]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_ethtool.c
ptp: Enable clock drivers along with associated net/PHY drivers
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / igb / igb_ethtool.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39 #include <linux/pm_runtime.h>
40 #include <linux/highmem.h>
41
42 #include "igb.h"
43
44 struct igb_stats {
45 char stat_string[ETH_GSTRING_LEN];
46 int sizeof_stat;
47 int stat_offset;
48 };
49
50 #define IGB_STAT(_name, _stat) { \
51 .stat_string = _name, \
52 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
53 .stat_offset = offsetof(struct igb_adapter, _stat) \
54 }
55 static const struct igb_stats igb_gstrings_stats[] = {
56 IGB_STAT("rx_packets", stats.gprc),
57 IGB_STAT("tx_packets", stats.gptc),
58 IGB_STAT("rx_bytes", stats.gorc),
59 IGB_STAT("tx_bytes", stats.gotc),
60 IGB_STAT("rx_broadcast", stats.bprc),
61 IGB_STAT("tx_broadcast", stats.bptc),
62 IGB_STAT("rx_multicast", stats.mprc),
63 IGB_STAT("tx_multicast", stats.mptc),
64 IGB_STAT("multicast", stats.mprc),
65 IGB_STAT("collisions", stats.colc),
66 IGB_STAT("rx_crc_errors", stats.crcerrs),
67 IGB_STAT("rx_no_buffer_count", stats.rnbc),
68 IGB_STAT("rx_missed_errors", stats.mpc),
69 IGB_STAT("tx_aborted_errors", stats.ecol),
70 IGB_STAT("tx_carrier_errors", stats.tncrs),
71 IGB_STAT("tx_window_errors", stats.latecol),
72 IGB_STAT("tx_abort_late_coll", stats.latecol),
73 IGB_STAT("tx_deferred_ok", stats.dc),
74 IGB_STAT("tx_single_coll_ok", stats.scc),
75 IGB_STAT("tx_multi_coll_ok", stats.mcc),
76 IGB_STAT("tx_timeout_count", tx_timeout_count),
77 IGB_STAT("rx_long_length_errors", stats.roc),
78 IGB_STAT("rx_short_length_errors", stats.ruc),
79 IGB_STAT("rx_align_errors", stats.algnerrc),
80 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
81 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
82 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
83 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
84 IGB_STAT("tx_flow_control_xon", stats.xontxc),
85 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
86 IGB_STAT("rx_long_byte_count", stats.gorc),
87 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
88 IGB_STAT("tx_smbus", stats.mgptc),
89 IGB_STAT("rx_smbus", stats.mgprc),
90 IGB_STAT("dropped_smbus", stats.mgpdc),
91 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
92 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
93 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
94 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
95 };
96
97 #define IGB_NETDEV_STAT(_net_stat) { \
98 .stat_string = __stringify(_net_stat), \
99 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
100 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
101 }
102 static const struct igb_stats igb_gstrings_net_stats[] = {
103 IGB_NETDEV_STAT(rx_errors),
104 IGB_NETDEV_STAT(tx_errors),
105 IGB_NETDEV_STAT(tx_dropped),
106 IGB_NETDEV_STAT(rx_length_errors),
107 IGB_NETDEV_STAT(rx_over_errors),
108 IGB_NETDEV_STAT(rx_frame_errors),
109 IGB_NETDEV_STAT(rx_fifo_errors),
110 IGB_NETDEV_STAT(tx_fifo_errors),
111 IGB_NETDEV_STAT(tx_heartbeat_errors)
112 };
113
114 #define IGB_GLOBAL_STATS_LEN \
115 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
116 #define IGB_NETDEV_STATS_LEN \
117 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
118 #define IGB_RX_QUEUE_STATS_LEN \
119 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
120
121 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
122
123 #define IGB_QUEUE_STATS_LEN \
124 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
125 IGB_RX_QUEUE_STATS_LEN) + \
126 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
127 IGB_TX_QUEUE_STATS_LEN))
128 #define IGB_STATS_LEN \
129 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
130
131 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
132 "Register test (offline)", "Eeprom test (offline)",
133 "Interrupt test (offline)", "Loopback test (offline)",
134 "Link test (on/offline)"
135 };
136 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
137
138 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
139 {
140 struct igb_adapter *adapter = netdev_priv(netdev);
141 struct e1000_hw *hw = &adapter->hw;
142 u32 status;
143
144 if (hw->phy.media_type == e1000_media_type_copper) {
145
146 ecmd->supported = (SUPPORTED_10baseT_Half |
147 SUPPORTED_10baseT_Full |
148 SUPPORTED_100baseT_Half |
149 SUPPORTED_100baseT_Full |
150 SUPPORTED_1000baseT_Full|
151 SUPPORTED_Autoneg |
152 SUPPORTED_TP |
153 SUPPORTED_Pause);
154 ecmd->advertising = ADVERTISED_TP;
155
156 if (hw->mac.autoneg == 1) {
157 ecmd->advertising |= ADVERTISED_Autoneg;
158 /* the e1000 autoneg seems to match ethtool nicely */
159 ecmd->advertising |= hw->phy.autoneg_advertised;
160 }
161
162 if (hw->mac.autoneg != 1)
163 ecmd->advertising &= ~(ADVERTISED_Pause |
164 ADVERTISED_Asym_Pause);
165
166 if (hw->fc.requested_mode == e1000_fc_full)
167 ecmd->advertising |= ADVERTISED_Pause;
168 else if (hw->fc.requested_mode == e1000_fc_rx_pause)
169 ecmd->advertising |= (ADVERTISED_Pause |
170 ADVERTISED_Asym_Pause);
171 else if (hw->fc.requested_mode == e1000_fc_tx_pause)
172 ecmd->advertising |= ADVERTISED_Asym_Pause;
173 else
174 ecmd->advertising &= ~(ADVERTISED_Pause |
175 ADVERTISED_Asym_Pause);
176
177 ecmd->port = PORT_TP;
178 ecmd->phy_address = hw->phy.addr;
179 } else {
180 ecmd->supported = (SUPPORTED_1000baseT_Full |
181 SUPPORTED_FIBRE |
182 SUPPORTED_Autoneg);
183
184 ecmd->advertising = (ADVERTISED_1000baseT_Full |
185 ADVERTISED_FIBRE |
186 ADVERTISED_Autoneg |
187 ADVERTISED_Pause);
188
189 ecmd->port = PORT_FIBRE;
190 }
191
192 ecmd->transceiver = XCVR_INTERNAL;
193
194 status = rd32(E1000_STATUS);
195
196 if (status & E1000_STATUS_LU) {
197
198 if ((status & E1000_STATUS_SPEED_1000) ||
199 hw->phy.media_type != e1000_media_type_copper)
200 ethtool_cmd_speed_set(ecmd, SPEED_1000);
201 else if (status & E1000_STATUS_SPEED_100)
202 ethtool_cmd_speed_set(ecmd, SPEED_100);
203 else
204 ethtool_cmd_speed_set(ecmd, SPEED_10);
205
206 if ((status & E1000_STATUS_FD) ||
207 hw->phy.media_type != e1000_media_type_copper)
208 ecmd->duplex = DUPLEX_FULL;
209 else
210 ecmd->duplex = DUPLEX_HALF;
211 } else {
212 ethtool_cmd_speed_set(ecmd, -1);
213 ecmd->duplex = -1;
214 }
215
216 ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
217
218 /* MDI-X => 2; MDI =>1; Invalid =>0 */
219 if (hw->phy.media_type == e1000_media_type_copper)
220 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
221 ETH_TP_MDI;
222 else
223 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
224
225 if (hw->phy.mdix == AUTO_ALL_MODES)
226 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
227 else
228 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
229
230 return 0;
231 }
232
233 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
234 {
235 struct igb_adapter *adapter = netdev_priv(netdev);
236 struct e1000_hw *hw = &adapter->hw;
237
238 /* When SoL/IDER sessions are active, autoneg/speed/duplex
239 * cannot be changed */
240 if (igb_check_reset_block(hw)) {
241 dev_err(&adapter->pdev->dev,
242 "Cannot change link characteristics when SoL/IDER is active.\n");
243 return -EINVAL;
244 }
245
246 /*
247 * MDI setting is only allowed when autoneg enabled because
248 * some hardware doesn't allow MDI setting when speed or
249 * duplex is forced.
250 */
251 if (ecmd->eth_tp_mdix_ctrl) {
252 if (hw->phy.media_type != e1000_media_type_copper)
253 return -EOPNOTSUPP;
254
255 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
256 (ecmd->autoneg != AUTONEG_ENABLE)) {
257 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
258 return -EINVAL;
259 }
260 }
261
262 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
263 msleep(1);
264
265 if (ecmd->autoneg == AUTONEG_ENABLE) {
266 hw->mac.autoneg = 1;
267 hw->phy.autoneg_advertised = ecmd->advertising |
268 ADVERTISED_TP |
269 ADVERTISED_Autoneg;
270 ecmd->advertising = hw->phy.autoneg_advertised;
271 if (adapter->fc_autoneg)
272 hw->fc.requested_mode = e1000_fc_default;
273 } else {
274 u32 speed = ethtool_cmd_speed(ecmd);
275 /* calling this overrides forced MDI setting */
276 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
277 clear_bit(__IGB_RESETTING, &adapter->state);
278 return -EINVAL;
279 }
280 }
281
282 /* MDI-X => 2; MDI => 1; Auto => 3 */
283 if (ecmd->eth_tp_mdix_ctrl) {
284 /*
285 * fix up the value for auto (3 => 0) as zero is mapped
286 * internally to auto
287 */
288 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
289 hw->phy.mdix = AUTO_ALL_MODES;
290 else
291 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
292 }
293
294 /* reset the link */
295 if (netif_running(adapter->netdev)) {
296 igb_down(adapter);
297 igb_up(adapter);
298 } else
299 igb_reset(adapter);
300
301 clear_bit(__IGB_RESETTING, &adapter->state);
302 return 0;
303 }
304
305 static u32 igb_get_link(struct net_device *netdev)
306 {
307 struct igb_adapter *adapter = netdev_priv(netdev);
308 struct e1000_mac_info *mac = &adapter->hw.mac;
309
310 /*
311 * If the link is not reported up to netdev, interrupts are disabled,
312 * and so the physical link state may have changed since we last
313 * looked. Set get_link_status to make sure that the true link
314 * state is interrogated, rather than pulling a cached and possibly
315 * stale link state from the driver.
316 */
317 if (!netif_carrier_ok(netdev))
318 mac->get_link_status = 1;
319
320 return igb_has_link(adapter);
321 }
322
323 static void igb_get_pauseparam(struct net_device *netdev,
324 struct ethtool_pauseparam *pause)
325 {
326 struct igb_adapter *adapter = netdev_priv(netdev);
327 struct e1000_hw *hw = &adapter->hw;
328
329 pause->autoneg =
330 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
331
332 if (hw->fc.current_mode == e1000_fc_rx_pause)
333 pause->rx_pause = 1;
334 else if (hw->fc.current_mode == e1000_fc_tx_pause)
335 pause->tx_pause = 1;
336 else if (hw->fc.current_mode == e1000_fc_full) {
337 pause->rx_pause = 1;
338 pause->tx_pause = 1;
339 }
340 }
341
342 static int igb_set_pauseparam(struct net_device *netdev,
343 struct ethtool_pauseparam *pause)
344 {
345 struct igb_adapter *adapter = netdev_priv(netdev);
346 struct e1000_hw *hw = &adapter->hw;
347 int retval = 0;
348
349 adapter->fc_autoneg = pause->autoneg;
350
351 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
352 msleep(1);
353
354 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
355 hw->fc.requested_mode = e1000_fc_default;
356 if (netif_running(adapter->netdev)) {
357 igb_down(adapter);
358 igb_up(adapter);
359 } else {
360 igb_reset(adapter);
361 }
362 } else {
363 if (pause->rx_pause && pause->tx_pause)
364 hw->fc.requested_mode = e1000_fc_full;
365 else if (pause->rx_pause && !pause->tx_pause)
366 hw->fc.requested_mode = e1000_fc_rx_pause;
367 else if (!pause->rx_pause && pause->tx_pause)
368 hw->fc.requested_mode = e1000_fc_tx_pause;
369 else if (!pause->rx_pause && !pause->tx_pause)
370 hw->fc.requested_mode = e1000_fc_none;
371
372 hw->fc.current_mode = hw->fc.requested_mode;
373
374 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
375 igb_force_mac_fc(hw) : igb_setup_link(hw));
376 }
377
378 clear_bit(__IGB_RESETTING, &adapter->state);
379 return retval;
380 }
381
382 static u32 igb_get_msglevel(struct net_device *netdev)
383 {
384 struct igb_adapter *adapter = netdev_priv(netdev);
385 return adapter->msg_enable;
386 }
387
388 static void igb_set_msglevel(struct net_device *netdev, u32 data)
389 {
390 struct igb_adapter *adapter = netdev_priv(netdev);
391 adapter->msg_enable = data;
392 }
393
394 static int igb_get_regs_len(struct net_device *netdev)
395 {
396 #define IGB_REGS_LEN 739
397 return IGB_REGS_LEN * sizeof(u32);
398 }
399
400 static void igb_get_regs(struct net_device *netdev,
401 struct ethtool_regs *regs, void *p)
402 {
403 struct igb_adapter *adapter = netdev_priv(netdev);
404 struct e1000_hw *hw = &adapter->hw;
405 u32 *regs_buff = p;
406 u8 i;
407
408 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
409
410 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
411
412 /* General Registers */
413 regs_buff[0] = rd32(E1000_CTRL);
414 regs_buff[1] = rd32(E1000_STATUS);
415 regs_buff[2] = rd32(E1000_CTRL_EXT);
416 regs_buff[3] = rd32(E1000_MDIC);
417 regs_buff[4] = rd32(E1000_SCTL);
418 regs_buff[5] = rd32(E1000_CONNSW);
419 regs_buff[6] = rd32(E1000_VET);
420 regs_buff[7] = rd32(E1000_LEDCTL);
421 regs_buff[8] = rd32(E1000_PBA);
422 regs_buff[9] = rd32(E1000_PBS);
423 regs_buff[10] = rd32(E1000_FRTIMER);
424 regs_buff[11] = rd32(E1000_TCPTIMER);
425
426 /* NVM Register */
427 regs_buff[12] = rd32(E1000_EECD);
428
429 /* Interrupt */
430 /* Reading EICS for EICR because they read the
431 * same but EICS does not clear on read */
432 regs_buff[13] = rd32(E1000_EICS);
433 regs_buff[14] = rd32(E1000_EICS);
434 regs_buff[15] = rd32(E1000_EIMS);
435 regs_buff[16] = rd32(E1000_EIMC);
436 regs_buff[17] = rd32(E1000_EIAC);
437 regs_buff[18] = rd32(E1000_EIAM);
438 /* Reading ICS for ICR because they read the
439 * same but ICS does not clear on read */
440 regs_buff[19] = rd32(E1000_ICS);
441 regs_buff[20] = rd32(E1000_ICS);
442 regs_buff[21] = rd32(E1000_IMS);
443 regs_buff[22] = rd32(E1000_IMC);
444 regs_buff[23] = rd32(E1000_IAC);
445 regs_buff[24] = rd32(E1000_IAM);
446 regs_buff[25] = rd32(E1000_IMIRVP);
447
448 /* Flow Control */
449 regs_buff[26] = rd32(E1000_FCAL);
450 regs_buff[27] = rd32(E1000_FCAH);
451 regs_buff[28] = rd32(E1000_FCTTV);
452 regs_buff[29] = rd32(E1000_FCRTL);
453 regs_buff[30] = rd32(E1000_FCRTH);
454 regs_buff[31] = rd32(E1000_FCRTV);
455
456 /* Receive */
457 regs_buff[32] = rd32(E1000_RCTL);
458 regs_buff[33] = rd32(E1000_RXCSUM);
459 regs_buff[34] = rd32(E1000_RLPML);
460 regs_buff[35] = rd32(E1000_RFCTL);
461 regs_buff[36] = rd32(E1000_MRQC);
462 regs_buff[37] = rd32(E1000_VT_CTL);
463
464 /* Transmit */
465 regs_buff[38] = rd32(E1000_TCTL);
466 regs_buff[39] = rd32(E1000_TCTL_EXT);
467 regs_buff[40] = rd32(E1000_TIPG);
468 regs_buff[41] = rd32(E1000_DTXCTL);
469
470 /* Wake Up */
471 regs_buff[42] = rd32(E1000_WUC);
472 regs_buff[43] = rd32(E1000_WUFC);
473 regs_buff[44] = rd32(E1000_WUS);
474 regs_buff[45] = rd32(E1000_IPAV);
475 regs_buff[46] = rd32(E1000_WUPL);
476
477 /* MAC */
478 regs_buff[47] = rd32(E1000_PCS_CFG0);
479 regs_buff[48] = rd32(E1000_PCS_LCTL);
480 regs_buff[49] = rd32(E1000_PCS_LSTAT);
481 regs_buff[50] = rd32(E1000_PCS_ANADV);
482 regs_buff[51] = rd32(E1000_PCS_LPAB);
483 regs_buff[52] = rd32(E1000_PCS_NPTX);
484 regs_buff[53] = rd32(E1000_PCS_LPABNP);
485
486 /* Statistics */
487 regs_buff[54] = adapter->stats.crcerrs;
488 regs_buff[55] = adapter->stats.algnerrc;
489 regs_buff[56] = adapter->stats.symerrs;
490 regs_buff[57] = adapter->stats.rxerrc;
491 regs_buff[58] = adapter->stats.mpc;
492 regs_buff[59] = adapter->stats.scc;
493 regs_buff[60] = adapter->stats.ecol;
494 regs_buff[61] = adapter->stats.mcc;
495 regs_buff[62] = adapter->stats.latecol;
496 regs_buff[63] = adapter->stats.colc;
497 regs_buff[64] = adapter->stats.dc;
498 regs_buff[65] = adapter->stats.tncrs;
499 regs_buff[66] = adapter->stats.sec;
500 regs_buff[67] = adapter->stats.htdpmc;
501 regs_buff[68] = adapter->stats.rlec;
502 regs_buff[69] = adapter->stats.xonrxc;
503 regs_buff[70] = adapter->stats.xontxc;
504 regs_buff[71] = adapter->stats.xoffrxc;
505 regs_buff[72] = adapter->stats.xofftxc;
506 regs_buff[73] = adapter->stats.fcruc;
507 regs_buff[74] = adapter->stats.prc64;
508 regs_buff[75] = adapter->stats.prc127;
509 regs_buff[76] = adapter->stats.prc255;
510 regs_buff[77] = adapter->stats.prc511;
511 regs_buff[78] = adapter->stats.prc1023;
512 regs_buff[79] = adapter->stats.prc1522;
513 regs_buff[80] = adapter->stats.gprc;
514 regs_buff[81] = adapter->stats.bprc;
515 regs_buff[82] = adapter->stats.mprc;
516 regs_buff[83] = adapter->stats.gptc;
517 regs_buff[84] = adapter->stats.gorc;
518 regs_buff[86] = adapter->stats.gotc;
519 regs_buff[88] = adapter->stats.rnbc;
520 regs_buff[89] = adapter->stats.ruc;
521 regs_buff[90] = adapter->stats.rfc;
522 regs_buff[91] = adapter->stats.roc;
523 regs_buff[92] = adapter->stats.rjc;
524 regs_buff[93] = adapter->stats.mgprc;
525 regs_buff[94] = adapter->stats.mgpdc;
526 regs_buff[95] = adapter->stats.mgptc;
527 regs_buff[96] = adapter->stats.tor;
528 regs_buff[98] = adapter->stats.tot;
529 regs_buff[100] = adapter->stats.tpr;
530 regs_buff[101] = adapter->stats.tpt;
531 regs_buff[102] = adapter->stats.ptc64;
532 regs_buff[103] = adapter->stats.ptc127;
533 regs_buff[104] = adapter->stats.ptc255;
534 regs_buff[105] = adapter->stats.ptc511;
535 regs_buff[106] = adapter->stats.ptc1023;
536 regs_buff[107] = adapter->stats.ptc1522;
537 regs_buff[108] = adapter->stats.mptc;
538 regs_buff[109] = adapter->stats.bptc;
539 regs_buff[110] = adapter->stats.tsctc;
540 regs_buff[111] = adapter->stats.iac;
541 regs_buff[112] = adapter->stats.rpthc;
542 regs_buff[113] = adapter->stats.hgptc;
543 regs_buff[114] = adapter->stats.hgorc;
544 regs_buff[116] = adapter->stats.hgotc;
545 regs_buff[118] = adapter->stats.lenerrs;
546 regs_buff[119] = adapter->stats.scvpc;
547 regs_buff[120] = adapter->stats.hrmpc;
548
549 for (i = 0; i < 4; i++)
550 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
551 for (i = 0; i < 4; i++)
552 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
553 for (i = 0; i < 4; i++)
554 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
555 for (i = 0; i < 4; i++)
556 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
557 for (i = 0; i < 4; i++)
558 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
559 for (i = 0; i < 4; i++)
560 regs_buff[141 + i] = rd32(E1000_RDH(i));
561 for (i = 0; i < 4; i++)
562 regs_buff[145 + i] = rd32(E1000_RDT(i));
563 for (i = 0; i < 4; i++)
564 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
565
566 for (i = 0; i < 10; i++)
567 regs_buff[153 + i] = rd32(E1000_EITR(i));
568 for (i = 0; i < 8; i++)
569 regs_buff[163 + i] = rd32(E1000_IMIR(i));
570 for (i = 0; i < 8; i++)
571 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
572 for (i = 0; i < 16; i++)
573 regs_buff[179 + i] = rd32(E1000_RAL(i));
574 for (i = 0; i < 16; i++)
575 regs_buff[195 + i] = rd32(E1000_RAH(i));
576
577 for (i = 0; i < 4; i++)
578 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
579 for (i = 0; i < 4; i++)
580 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
581 for (i = 0; i < 4; i++)
582 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
583 for (i = 0; i < 4; i++)
584 regs_buff[223 + i] = rd32(E1000_TDH(i));
585 for (i = 0; i < 4; i++)
586 regs_buff[227 + i] = rd32(E1000_TDT(i));
587 for (i = 0; i < 4; i++)
588 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
589 for (i = 0; i < 4; i++)
590 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
591 for (i = 0; i < 4; i++)
592 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
593 for (i = 0; i < 4; i++)
594 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
595
596 for (i = 0; i < 4; i++)
597 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
598 for (i = 0; i < 4; i++)
599 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
600 for (i = 0; i < 32; i++)
601 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
602 for (i = 0; i < 128; i++)
603 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
604 for (i = 0; i < 128; i++)
605 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
606 for (i = 0; i < 4; i++)
607 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
608
609 regs_buff[547] = rd32(E1000_TDFH);
610 regs_buff[548] = rd32(E1000_TDFT);
611 regs_buff[549] = rd32(E1000_TDFHS);
612 regs_buff[550] = rd32(E1000_TDFPC);
613
614 if (hw->mac.type > e1000_82580) {
615 regs_buff[551] = adapter->stats.o2bgptc;
616 regs_buff[552] = adapter->stats.b2ospc;
617 regs_buff[553] = adapter->stats.o2bspc;
618 regs_buff[554] = adapter->stats.b2ogprc;
619 }
620
621 if (hw->mac.type != e1000_82576)
622 return;
623 for (i = 0; i < 12; i++)
624 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
625 for (i = 0; i < 4; i++)
626 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
627 for (i = 0; i < 12; i++)
628 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
629 for (i = 0; i < 12; i++)
630 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
631 for (i = 0; i < 12; i++)
632 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
633 for (i = 0; i < 12; i++)
634 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
635 for (i = 0; i < 12; i++)
636 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
637 for (i = 0; i < 12; i++)
638 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
639
640 for (i = 0; i < 12; i++)
641 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
642 for (i = 0; i < 12; i++)
643 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
644 for (i = 0; i < 12; i++)
645 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
646 for (i = 0; i < 12; i++)
647 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
648 for (i = 0; i < 12; i++)
649 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
650 for (i = 0; i < 12; i++)
651 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
652 for (i = 0; i < 12; i++)
653 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
654 for (i = 0; i < 12; i++)
655 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
656 }
657
658 static int igb_get_eeprom_len(struct net_device *netdev)
659 {
660 struct igb_adapter *adapter = netdev_priv(netdev);
661 return adapter->hw.nvm.word_size * 2;
662 }
663
664 static int igb_get_eeprom(struct net_device *netdev,
665 struct ethtool_eeprom *eeprom, u8 *bytes)
666 {
667 struct igb_adapter *adapter = netdev_priv(netdev);
668 struct e1000_hw *hw = &adapter->hw;
669 u16 *eeprom_buff;
670 int first_word, last_word;
671 int ret_val = 0;
672 u16 i;
673
674 if (eeprom->len == 0)
675 return -EINVAL;
676
677 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
678
679 first_word = eeprom->offset >> 1;
680 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
681
682 eeprom_buff = kmalloc(sizeof(u16) *
683 (last_word - first_word + 1), GFP_KERNEL);
684 if (!eeprom_buff)
685 return -ENOMEM;
686
687 if (hw->nvm.type == e1000_nvm_eeprom_spi)
688 ret_val = hw->nvm.ops.read(hw, first_word,
689 last_word - first_word + 1,
690 eeprom_buff);
691 else {
692 for (i = 0; i < last_word - first_word + 1; i++) {
693 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
694 &eeprom_buff[i]);
695 if (ret_val)
696 break;
697 }
698 }
699
700 /* Device's eeprom is always little-endian, word addressable */
701 for (i = 0; i < last_word - first_word + 1; i++)
702 le16_to_cpus(&eeprom_buff[i]);
703
704 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
705 eeprom->len);
706 kfree(eeprom_buff);
707
708 return ret_val;
709 }
710
711 static int igb_set_eeprom(struct net_device *netdev,
712 struct ethtool_eeprom *eeprom, u8 *bytes)
713 {
714 struct igb_adapter *adapter = netdev_priv(netdev);
715 struct e1000_hw *hw = &adapter->hw;
716 u16 *eeprom_buff;
717 void *ptr;
718 int max_len, first_word, last_word, ret_val = 0;
719 u16 i;
720
721 if (eeprom->len == 0)
722 return -EOPNOTSUPP;
723
724 if (hw->mac.type == e1000_i211)
725 return -EOPNOTSUPP;
726
727 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
728 return -EFAULT;
729
730 max_len = hw->nvm.word_size * 2;
731
732 first_word = eeprom->offset >> 1;
733 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
734 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
735 if (!eeprom_buff)
736 return -ENOMEM;
737
738 ptr = (void *)eeprom_buff;
739
740 if (eeprom->offset & 1) {
741 /* need read/modify/write of first changed EEPROM word */
742 /* only the second byte of the word is being modified */
743 ret_val = hw->nvm.ops.read(hw, first_word, 1,
744 &eeprom_buff[0]);
745 ptr++;
746 }
747 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
748 /* need read/modify/write of last changed EEPROM word */
749 /* only the first byte of the word is being modified */
750 ret_val = hw->nvm.ops.read(hw, last_word, 1,
751 &eeprom_buff[last_word - first_word]);
752 }
753
754 /* Device's eeprom is always little-endian, word addressable */
755 for (i = 0; i < last_word - first_word + 1; i++)
756 le16_to_cpus(&eeprom_buff[i]);
757
758 memcpy(ptr, bytes, eeprom->len);
759
760 for (i = 0; i < last_word - first_word + 1; i++)
761 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
762
763 ret_val = hw->nvm.ops.write(hw, first_word,
764 last_word - first_word + 1, eeprom_buff);
765
766 /* Update the checksum over the first part of the EEPROM if needed
767 * and flush shadow RAM for 82573 controllers */
768 if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
769 hw->nvm.ops.update(hw);
770
771 igb_set_fw_version(adapter);
772 kfree(eeprom_buff);
773 return ret_val;
774 }
775
776 static void igb_get_drvinfo(struct net_device *netdev,
777 struct ethtool_drvinfo *drvinfo)
778 {
779 struct igb_adapter *adapter = netdev_priv(netdev);
780
781 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
782 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
783
784 /*
785 * EEPROM image version # is reported as firmware version # for
786 * 82575 controllers
787 */
788 strlcpy(drvinfo->fw_version, adapter->fw_version,
789 sizeof(drvinfo->fw_version));
790 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
791 sizeof(drvinfo->bus_info));
792 drvinfo->n_stats = IGB_STATS_LEN;
793 drvinfo->testinfo_len = IGB_TEST_LEN;
794 drvinfo->regdump_len = igb_get_regs_len(netdev);
795 drvinfo->eedump_len = igb_get_eeprom_len(netdev);
796 }
797
798 static void igb_get_ringparam(struct net_device *netdev,
799 struct ethtool_ringparam *ring)
800 {
801 struct igb_adapter *adapter = netdev_priv(netdev);
802
803 ring->rx_max_pending = IGB_MAX_RXD;
804 ring->tx_max_pending = IGB_MAX_TXD;
805 ring->rx_pending = adapter->rx_ring_count;
806 ring->tx_pending = adapter->tx_ring_count;
807 }
808
809 static int igb_set_ringparam(struct net_device *netdev,
810 struct ethtool_ringparam *ring)
811 {
812 struct igb_adapter *adapter = netdev_priv(netdev);
813 struct igb_ring *temp_ring;
814 int i, err = 0;
815 u16 new_rx_count, new_tx_count;
816
817 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
818 return -EINVAL;
819
820 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
821 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
822 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
823
824 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
825 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
826 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
827
828 if ((new_tx_count == adapter->tx_ring_count) &&
829 (new_rx_count == adapter->rx_ring_count)) {
830 /* nothing to do */
831 return 0;
832 }
833
834 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
835 msleep(1);
836
837 if (!netif_running(adapter->netdev)) {
838 for (i = 0; i < adapter->num_tx_queues; i++)
839 adapter->tx_ring[i]->count = new_tx_count;
840 for (i = 0; i < adapter->num_rx_queues; i++)
841 adapter->rx_ring[i]->count = new_rx_count;
842 adapter->tx_ring_count = new_tx_count;
843 adapter->rx_ring_count = new_rx_count;
844 goto clear_reset;
845 }
846
847 if (adapter->num_tx_queues > adapter->num_rx_queues)
848 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
849 else
850 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
851
852 if (!temp_ring) {
853 err = -ENOMEM;
854 goto clear_reset;
855 }
856
857 igb_down(adapter);
858
859 /*
860 * We can't just free everything and then setup again,
861 * because the ISRs in MSI-X mode get passed pointers
862 * to the tx and rx ring structs.
863 */
864 if (new_tx_count != adapter->tx_ring_count) {
865 for (i = 0; i < adapter->num_tx_queues; i++) {
866 memcpy(&temp_ring[i], adapter->tx_ring[i],
867 sizeof(struct igb_ring));
868
869 temp_ring[i].count = new_tx_count;
870 err = igb_setup_tx_resources(&temp_ring[i]);
871 if (err) {
872 while (i) {
873 i--;
874 igb_free_tx_resources(&temp_ring[i]);
875 }
876 goto err_setup;
877 }
878 }
879
880 for (i = 0; i < adapter->num_tx_queues; i++) {
881 igb_free_tx_resources(adapter->tx_ring[i]);
882
883 memcpy(adapter->tx_ring[i], &temp_ring[i],
884 sizeof(struct igb_ring));
885 }
886
887 adapter->tx_ring_count = new_tx_count;
888 }
889
890 if (new_rx_count != adapter->rx_ring_count) {
891 for (i = 0; i < adapter->num_rx_queues; i++) {
892 memcpy(&temp_ring[i], adapter->rx_ring[i],
893 sizeof(struct igb_ring));
894
895 temp_ring[i].count = new_rx_count;
896 err = igb_setup_rx_resources(&temp_ring[i]);
897 if (err) {
898 while (i) {
899 i--;
900 igb_free_rx_resources(&temp_ring[i]);
901 }
902 goto err_setup;
903 }
904
905 }
906
907 for (i = 0; i < adapter->num_rx_queues; i++) {
908 igb_free_rx_resources(adapter->rx_ring[i]);
909
910 memcpy(adapter->rx_ring[i], &temp_ring[i],
911 sizeof(struct igb_ring));
912 }
913
914 adapter->rx_ring_count = new_rx_count;
915 }
916 err_setup:
917 igb_up(adapter);
918 vfree(temp_ring);
919 clear_reset:
920 clear_bit(__IGB_RESETTING, &adapter->state);
921 return err;
922 }
923
924 /* ethtool register test data */
925 struct igb_reg_test {
926 u16 reg;
927 u16 reg_offset;
928 u16 array_len;
929 u16 test_type;
930 u32 mask;
931 u32 write;
932 };
933
934 /* In the hardware, registers are laid out either singly, in arrays
935 * spaced 0x100 bytes apart, or in contiguous tables. We assume
936 * most tests take place on arrays or single registers (handled
937 * as a single-element array) and special-case the tables.
938 * Table tests are always pattern tests.
939 *
940 * We also make provision for some required setup steps by specifying
941 * registers to be written without any read-back testing.
942 */
943
944 #define PATTERN_TEST 1
945 #define SET_READ_TEST 2
946 #define WRITE_NO_TEST 3
947 #define TABLE32_TEST 4
948 #define TABLE64_TEST_LO 5
949 #define TABLE64_TEST_HI 6
950
951 /* i210 reg test */
952 static struct igb_reg_test reg_test_i210[] = {
953 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
954 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
955 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
956 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
957 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
958 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
959 /* RDH is read-only for i210, only test RDT. */
960 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
961 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
962 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
963 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
964 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
965 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
966 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
967 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
968 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
969 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
970 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
971 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
972 { E1000_RA, 0, 16, TABLE64_TEST_LO,
973 0xFFFFFFFF, 0xFFFFFFFF },
974 { E1000_RA, 0, 16, TABLE64_TEST_HI,
975 0x900FFFFF, 0xFFFFFFFF },
976 { E1000_MTA, 0, 128, TABLE32_TEST,
977 0xFFFFFFFF, 0xFFFFFFFF },
978 { 0, 0, 0, 0, 0 }
979 };
980
981 /* i350 reg test */
982 static struct igb_reg_test reg_test_i350[] = {
983 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
984 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
985 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
986 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
987 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
988 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
989 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
990 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
991 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
992 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
993 /* RDH is read-only for i350, only test RDT. */
994 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
995 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
996 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
997 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
998 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
999 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1000 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1001 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1002 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1003 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1005 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1006 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1007 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1008 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1009 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1010 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1011 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1012 0xFFFFFFFF, 0xFFFFFFFF },
1013 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1014 0xC3FFFFFF, 0xFFFFFFFF },
1015 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1016 0xFFFFFFFF, 0xFFFFFFFF },
1017 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1018 0xC3FFFFFF, 0xFFFFFFFF },
1019 { E1000_MTA, 0, 128, TABLE32_TEST,
1020 0xFFFFFFFF, 0xFFFFFFFF },
1021 { 0, 0, 0, 0 }
1022 };
1023
1024 /* 82580 reg test */
1025 static struct igb_reg_test reg_test_82580[] = {
1026 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1027 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1028 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1029 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1030 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1031 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1032 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1033 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1034 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1035 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1036 /* RDH is read-only for 82580, only test RDT. */
1037 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1038 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1039 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1040 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1041 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1042 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1043 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1044 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1045 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1046 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1047 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1048 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1049 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1050 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1051 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1052 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1053 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1054 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1055 0xFFFFFFFF, 0xFFFFFFFF },
1056 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1057 0x83FFFFFF, 0xFFFFFFFF },
1058 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1059 0xFFFFFFFF, 0xFFFFFFFF },
1060 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1061 0x83FFFFFF, 0xFFFFFFFF },
1062 { E1000_MTA, 0, 128, TABLE32_TEST,
1063 0xFFFFFFFF, 0xFFFFFFFF },
1064 { 0, 0, 0, 0 }
1065 };
1066
1067 /* 82576 reg test */
1068 static struct igb_reg_test reg_test_82576[] = {
1069 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1070 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1071 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1072 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1073 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1074 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1075 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1076 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1077 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1078 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1079 /* Enable all RX queues before testing. */
1080 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1081 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1082 /* RDH is read-only for 82576, only test RDT. */
1083 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1084 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1085 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1086 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1087 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1088 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1089 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1090 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1091 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1092 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1093 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1094 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1095 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1096 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1097 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1098 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1099 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1100 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1101 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1102 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1103 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1104 { E1000_MTA, 0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1105 { 0, 0, 0, 0 }
1106 };
1107
1108 /* 82575 register test */
1109 static struct igb_reg_test reg_test_82575[] = {
1110 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1111 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1112 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1113 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1114 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1115 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1116 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1117 /* Enable all four RX queues before testing. */
1118 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
1119 /* RDH is read-only for 82575, only test RDT. */
1120 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1121 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1122 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1123 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1124 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1125 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1126 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1127 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1128 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1129 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1130 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1131 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1132 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1133 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1134 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1135 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1136 { 0, 0, 0, 0 }
1137 };
1138
1139 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1140 int reg, u32 mask, u32 write)
1141 {
1142 struct e1000_hw *hw = &adapter->hw;
1143 u32 pat, val;
1144 static const u32 _test[] =
1145 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1146 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1147 wr32(reg, (_test[pat] & write));
1148 val = rd32(reg) & mask;
1149 if (val != (_test[pat] & write & mask)) {
1150 dev_err(&adapter->pdev->dev,
1151 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1152 reg, val, (_test[pat] & write & mask));
1153 *data = reg;
1154 return 1;
1155 }
1156 }
1157
1158 return 0;
1159 }
1160
1161 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1162 int reg, u32 mask, u32 write)
1163 {
1164 struct e1000_hw *hw = &adapter->hw;
1165 u32 val;
1166 wr32(reg, write & mask);
1167 val = rd32(reg);
1168 if ((write & mask) != (val & mask)) {
1169 dev_err(&adapter->pdev->dev,
1170 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n", reg,
1171 (val & mask), (write & mask));
1172 *data = reg;
1173 return 1;
1174 }
1175
1176 return 0;
1177 }
1178
1179 #define REG_PATTERN_TEST(reg, mask, write) \
1180 do { \
1181 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1182 return 1; \
1183 } while (0)
1184
1185 #define REG_SET_AND_CHECK(reg, mask, write) \
1186 do { \
1187 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1188 return 1; \
1189 } while (0)
1190
1191 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1192 {
1193 struct e1000_hw *hw = &adapter->hw;
1194 struct igb_reg_test *test;
1195 u32 value, before, after;
1196 u32 i, toggle;
1197
1198 switch (adapter->hw.mac.type) {
1199 case e1000_i350:
1200 test = reg_test_i350;
1201 toggle = 0x7FEFF3FF;
1202 break;
1203 case e1000_i210:
1204 case e1000_i211:
1205 test = reg_test_i210;
1206 toggle = 0x7FEFF3FF;
1207 break;
1208 case e1000_82580:
1209 test = reg_test_82580;
1210 toggle = 0x7FEFF3FF;
1211 break;
1212 case e1000_82576:
1213 test = reg_test_82576;
1214 toggle = 0x7FFFF3FF;
1215 break;
1216 default:
1217 test = reg_test_82575;
1218 toggle = 0x7FFFF3FF;
1219 break;
1220 }
1221
1222 /* Because the status register is such a special case,
1223 * we handle it separately from the rest of the register
1224 * tests. Some bits are read-only, some toggle, and some
1225 * are writable on newer MACs.
1226 */
1227 before = rd32(E1000_STATUS);
1228 value = (rd32(E1000_STATUS) & toggle);
1229 wr32(E1000_STATUS, toggle);
1230 after = rd32(E1000_STATUS) & toggle;
1231 if (value != after) {
1232 dev_err(&adapter->pdev->dev,
1233 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1234 after, value);
1235 *data = 1;
1236 return 1;
1237 }
1238 /* restore previous status */
1239 wr32(E1000_STATUS, before);
1240
1241 /* Perform the remainder of the register test, looping through
1242 * the test table until we either fail or reach the null entry.
1243 */
1244 while (test->reg) {
1245 for (i = 0; i < test->array_len; i++) {
1246 switch (test->test_type) {
1247 case PATTERN_TEST:
1248 REG_PATTERN_TEST(test->reg +
1249 (i * test->reg_offset),
1250 test->mask,
1251 test->write);
1252 break;
1253 case SET_READ_TEST:
1254 REG_SET_AND_CHECK(test->reg +
1255 (i * test->reg_offset),
1256 test->mask,
1257 test->write);
1258 break;
1259 case WRITE_NO_TEST:
1260 writel(test->write,
1261 (adapter->hw.hw_addr + test->reg)
1262 + (i * test->reg_offset));
1263 break;
1264 case TABLE32_TEST:
1265 REG_PATTERN_TEST(test->reg + (i * 4),
1266 test->mask,
1267 test->write);
1268 break;
1269 case TABLE64_TEST_LO:
1270 REG_PATTERN_TEST(test->reg + (i * 8),
1271 test->mask,
1272 test->write);
1273 break;
1274 case TABLE64_TEST_HI:
1275 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1276 test->mask,
1277 test->write);
1278 break;
1279 }
1280 }
1281 test++;
1282 }
1283
1284 *data = 0;
1285 return 0;
1286 }
1287
1288 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1289 {
1290 *data = 0;
1291
1292 /* Validate eeprom on all parts but i211 */
1293 if (adapter->hw.mac.type != e1000_i211) {
1294 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1295 *data = 2;
1296 }
1297
1298 return *data;
1299 }
1300
1301 static irqreturn_t igb_test_intr(int irq, void *data)
1302 {
1303 struct igb_adapter *adapter = (struct igb_adapter *) data;
1304 struct e1000_hw *hw = &adapter->hw;
1305
1306 adapter->test_icr |= rd32(E1000_ICR);
1307
1308 return IRQ_HANDLED;
1309 }
1310
1311 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1312 {
1313 struct e1000_hw *hw = &adapter->hw;
1314 struct net_device *netdev = adapter->netdev;
1315 u32 mask, ics_mask, i = 0, shared_int = true;
1316 u32 irq = adapter->pdev->irq;
1317
1318 *data = 0;
1319
1320 /* Hook up test interrupt handler just for this test */
1321 if (adapter->msix_entries) {
1322 if (request_irq(adapter->msix_entries[0].vector,
1323 igb_test_intr, 0, netdev->name, adapter)) {
1324 *data = 1;
1325 return -1;
1326 }
1327 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1328 shared_int = false;
1329 if (request_irq(irq,
1330 igb_test_intr, 0, netdev->name, adapter)) {
1331 *data = 1;
1332 return -1;
1333 }
1334 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1335 netdev->name, adapter)) {
1336 shared_int = false;
1337 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1338 netdev->name, adapter)) {
1339 *data = 1;
1340 return -1;
1341 }
1342 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1343 (shared_int ? "shared" : "unshared"));
1344
1345 /* Disable all the interrupts */
1346 wr32(E1000_IMC, ~0);
1347 wrfl();
1348 msleep(10);
1349
1350 /* Define all writable bits for ICS */
1351 switch (hw->mac.type) {
1352 case e1000_82575:
1353 ics_mask = 0x37F47EDD;
1354 break;
1355 case e1000_82576:
1356 ics_mask = 0x77D4FBFD;
1357 break;
1358 case e1000_82580:
1359 ics_mask = 0x77DCFED5;
1360 break;
1361 case e1000_i350:
1362 case e1000_i210:
1363 case e1000_i211:
1364 ics_mask = 0x77DCFED5;
1365 break;
1366 default:
1367 ics_mask = 0x7FFFFFFF;
1368 break;
1369 }
1370
1371 /* Test each interrupt */
1372 for (; i < 31; i++) {
1373 /* Interrupt to test */
1374 mask = 1 << i;
1375
1376 if (!(mask & ics_mask))
1377 continue;
1378
1379 if (!shared_int) {
1380 /* Disable the interrupt to be reported in
1381 * the cause register and then force the same
1382 * interrupt and see if one gets posted. If
1383 * an interrupt was posted to the bus, the
1384 * test failed.
1385 */
1386 adapter->test_icr = 0;
1387
1388 /* Flush any pending interrupts */
1389 wr32(E1000_ICR, ~0);
1390
1391 wr32(E1000_IMC, mask);
1392 wr32(E1000_ICS, mask);
1393 wrfl();
1394 msleep(10);
1395
1396 if (adapter->test_icr & mask) {
1397 *data = 3;
1398 break;
1399 }
1400 }
1401
1402 /* Enable the interrupt to be reported in
1403 * the cause register and then force the same
1404 * interrupt and see if one gets posted. If
1405 * an interrupt was not posted to the bus, the
1406 * test failed.
1407 */
1408 adapter->test_icr = 0;
1409
1410 /* Flush any pending interrupts */
1411 wr32(E1000_ICR, ~0);
1412
1413 wr32(E1000_IMS, mask);
1414 wr32(E1000_ICS, mask);
1415 wrfl();
1416 msleep(10);
1417
1418 if (!(adapter->test_icr & mask)) {
1419 *data = 4;
1420 break;
1421 }
1422
1423 if (!shared_int) {
1424 /* Disable the other interrupts to be reported in
1425 * the cause register and then force the other
1426 * interrupts and see if any get posted. If
1427 * an interrupt was posted to the bus, the
1428 * test failed.
1429 */
1430 adapter->test_icr = 0;
1431
1432 /* Flush any pending interrupts */
1433 wr32(E1000_ICR, ~0);
1434
1435 wr32(E1000_IMC, ~mask);
1436 wr32(E1000_ICS, ~mask);
1437 wrfl();
1438 msleep(10);
1439
1440 if (adapter->test_icr & mask) {
1441 *data = 5;
1442 break;
1443 }
1444 }
1445 }
1446
1447 /* Disable all the interrupts */
1448 wr32(E1000_IMC, ~0);
1449 wrfl();
1450 msleep(10);
1451
1452 /* Unhook test interrupt handler */
1453 if (adapter->msix_entries)
1454 free_irq(adapter->msix_entries[0].vector, adapter);
1455 else
1456 free_irq(irq, adapter);
1457
1458 return *data;
1459 }
1460
1461 static void igb_free_desc_rings(struct igb_adapter *adapter)
1462 {
1463 igb_free_tx_resources(&adapter->test_tx_ring);
1464 igb_free_rx_resources(&adapter->test_rx_ring);
1465 }
1466
1467 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1468 {
1469 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1470 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1471 struct e1000_hw *hw = &adapter->hw;
1472 int ret_val;
1473
1474 /* Setup Tx descriptor ring and Tx buffers */
1475 tx_ring->count = IGB_DEFAULT_TXD;
1476 tx_ring->dev = &adapter->pdev->dev;
1477 tx_ring->netdev = adapter->netdev;
1478 tx_ring->reg_idx = adapter->vfs_allocated_count;
1479
1480 if (igb_setup_tx_resources(tx_ring)) {
1481 ret_val = 1;
1482 goto err_nomem;
1483 }
1484
1485 igb_setup_tctl(adapter);
1486 igb_configure_tx_ring(adapter, tx_ring);
1487
1488 /* Setup Rx descriptor ring and Rx buffers */
1489 rx_ring->count = IGB_DEFAULT_RXD;
1490 rx_ring->dev = &adapter->pdev->dev;
1491 rx_ring->netdev = adapter->netdev;
1492 rx_ring->reg_idx = adapter->vfs_allocated_count;
1493
1494 if (igb_setup_rx_resources(rx_ring)) {
1495 ret_val = 3;
1496 goto err_nomem;
1497 }
1498
1499 /* set the default queue to queue 0 of PF */
1500 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1501
1502 /* enable receive ring */
1503 igb_setup_rctl(adapter);
1504 igb_configure_rx_ring(adapter, rx_ring);
1505
1506 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1507
1508 return 0;
1509
1510 err_nomem:
1511 igb_free_desc_rings(adapter);
1512 return ret_val;
1513 }
1514
1515 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1516 {
1517 struct e1000_hw *hw = &adapter->hw;
1518
1519 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1520 igb_write_phy_reg(hw, 29, 0x001F);
1521 igb_write_phy_reg(hw, 30, 0x8FFC);
1522 igb_write_phy_reg(hw, 29, 0x001A);
1523 igb_write_phy_reg(hw, 30, 0x8FF0);
1524 }
1525
1526 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1527 {
1528 struct e1000_hw *hw = &adapter->hw;
1529 u32 ctrl_reg = 0;
1530
1531 hw->mac.autoneg = false;
1532
1533 if (hw->phy.type == e1000_phy_m88) {
1534 if (hw->phy.id != I210_I_PHY_ID) {
1535 /* Auto-MDI/MDIX Off */
1536 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1537 /* reset to update Auto-MDI/MDIX */
1538 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1539 /* autoneg off */
1540 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1541 } else {
1542 /* force 1000, set loopback */
1543 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1544 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1545 }
1546 }
1547
1548 /* add small delay to avoid loopback test failure */
1549 msleep(50);
1550
1551 /* force 1000, set loopback */
1552 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1553
1554 /* Now set up the MAC to the same speed/duplex as the PHY. */
1555 ctrl_reg = rd32(E1000_CTRL);
1556 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1557 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1558 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1559 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1560 E1000_CTRL_FD | /* Force Duplex to FULL */
1561 E1000_CTRL_SLU); /* Set link up enable bit */
1562
1563 if (hw->phy.type == e1000_phy_m88)
1564 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1565
1566 wr32(E1000_CTRL, ctrl_reg);
1567
1568 /* Disable the receiver on the PHY so when a cable is plugged in, the
1569 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1570 */
1571 if (hw->phy.type == e1000_phy_m88)
1572 igb_phy_disable_receiver(adapter);
1573
1574 mdelay(500);
1575 return 0;
1576 }
1577
1578 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1579 {
1580 return igb_integrated_phy_loopback(adapter);
1581 }
1582
1583 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1584 {
1585 struct e1000_hw *hw = &adapter->hw;
1586 u32 reg;
1587
1588 reg = rd32(E1000_CTRL_EXT);
1589
1590 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1591 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1592 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1593 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1594 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1595 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1596
1597 /* Enable DH89xxCC MPHY for near end loopback */
1598 reg = rd32(E1000_MPHY_ADDR_CTL);
1599 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1600 E1000_MPHY_PCS_CLK_REG_OFFSET;
1601 wr32(E1000_MPHY_ADDR_CTL, reg);
1602
1603 reg = rd32(E1000_MPHY_DATA);
1604 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1605 wr32(E1000_MPHY_DATA, reg);
1606 }
1607
1608 reg = rd32(E1000_RCTL);
1609 reg |= E1000_RCTL_LBM_TCVR;
1610 wr32(E1000_RCTL, reg);
1611
1612 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1613
1614 reg = rd32(E1000_CTRL);
1615 reg &= ~(E1000_CTRL_RFCE |
1616 E1000_CTRL_TFCE |
1617 E1000_CTRL_LRST);
1618 reg |= E1000_CTRL_SLU |
1619 E1000_CTRL_FD;
1620 wr32(E1000_CTRL, reg);
1621
1622 /* Unset switch control to serdes energy detect */
1623 reg = rd32(E1000_CONNSW);
1624 reg &= ~E1000_CONNSW_ENRGSRC;
1625 wr32(E1000_CONNSW, reg);
1626
1627 /* Set PCS register for forced speed */
1628 reg = rd32(E1000_PCS_LCTL);
1629 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1630 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1631 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1632 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1633 E1000_PCS_LCTL_FSD | /* Force Speed */
1634 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1635 wr32(E1000_PCS_LCTL, reg);
1636
1637 return 0;
1638 }
1639
1640 return igb_set_phy_loopback(adapter);
1641 }
1642
1643 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1644 {
1645 struct e1000_hw *hw = &adapter->hw;
1646 u32 rctl;
1647 u16 phy_reg;
1648
1649 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1650 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1651 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1652 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP)) {
1653 u32 reg;
1654
1655 /* Disable near end loopback on DH89xxCC */
1656 reg = rd32(E1000_MPHY_ADDR_CTL);
1657 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1658 E1000_MPHY_PCS_CLK_REG_OFFSET;
1659 wr32(E1000_MPHY_ADDR_CTL, reg);
1660
1661 reg = rd32(E1000_MPHY_DATA);
1662 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1663 wr32(E1000_MPHY_DATA, reg);
1664 }
1665
1666 rctl = rd32(E1000_RCTL);
1667 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1668 wr32(E1000_RCTL, rctl);
1669
1670 hw->mac.autoneg = true;
1671 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1672 if (phy_reg & MII_CR_LOOPBACK) {
1673 phy_reg &= ~MII_CR_LOOPBACK;
1674 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1675 igb_phy_sw_reset(hw);
1676 }
1677 }
1678
1679 static void igb_create_lbtest_frame(struct sk_buff *skb,
1680 unsigned int frame_size)
1681 {
1682 memset(skb->data, 0xFF, frame_size);
1683 frame_size /= 2;
1684 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1685 memset(&skb->data[frame_size + 10], 0xBE, 1);
1686 memset(&skb->data[frame_size + 12], 0xAF, 1);
1687 }
1688
1689 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1690 unsigned int frame_size)
1691 {
1692 unsigned char *data;
1693 bool match = true;
1694
1695 frame_size >>= 1;
1696
1697 data = kmap(rx_buffer->page);
1698
1699 if (data[3] != 0xFF ||
1700 data[frame_size + 10] != 0xBE ||
1701 data[frame_size + 12] != 0xAF)
1702 match = false;
1703
1704 kunmap(rx_buffer->page);
1705
1706 return match;
1707 }
1708
1709 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1710 struct igb_ring *tx_ring,
1711 unsigned int size)
1712 {
1713 union e1000_adv_rx_desc *rx_desc;
1714 struct igb_rx_buffer *rx_buffer_info;
1715 struct igb_tx_buffer *tx_buffer_info;
1716 u16 rx_ntc, tx_ntc, count = 0;
1717
1718 /* initialize next to clean and descriptor values */
1719 rx_ntc = rx_ring->next_to_clean;
1720 tx_ntc = tx_ring->next_to_clean;
1721 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1722
1723 while (igb_test_staterr(rx_desc, E1000_RXD_STAT_DD)) {
1724 /* check rx buffer */
1725 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1726
1727 /* sync Rx buffer for CPU read */
1728 dma_sync_single_for_cpu(rx_ring->dev,
1729 rx_buffer_info->dma,
1730 IGB_RX_BUFSZ,
1731 DMA_FROM_DEVICE);
1732
1733 /* verify contents of skb */
1734 if (igb_check_lbtest_frame(rx_buffer_info, size))
1735 count++;
1736
1737 /* sync Rx buffer for device write */
1738 dma_sync_single_for_device(rx_ring->dev,
1739 rx_buffer_info->dma,
1740 IGB_RX_BUFSZ,
1741 DMA_FROM_DEVICE);
1742
1743 /* unmap buffer on tx side */
1744 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1745 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer_info);
1746
1747 /* increment rx/tx next to clean counters */
1748 rx_ntc++;
1749 if (rx_ntc == rx_ring->count)
1750 rx_ntc = 0;
1751 tx_ntc++;
1752 if (tx_ntc == tx_ring->count)
1753 tx_ntc = 0;
1754
1755 /* fetch next descriptor */
1756 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1757 }
1758
1759 netdev_tx_reset_queue(txring_txq(tx_ring));
1760
1761 /* re-map buffers to ring, store next to clean values */
1762 igb_alloc_rx_buffers(rx_ring, count);
1763 rx_ring->next_to_clean = rx_ntc;
1764 tx_ring->next_to_clean = tx_ntc;
1765
1766 return count;
1767 }
1768
1769 static int igb_run_loopback_test(struct igb_adapter *adapter)
1770 {
1771 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1772 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1773 u16 i, j, lc, good_cnt;
1774 int ret_val = 0;
1775 unsigned int size = IGB_RX_HDR_LEN;
1776 netdev_tx_t tx_ret_val;
1777 struct sk_buff *skb;
1778
1779 /* allocate test skb */
1780 skb = alloc_skb(size, GFP_KERNEL);
1781 if (!skb)
1782 return 11;
1783
1784 /* place data into test skb */
1785 igb_create_lbtest_frame(skb, size);
1786 skb_put(skb, size);
1787
1788 /*
1789 * Calculate the loop count based on the largest descriptor ring
1790 * The idea is to wrap the largest ring a number of times using 64
1791 * send/receive pairs during each loop
1792 */
1793
1794 if (rx_ring->count <= tx_ring->count)
1795 lc = ((tx_ring->count / 64) * 2) + 1;
1796 else
1797 lc = ((rx_ring->count / 64) * 2) + 1;
1798
1799 for (j = 0; j <= lc; j++) { /* loop count loop */
1800 /* reset count of good packets */
1801 good_cnt = 0;
1802
1803 /* place 64 packets on the transmit queue*/
1804 for (i = 0; i < 64; i++) {
1805 skb_get(skb);
1806 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1807 if (tx_ret_val == NETDEV_TX_OK)
1808 good_cnt++;
1809 }
1810
1811 if (good_cnt != 64) {
1812 ret_val = 12;
1813 break;
1814 }
1815
1816 /* allow 200 milliseconds for packets to go from tx to rx */
1817 msleep(200);
1818
1819 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1820 if (good_cnt != 64) {
1821 ret_val = 13;
1822 break;
1823 }
1824 } /* end loop count loop */
1825
1826 /* free the original skb */
1827 kfree_skb(skb);
1828
1829 return ret_val;
1830 }
1831
1832 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1833 {
1834 /* PHY loopback cannot be performed if SoL/IDER
1835 * sessions are active */
1836 if (igb_check_reset_block(&adapter->hw)) {
1837 dev_err(&adapter->pdev->dev,
1838 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1839 *data = 0;
1840 goto out;
1841 }
1842 *data = igb_setup_desc_rings(adapter);
1843 if (*data)
1844 goto out;
1845 *data = igb_setup_loopback_test(adapter);
1846 if (*data)
1847 goto err_loopback;
1848 *data = igb_run_loopback_test(adapter);
1849 igb_loopback_cleanup(adapter);
1850
1851 err_loopback:
1852 igb_free_desc_rings(adapter);
1853 out:
1854 return *data;
1855 }
1856
1857 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1858 {
1859 struct e1000_hw *hw = &adapter->hw;
1860 *data = 0;
1861 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1862 int i = 0;
1863 hw->mac.serdes_has_link = false;
1864
1865 /* On some blade server designs, link establishment
1866 * could take as long as 2-3 minutes */
1867 do {
1868 hw->mac.ops.check_for_link(&adapter->hw);
1869 if (hw->mac.serdes_has_link)
1870 return *data;
1871 msleep(20);
1872 } while (i++ < 3750);
1873
1874 *data = 1;
1875 } else {
1876 hw->mac.ops.check_for_link(&adapter->hw);
1877 if (hw->mac.autoneg)
1878 msleep(4000);
1879
1880 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1881 *data = 1;
1882 }
1883 return *data;
1884 }
1885
1886 static void igb_diag_test(struct net_device *netdev,
1887 struct ethtool_test *eth_test, u64 *data)
1888 {
1889 struct igb_adapter *adapter = netdev_priv(netdev);
1890 u16 autoneg_advertised;
1891 u8 forced_speed_duplex, autoneg;
1892 bool if_running = netif_running(netdev);
1893
1894 set_bit(__IGB_TESTING, &adapter->state);
1895 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1896 /* Offline tests */
1897
1898 /* save speed, duplex, autoneg settings */
1899 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1900 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1901 autoneg = adapter->hw.mac.autoneg;
1902
1903 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1904
1905 /* power up link for link test */
1906 igb_power_up_link(adapter);
1907
1908 /* Link test performed before hardware reset so autoneg doesn't
1909 * interfere with test result */
1910 if (igb_link_test(adapter, &data[4]))
1911 eth_test->flags |= ETH_TEST_FL_FAILED;
1912
1913 if (if_running)
1914 /* indicate we're in test mode */
1915 dev_close(netdev);
1916 else
1917 igb_reset(adapter);
1918
1919 if (igb_reg_test(adapter, &data[0]))
1920 eth_test->flags |= ETH_TEST_FL_FAILED;
1921
1922 igb_reset(adapter);
1923 if (igb_eeprom_test(adapter, &data[1]))
1924 eth_test->flags |= ETH_TEST_FL_FAILED;
1925
1926 igb_reset(adapter);
1927 if (igb_intr_test(adapter, &data[2]))
1928 eth_test->flags |= ETH_TEST_FL_FAILED;
1929
1930 igb_reset(adapter);
1931 /* power up link for loopback test */
1932 igb_power_up_link(adapter);
1933 if (igb_loopback_test(adapter, &data[3]))
1934 eth_test->flags |= ETH_TEST_FL_FAILED;
1935
1936 /* restore speed, duplex, autoneg settings */
1937 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1938 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1939 adapter->hw.mac.autoneg = autoneg;
1940
1941 /* force this routine to wait until autoneg complete/timeout */
1942 adapter->hw.phy.autoneg_wait_to_complete = true;
1943 igb_reset(adapter);
1944 adapter->hw.phy.autoneg_wait_to_complete = false;
1945
1946 clear_bit(__IGB_TESTING, &adapter->state);
1947 if (if_running)
1948 dev_open(netdev);
1949 } else {
1950 dev_info(&adapter->pdev->dev, "online testing starting\n");
1951
1952 /* PHY is powered down when interface is down */
1953 if (if_running && igb_link_test(adapter, &data[4]))
1954 eth_test->flags |= ETH_TEST_FL_FAILED;
1955 else
1956 data[4] = 0;
1957
1958 /* Online tests aren't run; pass by default */
1959 data[0] = 0;
1960 data[1] = 0;
1961 data[2] = 0;
1962 data[3] = 0;
1963
1964 clear_bit(__IGB_TESTING, &adapter->state);
1965 }
1966 msleep_interruptible(4 * 1000);
1967 }
1968
1969 static int igb_wol_exclusion(struct igb_adapter *adapter,
1970 struct ethtool_wolinfo *wol)
1971 {
1972 struct e1000_hw *hw = &adapter->hw;
1973 int retval = 1; /* fail by default */
1974
1975 switch (hw->device_id) {
1976 case E1000_DEV_ID_82575GB_QUAD_COPPER:
1977 /* WoL not supported */
1978 wol->supported = 0;
1979 break;
1980 case E1000_DEV_ID_82575EB_FIBER_SERDES:
1981 case E1000_DEV_ID_82576_FIBER:
1982 case E1000_DEV_ID_82576_SERDES:
1983 /* Wake events not supported on port B */
1984 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1985 wol->supported = 0;
1986 break;
1987 }
1988 /* return success for non excluded adapter ports */
1989 retval = 0;
1990 break;
1991 case E1000_DEV_ID_82576_QUAD_COPPER:
1992 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1993 /* quad port adapters only support WoL on port A */
1994 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1995 wol->supported = 0;
1996 break;
1997 }
1998 /* return success for non excluded adapter ports */
1999 retval = 0;
2000 break;
2001 default:
2002 /* dual port cards only support WoL on port A from now on
2003 * unless it was enabled in the eeprom for port B
2004 * so exclude FUNC_1 ports from having WoL enabled */
2005 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
2006 !adapter->eeprom_wol) {
2007 wol->supported = 0;
2008 break;
2009 }
2010
2011 retval = 0;
2012 }
2013
2014 return retval;
2015 }
2016
2017 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2018 {
2019 struct igb_adapter *adapter = netdev_priv(netdev);
2020
2021 wol->supported = WAKE_UCAST | WAKE_MCAST |
2022 WAKE_BCAST | WAKE_MAGIC |
2023 WAKE_PHY;
2024 wol->wolopts = 0;
2025
2026 /* this function will set ->supported = 0 and return 1 if wol is not
2027 * supported by this hardware */
2028 if (igb_wol_exclusion(adapter, wol) ||
2029 !device_can_wakeup(&adapter->pdev->dev))
2030 return;
2031
2032 /* apply any specific unsupported masks here */
2033 switch (adapter->hw.device_id) {
2034 default:
2035 break;
2036 }
2037
2038 if (adapter->wol & E1000_WUFC_EX)
2039 wol->wolopts |= WAKE_UCAST;
2040 if (adapter->wol & E1000_WUFC_MC)
2041 wol->wolopts |= WAKE_MCAST;
2042 if (adapter->wol & E1000_WUFC_BC)
2043 wol->wolopts |= WAKE_BCAST;
2044 if (adapter->wol & E1000_WUFC_MAG)
2045 wol->wolopts |= WAKE_MAGIC;
2046 if (adapter->wol & E1000_WUFC_LNKC)
2047 wol->wolopts |= WAKE_PHY;
2048 }
2049
2050 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2051 {
2052 struct igb_adapter *adapter = netdev_priv(netdev);
2053
2054 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2055 return -EOPNOTSUPP;
2056
2057 if (igb_wol_exclusion(adapter, wol) ||
2058 !device_can_wakeup(&adapter->pdev->dev))
2059 return wol->wolopts ? -EOPNOTSUPP : 0;
2060
2061 /* these settings will always override what we currently have */
2062 adapter->wol = 0;
2063
2064 if (wol->wolopts & WAKE_UCAST)
2065 adapter->wol |= E1000_WUFC_EX;
2066 if (wol->wolopts & WAKE_MCAST)
2067 adapter->wol |= E1000_WUFC_MC;
2068 if (wol->wolopts & WAKE_BCAST)
2069 adapter->wol |= E1000_WUFC_BC;
2070 if (wol->wolopts & WAKE_MAGIC)
2071 adapter->wol |= E1000_WUFC_MAG;
2072 if (wol->wolopts & WAKE_PHY)
2073 adapter->wol |= E1000_WUFC_LNKC;
2074 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2075
2076 return 0;
2077 }
2078
2079 /* bit defines for adapter->led_status */
2080 #define IGB_LED_ON 0
2081
2082 static int igb_set_phys_id(struct net_device *netdev,
2083 enum ethtool_phys_id_state state)
2084 {
2085 struct igb_adapter *adapter = netdev_priv(netdev);
2086 struct e1000_hw *hw = &adapter->hw;
2087
2088 switch (state) {
2089 case ETHTOOL_ID_ACTIVE:
2090 igb_blink_led(hw);
2091 return 2;
2092 case ETHTOOL_ID_ON:
2093 igb_blink_led(hw);
2094 break;
2095 case ETHTOOL_ID_OFF:
2096 igb_led_off(hw);
2097 break;
2098 case ETHTOOL_ID_INACTIVE:
2099 igb_led_off(hw);
2100 clear_bit(IGB_LED_ON, &adapter->led_status);
2101 igb_cleanup_led(hw);
2102 break;
2103 }
2104
2105 return 0;
2106 }
2107
2108 static int igb_set_coalesce(struct net_device *netdev,
2109 struct ethtool_coalesce *ec)
2110 {
2111 struct igb_adapter *adapter = netdev_priv(netdev);
2112 int i;
2113
2114 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2115 ((ec->rx_coalesce_usecs > 3) &&
2116 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2117 (ec->rx_coalesce_usecs == 2))
2118 return -EINVAL;
2119
2120 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2121 ((ec->tx_coalesce_usecs > 3) &&
2122 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2123 (ec->tx_coalesce_usecs == 2))
2124 return -EINVAL;
2125
2126 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2127 return -EINVAL;
2128
2129 /* If ITR is disabled, disable DMAC */
2130 if (ec->rx_coalesce_usecs == 0) {
2131 if (adapter->flags & IGB_FLAG_DMAC)
2132 adapter->flags &= ~IGB_FLAG_DMAC;
2133 }
2134
2135 /* convert to rate of irq's per second */
2136 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2137 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2138 else
2139 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2140
2141 /* convert to rate of irq's per second */
2142 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2143 adapter->tx_itr_setting = adapter->rx_itr_setting;
2144 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2145 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2146 else
2147 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2148
2149 for (i = 0; i < adapter->num_q_vectors; i++) {
2150 struct igb_q_vector *q_vector = adapter->q_vector[i];
2151 q_vector->tx.work_limit = adapter->tx_work_limit;
2152 if (q_vector->rx.ring)
2153 q_vector->itr_val = adapter->rx_itr_setting;
2154 else
2155 q_vector->itr_val = adapter->tx_itr_setting;
2156 if (q_vector->itr_val && q_vector->itr_val <= 3)
2157 q_vector->itr_val = IGB_START_ITR;
2158 q_vector->set_itr = 1;
2159 }
2160
2161 return 0;
2162 }
2163
2164 static int igb_get_coalesce(struct net_device *netdev,
2165 struct ethtool_coalesce *ec)
2166 {
2167 struct igb_adapter *adapter = netdev_priv(netdev);
2168
2169 if (adapter->rx_itr_setting <= 3)
2170 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2171 else
2172 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2173
2174 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2175 if (adapter->tx_itr_setting <= 3)
2176 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2177 else
2178 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2179 }
2180
2181 return 0;
2182 }
2183
2184 static int igb_nway_reset(struct net_device *netdev)
2185 {
2186 struct igb_adapter *adapter = netdev_priv(netdev);
2187 if (netif_running(netdev))
2188 igb_reinit_locked(adapter);
2189 return 0;
2190 }
2191
2192 static int igb_get_sset_count(struct net_device *netdev, int sset)
2193 {
2194 switch (sset) {
2195 case ETH_SS_STATS:
2196 return IGB_STATS_LEN;
2197 case ETH_SS_TEST:
2198 return IGB_TEST_LEN;
2199 default:
2200 return -ENOTSUPP;
2201 }
2202 }
2203
2204 static void igb_get_ethtool_stats(struct net_device *netdev,
2205 struct ethtool_stats *stats, u64 *data)
2206 {
2207 struct igb_adapter *adapter = netdev_priv(netdev);
2208 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2209 unsigned int start;
2210 struct igb_ring *ring;
2211 int i, j;
2212 char *p;
2213
2214 spin_lock(&adapter->stats64_lock);
2215 igb_update_stats(adapter, net_stats);
2216
2217 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2218 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2219 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2220 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2221 }
2222 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2223 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2224 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2225 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2226 }
2227 for (j = 0; j < adapter->num_tx_queues; j++) {
2228 u64 restart2;
2229
2230 ring = adapter->tx_ring[j];
2231 do {
2232 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2233 data[i] = ring->tx_stats.packets;
2234 data[i+1] = ring->tx_stats.bytes;
2235 data[i+2] = ring->tx_stats.restart_queue;
2236 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2237 do {
2238 start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2239 restart2 = ring->tx_stats.restart_queue2;
2240 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2241 data[i+2] += restart2;
2242
2243 i += IGB_TX_QUEUE_STATS_LEN;
2244 }
2245 for (j = 0; j < adapter->num_rx_queues; j++) {
2246 ring = adapter->rx_ring[j];
2247 do {
2248 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2249 data[i] = ring->rx_stats.packets;
2250 data[i+1] = ring->rx_stats.bytes;
2251 data[i+2] = ring->rx_stats.drops;
2252 data[i+3] = ring->rx_stats.csum_err;
2253 data[i+4] = ring->rx_stats.alloc_failed;
2254 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2255 i += IGB_RX_QUEUE_STATS_LEN;
2256 }
2257 spin_unlock(&adapter->stats64_lock);
2258 }
2259
2260 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2261 {
2262 struct igb_adapter *adapter = netdev_priv(netdev);
2263 u8 *p = data;
2264 int i;
2265
2266 switch (stringset) {
2267 case ETH_SS_TEST:
2268 memcpy(data, *igb_gstrings_test,
2269 IGB_TEST_LEN*ETH_GSTRING_LEN);
2270 break;
2271 case ETH_SS_STATS:
2272 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2273 memcpy(p, igb_gstrings_stats[i].stat_string,
2274 ETH_GSTRING_LEN);
2275 p += ETH_GSTRING_LEN;
2276 }
2277 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2278 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2279 ETH_GSTRING_LEN);
2280 p += ETH_GSTRING_LEN;
2281 }
2282 for (i = 0; i < adapter->num_tx_queues; i++) {
2283 sprintf(p, "tx_queue_%u_packets", i);
2284 p += ETH_GSTRING_LEN;
2285 sprintf(p, "tx_queue_%u_bytes", i);
2286 p += ETH_GSTRING_LEN;
2287 sprintf(p, "tx_queue_%u_restart", i);
2288 p += ETH_GSTRING_LEN;
2289 }
2290 for (i = 0; i < adapter->num_rx_queues; i++) {
2291 sprintf(p, "rx_queue_%u_packets", i);
2292 p += ETH_GSTRING_LEN;
2293 sprintf(p, "rx_queue_%u_bytes", i);
2294 p += ETH_GSTRING_LEN;
2295 sprintf(p, "rx_queue_%u_drops", i);
2296 p += ETH_GSTRING_LEN;
2297 sprintf(p, "rx_queue_%u_csum_err", i);
2298 p += ETH_GSTRING_LEN;
2299 sprintf(p, "rx_queue_%u_alloc_failed", i);
2300 p += ETH_GSTRING_LEN;
2301 }
2302 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2303 break;
2304 }
2305 }
2306
2307 static int igb_get_ts_info(struct net_device *dev,
2308 struct ethtool_ts_info *info)
2309 {
2310 struct igb_adapter *adapter = netdev_priv(dev);
2311
2312 switch (adapter->hw.mac.type) {
2313 case e1000_82576:
2314 case e1000_82580:
2315 case e1000_i350:
2316 case e1000_i210:
2317 case e1000_i211:
2318 info->so_timestamping =
2319 SOF_TIMESTAMPING_TX_HARDWARE |
2320 SOF_TIMESTAMPING_RX_HARDWARE |
2321 SOF_TIMESTAMPING_RAW_HARDWARE;
2322
2323 if (adapter->ptp_clock)
2324 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2325 else
2326 info->phc_index = -1;
2327
2328 info->tx_types =
2329 (1 << HWTSTAMP_TX_OFF) |
2330 (1 << HWTSTAMP_TX_ON);
2331
2332 info->rx_filters = 1 << HWTSTAMP_FILTER_NONE;
2333
2334 /* 82576 does not support timestamping all packets. */
2335 if (adapter->hw.mac.type >= e1000_82580)
2336 info->rx_filters |= 1 << HWTSTAMP_FILTER_ALL;
2337 else
2338 info->rx_filters |=
2339 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2340 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2341 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2342 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2343 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2344 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2345 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2346
2347 return 0;
2348 default:
2349 return -EOPNOTSUPP;
2350 }
2351 }
2352
2353 static int igb_ethtool_begin(struct net_device *netdev)
2354 {
2355 struct igb_adapter *adapter = netdev_priv(netdev);
2356 pm_runtime_get_sync(&adapter->pdev->dev);
2357 return 0;
2358 }
2359
2360 static void igb_ethtool_complete(struct net_device *netdev)
2361 {
2362 struct igb_adapter *adapter = netdev_priv(netdev);
2363 pm_runtime_put(&adapter->pdev->dev);
2364 }
2365
2366 static const struct ethtool_ops igb_ethtool_ops = {
2367 .get_settings = igb_get_settings,
2368 .set_settings = igb_set_settings,
2369 .get_drvinfo = igb_get_drvinfo,
2370 .get_regs_len = igb_get_regs_len,
2371 .get_regs = igb_get_regs,
2372 .get_wol = igb_get_wol,
2373 .set_wol = igb_set_wol,
2374 .get_msglevel = igb_get_msglevel,
2375 .set_msglevel = igb_set_msglevel,
2376 .nway_reset = igb_nway_reset,
2377 .get_link = igb_get_link,
2378 .get_eeprom_len = igb_get_eeprom_len,
2379 .get_eeprom = igb_get_eeprom,
2380 .set_eeprom = igb_set_eeprom,
2381 .get_ringparam = igb_get_ringparam,
2382 .set_ringparam = igb_set_ringparam,
2383 .get_pauseparam = igb_get_pauseparam,
2384 .set_pauseparam = igb_set_pauseparam,
2385 .self_test = igb_diag_test,
2386 .get_strings = igb_get_strings,
2387 .set_phys_id = igb_set_phys_id,
2388 .get_sset_count = igb_get_sset_count,
2389 .get_ethtool_stats = igb_get_ethtool_stats,
2390 .get_coalesce = igb_get_coalesce,
2391 .set_coalesce = igb_set_coalesce,
2392 .get_ts_info = igb_get_ts_info,
2393 .begin = igb_ethtool_begin,
2394 .complete = igb_ethtool_complete,
2395 };
2396
2397 void igb_set_ethtool_ops(struct net_device *netdev)
2398 {
2399 SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2400 }