]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/ice/ice_lib.c
caa00e8873ec7d14623f05183a15174cc8f42618
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / ice / ice_lib.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_dcb_lib.h"
7
8 /**
9 * ice_setup_rx_ctx - Configure a receive ring context
10 * @ring: The Rx ring to configure
11 *
12 * Configure the Rx descriptor ring in RLAN context.
13 */
14 static int ice_setup_rx_ctx(struct ice_ring *ring)
15 {
16 struct ice_vsi *vsi = ring->vsi;
17 struct ice_hw *hw = &vsi->back->hw;
18 u32 rxdid = ICE_RXDID_FLEX_NIC;
19 struct ice_rlan_ctx rlan_ctx;
20 u32 regval;
21 u16 pf_q;
22 int err;
23
24 /* what is Rx queue number in global space of 2K Rx queues */
25 pf_q = vsi->rxq_map[ring->q_index];
26
27 /* clear the context structure first */
28 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
29
30 rlan_ctx.base = ring->dma >> 7;
31
32 rlan_ctx.qlen = ring->count;
33
34 /* Receive Packet Data Buffer Size.
35 * The Packet Data Buffer Size is defined in 128 byte units.
36 */
37 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
38
39 /* use 32 byte descriptors */
40 rlan_ctx.dsize = 1;
41
42 /* Strip the Ethernet CRC bytes before the packet is posted to host
43 * memory.
44 */
45 rlan_ctx.crcstrip = 1;
46
47 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
48 rlan_ctx.l2tsel = 1;
49
50 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
51 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
52 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
53
54 /* This controls whether VLAN is stripped from inner headers
55 * The VLAN in the inner L2 header is stripped to the receive
56 * descriptor if enabled by this flag.
57 */
58 rlan_ctx.showiv = 0;
59
60 /* Max packet size for this queue - must not be set to a larger value
61 * than 5 x DBUF
62 */
63 rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
64 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
65
66 /* Rx queue threshold in units of 64 */
67 rlan_ctx.lrxqthresh = 1;
68
69 /* Enable Flexible Descriptors in the queue context which
70 * allows this driver to select a specific receive descriptor format
71 */
72 if (vsi->type != ICE_VSI_VF) {
73 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
74 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
75 QRXFLXP_CNTXT_RXDID_IDX_M;
76
77 /* increasing context priority to pick up profile ID;
78 * default is 0x01; setting to 0x03 to ensure profile
79 * is programming if prev context is of same priority
80 */
81 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
82 QRXFLXP_CNTXT_RXDID_PRIO_M;
83
84 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
85 }
86
87 /* Absolute queue number out of 2K needs to be passed */
88 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
89 if (err) {
90 dev_err(&vsi->back->pdev->dev,
91 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
92 pf_q, err);
93 return -EIO;
94 }
95
96 if (vsi->type == ICE_VSI_VF)
97 return 0;
98
99 /* init queue specific tail register */
100 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
101 writel(0, ring->tail);
102 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
103
104 return 0;
105 }
106
107 /**
108 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
109 * @ring: The Tx ring to configure
110 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
111 * @pf_q: queue index in the PF space
112 *
113 * Configure the Tx descriptor ring in TLAN context.
114 */
115 static void
116 ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
117 {
118 struct ice_vsi *vsi = ring->vsi;
119 struct ice_hw *hw = &vsi->back->hw;
120
121 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
122
123 tlan_ctx->port_num = vsi->port_info->lport;
124
125 /* Transmit Queue Length */
126 tlan_ctx->qlen = ring->count;
127
128 ice_set_cgd_num(tlan_ctx, ring);
129
130 /* PF number */
131 tlan_ctx->pf_num = hw->pf_id;
132
133 /* queue belongs to a specific VSI type
134 * VF / VM index should be programmed per vmvf_type setting:
135 * for vmvf_type = VF, it is VF number between 0-256
136 * for vmvf_type = VM, it is VM number between 0-767
137 * for PF or EMP this field should be set to zero
138 */
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
142 break;
143 case ICE_VSI_VF:
144 /* Firmware expects vmvf_num to be absolute VF ID */
145 tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf_id;
146 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
147 break;
148 default:
149 return;
150 }
151
152 /* make sure the context is associated with the right VSI */
153 tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
154
155 tlan_ctx->tso_ena = ICE_TX_LEGACY;
156 tlan_ctx->tso_qnum = pf_q;
157
158 /* Legacy or Advanced Host Interface:
159 * 0: Advanced Host Interface
160 * 1: Legacy Host Interface
161 */
162 tlan_ctx->legacy_int = ICE_TX_LEGACY;
163 }
164
165 /**
166 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
167 * @pf: the PF being configured
168 * @pf_q: the PF queue
169 * @ena: enable or disable state of the queue
170 *
171 * This routine will wait for the given Rx queue of the PF to reach the
172 * enabled or disabled state.
173 * Returns -ETIMEDOUT in case of failing to reach the requested state after
174 * multiple retries; else will return 0 in case of success.
175 */
176 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
177 {
178 int i;
179
180 for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
181 if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
182 QRX_CTRL_QENA_STAT_M))
183 return 0;
184
185 usleep_range(20, 40);
186 }
187
188 return -ETIMEDOUT;
189 }
190
191 /**
192 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's Rx rings
193 * @vsi: the VSI being configured
194 * @ena: start or stop the Rx rings
195 */
196 static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
197 {
198 struct ice_pf *pf = vsi->back;
199 struct ice_hw *hw = &pf->hw;
200 int i, ret = 0;
201
202 for (i = 0; i < vsi->num_rxq; i++) {
203 int pf_q = vsi->rxq_map[i];
204 u32 rx_reg;
205
206 rx_reg = rd32(hw, QRX_CTRL(pf_q));
207
208 /* Skip if the queue is already in the requested state */
209 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
210 continue;
211
212 /* turn on/off the queue */
213 if (ena)
214 rx_reg |= QRX_CTRL_QENA_REQ_M;
215 else
216 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
217 wr32(hw, QRX_CTRL(pf_q), rx_reg);
218
219 /* wait for the change to finish */
220 ret = ice_pf_rxq_wait(pf, pf_q, ena);
221 if (ret) {
222 dev_err(&pf->pdev->dev,
223 "VSI idx %d Rx ring %d %sable timeout\n",
224 vsi->idx, pf_q, (ena ? "en" : "dis"));
225 break;
226 }
227 }
228
229 return ret;
230 }
231
232 /**
233 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
234 * @vsi: VSI pointer
235 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
236 *
237 * On error: returns error code (negative)
238 * On success: returns 0
239 */
240 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
241 {
242 struct ice_pf *pf = vsi->back;
243
244 /* allocate memory for both Tx and Rx ring pointers */
245 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
246 sizeof(*vsi->tx_rings), GFP_KERNEL);
247 if (!vsi->tx_rings)
248 goto err_txrings;
249
250 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
251 sizeof(*vsi->rx_rings), GFP_KERNEL);
252 if (!vsi->rx_rings)
253 goto err_rxrings;
254
255 if (alloc_qvectors) {
256 /* allocate memory for q_vector pointers */
257 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
258 vsi->num_q_vectors,
259 sizeof(*vsi->q_vectors),
260 GFP_KERNEL);
261 if (!vsi->q_vectors)
262 goto err_vectors;
263 }
264
265 return 0;
266
267 err_vectors:
268 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
269 err_rxrings:
270 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
271 err_txrings:
272 return -ENOMEM;
273 }
274
275 /**
276 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
277 * @vsi: the VSI being configured
278 */
279 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
280 {
281 switch (vsi->type) {
282 case ICE_VSI_PF:
283 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
284 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
285 break;
286 default:
287 dev_dbg(&vsi->back->pdev->dev,
288 "Not setting number of Tx/Rx descriptors for VSI type %d\n",
289 vsi->type);
290 break;
291 }
292 }
293
294 /**
295 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
296 * @vsi: the VSI being configured
297 * @vf_id: ID of the VF being configured
298 *
299 * Return 0 on success and a negative value on error
300 */
301 static void ice_vsi_set_num_qs(struct ice_vsi *vsi, u16 vf_id)
302 {
303 struct ice_pf *pf = vsi->back;
304 struct ice_vf *vf = NULL;
305
306 if (vsi->type == ICE_VSI_VF)
307 vsi->vf_id = vf_id;
308
309 switch (vsi->type) {
310 case ICE_VSI_PF:
311 vsi->alloc_txq = pf->num_lan_tx;
312 vsi->alloc_rxq = pf->num_lan_rx;
313 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
314 break;
315 case ICE_VSI_VF:
316 vf = &pf->vf[vsi->vf_id];
317 vsi->alloc_txq = vf->num_vf_qs;
318 vsi->alloc_rxq = vf->num_vf_qs;
319 /* pf->num_vf_msix includes (VF miscellaneous vector +
320 * data queue interrupts). Since vsi->num_q_vectors is number
321 * of queues vectors, subtract 1 from the original vector
322 * count
323 */
324 vsi->num_q_vectors = pf->num_vf_msix - 1;
325 break;
326 default:
327 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
328 break;
329 }
330
331 ice_vsi_set_num_desc(vsi);
332 }
333
334 /**
335 * ice_get_free_slot - get the next non-NULL location index in array
336 * @array: array to search
337 * @size: size of the array
338 * @curr: last known occupied index to be used as a search hint
339 *
340 * void * is being used to keep the functionality generic. This lets us use this
341 * function on any array of pointers.
342 */
343 static int ice_get_free_slot(void *array, int size, int curr)
344 {
345 int **tmp_array = (int **)array;
346 int next;
347
348 if (curr < (size - 1) && !tmp_array[curr + 1]) {
349 next = curr + 1;
350 } else {
351 int i = 0;
352
353 while ((i < size) && (tmp_array[i]))
354 i++;
355 if (i == size)
356 next = ICE_NO_VSI;
357 else
358 next = i;
359 }
360 return next;
361 }
362
363 /**
364 * ice_vsi_delete - delete a VSI from the switch
365 * @vsi: pointer to VSI being removed
366 */
367 void ice_vsi_delete(struct ice_vsi *vsi)
368 {
369 struct ice_pf *pf = vsi->back;
370 struct ice_vsi_ctx *ctxt;
371 enum ice_status status;
372
373 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
374 if (!ctxt)
375 return;
376
377 if (vsi->type == ICE_VSI_VF)
378 ctxt->vf_num = vsi->vf_id;
379 ctxt->vsi_num = vsi->vsi_num;
380
381 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
382
383 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
384 if (status)
385 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
386 vsi->vsi_num);
387
388 devm_kfree(&pf->pdev->dev, ctxt);
389 }
390
391 /**
392 * ice_vsi_free_arrays - clean up VSI resources
393 * @vsi: pointer to VSI being cleared
394 * @free_qvectors: bool to specify if q_vectors should be deallocated
395 */
396 static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
397 {
398 struct ice_pf *pf = vsi->back;
399
400 /* free the ring and vector containers */
401 if (free_qvectors && vsi->q_vectors) {
402 devm_kfree(&pf->pdev->dev, vsi->q_vectors);
403 vsi->q_vectors = NULL;
404 }
405 if (vsi->tx_rings) {
406 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
407 vsi->tx_rings = NULL;
408 }
409 if (vsi->rx_rings) {
410 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
411 vsi->rx_rings = NULL;
412 }
413 }
414
415 /**
416 * ice_vsi_clear - clean up and deallocate the provided VSI
417 * @vsi: pointer to VSI being cleared
418 *
419 * This deallocates the VSI's queue resources, removes it from the PF's
420 * VSI array if necessary, and deallocates the VSI
421 *
422 * Returns 0 on success, negative on failure
423 */
424 int ice_vsi_clear(struct ice_vsi *vsi)
425 {
426 struct ice_pf *pf = NULL;
427
428 if (!vsi)
429 return 0;
430
431 if (!vsi->back)
432 return -EINVAL;
433
434 pf = vsi->back;
435
436 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
437 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
438 vsi->idx);
439 return -EINVAL;
440 }
441
442 mutex_lock(&pf->sw_mutex);
443 /* updates the PF for this cleared VSI */
444
445 pf->vsi[vsi->idx] = NULL;
446 if (vsi->idx < pf->next_vsi)
447 pf->next_vsi = vsi->idx;
448
449 ice_vsi_free_arrays(vsi, true);
450 mutex_unlock(&pf->sw_mutex);
451 devm_kfree(&pf->pdev->dev, vsi);
452
453 return 0;
454 }
455
456 /**
457 * ice_msix_clean_rings - MSIX mode Interrupt Handler
458 * @irq: interrupt number
459 * @data: pointer to a q_vector
460 */
461 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
462 {
463 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
464
465 if (!q_vector->tx.ring && !q_vector->rx.ring)
466 return IRQ_HANDLED;
467
468 napi_schedule(&q_vector->napi);
469
470 return IRQ_HANDLED;
471 }
472
473 /**
474 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
475 * @pf: board private structure
476 * @type: type of VSI
477 * @vf_id: ID of the VF being configured
478 *
479 * returns a pointer to a VSI on success, NULL on failure.
480 */
481 static struct ice_vsi *
482 ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type, u16 vf_id)
483 {
484 struct ice_vsi *vsi = NULL;
485
486 /* Need to protect the allocation of the VSIs at the PF level */
487 mutex_lock(&pf->sw_mutex);
488
489 /* If we have already allocated our maximum number of VSIs,
490 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
491 * is available to be populated
492 */
493 if (pf->next_vsi == ICE_NO_VSI) {
494 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
495 goto unlock_pf;
496 }
497
498 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
499 if (!vsi)
500 goto unlock_pf;
501
502 vsi->type = type;
503 vsi->back = pf;
504 set_bit(__ICE_DOWN, vsi->state);
505 vsi->idx = pf->next_vsi;
506 vsi->work_lmt = ICE_DFLT_IRQ_WORK;
507
508 if (type == ICE_VSI_VF)
509 ice_vsi_set_num_qs(vsi, vf_id);
510 else
511 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
512
513 switch (vsi->type) {
514 case ICE_VSI_PF:
515 if (ice_vsi_alloc_arrays(vsi, true))
516 goto err_rings;
517
518 /* Setup default MSIX irq handler for VSI */
519 vsi->irq_handler = ice_msix_clean_rings;
520 break;
521 case ICE_VSI_VF:
522 if (ice_vsi_alloc_arrays(vsi, true))
523 goto err_rings;
524 break;
525 default:
526 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
527 goto unlock_pf;
528 }
529
530 /* fill VSI slot in the PF struct */
531 pf->vsi[pf->next_vsi] = vsi;
532
533 /* prepare pf->next_vsi for next use */
534 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
535 pf->next_vsi);
536 goto unlock_pf;
537
538 err_rings:
539 devm_kfree(&pf->pdev->dev, vsi);
540 vsi = NULL;
541 unlock_pf:
542 mutex_unlock(&pf->sw_mutex);
543 return vsi;
544 }
545
546 /**
547 * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
548 * @qs_cfg: gathered variables needed for PF->VSI queues assignment
549 *
550 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
551 */
552 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
553 {
554 int offset, i;
555
556 mutex_lock(qs_cfg->qs_mutex);
557 offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
558 0, qs_cfg->q_count, 0);
559 if (offset >= qs_cfg->pf_map_size) {
560 mutex_unlock(qs_cfg->qs_mutex);
561 return -ENOMEM;
562 }
563
564 bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
565 for (i = 0; i < qs_cfg->q_count; i++)
566 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = i + offset;
567 mutex_unlock(qs_cfg->qs_mutex);
568
569 return 0;
570 }
571
572 /**
573 * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
574 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
575 *
576 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
577 */
578 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
579 {
580 int i, index = 0;
581
582 mutex_lock(qs_cfg->qs_mutex);
583 for (i = 0; i < qs_cfg->q_count; i++) {
584 index = find_next_zero_bit(qs_cfg->pf_map,
585 qs_cfg->pf_map_size, index);
586 if (index >= qs_cfg->pf_map_size)
587 goto err_scatter;
588 set_bit(index, qs_cfg->pf_map);
589 qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = index;
590 }
591 mutex_unlock(qs_cfg->qs_mutex);
592
593 return 0;
594 err_scatter:
595 for (index = 0; index < i; index++) {
596 clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
597 qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
598 }
599 mutex_unlock(qs_cfg->qs_mutex);
600
601 return -ENOMEM;
602 }
603
604 /**
605 * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
606 * @qs_cfg: gathered variables needed for pf->vsi queues assignment
607 *
608 * This function first tries to find contiguous space. If it is not successful,
609 * it tries with the scatter approach.
610 *
611 * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
612 */
613 static int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
614 {
615 int ret = 0;
616
617 ret = __ice_vsi_get_qs_contig(qs_cfg);
618 if (ret) {
619 /* contig failed, so try with scatter approach */
620 qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
621 qs_cfg->q_count = min_t(u16, qs_cfg->q_count,
622 qs_cfg->scatter_count);
623 ret = __ice_vsi_get_qs_sc(qs_cfg);
624 }
625 return ret;
626 }
627
628 /**
629 * ice_vsi_get_qs - Assign queues from PF to VSI
630 * @vsi: the VSI to assign queues to
631 *
632 * Returns 0 on success and a negative value on error
633 */
634 static int ice_vsi_get_qs(struct ice_vsi *vsi)
635 {
636 struct ice_pf *pf = vsi->back;
637 struct ice_qs_cfg tx_qs_cfg = {
638 .qs_mutex = &pf->avail_q_mutex,
639 .pf_map = pf->avail_txqs,
640 .pf_map_size = ICE_MAX_TXQS,
641 .q_count = vsi->alloc_txq,
642 .scatter_count = ICE_MAX_SCATTER_TXQS,
643 .vsi_map = vsi->txq_map,
644 .vsi_map_offset = 0,
645 .mapping_mode = vsi->tx_mapping_mode
646 };
647 struct ice_qs_cfg rx_qs_cfg = {
648 .qs_mutex = &pf->avail_q_mutex,
649 .pf_map = pf->avail_rxqs,
650 .pf_map_size = ICE_MAX_RXQS,
651 .q_count = vsi->alloc_rxq,
652 .scatter_count = ICE_MAX_SCATTER_RXQS,
653 .vsi_map = vsi->rxq_map,
654 .vsi_map_offset = 0,
655 .mapping_mode = vsi->rx_mapping_mode
656 };
657 int ret = 0;
658
659 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
660 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
661
662 ret = __ice_vsi_get_qs(&tx_qs_cfg);
663 if (!ret)
664 ret = __ice_vsi_get_qs(&rx_qs_cfg);
665
666 return ret;
667 }
668
669 /**
670 * ice_vsi_put_qs - Release queues from VSI to PF
671 * @vsi: the VSI that is going to release queues
672 */
673 void ice_vsi_put_qs(struct ice_vsi *vsi)
674 {
675 struct ice_pf *pf = vsi->back;
676 int i;
677
678 mutex_lock(&pf->avail_q_mutex);
679
680 for (i = 0; i < vsi->alloc_txq; i++) {
681 clear_bit(vsi->txq_map[i], pf->avail_txqs);
682 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
683 }
684
685 for (i = 0; i < vsi->alloc_rxq; i++) {
686 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
687 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
688 }
689
690 mutex_unlock(&pf->avail_q_mutex);
691 }
692
693 /**
694 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
695 * @vsi: the VSI being removed
696 */
697 static void ice_rss_clean(struct ice_vsi *vsi)
698 {
699 struct ice_pf *pf;
700
701 pf = vsi->back;
702
703 if (vsi->rss_hkey_user)
704 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
705 if (vsi->rss_lut_user)
706 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
707 }
708
709 /**
710 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
711 * @vsi: the VSI being configured
712 */
713 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
714 {
715 struct ice_hw_common_caps *cap;
716 struct ice_pf *pf = vsi->back;
717
718 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
719 vsi->rss_size = 1;
720 return;
721 }
722
723 cap = &pf->hw.func_caps.common_cap;
724 switch (vsi->type) {
725 case ICE_VSI_PF:
726 /* PF VSI will inherit RSS instance of PF */
727 vsi->rss_table_size = cap->rss_table_size;
728 vsi->rss_size = min_t(int, num_online_cpus(),
729 BIT(cap->rss_table_entry_width));
730 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
731 break;
732 case ICE_VSI_VF:
733 /* VF VSI will gets a small RSS table
734 * For VSI_LUT, LUT size should be set to 64 bytes
735 */
736 vsi->rss_table_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
737 vsi->rss_size = min_t(int, num_online_cpus(),
738 BIT(cap->rss_table_entry_width));
739 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI;
740 break;
741 default:
742 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n",
743 vsi->type);
744 break;
745 }
746 }
747
748 /**
749 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
750 * @ctxt: the VSI context being set
751 *
752 * This initializes a default VSI context for all sections except the Queues.
753 */
754 static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
755 {
756 u32 table = 0;
757
758 memset(&ctxt->info, 0, sizeof(ctxt->info));
759 /* VSI's should be allocated from shared pool */
760 ctxt->alloc_from_pool = true;
761 /* Src pruning enabled by default */
762 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
763 /* Traffic from VSI can be sent to LAN */
764 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
765 /* By default bits 3 and 4 in vlan_flags are 0's which results in legacy
766 * behavior (show VLAN, DEI, and UP) in descriptor. Also, allow all
767 * packets untagged/tagged.
768 */
769 ctxt->info.vlan_flags = ((ICE_AQ_VSI_VLAN_MODE_ALL &
770 ICE_AQ_VSI_VLAN_MODE_M) >>
771 ICE_AQ_VSI_VLAN_MODE_S);
772 /* Have 1:1 UP mapping for both ingress/egress tables */
773 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
774 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
775 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
776 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
777 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
778 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
779 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
780 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
781 ctxt->info.ingress_table = cpu_to_le32(table);
782 ctxt->info.egress_table = cpu_to_le32(table);
783 /* Have 1:1 UP mapping for outer to inner UP table */
784 ctxt->info.outer_up_table = cpu_to_le32(table);
785 /* No Outer tag support outer_tag_flags remains to zero */
786 }
787
788 /**
789 * ice_vsi_setup_q_map - Setup a VSI queue map
790 * @vsi: the VSI being configured
791 * @ctxt: VSI context structure
792 */
793 static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
794 {
795 u16 offset = 0, qmap = 0, tx_count = 0;
796 u16 qcount_tx = vsi->alloc_txq;
797 u16 qcount_rx = vsi->alloc_rxq;
798 u16 tx_numq_tc, rx_numq_tc;
799 u16 pow = 0, max_rss = 0;
800 bool ena_tc0 = false;
801 u8 netdev_tc = 0;
802 int i;
803
804 /* at least TC0 should be enabled by default */
805 if (vsi->tc_cfg.numtc) {
806 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
807 ena_tc0 = true;
808 } else {
809 ena_tc0 = true;
810 }
811
812 if (ena_tc0) {
813 vsi->tc_cfg.numtc++;
814 vsi->tc_cfg.ena_tc |= 1;
815 }
816
817 rx_numq_tc = qcount_rx / vsi->tc_cfg.numtc;
818 if (!rx_numq_tc)
819 rx_numq_tc = 1;
820 tx_numq_tc = qcount_tx / vsi->tc_cfg.numtc;
821 if (!tx_numq_tc)
822 tx_numq_tc = 1;
823
824 /* TC mapping is a function of the number of Rx queues assigned to the
825 * VSI for each traffic class and the offset of these queues.
826 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
827 * queues allocated to TC0. No:of queues is a power-of-2.
828 *
829 * If TC is not enabled, the queue offset is set to 0, and allocate one
830 * queue, this way, traffic for the given TC will be sent to the default
831 * queue.
832 *
833 * Setup number and offset of Rx queues for all TCs for the VSI
834 */
835
836 qcount_rx = rx_numq_tc;
837
838 /* qcount will change if RSS is enabled */
839 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
840 if (vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF) {
841 if (vsi->type == ICE_VSI_PF)
842 max_rss = ICE_MAX_LG_RSS_QS;
843 else
844 max_rss = ICE_MAX_SMALL_RSS_QS;
845 qcount_rx = min_t(int, rx_numq_tc, max_rss);
846 qcount_rx = min_t(int, qcount_rx, vsi->rss_size);
847 }
848 }
849
850 /* find the (rounded up) power-of-2 of qcount */
851 pow = order_base_2(qcount_rx);
852
853 ice_for_each_traffic_class(i) {
854 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
855 /* TC is not enabled */
856 vsi->tc_cfg.tc_info[i].qoffset = 0;
857 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
858 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
859 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
860 ctxt->info.tc_mapping[i] = 0;
861 continue;
862 }
863
864 /* TC is enabled */
865 vsi->tc_cfg.tc_info[i].qoffset = offset;
866 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
867 vsi->tc_cfg.tc_info[i].qcount_tx = tx_numq_tc;
868 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
869
870 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
871 ICE_AQ_VSI_TC_Q_OFFSET_M) |
872 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
873 ICE_AQ_VSI_TC_Q_NUM_M);
874 offset += qcount_rx;
875 tx_count += tx_numq_tc;
876 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
877 }
878
879 /* if offset is non-zero, means it is calculated correctly based on
880 * enabled TCs for a given VSI otherwise qcount_rx will always
881 * be correct and non-zero because it is based off - VSI's
882 * allocated Rx queues which is at least 1 (hence qcount_tx will be
883 * at least 1)
884 */
885 if (offset)
886 vsi->num_rxq = offset;
887 else
888 vsi->num_rxq = qcount_rx;
889
890 vsi->num_txq = tx_count;
891
892 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
893 dev_dbg(&vsi->back->pdev->dev, "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
894 /* since there is a chance that num_rxq could have been changed
895 * in the above for loop, make num_txq equal to num_rxq.
896 */
897 vsi->num_txq = vsi->num_rxq;
898 }
899
900 /* Rx queue mapping */
901 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
902 /* q_mapping buffer holds the info for the first queue allocated for
903 * this VSI in the PF space and also the number of queues associated
904 * with this VSI.
905 */
906 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
907 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
908 }
909
910 /**
911 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
912 * @ctxt: the VSI context being set
913 * @vsi: the VSI being configured
914 */
915 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
916 {
917 u8 lut_type, hash_type;
918 struct ice_pf *pf;
919
920 pf = vsi->back;
921
922 switch (vsi->type) {
923 case ICE_VSI_PF:
924 /* PF VSI will inherit RSS instance of PF */
925 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
926 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
927 break;
928 case ICE_VSI_VF:
929 /* VF VSI will gets a small RSS table which is a VSI LUT type */
930 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
931 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
932 break;
933 default:
934 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
935 return;
936 }
937
938 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
939 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
940 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
941 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
942 }
943
944 /**
945 * ice_vsi_init - Create and initialize a VSI
946 * @vsi: the VSI being configured
947 *
948 * This initializes a VSI context depending on the VSI type to be added and
949 * passes it down to the add_vsi aq command to create a new VSI.
950 */
951 static int ice_vsi_init(struct ice_vsi *vsi)
952 {
953 struct ice_pf *pf = vsi->back;
954 struct ice_hw *hw = &pf->hw;
955 struct ice_vsi_ctx *ctxt;
956 int ret = 0;
957
958 ctxt = devm_kzalloc(&pf->pdev->dev, sizeof(*ctxt), GFP_KERNEL);
959 if (!ctxt)
960 return -ENOMEM;
961
962 ctxt->info = vsi->info;
963 switch (vsi->type) {
964 case ICE_VSI_PF:
965 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
966 break;
967 case ICE_VSI_VF:
968 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
969 /* VF number here is the absolute VF number (0-255) */
970 ctxt->vf_num = vsi->vf_id + hw->func_caps.vf_base_id;
971 break;
972 default:
973 return -ENODEV;
974 }
975
976 ice_set_dflt_vsi_ctx(ctxt);
977 /* if the switch is in VEB mode, allow VSI loopback */
978 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
979 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
980
981 /* Set LUT type and HASH type if RSS is enabled */
982 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
983 ice_set_rss_vsi_ctx(ctxt, vsi);
984
985 ctxt->info.sw_id = vsi->port_info->sw_id;
986 ice_vsi_setup_q_map(vsi, ctxt);
987
988 /* Enable MAC Antispoof with new VSI being initialized or updated */
989 if (vsi->type == ICE_VSI_VF && pf->vf[vsi->vf_id].spoofchk) {
990 ctxt->info.valid_sections |=
991 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
992 ctxt->info.sec_flags |=
993 ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF;
994 }
995
996 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
997 if (ret) {
998 dev_err(&pf->pdev->dev,
999 "Add VSI failed, err %d\n", ret);
1000 return -EIO;
1001 }
1002
1003 /* keep context for update VSI operations */
1004 vsi->info = ctxt->info;
1005
1006 /* record VSI number returned */
1007 vsi->vsi_num = ctxt->vsi_num;
1008
1009 devm_kfree(&pf->pdev->dev, ctxt);
1010 return ret;
1011 }
1012
1013 /**
1014 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
1015 * @vsi: VSI having the memory freed
1016 * @v_idx: index of the vector to be freed
1017 */
1018 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
1019 {
1020 struct ice_q_vector *q_vector;
1021 struct ice_pf *pf = vsi->back;
1022 struct ice_ring *ring;
1023
1024 if (!vsi->q_vectors[v_idx]) {
1025 dev_dbg(&pf->pdev->dev, "Queue vector at index %d not found\n",
1026 v_idx);
1027 return;
1028 }
1029 q_vector = vsi->q_vectors[v_idx];
1030
1031 ice_for_each_ring(ring, q_vector->tx)
1032 ring->q_vector = NULL;
1033 ice_for_each_ring(ring, q_vector->rx)
1034 ring->q_vector = NULL;
1035
1036 /* only VSI with an associated netdev is set up with NAPI */
1037 if (vsi->netdev)
1038 netif_napi_del(&q_vector->napi);
1039
1040 devm_kfree(&pf->pdev->dev, q_vector);
1041 vsi->q_vectors[v_idx] = NULL;
1042 }
1043
1044 /**
1045 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
1046 * @vsi: the VSI having memory freed
1047 */
1048 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
1049 {
1050 int v_idx;
1051
1052 ice_for_each_q_vector(vsi, v_idx)
1053 ice_free_q_vector(vsi, v_idx);
1054 }
1055
1056 /**
1057 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
1058 * @vsi: the VSI being configured
1059 * @v_idx: index of the vector in the VSI struct
1060 *
1061 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1062 */
1063 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
1064 {
1065 struct ice_pf *pf = vsi->back;
1066 struct ice_q_vector *q_vector;
1067
1068 /* allocate q_vector */
1069 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
1070 if (!q_vector)
1071 return -ENOMEM;
1072
1073 q_vector->vsi = vsi;
1074 q_vector->v_idx = v_idx;
1075 if (vsi->type == ICE_VSI_VF)
1076 goto out;
1077 /* only set affinity_mask if the CPU is online */
1078 if (cpu_online(v_idx))
1079 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
1080
1081 /* This will not be called in the driver load path because the netdev
1082 * will not be created yet. All other cases with register the NAPI
1083 * handler here (i.e. resume, reset/rebuild, etc.)
1084 */
1085 if (vsi->netdev)
1086 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
1087 NAPI_POLL_WEIGHT);
1088
1089 out:
1090 /* tie q_vector and VSI together */
1091 vsi->q_vectors[v_idx] = q_vector;
1092
1093 return 0;
1094 }
1095
1096 /**
1097 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
1098 * @vsi: the VSI being configured
1099 *
1100 * We allocate one q_vector per queue interrupt. If allocation fails we
1101 * return -ENOMEM.
1102 */
1103 static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
1104 {
1105 struct ice_pf *pf = vsi->back;
1106 int v_idx = 0, num_q_vectors;
1107 int err;
1108
1109 if (vsi->q_vectors[0]) {
1110 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
1111 vsi->vsi_num);
1112 return -EEXIST;
1113 }
1114
1115 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1116 num_q_vectors = vsi->num_q_vectors;
1117 } else {
1118 err = -EINVAL;
1119 goto err_out;
1120 }
1121
1122 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
1123 err = ice_vsi_alloc_q_vector(vsi, v_idx);
1124 if (err)
1125 goto err_out;
1126 }
1127
1128 return 0;
1129
1130 err_out:
1131 while (v_idx--)
1132 ice_free_q_vector(vsi, v_idx);
1133
1134 dev_err(&pf->pdev->dev,
1135 "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
1136 vsi->num_q_vectors, vsi->vsi_num, err);
1137 vsi->num_q_vectors = 0;
1138 return err;
1139 }
1140
1141 /**
1142 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
1143 * @vsi: ptr to the VSI
1144 *
1145 * This should only be called after ice_vsi_alloc() which allocates the
1146 * corresponding SW VSI structure and initializes num_queue_pairs for the
1147 * newly allocated VSI.
1148 *
1149 * Returns 0 on success or negative on failure
1150 */
1151 static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
1152 {
1153 struct ice_pf *pf = vsi->back;
1154 int num_q_vectors = 0;
1155
1156 if (vsi->sw_base_vector || vsi->hw_base_vector) {
1157 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero HW base vector %d or SW base vector %d\n",
1158 vsi->vsi_num, vsi->hw_base_vector, vsi->sw_base_vector);
1159 return -EEXIST;
1160 }
1161
1162 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
1163 return -ENOENT;
1164
1165 switch (vsi->type) {
1166 case ICE_VSI_PF:
1167 num_q_vectors = vsi->num_q_vectors;
1168 /* reserve slots from OS requested IRQs */
1169 vsi->sw_base_vector = ice_get_res(pf, pf->sw_irq_tracker,
1170 num_q_vectors, vsi->idx);
1171 if (vsi->sw_base_vector < 0) {
1172 dev_err(&pf->pdev->dev,
1173 "Failed to get tracking for %d SW vectors for VSI %d, err=%d\n",
1174 num_q_vectors, vsi->vsi_num,
1175 vsi->sw_base_vector);
1176 return -ENOENT;
1177 }
1178 pf->num_avail_sw_msix -= num_q_vectors;
1179
1180 /* reserve slots from HW interrupts */
1181 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
1182 num_q_vectors, vsi->idx);
1183 break;
1184 case ICE_VSI_VF:
1185 /* take VF misc vector and data vectors into account */
1186 num_q_vectors = pf->num_vf_msix;
1187 /* For VF VSI, reserve slots only from HW interrupts */
1188 vsi->hw_base_vector = ice_get_res(pf, pf->hw_irq_tracker,
1189 num_q_vectors, vsi->idx);
1190 break;
1191 default:
1192 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1193 break;
1194 }
1195
1196 if (vsi->hw_base_vector < 0) {
1197 dev_err(&pf->pdev->dev,
1198 "Failed to get tracking for %d HW vectors for VSI %d, err=%d\n",
1199 num_q_vectors, vsi->vsi_num, vsi->hw_base_vector);
1200 if (vsi->type != ICE_VSI_VF) {
1201 ice_free_res(pf->sw_irq_tracker,
1202 vsi->sw_base_vector, vsi->idx);
1203 pf->num_avail_sw_msix += num_q_vectors;
1204 }
1205 return -ENOENT;
1206 }
1207
1208 pf->num_avail_hw_msix -= num_q_vectors;
1209
1210 return 0;
1211 }
1212
1213 /**
1214 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1215 * @vsi: the VSI having rings deallocated
1216 */
1217 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1218 {
1219 int i;
1220
1221 if (vsi->tx_rings) {
1222 for (i = 0; i < vsi->alloc_txq; i++) {
1223 if (vsi->tx_rings[i]) {
1224 kfree_rcu(vsi->tx_rings[i], rcu);
1225 vsi->tx_rings[i] = NULL;
1226 }
1227 }
1228 }
1229 if (vsi->rx_rings) {
1230 for (i = 0; i < vsi->alloc_rxq; i++) {
1231 if (vsi->rx_rings[i]) {
1232 kfree_rcu(vsi->rx_rings[i], rcu);
1233 vsi->rx_rings[i] = NULL;
1234 }
1235 }
1236 }
1237 }
1238
1239 /**
1240 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1241 * @vsi: VSI which is having rings allocated
1242 */
1243 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1244 {
1245 struct ice_pf *pf = vsi->back;
1246 int i;
1247
1248 /* Allocate Tx rings */
1249 for (i = 0; i < vsi->alloc_txq; i++) {
1250 struct ice_ring *ring;
1251
1252 /* allocate with kzalloc(), free with kfree_rcu() */
1253 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1254
1255 if (!ring)
1256 goto err_out;
1257
1258 ring->q_index = i;
1259 ring->reg_idx = vsi->txq_map[i];
1260 ring->ring_active = false;
1261 ring->vsi = vsi;
1262 ring->dev = &pf->pdev->dev;
1263 ring->count = vsi->num_tx_desc;
1264 vsi->tx_rings[i] = ring;
1265 }
1266
1267 /* Allocate Rx rings */
1268 for (i = 0; i < vsi->alloc_rxq; i++) {
1269 struct ice_ring *ring;
1270
1271 /* allocate with kzalloc(), free with kfree_rcu() */
1272 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1273 if (!ring)
1274 goto err_out;
1275
1276 ring->q_index = i;
1277 ring->reg_idx = vsi->rxq_map[i];
1278 ring->ring_active = false;
1279 ring->vsi = vsi;
1280 ring->netdev = vsi->netdev;
1281 ring->dev = &pf->pdev->dev;
1282 ring->count = vsi->num_rx_desc;
1283 vsi->rx_rings[i] = ring;
1284 }
1285
1286 return 0;
1287
1288 err_out:
1289 ice_vsi_clear_rings(vsi);
1290 return -ENOMEM;
1291 }
1292
1293 /**
1294 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1295 * @vsi: the VSI being configured
1296 *
1297 * This function maps descriptor rings to the queue-specific vectors allotted
1298 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1299 * and Rx rings to the vector as "efficiently" as possible.
1300 */
1301 #ifdef CONFIG_DCB
1302 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1303 #else
1304 static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1305 #endif /* CONFIG_DCB */
1306 {
1307 int q_vectors = vsi->num_q_vectors;
1308 int tx_rings_rem, rx_rings_rem;
1309 int v_id;
1310
1311 /* initially assigning remaining rings count to VSIs num queue value */
1312 tx_rings_rem = vsi->num_txq;
1313 rx_rings_rem = vsi->num_rxq;
1314
1315 for (v_id = 0; v_id < q_vectors; v_id++) {
1316 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1317 int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1318
1319 /* Tx rings mapping to vector */
1320 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1321 q_vector->num_ring_tx = tx_rings_per_v;
1322 q_vector->tx.ring = NULL;
1323 q_vector->tx.itr_idx = ICE_TX_ITR;
1324 q_base = vsi->num_txq - tx_rings_rem;
1325
1326 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1327 struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1328
1329 tx_ring->q_vector = q_vector;
1330 tx_ring->next = q_vector->tx.ring;
1331 q_vector->tx.ring = tx_ring;
1332 }
1333 tx_rings_rem -= tx_rings_per_v;
1334
1335 /* Rx rings mapping to vector */
1336 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1337 q_vector->num_ring_rx = rx_rings_per_v;
1338 q_vector->rx.ring = NULL;
1339 q_vector->rx.itr_idx = ICE_RX_ITR;
1340 q_base = vsi->num_rxq - rx_rings_rem;
1341
1342 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1343 struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1344
1345 rx_ring->q_vector = q_vector;
1346 rx_ring->next = q_vector->rx.ring;
1347 q_vector->rx.ring = rx_ring;
1348 }
1349 rx_rings_rem -= rx_rings_per_v;
1350 }
1351 }
1352
1353 /**
1354 * ice_vsi_manage_rss_lut - disable/enable RSS
1355 * @vsi: the VSI being changed
1356 * @ena: boolean value indicating if this is an enable or disable request
1357 *
1358 * In the event of disable request for RSS, this function will zero out RSS
1359 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1360 * LUT.
1361 */
1362 int ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1363 {
1364 int err = 0;
1365 u8 *lut;
1366
1367 lut = devm_kzalloc(&vsi->back->pdev->dev, vsi->rss_table_size,
1368 GFP_KERNEL);
1369 if (!lut)
1370 return -ENOMEM;
1371
1372 if (ena) {
1373 if (vsi->rss_lut_user)
1374 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1375 else
1376 ice_fill_rss_lut(lut, vsi->rss_table_size,
1377 vsi->rss_size);
1378 }
1379
1380 err = ice_set_rss(vsi, NULL, lut, vsi->rss_table_size);
1381 devm_kfree(&vsi->back->pdev->dev, lut);
1382 return err;
1383 }
1384
1385 /**
1386 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1387 * @vsi: VSI to be configured
1388 */
1389 static int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1390 {
1391 struct ice_aqc_get_set_rss_keys *key;
1392 struct ice_pf *pf = vsi->back;
1393 enum ice_status status;
1394 int err = 0;
1395 u8 *lut;
1396
1397 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
1398
1399 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
1400 if (!lut)
1401 return -ENOMEM;
1402
1403 if (vsi->rss_lut_user)
1404 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1405 else
1406 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1407
1408 status = ice_aq_set_rss_lut(&pf->hw, vsi->idx, vsi->rss_lut_type, lut,
1409 vsi->rss_table_size);
1410
1411 if (status) {
1412 dev_err(&pf->pdev->dev,
1413 "set_rss_lut failed, error %d\n", status);
1414 err = -EIO;
1415 goto ice_vsi_cfg_rss_exit;
1416 }
1417
1418 key = devm_kzalloc(&pf->pdev->dev, sizeof(*key), GFP_KERNEL);
1419 if (!key) {
1420 err = -ENOMEM;
1421 goto ice_vsi_cfg_rss_exit;
1422 }
1423
1424 if (vsi->rss_hkey_user)
1425 memcpy(key,
1426 (struct ice_aqc_get_set_rss_keys *)vsi->rss_hkey_user,
1427 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1428 else
1429 netdev_rss_key_fill((void *)key,
1430 ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1431
1432 status = ice_aq_set_rss_key(&pf->hw, vsi->idx, key);
1433
1434 if (status) {
1435 dev_err(&pf->pdev->dev, "set_rss_key failed, error %d\n",
1436 status);
1437 err = -EIO;
1438 }
1439
1440 devm_kfree(&pf->pdev->dev, key);
1441 ice_vsi_cfg_rss_exit:
1442 devm_kfree(&pf->pdev->dev, lut);
1443 return err;
1444 }
1445
1446 /**
1447 * ice_add_mac_to_list - Add a MAC address filter entry to the list
1448 * @vsi: the VSI to be forwarded to
1449 * @add_list: pointer to the list which contains MAC filter entries
1450 * @macaddr: the MAC address to be added.
1451 *
1452 * Adds MAC address filter entry to the temp list
1453 *
1454 * Returns 0 on success or ENOMEM on failure.
1455 */
1456 int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
1457 const u8 *macaddr)
1458 {
1459 struct ice_fltr_list_entry *tmp;
1460 struct ice_pf *pf = vsi->back;
1461
1462 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
1463 if (!tmp)
1464 return -ENOMEM;
1465
1466 tmp->fltr_info.flag = ICE_FLTR_TX;
1467 tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1468 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
1469 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1470 tmp->fltr_info.vsi_handle = vsi->idx;
1471 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
1472
1473 INIT_LIST_HEAD(&tmp->list_entry);
1474 list_add(&tmp->list_entry, add_list);
1475
1476 return 0;
1477 }
1478
1479 /**
1480 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1481 * @vsi: the VSI to be updated
1482 */
1483 void ice_update_eth_stats(struct ice_vsi *vsi)
1484 {
1485 struct ice_eth_stats *prev_es, *cur_es;
1486 struct ice_hw *hw = &vsi->back->hw;
1487 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1488
1489 prev_es = &vsi->eth_stats_prev;
1490 cur_es = &vsi->eth_stats;
1491
1492 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
1493 vsi->stat_offsets_loaded, &prev_es->rx_bytes,
1494 &cur_es->rx_bytes);
1495
1496 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
1497 vsi->stat_offsets_loaded, &prev_es->rx_unicast,
1498 &cur_es->rx_unicast);
1499
1500 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
1501 vsi->stat_offsets_loaded, &prev_es->rx_multicast,
1502 &cur_es->rx_multicast);
1503
1504 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
1505 vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
1506 &cur_es->rx_broadcast);
1507
1508 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1509 &prev_es->rx_discards, &cur_es->rx_discards);
1510
1511 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
1512 vsi->stat_offsets_loaded, &prev_es->tx_bytes,
1513 &cur_es->tx_bytes);
1514
1515 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
1516 vsi->stat_offsets_loaded, &prev_es->tx_unicast,
1517 &cur_es->tx_unicast);
1518
1519 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
1520 vsi->stat_offsets_loaded, &prev_es->tx_multicast,
1521 &cur_es->tx_multicast);
1522
1523 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
1524 vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
1525 &cur_es->tx_broadcast);
1526
1527 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1528 &prev_es->tx_errors, &cur_es->tx_errors);
1529
1530 vsi->stat_offsets_loaded = true;
1531 }
1532
1533 /**
1534 * ice_free_fltr_list - free filter lists helper
1535 * @dev: pointer to the device struct
1536 * @h: pointer to the list head to be freed
1537 *
1538 * Helper function to free filter lists previously created using
1539 * ice_add_mac_to_list
1540 */
1541 void ice_free_fltr_list(struct device *dev, struct list_head *h)
1542 {
1543 struct ice_fltr_list_entry *e, *tmp;
1544
1545 list_for_each_entry_safe(e, tmp, h, list_entry) {
1546 list_del(&e->list_entry);
1547 devm_kfree(dev, e);
1548 }
1549 }
1550
1551 /**
1552 * ice_vsi_add_vlan - Add VSI membership for given VLAN
1553 * @vsi: the VSI being configured
1554 * @vid: VLAN ID to be added
1555 */
1556 int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
1557 {
1558 struct ice_fltr_list_entry *tmp;
1559 struct ice_pf *pf = vsi->back;
1560 LIST_HEAD(tmp_add_list);
1561 enum ice_status status;
1562 int err = 0;
1563
1564 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
1565 if (!tmp)
1566 return -ENOMEM;
1567
1568 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1569 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1570 tmp->fltr_info.flag = ICE_FLTR_TX;
1571 tmp->fltr_info.src_id = ICE_SRC_ID_VSI;
1572 tmp->fltr_info.vsi_handle = vsi->idx;
1573 tmp->fltr_info.l_data.vlan.vlan_id = vid;
1574
1575 INIT_LIST_HEAD(&tmp->list_entry);
1576 list_add(&tmp->list_entry, &tmp_add_list);
1577
1578 status = ice_add_vlan(&pf->hw, &tmp_add_list);
1579 if (status) {
1580 err = -ENODEV;
1581 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
1582 vid, vsi->vsi_num);
1583 }
1584
1585 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1586 return err;
1587 }
1588
1589 /**
1590 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
1591 * @vsi: the VSI being configured
1592 * @vid: VLAN ID to be removed
1593 *
1594 * Returns 0 on success and negative on failure
1595 */
1596 int ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
1597 {
1598 struct ice_fltr_list_entry *list;
1599 struct ice_pf *pf = vsi->back;
1600 LIST_HEAD(tmp_add_list);
1601 enum ice_status status;
1602 int err = 0;
1603
1604 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
1605 if (!list)
1606 return -ENOMEM;
1607
1608 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
1609 list->fltr_info.vsi_handle = vsi->idx;
1610 list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
1611 list->fltr_info.l_data.vlan.vlan_id = vid;
1612 list->fltr_info.flag = ICE_FLTR_TX;
1613 list->fltr_info.src_id = ICE_SRC_ID_VSI;
1614
1615 INIT_LIST_HEAD(&list->list_entry);
1616 list_add(&list->list_entry, &tmp_add_list);
1617
1618 status = ice_remove_vlan(&pf->hw, &tmp_add_list);
1619 if (status == ICE_ERR_DOES_NOT_EXIST) {
1620 dev_dbg(&pf->pdev->dev,
1621 "Failed to remove VLAN %d on VSI %i, it does not exist, status: %d\n",
1622 vid, vsi->vsi_num, status);
1623 } else if (status) {
1624 dev_err(&pf->pdev->dev,
1625 "Error removing VLAN %d on vsi %i error: %d\n",
1626 vid, vsi->vsi_num, status);
1627 err = -EIO;
1628 }
1629
1630 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
1631 return err;
1632 }
1633
1634 /**
1635 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
1636 * @vsi: the VSI being configured
1637 *
1638 * Return 0 on success and a negative value on error
1639 * Configure the Rx VSI for operation.
1640 */
1641 int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
1642 {
1643 u16 i;
1644
1645 if (vsi->type == ICE_VSI_VF)
1646 goto setup_rings;
1647
1648 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
1649 vsi->max_frame = vsi->netdev->mtu +
1650 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
1651 else
1652 vsi->max_frame = ICE_RXBUF_2048;
1653
1654 vsi->rx_buf_len = ICE_RXBUF_2048;
1655 setup_rings:
1656 /* set up individual rings */
1657 for (i = 0; i < vsi->num_rxq; i++) {
1658 int err;
1659
1660 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
1661 if (err) {
1662 dev_err(&vsi->back->pdev->dev,
1663 "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
1664 i, err);
1665 return err;
1666 }
1667 }
1668
1669 return 0;
1670 }
1671
1672 /**
1673 * ice_vsi_cfg_txqs - Configure the VSI for Tx
1674 * @vsi: the VSI being configured
1675 * @rings: Tx ring array to be configured
1676 * @offset: offset within vsi->txq_map
1677 *
1678 * Return 0 on success and a negative value on error
1679 * Configure the Tx VSI for operation.
1680 */
1681 static int
1682 ice_vsi_cfg_txqs(struct ice_vsi *vsi, struct ice_ring **rings, int offset)
1683 {
1684 struct ice_aqc_add_tx_qgrp *qg_buf;
1685 struct ice_aqc_add_txqs_perq *txq;
1686 struct ice_pf *pf = vsi->back;
1687 u8 num_q_grps, q_idx = 0;
1688 enum ice_status status;
1689 u16 buf_len, i, pf_q;
1690 int err = 0, tc;
1691
1692 buf_len = sizeof(*qg_buf);
1693 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
1694 if (!qg_buf)
1695 return -ENOMEM;
1696
1697 qg_buf->num_txqs = 1;
1698 num_q_grps = 1;
1699
1700 /* set up and configure the Tx queues for each enabled TC */
1701 ice_for_each_traffic_class(tc) {
1702 if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
1703 break;
1704
1705 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
1706 struct ice_tlan_ctx tlan_ctx = { 0 };
1707
1708 pf_q = vsi->txq_map[q_idx + offset];
1709 ice_setup_tx_ctx(rings[q_idx], &tlan_ctx, pf_q);
1710 /* copy context contents into the qg_buf */
1711 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
1712 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
1713 ice_tlan_ctx_info);
1714
1715 /* init queue specific tail reg. It is referred as
1716 * transmit comm scheduler queue doorbell.
1717 */
1718 rings[q_idx]->tail =
1719 pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
1720 status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
1721 i, num_q_grps, qg_buf,
1722 buf_len, NULL);
1723 if (status) {
1724 dev_err(&pf->pdev->dev,
1725 "Failed to set LAN Tx queue context, error: %d\n",
1726 status);
1727 err = -ENODEV;
1728 goto err_cfg_txqs;
1729 }
1730
1731 /* Add Tx Queue TEID into the VSI Tx ring from the
1732 * response. This will complete configuring and
1733 * enabling the queue.
1734 */
1735 txq = &qg_buf->txqs[0];
1736 if (pf_q == le16_to_cpu(txq->txq_id))
1737 rings[q_idx]->txq_teid =
1738 le32_to_cpu(txq->q_teid);
1739
1740 q_idx++;
1741 }
1742 }
1743 err_cfg_txqs:
1744 devm_kfree(&pf->pdev->dev, qg_buf);
1745 return err;
1746 }
1747
1748 /**
1749 * ice_vsi_cfg_lan_txqs - Configure the VSI for Tx
1750 * @vsi: the VSI being configured
1751 *
1752 * Return 0 on success and a negative value on error
1753 * Configure the Tx VSI for operation.
1754 */
1755 int ice_vsi_cfg_lan_txqs(struct ice_vsi *vsi)
1756 {
1757 return ice_vsi_cfg_txqs(vsi, vsi->tx_rings, 0);
1758 }
1759
1760 /**
1761 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1762 * @intrl: interrupt rate limit in usecs
1763 * @gran: interrupt rate limit granularity in usecs
1764 *
1765 * This function converts a decimal interrupt rate limit in usecs to the format
1766 * expected by firmware.
1767 */
1768 u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1769 {
1770 u32 val = intrl / gran;
1771
1772 if (val)
1773 return val | GLINT_RATE_INTRL_ENA_M;
1774 return 0;
1775 }
1776
1777 /**
1778 * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
1779 * @hw: board specific structure
1780 */
1781 static void ice_cfg_itr_gran(struct ice_hw *hw)
1782 {
1783 u32 regval = rd32(hw, GLINT_CTL);
1784
1785 /* no need to update global register if ITR gran is already set */
1786 if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
1787 (((regval & GLINT_CTL_ITR_GRAN_200_M) >>
1788 GLINT_CTL_ITR_GRAN_200_S) == ICE_ITR_GRAN_US) &&
1789 (((regval & GLINT_CTL_ITR_GRAN_100_M) >>
1790 GLINT_CTL_ITR_GRAN_100_S) == ICE_ITR_GRAN_US) &&
1791 (((regval & GLINT_CTL_ITR_GRAN_50_M) >>
1792 GLINT_CTL_ITR_GRAN_50_S) == ICE_ITR_GRAN_US) &&
1793 (((regval & GLINT_CTL_ITR_GRAN_25_M) >>
1794 GLINT_CTL_ITR_GRAN_25_S) == ICE_ITR_GRAN_US))
1795 return;
1796
1797 regval = ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_200_S) &
1798 GLINT_CTL_ITR_GRAN_200_M) |
1799 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_100_S) &
1800 GLINT_CTL_ITR_GRAN_100_M) |
1801 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_50_S) &
1802 GLINT_CTL_ITR_GRAN_50_M) |
1803 ((ICE_ITR_GRAN_US << GLINT_CTL_ITR_GRAN_25_S) &
1804 GLINT_CTL_ITR_GRAN_25_M);
1805 wr32(hw, GLINT_CTL, regval);
1806 }
1807
1808 /**
1809 * ice_cfg_itr - configure the initial interrupt throttle values
1810 * @hw: pointer to the HW structure
1811 * @q_vector: interrupt vector that's being configured
1812 *
1813 * Configure interrupt throttling values for the ring containers that are
1814 * associated with the interrupt vector passed in.
1815 */
1816 static void
1817 ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
1818 {
1819 ice_cfg_itr_gran(hw);
1820
1821 if (q_vector->num_ring_rx) {
1822 struct ice_ring_container *rc = &q_vector->rx;
1823
1824 /* if this value is set then don't overwrite with default */
1825 if (!rc->itr_setting)
1826 rc->itr_setting = ICE_DFLT_RX_ITR;
1827
1828 rc->target_itr = ITR_TO_REG(rc->itr_setting);
1829 rc->next_update = jiffies + 1;
1830 rc->current_itr = rc->target_itr;
1831 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1832 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1833 }
1834
1835 if (q_vector->num_ring_tx) {
1836 struct ice_ring_container *rc = &q_vector->tx;
1837
1838 /* if this value is set then don't overwrite with default */
1839 if (!rc->itr_setting)
1840 rc->itr_setting = ICE_DFLT_TX_ITR;
1841
1842 rc->target_itr = ITR_TO_REG(rc->itr_setting);
1843 rc->next_update = jiffies + 1;
1844 rc->current_itr = rc->target_itr;
1845 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1846 ITR_REG_ALIGN(rc->current_itr) >> ICE_ITR_GRAN_S);
1847 }
1848 }
1849
1850 /**
1851 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1852 * @vsi: the VSI being configured
1853 */
1854 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1855 {
1856 struct ice_pf *pf = vsi->back;
1857 struct ice_hw *hw = &pf->hw;
1858 u32 txq = 0, rxq = 0;
1859 int i, q;
1860
1861 for (i = 0; i < vsi->num_q_vectors; i++) {
1862 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1863 u16 reg_idx = q_vector->reg_idx;
1864
1865 ice_cfg_itr(hw, q_vector);
1866
1867 wr32(hw, GLINT_RATE(reg_idx),
1868 ice_intrl_usec_to_reg(q_vector->intrl, hw->intrl_gran));
1869
1870 /* Both Transmit Queue Interrupt Cause Control register
1871 * and Receive Queue Interrupt Cause control register
1872 * expects MSIX_INDX field to be the vector index
1873 * within the function space and not the absolute
1874 * vector index across PF or across device.
1875 * For SR-IOV VF VSIs queue vector index always starts
1876 * with 1 since first vector index(0) is used for OICR
1877 * in VF space. Since VMDq and other PF VSIs are within
1878 * the PF function space, use the vector index that is
1879 * tracked for this PF.
1880 */
1881 for (q = 0; q < q_vector->num_ring_tx; q++) {
1882 int itr_idx = (q_vector->tx.itr_idx <<
1883 QINT_TQCTL_ITR_INDX_S) &
1884 QINT_TQCTL_ITR_INDX_M;
1885 u32 val;
1886
1887 if (vsi->type == ICE_VSI_VF)
1888 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1889 (((i + 1) << QINT_TQCTL_MSIX_INDX_S) &
1890 QINT_TQCTL_MSIX_INDX_M);
1891 else
1892 val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
1893 ((reg_idx << QINT_TQCTL_MSIX_INDX_S) &
1894 QINT_TQCTL_MSIX_INDX_M);
1895 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1896 txq++;
1897 }
1898
1899 for (q = 0; q < q_vector->num_ring_rx; q++) {
1900 int itr_idx = (q_vector->rx.itr_idx <<
1901 QINT_RQCTL_ITR_INDX_S) &
1902 QINT_RQCTL_ITR_INDX_M;
1903 u32 val;
1904
1905 if (vsi->type == ICE_VSI_VF)
1906 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1907 (((i + 1) << QINT_RQCTL_MSIX_INDX_S) &
1908 QINT_RQCTL_MSIX_INDX_M);
1909 else
1910 val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
1911 ((reg_idx << QINT_RQCTL_MSIX_INDX_S) &
1912 QINT_RQCTL_MSIX_INDX_M);
1913 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1914 rxq++;
1915 }
1916 }
1917
1918 ice_flush(hw);
1919 }
1920
1921 /**
1922 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
1923 * @vsi: the VSI being changed
1924 */
1925 int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
1926 {
1927 struct device *dev = &vsi->back->pdev->dev;
1928 struct ice_hw *hw = &vsi->back->hw;
1929 struct ice_vsi_ctx *ctxt;
1930 enum ice_status status;
1931 int ret = 0;
1932
1933 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
1934 if (!ctxt)
1935 return -ENOMEM;
1936
1937 /* Here we are configuring the VSI to let the driver add VLAN tags by
1938 * setting vlan_flags to ICE_AQ_VSI_VLAN_MODE_ALL. The actual VLAN tag
1939 * insertion happens in the Tx hot path, in ice_tx_map.
1940 */
1941 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL;
1942
1943 /* Preserve existing VLAN strip setting */
1944 ctxt->info.vlan_flags |= (vsi->info.vlan_flags &
1945 ICE_AQ_VSI_VLAN_EMOD_M);
1946
1947 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1948
1949 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1950 if (status) {
1951 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
1952 status, hw->adminq.sq_last_status);
1953 ret = -EIO;
1954 goto out;
1955 }
1956
1957 vsi->info.vlan_flags = ctxt->info.vlan_flags;
1958 out:
1959 devm_kfree(dev, ctxt);
1960 return ret;
1961 }
1962
1963 /**
1964 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
1965 * @vsi: the VSI being changed
1966 * @ena: boolean value indicating if this is a enable or disable request
1967 */
1968 int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
1969 {
1970 struct device *dev = &vsi->back->pdev->dev;
1971 struct ice_hw *hw = &vsi->back->hw;
1972 struct ice_vsi_ctx *ctxt;
1973 enum ice_status status;
1974 int ret = 0;
1975
1976 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
1977 if (!ctxt)
1978 return -ENOMEM;
1979
1980 /* Here we are configuring what the VSI should do with the VLAN tag in
1981 * the Rx packet. We can either leave the tag in the packet or put it in
1982 * the Rx descriptor.
1983 */
1984 if (ena)
1985 /* Strip VLAN tag from Rx packet and put it in the desc */
1986 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_STR_BOTH;
1987 else
1988 /* Disable stripping. Leave tag in packet */
1989 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING;
1990
1991 /* Allow all packets untagged/tagged */
1992 ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL;
1993
1994 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
1995
1996 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1997 if (status) {
1998 dev_err(dev, "update VSI for VLAN strip failed, ena = %d err %d aq_err %d\n",
1999 ena, status, hw->adminq.sq_last_status);
2000 ret = -EIO;
2001 goto out;
2002 }
2003
2004 vsi->info.vlan_flags = ctxt->info.vlan_flags;
2005 out:
2006 devm_kfree(dev, ctxt);
2007 return ret;
2008 }
2009
2010 /**
2011 * ice_vsi_start_rx_rings - start VSI's Rx rings
2012 * @vsi: the VSI whose rings are to be started
2013 *
2014 * Returns 0 on success and a negative value on error
2015 */
2016 int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
2017 {
2018 return ice_vsi_ctrl_rx_rings(vsi, true);
2019 }
2020
2021 /**
2022 * ice_vsi_stop_rx_rings - stop VSI's Rx rings
2023 * @vsi: the VSI
2024 *
2025 * Returns 0 on success and a negative value on error
2026 */
2027 int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
2028 {
2029 return ice_vsi_ctrl_rx_rings(vsi, false);
2030 }
2031
2032 /**
2033 * ice_vsi_stop_tx_rings - Disable Tx rings
2034 * @vsi: the VSI being configured
2035 * @rst_src: reset source
2036 * @rel_vmvf_num: Relative ID of VF/VM
2037 * @rings: Tx ring array to be stopped
2038 * @offset: offset within vsi->txq_map
2039 */
2040 static int
2041 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2042 u16 rel_vmvf_num, struct ice_ring **rings, int offset)
2043 {
2044 struct ice_pf *pf = vsi->back;
2045 struct ice_hw *hw = &pf->hw;
2046 int tc, q_idx = 0, err = 0;
2047 u16 *q_ids, *q_handles, i;
2048 enum ice_status status;
2049 u32 *q_teids, val;
2050
2051 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
2052 return -EINVAL;
2053
2054 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
2055 GFP_KERNEL);
2056 if (!q_teids)
2057 return -ENOMEM;
2058
2059 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
2060 GFP_KERNEL);
2061 if (!q_ids) {
2062 err = -ENOMEM;
2063 goto err_alloc_q_ids;
2064 }
2065
2066 q_handles = devm_kcalloc(&pf->pdev->dev, vsi->num_txq,
2067 sizeof(*q_handles), GFP_KERNEL);
2068 if (!q_handles) {
2069 err = -ENOMEM;
2070 goto err_alloc_q_handles;
2071 }
2072
2073 /* set up the Tx queue list to be disabled for each enabled TC */
2074 ice_for_each_traffic_class(tc) {
2075 if (!(vsi->tc_cfg.ena_tc & BIT(tc)))
2076 break;
2077
2078 for (i = 0; i < vsi->tc_cfg.tc_info[tc].qcount_tx; i++) {
2079 if (!rings || !rings[q_idx] ||
2080 !rings[q_idx]->q_vector) {
2081 err = -EINVAL;
2082 goto err_out;
2083 }
2084
2085 q_ids[i] = vsi->txq_map[q_idx + offset];
2086 q_teids[i] = rings[q_idx]->txq_teid;
2087 q_handles[i] = i;
2088
2089 /* clear cause_ena bit for disabled queues */
2090 val = rd32(hw, QINT_TQCTL(rings[i]->reg_idx));
2091 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2092 wr32(hw, QINT_TQCTL(rings[i]->reg_idx), val);
2093
2094 /* software is expected to wait for 100 ns */
2095 ndelay(100);
2096
2097 /* trigger a software interrupt for the vector
2098 * associated to the queue to schedule NAPI handler
2099 */
2100 wr32(hw, GLINT_DYN_CTL(rings[i]->q_vector->reg_idx),
2101 GLINT_DYN_CTL_SWINT_TRIG_M |
2102 GLINT_DYN_CTL_INTENA_MSK_M);
2103 q_idx++;
2104 }
2105 status = ice_dis_vsi_txq(vsi->port_info, vsi->idx, tc,
2106 vsi->num_txq, q_handles, q_ids,
2107 q_teids, rst_src, rel_vmvf_num, NULL);
2108
2109 /* if the disable queue command was exercised during an active
2110 * reset flow, ICE_ERR_RESET_ONGOING is returned. This is not
2111 * an error as the reset operation disables queues at the
2112 * hardware level anyway.
2113 */
2114 if (status == ICE_ERR_RESET_ONGOING) {
2115 dev_dbg(&pf->pdev->dev,
2116 "Reset in progress. LAN Tx queues already disabled\n");
2117 } else if (status) {
2118 dev_err(&pf->pdev->dev,
2119 "Failed to disable LAN Tx queues, error: %d\n",
2120 status);
2121 err = -ENODEV;
2122 }
2123 }
2124
2125 err_out:
2126 devm_kfree(&pf->pdev->dev, q_handles);
2127
2128 err_alloc_q_handles:
2129 devm_kfree(&pf->pdev->dev, q_ids);
2130
2131 err_alloc_q_ids:
2132 devm_kfree(&pf->pdev->dev, q_teids);
2133
2134 return err;
2135 }
2136
2137 /**
2138 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2139 * @vsi: the VSI being configured
2140 * @rst_src: reset source
2141 * @rel_vmvf_num: Relative ID of VF/VM
2142 */
2143 int
2144 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2145 u16 rel_vmvf_num)
2146 {
2147 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings,
2148 0);
2149 }
2150
2151 /**
2152 * ice_cfg_vlan_pruning - enable or disable VLAN pruning on the VSI
2153 * @vsi: VSI to enable or disable VLAN pruning on
2154 * @ena: set to true to enable VLAN pruning and false to disable it
2155 * @vlan_promisc: enable valid security flags if not in VLAN promiscuous mode
2156 *
2157 * returns 0 if VSI is updated, negative otherwise
2158 */
2159 int ice_cfg_vlan_pruning(struct ice_vsi *vsi, bool ena, bool vlan_promisc)
2160 {
2161 struct ice_vsi_ctx *ctxt;
2162 struct device *dev;
2163 struct ice_pf *pf;
2164 int status;
2165
2166 if (!vsi)
2167 return -EINVAL;
2168
2169 pf = vsi->back;
2170 dev = &pf->pdev->dev;
2171 ctxt = devm_kzalloc(dev, sizeof(*ctxt), GFP_KERNEL);
2172 if (!ctxt)
2173 return -ENOMEM;
2174
2175 ctxt->info = vsi->info;
2176
2177 if (ena) {
2178 ctxt->info.sec_flags |=
2179 ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2180 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S;
2181 ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2182 } else {
2183 ctxt->info.sec_flags &=
2184 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
2185 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
2186 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
2187 }
2188
2189 if (!vlan_promisc)
2190 ctxt->info.valid_sections =
2191 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID |
2192 ICE_AQ_VSI_PROP_SW_VALID);
2193
2194 status = ice_update_vsi(&pf->hw, vsi->idx, ctxt, NULL);
2195 if (status) {
2196 netdev_err(vsi->netdev, "%sabling VLAN pruning on VSI handle: %d, VSI HW ID: %d failed, err = %d, aq_err = %d\n",
2197 ena ? "En" : "Dis", vsi->idx, vsi->vsi_num, status,
2198 pf->hw.adminq.sq_last_status);
2199 goto err_out;
2200 }
2201
2202 vsi->info.sec_flags = ctxt->info.sec_flags;
2203 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
2204
2205 devm_kfree(dev, ctxt);
2206 return 0;
2207
2208 err_out:
2209 devm_kfree(dev, ctxt);
2210 return -EIO;
2211 }
2212
2213 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2214 {
2215 struct ice_dcbx_cfg *cfg = &vsi->port_info->local_dcbx_cfg;
2216
2217 vsi->tc_cfg.ena_tc = ice_dcb_get_ena_tc(cfg);
2218 vsi->tc_cfg.numtc = ice_dcb_get_num_tc(cfg);
2219 }
2220
2221 /**
2222 * ice_vsi_set_q_vectors_reg_idx - set the HW register index for all q_vectors
2223 * @vsi: VSI to set the q_vectors register index on
2224 */
2225 static int
2226 ice_vsi_set_q_vectors_reg_idx(struct ice_vsi *vsi)
2227 {
2228 u16 i;
2229
2230 if (!vsi || !vsi->q_vectors)
2231 return -EINVAL;
2232
2233 ice_for_each_q_vector(vsi, i) {
2234 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2235
2236 if (!q_vector) {
2237 dev_err(&vsi->back->pdev->dev,
2238 "Failed to set reg_idx on q_vector %d VSI %d\n",
2239 i, vsi->vsi_num);
2240 goto clear_reg_idx;
2241 }
2242
2243 q_vector->reg_idx = q_vector->v_idx + vsi->hw_base_vector;
2244 }
2245
2246 return 0;
2247
2248 clear_reg_idx:
2249 ice_for_each_q_vector(vsi, i) {
2250 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2251
2252 if (q_vector)
2253 q_vector->reg_idx = 0;
2254 }
2255
2256 return -EINVAL;
2257 }
2258
2259 /**
2260 * ice_vsi_setup - Set up a VSI by a given type
2261 * @pf: board private structure
2262 * @pi: pointer to the port_info instance
2263 * @type: VSI type
2264 * @vf_id: defines VF ID to which this VSI connects. This field is meant to be
2265 * used only for ICE_VSI_VF VSI type. For other VSI types, should
2266 * fill-in ICE_INVAL_VFID as input.
2267 *
2268 * This allocates the sw VSI structure and its queue resources.
2269 *
2270 * Returns pointer to the successfully allocated and configured VSI sw struct on
2271 * success, NULL on failure.
2272 */
2273 struct ice_vsi *
2274 ice_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
2275 enum ice_vsi_type type, u16 vf_id)
2276 {
2277 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2278 struct device *dev = &pf->pdev->dev;
2279 struct ice_vsi *vsi;
2280 int ret, i;
2281
2282 if (type == ICE_VSI_VF)
2283 vsi = ice_vsi_alloc(pf, type, vf_id);
2284 else
2285 vsi = ice_vsi_alloc(pf, type, ICE_INVAL_VFID);
2286
2287 if (!vsi) {
2288 dev_err(dev, "could not allocate VSI\n");
2289 return NULL;
2290 }
2291
2292 vsi->port_info = pi;
2293 vsi->vsw = pf->first_sw;
2294 if (vsi->type == ICE_VSI_VF)
2295 vsi->vf_id = vf_id;
2296
2297 if (ice_vsi_get_qs(vsi)) {
2298 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2299 vsi->idx);
2300 goto unroll_get_qs;
2301 }
2302
2303 /* set RSS capabilities */
2304 ice_vsi_set_rss_params(vsi);
2305
2306 /* set TC configuration */
2307 ice_vsi_set_tc_cfg(vsi);
2308
2309 /* create the VSI */
2310 ret = ice_vsi_init(vsi);
2311 if (ret)
2312 goto unroll_get_qs;
2313
2314 switch (vsi->type) {
2315 case ICE_VSI_PF:
2316 ret = ice_vsi_alloc_q_vectors(vsi);
2317 if (ret)
2318 goto unroll_vsi_init;
2319
2320 ret = ice_vsi_setup_vector_base(vsi);
2321 if (ret)
2322 goto unroll_alloc_q_vector;
2323
2324 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2325 if (ret)
2326 goto unroll_vector_base;
2327
2328 ret = ice_vsi_alloc_rings(vsi);
2329 if (ret)
2330 goto unroll_vector_base;
2331
2332 ice_vsi_map_rings_to_vectors(vsi);
2333
2334 /* Do not exit if configuring RSS had an issue, at least
2335 * receive traffic on first queue. Hence no need to capture
2336 * return value
2337 */
2338 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2339 ice_vsi_cfg_rss_lut_key(vsi);
2340 break;
2341 case ICE_VSI_VF:
2342 /* VF driver will take care of creating netdev for this type and
2343 * map queues to vectors through Virtchnl, PF driver only
2344 * creates a VSI and corresponding structures for bookkeeping
2345 * purpose
2346 */
2347 ret = ice_vsi_alloc_q_vectors(vsi);
2348 if (ret)
2349 goto unroll_vsi_init;
2350
2351 ret = ice_vsi_alloc_rings(vsi);
2352 if (ret)
2353 goto unroll_alloc_q_vector;
2354
2355 /* Setup Vector base only during VF init phase or when VF asks
2356 * for more vectors than assigned number. In all other cases,
2357 * assign hw_base_vector to the value given earlier.
2358 */
2359 if (test_bit(ICE_VF_STATE_CFG_INTR, pf->vf[vf_id].vf_states)) {
2360 ret = ice_vsi_setup_vector_base(vsi);
2361 if (ret)
2362 goto unroll_vector_base;
2363 } else {
2364 vsi->hw_base_vector = pf->vf[vf_id].first_vector_idx;
2365 }
2366 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2367 if (ret)
2368 goto unroll_vector_base;
2369
2370 pf->q_left_tx -= vsi->alloc_txq;
2371 pf->q_left_rx -= vsi->alloc_rxq;
2372 break;
2373 default:
2374 /* clean up the resources and exit */
2375 goto unroll_vsi_init;
2376 }
2377
2378 /* configure VSI nodes based on number of queues and TC's */
2379 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2380 max_txqs[i] = pf->num_lan_tx;
2381
2382 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2383 max_txqs);
2384 if (ret) {
2385 dev_err(&pf->pdev->dev,
2386 "VSI %d failed lan queue config, error %d\n",
2387 vsi->vsi_num, ret);
2388 goto unroll_vector_base;
2389 }
2390
2391 return vsi;
2392
2393 unroll_vector_base:
2394 /* reclaim SW interrupts back to the common pool */
2395 ice_free_res(pf->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
2396 pf->num_avail_sw_msix += vsi->num_q_vectors;
2397 /* reclaim HW interrupt back to the common pool */
2398 ice_free_res(pf->hw_irq_tracker, vsi->hw_base_vector, vsi->idx);
2399 pf->num_avail_hw_msix += vsi->num_q_vectors;
2400 unroll_alloc_q_vector:
2401 ice_vsi_free_q_vectors(vsi);
2402 unroll_vsi_init:
2403 ice_vsi_delete(vsi);
2404 unroll_get_qs:
2405 ice_vsi_put_qs(vsi);
2406 pf->q_left_tx += vsi->alloc_txq;
2407 pf->q_left_rx += vsi->alloc_rxq;
2408 ice_vsi_clear(vsi);
2409
2410 return NULL;
2411 }
2412
2413 /**
2414 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2415 * @vsi: the VSI being cleaned up
2416 */
2417 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2418 {
2419 struct ice_pf *pf = vsi->back;
2420 u16 vector = vsi->hw_base_vector;
2421 struct ice_hw *hw = &pf->hw;
2422 u32 txq = 0;
2423 u32 rxq = 0;
2424 int i, q;
2425
2426 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
2427 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2428
2429 wr32(hw, GLINT_ITR(ICE_IDX_ITR0, vector), 0);
2430 wr32(hw, GLINT_ITR(ICE_IDX_ITR1, vector), 0);
2431 for (q = 0; q < q_vector->num_ring_tx; q++) {
2432 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2433 txq++;
2434 }
2435
2436 for (q = 0; q < q_vector->num_ring_rx; q++) {
2437 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2438 rxq++;
2439 }
2440 }
2441
2442 ice_flush(hw);
2443 }
2444
2445 /**
2446 * ice_vsi_free_irq - Free the IRQ association with the OS
2447 * @vsi: the VSI being configured
2448 */
2449 void ice_vsi_free_irq(struct ice_vsi *vsi)
2450 {
2451 struct ice_pf *pf = vsi->back;
2452 int base = vsi->sw_base_vector;
2453
2454 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2455 int i;
2456
2457 if (!vsi->q_vectors || !vsi->irqs_ready)
2458 return;
2459
2460 ice_vsi_release_msix(vsi);
2461 if (vsi->type == ICE_VSI_VF)
2462 return;
2463
2464 vsi->irqs_ready = false;
2465 ice_for_each_q_vector(vsi, i) {
2466 u16 vector = i + base;
2467 int irq_num;
2468
2469 irq_num = pf->msix_entries[vector].vector;
2470
2471 /* free only the irqs that were actually requested */
2472 if (!vsi->q_vectors[i] ||
2473 !(vsi->q_vectors[i]->num_ring_tx ||
2474 vsi->q_vectors[i]->num_ring_rx))
2475 continue;
2476
2477 /* clear the affinity notifier in the IRQ descriptor */
2478 irq_set_affinity_notifier(irq_num, NULL);
2479
2480 /* clear the affinity_mask in the IRQ descriptor */
2481 irq_set_affinity_hint(irq_num, NULL);
2482 synchronize_irq(irq_num);
2483 devm_free_irq(&pf->pdev->dev, irq_num,
2484 vsi->q_vectors[i]);
2485 }
2486 }
2487 }
2488
2489 /**
2490 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2491 * @vsi: the VSI having resources freed
2492 */
2493 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2494 {
2495 int i;
2496
2497 if (!vsi->tx_rings)
2498 return;
2499
2500 ice_for_each_txq(vsi, i)
2501 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2502 ice_free_tx_ring(vsi->tx_rings[i]);
2503 }
2504
2505 /**
2506 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2507 * @vsi: the VSI having resources freed
2508 */
2509 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2510 {
2511 int i;
2512
2513 if (!vsi->rx_rings)
2514 return;
2515
2516 ice_for_each_rxq(vsi, i)
2517 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2518 ice_free_rx_ring(vsi->rx_rings[i]);
2519 }
2520
2521 /**
2522 * ice_vsi_close - Shut down a VSI
2523 * @vsi: the VSI being shut down
2524 */
2525 void ice_vsi_close(struct ice_vsi *vsi)
2526 {
2527 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
2528 ice_down(vsi);
2529
2530 ice_vsi_free_irq(vsi);
2531 ice_vsi_free_tx_rings(vsi);
2532 ice_vsi_free_rx_rings(vsi);
2533 }
2534
2535 /**
2536 * ice_free_res - free a block of resources
2537 * @res: pointer to the resource
2538 * @index: starting index previously returned by ice_get_res
2539 * @id: identifier to track owner
2540 *
2541 * Returns number of resources freed
2542 */
2543 int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
2544 {
2545 int count = 0;
2546 int i;
2547
2548 if (!res || index >= res->num_entries)
2549 return -EINVAL;
2550
2551 id |= ICE_RES_VALID_BIT;
2552 for (i = index; i < res->num_entries && res->list[i] == id; i++) {
2553 res->list[i] = 0;
2554 count++;
2555 }
2556
2557 return count;
2558 }
2559
2560 /**
2561 * ice_search_res - Search the tracker for a block of resources
2562 * @res: pointer to the resource
2563 * @needed: size of the block needed
2564 * @id: identifier to track owner
2565 *
2566 * Returns the base item index of the block, or -ENOMEM for error
2567 */
2568 static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
2569 {
2570 int start = res->search_hint;
2571 int end = start;
2572
2573 if ((start + needed) > res->num_entries)
2574 return -ENOMEM;
2575
2576 id |= ICE_RES_VALID_BIT;
2577
2578 do {
2579 /* skip already allocated entries */
2580 if (res->list[end++] & ICE_RES_VALID_BIT) {
2581 start = end;
2582 if ((start + needed) > res->num_entries)
2583 break;
2584 }
2585
2586 if (end == (start + needed)) {
2587 int i = start;
2588
2589 /* there was enough, so assign it to the requestor */
2590 while (i != end)
2591 res->list[i++] = id;
2592
2593 if (end == res->num_entries)
2594 end = 0;
2595
2596 res->search_hint = end;
2597 return start;
2598 }
2599 } while (1);
2600
2601 return -ENOMEM;
2602 }
2603
2604 /**
2605 * ice_get_res - get a block of resources
2606 * @pf: board private structure
2607 * @res: pointer to the resource
2608 * @needed: size of the block needed
2609 * @id: identifier to track owner
2610 *
2611 * Returns the base item index of the block, or -ENOMEM for error
2612 * The search_hint trick and lack of advanced fit-finding only works
2613 * because we're highly likely to have all the same sized requests.
2614 * Linear search time and any fragmentation should be minimal.
2615 */
2616 int
2617 ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
2618 {
2619 int ret;
2620
2621 if (!res || !pf)
2622 return -EINVAL;
2623
2624 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
2625 dev_err(&pf->pdev->dev,
2626 "param err: needed=%d, num_entries = %d id=0x%04x\n",
2627 needed, res->num_entries, id);
2628 return -EINVAL;
2629 }
2630
2631 /* search based on search_hint */
2632 ret = ice_search_res(res, needed, id);
2633
2634 if (ret < 0) {
2635 /* previous search failed. Reset search hint and try again */
2636 res->search_hint = 0;
2637 ret = ice_search_res(res, needed, id);
2638 }
2639
2640 return ret;
2641 }
2642
2643 /**
2644 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
2645 * @vsi: the VSI being un-configured
2646 */
2647 void ice_vsi_dis_irq(struct ice_vsi *vsi)
2648 {
2649 int base = vsi->sw_base_vector;
2650 struct ice_pf *pf = vsi->back;
2651 struct ice_hw *hw = &pf->hw;
2652 u32 val;
2653 int i;
2654
2655 /* disable interrupt causation from each queue */
2656 if (vsi->tx_rings) {
2657 ice_for_each_txq(vsi, i) {
2658 if (vsi->tx_rings[i]) {
2659 u16 reg;
2660
2661 reg = vsi->tx_rings[i]->reg_idx;
2662 val = rd32(hw, QINT_TQCTL(reg));
2663 val &= ~QINT_TQCTL_CAUSE_ENA_M;
2664 wr32(hw, QINT_TQCTL(reg), val);
2665 }
2666 }
2667 }
2668
2669 if (vsi->rx_rings) {
2670 ice_for_each_rxq(vsi, i) {
2671 if (vsi->rx_rings[i]) {
2672 u16 reg;
2673
2674 reg = vsi->rx_rings[i]->reg_idx;
2675 val = rd32(hw, QINT_RQCTL(reg));
2676 val &= ~QINT_RQCTL_CAUSE_ENA_M;
2677 wr32(hw, QINT_RQCTL(reg), val);
2678 }
2679 }
2680 }
2681
2682 /* disable each interrupt */
2683 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2684 ice_for_each_q_vector(vsi, i)
2685 wr32(hw, GLINT_DYN_CTL(vsi->q_vectors[i]->reg_idx), 0);
2686
2687 ice_flush(hw);
2688
2689 ice_for_each_q_vector(vsi, i)
2690 synchronize_irq(pf->msix_entries[i + base].vector);
2691 }
2692 }
2693
2694 /**
2695 * ice_vsi_release - Delete a VSI and free its resources
2696 * @vsi: the VSI being removed
2697 *
2698 * Returns 0 on success or < 0 on error
2699 */
2700 int ice_vsi_release(struct ice_vsi *vsi)
2701 {
2702 struct ice_vf *vf = NULL;
2703 struct ice_pf *pf;
2704
2705 if (!vsi->back)
2706 return -ENODEV;
2707 pf = vsi->back;
2708
2709 if (vsi->type == ICE_VSI_VF)
2710 vf = &pf->vf[vsi->vf_id];
2711 /* do not unregister and free netdevs while driver is in the reset
2712 * recovery pending state. Since reset/rebuild happens through PF
2713 * service task workqueue, its not a good idea to unregister netdev
2714 * that is associated to the PF that is running the work queue items
2715 * currently. This is done to avoid check_flush_dependency() warning
2716 * on this wq
2717 */
2718 if (vsi->netdev && !ice_is_reset_in_progress(pf->state)) {
2719 ice_napi_del(vsi);
2720 unregister_netdev(vsi->netdev);
2721 free_netdev(vsi->netdev);
2722 vsi->netdev = NULL;
2723 }
2724
2725 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2726 ice_rss_clean(vsi);
2727
2728 /* Disable VSI and free resources */
2729 ice_vsi_dis_irq(vsi);
2730 ice_vsi_close(vsi);
2731
2732 /* reclaim interrupt vectors back to PF */
2733 if (vsi->type != ICE_VSI_VF) {
2734 /* reclaim SW interrupts back to the common pool */
2735 ice_free_res(pf->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
2736 pf->num_avail_sw_msix += vsi->num_q_vectors;
2737 /* reclaim HW interrupts back to the common pool */
2738 ice_free_res(pf->hw_irq_tracker, vsi->hw_base_vector, vsi->idx);
2739 pf->num_avail_hw_msix += vsi->num_q_vectors;
2740 } else if (test_bit(ICE_VF_STATE_CFG_INTR, vf->vf_states)) {
2741 /* Reclaim VF resources back only while freeing all VFs or
2742 * vector reassignment is requested
2743 */
2744 ice_free_res(pf->hw_irq_tracker, vf->first_vector_idx,
2745 vsi->idx);
2746 pf->num_avail_hw_msix += pf->num_vf_msix;
2747 }
2748
2749 ice_remove_vsi_fltr(&pf->hw, vsi->idx);
2750 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2751 ice_vsi_delete(vsi);
2752 ice_vsi_free_q_vectors(vsi);
2753 ice_vsi_clear_rings(vsi);
2754
2755 ice_vsi_put_qs(vsi);
2756 pf->q_left_tx += vsi->alloc_txq;
2757 pf->q_left_rx += vsi->alloc_rxq;
2758
2759 /* retain SW VSI data structure since it is needed to unregister and
2760 * free VSI netdev when PF is not in reset recovery pending state,\
2761 * for ex: during rmmod.
2762 */
2763 if (!ice_is_reset_in_progress(pf->state))
2764 ice_vsi_clear(vsi);
2765
2766 return 0;
2767 }
2768
2769 /**
2770 * ice_vsi_rebuild - Rebuild VSI after reset
2771 * @vsi: VSI to be rebuild
2772 *
2773 * Returns 0 on success and negative value on failure
2774 */
2775 int ice_vsi_rebuild(struct ice_vsi *vsi)
2776 {
2777 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2778 struct ice_vf *vf = NULL;
2779 struct ice_pf *pf;
2780 int ret, i;
2781
2782 if (!vsi)
2783 return -EINVAL;
2784
2785 pf = vsi->back;
2786 if (vsi->type == ICE_VSI_VF)
2787 vf = &pf->vf[vsi->vf_id];
2788
2789 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2790 ice_vsi_free_q_vectors(vsi);
2791
2792 if (vsi->type != ICE_VSI_VF) {
2793 /* reclaim SW interrupts back to the common pool */
2794 ice_free_res(pf->sw_irq_tracker, vsi->sw_base_vector, vsi->idx);
2795 pf->num_avail_sw_msix += vsi->num_q_vectors;
2796 vsi->sw_base_vector = 0;
2797 /* reclaim HW interrupts back to the common pool */
2798 ice_free_res(pf->hw_irq_tracker, vsi->hw_base_vector,
2799 vsi->idx);
2800 pf->num_avail_hw_msix += vsi->num_q_vectors;
2801 } else {
2802 /* Reclaim VF resources back to the common pool for reset and
2803 * and rebuild, with vector reassignment
2804 */
2805 ice_free_res(pf->hw_irq_tracker, vf->first_vector_idx,
2806 vsi->idx);
2807 pf->num_avail_hw_msix += pf->num_vf_msix;
2808 }
2809 vsi->hw_base_vector = 0;
2810
2811 ice_vsi_clear_rings(vsi);
2812 ice_vsi_free_arrays(vsi, false);
2813 ice_dev_onetime_setup(&pf->hw);
2814 if (vsi->type == ICE_VSI_VF)
2815 ice_vsi_set_num_qs(vsi, vf->vf_id);
2816 else
2817 ice_vsi_set_num_qs(vsi, ICE_INVAL_VFID);
2818 ice_vsi_set_tc_cfg(vsi);
2819
2820 /* Initialize VSI struct elements and create VSI in FW */
2821 ret = ice_vsi_init(vsi);
2822 if (ret < 0)
2823 goto err_vsi;
2824
2825 ret = ice_vsi_alloc_arrays(vsi, false);
2826 if (ret < 0)
2827 goto err_vsi;
2828
2829 switch (vsi->type) {
2830 case ICE_VSI_PF:
2831 ret = ice_vsi_alloc_q_vectors(vsi);
2832 if (ret)
2833 goto err_rings;
2834
2835 ret = ice_vsi_setup_vector_base(vsi);
2836 if (ret)
2837 goto err_vectors;
2838
2839 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2840 if (ret)
2841 goto err_vectors;
2842
2843 ret = ice_vsi_alloc_rings(vsi);
2844 if (ret)
2845 goto err_vectors;
2846
2847 ice_vsi_map_rings_to_vectors(vsi);
2848 /* Do not exit if configuring RSS had an issue, at least
2849 * receive traffic on first queue. Hence no need to capture
2850 * return value
2851 */
2852 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2853 ice_vsi_cfg_rss_lut_key(vsi);
2854 break;
2855 case ICE_VSI_VF:
2856 ret = ice_vsi_alloc_q_vectors(vsi);
2857 if (ret)
2858 goto err_rings;
2859
2860 ret = ice_vsi_setup_vector_base(vsi);
2861 if (ret)
2862 goto err_vectors;
2863
2864 ret = ice_vsi_set_q_vectors_reg_idx(vsi);
2865 if (ret)
2866 goto err_vectors;
2867
2868 ret = ice_vsi_alloc_rings(vsi);
2869 if (ret)
2870 goto err_vectors;
2871
2872 pf->q_left_tx -= vsi->alloc_txq;
2873 pf->q_left_rx -= vsi->alloc_rxq;
2874 break;
2875 default:
2876 break;
2877 }
2878
2879 /* configure VSI nodes based on number of queues and TC's */
2880 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2881 max_txqs[i] = pf->num_lan_tx;
2882
2883 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2884 max_txqs);
2885 if (ret) {
2886 dev_err(&pf->pdev->dev,
2887 "VSI %d failed lan queue config, error %d\n",
2888 vsi->vsi_num, ret);
2889 goto err_vectors;
2890 }
2891 return 0;
2892
2893 err_vectors:
2894 ice_vsi_free_q_vectors(vsi);
2895 err_rings:
2896 if (vsi->netdev) {
2897 vsi->current_netdev_flags = 0;
2898 unregister_netdev(vsi->netdev);
2899 free_netdev(vsi->netdev);
2900 vsi->netdev = NULL;
2901 }
2902 err_vsi:
2903 ice_vsi_clear(vsi);
2904 set_bit(__ICE_RESET_FAILED, pf->state);
2905 return ret;
2906 }
2907
2908 /**
2909 * ice_is_reset_in_progress - check for a reset in progress
2910 * @state: pf state field
2911 */
2912 bool ice_is_reset_in_progress(unsigned long *state)
2913 {
2914 return test_bit(__ICE_RESET_OICR_RECV, state) ||
2915 test_bit(__ICE_PFR_REQ, state) ||
2916 test_bit(__ICE_CORER_REQ, state) ||
2917 test_bit(__ICE_GLOBR_REQ, state);
2918 }
2919
2920 #ifdef CONFIG_DCB
2921 /**
2922 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
2923 * @vsi: VSI being configured
2924 * @ctx: the context buffer returned from AQ VSI update command
2925 */
2926 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
2927 {
2928 vsi->info.mapping_flags = ctx->info.mapping_flags;
2929 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
2930 sizeof(vsi->info.q_mapping));
2931 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
2932 sizeof(vsi->info.tc_mapping));
2933 }
2934
2935 /**
2936 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
2937 * @vsi: the VSI being configured
2938 * @ena_tc: TC map to be enabled
2939 */
2940 static void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
2941 {
2942 struct net_device *netdev = vsi->netdev;
2943 struct ice_pf *pf = vsi->back;
2944 struct ice_dcbx_cfg *dcbcfg;
2945 u8 netdev_tc;
2946 int i;
2947
2948 if (!netdev)
2949 return;
2950
2951 if (!ena_tc) {
2952 netdev_reset_tc(netdev);
2953 return;
2954 }
2955
2956 if (netdev_set_num_tc(netdev, vsi->tc_cfg.numtc))
2957 return;
2958
2959 dcbcfg = &pf->hw.port_info->local_dcbx_cfg;
2960
2961 ice_for_each_traffic_class(i)
2962 if (vsi->tc_cfg.ena_tc & BIT(i))
2963 netdev_set_tc_queue(netdev,
2964 vsi->tc_cfg.tc_info[i].netdev_tc,
2965 vsi->tc_cfg.tc_info[i].qcount_tx,
2966 vsi->tc_cfg.tc_info[i].qoffset);
2967
2968 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
2969 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
2970
2971 /* Get the mapped netdev TC# for the UP */
2972 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
2973 netdev_set_prio_tc_map(netdev, i, netdev_tc);
2974 }
2975 }
2976
2977 /**
2978 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
2979 * @vsi: VSI to be configured
2980 * @ena_tc: TC bitmap
2981 *
2982 * VSI queues expected to be quiesced before calling this function
2983 */
2984 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
2985 {
2986 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2987 struct ice_vsi_ctx *ctx;
2988 struct ice_pf *pf = vsi->back;
2989 enum ice_status status;
2990 int i, ret = 0;
2991 u8 num_tc = 0;
2992
2993 ice_for_each_traffic_class(i) {
2994 /* build bitmap of enabled TCs */
2995 if (ena_tc & BIT(i))
2996 num_tc++;
2997 /* populate max_txqs per TC */
2998 max_txqs[i] = pf->num_lan_tx;
2999 }
3000
3001 vsi->tc_cfg.ena_tc = ena_tc;
3002 vsi->tc_cfg.numtc = num_tc;
3003
3004 ctx = devm_kzalloc(&pf->pdev->dev, sizeof(*ctx), GFP_KERNEL);
3005 if (!ctx)
3006 return -ENOMEM;
3007
3008 ctx->vf_num = 0;
3009 ctx->info = vsi->info;
3010
3011 ice_vsi_setup_q_map(vsi, ctx);
3012
3013 /* must to indicate which section of VSI context are being modified */
3014 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3015 status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3016 if (status) {
3017 dev_info(&pf->pdev->dev, "Failed VSI Update\n");
3018 ret = -EIO;
3019 goto out;
3020 }
3021
3022 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
3023 max_txqs);
3024
3025 if (status) {
3026 dev_err(&pf->pdev->dev,
3027 "VSI %d failed TC config, error %d\n",
3028 vsi->vsi_num, status);
3029 ret = -EIO;
3030 goto out;
3031 }
3032 ice_vsi_update_q_map(vsi, ctx);
3033 vsi->info.valid_sections = 0;
3034
3035 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3036 out:
3037 devm_kfree(&pf->pdev->dev, ctx);
3038 return ret;
3039 }
3040 #endif /* CONFIG_DCB */