1764 if (!adapter->vf_res) {
1765 bufsz = sizeof(struct virtchnl_vf_resource) +
1766 (IAVF_MAX_VF_VSI *
1767 sizeof(struct virtchnl_vsi_resource));
1768 adapter->vf_res = kzalloc(bufsz, GFP_KERNEL);
1769 if (!adapter->vf_res)
1770 goto err;
1771 }
1772 err = iavf_get_vf_config(adapter);
1773 if (err == IAVF_ERR_ADMIN_QUEUE_NO_WORK) {
1774 err = iavf_send_vf_config_msg(adapter);
1775 goto err;
1776 } else if (err == IAVF_ERR_PARAM) {
1777 /* We only get ERR_PARAM if the device is in a very bad
1778 * state or if we've been disabled for previous bad
1779 * behavior. Either way, we're done now.
1780 */
1781 iavf_shutdown_adminq(hw);
1782 dev_err(&pdev->dev, "Unable to get VF config due to PF error condition, not retrying\n");
1783 return 0;
1784 }
1785 if (err) {
1786 dev_err(&pdev->dev, "Unable to get VF config (%d)\n", err);
1787 goto err_alloc;
1788 }
1789
1790 if (iavf_process_config(adapter))
1791 goto err_alloc;
1792 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1793
1794 adapter->flags |= IAVF_FLAG_RX_CSUM_ENABLED;
1795
1796 netdev->netdev_ops = &iavf_netdev_ops;
1797 iavf_set_ethtool_ops(netdev);
1798 netdev->watchdog_timeo = 5 * HZ;
1799
1800 /* MTU range: 68 - 9710 */
1801 netdev->min_mtu = ETH_MIN_MTU;
1802 netdev->max_mtu = IAVF_MAX_RXBUFFER - IAVF_PACKET_HDR_PAD;
1803
1804 if (!is_valid_ether_addr(adapter->hw.mac.addr)) {
1805 dev_info(&pdev->dev, "Invalid MAC address %pM, using random\n",
1806 adapter->hw.mac.addr);
1807 eth_hw_addr_random(netdev);
1808 ether_addr_copy(adapter->hw.mac.addr, netdev->dev_addr);
1809 } else {
1810 ether_addr_copy(netdev->dev_addr, adapter->hw.mac.addr);
1811 ether_addr_copy(netdev->perm_addr, adapter->hw.mac.addr);
1812 }
1813
1814 adapter->tx_desc_count = IAVF_DEFAULT_TXD;
1815 adapter->rx_desc_count = IAVF_DEFAULT_RXD;
1816 err = iavf_init_interrupt_scheme(adapter);
1817 if (err)
1818 goto err_sw_init;
1819 iavf_map_rings_to_vectors(adapter);
1820 if (adapter->vf_res->vf_cap_flags &
1821 VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
1822 adapter->flags |= IAVF_FLAG_WB_ON_ITR_CAPABLE;
1823
1824 err = iavf_request_misc_irq(adapter);
1825 if (err)
1826 goto err_sw_init;
1827
1828 netif_carrier_off(netdev);
1829 adapter->link_up = false;
1830
1831 /* set the semaphore to prevent any callbacks after device registration
1832 * up to time when state of driver will be set to __IAVF_DOWN
1833 */
1834 rtnl_lock();
1835 if (!adapter->netdev_registered) {
1836 err = register_netdevice(netdev);
1837 if (err) {
1838 rtnl_unlock();
1839 goto err_register;
1840 }
1841 }
1842
1843 adapter->netdev_registered = true;
1844
1845 netif_tx_stop_all_queues(netdev);
1846 if (CLIENT_ALLOWED(adapter)) {
1847 err = iavf_lan_add_device(adapter);
1848 if (err) {
1849 rtnl_unlock();
1850 dev_info(&pdev->dev, "Failed to add VF to client API service list: %d\n",
1851 err);
1852 }
1853 }
1854 dev_info(&pdev->dev, "MAC address: %pM\n", adapter->hw.mac.addr);
1855 if (netdev->features & NETIF_F_GRO)
1856 dev_info(&pdev->dev, "GRO is enabled\n");
1857
1858 adapter->state = __IAVF_DOWN;
1859 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
1860 rtnl_unlock();
1861
1862 iavf_misc_irq_enable(adapter);
1863 wake_up(&adapter->down_waitqueue);
1864
1865 adapter->rss_key = kzalloc(adapter->rss_key_size, GFP_KERNEL);
1866 adapter->rss_lut = kzalloc(adapter->rss_lut_size, GFP_KERNEL);
1867 if (!adapter->rss_key || !adapter->rss_lut)
1868 goto err_mem;
1869 if (RSS_AQ(adapter))
1870 adapter->aq_required |= IAVF_FLAG_AQ_CONFIGURE_RSS;
1871 else
1872 iavf_init_rss(adapter);
1873
1874 return err;
1875 err_mem:
1876 iavf_free_rss(adapter);
1877 err_register:
1878 iavf_free_misc_irq(adapter);
1879 err_sw_init:
1880 iavf_reset_interrupt_capability(adapter);
1881 err_alloc:
1882 kfree(adapter->vf_res);
1883 adapter->vf_res = NULL;
1884 err:
1885 return err;
1886 }
1887
1888 /**
1889 * iavf_watchdog_task - Periodic call-back task
1890 * @work: pointer to work_struct
1891 **/
1892 static void iavf_watchdog_task(struct work_struct *work)
1893 {
1894 struct iavf_adapter *adapter = container_of(work,
1895 struct iavf_adapter,
1896 watchdog_task.work);
1897 struct iavf_hw *hw = &adapter->hw;
1898 u32 reg_val;
1899
1900 if (test_and_set_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section))
1901 goto restart_watchdog;
1902
1903 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
1904 adapter->state = __IAVF_COMM_FAILED;
1905
1906 switch (adapter->state) {
1907 case __IAVF_COMM_FAILED:
1908 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
1909 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
1910 if (reg_val == VIRTCHNL_VFR_VFACTIVE ||
1911 reg_val == VIRTCHNL_VFR_COMPLETED) {
1912 /* A chance for redemption! */
1913 dev_err(&adapter->pdev->dev,
1914 "Hardware came out of reset. Attempting reinit.\n");
1915 adapter->state = __IAVF_STARTUP;
1916 adapter->flags &= ~IAVF_FLAG_PF_COMMS_FAILED;
1917 queue_delayed_work(iavf_wq, &adapter->init_task, 10);
1918 clear_bit(__IAVF_IN_CRITICAL_TASK,
1919 &adapter->crit_section);
1920 /* Don't reschedule the watchdog, since we've restarted
1921 * the init task. When init_task contacts the PF and
1922 * gets everything set up again, it'll restart the
1923 * watchdog for us. Down, boy. Sit. Stay. Woof.
1924 */
1925 return;
1926 }
1927 adapter->aq_required = 0;
1928 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1929 clear_bit(__IAVF_IN_CRITICAL_TASK,
1930 &adapter->crit_section);
1931 queue_delayed_work(iavf_wq,
1932 &adapter->watchdog_task,
1933 msecs_to_jiffies(10));
1934 goto watchdog_done;
1935 case __IAVF_RESETTING:
1936 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1937 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1938 return;
1939 case __IAVF_DOWN:
1940 case __IAVF_DOWN_PENDING:
1941 case __IAVF_TESTING:
1942 case __IAVF_RUNNING:
1943 if (adapter->current_op) {
1944 if (!iavf_asq_done(hw)) {
1945 dev_dbg(&adapter->pdev->dev,
1946 "Admin queue timeout\n");
1947 iavf_send_api_ver(adapter);
1948 }
1949 } else {
1950 if (!iavf_process_aq_command(adapter) &&
1951 adapter->state == __IAVF_RUNNING)
1952 iavf_request_stats(adapter);
1953 }
1954 break;
1955 case __IAVF_REMOVE:
1956 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1957 return;
1958 default:
1959 goto restart_watchdog;
1960 }
1961
1962 /* check for hw reset */
1963 reg_val = rd32(hw, IAVF_VF_ARQLEN1) & IAVF_VF_ARQLEN1_ARQENABLE_MASK;
1964 if (!reg_val) {
1965 adapter->state = __IAVF_RESETTING;
1966 adapter->flags |= IAVF_FLAG_RESET_PENDING;
1967 adapter->aq_required = 0;
1968 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
1969 dev_err(&adapter->pdev->dev, "Hardware reset detected\n");
1970 queue_work(iavf_wq, &adapter->reset_task);
1971 goto watchdog_done;
1972 }
1973
1974 schedule_delayed_work(&adapter->client_task, msecs_to_jiffies(5));
1975 watchdog_done:
1976 if (adapter->state == __IAVF_RUNNING ||
1977 adapter->state == __IAVF_COMM_FAILED)
1978 iavf_detect_recover_hung(&adapter->vsi);
1979 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
1980 restart_watchdog:
1981 if (adapter->aq_required)
1982 queue_delayed_work(iavf_wq, &adapter->watchdog_task,
1983 msecs_to_jiffies(20));
1984 else
1985 queue_delayed_work(iavf_wq, &adapter->watchdog_task, HZ * 2);
1986 queue_work(iavf_wq, &adapter->adminq_task);
1987 }
1988
1989 static void iavf_disable_vf(struct iavf_adapter *adapter)
1990 {
1991 struct iavf_mac_filter *f, *ftmp;
1992 struct iavf_vlan_filter *fv, *fvtmp;
1993 struct iavf_cloud_filter *cf, *cftmp;
1994
1995 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
1996
1997 /* We don't use netif_running() because it may be true prior to
1998 * ndo_open() returning, so we can't assume it means all our open
1999 * tasks have finished, since we're not holding the rtnl_lock here.
2000 */
2001 if (adapter->state == __IAVF_RUNNING) {
2002 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
2003 netif_carrier_off(adapter->netdev);
2004 netif_tx_disable(adapter->netdev);
2005 adapter->link_up = false;
2006 iavf_napi_disable_all(adapter);
2007 iavf_irq_disable(adapter);
2008 iavf_free_traffic_irqs(adapter);
2009 iavf_free_all_tx_resources(adapter);
2010 iavf_free_all_rx_resources(adapter);
2011 }
2012
2013 spin_lock_bh(&adapter->mac_vlan_list_lock);
2014
2015 /* Delete all of the filters */
2016 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
2017 list_del(&f->list);
2018 kfree(f);
2019 }
2020
2021 list_for_each_entry_safe(fv, fvtmp, &adapter->vlan_filter_list, list) {
2022 list_del(&fv->list);
2023 kfree(fv);
2024 }
2025
2026 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2027
2028 spin_lock_bh(&adapter->cloud_filter_list_lock);
2029 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
2030 list_del(&cf->list);
2031 kfree(cf);
2032 adapter->num_cloud_filters--;
2033 }
2034 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2035
2036 iavf_free_misc_irq(adapter);
2037 iavf_reset_interrupt_capability(adapter);
2038 iavf_free_queues(adapter);
2039 iavf_free_q_vectors(adapter);
2040 kfree(adapter->vf_res);
2041 iavf_shutdown_adminq(&adapter->hw);
2042 adapter->netdev->flags &= ~IFF_UP;
2043 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2044 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2045 adapter->state = __IAVF_DOWN;
2046 wake_up(&adapter->down_waitqueue);
2047 dev_info(&adapter->pdev->dev, "Reset task did not complete, VF disabled\n");
2048 }
2049
2050 #define IAVF_RESET_WAIT_MS 10
2051 #define IAVF_RESET_WAIT_COUNT 500
2052 /**
2053 * iavf_reset_task - Call-back task to handle hardware reset
2054 * @work: pointer to work_struct
2055 *
2056 * During reset we need to shut down and reinitialize the admin queue
2057 * before we can use it to communicate with the PF again. We also clear
2058 * and reinit the rings because that context is lost as well.
2059 **/
2060 static void iavf_reset_task(struct work_struct *work)
2061 {
2062 struct iavf_adapter *adapter = container_of(work,
2063 struct iavf_adapter,
2064 reset_task);
2065 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2066 struct net_device *netdev = adapter->netdev;
2067 struct iavf_hw *hw = &adapter->hw;
2068 struct iavf_vlan_filter *vlf;
2069 struct iavf_cloud_filter *cf;
2070 struct iavf_mac_filter *f;
2071 u32 reg_val;
2072 int i = 0, err;
2073 bool running;
2074
2075 /* When device is being removed it doesn't make sense to run the reset
2076 * task, just return in such a case.
2077 */
2078 if (test_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section))
2079 return;
2080
2081 while (test_and_set_bit(__IAVF_IN_CLIENT_TASK,
2082 &adapter->crit_section))
2083 usleep_range(500, 1000);
2084 if (CLIENT_ENABLED(adapter)) {
2085 adapter->flags &= ~(IAVF_FLAG_CLIENT_NEEDS_OPEN |
2086 IAVF_FLAG_CLIENT_NEEDS_CLOSE |
2087 IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS |
2088 IAVF_FLAG_SERVICE_CLIENT_REQUESTED);
2089 cancel_delayed_work_sync(&adapter->client_task);
2090 iavf_notify_client_close(&adapter->vsi, true);
2091 }
2092 iavf_misc_irq_disable(adapter);
2093 if (adapter->flags & IAVF_FLAG_RESET_NEEDED) {
2094 adapter->flags &= ~IAVF_FLAG_RESET_NEEDED;
2095 /* Restart the AQ here. If we have been reset but didn't
2096 * detect it, or if the PF had to reinit, our AQ will be hosed.
2097 */
2098 iavf_shutdown_adminq(hw);
2099 iavf_init_adminq(hw);
2100 iavf_request_reset(adapter);
2101 }
2102 adapter->flags |= IAVF_FLAG_RESET_PENDING;
2103
2104 /* poll until we see the reset actually happen */
2105 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2106 reg_val = rd32(hw, IAVF_VF_ARQLEN1) &
2107 IAVF_VF_ARQLEN1_ARQENABLE_MASK;
2108 if (!reg_val)
2109 break;
2110 usleep_range(5000, 10000);
2111 }
2112 if (i == IAVF_RESET_WAIT_COUNT) {
2113 dev_info(&adapter->pdev->dev, "Never saw reset\n");
2114 goto continue_reset; /* act like the reset happened */
2115 }
2116
2117 /* wait until the reset is complete and the PF is responding to us */
2118 for (i = 0; i < IAVF_RESET_WAIT_COUNT; i++) {
2119 /* sleep first to make sure a minimum wait time is met */
2120 msleep(IAVF_RESET_WAIT_MS);
2121
2122 reg_val = rd32(hw, IAVF_VFGEN_RSTAT) &
2123 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
2124 if (reg_val == VIRTCHNL_VFR_VFACTIVE)
2125 break;
2126 }
2127
2128 pci_set_master(adapter->pdev);
2129
2130 if (i == IAVF_RESET_WAIT_COUNT) {
2131 dev_err(&adapter->pdev->dev, "Reset never finished (%x)\n",
2132 reg_val);
2133 iavf_disable_vf(adapter);
2134 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2135 return; /* Do not attempt to reinit. It's dead, Jim. */
2136 }
2137
2138 continue_reset:
2139 /* We don't use netif_running() because it may be true prior to
2140 * ndo_open() returning, so we can't assume it means all our open
2141 * tasks have finished, since we're not holding the rtnl_lock here.
2142 */
2143 running = ((adapter->state == __IAVF_RUNNING) ||
2144 (adapter->state == __IAVF_RESETTING));
2145
2146 if (running) {
2147 netif_carrier_off(netdev);
2148 netif_tx_stop_all_queues(netdev);
2149 adapter->link_up = false;
2150 iavf_napi_disable_all(adapter);
2151 }
2152 iavf_irq_disable(adapter);
2153
2154 adapter->state = __IAVF_RESETTING;
2155 adapter->flags &= ~IAVF_FLAG_RESET_PENDING;
2156
2157 /* free the Tx/Rx rings and descriptors, might be better to just
2158 * re-use them sometime in the future
2159 */
2160 iavf_free_all_rx_resources(adapter);
2161 iavf_free_all_tx_resources(adapter);
2162
2163 adapter->flags |= IAVF_FLAG_QUEUES_DISABLED;
2164 /* kill and reinit the admin queue */
2165 iavf_shutdown_adminq(hw);
2166 adapter->current_op = VIRTCHNL_OP_UNKNOWN;
2167 err = iavf_init_adminq(hw);
2168 if (err)
2169 dev_info(&adapter->pdev->dev, "Failed to init adminq: %d\n",
2170 err);
2171 adapter->aq_required = 0;
2172
2173 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2174 err = iavf_reinit_interrupt_scheme(adapter);
2175 if (err)
2176 goto reset_err;
2177 }
2178
2179 adapter->aq_required |= IAVF_FLAG_AQ_GET_CONFIG;
2180 adapter->aq_required |= IAVF_FLAG_AQ_MAP_VECTORS;
2181
2182 spin_lock_bh(&adapter->mac_vlan_list_lock);
2183
2184 /* re-add all MAC filters */
2185 list_for_each_entry(f, &adapter->mac_filter_list, list) {
2186 f->add = true;
2187 }
2188 /* re-add all VLAN filters */
2189 list_for_each_entry(vlf, &adapter->vlan_filter_list, list) {
2190 vlf->add = true;
2191 }
2192
2193 spin_unlock_bh(&adapter->mac_vlan_list_lock);
2194
2195 /* check if TCs are running and re-add all cloud filters */
2196 spin_lock_bh(&adapter->cloud_filter_list_lock);
2197 if ((vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ) &&
2198 adapter->num_tc) {
2199 list_for_each_entry(cf, &adapter->cloud_filter_list, list) {
2200 cf->add = true;
2201 }
2202 }
2203 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2204
2205 adapter->aq_required |= IAVF_FLAG_AQ_ADD_MAC_FILTER;
2206 adapter->aq_required |= IAVF_FLAG_AQ_ADD_VLAN_FILTER;
2207 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2208 iavf_misc_irq_enable(adapter);
2209
2210 mod_delayed_work(iavf_wq, &adapter->watchdog_task, 2);
2211
2212 /* We were running when the reset started, so we need to restore some
2213 * state here.
2214 */
2215 if (running) {
2216 /* allocate transmit descriptors */
2217 err = iavf_setup_all_tx_resources(adapter);
2218 if (err)
2219 goto reset_err;
2220
2221 /* allocate receive descriptors */
2222 err = iavf_setup_all_rx_resources(adapter);
2223 if (err)
2224 goto reset_err;
2225
2226 if (adapter->flags & IAVF_FLAG_REINIT_ITR_NEEDED) {
2227 err = iavf_request_traffic_irqs(adapter, netdev->name);
2228 if (err)
2229 goto reset_err;
2230
2231 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
2232 }
2233
2234 iavf_configure(adapter);
2235
2236 iavf_up_complete(adapter);
2237
2238 iavf_irq_enable(adapter, true);
2239 } else {
2240 adapter->state = __IAVF_DOWN;
2241 wake_up(&adapter->down_waitqueue);
2242 }
2243 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2244 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2245
2246 return;
2247 reset_err:
2248 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2249 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2250 dev_err(&adapter->pdev->dev, "failed to allocate resources during reinit\n");
2251 iavf_close(netdev);
2252 }
2253
2254 /**
2255 * iavf_adminq_task - worker thread to clean the admin queue
2256 * @work: pointer to work_struct containing our data
2257 **/
2258 static void iavf_adminq_task(struct work_struct *work)
2259 {
2260 struct iavf_adapter *adapter =
2261 container_of(work, struct iavf_adapter, adminq_task);
2262 struct iavf_hw *hw = &adapter->hw;
2263 struct iavf_arq_event_info event;
2264 enum virtchnl_ops v_op;
2265 enum iavf_status ret, v_ret;
2266 u32 val, oldval;
2267 u16 pending;
2268
2269 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED)
2270 goto out;
2271
2272 event.buf_len = IAVF_MAX_AQ_BUF_SIZE;
2273 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
2274 if (!event.msg_buf)
2275 goto out;
2276
2277 do {
2278 ret = iavf_clean_arq_element(hw, &event, &pending);
2279 v_op = (enum virtchnl_ops)le32_to_cpu(event.desc.cookie_high);
2280 v_ret = (enum iavf_status)le32_to_cpu(event.desc.cookie_low);
2281
2282 if (ret || !v_op)
2283 break; /* No event to process or error cleaning ARQ */
2284
2285 iavf_virtchnl_completion(adapter, v_op, v_ret, event.msg_buf,
2286 event.msg_len);
2287 if (pending != 0)
2288 memset(event.msg_buf, 0, IAVF_MAX_AQ_BUF_SIZE);
2289 } while (pending);
2290
2291 if ((adapter->flags &
2292 (IAVF_FLAG_RESET_PENDING | IAVF_FLAG_RESET_NEEDED)) ||
2293 adapter->state == __IAVF_RESETTING)
2294 goto freedom;
2295
2296 /* check for error indications */
2297 val = rd32(hw, hw->aq.arq.len);
2298 if (val == 0xdeadbeef) /* indicates device in reset */
2299 goto freedom;
2300 oldval = val;
2301 if (val & IAVF_VF_ARQLEN1_ARQVFE_MASK) {
2302 dev_info(&adapter->pdev->dev, "ARQ VF Error detected\n");
2303 val &= ~IAVF_VF_ARQLEN1_ARQVFE_MASK;
2304 }
2305 if (val & IAVF_VF_ARQLEN1_ARQOVFL_MASK) {
2306 dev_info(&adapter->pdev->dev, "ARQ Overflow Error detected\n");
2307 val &= ~IAVF_VF_ARQLEN1_ARQOVFL_MASK;
2308 }
2309 if (val & IAVF_VF_ARQLEN1_ARQCRIT_MASK) {
2310 dev_info(&adapter->pdev->dev, "ARQ Critical Error detected\n");
2311 val &= ~IAVF_VF_ARQLEN1_ARQCRIT_MASK;
2312 }
2313 if (oldval != val)
2314 wr32(hw, hw->aq.arq.len, val);
2315
2316 val = rd32(hw, hw->aq.asq.len);
2317 oldval = val;
2318 if (val & IAVF_VF_ATQLEN1_ATQVFE_MASK) {
2319 dev_info(&adapter->pdev->dev, "ASQ VF Error detected\n");
2320 val &= ~IAVF_VF_ATQLEN1_ATQVFE_MASK;
2321 }
2322 if (val & IAVF_VF_ATQLEN1_ATQOVFL_MASK) {
2323 dev_info(&adapter->pdev->dev, "ASQ Overflow Error detected\n");
2324 val &= ~IAVF_VF_ATQLEN1_ATQOVFL_MASK;
2325 }
2326 if (val & IAVF_VF_ATQLEN1_ATQCRIT_MASK) {
2327 dev_info(&adapter->pdev->dev, "ASQ Critical Error detected\n");
2328 val &= ~IAVF_VF_ATQLEN1_ATQCRIT_MASK;
2329 }
2330 if (oldval != val)
2331 wr32(hw, hw->aq.asq.len, val);
2332
2333 freedom:
2334 kfree(event.msg_buf);
2335 out:
2336 /* re-enable Admin queue interrupt cause */
2337 iavf_misc_irq_enable(adapter);
2338 }
2339
2340 /**
2341 * iavf_client_task - worker thread to perform client work
2342 * @work: pointer to work_struct containing our data
2343 *
2344 * This task handles client interactions. Because client calls can be
2345 * reentrant, we can't handle them in the watchdog.
2346 **/
2347 static void iavf_client_task(struct work_struct *work)
2348 {
2349 struct iavf_adapter *adapter =
2350 container_of(work, struct iavf_adapter, client_task.work);
2351
2352 /* If we can't get the client bit, just give up. We'll be rescheduled
2353 * later.
2354 */
2355
2356 if (test_and_set_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section))
2357 return;
2358
2359 if (adapter->flags & IAVF_FLAG_SERVICE_CLIENT_REQUESTED) {
2360 iavf_client_subtask(adapter);
2361 adapter->flags &= ~IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
2362 goto out;
2363 }
2364 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS) {
2365 iavf_notify_client_l2_params(&adapter->vsi);
2366 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_L2_PARAMS;
2367 goto out;
2368 }
2369 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_CLOSE) {
2370 iavf_notify_client_close(&adapter->vsi, false);
2371 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_CLOSE;
2372 goto out;
2373 }
2374 if (adapter->flags & IAVF_FLAG_CLIENT_NEEDS_OPEN) {
2375 iavf_notify_client_open(&adapter->vsi);
2376 adapter->flags &= ~IAVF_FLAG_CLIENT_NEEDS_OPEN;
2377 }
2378 out:
2379 clear_bit(__IAVF_IN_CLIENT_TASK, &adapter->crit_section);
2380 }
2381
2382 /**
2383 * iavf_free_all_tx_resources - Free Tx Resources for All Queues
2384 * @adapter: board private structure
2385 *
2386 * Free all transmit software resources
2387 **/
2388 void iavf_free_all_tx_resources(struct iavf_adapter *adapter)
2389 {
2390 int i;
2391
2392 if (!adapter->tx_rings)
2393 return;
2394
2395 for (i = 0; i < adapter->num_active_queues; i++)
2396 if (adapter->tx_rings[i].desc)
2397 iavf_free_tx_resources(&adapter->tx_rings[i]);
2398 }
2399
2400 /**
2401 * iavf_setup_all_tx_resources - allocate all queues Tx resources
2402 * @adapter: board private structure
2403 *
2404 * If this function returns with an error, then it's possible one or
2405 * more of the rings is populated (while the rest are not). It is the
2406 * callers duty to clean those orphaned rings.
2407 *
2408 * Return 0 on success, negative on failure
2409 **/
2410 static int iavf_setup_all_tx_resources(struct iavf_adapter *adapter)
2411 {
2412 int i, err = 0;
2413
2414 for (i = 0; i < adapter->num_active_queues; i++) {
2415 adapter->tx_rings[i].count = adapter->tx_desc_count;
2416 err = iavf_setup_tx_descriptors(&adapter->tx_rings[i]);
2417 if (!err)
2418 continue;
2419 dev_err(&adapter->pdev->dev,
2420 "Allocation for Tx Queue %u failed\n", i);
2421 break;
2422 }
2423
2424 return err;
2425 }
2426
2427 /**
2428 * iavf_setup_all_rx_resources - allocate all queues Rx resources
2429 * @adapter: board private structure
2430 *
2431 * If this function returns with an error, then it's possible one or
2432 * more of the rings is populated (while the rest are not). It is the
2433 * callers duty to clean those orphaned rings.
2434 *
2435 * Return 0 on success, negative on failure
2436 **/
2437 static int iavf_setup_all_rx_resources(struct iavf_adapter *adapter)
2438 {
2439 int i, err = 0;
2440
2441 for (i = 0; i < adapter->num_active_queues; i++) {
2442 adapter->rx_rings[i].count = adapter->rx_desc_count;
2443 err = iavf_setup_rx_descriptors(&adapter->rx_rings[i]);
2444 if (!err)
2445 continue;
2446 dev_err(&adapter->pdev->dev,
2447 "Allocation for Rx Queue %u failed\n", i);
2448 break;
2449 }
2450 return err;
2451 }
2452
2453 /**
2454 * iavf_free_all_rx_resources - Free Rx Resources for All Queues
2455 * @adapter: board private structure
2456 *
2457 * Free all receive software resources
2458 **/
2459 void iavf_free_all_rx_resources(struct iavf_adapter *adapter)
2460 {
2461 int i;
2462
2463 if (!adapter->rx_rings)
2464 return;
2465
2466 for (i = 0; i < adapter->num_active_queues; i++)
2467 if (adapter->rx_rings[i].desc)
2468 iavf_free_rx_resources(&adapter->rx_rings[i]);
2469 }
2470
2471 /**
2472 * iavf_validate_tx_bandwidth - validate the max Tx bandwidth
2473 * @adapter: board private structure
2474 * @max_tx_rate: max Tx bw for a tc
2475 **/
2476 static int iavf_validate_tx_bandwidth(struct iavf_adapter *adapter,
2477 u64 max_tx_rate)
2478 {
2479 int speed = 0, ret = 0;
2480
2481 switch (adapter->link_speed) {
2482 case IAVF_LINK_SPEED_40GB:
2483 speed = 40000;
2484 break;
2485 case IAVF_LINK_SPEED_25GB:
2486 speed = 25000;
2487 break;
2488 case IAVF_LINK_SPEED_20GB:
2489 speed = 20000;
2490 break;
2491 case IAVF_LINK_SPEED_10GB:
2492 speed = 10000;
2493 break;
2494 case IAVF_LINK_SPEED_1GB:
2495 speed = 1000;
2496 break;
2497 case IAVF_LINK_SPEED_100MB:
2498 speed = 100;
2499 break;
2500 default:
2501 break;
2502 }
2503
2504 if (max_tx_rate > speed) {
2505 dev_err(&adapter->pdev->dev,
2506 "Invalid tx rate specified\n");
2507 ret = -EINVAL;
2508 }
2509
2510 return ret;
2511 }
2512
2513 /**
2514 * iavf_validate_channel_config - validate queue mapping info
2515 * @adapter: board private structure
2516 * @mqprio_qopt: queue parameters
2517 *
2518 * This function validates if the config provided by the user to
2519 * configure queue channels is valid or not. Returns 0 on a valid
2520 * config.
2521 **/
2522 static int iavf_validate_ch_config(struct iavf_adapter *adapter,
2523 struct tc_mqprio_qopt_offload *mqprio_qopt)
2524 {
2525 u64 total_max_rate = 0;
2526 int i, num_qps = 0;
2527 u64 tx_rate = 0;
2528 int ret = 0;
2529
2530 if (mqprio_qopt->qopt.num_tc > IAVF_MAX_TRAFFIC_CLASS ||
2531 mqprio_qopt->qopt.num_tc < 1)
2532 return -EINVAL;
2533
2534 for (i = 0; i <= mqprio_qopt->qopt.num_tc - 1; i++) {
2535 if (!mqprio_qopt->qopt.count[i] ||
2536 mqprio_qopt->qopt.offset[i] != num_qps)
2537 return -EINVAL;
2538 if (mqprio_qopt->min_rate[i]) {
2539 dev_err(&adapter->pdev->dev,
2540 "Invalid min tx rate (greater than 0) specified\n");
2541 return -EINVAL;
2542 }
2543 /*convert to Mbps */
2544 tx_rate = div_u64(mqprio_qopt->max_rate[i],
2545 IAVF_MBPS_DIVISOR);
2546 total_max_rate += tx_rate;
2547 num_qps += mqprio_qopt->qopt.count[i];
2548 }
2549 if (num_qps > IAVF_MAX_REQ_QUEUES)
2550 return -EINVAL;
2551
2552 ret = iavf_validate_tx_bandwidth(adapter, total_max_rate);
2553 return ret;
2554 }
2555
2556 /**
2557 * iavf_del_all_cloud_filters - delete all cloud filters
2558 * on the traffic classes
2559 **/
2560 static void iavf_del_all_cloud_filters(struct iavf_adapter *adapter)
2561 {
2562 struct iavf_cloud_filter *cf, *cftmp;
2563
2564 spin_lock_bh(&adapter->cloud_filter_list_lock);
2565 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list,
2566 list) {
2567 list_del(&cf->list);
2568 kfree(cf);
2569 adapter->num_cloud_filters--;
2570 }
2571 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2572 }
2573
2574 /**
2575 * __iavf_setup_tc - configure multiple traffic classes
2576 * @netdev: network interface device structure
2577 * @type_date: tc offload data
2578 *
2579 * This function processes the config information provided by the
2580 * user to configure traffic classes/queue channels and packages the
2581 * information to request the PF to setup traffic classes.
2582 *
2583 * Returns 0 on success.
2584 **/
2585 static int __iavf_setup_tc(struct net_device *netdev, void *type_data)
2586 {
2587 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
2588 struct iavf_adapter *adapter = netdev_priv(netdev);
2589 struct virtchnl_vf_resource *vfres = adapter->vf_res;
2590 u8 num_tc = 0, total_qps = 0;
2591 int ret = 0, netdev_tc = 0;
2592 u64 max_tx_rate;
2593 u16 mode;
2594 int i;
2595
2596 num_tc = mqprio_qopt->qopt.num_tc;
2597 mode = mqprio_qopt->mode;
2598
2599 /* delete queue_channel */
2600 if (!mqprio_qopt->qopt.hw) {
2601 if (adapter->ch_config.state == __IAVF_TC_RUNNING) {
2602 /* reset the tc configuration */
2603 netdev_reset_tc(netdev);
2604 adapter->num_tc = 0;
2605 netif_tx_stop_all_queues(netdev);
2606 netif_tx_disable(netdev);
2607 iavf_del_all_cloud_filters(adapter);
2608 adapter->aq_required = IAVF_FLAG_AQ_DISABLE_CHANNELS;
2609 goto exit;
2610 } else {
2611 return -EINVAL;
2612 }
2613 }
2614
2615 /* add queue channel */
2616 if (mode == TC_MQPRIO_MODE_CHANNEL) {
2617 if (!(vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)) {
2618 dev_err(&adapter->pdev->dev, "ADq not supported\n");
2619 return -EOPNOTSUPP;
2620 }
2621 if (adapter->ch_config.state != __IAVF_TC_INVALID) {
2622 dev_err(&adapter->pdev->dev, "TC configuration already exists\n");
2623 return -EINVAL;
2624 }
2625
2626 ret = iavf_validate_ch_config(adapter, mqprio_qopt);
2627 if (ret)
2628 return ret;
2629 /* Return if same TC config is requested */
2630 if (adapter->num_tc == num_tc)
2631 return 0;
2632 adapter->num_tc = num_tc;
2633
2634 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2635 if (i < num_tc) {
2636 adapter->ch_config.ch_info[i].count =
2637 mqprio_qopt->qopt.count[i];
2638 adapter->ch_config.ch_info[i].offset =
2639 mqprio_qopt->qopt.offset[i];
2640 total_qps += mqprio_qopt->qopt.count[i];
2641 max_tx_rate = mqprio_qopt->max_rate[i];
2642 /* convert to Mbps */
2643 max_tx_rate = div_u64(max_tx_rate,
2644 IAVF_MBPS_DIVISOR);
2645 adapter->ch_config.ch_info[i].max_tx_rate =
2646 max_tx_rate;
2647 } else {
2648 adapter->ch_config.ch_info[i].count = 1;
2649 adapter->ch_config.ch_info[i].offset = 0;
2650 }
2651 }
2652 adapter->ch_config.total_qps = total_qps;
2653 netif_tx_stop_all_queues(netdev);
2654 netif_tx_disable(netdev);
2655 adapter->aq_required |= IAVF_FLAG_AQ_ENABLE_CHANNELS;
2656 netdev_reset_tc(netdev);
2657 /* Report the tc mapping up the stack */
2658 netdev_set_num_tc(adapter->netdev, num_tc);
2659 for (i = 0; i < IAVF_MAX_TRAFFIC_CLASS; i++) {
2660 u16 qcount = mqprio_qopt->qopt.count[i];
2661 u16 qoffset = mqprio_qopt->qopt.offset[i];
2662
2663 if (i < num_tc)
2664 netdev_set_tc_queue(netdev, netdev_tc++, qcount,
2665 qoffset);
2666 }
2667 }
2668 exit:
2669 return ret;
2670 }
2671
2672 /**
2673 * iavf_parse_cls_flower - Parse tc flower filters provided by kernel
2674 * @adapter: board private structure
2675 * @cls_flower: pointer to struct flow_cls_offload
2676 * @filter: pointer to cloud filter structure
2677 */
2678 static int iavf_parse_cls_flower(struct iavf_adapter *adapter,
2679 struct flow_cls_offload *f,
2680 struct iavf_cloud_filter *filter)
2681 {
2682 struct flow_rule *rule = flow_cls_offload_flow_rule(f);
2683 struct flow_dissector *dissector = rule->match.dissector;
2684 u16 n_proto_mask = 0;
2685 u16 n_proto_key = 0;
2686 u8 field_flags = 0;
2687 u16 addr_type = 0;
2688 u16 n_proto = 0;
2689 int i = 0;
2690 struct virtchnl_filter *vf = &filter->f;
2691
2692 if (dissector->used_keys &
2693 ~(BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2694 BIT(FLOW_DISSECTOR_KEY_BASIC) |
2695 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2696 BIT(FLOW_DISSECTOR_KEY_VLAN) |
2697 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) |
2698 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) |
2699 BIT(FLOW_DISSECTOR_KEY_PORTS) |
2700 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID))) {
2701 dev_err(&adapter->pdev->dev, "Unsupported key used: 0x%x\n",
2702 dissector->used_keys);
2703 return -EOPNOTSUPP;
2704 }
2705
2706 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_KEYID)) {
2707 struct flow_match_enc_keyid match;
2708
2709 flow_rule_match_enc_keyid(rule, &match);
2710 if (match.mask->keyid != 0)
2711 field_flags |= IAVF_CLOUD_FIELD_TEN_ID;
2712 }
2713
2714 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
2715 struct flow_match_basic match;
2716
2717 flow_rule_match_basic(rule, &match);
2718 n_proto_key = ntohs(match.key->n_proto);
2719 n_proto_mask = ntohs(match.mask->n_proto);
2720
2721 if (n_proto_key == ETH_P_ALL) {
2722 n_proto_key = 0;
2723 n_proto_mask = 0;
2724 }
2725 n_proto = n_proto_key & n_proto_mask;
2726 if (n_proto != ETH_P_IP && n_proto != ETH_P_IPV6)
2727 return -EINVAL;
2728 if (n_proto == ETH_P_IPV6) {
2729 /* specify flow type as TCP IPv6 */
2730 vf->flow_type = VIRTCHNL_TCP_V6_FLOW;
2731 }
2732
2733 if (match.key->ip_proto != IPPROTO_TCP) {
2734 dev_info(&adapter->pdev->dev, "Only TCP transport is supported\n");
2735 return -EINVAL;
2736 }
2737 }
2738
2739 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2740 struct flow_match_eth_addrs match;
2741
2742 flow_rule_match_eth_addrs(rule, &match);
2743
2744 /* use is_broadcast and is_zero to check for all 0xf or 0 */
2745 if (!is_zero_ether_addr(match.mask->dst)) {
2746 if (is_broadcast_ether_addr(match.mask->dst)) {
2747 field_flags |= IAVF_CLOUD_FIELD_OMAC;
2748 } else {
2749 dev_err(&adapter->pdev->dev, "Bad ether dest mask %pM\n",
2750 match.mask->dst);
2751 return IAVF_ERR_CONFIG;
2752 }
2753 }
2754
2755 if (!is_zero_ether_addr(match.mask->src)) {
2756 if (is_broadcast_ether_addr(match.mask->src)) {
2757 field_flags |= IAVF_CLOUD_FIELD_IMAC;
2758 } else {
2759 dev_err(&adapter->pdev->dev, "Bad ether src mask %pM\n",
2760 match.mask->src);
2761 return IAVF_ERR_CONFIG;
2762 }
2763 }
2764
2765 if (!is_zero_ether_addr(match.key->dst))
2766 if (is_valid_ether_addr(match.key->dst) ||
2767 is_multicast_ether_addr(match.key->dst)) {
2768 /* set the mask if a valid dst_mac address */
2769 for (i = 0; i < ETH_ALEN; i++)
2770 vf->mask.tcp_spec.dst_mac[i] |= 0xff;
2771 ether_addr_copy(vf->data.tcp_spec.dst_mac,
2772 match.key->dst);
2773 }
2774
2775 if (!is_zero_ether_addr(match.key->src))
2776 if (is_valid_ether_addr(match.key->src) ||
2777 is_multicast_ether_addr(match.key->src)) {
2778 /* set the mask if a valid dst_mac address */
2779 for (i = 0; i < ETH_ALEN; i++)
2780 vf->mask.tcp_spec.src_mac[i] |= 0xff;
2781 ether_addr_copy(vf->data.tcp_spec.src_mac,
2782 match.key->src);
2783 }
2784 }
2785
2786 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
2787 struct flow_match_vlan match;
2788
2789 flow_rule_match_vlan(rule, &match);
2790 if (match.mask->vlan_id) {
2791 if (match.mask->vlan_id == VLAN_VID_MASK) {
2792 field_flags |= IAVF_CLOUD_FIELD_IVLAN;
2793 } else {
2794 dev_err(&adapter->pdev->dev, "Bad vlan mask %u\n",
2795 match.mask->vlan_id);
2796 return IAVF_ERR_CONFIG;
2797 }
2798 }
2799 vf->mask.tcp_spec.vlan_id |= cpu_to_be16(0xffff);
2800 vf->data.tcp_spec.vlan_id = cpu_to_be16(match.key->vlan_id);
2801 }
2802
2803 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
2804 struct flow_match_control match;
2805
2806 flow_rule_match_control(rule, &match);
2807 addr_type = match.key->addr_type;
2808 }
2809
2810 if (addr_type == FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
2811 struct flow_match_ipv4_addrs match;
2812
2813 flow_rule_match_ipv4_addrs(rule, &match);
2814 if (match.mask->dst) {
2815 if (match.mask->dst == cpu_to_be32(0xffffffff)) {
2816 field_flags |= IAVF_CLOUD_FIELD_IIP;
2817 } else {
2818 dev_err(&adapter->pdev->dev, "Bad ip dst mask 0x%08x\n",
2819 be32_to_cpu(match.mask->dst));
2820 return IAVF_ERR_CONFIG;
2821 }
2822 }
2823
2824 if (match.mask->src) {
2825 if (match.mask->src == cpu_to_be32(0xffffffff)) {
2826 field_flags |= IAVF_CLOUD_FIELD_IIP;
2827 } else {
2828 dev_err(&adapter->pdev->dev, "Bad ip src mask 0x%08x\n",
2829 be32_to_cpu(match.mask->dst));
2830 return IAVF_ERR_CONFIG;
2831 }
2832 }
2833
2834 if (field_flags & IAVF_CLOUD_FIELD_TEN_ID) {
2835 dev_info(&adapter->pdev->dev, "Tenant id not allowed for ip filter\n");
2836 return IAVF_ERR_CONFIG;
2837 }
2838 if (match.key->dst) {
2839 vf->mask.tcp_spec.dst_ip[0] |= cpu_to_be32(0xffffffff);
2840 vf->data.tcp_spec.dst_ip[0] = match.key->dst;
2841 }
2842 if (match.key->src) {
2843 vf->mask.tcp_spec.src_ip[0] |= cpu_to_be32(0xffffffff);
2844 vf->data.tcp_spec.src_ip[0] = match.key->src;
2845 }
2846 }
2847
2848 if (addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS) {
2849 struct flow_match_ipv6_addrs match;
2850
2851 flow_rule_match_ipv6_addrs(rule, &match);
2852
2853 /* validate mask, make sure it is not IPV6_ADDR_ANY */
2854 if (ipv6_addr_any(&match.mask->dst)) {
2855 dev_err(&adapter->pdev->dev, "Bad ipv6 dst mask 0x%02x\n",
2856 IPV6_ADDR_ANY);
2857 return IAVF_ERR_CONFIG;
2858 }
2859
2860 /* src and dest IPv6 address should not be LOOPBACK
2861 * (0:0:0:0:0:0:0:1) which can be represented as ::1
2862 */
2863 if (ipv6_addr_loopback(&match.key->dst) ||
2864 ipv6_addr_loopback(&match.key->src)) {
2865 dev_err(&adapter->pdev->dev,
2866 "ipv6 addr should not be loopback\n");
2867 return IAVF_ERR_CONFIG;
2868 }
2869 if (!ipv6_addr_any(&match.mask->dst) ||
2870 !ipv6_addr_any(&match.mask->src))
2871 field_flags |= IAVF_CLOUD_FIELD_IIP;
2872
2873 for (i = 0; i < 4; i++)
2874 vf->mask.tcp_spec.dst_ip[i] |= cpu_to_be32(0xffffffff);
2875 memcpy(&vf->data.tcp_spec.dst_ip, &match.key->dst.s6_addr32,
2876 sizeof(vf->data.tcp_spec.dst_ip));
2877 for (i = 0; i < 4; i++)
2878 vf->mask.tcp_spec.src_ip[i] |= cpu_to_be32(0xffffffff);
2879 memcpy(&vf->data.tcp_spec.src_ip, &match.key->src.s6_addr32,
2880 sizeof(vf->data.tcp_spec.src_ip));
2881 }
2882 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS)) {
2883 struct flow_match_ports match;
2884
2885 flow_rule_match_ports(rule, &match);
2886 if (match.mask->src) {
2887 if (match.mask->src == cpu_to_be16(0xffff)) {
2888 field_flags |= IAVF_CLOUD_FIELD_IIP;
2889 } else {
2890 dev_err(&adapter->pdev->dev, "Bad src port mask %u\n",
2891 be16_to_cpu(match.mask->src));
2892 return IAVF_ERR_CONFIG;
2893 }
2894 }
2895
2896 if (match.mask->dst) {
2897 if (match.mask->dst == cpu_to_be16(0xffff)) {
2898 field_flags |= IAVF_CLOUD_FIELD_IIP;
2899 } else {
2900 dev_err(&adapter->pdev->dev, "Bad dst port mask %u\n",
2901 be16_to_cpu(match.mask->dst));
2902 return IAVF_ERR_CONFIG;
2903 }
2904 }
2905 if (match.key->dst) {
2906 vf->mask.tcp_spec.dst_port |= cpu_to_be16(0xffff);
2907 vf->data.tcp_spec.dst_port = match.key->dst;
2908 }
2909
2910 if (match.key->src) {
2911 vf->mask.tcp_spec.src_port |= cpu_to_be16(0xffff);
2912 vf->data.tcp_spec.src_port = match.key->src;
2913 }
2914 }
2915 vf->field_flags = field_flags;
2916
2917 return 0;
2918 }
2919
2920 /**
2921 * iavf_handle_tclass - Forward to a traffic class on the device
2922 * @adapter: board private structure
2923 * @tc: traffic class index on the device
2924 * @filter: pointer to cloud filter structure
2925 */
2926 static int iavf_handle_tclass(struct iavf_adapter *adapter, u32 tc,
2927 struct iavf_cloud_filter *filter)
2928 {
2929 if (tc == 0)
2930 return 0;
2931 if (tc < adapter->num_tc) {
2932 if (!filter->f.data.tcp_spec.dst_port) {
2933 dev_err(&adapter->pdev->dev,
2934 "Specify destination port to redirect to traffic class other than TC0\n");
2935 return -EINVAL;
2936 }
2937 }
2938 /* redirect to a traffic class on the same device */
2939 filter->f.action = VIRTCHNL_ACTION_TC_REDIRECT;
2940 filter->f.action_meta = tc;
2941 return 0;
2942 }
2943
2944 /**
2945 * iavf_configure_clsflower - Add tc flower filters
2946 * @adapter: board private structure
2947 * @cls_flower: Pointer to struct flow_cls_offload
2948 */
2949 static int iavf_configure_clsflower(struct iavf_adapter *adapter,
2950 struct flow_cls_offload *cls_flower)
2951 {
2952 int tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2953 struct iavf_cloud_filter *filter = NULL;
2954 int err = -EINVAL, count = 50;
2955
2956 if (tc < 0) {
2957 dev_err(&adapter->pdev->dev, "Invalid traffic class\n");
2958 return -EINVAL;
2959 }
2960
2961 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2962 if (!filter)
2963 return -ENOMEM;
2964
2965 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
2966 &adapter->crit_section)) {
2967 if (--count == 0)
2968 goto err;
2969 udelay(1);
2970 }
2971
2972 filter->cookie = cls_flower->cookie;
2973
2974 /* set the mask to all zeroes to begin with */
2975 memset(&filter->f.mask.tcp_spec, 0, sizeof(struct virtchnl_l4_spec));
2976 /* start out with flow type and eth type IPv4 to begin with */
2977 filter->f.flow_type = VIRTCHNL_TCP_V4_FLOW;
2978 err = iavf_parse_cls_flower(adapter, cls_flower, filter);
2979 if (err < 0)
2980 goto err;
2981
2982 err = iavf_handle_tclass(adapter, tc, filter);
2983 if (err < 0)
2984 goto err;
2985
2986 /* add filter to the list */
2987 spin_lock_bh(&adapter->cloud_filter_list_lock);
2988 list_add_tail(&filter->list, &adapter->cloud_filter_list);
2989 adapter->num_cloud_filters++;
2990 filter->add = true;
2991 adapter->aq_required |= IAVF_FLAG_AQ_ADD_CLOUD_FILTER;
2992 spin_unlock_bh(&adapter->cloud_filter_list_lock);
2993 err:
2994 if (err)
2995 kfree(filter);
2996
2997 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
2998 return err;
2999 }
3000
3001 /* iavf_find_cf - Find the cloud filter in the list
3002 * @adapter: Board private structure
3003 * @cookie: filter specific cookie
3004 *
3005 * Returns ptr to the filter object or NULL. Must be called while holding the
3006 * cloud_filter_list_lock.
3007 */
3008 static struct iavf_cloud_filter *iavf_find_cf(struct iavf_adapter *adapter,
3009 unsigned long *cookie)
3010 {
3011 struct iavf_cloud_filter *filter = NULL;
3012
3013 if (!cookie)
3014 return NULL;
3015
3016 list_for_each_entry(filter, &adapter->cloud_filter_list, list) {
3017 if (!memcmp(cookie, &filter->cookie, sizeof(filter->cookie)))
3018 return filter;
3019 }
3020 return NULL;
3021 }
3022
3023 /**
3024 * iavf_delete_clsflower - Remove tc flower filters
3025 * @adapter: board private structure
3026 * @cls_flower: Pointer to struct flow_cls_offload
3027 */
3028 static int iavf_delete_clsflower(struct iavf_adapter *adapter,
3029 struct flow_cls_offload *cls_flower)
3030 {
3031 struct iavf_cloud_filter *filter = NULL;
3032 int err = 0;
3033
3034 spin_lock_bh(&adapter->cloud_filter_list_lock);
3035 filter = iavf_find_cf(adapter, &cls_flower->cookie);
3036 if (filter) {
3037 filter->del = true;
3038 adapter->aq_required |= IAVF_FLAG_AQ_DEL_CLOUD_FILTER;
3039 } else {
3040 err = -EINVAL;
3041 }
3042 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3043
3044 return err;
3045 }
3046
3047 /**
3048 * iavf_setup_tc_cls_flower - flower classifier offloads
3049 * @netdev: net device to configure
3050 * @type_data: offload data
3051 */
3052 static int iavf_setup_tc_cls_flower(struct iavf_adapter *adapter,
3053 struct flow_cls_offload *cls_flower)
3054 {
3055 if (cls_flower->common.chain_index)
3056 return -EOPNOTSUPP;
3057
3058 switch (cls_flower->command) {
3059 case FLOW_CLS_REPLACE:
3060 return iavf_configure_clsflower(adapter, cls_flower);
3061 case FLOW_CLS_DESTROY:
3062 return iavf_delete_clsflower(adapter, cls_flower);
3063 case FLOW_CLS_STATS:
3064 return -EOPNOTSUPP;
3065 default:
3066 return -EOPNOTSUPP;
3067 }
3068 }
3069
3070 /**
3071 * iavf_setup_tc_block_cb - block callback for tc
3072 * @type: type of offload
3073 * @type_data: offload data
3074 * @cb_priv:
3075 *
3076 * This function is the block callback for traffic classes
3077 **/
3078 static int iavf_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
3079 void *cb_priv)
3080 {
3081 switch (type) {
3082 case TC_SETUP_CLSFLOWER:
3083 return iavf_setup_tc_cls_flower(cb_priv, type_data);
3084 default:
3085 return -EOPNOTSUPP;
3086 }
3087 }
3088
3089 static LIST_HEAD(iavf_block_cb_list);
3090
3091 /**
3092 * iavf_setup_tc - configure multiple traffic classes
3093 * @netdev: network interface device structure
3094 * @type: type of offload
3095 * @type_date: tc offload data
3096 *
3097 * This function is the callback to ndo_setup_tc in the
3098 * netdev_ops.
3099 *
3100 * Returns 0 on success
3101 **/
3102 static int iavf_setup_tc(struct net_device *netdev, enum tc_setup_type type,
3103 void *type_data)
3104 {
3105 struct iavf_adapter *adapter = netdev_priv(netdev);
3106
3107 switch (type) {
3108 case TC_SETUP_QDISC_MQPRIO:
3109 return __iavf_setup_tc(netdev, type_data);
3110 case TC_SETUP_BLOCK:
3111 return flow_block_cb_setup_simple(type_data,
3112 &iavf_block_cb_list,
3113 iavf_setup_tc_block_cb,
3114 adapter, adapter, true);
3115 default:
3116 return -EOPNOTSUPP;
3117 }
3118 }
3119
3120 /**
3121 * iavf_open - Called when a network interface is made active
3122 * @netdev: network interface device structure
3123 *
3124 * Returns 0 on success, negative value on failure
3125 *
3126 * The open entry point is called when a network interface is made
3127 * active by the system (IFF_UP). At this point all resources needed
3128 * for transmit and receive operations are allocated, the interrupt
3129 * handler is registered with the OS, the watchdog is started,
3130 * and the stack is notified that the interface is ready.
3131 **/
3132 static int iavf_open(struct net_device *netdev)
3133 {
3134 struct iavf_adapter *adapter = netdev_priv(netdev);
3135 int err;
3136
3137 if (adapter->flags & IAVF_FLAG_PF_COMMS_FAILED) {
3138 dev_err(&adapter->pdev->dev, "Unable to open device due to PF driver failure.\n");
3139 return -EIO;
3140 }
3141
3142 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3143 &adapter->crit_section))
3144 usleep_range(500, 1000);
3145
3146 if (adapter->state != __IAVF_DOWN) {
3147 err = -EBUSY;
3148 goto err_unlock;
3149 }
3150
3151 /* allocate transmit descriptors */
3152 err = iavf_setup_all_tx_resources(adapter);
3153 if (err)
3154 goto err_setup_tx;
3155
3156 /* allocate receive descriptors */
3157 err = iavf_setup_all_rx_resources(adapter);
3158 if (err)
3159 goto err_setup_rx;
3160
3161 /* clear any pending interrupts, may auto mask */
3162 err = iavf_request_traffic_irqs(adapter, netdev->name);
3163 if (err)
3164 goto err_req_irq;
3165
3166 spin_lock_bh(&adapter->mac_vlan_list_lock);
3167
3168 iavf_add_filter(adapter, adapter->hw.mac.addr);
3169
3170 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3171
3172 iavf_configure(adapter);
3173
3174 iavf_up_complete(adapter);
3175
3176 iavf_irq_enable(adapter, true);
3177
3178 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3179
3180 return 0;
3181
3182 err_req_irq:
3183 iavf_down(adapter);
3184 iavf_free_traffic_irqs(adapter);
3185 err_setup_rx:
3186 iavf_free_all_rx_resources(adapter);
3187 err_setup_tx:
3188 iavf_free_all_tx_resources(adapter);
3189 err_unlock:
3190 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3191
3192 return err;
3193 }
3194
3195 /**
3196 * iavf_close - Disables a network interface
3197 * @netdev: network interface device structure
3198 *
3199 * Returns 0, this is not allowed to fail
3200 *
3201 * The close entry point is called when an interface is de-activated
3202 * by the OS. The hardware is still under the drivers control, but
3203 * needs to be disabled. All IRQs except vector 0 (reserved for admin queue)
3204 * are freed, along with all transmit and receive resources.
3205 **/
3206 static int iavf_close(struct net_device *netdev)
3207 {
3208 struct iavf_adapter *adapter = netdev_priv(netdev);
3209 int status;
3210
3211 if (adapter->state <= __IAVF_DOWN_PENDING)
3212 return 0;
3213
3214 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3215 &adapter->crit_section))
3216 usleep_range(500, 1000);
3217
3218 set_bit(__IAVF_VSI_DOWN, adapter->vsi.state);
3219 if (CLIENT_ENABLED(adapter))
3220 adapter->flags |= IAVF_FLAG_CLIENT_NEEDS_CLOSE;
3221
3222 iavf_down(adapter);
3223 adapter->state = __IAVF_DOWN_PENDING;
3224 iavf_free_traffic_irqs(adapter);
3225
3226 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3227
3228 /* We explicitly don't free resources here because the hardware is
3229 * still active and can DMA into memory. Resources are cleared in
3230 * iavf_virtchnl_completion() after we get confirmation from the PF
3231 * driver that the rings have been stopped.
3232 *
3233 * Also, we wait for state to transition to __IAVF_DOWN before
3234 * returning. State change occurs in iavf_virtchnl_completion() after
3235 * VF resources are released (which occurs after PF driver processes and
3236 * responds to admin queue commands).
3237 */
3238
3239 status = wait_event_timeout(adapter->down_waitqueue,
3240 adapter->state == __IAVF_DOWN,
3241 msecs_to_jiffies(500));
3242 if (!status)
3243 netdev_warn(netdev, "Device resources not yet released\n");
3244 return 0;
3245 }
3246
3247 /**
3248 * iavf_change_mtu - Change the Maximum Transfer Unit
3249 * @netdev: network interface device structure
3250 * @new_mtu: new value for maximum frame size
3251 *
3252 * Returns 0 on success, negative on failure
3253 **/
3254 static int iavf_change_mtu(struct net_device *netdev, int new_mtu)
3255 {
3256 struct iavf_adapter *adapter = netdev_priv(netdev);
3257
3258 netdev->mtu = new_mtu;
3259 if (CLIENT_ENABLED(adapter)) {
3260 iavf_notify_client_l2_params(&adapter->vsi);
3261 adapter->flags |= IAVF_FLAG_SERVICE_CLIENT_REQUESTED;
3262 }
3263 adapter->flags |= IAVF_FLAG_RESET_NEEDED;
3264 queue_work(iavf_wq, &adapter->reset_task);
3265
3266 return 0;
3267 }
3268
3269 /**
3270 * iavf_set_features - set the netdev feature flags
3271 * @netdev: ptr to the netdev being adjusted
3272 * @features: the feature set that the stack is suggesting
3273 * Note: expects to be called while under rtnl_lock()
3274 **/
3275 static int iavf_set_features(struct net_device *netdev,
3276 netdev_features_t features)
3277 {
3278 struct iavf_adapter *adapter = netdev_priv(netdev);
3279
3280 /* Don't allow changing VLAN_RX flag when adapter is not capable
3281 * of VLAN offload
3282 */
3283 if (!VLAN_ALLOWED(adapter)) {
3284 if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX)
3285 return -EINVAL;
3286 } else if ((netdev->features ^ features) & NETIF_F_HW_VLAN_CTAG_RX) {
3287 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3288 adapter->aq_required |=
3289 IAVF_FLAG_AQ_ENABLE_VLAN_STRIPPING;
3290 else
3291 adapter->aq_required |=
3292 IAVF_FLAG_AQ_DISABLE_VLAN_STRIPPING;
3293 }
3294
3295 return 0;
3296 }
3297
3298 /**
3299 * iavf_features_check - Validate encapsulated packet conforms to limits
3300 * @skb: skb buff
3301 * @dev: This physical port's netdev
3302 * @features: Offload features that the stack believes apply
3303 **/
3304 static netdev_features_t iavf_features_check(struct sk_buff *skb,
3305 struct net_device *dev,
3306 netdev_features_t features)
3307 {
3308 size_t len;
3309
3310 /* No point in doing any of this if neither checksum nor GSO are
3311 * being requested for this frame. We can rule out both by just
3312 * checking for CHECKSUM_PARTIAL
3313 */
3314 if (skb->ip_summed != CHECKSUM_PARTIAL)
3315 return features;
3316
3317 /* We cannot support GSO if the MSS is going to be less than
3318 * 64 bytes. If it is then we need to drop support for GSO.
3319 */
3320 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
3321 features &= ~NETIF_F_GSO_MASK;
3322
3323 /* MACLEN can support at most 63 words */
3324 len = skb_network_header(skb) - skb->data;
3325 if (len & ~(63 * 2))
3326 goto out_err;
3327
3328 /* IPLEN and EIPLEN can support at most 127 dwords */
3329 len = skb_transport_header(skb) - skb_network_header(skb);
3330 if (len & ~(127 * 4))
3331 goto out_err;
3332
3333 if (skb->encapsulation) {
3334 /* L4TUNLEN can support 127 words */
3335 len = skb_inner_network_header(skb) - skb_transport_header(skb);
3336 if (len & ~(127 * 2))
3337 goto out_err;
3338
3339 /* IPLEN can support at most 127 dwords */
3340 len = skb_inner_transport_header(skb) -
3341 skb_inner_network_header(skb);
3342 if (len & ~(127 * 4))
3343 goto out_err;
3344 }
3345
3346 /* No need to validate L4LEN as TCP is the only protocol with a
3347 * a flexible value and we support all possible values supported
3348 * by TCP, which is at most 15 dwords
3349 */
3350
3351 return features;
3352 out_err:
3353 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3354 }
3355
3356 /**
3357 * iavf_fix_features - fix up the netdev feature bits
3358 * @netdev: our net device
3359 * @features: desired feature bits
3360 *
3361 * Returns fixed-up features bits
3362 **/
3363 static netdev_features_t iavf_fix_features(struct net_device *netdev,
3364 netdev_features_t features)
3365 {
3366 struct iavf_adapter *adapter = netdev_priv(netdev);
3367
3368 if (!(adapter->vf_res->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN))
3369 features &= ~(NETIF_F_HW_VLAN_CTAG_TX |
3370 NETIF_F_HW_VLAN_CTAG_RX |
3371 NETIF_F_HW_VLAN_CTAG_FILTER);
3372
3373 return features;
3374 }
3375
3376 static const struct net_device_ops iavf_netdev_ops = {
3377 .ndo_open = iavf_open,
3378 .ndo_stop = iavf_close,
3379 .ndo_start_xmit = iavf_xmit_frame,
3380 .ndo_set_rx_mode = iavf_set_rx_mode,
3381 .ndo_validate_addr = eth_validate_addr,
3382 .ndo_set_mac_address = iavf_set_mac,
3383 .ndo_change_mtu = iavf_change_mtu,
3384 .ndo_tx_timeout = iavf_tx_timeout,
3385 .ndo_vlan_rx_add_vid = iavf_vlan_rx_add_vid,
3386 .ndo_vlan_rx_kill_vid = iavf_vlan_rx_kill_vid,
3387 .ndo_features_check = iavf_features_check,
3388 .ndo_fix_features = iavf_fix_features,
3389 .ndo_set_features = iavf_set_features,
3390 .ndo_setup_tc = iavf_setup_tc,
3391 };
3392
3393 /**
3394 * iavf_check_reset_complete - check that VF reset is complete
3395 * @hw: pointer to hw struct
3396 *
3397 * Returns 0 if device is ready to use, or -EBUSY if it's in reset.
3398 **/
3399 static int iavf_check_reset_complete(struct iavf_hw *hw)
3400 {
3401 u32 rstat;
3402 int i;
3403
3404 for (i = 0; i < 100; i++) {
3405 rstat = rd32(hw, IAVF_VFGEN_RSTAT) &
3406 IAVF_VFGEN_RSTAT_VFR_STATE_MASK;
3407 if ((rstat == VIRTCHNL_VFR_VFACTIVE) ||
3408 (rstat == VIRTCHNL_VFR_COMPLETED))
3409 return 0;
3410 usleep_range(10, 20);
3411 }
3412 return -EBUSY;
3413 }
3414
3415 /**
3416 * iavf_process_config - Process the config information we got from the PF
3417 * @adapter: board private structure
3418 *
3419 * Verify that we have a valid config struct, and set up our netdev features
3420 * and our VSI struct.
3421 **/
3422 int iavf_process_config(struct iavf_adapter *adapter)
3423 {
3424 struct virtchnl_vf_resource *vfres = adapter->vf_res;
3425 int i, num_req_queues = adapter->num_req_queues;
3426 struct net_device *netdev = adapter->netdev;
3427 struct iavf_vsi *vsi = &adapter->vsi;
3428 netdev_features_t hw_enc_features;
3429 netdev_features_t hw_features;
3430
3431 /* got VF config message back from PF, now we can parse it */
3432 for (i = 0; i < vfres->num_vsis; i++) {
3433 if (vfres->vsi_res[i].vsi_type == VIRTCHNL_VSI_SRIOV)
3434 adapter->vsi_res = &vfres->vsi_res[i];
3435 }
3436 if (!adapter->vsi_res) {
3437 dev_err(&adapter->pdev->dev, "No LAN VSI found\n");
3438 return -ENODEV;
3439 }
3440
3441 if (num_req_queues &&
3442 num_req_queues != adapter->vsi_res->num_queue_pairs) {
3443 /* Problem. The PF gave us fewer queues than what we had
3444 * negotiated in our request. Need a reset to see if we can't
3445 * get back to a working state.
3446 */
3447 dev_err(&adapter->pdev->dev,
3448 "Requested %d queues, but PF only gave us %d.\n",
3449 num_req_queues,
3450 adapter->vsi_res->num_queue_pairs);
3451 adapter->flags |= IAVF_FLAG_REINIT_ITR_NEEDED;
3452 adapter->num_req_queues = adapter->vsi_res->num_queue_pairs;
3453 iavf_schedule_reset(adapter);
3454 return -ENODEV;
3455 }
3456 adapter->num_req_queues = 0;
3457
3458 hw_enc_features = NETIF_F_SG |
3459 NETIF_F_IP_CSUM |
3460 NETIF_F_IPV6_CSUM |
3461 NETIF_F_HIGHDMA |
3462 NETIF_F_SOFT_FEATURES |
3463 NETIF_F_TSO |
3464 NETIF_F_TSO_ECN |
3465 NETIF_F_TSO6 |
3466 NETIF_F_SCTP_CRC |
3467 NETIF_F_RXHASH |
3468 NETIF_F_RXCSUM |
3469 0;
3470
3471 /* advertise to stack only if offloads for encapsulated packets is
3472 * supported
3473 */
3474 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ENCAP) {
3475 hw_enc_features |= NETIF_F_GSO_UDP_TUNNEL |
3476 NETIF_F_GSO_GRE |
3477 NETIF_F_GSO_GRE_CSUM |
3478 NETIF_F_GSO_IPXIP4 |
3479 NETIF_F_GSO_IPXIP6 |
3480 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3481 NETIF_F_GSO_PARTIAL |
3482 0;
3483
3484 if (!(vfres->vf_cap_flags &
3485 VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM))
3486 netdev->gso_partial_features |=
3487 NETIF_F_GSO_UDP_TUNNEL_CSUM;
3488
3489 netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
3490 netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
3491 netdev->hw_enc_features |= hw_enc_features;
3492 }
3493 /* record features VLANs can make use of */
3494 netdev->vlan_features |= hw_enc_features | NETIF_F_TSO_MANGLEID;
3495
3496 /* Write features and hw_features separately to avoid polluting
3497 * with, or dropping, features that are set when we registered.
3498 */
3499 hw_features = hw_enc_features;
3500
3501 /* Enable VLAN features if supported */
3502 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3503 hw_features |= (NETIF_F_HW_VLAN_CTAG_TX |
3504 NETIF_F_HW_VLAN_CTAG_RX);
3505 /* Enable cloud filter if ADQ is supported */
3506 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_ADQ)
3507 hw_features |= NETIF_F_HW_TC;
3508
3509 netdev->hw_features |= hw_features;
3510
3511 netdev->features |= hw_features;
3512
3513 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_VLAN)
3514 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
3515
3516 netdev->priv_flags |= IFF_UNICAST_FLT;
3517
3518 /* Do not turn on offloads when they are requested to be turned off.
3519 * TSO needs minimum 576 bytes to work correctly.
3520 */
3521 if (netdev->wanted_features) {
3522 if (!(netdev->wanted_features & NETIF_F_TSO) ||
3523 netdev->mtu < 576)
3524 netdev->features &= ~NETIF_F_TSO;
3525 if (!(netdev->wanted_features & NETIF_F_TSO6) ||
3526 netdev->mtu < 576)
3527 netdev->features &= ~NETIF_F_TSO6;
3528 if (!(netdev->wanted_features & NETIF_F_TSO_ECN))
3529 netdev->features &= ~NETIF_F_TSO_ECN;
3530 if (!(netdev->wanted_features & NETIF_F_GRO))
3531 netdev->features &= ~NETIF_F_GRO;
3532 if (!(netdev->wanted_features & NETIF_F_GSO))
3533 netdev->features &= ~NETIF_F_GSO;
3534 }
3535
3536 adapter->vsi.id = adapter->vsi_res->vsi_id;
3537
3538 adapter->vsi.back = adapter;
3539 adapter->vsi.base_vector = 1;
3540 adapter->vsi.work_limit = IAVF_DEFAULT_IRQ_WORK;
3541 vsi->netdev = adapter->netdev;
3542 vsi->qs_handle = adapter->vsi_res->qset_handle;
3543 if (vfres->vf_cap_flags & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
3544 adapter->rss_key_size = vfres->rss_key_size;
3545 adapter->rss_lut_size = vfres->rss_lut_size;
3546 } else {
3547 adapter->rss_key_size = IAVF_HKEY_ARRAY_SIZE;
3548 adapter->rss_lut_size = IAVF_HLUT_ARRAY_SIZE;
3549 }
3550
3551 return 0;
3552 }
3553
3554 /**
3555 * iavf_init_task - worker thread to perform delayed initialization
3556 * @work: pointer to work_struct containing our data
3557 *
3558 * This task completes the work that was begun in probe. Due to the nature
3559 * of VF-PF communications, we may need to wait tens of milliseconds to get
3560 * responses back from the PF. Rather than busy-wait in probe and bog down the
3561 * whole system, we'll do it in a task so we can sleep.
3562 * This task only runs during driver init. Once we've established
3563 * communications with the PF driver and set up our netdev, the watchdog
3564 * takes over.
3565 **/
3566 static void iavf_init_task(struct work_struct *work)
3567 {
3568 struct iavf_adapter *adapter = container_of(work,
3569 struct iavf_adapter,
3570 init_task.work);
3571 struct iavf_hw *hw = &adapter->hw;
3572
3573 switch (adapter->state) {
3574 case __IAVF_STARTUP:
3575 if (iavf_startup(adapter) < 0)
3576 goto init_failed;
3577 break;
3578 case __IAVF_INIT_VERSION_CHECK:
3579 if (iavf_init_version_check(adapter) < 0)
3580 goto init_failed;
3581 break;
3582 case __IAVF_INIT_GET_RESOURCES:
3583 if (iavf_init_get_resources(adapter) < 0)
3584 goto init_failed;
3585 return;
3586 default:
3587 goto init_failed;
3588 }
3589
3590 queue_delayed_work(iavf_wq, &adapter->init_task,
3591 msecs_to_jiffies(30));
3592 return;
3593 init_failed:
3594 if (++adapter->aq_wait_count > IAVF_AQ_MAX_ERR) {
3595 dev_err(&adapter->pdev->dev,
3596 "Failed to communicate with PF; waiting before retry\n");
3597 adapter->flags |= IAVF_FLAG_PF_COMMS_FAILED;
3598 iavf_shutdown_adminq(hw);
3599 adapter->state = __IAVF_STARTUP;
3600 queue_delayed_work(iavf_wq, &adapter->init_task, HZ * 5);
3601 return;
3602 }
3603 queue_delayed_work(iavf_wq, &adapter->init_task, HZ);
3604 }
3605
3606 /**
3607 * iavf_shutdown - Shutdown the device in preparation for a reboot
3608 * @pdev: pci device structure
3609 **/
3610 static void iavf_shutdown(struct pci_dev *pdev)
3611 {
3612 struct net_device *netdev = pci_get_drvdata(pdev);
3613 struct iavf_adapter *adapter = netdev_priv(netdev);
3614
3615 netif_device_detach(netdev);
3616
3617 if (netif_running(netdev))
3618 iavf_close(netdev);
3619
3620 /* Prevent the watchdog from running. */
3621 adapter->state = __IAVF_REMOVE;
3622 adapter->aq_required = 0;
3623
3624 #ifdef CONFIG_PM
3625 pci_save_state(pdev);
3626
3627 #endif
3628 pci_disable_device(pdev);
3629 }
3630
3631 /**
3632 * iavf_probe - Device Initialization Routine
3633 * @pdev: PCI device information struct
3634 * @ent: entry in iavf_pci_tbl
3635 *
3636 * Returns 0 on success, negative on failure
3637 *
3638 * iavf_probe initializes an adapter identified by a pci_dev structure.
3639 * The OS initialization, configuring of the adapter private structure,
3640 * and a hardware reset occur.
3641 **/
3642 static int iavf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3643 {
3644 struct net_device *netdev;
3645 struct iavf_adapter *adapter = NULL;
3646 struct iavf_hw *hw = NULL;
3647 int err;
3648
3649 err = pci_enable_device(pdev);
3650 if (err)
3651 return err;
3652
3653 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3654 if (err) {
3655 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3656 if (err) {
3657 dev_err(&pdev->dev,
3658 "DMA configuration failed: 0x%x\n", err);
3659 goto err_dma;
3660 }
3661 }
3662
3663 err = pci_request_regions(pdev, iavf_driver_name);
3664 if (err) {
3665 dev_err(&pdev->dev,
3666 "pci_request_regions failed 0x%x\n", err);
3667 goto err_pci_reg;
3668 }
3669
3670 pci_enable_pcie_error_reporting(pdev);
3671
3672 pci_set_master(pdev);
3673
3674 netdev = alloc_etherdev_mq(sizeof(struct iavf_adapter),
3675 IAVF_MAX_REQ_QUEUES);
3676 if (!netdev) {
3677 err = -ENOMEM;
3678 goto err_alloc_etherdev;
3679 }
3680
3681 SET_NETDEV_DEV(netdev, &pdev->dev);
3682
3683 pci_set_drvdata(pdev, netdev);
3684 adapter = netdev_priv(netdev);
3685
3686 adapter->netdev = netdev;
3687 adapter->pdev = pdev;
3688
3689 hw = &adapter->hw;
3690 hw->back = adapter;
3691
3692 adapter->msg_enable = BIT(DEFAULT_DEBUG_LEVEL_SHIFT) - 1;
3693 adapter->state = __IAVF_STARTUP;
3694
3695 /* Call save state here because it relies on the adapter struct. */
3696 pci_save_state(pdev);
3697
3698 hw->hw_addr = ioremap(pci_resource_start(pdev, 0),
3699 pci_resource_len(pdev, 0));
3700 if (!hw->hw_addr) {
3701 err = -EIO;
3702 goto err_ioremap;
3703 }
3704 hw->vendor_id = pdev->vendor;
3705 hw->device_id = pdev->device;
3706 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3707 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3708 hw->subsystem_device_id = pdev->subsystem_device;
3709 hw->bus.device = PCI_SLOT(pdev->devfn);
3710 hw->bus.func = PCI_FUNC(pdev->devfn);
3711 hw->bus.bus_id = pdev->bus->number;
3712
3713 /* set up the locks for the AQ, do this only once in probe
3714 * and destroy them only once in remove
3715 */
3716 mutex_init(&hw->aq.asq_mutex);
3717 mutex_init(&hw->aq.arq_mutex);
3718
3719 spin_lock_init(&adapter->mac_vlan_list_lock);
3720 spin_lock_init(&adapter->cloud_filter_list_lock);
3721
3722 INIT_LIST_HEAD(&adapter->mac_filter_list);
3723 INIT_LIST_HEAD(&adapter->vlan_filter_list);
3724 INIT_LIST_HEAD(&adapter->cloud_filter_list);
3725
3726 INIT_WORK(&adapter->reset_task, iavf_reset_task);
3727 INIT_WORK(&adapter->adminq_task, iavf_adminq_task);
3728 INIT_DELAYED_WORK(&adapter->watchdog_task, iavf_watchdog_task);
3729 INIT_DELAYED_WORK(&adapter->client_task, iavf_client_task);
3730 INIT_DELAYED_WORK(&adapter->init_task, iavf_init_task);
3731 queue_delayed_work(iavf_wq, &adapter->init_task,
3732 msecs_to_jiffies(5 * (pdev->devfn & 0x07)));
3733
3734 /* Setup the wait queue for indicating transition to down status */
3735 init_waitqueue_head(&adapter->down_waitqueue);
3736
3737 return 0;
3738
3739 err_ioremap:
3740 free_netdev(netdev);
3741 err_alloc_etherdev:
3742 pci_release_regions(pdev);
3743 err_pci_reg:
3744 err_dma:
3745 pci_disable_device(pdev);
3746 return err;
3747 }
3748
3749 #ifdef CONFIG_PM
3750 /**
3751 * iavf_suspend - Power management suspend routine
3752 * @pdev: PCI device information struct
3753 * @state: unused
3754 *
3755 * Called when the system (VM) is entering sleep/suspend.
3756 **/
3757 static int iavf_suspend(struct pci_dev *pdev, pm_message_t state)
3758 {
3759 struct net_device *netdev = pci_get_drvdata(pdev);
3760 struct iavf_adapter *adapter = netdev_priv(netdev);
3761 int retval = 0;
3762
3763 netif_device_detach(netdev);
3764
3765 while (test_and_set_bit(__IAVF_IN_CRITICAL_TASK,
3766 &adapter->crit_section))
3767 usleep_range(500, 1000);
3768
3769 if (netif_running(netdev)) {
3770 rtnl_lock();
3771 iavf_down(adapter);
3772 rtnl_unlock();
3773 }
3774 iavf_free_misc_irq(adapter);
3775 iavf_reset_interrupt_capability(adapter);
3776
3777 clear_bit(__IAVF_IN_CRITICAL_TASK, &adapter->crit_section);
3778
3779 retval = pci_save_state(pdev);
3780 if (retval)
3781 return retval;
3782
3783 pci_disable_device(pdev);
3784
3785 return 0;
3786 }
3787
3788 /**
3789 * iavf_resume - Power management resume routine
3790 * @pdev: PCI device information struct
3791 *
3792 * Called when the system (VM) is resumed from sleep/suspend.
3793 **/
3794 static int iavf_resume(struct pci_dev *pdev)
3795 {
3796 struct iavf_adapter *adapter = pci_get_drvdata(pdev);
3797 struct net_device *netdev = adapter->netdev;
3798 u32 err;
3799
3800 pci_set_power_state(pdev, PCI_D0);
3801 pci_restore_state(pdev);
3802 /* pci_restore_state clears dev->state_saved so call
3803 * pci_save_state to restore it.
3804 */
3805 pci_save_state(pdev);
3806
3807 err = pci_enable_device_mem(pdev);
3808 if (err) {
3809 dev_err(&pdev->dev, "Cannot enable PCI device from suspend.\n");
3810 return err;
3811 }
3812 pci_set_master(pdev);
3813
3814 rtnl_lock();
3815 err = iavf_set_interrupt_capability(adapter);
3816 if (err) {
3817 rtnl_unlock();
3818 dev_err(&pdev->dev, "Cannot enable MSI-X interrupts.\n");
3819 return err;
3820 }
3821 err = iavf_request_misc_irq(adapter);
3822 rtnl_unlock();
3823 if (err) {
3824 dev_err(&pdev->dev, "Cannot get interrupt vector.\n");
3825 return err;
3826 }
3827
3828 queue_work(iavf_wq, &adapter->reset_task);
3829
3830 netif_device_attach(netdev);
3831
3832 return err;
3833 }
3834
3835 #endif /* CONFIG_PM */
3836 /**
3837 * iavf_remove - Device Removal Routine
3838 * @pdev: PCI device information struct
3839 *
3840 * iavf_remove is called by the PCI subsystem to alert the driver
3841 * that it should release a PCI device. The could be caused by a
3842 * Hot-Plug event, or because the driver is going to be removed from
3843 * memory.
3844 **/
3845 static void iavf_remove(struct pci_dev *pdev)
3846 {
3847 struct net_device *netdev = pci_get_drvdata(pdev);
3848 struct iavf_adapter *adapter = netdev_priv(netdev);
3849 struct iavf_vlan_filter *vlf, *vlftmp;
3850 struct iavf_mac_filter *f, *ftmp;
3851 struct iavf_cloud_filter *cf, *cftmp;
3852 struct iavf_hw *hw = &adapter->hw;
3853 int err;
3854 /* Indicate we are in remove and not to run reset_task */
3855 set_bit(__IAVF_IN_REMOVE_TASK, &adapter->crit_section);
3856 cancel_delayed_work_sync(&adapter->init_task);
3857 cancel_work_sync(&adapter->reset_task);
3858 cancel_delayed_work_sync(&adapter->client_task);
3859 if (adapter->netdev_registered) {
3860 unregister_netdev(netdev);
3861 adapter->netdev_registered = false;
3862 }
3863 if (CLIENT_ALLOWED(adapter)) {
3864 err = iavf_lan_del_device(adapter);
3865 if (err)
3866 dev_warn(&pdev->dev, "Failed to delete client device: %d\n",
3867 err);
3868 }
3869
3870 /* Shut down all the garbage mashers on the detention level */
3871 adapter->state = __IAVF_REMOVE;
3872 adapter->aq_required = 0;
3873 adapter->flags &= ~IAVF_FLAG_REINIT_ITR_NEEDED;
3874 iavf_request_reset(adapter);
3875 msleep(50);
3876 /* If the FW isn't responding, kick it once, but only once. */
3877 if (!iavf_asq_done(hw)) {
3878 iavf_request_reset(adapter);
3879 msleep(50);
3880 }
3881 iavf_free_all_tx_resources(adapter);
3882 iavf_free_all_rx_resources(adapter);
3883 iavf_misc_irq_disable(adapter);
3884 iavf_free_misc_irq(adapter);
3885 iavf_reset_interrupt_capability(adapter);
3886 iavf_free_q_vectors(adapter);
3887
3888 cancel_delayed_work_sync(&adapter->watchdog_task);
3889
3890 cancel_work_sync(&adapter->adminq_task);
3891
3892 iavf_free_rss(adapter);
3893
3894 if (hw->aq.asq.count)
3895 iavf_shutdown_adminq(hw);
3896
3897 /* destroy the locks only once, here */
3898 mutex_destroy(&hw->aq.arq_mutex);
3899 mutex_destroy(&hw->aq.asq_mutex);
3900
3901 iounmap(hw->hw_addr);
3902 pci_release_regions(pdev);
3903 iavf_free_all_tx_resources(adapter);
3904 iavf_free_all_rx_resources(adapter);
3905 iavf_free_queues(adapter);
3906 kfree(adapter->vf_res);
3907 spin_lock_bh(&adapter->mac_vlan_list_lock);
3908 /* If we got removed before an up/down sequence, we've got a filter
3909 * hanging out there that we need to get rid of.
3910 */
3911 list_for_each_entry_safe(f, ftmp, &adapter->mac_filter_list, list) {
3912 list_del(&f->list);
3913 kfree(f);
3914 }
3915 list_for_each_entry_safe(vlf, vlftmp, &adapter->vlan_filter_list,
3916 list) {
3917 list_del(&vlf->list);
3918 kfree(vlf);
3919 }
3920
3921 spin_unlock_bh(&adapter->mac_vlan_list_lock);
3922
3923 spin_lock_bh(&adapter->cloud_filter_list_lock);
3924 list_for_each_entry_safe(cf, cftmp, &adapter->cloud_filter_list, list) {
3925 list_del(&cf->list);
3926 kfree(cf);
3927 }
3928 spin_unlock_bh(&adapter->cloud_filter_list_lock);
3929
3930 free_netdev(netdev);
3931
3932 pci_disable_pcie_error_reporting(pdev);
3933
3934 pci_disable_device(pdev);
3935 }
3936
3937 static struct pci_driver iavf_driver = {
3938 .name = iavf_driver_name,
3939 .id_table = iavf_pci_tbl,
3940 .probe = iavf_probe,
3941 .remove = iavf_remove,
3942 #ifdef CONFIG_PM
3943 .suspend = iavf_suspend,
3944 .resume = iavf_resume,
3945 #endif
3946 .shutdown = iavf_shutdown,
3947 };
3948
3949 /**
3950 * iavf_init_module - Driver Registration Routine
3951 *
3952 * iavf_init_module is the first routine called when the driver is
3953 * loaded. All it does is register with the PCI subsystem.
3954 **/
3955 static int __init iavf_init_module(void)
3956 {
3957 int ret;
3958
3959 pr_info("iavf: %s - version %s\n", iavf_driver_string,
3960 iavf_driver_version);
3961
3962 pr_info("%s\n", iavf_copyright);
3963
3964 iavf_wq = alloc_workqueue("%s", WQ_UNBOUND | WQ_MEM_RECLAIM, 1,
3965 iavf_driver_name);
3966 if (!iavf_wq) {
3967 pr_err("%s: Failed to create workqueue\n", iavf_driver_name);
3968 return -ENOMEM;
3969 }
3970 ret = pci_register_driver(&iavf_driver);
3971 return ret;
3972 }
3973
3974 module_init(iavf_init_module);
3975
3976 /**
3977 * iavf_exit_module - Driver Exit Cleanup Routine
3978 *
3979 * iavf_exit_module is called just before the driver is removed
3980 * from memory.
3981 **/
3982 static void __exit iavf_exit_module(void)
3983 {
3984 pci_unregister_driver(&iavf_driver);
3985 destroy_workqueue(iavf_wq);
3986 }
3987
3988 module_exit(iavf_exit_module);
3989
3990 /* iavf_main.c */