]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
mm: introduce page reference manipulation functions
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 3
61 #define BUILD 0
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static int igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 static int igb_disable_sriov(struct pci_dev *dev);
183 static int igb_pci_disable_sriov(struct pci_dev *dev);
184 #endif
185
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 static int igb_runtime_suspend(struct device *dev);
192 static int igb_runtime_resume(struct device *dev);
193 static int igb_runtime_idle(struct device *dev);
194 static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
237 .remove = igb_remove,
238 #ifdef CONFIG_PM
239 .driver.pm = &igb_pm_ops,
240 #endif
241 .shutdown = igb_shutdown,
242 .sriov_configure = igb_pci_sriov_configure,
243 .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257 u32 ofs;
258 char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
375 u16 i, n;
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
383 pr_info("Device Name state trans_start last_rx\n");
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
390 pr_info(" Register Name Value\n");
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
402 for (n = 0; n < adapter->num_tx_queues; n++) {
403 struct igb_tx_buffer *buffer_info;
404 tx_ring = adapter->tx_ring[n];
405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 const char *next_desc;
440 struct igb_tx_buffer *buffer_info;
441 tx_desc = IGB_TX_DESC(tx_ring, i);
442 buffer_info = &tx_ring->tx_buffer_info[i];
443 u0 = (struct my_u0 *)tx_desc;
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
456 le64_to_cpu(u0->b),
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
461 buffer_info->skb, next_desc);
462
463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
466 16, 1, buffer_info->skb->data,
467 dma_unmap_len(buffer_info, len),
468 true);
469 }
470 }
471
472 /* Print RX Rings Summary */
473 rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 pr_info("Queue [NTU] [NTC]\n");
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517 for (i = 0; i < rx_ring->count; i++) {
518 const char *next_desc;
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
521 rx_desc = IGB_RX_DESC(rx_ring, i);
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 next_desc);
539 } else {
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
545 next_desc);
546
547 if (netif_msg_pktdata(adapter) &&
548 buffer_info->dma && buffer_info->page) {
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
554 IGB_RX_BUFSZ, true);
555 }
556 }
557 }
558 }
559
560 exit:
561 return;
562 }
563
564 /**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
570 **/
571 static int igb_get_i2c_data(void *data)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579
580 /**
581 * igb_set_i2c_data - Sets the I2C data bit
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
586 **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603 }
604
605 /**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
611 **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627 }
628
629 /**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
634 **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641 return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651 };
652
653 /**
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
658 **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 struct igb_adapter *adapter = hw->back;
662 return adapter->netdev;
663 }
664
665 /**
666 * igb_init_module - Driver Registration Routine
667 *
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
670 **/
671 static int __init igb_init_module(void)
672 {
673 int ret;
674
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677 pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680 dca_register_notify(&dca_notifier);
681 #endif
682 ret = pci_register_driver(&igb_driver);
683 return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689 * igb_exit_module - Driver Exit Cleanup Routine
690 *
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
693 **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 dca_unregister_notify(&dca_notifier);
698 #endif
699 pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
708 *
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
711 **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 int i = 0, j = 0;
715 u32 rbase_offset = adapter->vfs_allocated_count;
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
724 if (adapter->vfs_allocated_count) {
725 for (; i < adapter->rss_queues; i++)
726 adapter->rx_ring[i]->reg_idx = rbase_offset +
727 Q_IDX_82576(i);
728 }
729 /* Fall through */
730 case e1000_82575:
731 case e1000_82580:
732 case e1000_i350:
733 case e1000_i354:
734 case e1000_i210:
735 case e1000_i211:
736 /* Fall through */
737 default:
738 for (; i < adapter->num_rx_queues; i++)
739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 for (; j < adapter->num_tx_queues; j++)
741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 break;
743 }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
751
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
754
755 value = readl(&hw_addr[reg]);
756
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
763 }
764
765 return value;
766 }
767
768 /**
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
774 *
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
779 **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
782 {
783 u32 ivar = array_rd32(E1000_IVAR0, index);
784
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
787
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791 array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797 struct igb_adapter *adapter = q_vector->adapter;
798 struct e1000_hw *hw = &adapter->hw;
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
801 u32 msixbm = 0;
802
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
807
808 switch (hw->mac.type) {
809 case e1000_82575:
810 /* The 82575 assigns vectors using a bitmask, which matches the
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
814 */
815 if (rx_queue > IGB_N0_QUEUE)
816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 if (tx_queue > IGB_N0_QUEUE)
818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 msixbm |= E1000_EIMS_OTHER;
821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 q_vector->eims_value = msixbm;
823 break;
824 case e1000_82576:
825 /* 82576 uses a table that essentially consists of 2 columns
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
829 */
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
838 q_vector->eims_value = 1 << msix_vector;
839 break;
840 case e1000_82580:
841 case e1000_i350:
842 case e1000_i354:
843 case e1000_i210:
844 case e1000_i211:
845 /* On 82580 and newer adapters the scheme is similar to 82576
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
850 */
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
859 q_vector->eims_value = 1 << msix_vector;
860 break;
861 default:
862 BUG();
863 break;
864 }
865
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
868
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
871 }
872
873 /**
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
876 *
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
879 **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
885
886 adapter->eims_enable_mask = 0;
887
888 /* set vector for other causes, i.e. link changes */
889 switch (hw->mac.type) {
890 case e1000_82575:
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
898
899 wr32(E1000_CTRL_EXT, tmp);
900
901 /* enable msix_other interrupt */
902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 adapter->eims_other = E1000_EIMS_OTHER;
904
905 break;
906
907 case e1000_82576:
908 case e1000_82580:
909 case e1000_i350:
910 case e1000_i354:
911 case e1000_i210:
912 case e1000_i211:
913 /* Turn on MSI-X capability first, or our settings
914 * won't stick. And it will take days to debug.
915 */
916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924 wr32(E1000_IVAR_MISC, tmp);
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
935
936 wrfl();
937 }
938
939 /**
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
942 *
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
945 **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948 struct net_device *netdev = adapter->netdev;
949 int i, err = 0, vector = 0, free_vector = 0;
950
951 err = request_irq(adapter->msix_entries[vector].vector,
952 igb_msix_other, 0, netdev->name, adapter);
953 if (err)
954 goto err_out;
955
956 for (i = 0; i < adapter->num_q_vectors; i++) {
957 struct igb_q_vector *q_vector = adapter->q_vector[i];
958
959 vector++;
960
961 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
962
963 if (q_vector->rx.ring && q_vector->tx.ring)
964 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
965 q_vector->rx.ring->queue_index);
966 else if (q_vector->tx.ring)
967 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
968 q_vector->tx.ring->queue_index);
969 else if (q_vector->rx.ring)
970 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
971 q_vector->rx.ring->queue_index);
972 else
973 sprintf(q_vector->name, "%s-unused", netdev->name);
974
975 err = request_irq(adapter->msix_entries[vector].vector,
976 igb_msix_ring, 0, q_vector->name,
977 q_vector);
978 if (err)
979 goto err_free;
980 }
981
982 igb_configure_msix(adapter);
983 return 0;
984
985 err_free:
986 /* free already assigned IRQs */
987 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
988
989 vector--;
990 for (i = 0; i < vector; i++) {
991 free_irq(adapter->msix_entries[free_vector++].vector,
992 adapter->q_vector[i]);
993 }
994 err_out:
995 return err;
996 }
997
998 /**
999 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1000 * @adapter: board private structure to initialize
1001 * @v_idx: Index of vector to be freed
1002 *
1003 * This function frees the memory allocated to the q_vector.
1004 **/
1005 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1006 {
1007 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1008
1009 adapter->q_vector[v_idx] = NULL;
1010
1011 /* igb_get_stats64() might access the rings on this vector,
1012 * we must wait a grace period before freeing it.
1013 */
1014 if (q_vector)
1015 kfree_rcu(q_vector, rcu);
1016 }
1017
1018 /**
1019 * igb_reset_q_vector - Reset config for interrupt vector
1020 * @adapter: board private structure to initialize
1021 * @v_idx: Index of vector to be reset
1022 *
1023 * If NAPI is enabled it will delete any references to the
1024 * NAPI struct. This is preparation for igb_free_q_vector.
1025 **/
1026 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1027 {
1028 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1029
1030 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1031 * allocated. So, q_vector is NULL so we should stop here.
1032 */
1033 if (!q_vector)
1034 return;
1035
1036 if (q_vector->tx.ring)
1037 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1038
1039 if (q_vector->rx.ring)
1040 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1041
1042 netif_napi_del(&q_vector->napi);
1043
1044 }
1045
1046 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1047 {
1048 int v_idx = adapter->num_q_vectors;
1049
1050 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1051 pci_disable_msix(adapter->pdev);
1052 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1053 pci_disable_msi(adapter->pdev);
1054
1055 while (v_idx--)
1056 igb_reset_q_vector(adapter, v_idx);
1057 }
1058
1059 /**
1060 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1061 * @adapter: board private structure to initialize
1062 *
1063 * This function frees the memory allocated to the q_vectors. In addition if
1064 * NAPI is enabled it will delete any references to the NAPI struct prior
1065 * to freeing the q_vector.
1066 **/
1067 static void igb_free_q_vectors(struct igb_adapter *adapter)
1068 {
1069 int v_idx = adapter->num_q_vectors;
1070
1071 adapter->num_tx_queues = 0;
1072 adapter->num_rx_queues = 0;
1073 adapter->num_q_vectors = 0;
1074
1075 while (v_idx--) {
1076 igb_reset_q_vector(adapter, v_idx);
1077 igb_free_q_vector(adapter, v_idx);
1078 }
1079 }
1080
1081 /**
1082 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1083 * @adapter: board private structure to initialize
1084 *
1085 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1086 * MSI-X interrupts allocated.
1087 */
1088 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1089 {
1090 igb_free_q_vectors(adapter);
1091 igb_reset_interrupt_capability(adapter);
1092 }
1093
1094 /**
1095 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1096 * @adapter: board private structure to initialize
1097 * @msix: boolean value of MSIX capability
1098 *
1099 * Attempt to configure interrupts using the best available
1100 * capabilities of the hardware and kernel.
1101 **/
1102 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1103 {
1104 int err;
1105 int numvecs, i;
1106
1107 if (!msix)
1108 goto msi_only;
1109 adapter->flags |= IGB_FLAG_HAS_MSIX;
1110
1111 /* Number of supported queues. */
1112 adapter->num_rx_queues = adapter->rss_queues;
1113 if (adapter->vfs_allocated_count)
1114 adapter->num_tx_queues = 1;
1115 else
1116 adapter->num_tx_queues = adapter->rss_queues;
1117
1118 /* start with one vector for every Rx queue */
1119 numvecs = adapter->num_rx_queues;
1120
1121 /* if Tx handler is separate add 1 for every Tx queue */
1122 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1123 numvecs += adapter->num_tx_queues;
1124
1125 /* store the number of vectors reserved for queues */
1126 adapter->num_q_vectors = numvecs;
1127
1128 /* add 1 vector for link status interrupts */
1129 numvecs++;
1130 for (i = 0; i < numvecs; i++)
1131 adapter->msix_entries[i].entry = i;
1132
1133 err = pci_enable_msix_range(adapter->pdev,
1134 adapter->msix_entries,
1135 numvecs,
1136 numvecs);
1137 if (err > 0)
1138 return;
1139
1140 igb_reset_interrupt_capability(adapter);
1141
1142 /* If we can't do MSI-X, try MSI */
1143 msi_only:
1144 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1145 #ifdef CONFIG_PCI_IOV
1146 /* disable SR-IOV for non MSI-X configurations */
1147 if (adapter->vf_data) {
1148 struct e1000_hw *hw = &adapter->hw;
1149 /* disable iov and allow time for transactions to clear */
1150 pci_disable_sriov(adapter->pdev);
1151 msleep(500);
1152
1153 kfree(adapter->vf_data);
1154 adapter->vf_data = NULL;
1155 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1156 wrfl();
1157 msleep(100);
1158 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1159 }
1160 #endif
1161 adapter->vfs_allocated_count = 0;
1162 adapter->rss_queues = 1;
1163 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1164 adapter->num_rx_queues = 1;
1165 adapter->num_tx_queues = 1;
1166 adapter->num_q_vectors = 1;
1167 if (!pci_enable_msi(adapter->pdev))
1168 adapter->flags |= IGB_FLAG_HAS_MSI;
1169 }
1170
1171 static void igb_add_ring(struct igb_ring *ring,
1172 struct igb_ring_container *head)
1173 {
1174 head->ring = ring;
1175 head->count++;
1176 }
1177
1178 /**
1179 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1180 * @adapter: board private structure to initialize
1181 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1182 * @v_idx: index of vector in adapter struct
1183 * @txr_count: total number of Tx rings to allocate
1184 * @txr_idx: index of first Tx ring to allocate
1185 * @rxr_count: total number of Rx rings to allocate
1186 * @rxr_idx: index of first Rx ring to allocate
1187 *
1188 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1189 **/
1190 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1191 int v_count, int v_idx,
1192 int txr_count, int txr_idx,
1193 int rxr_count, int rxr_idx)
1194 {
1195 struct igb_q_vector *q_vector;
1196 struct igb_ring *ring;
1197 int ring_count, size;
1198
1199 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1200 if (txr_count > 1 || rxr_count > 1)
1201 return -ENOMEM;
1202
1203 ring_count = txr_count + rxr_count;
1204 size = sizeof(struct igb_q_vector) +
1205 (sizeof(struct igb_ring) * ring_count);
1206
1207 /* allocate q_vector and rings */
1208 q_vector = adapter->q_vector[v_idx];
1209 if (!q_vector) {
1210 q_vector = kzalloc(size, GFP_KERNEL);
1211 } else if (size > ksize(q_vector)) {
1212 kfree_rcu(q_vector, rcu);
1213 q_vector = kzalloc(size, GFP_KERNEL);
1214 } else {
1215 memset(q_vector, 0, size);
1216 }
1217 if (!q_vector)
1218 return -ENOMEM;
1219
1220 /* initialize NAPI */
1221 netif_napi_add(adapter->netdev, &q_vector->napi,
1222 igb_poll, 64);
1223
1224 /* tie q_vector and adapter together */
1225 adapter->q_vector[v_idx] = q_vector;
1226 q_vector->adapter = adapter;
1227
1228 /* initialize work limits */
1229 q_vector->tx.work_limit = adapter->tx_work_limit;
1230
1231 /* initialize ITR configuration */
1232 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1233 q_vector->itr_val = IGB_START_ITR;
1234
1235 /* initialize pointer to rings */
1236 ring = q_vector->ring;
1237
1238 /* intialize ITR */
1239 if (rxr_count) {
1240 /* rx or rx/tx vector */
1241 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1242 q_vector->itr_val = adapter->rx_itr_setting;
1243 } else {
1244 /* tx only vector */
1245 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1246 q_vector->itr_val = adapter->tx_itr_setting;
1247 }
1248
1249 if (txr_count) {
1250 /* assign generic ring traits */
1251 ring->dev = &adapter->pdev->dev;
1252 ring->netdev = adapter->netdev;
1253
1254 /* configure backlink on ring */
1255 ring->q_vector = q_vector;
1256
1257 /* update q_vector Tx values */
1258 igb_add_ring(ring, &q_vector->tx);
1259
1260 /* For 82575, context index must be unique per ring. */
1261 if (adapter->hw.mac.type == e1000_82575)
1262 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1263
1264 /* apply Tx specific ring traits */
1265 ring->count = adapter->tx_ring_count;
1266 ring->queue_index = txr_idx;
1267
1268 u64_stats_init(&ring->tx_syncp);
1269 u64_stats_init(&ring->tx_syncp2);
1270
1271 /* assign ring to adapter */
1272 adapter->tx_ring[txr_idx] = ring;
1273
1274 /* push pointer to next ring */
1275 ring++;
1276 }
1277
1278 if (rxr_count) {
1279 /* assign generic ring traits */
1280 ring->dev = &adapter->pdev->dev;
1281 ring->netdev = adapter->netdev;
1282
1283 /* configure backlink on ring */
1284 ring->q_vector = q_vector;
1285
1286 /* update q_vector Rx values */
1287 igb_add_ring(ring, &q_vector->rx);
1288
1289 /* set flag indicating ring supports SCTP checksum offload */
1290 if (adapter->hw.mac.type >= e1000_82576)
1291 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1292
1293 /* On i350, i354, i210, and i211, loopback VLAN packets
1294 * have the tag byte-swapped.
1295 */
1296 if (adapter->hw.mac.type >= e1000_i350)
1297 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1298
1299 /* apply Rx specific ring traits */
1300 ring->count = adapter->rx_ring_count;
1301 ring->queue_index = rxr_idx;
1302
1303 u64_stats_init(&ring->rx_syncp);
1304
1305 /* assign ring to adapter */
1306 adapter->rx_ring[rxr_idx] = ring;
1307 }
1308
1309 return 0;
1310 }
1311
1312
1313 /**
1314 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1315 * @adapter: board private structure to initialize
1316 *
1317 * We allocate one q_vector per queue interrupt. If allocation fails we
1318 * return -ENOMEM.
1319 **/
1320 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1321 {
1322 int q_vectors = adapter->num_q_vectors;
1323 int rxr_remaining = adapter->num_rx_queues;
1324 int txr_remaining = adapter->num_tx_queues;
1325 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1326 int err;
1327
1328 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1329 for (; rxr_remaining; v_idx++) {
1330 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1331 0, 0, 1, rxr_idx);
1332
1333 if (err)
1334 goto err_out;
1335
1336 /* update counts and index */
1337 rxr_remaining--;
1338 rxr_idx++;
1339 }
1340 }
1341
1342 for (; v_idx < q_vectors; v_idx++) {
1343 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1344 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1345
1346 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1347 tqpv, txr_idx, rqpv, rxr_idx);
1348
1349 if (err)
1350 goto err_out;
1351
1352 /* update counts and index */
1353 rxr_remaining -= rqpv;
1354 txr_remaining -= tqpv;
1355 rxr_idx++;
1356 txr_idx++;
1357 }
1358
1359 return 0;
1360
1361 err_out:
1362 adapter->num_tx_queues = 0;
1363 adapter->num_rx_queues = 0;
1364 adapter->num_q_vectors = 0;
1365
1366 while (v_idx--)
1367 igb_free_q_vector(adapter, v_idx);
1368
1369 return -ENOMEM;
1370 }
1371
1372 /**
1373 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1374 * @adapter: board private structure to initialize
1375 * @msix: boolean value of MSIX capability
1376 *
1377 * This function initializes the interrupts and allocates all of the queues.
1378 **/
1379 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1380 {
1381 struct pci_dev *pdev = adapter->pdev;
1382 int err;
1383
1384 igb_set_interrupt_capability(adapter, msix);
1385
1386 err = igb_alloc_q_vectors(adapter);
1387 if (err) {
1388 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1389 goto err_alloc_q_vectors;
1390 }
1391
1392 igb_cache_ring_register(adapter);
1393
1394 return 0;
1395
1396 err_alloc_q_vectors:
1397 igb_reset_interrupt_capability(adapter);
1398 return err;
1399 }
1400
1401 /**
1402 * igb_request_irq - initialize interrupts
1403 * @adapter: board private structure to initialize
1404 *
1405 * Attempts to configure interrupts using the best available
1406 * capabilities of the hardware and kernel.
1407 **/
1408 static int igb_request_irq(struct igb_adapter *adapter)
1409 {
1410 struct net_device *netdev = adapter->netdev;
1411 struct pci_dev *pdev = adapter->pdev;
1412 int err = 0;
1413
1414 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1415 err = igb_request_msix(adapter);
1416 if (!err)
1417 goto request_done;
1418 /* fall back to MSI */
1419 igb_free_all_tx_resources(adapter);
1420 igb_free_all_rx_resources(adapter);
1421
1422 igb_clear_interrupt_scheme(adapter);
1423 err = igb_init_interrupt_scheme(adapter, false);
1424 if (err)
1425 goto request_done;
1426
1427 igb_setup_all_tx_resources(adapter);
1428 igb_setup_all_rx_resources(adapter);
1429 igb_configure(adapter);
1430 }
1431
1432 igb_assign_vector(adapter->q_vector[0], 0);
1433
1434 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1435 err = request_irq(pdev->irq, igb_intr_msi, 0,
1436 netdev->name, adapter);
1437 if (!err)
1438 goto request_done;
1439
1440 /* fall back to legacy interrupts */
1441 igb_reset_interrupt_capability(adapter);
1442 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1443 }
1444
1445 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1446 netdev->name, adapter);
1447
1448 if (err)
1449 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1450 err);
1451
1452 request_done:
1453 return err;
1454 }
1455
1456 static void igb_free_irq(struct igb_adapter *adapter)
1457 {
1458 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1459 int vector = 0, i;
1460
1461 free_irq(adapter->msix_entries[vector++].vector, adapter);
1462
1463 for (i = 0; i < adapter->num_q_vectors; i++)
1464 free_irq(adapter->msix_entries[vector++].vector,
1465 adapter->q_vector[i]);
1466 } else {
1467 free_irq(adapter->pdev->irq, adapter);
1468 }
1469 }
1470
1471 /**
1472 * igb_irq_disable - Mask off interrupt generation on the NIC
1473 * @adapter: board private structure
1474 **/
1475 static void igb_irq_disable(struct igb_adapter *adapter)
1476 {
1477 struct e1000_hw *hw = &adapter->hw;
1478
1479 /* we need to be careful when disabling interrupts. The VFs are also
1480 * mapped into these registers and so clearing the bits can cause
1481 * issues on the VF drivers so we only need to clear what we set
1482 */
1483 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1484 u32 regval = rd32(E1000_EIAM);
1485
1486 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1487 wr32(E1000_EIMC, adapter->eims_enable_mask);
1488 regval = rd32(E1000_EIAC);
1489 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1490 }
1491
1492 wr32(E1000_IAM, 0);
1493 wr32(E1000_IMC, ~0);
1494 wrfl();
1495 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1496 int i;
1497
1498 for (i = 0; i < adapter->num_q_vectors; i++)
1499 synchronize_irq(adapter->msix_entries[i].vector);
1500 } else {
1501 synchronize_irq(adapter->pdev->irq);
1502 }
1503 }
1504
1505 /**
1506 * igb_irq_enable - Enable default interrupt generation settings
1507 * @adapter: board private structure
1508 **/
1509 static void igb_irq_enable(struct igb_adapter *adapter)
1510 {
1511 struct e1000_hw *hw = &adapter->hw;
1512
1513 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1514 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1515 u32 regval = rd32(E1000_EIAC);
1516
1517 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1518 regval = rd32(E1000_EIAM);
1519 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1520 wr32(E1000_EIMS, adapter->eims_enable_mask);
1521 if (adapter->vfs_allocated_count) {
1522 wr32(E1000_MBVFIMR, 0xFF);
1523 ims |= E1000_IMS_VMMB;
1524 }
1525 wr32(E1000_IMS, ims);
1526 } else {
1527 wr32(E1000_IMS, IMS_ENABLE_MASK |
1528 E1000_IMS_DRSTA);
1529 wr32(E1000_IAM, IMS_ENABLE_MASK |
1530 E1000_IMS_DRSTA);
1531 }
1532 }
1533
1534 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1535 {
1536 struct e1000_hw *hw = &adapter->hw;
1537 u16 vid = adapter->hw.mng_cookie.vlan_id;
1538 u16 old_vid = adapter->mng_vlan_id;
1539
1540 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1541 /* add VID to filter table */
1542 igb_vfta_set(hw, vid, true);
1543 adapter->mng_vlan_id = vid;
1544 } else {
1545 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1546 }
1547
1548 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1549 (vid != old_vid) &&
1550 !test_bit(old_vid, adapter->active_vlans)) {
1551 /* remove VID from filter table */
1552 igb_vfta_set(hw, old_vid, false);
1553 }
1554 }
1555
1556 /**
1557 * igb_release_hw_control - release control of the h/w to f/w
1558 * @adapter: address of board private structure
1559 *
1560 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1561 * For ASF and Pass Through versions of f/w this means that the
1562 * driver is no longer loaded.
1563 **/
1564 static void igb_release_hw_control(struct igb_adapter *adapter)
1565 {
1566 struct e1000_hw *hw = &adapter->hw;
1567 u32 ctrl_ext;
1568
1569 /* Let firmware take over control of h/w */
1570 ctrl_ext = rd32(E1000_CTRL_EXT);
1571 wr32(E1000_CTRL_EXT,
1572 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1573 }
1574
1575 /**
1576 * igb_get_hw_control - get control of the h/w from f/w
1577 * @adapter: address of board private structure
1578 *
1579 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1580 * For ASF and Pass Through versions of f/w this means that
1581 * the driver is loaded.
1582 **/
1583 static void igb_get_hw_control(struct igb_adapter *adapter)
1584 {
1585 struct e1000_hw *hw = &adapter->hw;
1586 u32 ctrl_ext;
1587
1588 /* Let firmware know the driver has taken over */
1589 ctrl_ext = rd32(E1000_CTRL_EXT);
1590 wr32(E1000_CTRL_EXT,
1591 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1592 }
1593
1594 /**
1595 * igb_configure - configure the hardware for RX and TX
1596 * @adapter: private board structure
1597 **/
1598 static void igb_configure(struct igb_adapter *adapter)
1599 {
1600 struct net_device *netdev = adapter->netdev;
1601 int i;
1602
1603 igb_get_hw_control(adapter);
1604 igb_set_rx_mode(netdev);
1605
1606 igb_restore_vlan(adapter);
1607
1608 igb_setup_tctl(adapter);
1609 igb_setup_mrqc(adapter);
1610 igb_setup_rctl(adapter);
1611
1612 igb_configure_tx(adapter);
1613 igb_configure_rx(adapter);
1614
1615 igb_rx_fifo_flush_82575(&adapter->hw);
1616
1617 /* call igb_desc_unused which always leaves
1618 * at least 1 descriptor unused to make sure
1619 * next_to_use != next_to_clean
1620 */
1621 for (i = 0; i < adapter->num_rx_queues; i++) {
1622 struct igb_ring *ring = adapter->rx_ring[i];
1623 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1624 }
1625 }
1626
1627 /**
1628 * igb_power_up_link - Power up the phy/serdes link
1629 * @adapter: address of board private structure
1630 **/
1631 void igb_power_up_link(struct igb_adapter *adapter)
1632 {
1633 igb_reset_phy(&adapter->hw);
1634
1635 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1636 igb_power_up_phy_copper(&adapter->hw);
1637 else
1638 igb_power_up_serdes_link_82575(&adapter->hw);
1639
1640 igb_setup_link(&adapter->hw);
1641 }
1642
1643 /**
1644 * igb_power_down_link - Power down the phy/serdes link
1645 * @adapter: address of board private structure
1646 */
1647 static void igb_power_down_link(struct igb_adapter *adapter)
1648 {
1649 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1650 igb_power_down_phy_copper_82575(&adapter->hw);
1651 else
1652 igb_shutdown_serdes_link_82575(&adapter->hw);
1653 }
1654
1655 /**
1656 * Detect and switch function for Media Auto Sense
1657 * @adapter: address of the board private structure
1658 **/
1659 static void igb_check_swap_media(struct igb_adapter *adapter)
1660 {
1661 struct e1000_hw *hw = &adapter->hw;
1662 u32 ctrl_ext, connsw;
1663 bool swap_now = false;
1664
1665 ctrl_ext = rd32(E1000_CTRL_EXT);
1666 connsw = rd32(E1000_CONNSW);
1667
1668 /* need to live swap if current media is copper and we have fiber/serdes
1669 * to go to.
1670 */
1671
1672 if ((hw->phy.media_type == e1000_media_type_copper) &&
1673 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1674 swap_now = true;
1675 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1676 /* copper signal takes time to appear */
1677 if (adapter->copper_tries < 4) {
1678 adapter->copper_tries++;
1679 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1680 wr32(E1000_CONNSW, connsw);
1681 return;
1682 } else {
1683 adapter->copper_tries = 0;
1684 if ((connsw & E1000_CONNSW_PHYSD) &&
1685 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1686 swap_now = true;
1687 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1688 wr32(E1000_CONNSW, connsw);
1689 }
1690 }
1691 }
1692
1693 if (!swap_now)
1694 return;
1695
1696 switch (hw->phy.media_type) {
1697 case e1000_media_type_copper:
1698 netdev_info(adapter->netdev,
1699 "MAS: changing media to fiber/serdes\n");
1700 ctrl_ext |=
1701 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1702 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1703 adapter->copper_tries = 0;
1704 break;
1705 case e1000_media_type_internal_serdes:
1706 case e1000_media_type_fiber:
1707 netdev_info(adapter->netdev,
1708 "MAS: changing media to copper\n");
1709 ctrl_ext &=
1710 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1711 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1712 break;
1713 default:
1714 /* shouldn't get here during regular operation */
1715 netdev_err(adapter->netdev,
1716 "AMS: Invalid media type found, returning\n");
1717 break;
1718 }
1719 wr32(E1000_CTRL_EXT, ctrl_ext);
1720 }
1721
1722 /**
1723 * igb_up - Open the interface and prepare it to handle traffic
1724 * @adapter: board private structure
1725 **/
1726 int igb_up(struct igb_adapter *adapter)
1727 {
1728 struct e1000_hw *hw = &adapter->hw;
1729 int i;
1730
1731 /* hardware has been reset, we need to reload some things */
1732 igb_configure(adapter);
1733
1734 clear_bit(__IGB_DOWN, &adapter->state);
1735
1736 for (i = 0; i < adapter->num_q_vectors; i++)
1737 napi_enable(&(adapter->q_vector[i]->napi));
1738
1739 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1740 igb_configure_msix(adapter);
1741 else
1742 igb_assign_vector(adapter->q_vector[0], 0);
1743
1744 /* Clear any pending interrupts. */
1745 rd32(E1000_ICR);
1746 igb_irq_enable(adapter);
1747
1748 /* notify VFs that reset has been completed */
1749 if (adapter->vfs_allocated_count) {
1750 u32 reg_data = rd32(E1000_CTRL_EXT);
1751
1752 reg_data |= E1000_CTRL_EXT_PFRSTD;
1753 wr32(E1000_CTRL_EXT, reg_data);
1754 }
1755
1756 netif_tx_start_all_queues(adapter->netdev);
1757
1758 /* start the watchdog. */
1759 hw->mac.get_link_status = 1;
1760 schedule_work(&adapter->watchdog_task);
1761
1762 if ((adapter->flags & IGB_FLAG_EEE) &&
1763 (!hw->dev_spec._82575.eee_disable))
1764 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1765
1766 return 0;
1767 }
1768
1769 void igb_down(struct igb_adapter *adapter)
1770 {
1771 struct net_device *netdev = adapter->netdev;
1772 struct e1000_hw *hw = &adapter->hw;
1773 u32 tctl, rctl;
1774 int i;
1775
1776 /* signal that we're down so the interrupt handler does not
1777 * reschedule our watchdog timer
1778 */
1779 set_bit(__IGB_DOWN, &adapter->state);
1780
1781 /* disable receives in the hardware */
1782 rctl = rd32(E1000_RCTL);
1783 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1784 /* flush and sleep below */
1785
1786 netif_carrier_off(netdev);
1787 netif_tx_stop_all_queues(netdev);
1788
1789 /* disable transmits in the hardware */
1790 tctl = rd32(E1000_TCTL);
1791 tctl &= ~E1000_TCTL_EN;
1792 wr32(E1000_TCTL, tctl);
1793 /* flush both disables and wait for them to finish */
1794 wrfl();
1795 usleep_range(10000, 11000);
1796
1797 igb_irq_disable(adapter);
1798
1799 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1800
1801 for (i = 0; i < adapter->num_q_vectors; i++) {
1802 if (adapter->q_vector[i]) {
1803 napi_synchronize(&adapter->q_vector[i]->napi);
1804 napi_disable(&adapter->q_vector[i]->napi);
1805 }
1806 }
1807
1808 del_timer_sync(&adapter->watchdog_timer);
1809 del_timer_sync(&adapter->phy_info_timer);
1810
1811 /* record the stats before reset*/
1812 spin_lock(&adapter->stats64_lock);
1813 igb_update_stats(adapter, &adapter->stats64);
1814 spin_unlock(&adapter->stats64_lock);
1815
1816 adapter->link_speed = 0;
1817 adapter->link_duplex = 0;
1818
1819 if (!pci_channel_offline(adapter->pdev))
1820 igb_reset(adapter);
1821 igb_clean_all_tx_rings(adapter);
1822 igb_clean_all_rx_rings(adapter);
1823 #ifdef CONFIG_IGB_DCA
1824
1825 /* since we reset the hardware DCA settings were cleared */
1826 igb_setup_dca(adapter);
1827 #endif
1828 }
1829
1830 void igb_reinit_locked(struct igb_adapter *adapter)
1831 {
1832 WARN_ON(in_interrupt());
1833 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1834 usleep_range(1000, 2000);
1835 igb_down(adapter);
1836 igb_up(adapter);
1837 clear_bit(__IGB_RESETTING, &adapter->state);
1838 }
1839
1840 /** igb_enable_mas - Media Autosense re-enable after swap
1841 *
1842 * @adapter: adapter struct
1843 **/
1844 static void igb_enable_mas(struct igb_adapter *adapter)
1845 {
1846 struct e1000_hw *hw = &adapter->hw;
1847 u32 connsw = rd32(E1000_CONNSW);
1848
1849 /* configure for SerDes media detect */
1850 if ((hw->phy.media_type == e1000_media_type_copper) &&
1851 (!(connsw & E1000_CONNSW_SERDESD))) {
1852 connsw |= E1000_CONNSW_ENRGSRC;
1853 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1854 wr32(E1000_CONNSW, connsw);
1855 wrfl();
1856 }
1857 }
1858
1859 void igb_reset(struct igb_adapter *adapter)
1860 {
1861 struct pci_dev *pdev = adapter->pdev;
1862 struct e1000_hw *hw = &adapter->hw;
1863 struct e1000_mac_info *mac = &hw->mac;
1864 struct e1000_fc_info *fc = &hw->fc;
1865 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1866
1867 /* Repartition Pba for greater than 9k mtu
1868 * To take effect CTRL.RST is required.
1869 */
1870 switch (mac->type) {
1871 case e1000_i350:
1872 case e1000_i354:
1873 case e1000_82580:
1874 pba = rd32(E1000_RXPBS);
1875 pba = igb_rxpbs_adjust_82580(pba);
1876 break;
1877 case e1000_82576:
1878 pba = rd32(E1000_RXPBS);
1879 pba &= E1000_RXPBS_SIZE_MASK_82576;
1880 break;
1881 case e1000_82575:
1882 case e1000_i210:
1883 case e1000_i211:
1884 default:
1885 pba = E1000_PBA_34K;
1886 break;
1887 }
1888
1889 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1890 (mac->type < e1000_82576)) {
1891 /* adjust PBA for jumbo frames */
1892 wr32(E1000_PBA, pba);
1893
1894 /* To maintain wire speed transmits, the Tx FIFO should be
1895 * large enough to accommodate two full transmit packets,
1896 * rounded up to the next 1KB and expressed in KB. Likewise,
1897 * the Rx FIFO should be large enough to accommodate at least
1898 * one full receive packet and is similarly rounded up and
1899 * expressed in KB.
1900 */
1901 pba = rd32(E1000_PBA);
1902 /* upper 16 bits has Tx packet buffer allocation size in KB */
1903 tx_space = pba >> 16;
1904 /* lower 16 bits has Rx packet buffer allocation size in KB */
1905 pba &= 0xffff;
1906 /* the Tx fifo also stores 16 bytes of information about the Tx
1907 * but don't include ethernet FCS because hardware appends it
1908 */
1909 min_tx_space = (adapter->max_frame_size +
1910 sizeof(union e1000_adv_tx_desc) -
1911 ETH_FCS_LEN) * 2;
1912 min_tx_space = ALIGN(min_tx_space, 1024);
1913 min_tx_space >>= 10;
1914 /* software strips receive CRC, so leave room for it */
1915 min_rx_space = adapter->max_frame_size;
1916 min_rx_space = ALIGN(min_rx_space, 1024);
1917 min_rx_space >>= 10;
1918
1919 /* If current Tx allocation is less than the min Tx FIFO size,
1920 * and the min Tx FIFO size is less than the current Rx FIFO
1921 * allocation, take space away from current Rx allocation
1922 */
1923 if (tx_space < min_tx_space &&
1924 ((min_tx_space - tx_space) < pba)) {
1925 pba = pba - (min_tx_space - tx_space);
1926
1927 /* if short on Rx space, Rx wins and must trump Tx
1928 * adjustment
1929 */
1930 if (pba < min_rx_space)
1931 pba = min_rx_space;
1932 }
1933 wr32(E1000_PBA, pba);
1934 }
1935
1936 /* flow control settings */
1937 /* The high water mark must be low enough to fit one full frame
1938 * (or the size used for early receive) above it in the Rx FIFO.
1939 * Set it to the lower of:
1940 * - 90% of the Rx FIFO size, or
1941 * - the full Rx FIFO size minus one full frame
1942 */
1943 hwm = min(((pba << 10) * 9 / 10),
1944 ((pba << 10) - 2 * adapter->max_frame_size));
1945
1946 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1947 fc->low_water = fc->high_water - 16;
1948 fc->pause_time = 0xFFFF;
1949 fc->send_xon = 1;
1950 fc->current_mode = fc->requested_mode;
1951
1952 /* disable receive for all VFs and wait one second */
1953 if (adapter->vfs_allocated_count) {
1954 int i;
1955
1956 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1957 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1958
1959 /* ping all the active vfs to let them know we are going down */
1960 igb_ping_all_vfs(adapter);
1961
1962 /* disable transmits and receives */
1963 wr32(E1000_VFRE, 0);
1964 wr32(E1000_VFTE, 0);
1965 }
1966
1967 /* Allow time for pending master requests to run */
1968 hw->mac.ops.reset_hw(hw);
1969 wr32(E1000_WUC, 0);
1970
1971 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1972 /* need to resetup here after media swap */
1973 adapter->ei.get_invariants(hw);
1974 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1975 }
1976 if ((mac->type == e1000_82575) &&
1977 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1978 igb_enable_mas(adapter);
1979 }
1980 if (hw->mac.ops.init_hw(hw))
1981 dev_err(&pdev->dev, "Hardware Error\n");
1982
1983 /* Flow control settings reset on hardware reset, so guarantee flow
1984 * control is off when forcing speed.
1985 */
1986 if (!hw->mac.autoneg)
1987 igb_force_mac_fc(hw);
1988
1989 igb_init_dmac(adapter, pba);
1990 #ifdef CONFIG_IGB_HWMON
1991 /* Re-initialize the thermal sensor on i350 devices. */
1992 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1993 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1994 /* If present, re-initialize the external thermal sensor
1995 * interface.
1996 */
1997 if (adapter->ets)
1998 mac->ops.init_thermal_sensor_thresh(hw);
1999 }
2000 }
2001 #endif
2002 /* Re-establish EEE setting */
2003 if (hw->phy.media_type == e1000_media_type_copper) {
2004 switch (mac->type) {
2005 case e1000_i350:
2006 case e1000_i210:
2007 case e1000_i211:
2008 igb_set_eee_i350(hw, true, true);
2009 break;
2010 case e1000_i354:
2011 igb_set_eee_i354(hw, true, true);
2012 break;
2013 default:
2014 break;
2015 }
2016 }
2017 if (!netif_running(adapter->netdev))
2018 igb_power_down_link(adapter);
2019
2020 igb_update_mng_vlan(adapter);
2021
2022 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2023 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2024
2025 /* Re-enable PTP, where applicable. */
2026 igb_ptp_reset(adapter);
2027
2028 igb_get_phy_info(hw);
2029 }
2030
2031 static netdev_features_t igb_fix_features(struct net_device *netdev,
2032 netdev_features_t features)
2033 {
2034 /* Since there is no support for separate Rx/Tx vlan accel
2035 * enable/disable make sure Tx flag is always in same state as Rx.
2036 */
2037 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2038 features |= NETIF_F_HW_VLAN_CTAG_TX;
2039 else
2040 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2041
2042 return features;
2043 }
2044
2045 static int igb_set_features(struct net_device *netdev,
2046 netdev_features_t features)
2047 {
2048 netdev_features_t changed = netdev->features ^ features;
2049 struct igb_adapter *adapter = netdev_priv(netdev);
2050
2051 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2052 igb_vlan_mode(netdev, features);
2053
2054 if (!(changed & NETIF_F_RXALL))
2055 return 0;
2056
2057 netdev->features = features;
2058
2059 if (netif_running(netdev))
2060 igb_reinit_locked(adapter);
2061 else
2062 igb_reset(adapter);
2063
2064 return 0;
2065 }
2066
2067 static const struct net_device_ops igb_netdev_ops = {
2068 .ndo_open = igb_open,
2069 .ndo_stop = igb_close,
2070 .ndo_start_xmit = igb_xmit_frame,
2071 .ndo_get_stats64 = igb_get_stats64,
2072 .ndo_set_rx_mode = igb_set_rx_mode,
2073 .ndo_set_mac_address = igb_set_mac,
2074 .ndo_change_mtu = igb_change_mtu,
2075 .ndo_do_ioctl = igb_ioctl,
2076 .ndo_tx_timeout = igb_tx_timeout,
2077 .ndo_validate_addr = eth_validate_addr,
2078 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2079 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2080 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2081 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2082 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2083 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2084 .ndo_get_vf_config = igb_ndo_get_vf_config,
2085 #ifdef CONFIG_NET_POLL_CONTROLLER
2086 .ndo_poll_controller = igb_netpoll,
2087 #endif
2088 .ndo_fix_features = igb_fix_features,
2089 .ndo_set_features = igb_set_features,
2090 .ndo_features_check = passthru_features_check,
2091 };
2092
2093 /**
2094 * igb_set_fw_version - Configure version string for ethtool
2095 * @adapter: adapter struct
2096 **/
2097 void igb_set_fw_version(struct igb_adapter *adapter)
2098 {
2099 struct e1000_hw *hw = &adapter->hw;
2100 struct e1000_fw_version fw;
2101
2102 igb_get_fw_version(hw, &fw);
2103
2104 switch (hw->mac.type) {
2105 case e1000_i210:
2106 case e1000_i211:
2107 if (!(igb_get_flash_presence_i210(hw))) {
2108 snprintf(adapter->fw_version,
2109 sizeof(adapter->fw_version),
2110 "%2d.%2d-%d",
2111 fw.invm_major, fw.invm_minor,
2112 fw.invm_img_type);
2113 break;
2114 }
2115 /* fall through */
2116 default:
2117 /* if option is rom valid, display its version too */
2118 if (fw.or_valid) {
2119 snprintf(adapter->fw_version,
2120 sizeof(adapter->fw_version),
2121 "%d.%d, 0x%08x, %d.%d.%d",
2122 fw.eep_major, fw.eep_minor, fw.etrack_id,
2123 fw.or_major, fw.or_build, fw.or_patch);
2124 /* no option rom */
2125 } else if (fw.etrack_id != 0X0000) {
2126 snprintf(adapter->fw_version,
2127 sizeof(adapter->fw_version),
2128 "%d.%d, 0x%08x",
2129 fw.eep_major, fw.eep_minor, fw.etrack_id);
2130 } else {
2131 snprintf(adapter->fw_version,
2132 sizeof(adapter->fw_version),
2133 "%d.%d.%d",
2134 fw.eep_major, fw.eep_minor, fw.eep_build);
2135 }
2136 break;
2137 }
2138 }
2139
2140 /**
2141 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2142 *
2143 * @adapter: adapter struct
2144 **/
2145 static void igb_init_mas(struct igb_adapter *adapter)
2146 {
2147 struct e1000_hw *hw = &adapter->hw;
2148 u16 eeprom_data;
2149
2150 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2151 switch (hw->bus.func) {
2152 case E1000_FUNC_0:
2153 if (eeprom_data & IGB_MAS_ENABLE_0) {
2154 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2155 netdev_info(adapter->netdev,
2156 "MAS: Enabling Media Autosense for port %d\n",
2157 hw->bus.func);
2158 }
2159 break;
2160 case E1000_FUNC_1:
2161 if (eeprom_data & IGB_MAS_ENABLE_1) {
2162 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2163 netdev_info(adapter->netdev,
2164 "MAS: Enabling Media Autosense for port %d\n",
2165 hw->bus.func);
2166 }
2167 break;
2168 case E1000_FUNC_2:
2169 if (eeprom_data & IGB_MAS_ENABLE_2) {
2170 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2171 netdev_info(adapter->netdev,
2172 "MAS: Enabling Media Autosense for port %d\n",
2173 hw->bus.func);
2174 }
2175 break;
2176 case E1000_FUNC_3:
2177 if (eeprom_data & IGB_MAS_ENABLE_3) {
2178 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2179 netdev_info(adapter->netdev,
2180 "MAS: Enabling Media Autosense for port %d\n",
2181 hw->bus.func);
2182 }
2183 break;
2184 default:
2185 /* Shouldn't get here */
2186 netdev_err(adapter->netdev,
2187 "MAS: Invalid port configuration, returning\n");
2188 break;
2189 }
2190 }
2191
2192 /**
2193 * igb_init_i2c - Init I2C interface
2194 * @adapter: pointer to adapter structure
2195 **/
2196 static s32 igb_init_i2c(struct igb_adapter *adapter)
2197 {
2198 s32 status = 0;
2199
2200 /* I2C interface supported on i350 devices */
2201 if (adapter->hw.mac.type != e1000_i350)
2202 return 0;
2203
2204 /* Initialize the i2c bus which is controlled by the registers.
2205 * This bus will use the i2c_algo_bit structue that implements
2206 * the protocol through toggling of the 4 bits in the register.
2207 */
2208 adapter->i2c_adap.owner = THIS_MODULE;
2209 adapter->i2c_algo = igb_i2c_algo;
2210 adapter->i2c_algo.data = adapter;
2211 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2212 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2213 strlcpy(adapter->i2c_adap.name, "igb BB",
2214 sizeof(adapter->i2c_adap.name));
2215 status = i2c_bit_add_bus(&adapter->i2c_adap);
2216 return status;
2217 }
2218
2219 /**
2220 * igb_probe - Device Initialization Routine
2221 * @pdev: PCI device information struct
2222 * @ent: entry in igb_pci_tbl
2223 *
2224 * Returns 0 on success, negative on failure
2225 *
2226 * igb_probe initializes an adapter identified by a pci_dev structure.
2227 * The OS initialization, configuring of the adapter private structure,
2228 * and a hardware reset occur.
2229 **/
2230 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2231 {
2232 struct net_device *netdev;
2233 struct igb_adapter *adapter;
2234 struct e1000_hw *hw;
2235 u16 eeprom_data = 0;
2236 s32 ret_val;
2237 static int global_quad_port_a; /* global quad port a indication */
2238 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2239 int err, pci_using_dac;
2240 u8 part_str[E1000_PBANUM_LENGTH];
2241
2242 /* Catch broken hardware that put the wrong VF device ID in
2243 * the PCIe SR-IOV capability.
2244 */
2245 if (pdev->is_virtfn) {
2246 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2247 pci_name(pdev), pdev->vendor, pdev->device);
2248 return -EINVAL;
2249 }
2250
2251 err = pci_enable_device_mem(pdev);
2252 if (err)
2253 return err;
2254
2255 pci_using_dac = 0;
2256 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2257 if (!err) {
2258 pci_using_dac = 1;
2259 } else {
2260 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2261 if (err) {
2262 dev_err(&pdev->dev,
2263 "No usable DMA configuration, aborting\n");
2264 goto err_dma;
2265 }
2266 }
2267
2268 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2269 IORESOURCE_MEM),
2270 igb_driver_name);
2271 if (err)
2272 goto err_pci_reg;
2273
2274 pci_enable_pcie_error_reporting(pdev);
2275
2276 pci_set_master(pdev);
2277 pci_save_state(pdev);
2278
2279 err = -ENOMEM;
2280 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2281 IGB_MAX_TX_QUEUES);
2282 if (!netdev)
2283 goto err_alloc_etherdev;
2284
2285 SET_NETDEV_DEV(netdev, &pdev->dev);
2286
2287 pci_set_drvdata(pdev, netdev);
2288 adapter = netdev_priv(netdev);
2289 adapter->netdev = netdev;
2290 adapter->pdev = pdev;
2291 hw = &adapter->hw;
2292 hw->back = adapter;
2293 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2294
2295 err = -EIO;
2296 adapter->io_addr = pci_iomap(pdev, 0, 0);
2297 if (!adapter->io_addr)
2298 goto err_ioremap;
2299 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2300 hw->hw_addr = adapter->io_addr;
2301
2302 netdev->netdev_ops = &igb_netdev_ops;
2303 igb_set_ethtool_ops(netdev);
2304 netdev->watchdog_timeo = 5 * HZ;
2305
2306 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2307
2308 netdev->mem_start = pci_resource_start(pdev, 0);
2309 netdev->mem_end = pci_resource_end(pdev, 0);
2310
2311 /* PCI config space info */
2312 hw->vendor_id = pdev->vendor;
2313 hw->device_id = pdev->device;
2314 hw->revision_id = pdev->revision;
2315 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2316 hw->subsystem_device_id = pdev->subsystem_device;
2317
2318 /* Copy the default MAC, PHY and NVM function pointers */
2319 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2320 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2321 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2322 /* Initialize skew-specific constants */
2323 err = ei->get_invariants(hw);
2324 if (err)
2325 goto err_sw_init;
2326
2327 /* setup the private structure */
2328 err = igb_sw_init(adapter);
2329 if (err)
2330 goto err_sw_init;
2331
2332 igb_get_bus_info_pcie(hw);
2333
2334 hw->phy.autoneg_wait_to_complete = false;
2335
2336 /* Copper options */
2337 if (hw->phy.media_type == e1000_media_type_copper) {
2338 hw->phy.mdix = AUTO_ALL_MODES;
2339 hw->phy.disable_polarity_correction = false;
2340 hw->phy.ms_type = e1000_ms_hw_default;
2341 }
2342
2343 if (igb_check_reset_block(hw))
2344 dev_info(&pdev->dev,
2345 "PHY reset is blocked due to SOL/IDER session.\n");
2346
2347 /* features is initialized to 0 in allocation, it might have bits
2348 * set by igb_sw_init so we should use an or instead of an
2349 * assignment.
2350 */
2351 netdev->features |= NETIF_F_SG |
2352 NETIF_F_IP_CSUM |
2353 NETIF_F_IPV6_CSUM |
2354 NETIF_F_TSO |
2355 NETIF_F_TSO6 |
2356 NETIF_F_RXHASH |
2357 NETIF_F_RXCSUM |
2358 NETIF_F_HW_VLAN_CTAG_RX |
2359 NETIF_F_HW_VLAN_CTAG_TX;
2360
2361 /* copy netdev features into list of user selectable features */
2362 netdev->hw_features |= netdev->features;
2363 netdev->hw_features |= NETIF_F_RXALL;
2364
2365 /* set this bit last since it cannot be part of hw_features */
2366 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2367
2368 netdev->vlan_features |= NETIF_F_TSO |
2369 NETIF_F_TSO6 |
2370 NETIF_F_IP_CSUM |
2371 NETIF_F_IPV6_CSUM |
2372 NETIF_F_SG;
2373
2374 netdev->priv_flags |= IFF_SUPP_NOFCS;
2375
2376 if (pci_using_dac) {
2377 netdev->features |= NETIF_F_HIGHDMA;
2378 netdev->vlan_features |= NETIF_F_HIGHDMA;
2379 }
2380
2381 if (hw->mac.type >= e1000_82576) {
2382 netdev->hw_features |= NETIF_F_SCTP_CRC;
2383 netdev->features |= NETIF_F_SCTP_CRC;
2384 }
2385
2386 netdev->priv_flags |= IFF_UNICAST_FLT;
2387
2388 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2389
2390 /* before reading the NVM, reset the controller to put the device in a
2391 * known good starting state
2392 */
2393 hw->mac.ops.reset_hw(hw);
2394
2395 /* make sure the NVM is good , i211/i210 parts can have special NVM
2396 * that doesn't contain a checksum
2397 */
2398 switch (hw->mac.type) {
2399 case e1000_i210:
2400 case e1000_i211:
2401 if (igb_get_flash_presence_i210(hw)) {
2402 if (hw->nvm.ops.validate(hw) < 0) {
2403 dev_err(&pdev->dev,
2404 "The NVM Checksum Is Not Valid\n");
2405 err = -EIO;
2406 goto err_eeprom;
2407 }
2408 }
2409 break;
2410 default:
2411 if (hw->nvm.ops.validate(hw) < 0) {
2412 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2413 err = -EIO;
2414 goto err_eeprom;
2415 }
2416 break;
2417 }
2418
2419 /* copy the MAC address out of the NVM */
2420 if (hw->mac.ops.read_mac_addr(hw))
2421 dev_err(&pdev->dev, "NVM Read Error\n");
2422
2423 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2424
2425 if (!is_valid_ether_addr(netdev->dev_addr)) {
2426 dev_err(&pdev->dev, "Invalid MAC Address\n");
2427 err = -EIO;
2428 goto err_eeprom;
2429 }
2430
2431 /* get firmware version for ethtool -i */
2432 igb_set_fw_version(adapter);
2433
2434 /* configure RXPBSIZE and TXPBSIZE */
2435 if (hw->mac.type == e1000_i210) {
2436 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2437 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2438 }
2439
2440 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2441 (unsigned long) adapter);
2442 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2443 (unsigned long) adapter);
2444
2445 INIT_WORK(&adapter->reset_task, igb_reset_task);
2446 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2447
2448 /* Initialize link properties that are user-changeable */
2449 adapter->fc_autoneg = true;
2450 hw->mac.autoneg = true;
2451 hw->phy.autoneg_advertised = 0x2f;
2452
2453 hw->fc.requested_mode = e1000_fc_default;
2454 hw->fc.current_mode = e1000_fc_default;
2455
2456 igb_validate_mdi_setting(hw);
2457
2458 /* By default, support wake on port A */
2459 if (hw->bus.func == 0)
2460 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2461
2462 /* Check the NVM for wake support on non-port A ports */
2463 if (hw->mac.type >= e1000_82580)
2464 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2465 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2466 &eeprom_data);
2467 else if (hw->bus.func == 1)
2468 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2469
2470 if (eeprom_data & IGB_EEPROM_APME)
2471 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2472
2473 /* now that we have the eeprom settings, apply the special cases where
2474 * the eeprom may be wrong or the board simply won't support wake on
2475 * lan on a particular port
2476 */
2477 switch (pdev->device) {
2478 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2479 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2480 break;
2481 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2482 case E1000_DEV_ID_82576_FIBER:
2483 case E1000_DEV_ID_82576_SERDES:
2484 /* Wake events only supported on port A for dual fiber
2485 * regardless of eeprom setting
2486 */
2487 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2488 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2489 break;
2490 case E1000_DEV_ID_82576_QUAD_COPPER:
2491 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2492 /* if quad port adapter, disable WoL on all but port A */
2493 if (global_quad_port_a != 0)
2494 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2495 else
2496 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2497 /* Reset for multiple quad port adapters */
2498 if (++global_quad_port_a == 4)
2499 global_quad_port_a = 0;
2500 break;
2501 default:
2502 /* If the device can't wake, don't set software support */
2503 if (!device_can_wakeup(&adapter->pdev->dev))
2504 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2505 }
2506
2507 /* initialize the wol settings based on the eeprom settings */
2508 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2509 adapter->wol |= E1000_WUFC_MAG;
2510
2511 /* Some vendors want WoL disabled by default, but still supported */
2512 if ((hw->mac.type == e1000_i350) &&
2513 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2514 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2515 adapter->wol = 0;
2516 }
2517
2518 device_set_wakeup_enable(&adapter->pdev->dev,
2519 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2520
2521 /* reset the hardware with the new settings */
2522 igb_reset(adapter);
2523
2524 /* Init the I2C interface */
2525 err = igb_init_i2c(adapter);
2526 if (err) {
2527 dev_err(&pdev->dev, "failed to init i2c interface\n");
2528 goto err_eeprom;
2529 }
2530
2531 /* let the f/w know that the h/w is now under the control of the
2532 * driver.
2533 */
2534 igb_get_hw_control(adapter);
2535
2536 strcpy(netdev->name, "eth%d");
2537 err = register_netdev(netdev);
2538 if (err)
2539 goto err_register;
2540
2541 /* carrier off reporting is important to ethtool even BEFORE open */
2542 netif_carrier_off(netdev);
2543
2544 #ifdef CONFIG_IGB_DCA
2545 if (dca_add_requester(&pdev->dev) == 0) {
2546 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2547 dev_info(&pdev->dev, "DCA enabled\n");
2548 igb_setup_dca(adapter);
2549 }
2550
2551 #endif
2552 #ifdef CONFIG_IGB_HWMON
2553 /* Initialize the thermal sensor on i350 devices. */
2554 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2555 u16 ets_word;
2556
2557 /* Read the NVM to determine if this i350 device supports an
2558 * external thermal sensor.
2559 */
2560 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2561 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2562 adapter->ets = true;
2563 else
2564 adapter->ets = false;
2565 if (igb_sysfs_init(adapter))
2566 dev_err(&pdev->dev,
2567 "failed to allocate sysfs resources\n");
2568 } else {
2569 adapter->ets = false;
2570 }
2571 #endif
2572 /* Check if Media Autosense is enabled */
2573 adapter->ei = *ei;
2574 if (hw->dev_spec._82575.mas_capable)
2575 igb_init_mas(adapter);
2576
2577 /* do hw tstamp init after resetting */
2578 igb_ptp_init(adapter);
2579
2580 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2581 /* print bus type/speed/width info, not applicable to i354 */
2582 if (hw->mac.type != e1000_i354) {
2583 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2584 netdev->name,
2585 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2586 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2587 "unknown"),
2588 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2589 "Width x4" :
2590 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2591 "Width x2" :
2592 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2593 "Width x1" : "unknown"), netdev->dev_addr);
2594 }
2595
2596 if ((hw->mac.type >= e1000_i210 ||
2597 igb_get_flash_presence_i210(hw))) {
2598 ret_val = igb_read_part_string(hw, part_str,
2599 E1000_PBANUM_LENGTH);
2600 } else {
2601 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2602 }
2603
2604 if (ret_val)
2605 strcpy(part_str, "Unknown");
2606 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2607 dev_info(&pdev->dev,
2608 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2609 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2610 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2611 adapter->num_rx_queues, adapter->num_tx_queues);
2612 if (hw->phy.media_type == e1000_media_type_copper) {
2613 switch (hw->mac.type) {
2614 case e1000_i350:
2615 case e1000_i210:
2616 case e1000_i211:
2617 /* Enable EEE for internal copper PHY devices */
2618 err = igb_set_eee_i350(hw, true, true);
2619 if ((!err) &&
2620 (!hw->dev_spec._82575.eee_disable)) {
2621 adapter->eee_advert =
2622 MDIO_EEE_100TX | MDIO_EEE_1000T;
2623 adapter->flags |= IGB_FLAG_EEE;
2624 }
2625 break;
2626 case e1000_i354:
2627 if ((rd32(E1000_CTRL_EXT) &
2628 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2629 err = igb_set_eee_i354(hw, true, true);
2630 if ((!err) &&
2631 (!hw->dev_spec._82575.eee_disable)) {
2632 adapter->eee_advert =
2633 MDIO_EEE_100TX | MDIO_EEE_1000T;
2634 adapter->flags |= IGB_FLAG_EEE;
2635 }
2636 }
2637 break;
2638 default:
2639 break;
2640 }
2641 }
2642 pm_runtime_put_noidle(&pdev->dev);
2643 return 0;
2644
2645 err_register:
2646 igb_release_hw_control(adapter);
2647 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2648 err_eeprom:
2649 if (!igb_check_reset_block(hw))
2650 igb_reset_phy(hw);
2651
2652 if (hw->flash_address)
2653 iounmap(hw->flash_address);
2654 err_sw_init:
2655 kfree(adapter->shadow_vfta);
2656 igb_clear_interrupt_scheme(adapter);
2657 #ifdef CONFIG_PCI_IOV
2658 igb_disable_sriov(pdev);
2659 #endif
2660 pci_iounmap(pdev, adapter->io_addr);
2661 err_ioremap:
2662 free_netdev(netdev);
2663 err_alloc_etherdev:
2664 pci_release_selected_regions(pdev,
2665 pci_select_bars(pdev, IORESOURCE_MEM));
2666 err_pci_reg:
2667 err_dma:
2668 pci_disable_device(pdev);
2669 return err;
2670 }
2671
2672 #ifdef CONFIG_PCI_IOV
2673 static int igb_disable_sriov(struct pci_dev *pdev)
2674 {
2675 struct net_device *netdev = pci_get_drvdata(pdev);
2676 struct igb_adapter *adapter = netdev_priv(netdev);
2677 struct e1000_hw *hw = &adapter->hw;
2678
2679 /* reclaim resources allocated to VFs */
2680 if (adapter->vf_data) {
2681 /* disable iov and allow time for transactions to clear */
2682 if (pci_vfs_assigned(pdev)) {
2683 dev_warn(&pdev->dev,
2684 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2685 return -EPERM;
2686 } else {
2687 pci_disable_sriov(pdev);
2688 msleep(500);
2689 }
2690
2691 kfree(adapter->vf_data);
2692 adapter->vf_data = NULL;
2693 adapter->vfs_allocated_count = 0;
2694 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2695 wrfl();
2696 msleep(100);
2697 dev_info(&pdev->dev, "IOV Disabled\n");
2698
2699 /* Re-enable DMA Coalescing flag since IOV is turned off */
2700 adapter->flags |= IGB_FLAG_DMAC;
2701 }
2702
2703 return 0;
2704 }
2705
2706 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2707 {
2708 struct net_device *netdev = pci_get_drvdata(pdev);
2709 struct igb_adapter *adapter = netdev_priv(netdev);
2710 int old_vfs = pci_num_vf(pdev);
2711 int err = 0;
2712 int i;
2713
2714 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2715 err = -EPERM;
2716 goto out;
2717 }
2718 if (!num_vfs)
2719 goto out;
2720
2721 if (old_vfs) {
2722 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2723 old_vfs, max_vfs);
2724 adapter->vfs_allocated_count = old_vfs;
2725 } else
2726 adapter->vfs_allocated_count = num_vfs;
2727
2728 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2729 sizeof(struct vf_data_storage), GFP_KERNEL);
2730
2731 /* if allocation failed then we do not support SR-IOV */
2732 if (!adapter->vf_data) {
2733 adapter->vfs_allocated_count = 0;
2734 dev_err(&pdev->dev,
2735 "Unable to allocate memory for VF Data Storage\n");
2736 err = -ENOMEM;
2737 goto out;
2738 }
2739
2740 /* only call pci_enable_sriov() if no VFs are allocated already */
2741 if (!old_vfs) {
2742 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2743 if (err)
2744 goto err_out;
2745 }
2746 dev_info(&pdev->dev, "%d VFs allocated\n",
2747 adapter->vfs_allocated_count);
2748 for (i = 0; i < adapter->vfs_allocated_count; i++)
2749 igb_vf_configure(adapter, i);
2750
2751 /* DMA Coalescing is not supported in IOV mode. */
2752 adapter->flags &= ~IGB_FLAG_DMAC;
2753 goto out;
2754
2755 err_out:
2756 kfree(adapter->vf_data);
2757 adapter->vf_data = NULL;
2758 adapter->vfs_allocated_count = 0;
2759 out:
2760 return err;
2761 }
2762
2763 #endif
2764 /**
2765 * igb_remove_i2c - Cleanup I2C interface
2766 * @adapter: pointer to adapter structure
2767 **/
2768 static void igb_remove_i2c(struct igb_adapter *adapter)
2769 {
2770 /* free the adapter bus structure */
2771 i2c_del_adapter(&adapter->i2c_adap);
2772 }
2773
2774 /**
2775 * igb_remove - Device Removal Routine
2776 * @pdev: PCI device information struct
2777 *
2778 * igb_remove is called by the PCI subsystem to alert the driver
2779 * that it should release a PCI device. The could be caused by a
2780 * Hot-Plug event, or because the driver is going to be removed from
2781 * memory.
2782 **/
2783 static void igb_remove(struct pci_dev *pdev)
2784 {
2785 struct net_device *netdev = pci_get_drvdata(pdev);
2786 struct igb_adapter *adapter = netdev_priv(netdev);
2787 struct e1000_hw *hw = &adapter->hw;
2788
2789 pm_runtime_get_noresume(&pdev->dev);
2790 #ifdef CONFIG_IGB_HWMON
2791 igb_sysfs_exit(adapter);
2792 #endif
2793 igb_remove_i2c(adapter);
2794 igb_ptp_stop(adapter);
2795 /* The watchdog timer may be rescheduled, so explicitly
2796 * disable watchdog from being rescheduled.
2797 */
2798 set_bit(__IGB_DOWN, &adapter->state);
2799 del_timer_sync(&adapter->watchdog_timer);
2800 del_timer_sync(&adapter->phy_info_timer);
2801
2802 cancel_work_sync(&adapter->reset_task);
2803 cancel_work_sync(&adapter->watchdog_task);
2804
2805 #ifdef CONFIG_IGB_DCA
2806 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2807 dev_info(&pdev->dev, "DCA disabled\n");
2808 dca_remove_requester(&pdev->dev);
2809 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2810 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2811 }
2812 #endif
2813
2814 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2815 * would have already happened in close and is redundant.
2816 */
2817 igb_release_hw_control(adapter);
2818
2819 #ifdef CONFIG_PCI_IOV
2820 igb_disable_sriov(pdev);
2821 #endif
2822
2823 unregister_netdev(netdev);
2824
2825 igb_clear_interrupt_scheme(adapter);
2826
2827 pci_iounmap(pdev, adapter->io_addr);
2828 if (hw->flash_address)
2829 iounmap(hw->flash_address);
2830 pci_release_selected_regions(pdev,
2831 pci_select_bars(pdev, IORESOURCE_MEM));
2832
2833 kfree(adapter->shadow_vfta);
2834 free_netdev(netdev);
2835
2836 pci_disable_pcie_error_reporting(pdev);
2837
2838 pci_disable_device(pdev);
2839 }
2840
2841 /**
2842 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2843 * @adapter: board private structure to initialize
2844 *
2845 * This function initializes the vf specific data storage and then attempts to
2846 * allocate the VFs. The reason for ordering it this way is because it is much
2847 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2848 * the memory for the VFs.
2849 **/
2850 static void igb_probe_vfs(struct igb_adapter *adapter)
2851 {
2852 #ifdef CONFIG_PCI_IOV
2853 struct pci_dev *pdev = adapter->pdev;
2854 struct e1000_hw *hw = &adapter->hw;
2855
2856 /* Virtualization features not supported on i210 family. */
2857 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2858 return;
2859
2860 /* Of the below we really only want the effect of getting
2861 * IGB_FLAG_HAS_MSIX set (if available), without which
2862 * igb_enable_sriov() has no effect.
2863 */
2864 igb_set_interrupt_capability(adapter, true);
2865 igb_reset_interrupt_capability(adapter);
2866
2867 pci_sriov_set_totalvfs(pdev, 7);
2868 igb_enable_sriov(pdev, max_vfs);
2869
2870 #endif /* CONFIG_PCI_IOV */
2871 }
2872
2873 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2874 {
2875 struct e1000_hw *hw = &adapter->hw;
2876 u32 max_rss_queues;
2877
2878 /* Determine the maximum number of RSS queues supported. */
2879 switch (hw->mac.type) {
2880 case e1000_i211:
2881 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2882 break;
2883 case e1000_82575:
2884 case e1000_i210:
2885 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2886 break;
2887 case e1000_i350:
2888 /* I350 cannot do RSS and SR-IOV at the same time */
2889 if (!!adapter->vfs_allocated_count) {
2890 max_rss_queues = 1;
2891 break;
2892 }
2893 /* fall through */
2894 case e1000_82576:
2895 if (!!adapter->vfs_allocated_count) {
2896 max_rss_queues = 2;
2897 break;
2898 }
2899 /* fall through */
2900 case e1000_82580:
2901 case e1000_i354:
2902 default:
2903 max_rss_queues = IGB_MAX_RX_QUEUES;
2904 break;
2905 }
2906
2907 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2908
2909 igb_set_flag_queue_pairs(adapter, max_rss_queues);
2910 }
2911
2912 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
2913 const u32 max_rss_queues)
2914 {
2915 struct e1000_hw *hw = &adapter->hw;
2916
2917 /* Determine if we need to pair queues. */
2918 switch (hw->mac.type) {
2919 case e1000_82575:
2920 case e1000_i211:
2921 /* Device supports enough interrupts without queue pairing. */
2922 break;
2923 case e1000_82576:
2924 /* If VFs are going to be allocated with RSS queues then we
2925 * should pair the queues in order to conserve interrupts due
2926 * to limited supply.
2927 */
2928 if ((adapter->rss_queues > 1) &&
2929 (adapter->vfs_allocated_count > 6))
2930 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2931 /* fall through */
2932 case e1000_82580:
2933 case e1000_i350:
2934 case e1000_i354:
2935 case e1000_i210:
2936 default:
2937 /* If rss_queues > half of max_rss_queues, pair the queues in
2938 * order to conserve interrupts due to limited supply.
2939 */
2940 if (adapter->rss_queues > (max_rss_queues / 2))
2941 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2942 break;
2943 }
2944 }
2945
2946 /**
2947 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2948 * @adapter: board private structure to initialize
2949 *
2950 * igb_sw_init initializes the Adapter private data structure.
2951 * Fields are initialized based on PCI device information and
2952 * OS network device settings (MTU size).
2953 **/
2954 static int igb_sw_init(struct igb_adapter *adapter)
2955 {
2956 struct e1000_hw *hw = &adapter->hw;
2957 struct net_device *netdev = adapter->netdev;
2958 struct pci_dev *pdev = adapter->pdev;
2959
2960 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2961
2962 /* set default ring sizes */
2963 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2964 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2965
2966 /* set default ITR values */
2967 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2968 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2969
2970 /* set default work limits */
2971 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2972
2973 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2974 VLAN_HLEN;
2975 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2976
2977 spin_lock_init(&adapter->stats64_lock);
2978 #ifdef CONFIG_PCI_IOV
2979 switch (hw->mac.type) {
2980 case e1000_82576:
2981 case e1000_i350:
2982 if (max_vfs > 7) {
2983 dev_warn(&pdev->dev,
2984 "Maximum of 7 VFs per PF, using max\n");
2985 max_vfs = adapter->vfs_allocated_count = 7;
2986 } else
2987 adapter->vfs_allocated_count = max_vfs;
2988 if (adapter->vfs_allocated_count)
2989 dev_warn(&pdev->dev,
2990 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2991 break;
2992 default:
2993 break;
2994 }
2995 #endif /* CONFIG_PCI_IOV */
2996
2997 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
2998 adapter->flags |= IGB_FLAG_HAS_MSIX;
2999
3000 igb_probe_vfs(adapter);
3001
3002 igb_init_queue_configuration(adapter);
3003
3004 /* Setup and initialize a copy of the hw vlan table array */
3005 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3006 GFP_ATOMIC);
3007
3008 /* This call may decrease the number of queues */
3009 if (igb_init_interrupt_scheme(adapter, true)) {
3010 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3011 return -ENOMEM;
3012 }
3013
3014 /* Explicitly disable IRQ since the NIC can be in any state. */
3015 igb_irq_disable(adapter);
3016
3017 if (hw->mac.type >= e1000_i350)
3018 adapter->flags &= ~IGB_FLAG_DMAC;
3019
3020 set_bit(__IGB_DOWN, &adapter->state);
3021 return 0;
3022 }
3023
3024 /**
3025 * igb_open - Called when a network interface is made active
3026 * @netdev: network interface device structure
3027 *
3028 * Returns 0 on success, negative value on failure
3029 *
3030 * The open entry point is called when a network interface is made
3031 * active by the system (IFF_UP). At this point all resources needed
3032 * for transmit and receive operations are allocated, the interrupt
3033 * handler is registered with the OS, the watchdog timer is started,
3034 * and the stack is notified that the interface is ready.
3035 **/
3036 static int __igb_open(struct net_device *netdev, bool resuming)
3037 {
3038 struct igb_adapter *adapter = netdev_priv(netdev);
3039 struct e1000_hw *hw = &adapter->hw;
3040 struct pci_dev *pdev = adapter->pdev;
3041 int err;
3042 int i;
3043
3044 /* disallow open during test */
3045 if (test_bit(__IGB_TESTING, &adapter->state)) {
3046 WARN_ON(resuming);
3047 return -EBUSY;
3048 }
3049
3050 if (!resuming)
3051 pm_runtime_get_sync(&pdev->dev);
3052
3053 netif_carrier_off(netdev);
3054
3055 /* allocate transmit descriptors */
3056 err = igb_setup_all_tx_resources(adapter);
3057 if (err)
3058 goto err_setup_tx;
3059
3060 /* allocate receive descriptors */
3061 err = igb_setup_all_rx_resources(adapter);
3062 if (err)
3063 goto err_setup_rx;
3064
3065 igb_power_up_link(adapter);
3066
3067 /* before we allocate an interrupt, we must be ready to handle it.
3068 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3069 * as soon as we call pci_request_irq, so we have to setup our
3070 * clean_rx handler before we do so.
3071 */
3072 igb_configure(adapter);
3073
3074 err = igb_request_irq(adapter);
3075 if (err)
3076 goto err_req_irq;
3077
3078 /* Notify the stack of the actual queue counts. */
3079 err = netif_set_real_num_tx_queues(adapter->netdev,
3080 adapter->num_tx_queues);
3081 if (err)
3082 goto err_set_queues;
3083
3084 err = netif_set_real_num_rx_queues(adapter->netdev,
3085 adapter->num_rx_queues);
3086 if (err)
3087 goto err_set_queues;
3088
3089 /* From here on the code is the same as igb_up() */
3090 clear_bit(__IGB_DOWN, &adapter->state);
3091
3092 for (i = 0; i < adapter->num_q_vectors; i++)
3093 napi_enable(&(adapter->q_vector[i]->napi));
3094
3095 /* Clear any pending interrupts. */
3096 rd32(E1000_ICR);
3097
3098 igb_irq_enable(adapter);
3099
3100 /* notify VFs that reset has been completed */
3101 if (adapter->vfs_allocated_count) {
3102 u32 reg_data = rd32(E1000_CTRL_EXT);
3103
3104 reg_data |= E1000_CTRL_EXT_PFRSTD;
3105 wr32(E1000_CTRL_EXT, reg_data);
3106 }
3107
3108 netif_tx_start_all_queues(netdev);
3109
3110 if (!resuming)
3111 pm_runtime_put(&pdev->dev);
3112
3113 /* start the watchdog. */
3114 hw->mac.get_link_status = 1;
3115 schedule_work(&adapter->watchdog_task);
3116
3117 return 0;
3118
3119 err_set_queues:
3120 igb_free_irq(adapter);
3121 err_req_irq:
3122 igb_release_hw_control(adapter);
3123 igb_power_down_link(adapter);
3124 igb_free_all_rx_resources(adapter);
3125 err_setup_rx:
3126 igb_free_all_tx_resources(adapter);
3127 err_setup_tx:
3128 igb_reset(adapter);
3129 if (!resuming)
3130 pm_runtime_put(&pdev->dev);
3131
3132 return err;
3133 }
3134
3135 static int igb_open(struct net_device *netdev)
3136 {
3137 return __igb_open(netdev, false);
3138 }
3139
3140 /**
3141 * igb_close - Disables a network interface
3142 * @netdev: network interface device structure
3143 *
3144 * Returns 0, this is not allowed to fail
3145 *
3146 * The close entry point is called when an interface is de-activated
3147 * by the OS. The hardware is still under the driver's control, but
3148 * needs to be disabled. A global MAC reset is issued to stop the
3149 * hardware, and all transmit and receive resources are freed.
3150 **/
3151 static int __igb_close(struct net_device *netdev, bool suspending)
3152 {
3153 struct igb_adapter *adapter = netdev_priv(netdev);
3154 struct pci_dev *pdev = adapter->pdev;
3155
3156 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3157
3158 if (!suspending)
3159 pm_runtime_get_sync(&pdev->dev);
3160
3161 igb_down(adapter);
3162 igb_free_irq(adapter);
3163
3164 igb_free_all_tx_resources(adapter);
3165 igb_free_all_rx_resources(adapter);
3166
3167 if (!suspending)
3168 pm_runtime_put_sync(&pdev->dev);
3169 return 0;
3170 }
3171
3172 static int igb_close(struct net_device *netdev)
3173 {
3174 return __igb_close(netdev, false);
3175 }
3176
3177 /**
3178 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3179 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3180 *
3181 * Return 0 on success, negative on failure
3182 **/
3183 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3184 {
3185 struct device *dev = tx_ring->dev;
3186 int size;
3187
3188 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3189
3190 tx_ring->tx_buffer_info = vzalloc(size);
3191 if (!tx_ring->tx_buffer_info)
3192 goto err;
3193
3194 /* round up to nearest 4K */
3195 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3196 tx_ring->size = ALIGN(tx_ring->size, 4096);
3197
3198 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3199 &tx_ring->dma, GFP_KERNEL);
3200 if (!tx_ring->desc)
3201 goto err;
3202
3203 tx_ring->next_to_use = 0;
3204 tx_ring->next_to_clean = 0;
3205
3206 return 0;
3207
3208 err:
3209 vfree(tx_ring->tx_buffer_info);
3210 tx_ring->tx_buffer_info = NULL;
3211 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3212 return -ENOMEM;
3213 }
3214
3215 /**
3216 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3217 * (Descriptors) for all queues
3218 * @adapter: board private structure
3219 *
3220 * Return 0 on success, negative on failure
3221 **/
3222 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3223 {
3224 struct pci_dev *pdev = adapter->pdev;
3225 int i, err = 0;
3226
3227 for (i = 0; i < adapter->num_tx_queues; i++) {
3228 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3229 if (err) {
3230 dev_err(&pdev->dev,
3231 "Allocation for Tx Queue %u failed\n", i);
3232 for (i--; i >= 0; i--)
3233 igb_free_tx_resources(adapter->tx_ring[i]);
3234 break;
3235 }
3236 }
3237
3238 return err;
3239 }
3240
3241 /**
3242 * igb_setup_tctl - configure the transmit control registers
3243 * @adapter: Board private structure
3244 **/
3245 void igb_setup_tctl(struct igb_adapter *adapter)
3246 {
3247 struct e1000_hw *hw = &adapter->hw;
3248 u32 tctl;
3249
3250 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3251 wr32(E1000_TXDCTL(0), 0);
3252
3253 /* Program the Transmit Control Register */
3254 tctl = rd32(E1000_TCTL);
3255 tctl &= ~E1000_TCTL_CT;
3256 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3257 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3258
3259 igb_config_collision_dist(hw);
3260
3261 /* Enable transmits */
3262 tctl |= E1000_TCTL_EN;
3263
3264 wr32(E1000_TCTL, tctl);
3265 }
3266
3267 /**
3268 * igb_configure_tx_ring - Configure transmit ring after Reset
3269 * @adapter: board private structure
3270 * @ring: tx ring to configure
3271 *
3272 * Configure a transmit ring after a reset.
3273 **/
3274 void igb_configure_tx_ring(struct igb_adapter *adapter,
3275 struct igb_ring *ring)
3276 {
3277 struct e1000_hw *hw = &adapter->hw;
3278 u32 txdctl = 0;
3279 u64 tdba = ring->dma;
3280 int reg_idx = ring->reg_idx;
3281
3282 /* disable the queue */
3283 wr32(E1000_TXDCTL(reg_idx), 0);
3284 wrfl();
3285 mdelay(10);
3286
3287 wr32(E1000_TDLEN(reg_idx),
3288 ring->count * sizeof(union e1000_adv_tx_desc));
3289 wr32(E1000_TDBAL(reg_idx),
3290 tdba & 0x00000000ffffffffULL);
3291 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3292
3293 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3294 wr32(E1000_TDH(reg_idx), 0);
3295 writel(0, ring->tail);
3296
3297 txdctl |= IGB_TX_PTHRESH;
3298 txdctl |= IGB_TX_HTHRESH << 8;
3299 txdctl |= IGB_TX_WTHRESH << 16;
3300
3301 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3302 wr32(E1000_TXDCTL(reg_idx), txdctl);
3303 }
3304
3305 /**
3306 * igb_configure_tx - Configure transmit Unit after Reset
3307 * @adapter: board private structure
3308 *
3309 * Configure the Tx unit of the MAC after a reset.
3310 **/
3311 static void igb_configure_tx(struct igb_adapter *adapter)
3312 {
3313 int i;
3314
3315 for (i = 0; i < adapter->num_tx_queues; i++)
3316 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3317 }
3318
3319 /**
3320 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3321 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3322 *
3323 * Returns 0 on success, negative on failure
3324 **/
3325 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3326 {
3327 struct device *dev = rx_ring->dev;
3328 int size;
3329
3330 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3331
3332 rx_ring->rx_buffer_info = vzalloc(size);
3333 if (!rx_ring->rx_buffer_info)
3334 goto err;
3335
3336 /* Round up to nearest 4K */
3337 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3338 rx_ring->size = ALIGN(rx_ring->size, 4096);
3339
3340 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3341 &rx_ring->dma, GFP_KERNEL);
3342 if (!rx_ring->desc)
3343 goto err;
3344
3345 rx_ring->next_to_alloc = 0;
3346 rx_ring->next_to_clean = 0;
3347 rx_ring->next_to_use = 0;
3348
3349 return 0;
3350
3351 err:
3352 vfree(rx_ring->rx_buffer_info);
3353 rx_ring->rx_buffer_info = NULL;
3354 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3355 return -ENOMEM;
3356 }
3357
3358 /**
3359 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3360 * (Descriptors) for all queues
3361 * @adapter: board private structure
3362 *
3363 * Return 0 on success, negative on failure
3364 **/
3365 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3366 {
3367 struct pci_dev *pdev = adapter->pdev;
3368 int i, err = 0;
3369
3370 for (i = 0; i < adapter->num_rx_queues; i++) {
3371 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3372 if (err) {
3373 dev_err(&pdev->dev,
3374 "Allocation for Rx Queue %u failed\n", i);
3375 for (i--; i >= 0; i--)
3376 igb_free_rx_resources(adapter->rx_ring[i]);
3377 break;
3378 }
3379 }
3380
3381 return err;
3382 }
3383
3384 /**
3385 * igb_setup_mrqc - configure the multiple receive queue control registers
3386 * @adapter: Board private structure
3387 **/
3388 static void igb_setup_mrqc(struct igb_adapter *adapter)
3389 {
3390 struct e1000_hw *hw = &adapter->hw;
3391 u32 mrqc, rxcsum;
3392 u32 j, num_rx_queues;
3393 u32 rss_key[10];
3394
3395 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3396 for (j = 0; j < 10; j++)
3397 wr32(E1000_RSSRK(j), rss_key[j]);
3398
3399 num_rx_queues = adapter->rss_queues;
3400
3401 switch (hw->mac.type) {
3402 case e1000_82576:
3403 /* 82576 supports 2 RSS queues for SR-IOV */
3404 if (adapter->vfs_allocated_count)
3405 num_rx_queues = 2;
3406 break;
3407 default:
3408 break;
3409 }
3410
3411 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3412 for (j = 0; j < IGB_RETA_SIZE; j++)
3413 adapter->rss_indir_tbl[j] =
3414 (j * num_rx_queues) / IGB_RETA_SIZE;
3415 adapter->rss_indir_tbl_init = num_rx_queues;
3416 }
3417 igb_write_rss_indir_tbl(adapter);
3418
3419 /* Disable raw packet checksumming so that RSS hash is placed in
3420 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3421 * offloads as they are enabled by default
3422 */
3423 rxcsum = rd32(E1000_RXCSUM);
3424 rxcsum |= E1000_RXCSUM_PCSD;
3425
3426 if (adapter->hw.mac.type >= e1000_82576)
3427 /* Enable Receive Checksum Offload for SCTP */
3428 rxcsum |= E1000_RXCSUM_CRCOFL;
3429
3430 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3431 wr32(E1000_RXCSUM, rxcsum);
3432
3433 /* Generate RSS hash based on packet types, TCP/UDP
3434 * port numbers and/or IPv4/v6 src and dst addresses
3435 */
3436 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3437 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3438 E1000_MRQC_RSS_FIELD_IPV6 |
3439 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3440 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3441
3442 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3443 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3444 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3445 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3446
3447 /* If VMDq is enabled then we set the appropriate mode for that, else
3448 * we default to RSS so that an RSS hash is calculated per packet even
3449 * if we are only using one queue
3450 */
3451 if (adapter->vfs_allocated_count) {
3452 if (hw->mac.type > e1000_82575) {
3453 /* Set the default pool for the PF's first queue */
3454 u32 vtctl = rd32(E1000_VT_CTL);
3455
3456 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3457 E1000_VT_CTL_DISABLE_DEF_POOL);
3458 vtctl |= adapter->vfs_allocated_count <<
3459 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3460 wr32(E1000_VT_CTL, vtctl);
3461 }
3462 if (adapter->rss_queues > 1)
3463 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3464 else
3465 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3466 } else {
3467 if (hw->mac.type != e1000_i211)
3468 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3469 }
3470 igb_vmm_control(adapter);
3471
3472 wr32(E1000_MRQC, mrqc);
3473 }
3474
3475 /**
3476 * igb_setup_rctl - configure the receive control registers
3477 * @adapter: Board private structure
3478 **/
3479 void igb_setup_rctl(struct igb_adapter *adapter)
3480 {
3481 struct e1000_hw *hw = &adapter->hw;
3482 u32 rctl;
3483
3484 rctl = rd32(E1000_RCTL);
3485
3486 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3487 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3488
3489 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3490 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3491
3492 /* enable stripping of CRC. It's unlikely this will break BMC
3493 * redirection as it did with e1000. Newer features require
3494 * that the HW strips the CRC.
3495 */
3496 rctl |= E1000_RCTL_SECRC;
3497
3498 /* disable store bad packets and clear size bits. */
3499 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3500
3501 /* enable LPE to prevent packets larger than max_frame_size */
3502 rctl |= E1000_RCTL_LPE;
3503
3504 /* disable queue 0 to prevent tail write w/o re-config */
3505 wr32(E1000_RXDCTL(0), 0);
3506
3507 /* Attention!!! For SR-IOV PF driver operations you must enable
3508 * queue drop for all VF and PF queues to prevent head of line blocking
3509 * if an un-trusted VF does not provide descriptors to hardware.
3510 */
3511 if (adapter->vfs_allocated_count) {
3512 /* set all queue drop enable bits */
3513 wr32(E1000_QDE, ALL_QUEUES);
3514 }
3515
3516 /* This is useful for sniffing bad packets. */
3517 if (adapter->netdev->features & NETIF_F_RXALL) {
3518 /* UPE and MPE will be handled by normal PROMISC logic
3519 * in e1000e_set_rx_mode
3520 */
3521 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3522 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3523 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3524
3525 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3526 E1000_RCTL_DPF | /* Allow filtered pause */
3527 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3528 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3529 * and that breaks VLANs.
3530 */
3531 }
3532
3533 wr32(E1000_RCTL, rctl);
3534 }
3535
3536 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3537 int vfn)
3538 {
3539 struct e1000_hw *hw = &adapter->hw;
3540 u32 vmolr;
3541
3542 /* if it isn't the PF check to see if VFs are enabled and
3543 * increase the size to support vlan tags
3544 */
3545 if (vfn < adapter->vfs_allocated_count &&
3546 adapter->vf_data[vfn].vlans_enabled)
3547 size += VLAN_TAG_SIZE;
3548
3549 vmolr = rd32(E1000_VMOLR(vfn));
3550 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3551 vmolr |= size | E1000_VMOLR_LPE;
3552 wr32(E1000_VMOLR(vfn), vmolr);
3553
3554 return 0;
3555 }
3556
3557 /**
3558 * igb_rlpml_set - set maximum receive packet size
3559 * @adapter: board private structure
3560 *
3561 * Configure maximum receivable packet size.
3562 **/
3563 static void igb_rlpml_set(struct igb_adapter *adapter)
3564 {
3565 u32 max_frame_size = adapter->max_frame_size;
3566 struct e1000_hw *hw = &adapter->hw;
3567 u16 pf_id = adapter->vfs_allocated_count;
3568
3569 if (pf_id) {
3570 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3571 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3572 * to our max jumbo frame size, in case we need to enable
3573 * jumbo frames on one of the rings later.
3574 * This will not pass over-length frames into the default
3575 * queue because it's gated by the VMOLR.RLPML.
3576 */
3577 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3578 }
3579
3580 wr32(E1000_RLPML, max_frame_size);
3581 }
3582
3583 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3584 int vfn, bool aupe)
3585 {
3586 struct e1000_hw *hw = &adapter->hw;
3587 u32 vmolr;
3588
3589 /* This register exists only on 82576 and newer so if we are older then
3590 * we should exit and do nothing
3591 */
3592 if (hw->mac.type < e1000_82576)
3593 return;
3594
3595 vmolr = rd32(E1000_VMOLR(vfn));
3596 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3597 if (hw->mac.type == e1000_i350) {
3598 u32 dvmolr;
3599
3600 dvmolr = rd32(E1000_DVMOLR(vfn));
3601 dvmolr |= E1000_DVMOLR_STRVLAN;
3602 wr32(E1000_DVMOLR(vfn), dvmolr);
3603 }
3604 if (aupe)
3605 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3606 else
3607 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3608
3609 /* clear all bits that might not be set */
3610 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3611
3612 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3613 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3614 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3615 * multicast packets
3616 */
3617 if (vfn <= adapter->vfs_allocated_count)
3618 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3619
3620 wr32(E1000_VMOLR(vfn), vmolr);
3621 }
3622
3623 /**
3624 * igb_configure_rx_ring - Configure a receive ring after Reset
3625 * @adapter: board private structure
3626 * @ring: receive ring to be configured
3627 *
3628 * Configure the Rx unit of the MAC after a reset.
3629 **/
3630 void igb_configure_rx_ring(struct igb_adapter *adapter,
3631 struct igb_ring *ring)
3632 {
3633 struct e1000_hw *hw = &adapter->hw;
3634 u64 rdba = ring->dma;
3635 int reg_idx = ring->reg_idx;
3636 u32 srrctl = 0, rxdctl = 0;
3637
3638 /* disable the queue */
3639 wr32(E1000_RXDCTL(reg_idx), 0);
3640
3641 /* Set DMA base address registers */
3642 wr32(E1000_RDBAL(reg_idx),
3643 rdba & 0x00000000ffffffffULL);
3644 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3645 wr32(E1000_RDLEN(reg_idx),
3646 ring->count * sizeof(union e1000_adv_rx_desc));
3647
3648 /* initialize head and tail */
3649 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3650 wr32(E1000_RDH(reg_idx), 0);
3651 writel(0, ring->tail);
3652
3653 /* set descriptor configuration */
3654 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3655 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3656 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3657 if (hw->mac.type >= e1000_82580)
3658 srrctl |= E1000_SRRCTL_TIMESTAMP;
3659 /* Only set Drop Enable if we are supporting multiple queues */
3660 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3661 srrctl |= E1000_SRRCTL_DROP_EN;
3662
3663 wr32(E1000_SRRCTL(reg_idx), srrctl);
3664
3665 /* set filtering for VMDQ pools */
3666 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3667
3668 rxdctl |= IGB_RX_PTHRESH;
3669 rxdctl |= IGB_RX_HTHRESH << 8;
3670 rxdctl |= IGB_RX_WTHRESH << 16;
3671
3672 /* enable receive descriptor fetching */
3673 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3674 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3675 }
3676
3677 /**
3678 * igb_configure_rx - Configure receive Unit after Reset
3679 * @adapter: board private structure
3680 *
3681 * Configure the Rx unit of the MAC after a reset.
3682 **/
3683 static void igb_configure_rx(struct igb_adapter *adapter)
3684 {
3685 int i;
3686
3687 /* set UTA to appropriate mode */
3688 igb_set_uta(adapter);
3689
3690 /* set the correct pool for the PF default MAC address in entry 0 */
3691 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3692 adapter->vfs_allocated_count);
3693
3694 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3695 * the Base and Length of the Rx Descriptor Ring
3696 */
3697 for (i = 0; i < adapter->num_rx_queues; i++)
3698 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3699 }
3700
3701 /**
3702 * igb_free_tx_resources - Free Tx Resources per Queue
3703 * @tx_ring: Tx descriptor ring for a specific queue
3704 *
3705 * Free all transmit software resources
3706 **/
3707 void igb_free_tx_resources(struct igb_ring *tx_ring)
3708 {
3709 igb_clean_tx_ring(tx_ring);
3710
3711 vfree(tx_ring->tx_buffer_info);
3712 tx_ring->tx_buffer_info = NULL;
3713
3714 /* if not set, then don't free */
3715 if (!tx_ring->desc)
3716 return;
3717
3718 dma_free_coherent(tx_ring->dev, tx_ring->size,
3719 tx_ring->desc, tx_ring->dma);
3720
3721 tx_ring->desc = NULL;
3722 }
3723
3724 /**
3725 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3726 * @adapter: board private structure
3727 *
3728 * Free all transmit software resources
3729 **/
3730 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3731 {
3732 int i;
3733
3734 for (i = 0; i < adapter->num_tx_queues; i++)
3735 if (adapter->tx_ring[i])
3736 igb_free_tx_resources(adapter->tx_ring[i]);
3737 }
3738
3739 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3740 struct igb_tx_buffer *tx_buffer)
3741 {
3742 if (tx_buffer->skb) {
3743 dev_kfree_skb_any(tx_buffer->skb);
3744 if (dma_unmap_len(tx_buffer, len))
3745 dma_unmap_single(ring->dev,
3746 dma_unmap_addr(tx_buffer, dma),
3747 dma_unmap_len(tx_buffer, len),
3748 DMA_TO_DEVICE);
3749 } else if (dma_unmap_len(tx_buffer, len)) {
3750 dma_unmap_page(ring->dev,
3751 dma_unmap_addr(tx_buffer, dma),
3752 dma_unmap_len(tx_buffer, len),
3753 DMA_TO_DEVICE);
3754 }
3755 tx_buffer->next_to_watch = NULL;
3756 tx_buffer->skb = NULL;
3757 dma_unmap_len_set(tx_buffer, len, 0);
3758 /* buffer_info must be completely set up in the transmit path */
3759 }
3760
3761 /**
3762 * igb_clean_tx_ring - Free Tx Buffers
3763 * @tx_ring: ring to be cleaned
3764 **/
3765 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3766 {
3767 struct igb_tx_buffer *buffer_info;
3768 unsigned long size;
3769 u16 i;
3770
3771 if (!tx_ring->tx_buffer_info)
3772 return;
3773 /* Free all the Tx ring sk_buffs */
3774
3775 for (i = 0; i < tx_ring->count; i++) {
3776 buffer_info = &tx_ring->tx_buffer_info[i];
3777 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3778 }
3779
3780 netdev_tx_reset_queue(txring_txq(tx_ring));
3781
3782 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3783 memset(tx_ring->tx_buffer_info, 0, size);
3784
3785 /* Zero out the descriptor ring */
3786 memset(tx_ring->desc, 0, tx_ring->size);
3787
3788 tx_ring->next_to_use = 0;
3789 tx_ring->next_to_clean = 0;
3790 }
3791
3792 /**
3793 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3794 * @adapter: board private structure
3795 **/
3796 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3797 {
3798 int i;
3799
3800 for (i = 0; i < adapter->num_tx_queues; i++)
3801 if (adapter->tx_ring[i])
3802 igb_clean_tx_ring(adapter->tx_ring[i]);
3803 }
3804
3805 /**
3806 * igb_free_rx_resources - Free Rx Resources
3807 * @rx_ring: ring to clean the resources from
3808 *
3809 * Free all receive software resources
3810 **/
3811 void igb_free_rx_resources(struct igb_ring *rx_ring)
3812 {
3813 igb_clean_rx_ring(rx_ring);
3814
3815 vfree(rx_ring->rx_buffer_info);
3816 rx_ring->rx_buffer_info = NULL;
3817
3818 /* if not set, then don't free */
3819 if (!rx_ring->desc)
3820 return;
3821
3822 dma_free_coherent(rx_ring->dev, rx_ring->size,
3823 rx_ring->desc, rx_ring->dma);
3824
3825 rx_ring->desc = NULL;
3826 }
3827
3828 /**
3829 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3830 * @adapter: board private structure
3831 *
3832 * Free all receive software resources
3833 **/
3834 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3835 {
3836 int i;
3837
3838 for (i = 0; i < adapter->num_rx_queues; i++)
3839 if (adapter->rx_ring[i])
3840 igb_free_rx_resources(adapter->rx_ring[i]);
3841 }
3842
3843 /**
3844 * igb_clean_rx_ring - Free Rx Buffers per Queue
3845 * @rx_ring: ring to free buffers from
3846 **/
3847 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3848 {
3849 unsigned long size;
3850 u16 i;
3851
3852 if (rx_ring->skb)
3853 dev_kfree_skb(rx_ring->skb);
3854 rx_ring->skb = NULL;
3855
3856 if (!rx_ring->rx_buffer_info)
3857 return;
3858
3859 /* Free all the Rx ring sk_buffs */
3860 for (i = 0; i < rx_ring->count; i++) {
3861 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3862
3863 if (!buffer_info->page)
3864 continue;
3865
3866 dma_unmap_page(rx_ring->dev,
3867 buffer_info->dma,
3868 PAGE_SIZE,
3869 DMA_FROM_DEVICE);
3870 __free_page(buffer_info->page);
3871
3872 buffer_info->page = NULL;
3873 }
3874
3875 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3876 memset(rx_ring->rx_buffer_info, 0, size);
3877
3878 /* Zero out the descriptor ring */
3879 memset(rx_ring->desc, 0, rx_ring->size);
3880
3881 rx_ring->next_to_alloc = 0;
3882 rx_ring->next_to_clean = 0;
3883 rx_ring->next_to_use = 0;
3884 }
3885
3886 /**
3887 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3888 * @adapter: board private structure
3889 **/
3890 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3891 {
3892 int i;
3893
3894 for (i = 0; i < adapter->num_rx_queues; i++)
3895 if (adapter->rx_ring[i])
3896 igb_clean_rx_ring(adapter->rx_ring[i]);
3897 }
3898
3899 /**
3900 * igb_set_mac - Change the Ethernet Address of the NIC
3901 * @netdev: network interface device structure
3902 * @p: pointer to an address structure
3903 *
3904 * Returns 0 on success, negative on failure
3905 **/
3906 static int igb_set_mac(struct net_device *netdev, void *p)
3907 {
3908 struct igb_adapter *adapter = netdev_priv(netdev);
3909 struct e1000_hw *hw = &adapter->hw;
3910 struct sockaddr *addr = p;
3911
3912 if (!is_valid_ether_addr(addr->sa_data))
3913 return -EADDRNOTAVAIL;
3914
3915 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3916 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3917
3918 /* set the correct pool for the new PF MAC address in entry 0 */
3919 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3920 adapter->vfs_allocated_count);
3921
3922 return 0;
3923 }
3924
3925 /**
3926 * igb_write_mc_addr_list - write multicast addresses to MTA
3927 * @netdev: network interface device structure
3928 *
3929 * Writes multicast address list to the MTA hash table.
3930 * Returns: -ENOMEM on failure
3931 * 0 on no addresses written
3932 * X on writing X addresses to MTA
3933 **/
3934 static int igb_write_mc_addr_list(struct net_device *netdev)
3935 {
3936 struct igb_adapter *adapter = netdev_priv(netdev);
3937 struct e1000_hw *hw = &adapter->hw;
3938 struct netdev_hw_addr *ha;
3939 u8 *mta_list;
3940 int i;
3941
3942 if (netdev_mc_empty(netdev)) {
3943 /* nothing to program, so clear mc list */
3944 igb_update_mc_addr_list(hw, NULL, 0);
3945 igb_restore_vf_multicasts(adapter);
3946 return 0;
3947 }
3948
3949 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3950 if (!mta_list)
3951 return -ENOMEM;
3952
3953 /* The shared function expects a packed array of only addresses. */
3954 i = 0;
3955 netdev_for_each_mc_addr(ha, netdev)
3956 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3957
3958 igb_update_mc_addr_list(hw, mta_list, i);
3959 kfree(mta_list);
3960
3961 return netdev_mc_count(netdev);
3962 }
3963
3964 /**
3965 * igb_write_uc_addr_list - write unicast addresses to RAR table
3966 * @netdev: network interface device structure
3967 *
3968 * Writes unicast address list to the RAR table.
3969 * Returns: -ENOMEM on failure/insufficient address space
3970 * 0 on no addresses written
3971 * X on writing X addresses to the RAR table
3972 **/
3973 static int igb_write_uc_addr_list(struct net_device *netdev)
3974 {
3975 struct igb_adapter *adapter = netdev_priv(netdev);
3976 struct e1000_hw *hw = &adapter->hw;
3977 unsigned int vfn = adapter->vfs_allocated_count;
3978 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3979 int count = 0;
3980
3981 /* return ENOMEM indicating insufficient memory for addresses */
3982 if (netdev_uc_count(netdev) > rar_entries)
3983 return -ENOMEM;
3984
3985 if (!netdev_uc_empty(netdev) && rar_entries) {
3986 struct netdev_hw_addr *ha;
3987
3988 netdev_for_each_uc_addr(ha, netdev) {
3989 if (!rar_entries)
3990 break;
3991 igb_rar_set_qsel(adapter, ha->addr,
3992 rar_entries--,
3993 vfn);
3994 count++;
3995 }
3996 }
3997 /* write the addresses in reverse order to avoid write combining */
3998 for (; rar_entries > 0 ; rar_entries--) {
3999 wr32(E1000_RAH(rar_entries), 0);
4000 wr32(E1000_RAL(rar_entries), 0);
4001 }
4002 wrfl();
4003
4004 return count;
4005 }
4006
4007 /**
4008 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4009 * @netdev: network interface device structure
4010 *
4011 * The set_rx_mode entry point is called whenever the unicast or multicast
4012 * address lists or the network interface flags are updated. This routine is
4013 * responsible for configuring the hardware for proper unicast, multicast,
4014 * promiscuous mode, and all-multi behavior.
4015 **/
4016 static void igb_set_rx_mode(struct net_device *netdev)
4017 {
4018 struct igb_adapter *adapter = netdev_priv(netdev);
4019 struct e1000_hw *hw = &adapter->hw;
4020 unsigned int vfn = adapter->vfs_allocated_count;
4021 u32 rctl, vmolr = 0;
4022 int count;
4023
4024 /* Check for Promiscuous and All Multicast modes */
4025 rctl = rd32(E1000_RCTL);
4026
4027 /* clear the effected bits */
4028 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4029
4030 if (netdev->flags & IFF_PROMISC) {
4031 /* retain VLAN HW filtering if in VT mode */
4032 if (adapter->vfs_allocated_count)
4033 rctl |= E1000_RCTL_VFE;
4034 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4035 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4036 } else {
4037 if (netdev->flags & IFF_ALLMULTI) {
4038 rctl |= E1000_RCTL_MPE;
4039 vmolr |= E1000_VMOLR_MPME;
4040 } else {
4041 /* Write addresses to the MTA, if the attempt fails
4042 * then we should just turn on promiscuous mode so
4043 * that we can at least receive multicast traffic
4044 */
4045 count = igb_write_mc_addr_list(netdev);
4046 if (count < 0) {
4047 rctl |= E1000_RCTL_MPE;
4048 vmolr |= E1000_VMOLR_MPME;
4049 } else if (count) {
4050 vmolr |= E1000_VMOLR_ROMPE;
4051 }
4052 }
4053 /* Write addresses to available RAR registers, if there is not
4054 * sufficient space to store all the addresses then enable
4055 * unicast promiscuous mode
4056 */
4057 count = igb_write_uc_addr_list(netdev);
4058 if (count < 0) {
4059 rctl |= E1000_RCTL_UPE;
4060 vmolr |= E1000_VMOLR_ROPE;
4061 }
4062 rctl |= E1000_RCTL_VFE;
4063 }
4064 wr32(E1000_RCTL, rctl);
4065
4066 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4067 * the VMOLR to enable the appropriate modes. Without this workaround
4068 * we will have issues with VLAN tag stripping not being done for frames
4069 * that are only arriving because we are the default pool
4070 */
4071 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4072 return;
4073
4074 vmolr |= rd32(E1000_VMOLR(vfn)) &
4075 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4076 wr32(E1000_VMOLR(vfn), vmolr);
4077 igb_restore_vf_multicasts(adapter);
4078 }
4079
4080 static void igb_check_wvbr(struct igb_adapter *adapter)
4081 {
4082 struct e1000_hw *hw = &adapter->hw;
4083 u32 wvbr = 0;
4084
4085 switch (hw->mac.type) {
4086 case e1000_82576:
4087 case e1000_i350:
4088 wvbr = rd32(E1000_WVBR);
4089 if (!wvbr)
4090 return;
4091 break;
4092 default:
4093 break;
4094 }
4095
4096 adapter->wvbr |= wvbr;
4097 }
4098
4099 #define IGB_STAGGERED_QUEUE_OFFSET 8
4100
4101 static void igb_spoof_check(struct igb_adapter *adapter)
4102 {
4103 int j;
4104
4105 if (!adapter->wvbr)
4106 return;
4107
4108 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4109 if (adapter->wvbr & (1 << j) ||
4110 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4111 dev_warn(&adapter->pdev->dev,
4112 "Spoof event(s) detected on VF %d\n", j);
4113 adapter->wvbr &=
4114 ~((1 << j) |
4115 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4116 }
4117 }
4118 }
4119
4120 /* Need to wait a few seconds after link up to get diagnostic information from
4121 * the phy
4122 */
4123 static void igb_update_phy_info(unsigned long data)
4124 {
4125 struct igb_adapter *adapter = (struct igb_adapter *) data;
4126 igb_get_phy_info(&adapter->hw);
4127 }
4128
4129 /**
4130 * igb_has_link - check shared code for link and determine up/down
4131 * @adapter: pointer to driver private info
4132 **/
4133 bool igb_has_link(struct igb_adapter *adapter)
4134 {
4135 struct e1000_hw *hw = &adapter->hw;
4136 bool link_active = false;
4137
4138 /* get_link_status is set on LSC (link status) interrupt or
4139 * rx sequence error interrupt. get_link_status will stay
4140 * false until the e1000_check_for_link establishes link
4141 * for copper adapters ONLY
4142 */
4143 switch (hw->phy.media_type) {
4144 case e1000_media_type_copper:
4145 if (!hw->mac.get_link_status)
4146 return true;
4147 case e1000_media_type_internal_serdes:
4148 hw->mac.ops.check_for_link(hw);
4149 link_active = !hw->mac.get_link_status;
4150 break;
4151 default:
4152 case e1000_media_type_unknown:
4153 break;
4154 }
4155
4156 if (((hw->mac.type == e1000_i210) ||
4157 (hw->mac.type == e1000_i211)) &&
4158 (hw->phy.id == I210_I_PHY_ID)) {
4159 if (!netif_carrier_ok(adapter->netdev)) {
4160 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4161 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4162 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4163 adapter->link_check_timeout = jiffies;
4164 }
4165 }
4166
4167 return link_active;
4168 }
4169
4170 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4171 {
4172 bool ret = false;
4173 u32 ctrl_ext, thstat;
4174
4175 /* check for thermal sensor event on i350 copper only */
4176 if (hw->mac.type == e1000_i350) {
4177 thstat = rd32(E1000_THSTAT);
4178 ctrl_ext = rd32(E1000_CTRL_EXT);
4179
4180 if ((hw->phy.media_type == e1000_media_type_copper) &&
4181 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4182 ret = !!(thstat & event);
4183 }
4184
4185 return ret;
4186 }
4187
4188 /**
4189 * igb_check_lvmmc - check for malformed packets received
4190 * and indicated in LVMMC register
4191 * @adapter: pointer to adapter
4192 **/
4193 static void igb_check_lvmmc(struct igb_adapter *adapter)
4194 {
4195 struct e1000_hw *hw = &adapter->hw;
4196 u32 lvmmc;
4197
4198 lvmmc = rd32(E1000_LVMMC);
4199 if (lvmmc) {
4200 if (unlikely(net_ratelimit())) {
4201 netdev_warn(adapter->netdev,
4202 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4203 lvmmc);
4204 }
4205 }
4206 }
4207
4208 /**
4209 * igb_watchdog - Timer Call-back
4210 * @data: pointer to adapter cast into an unsigned long
4211 **/
4212 static void igb_watchdog(unsigned long data)
4213 {
4214 struct igb_adapter *adapter = (struct igb_adapter *)data;
4215 /* Do the rest outside of interrupt context */
4216 schedule_work(&adapter->watchdog_task);
4217 }
4218
4219 static void igb_watchdog_task(struct work_struct *work)
4220 {
4221 struct igb_adapter *adapter = container_of(work,
4222 struct igb_adapter,
4223 watchdog_task);
4224 struct e1000_hw *hw = &adapter->hw;
4225 struct e1000_phy_info *phy = &hw->phy;
4226 struct net_device *netdev = adapter->netdev;
4227 u32 link;
4228 int i;
4229 u32 connsw;
4230
4231 link = igb_has_link(adapter);
4232
4233 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4234 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4235 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4236 else
4237 link = false;
4238 }
4239
4240 /* Force link down if we have fiber to swap to */
4241 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4242 if (hw->phy.media_type == e1000_media_type_copper) {
4243 connsw = rd32(E1000_CONNSW);
4244 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4245 link = 0;
4246 }
4247 }
4248 if (link) {
4249 /* Perform a reset if the media type changed. */
4250 if (hw->dev_spec._82575.media_changed) {
4251 hw->dev_spec._82575.media_changed = false;
4252 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4253 igb_reset(adapter);
4254 }
4255 /* Cancel scheduled suspend requests. */
4256 pm_runtime_resume(netdev->dev.parent);
4257
4258 if (!netif_carrier_ok(netdev)) {
4259 u32 ctrl;
4260
4261 hw->mac.ops.get_speed_and_duplex(hw,
4262 &adapter->link_speed,
4263 &adapter->link_duplex);
4264
4265 ctrl = rd32(E1000_CTRL);
4266 /* Links status message must follow this format */
4267 netdev_info(netdev,
4268 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4269 netdev->name,
4270 adapter->link_speed,
4271 adapter->link_duplex == FULL_DUPLEX ?
4272 "Full" : "Half",
4273 (ctrl & E1000_CTRL_TFCE) &&
4274 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4275 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4276 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4277
4278 /* disable EEE if enabled */
4279 if ((adapter->flags & IGB_FLAG_EEE) &&
4280 (adapter->link_duplex == HALF_DUPLEX)) {
4281 dev_info(&adapter->pdev->dev,
4282 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4283 adapter->hw.dev_spec._82575.eee_disable = true;
4284 adapter->flags &= ~IGB_FLAG_EEE;
4285 }
4286
4287 /* check if SmartSpeed worked */
4288 igb_check_downshift(hw);
4289 if (phy->speed_downgraded)
4290 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4291
4292 /* check for thermal sensor event */
4293 if (igb_thermal_sensor_event(hw,
4294 E1000_THSTAT_LINK_THROTTLE))
4295 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4296
4297 /* adjust timeout factor according to speed/duplex */
4298 adapter->tx_timeout_factor = 1;
4299 switch (adapter->link_speed) {
4300 case SPEED_10:
4301 adapter->tx_timeout_factor = 14;
4302 break;
4303 case SPEED_100:
4304 /* maybe add some timeout factor ? */
4305 break;
4306 }
4307
4308 netif_carrier_on(netdev);
4309
4310 igb_ping_all_vfs(adapter);
4311 igb_check_vf_rate_limit(adapter);
4312
4313 /* link state has changed, schedule phy info update */
4314 if (!test_bit(__IGB_DOWN, &adapter->state))
4315 mod_timer(&adapter->phy_info_timer,
4316 round_jiffies(jiffies + 2 * HZ));
4317 }
4318 } else {
4319 if (netif_carrier_ok(netdev)) {
4320 adapter->link_speed = 0;
4321 adapter->link_duplex = 0;
4322
4323 /* check for thermal sensor event */
4324 if (igb_thermal_sensor_event(hw,
4325 E1000_THSTAT_PWR_DOWN)) {
4326 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4327 }
4328
4329 /* Links status message must follow this format */
4330 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4331 netdev->name);
4332 netif_carrier_off(netdev);
4333
4334 igb_ping_all_vfs(adapter);
4335
4336 /* link state has changed, schedule phy info update */
4337 if (!test_bit(__IGB_DOWN, &adapter->state))
4338 mod_timer(&adapter->phy_info_timer,
4339 round_jiffies(jiffies + 2 * HZ));
4340
4341 /* link is down, time to check for alternate media */
4342 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4343 igb_check_swap_media(adapter);
4344 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4345 schedule_work(&adapter->reset_task);
4346 /* return immediately */
4347 return;
4348 }
4349 }
4350 pm_schedule_suspend(netdev->dev.parent,
4351 MSEC_PER_SEC * 5);
4352
4353 /* also check for alternate media here */
4354 } else if (!netif_carrier_ok(netdev) &&
4355 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4356 igb_check_swap_media(adapter);
4357 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4358 schedule_work(&adapter->reset_task);
4359 /* return immediately */
4360 return;
4361 }
4362 }
4363 }
4364
4365 spin_lock(&adapter->stats64_lock);
4366 igb_update_stats(adapter, &adapter->stats64);
4367 spin_unlock(&adapter->stats64_lock);
4368
4369 for (i = 0; i < adapter->num_tx_queues; i++) {
4370 struct igb_ring *tx_ring = adapter->tx_ring[i];
4371 if (!netif_carrier_ok(netdev)) {
4372 /* We've lost link, so the controller stops DMA,
4373 * but we've got queued Tx work that's never going
4374 * to get done, so reset controller to flush Tx.
4375 * (Do the reset outside of interrupt context).
4376 */
4377 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4378 adapter->tx_timeout_count++;
4379 schedule_work(&adapter->reset_task);
4380 /* return immediately since reset is imminent */
4381 return;
4382 }
4383 }
4384
4385 /* Force detection of hung controller every watchdog period */
4386 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4387 }
4388
4389 /* Cause software interrupt to ensure Rx ring is cleaned */
4390 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4391 u32 eics = 0;
4392
4393 for (i = 0; i < adapter->num_q_vectors; i++)
4394 eics |= adapter->q_vector[i]->eims_value;
4395 wr32(E1000_EICS, eics);
4396 } else {
4397 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4398 }
4399
4400 igb_spoof_check(adapter);
4401 igb_ptp_rx_hang(adapter);
4402
4403 /* Check LVMMC register on i350/i354 only */
4404 if ((adapter->hw.mac.type == e1000_i350) ||
4405 (adapter->hw.mac.type == e1000_i354))
4406 igb_check_lvmmc(adapter);
4407
4408 /* Reset the timer */
4409 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4410 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4411 mod_timer(&adapter->watchdog_timer,
4412 round_jiffies(jiffies + HZ));
4413 else
4414 mod_timer(&adapter->watchdog_timer,
4415 round_jiffies(jiffies + 2 * HZ));
4416 }
4417 }
4418
4419 enum latency_range {
4420 lowest_latency = 0,
4421 low_latency = 1,
4422 bulk_latency = 2,
4423 latency_invalid = 255
4424 };
4425
4426 /**
4427 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4428 * @q_vector: pointer to q_vector
4429 *
4430 * Stores a new ITR value based on strictly on packet size. This
4431 * algorithm is less sophisticated than that used in igb_update_itr,
4432 * due to the difficulty of synchronizing statistics across multiple
4433 * receive rings. The divisors and thresholds used by this function
4434 * were determined based on theoretical maximum wire speed and testing
4435 * data, in order to minimize response time while increasing bulk
4436 * throughput.
4437 * This functionality is controlled by ethtool's coalescing settings.
4438 * NOTE: This function is called only when operating in a multiqueue
4439 * receive environment.
4440 **/
4441 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4442 {
4443 int new_val = q_vector->itr_val;
4444 int avg_wire_size = 0;
4445 struct igb_adapter *adapter = q_vector->adapter;
4446 unsigned int packets;
4447
4448 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4449 * ints/sec - ITR timer value of 120 ticks.
4450 */
4451 if (adapter->link_speed != SPEED_1000) {
4452 new_val = IGB_4K_ITR;
4453 goto set_itr_val;
4454 }
4455
4456 packets = q_vector->rx.total_packets;
4457 if (packets)
4458 avg_wire_size = q_vector->rx.total_bytes / packets;
4459
4460 packets = q_vector->tx.total_packets;
4461 if (packets)
4462 avg_wire_size = max_t(u32, avg_wire_size,
4463 q_vector->tx.total_bytes / packets);
4464
4465 /* if avg_wire_size isn't set no work was done */
4466 if (!avg_wire_size)
4467 goto clear_counts;
4468
4469 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4470 avg_wire_size += 24;
4471
4472 /* Don't starve jumbo frames */
4473 avg_wire_size = min(avg_wire_size, 3000);
4474
4475 /* Give a little boost to mid-size frames */
4476 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4477 new_val = avg_wire_size / 3;
4478 else
4479 new_val = avg_wire_size / 2;
4480
4481 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4482 if (new_val < IGB_20K_ITR &&
4483 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4484 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4485 new_val = IGB_20K_ITR;
4486
4487 set_itr_val:
4488 if (new_val != q_vector->itr_val) {
4489 q_vector->itr_val = new_val;
4490 q_vector->set_itr = 1;
4491 }
4492 clear_counts:
4493 q_vector->rx.total_bytes = 0;
4494 q_vector->rx.total_packets = 0;
4495 q_vector->tx.total_bytes = 0;
4496 q_vector->tx.total_packets = 0;
4497 }
4498
4499 /**
4500 * igb_update_itr - update the dynamic ITR value based on statistics
4501 * @q_vector: pointer to q_vector
4502 * @ring_container: ring info to update the itr for
4503 *
4504 * Stores a new ITR value based on packets and byte
4505 * counts during the last interrupt. The advantage of per interrupt
4506 * computation is faster updates and more accurate ITR for the current
4507 * traffic pattern. Constants in this function were computed
4508 * based on theoretical maximum wire speed and thresholds were set based
4509 * on testing data as well as attempting to minimize response time
4510 * while increasing bulk throughput.
4511 * This functionality is controlled by ethtool's coalescing settings.
4512 * NOTE: These calculations are only valid when operating in a single-
4513 * queue environment.
4514 **/
4515 static void igb_update_itr(struct igb_q_vector *q_vector,
4516 struct igb_ring_container *ring_container)
4517 {
4518 unsigned int packets = ring_container->total_packets;
4519 unsigned int bytes = ring_container->total_bytes;
4520 u8 itrval = ring_container->itr;
4521
4522 /* no packets, exit with status unchanged */
4523 if (packets == 0)
4524 return;
4525
4526 switch (itrval) {
4527 case lowest_latency:
4528 /* handle TSO and jumbo frames */
4529 if (bytes/packets > 8000)
4530 itrval = bulk_latency;
4531 else if ((packets < 5) && (bytes > 512))
4532 itrval = low_latency;
4533 break;
4534 case low_latency: /* 50 usec aka 20000 ints/s */
4535 if (bytes > 10000) {
4536 /* this if handles the TSO accounting */
4537 if (bytes/packets > 8000)
4538 itrval = bulk_latency;
4539 else if ((packets < 10) || ((bytes/packets) > 1200))
4540 itrval = bulk_latency;
4541 else if ((packets > 35))
4542 itrval = lowest_latency;
4543 } else if (bytes/packets > 2000) {
4544 itrval = bulk_latency;
4545 } else if (packets <= 2 && bytes < 512) {
4546 itrval = lowest_latency;
4547 }
4548 break;
4549 case bulk_latency: /* 250 usec aka 4000 ints/s */
4550 if (bytes > 25000) {
4551 if (packets > 35)
4552 itrval = low_latency;
4553 } else if (bytes < 1500) {
4554 itrval = low_latency;
4555 }
4556 break;
4557 }
4558
4559 /* clear work counters since we have the values we need */
4560 ring_container->total_bytes = 0;
4561 ring_container->total_packets = 0;
4562
4563 /* write updated itr to ring container */
4564 ring_container->itr = itrval;
4565 }
4566
4567 static void igb_set_itr(struct igb_q_vector *q_vector)
4568 {
4569 struct igb_adapter *adapter = q_vector->adapter;
4570 u32 new_itr = q_vector->itr_val;
4571 u8 current_itr = 0;
4572
4573 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4574 if (adapter->link_speed != SPEED_1000) {
4575 current_itr = 0;
4576 new_itr = IGB_4K_ITR;
4577 goto set_itr_now;
4578 }
4579
4580 igb_update_itr(q_vector, &q_vector->tx);
4581 igb_update_itr(q_vector, &q_vector->rx);
4582
4583 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4584
4585 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4586 if (current_itr == lowest_latency &&
4587 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4588 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4589 current_itr = low_latency;
4590
4591 switch (current_itr) {
4592 /* counts and packets in update_itr are dependent on these numbers */
4593 case lowest_latency:
4594 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4595 break;
4596 case low_latency:
4597 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4598 break;
4599 case bulk_latency:
4600 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4601 break;
4602 default:
4603 break;
4604 }
4605
4606 set_itr_now:
4607 if (new_itr != q_vector->itr_val) {
4608 /* this attempts to bias the interrupt rate towards Bulk
4609 * by adding intermediate steps when interrupt rate is
4610 * increasing
4611 */
4612 new_itr = new_itr > q_vector->itr_val ?
4613 max((new_itr * q_vector->itr_val) /
4614 (new_itr + (q_vector->itr_val >> 2)),
4615 new_itr) : new_itr;
4616 /* Don't write the value here; it resets the adapter's
4617 * internal timer, and causes us to delay far longer than
4618 * we should between interrupts. Instead, we write the ITR
4619 * value at the beginning of the next interrupt so the timing
4620 * ends up being correct.
4621 */
4622 q_vector->itr_val = new_itr;
4623 q_vector->set_itr = 1;
4624 }
4625 }
4626
4627 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4628 u32 type_tucmd, u32 mss_l4len_idx)
4629 {
4630 struct e1000_adv_tx_context_desc *context_desc;
4631 u16 i = tx_ring->next_to_use;
4632
4633 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4634
4635 i++;
4636 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4637
4638 /* set bits to identify this as an advanced context descriptor */
4639 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4640
4641 /* For 82575, context index must be unique per ring. */
4642 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4643 mss_l4len_idx |= tx_ring->reg_idx << 4;
4644
4645 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4646 context_desc->seqnum_seed = 0;
4647 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4648 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4649 }
4650
4651 static int igb_tso(struct igb_ring *tx_ring,
4652 struct igb_tx_buffer *first,
4653 u8 *hdr_len)
4654 {
4655 struct sk_buff *skb = first->skb;
4656 u32 vlan_macip_lens, type_tucmd;
4657 u32 mss_l4len_idx, l4len;
4658 int err;
4659
4660 if (skb->ip_summed != CHECKSUM_PARTIAL)
4661 return 0;
4662
4663 if (!skb_is_gso(skb))
4664 return 0;
4665
4666 err = skb_cow_head(skb, 0);
4667 if (err < 0)
4668 return err;
4669
4670 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4671 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4672
4673 if (first->protocol == htons(ETH_P_IP)) {
4674 struct iphdr *iph = ip_hdr(skb);
4675 iph->tot_len = 0;
4676 iph->check = 0;
4677 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4678 iph->daddr, 0,
4679 IPPROTO_TCP,
4680 0);
4681 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4682 first->tx_flags |= IGB_TX_FLAGS_TSO |
4683 IGB_TX_FLAGS_CSUM |
4684 IGB_TX_FLAGS_IPV4;
4685 } else if (skb_is_gso_v6(skb)) {
4686 ipv6_hdr(skb)->payload_len = 0;
4687 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4688 &ipv6_hdr(skb)->daddr,
4689 0, IPPROTO_TCP, 0);
4690 first->tx_flags |= IGB_TX_FLAGS_TSO |
4691 IGB_TX_FLAGS_CSUM;
4692 }
4693
4694 /* compute header lengths */
4695 l4len = tcp_hdrlen(skb);
4696 *hdr_len = skb_transport_offset(skb) + l4len;
4697
4698 /* update gso size and bytecount with header size */
4699 first->gso_segs = skb_shinfo(skb)->gso_segs;
4700 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4701
4702 /* MSS L4LEN IDX */
4703 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4704 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4705
4706 /* VLAN MACLEN IPLEN */
4707 vlan_macip_lens = skb_network_header_len(skb);
4708 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4709 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4710
4711 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4712
4713 return 1;
4714 }
4715
4716 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4717 {
4718 struct sk_buff *skb = first->skb;
4719 u32 vlan_macip_lens = 0;
4720 u32 mss_l4len_idx = 0;
4721 u32 type_tucmd = 0;
4722
4723 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4724 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4725 return;
4726 } else {
4727 u8 l4_hdr = 0;
4728
4729 switch (first->protocol) {
4730 case htons(ETH_P_IP):
4731 vlan_macip_lens |= skb_network_header_len(skb);
4732 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4733 l4_hdr = ip_hdr(skb)->protocol;
4734 break;
4735 case htons(ETH_P_IPV6):
4736 vlan_macip_lens |= skb_network_header_len(skb);
4737 l4_hdr = ipv6_hdr(skb)->nexthdr;
4738 break;
4739 default:
4740 if (unlikely(net_ratelimit())) {
4741 dev_warn(tx_ring->dev,
4742 "partial checksum but proto=%x!\n",
4743 first->protocol);
4744 }
4745 break;
4746 }
4747
4748 switch (l4_hdr) {
4749 case IPPROTO_TCP:
4750 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4751 mss_l4len_idx = tcp_hdrlen(skb) <<
4752 E1000_ADVTXD_L4LEN_SHIFT;
4753 break;
4754 case IPPROTO_SCTP:
4755 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4756 mss_l4len_idx = sizeof(struct sctphdr) <<
4757 E1000_ADVTXD_L4LEN_SHIFT;
4758 break;
4759 case IPPROTO_UDP:
4760 mss_l4len_idx = sizeof(struct udphdr) <<
4761 E1000_ADVTXD_L4LEN_SHIFT;
4762 break;
4763 default:
4764 if (unlikely(net_ratelimit())) {
4765 dev_warn(tx_ring->dev,
4766 "partial checksum but l4 proto=%x!\n",
4767 l4_hdr);
4768 }
4769 break;
4770 }
4771
4772 /* update TX checksum flag */
4773 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4774 }
4775
4776 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4777 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4778
4779 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4780 }
4781
4782 #define IGB_SET_FLAG(_input, _flag, _result) \
4783 ((_flag <= _result) ? \
4784 ((u32)(_input & _flag) * (_result / _flag)) : \
4785 ((u32)(_input & _flag) / (_flag / _result)))
4786
4787 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4788 {
4789 /* set type for advanced descriptor with frame checksum insertion */
4790 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4791 E1000_ADVTXD_DCMD_DEXT |
4792 E1000_ADVTXD_DCMD_IFCS;
4793
4794 /* set HW vlan bit if vlan is present */
4795 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4796 (E1000_ADVTXD_DCMD_VLE));
4797
4798 /* set segmentation bits for TSO */
4799 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4800 (E1000_ADVTXD_DCMD_TSE));
4801
4802 /* set timestamp bit if present */
4803 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4804 (E1000_ADVTXD_MAC_TSTAMP));
4805
4806 /* insert frame checksum */
4807 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4808
4809 return cmd_type;
4810 }
4811
4812 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4813 union e1000_adv_tx_desc *tx_desc,
4814 u32 tx_flags, unsigned int paylen)
4815 {
4816 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4817
4818 /* 82575 requires a unique index per ring */
4819 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4820 olinfo_status |= tx_ring->reg_idx << 4;
4821
4822 /* insert L4 checksum */
4823 olinfo_status |= IGB_SET_FLAG(tx_flags,
4824 IGB_TX_FLAGS_CSUM,
4825 (E1000_TXD_POPTS_TXSM << 8));
4826
4827 /* insert IPv4 checksum */
4828 olinfo_status |= IGB_SET_FLAG(tx_flags,
4829 IGB_TX_FLAGS_IPV4,
4830 (E1000_TXD_POPTS_IXSM << 8));
4831
4832 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4833 }
4834
4835 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4836 {
4837 struct net_device *netdev = tx_ring->netdev;
4838
4839 netif_stop_subqueue(netdev, tx_ring->queue_index);
4840
4841 /* Herbert's original patch had:
4842 * smp_mb__after_netif_stop_queue();
4843 * but since that doesn't exist yet, just open code it.
4844 */
4845 smp_mb();
4846
4847 /* We need to check again in a case another CPU has just
4848 * made room available.
4849 */
4850 if (igb_desc_unused(tx_ring) < size)
4851 return -EBUSY;
4852
4853 /* A reprieve! */
4854 netif_wake_subqueue(netdev, tx_ring->queue_index);
4855
4856 u64_stats_update_begin(&tx_ring->tx_syncp2);
4857 tx_ring->tx_stats.restart_queue2++;
4858 u64_stats_update_end(&tx_ring->tx_syncp2);
4859
4860 return 0;
4861 }
4862
4863 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4864 {
4865 if (igb_desc_unused(tx_ring) >= size)
4866 return 0;
4867 return __igb_maybe_stop_tx(tx_ring, size);
4868 }
4869
4870 static void igb_tx_map(struct igb_ring *tx_ring,
4871 struct igb_tx_buffer *first,
4872 const u8 hdr_len)
4873 {
4874 struct sk_buff *skb = first->skb;
4875 struct igb_tx_buffer *tx_buffer;
4876 union e1000_adv_tx_desc *tx_desc;
4877 struct skb_frag_struct *frag;
4878 dma_addr_t dma;
4879 unsigned int data_len, size;
4880 u32 tx_flags = first->tx_flags;
4881 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4882 u16 i = tx_ring->next_to_use;
4883
4884 tx_desc = IGB_TX_DESC(tx_ring, i);
4885
4886 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4887
4888 size = skb_headlen(skb);
4889 data_len = skb->data_len;
4890
4891 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4892
4893 tx_buffer = first;
4894
4895 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4896 if (dma_mapping_error(tx_ring->dev, dma))
4897 goto dma_error;
4898
4899 /* record length, and DMA address */
4900 dma_unmap_len_set(tx_buffer, len, size);
4901 dma_unmap_addr_set(tx_buffer, dma, dma);
4902
4903 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4904
4905 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4906 tx_desc->read.cmd_type_len =
4907 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4908
4909 i++;
4910 tx_desc++;
4911 if (i == tx_ring->count) {
4912 tx_desc = IGB_TX_DESC(tx_ring, 0);
4913 i = 0;
4914 }
4915 tx_desc->read.olinfo_status = 0;
4916
4917 dma += IGB_MAX_DATA_PER_TXD;
4918 size -= IGB_MAX_DATA_PER_TXD;
4919
4920 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4921 }
4922
4923 if (likely(!data_len))
4924 break;
4925
4926 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4927
4928 i++;
4929 tx_desc++;
4930 if (i == tx_ring->count) {
4931 tx_desc = IGB_TX_DESC(tx_ring, 0);
4932 i = 0;
4933 }
4934 tx_desc->read.olinfo_status = 0;
4935
4936 size = skb_frag_size(frag);
4937 data_len -= size;
4938
4939 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4940 size, DMA_TO_DEVICE);
4941
4942 tx_buffer = &tx_ring->tx_buffer_info[i];
4943 }
4944
4945 /* write last descriptor with RS and EOP bits */
4946 cmd_type |= size | IGB_TXD_DCMD;
4947 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4948
4949 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4950
4951 /* set the timestamp */
4952 first->time_stamp = jiffies;
4953
4954 /* Force memory writes to complete before letting h/w know there
4955 * are new descriptors to fetch. (Only applicable for weak-ordered
4956 * memory model archs, such as IA-64).
4957 *
4958 * We also need this memory barrier to make certain all of the
4959 * status bits have been updated before next_to_watch is written.
4960 */
4961 wmb();
4962
4963 /* set next_to_watch value indicating a packet is present */
4964 first->next_to_watch = tx_desc;
4965
4966 i++;
4967 if (i == tx_ring->count)
4968 i = 0;
4969
4970 tx_ring->next_to_use = i;
4971
4972 /* Make sure there is space in the ring for the next send. */
4973 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4974
4975 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4976 writel(i, tx_ring->tail);
4977
4978 /* we need this if more than one processor can write to our tail
4979 * at a time, it synchronizes IO on IA64/Altix systems
4980 */
4981 mmiowb();
4982 }
4983 return;
4984
4985 dma_error:
4986 dev_err(tx_ring->dev, "TX DMA map failed\n");
4987
4988 /* clear dma mappings for failed tx_buffer_info map */
4989 for (;;) {
4990 tx_buffer = &tx_ring->tx_buffer_info[i];
4991 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4992 if (tx_buffer == first)
4993 break;
4994 if (i == 0)
4995 i = tx_ring->count;
4996 i--;
4997 }
4998
4999 tx_ring->next_to_use = i;
5000 }
5001
5002 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5003 struct igb_ring *tx_ring)
5004 {
5005 struct igb_tx_buffer *first;
5006 int tso;
5007 u32 tx_flags = 0;
5008 unsigned short f;
5009 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5010 __be16 protocol = vlan_get_protocol(skb);
5011 u8 hdr_len = 0;
5012
5013 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5014 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5015 * + 2 desc gap to keep tail from touching head,
5016 * + 1 desc for context descriptor,
5017 * otherwise try next time
5018 */
5019 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5020 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5021
5022 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5023 /* this is a hard error */
5024 return NETDEV_TX_BUSY;
5025 }
5026
5027 /* record the location of the first descriptor for this packet */
5028 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5029 first->skb = skb;
5030 first->bytecount = skb->len;
5031 first->gso_segs = 1;
5032
5033 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5034 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5035
5036 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5037 &adapter->state)) {
5038 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5039 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5040
5041 adapter->ptp_tx_skb = skb_get(skb);
5042 adapter->ptp_tx_start = jiffies;
5043 if (adapter->hw.mac.type == e1000_82576)
5044 schedule_work(&adapter->ptp_tx_work);
5045 }
5046 }
5047
5048 skb_tx_timestamp(skb);
5049
5050 if (skb_vlan_tag_present(skb)) {
5051 tx_flags |= IGB_TX_FLAGS_VLAN;
5052 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5053 }
5054
5055 /* record initial flags and protocol */
5056 first->tx_flags = tx_flags;
5057 first->protocol = protocol;
5058
5059 tso = igb_tso(tx_ring, first, &hdr_len);
5060 if (tso < 0)
5061 goto out_drop;
5062 else if (!tso)
5063 igb_tx_csum(tx_ring, first);
5064
5065 igb_tx_map(tx_ring, first, hdr_len);
5066
5067 return NETDEV_TX_OK;
5068
5069 out_drop:
5070 igb_unmap_and_free_tx_resource(tx_ring, first);
5071
5072 return NETDEV_TX_OK;
5073 }
5074
5075 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5076 struct sk_buff *skb)
5077 {
5078 unsigned int r_idx = skb->queue_mapping;
5079
5080 if (r_idx >= adapter->num_tx_queues)
5081 r_idx = r_idx % adapter->num_tx_queues;
5082
5083 return adapter->tx_ring[r_idx];
5084 }
5085
5086 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5087 struct net_device *netdev)
5088 {
5089 struct igb_adapter *adapter = netdev_priv(netdev);
5090
5091 if (test_bit(__IGB_DOWN, &adapter->state)) {
5092 dev_kfree_skb_any(skb);
5093 return NETDEV_TX_OK;
5094 }
5095
5096 if (skb->len <= 0) {
5097 dev_kfree_skb_any(skb);
5098 return NETDEV_TX_OK;
5099 }
5100
5101 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5102 * in order to meet this minimum size requirement.
5103 */
5104 if (skb_put_padto(skb, 17))
5105 return NETDEV_TX_OK;
5106
5107 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5108 }
5109
5110 /**
5111 * igb_tx_timeout - Respond to a Tx Hang
5112 * @netdev: network interface device structure
5113 **/
5114 static void igb_tx_timeout(struct net_device *netdev)
5115 {
5116 struct igb_adapter *adapter = netdev_priv(netdev);
5117 struct e1000_hw *hw = &adapter->hw;
5118
5119 /* Do the reset outside of interrupt context */
5120 adapter->tx_timeout_count++;
5121
5122 if (hw->mac.type >= e1000_82580)
5123 hw->dev_spec._82575.global_device_reset = true;
5124
5125 schedule_work(&adapter->reset_task);
5126 wr32(E1000_EICS,
5127 (adapter->eims_enable_mask & ~adapter->eims_other));
5128 }
5129
5130 static void igb_reset_task(struct work_struct *work)
5131 {
5132 struct igb_adapter *adapter;
5133 adapter = container_of(work, struct igb_adapter, reset_task);
5134
5135 igb_dump(adapter);
5136 netdev_err(adapter->netdev, "Reset adapter\n");
5137 igb_reinit_locked(adapter);
5138 }
5139
5140 /**
5141 * igb_get_stats64 - Get System Network Statistics
5142 * @netdev: network interface device structure
5143 * @stats: rtnl_link_stats64 pointer
5144 **/
5145 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5146 struct rtnl_link_stats64 *stats)
5147 {
5148 struct igb_adapter *adapter = netdev_priv(netdev);
5149
5150 spin_lock(&adapter->stats64_lock);
5151 igb_update_stats(adapter, &adapter->stats64);
5152 memcpy(stats, &adapter->stats64, sizeof(*stats));
5153 spin_unlock(&adapter->stats64_lock);
5154
5155 return stats;
5156 }
5157
5158 /**
5159 * igb_change_mtu - Change the Maximum Transfer Unit
5160 * @netdev: network interface device structure
5161 * @new_mtu: new value for maximum frame size
5162 *
5163 * Returns 0 on success, negative on failure
5164 **/
5165 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5166 {
5167 struct igb_adapter *adapter = netdev_priv(netdev);
5168 struct pci_dev *pdev = adapter->pdev;
5169 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5170
5171 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5172 dev_err(&pdev->dev, "Invalid MTU setting\n");
5173 return -EINVAL;
5174 }
5175
5176 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5177 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5178 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5179 return -EINVAL;
5180 }
5181
5182 /* adjust max frame to be at least the size of a standard frame */
5183 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5184 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5185
5186 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5187 usleep_range(1000, 2000);
5188
5189 /* igb_down has a dependency on max_frame_size */
5190 adapter->max_frame_size = max_frame;
5191
5192 if (netif_running(netdev))
5193 igb_down(adapter);
5194
5195 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5196 netdev->mtu, new_mtu);
5197 netdev->mtu = new_mtu;
5198
5199 if (netif_running(netdev))
5200 igb_up(adapter);
5201 else
5202 igb_reset(adapter);
5203
5204 clear_bit(__IGB_RESETTING, &adapter->state);
5205
5206 return 0;
5207 }
5208
5209 /**
5210 * igb_update_stats - Update the board statistics counters
5211 * @adapter: board private structure
5212 **/
5213 void igb_update_stats(struct igb_adapter *adapter,
5214 struct rtnl_link_stats64 *net_stats)
5215 {
5216 struct e1000_hw *hw = &adapter->hw;
5217 struct pci_dev *pdev = adapter->pdev;
5218 u32 reg, mpc;
5219 int i;
5220 u64 bytes, packets;
5221 unsigned int start;
5222 u64 _bytes, _packets;
5223
5224 /* Prevent stats update while adapter is being reset, or if the pci
5225 * connection is down.
5226 */
5227 if (adapter->link_speed == 0)
5228 return;
5229 if (pci_channel_offline(pdev))
5230 return;
5231
5232 bytes = 0;
5233 packets = 0;
5234
5235 rcu_read_lock();
5236 for (i = 0; i < adapter->num_rx_queues; i++) {
5237 struct igb_ring *ring = adapter->rx_ring[i];
5238 u32 rqdpc = rd32(E1000_RQDPC(i));
5239 if (hw->mac.type >= e1000_i210)
5240 wr32(E1000_RQDPC(i), 0);
5241
5242 if (rqdpc) {
5243 ring->rx_stats.drops += rqdpc;
5244 net_stats->rx_fifo_errors += rqdpc;
5245 }
5246
5247 do {
5248 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5249 _bytes = ring->rx_stats.bytes;
5250 _packets = ring->rx_stats.packets;
5251 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5252 bytes += _bytes;
5253 packets += _packets;
5254 }
5255
5256 net_stats->rx_bytes = bytes;
5257 net_stats->rx_packets = packets;
5258
5259 bytes = 0;
5260 packets = 0;
5261 for (i = 0; i < adapter->num_tx_queues; i++) {
5262 struct igb_ring *ring = adapter->tx_ring[i];
5263 do {
5264 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5265 _bytes = ring->tx_stats.bytes;
5266 _packets = ring->tx_stats.packets;
5267 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5268 bytes += _bytes;
5269 packets += _packets;
5270 }
5271 net_stats->tx_bytes = bytes;
5272 net_stats->tx_packets = packets;
5273 rcu_read_unlock();
5274
5275 /* read stats registers */
5276 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5277 adapter->stats.gprc += rd32(E1000_GPRC);
5278 adapter->stats.gorc += rd32(E1000_GORCL);
5279 rd32(E1000_GORCH); /* clear GORCL */
5280 adapter->stats.bprc += rd32(E1000_BPRC);
5281 adapter->stats.mprc += rd32(E1000_MPRC);
5282 adapter->stats.roc += rd32(E1000_ROC);
5283
5284 adapter->stats.prc64 += rd32(E1000_PRC64);
5285 adapter->stats.prc127 += rd32(E1000_PRC127);
5286 adapter->stats.prc255 += rd32(E1000_PRC255);
5287 adapter->stats.prc511 += rd32(E1000_PRC511);
5288 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5289 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5290 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5291 adapter->stats.sec += rd32(E1000_SEC);
5292
5293 mpc = rd32(E1000_MPC);
5294 adapter->stats.mpc += mpc;
5295 net_stats->rx_fifo_errors += mpc;
5296 adapter->stats.scc += rd32(E1000_SCC);
5297 adapter->stats.ecol += rd32(E1000_ECOL);
5298 adapter->stats.mcc += rd32(E1000_MCC);
5299 adapter->stats.latecol += rd32(E1000_LATECOL);
5300 adapter->stats.dc += rd32(E1000_DC);
5301 adapter->stats.rlec += rd32(E1000_RLEC);
5302 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5303 adapter->stats.xontxc += rd32(E1000_XONTXC);
5304 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5305 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5306 adapter->stats.fcruc += rd32(E1000_FCRUC);
5307 adapter->stats.gptc += rd32(E1000_GPTC);
5308 adapter->stats.gotc += rd32(E1000_GOTCL);
5309 rd32(E1000_GOTCH); /* clear GOTCL */
5310 adapter->stats.rnbc += rd32(E1000_RNBC);
5311 adapter->stats.ruc += rd32(E1000_RUC);
5312 adapter->stats.rfc += rd32(E1000_RFC);
5313 adapter->stats.rjc += rd32(E1000_RJC);
5314 adapter->stats.tor += rd32(E1000_TORH);
5315 adapter->stats.tot += rd32(E1000_TOTH);
5316 adapter->stats.tpr += rd32(E1000_TPR);
5317
5318 adapter->stats.ptc64 += rd32(E1000_PTC64);
5319 adapter->stats.ptc127 += rd32(E1000_PTC127);
5320 adapter->stats.ptc255 += rd32(E1000_PTC255);
5321 adapter->stats.ptc511 += rd32(E1000_PTC511);
5322 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5323 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5324
5325 adapter->stats.mptc += rd32(E1000_MPTC);
5326 adapter->stats.bptc += rd32(E1000_BPTC);
5327
5328 adapter->stats.tpt += rd32(E1000_TPT);
5329 adapter->stats.colc += rd32(E1000_COLC);
5330
5331 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5332 /* read internal phy specific stats */
5333 reg = rd32(E1000_CTRL_EXT);
5334 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5335 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5336
5337 /* this stat has invalid values on i210/i211 */
5338 if ((hw->mac.type != e1000_i210) &&
5339 (hw->mac.type != e1000_i211))
5340 adapter->stats.tncrs += rd32(E1000_TNCRS);
5341 }
5342
5343 adapter->stats.tsctc += rd32(E1000_TSCTC);
5344 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5345
5346 adapter->stats.iac += rd32(E1000_IAC);
5347 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5348 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5349 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5350 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5351 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5352 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5353 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5354 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5355
5356 /* Fill out the OS statistics structure */
5357 net_stats->multicast = adapter->stats.mprc;
5358 net_stats->collisions = adapter->stats.colc;
5359
5360 /* Rx Errors */
5361
5362 /* RLEC on some newer hardware can be incorrect so build
5363 * our own version based on RUC and ROC
5364 */
5365 net_stats->rx_errors = adapter->stats.rxerrc +
5366 adapter->stats.crcerrs + adapter->stats.algnerrc +
5367 adapter->stats.ruc + adapter->stats.roc +
5368 adapter->stats.cexterr;
5369 net_stats->rx_length_errors = adapter->stats.ruc +
5370 adapter->stats.roc;
5371 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5372 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5373 net_stats->rx_missed_errors = adapter->stats.mpc;
5374
5375 /* Tx Errors */
5376 net_stats->tx_errors = adapter->stats.ecol +
5377 adapter->stats.latecol;
5378 net_stats->tx_aborted_errors = adapter->stats.ecol;
5379 net_stats->tx_window_errors = adapter->stats.latecol;
5380 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5381
5382 /* Tx Dropped needs to be maintained elsewhere */
5383
5384 /* Management Stats */
5385 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5386 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5387 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5388
5389 /* OS2BMC Stats */
5390 reg = rd32(E1000_MANC);
5391 if (reg & E1000_MANC_EN_BMC2OS) {
5392 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5393 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5394 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5395 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5396 }
5397 }
5398
5399 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5400 {
5401 struct e1000_hw *hw = &adapter->hw;
5402 struct ptp_clock_event event;
5403 struct timespec64 ts;
5404 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5405
5406 if (tsicr & TSINTR_SYS_WRAP) {
5407 event.type = PTP_CLOCK_PPS;
5408 if (adapter->ptp_caps.pps)
5409 ptp_clock_event(adapter->ptp_clock, &event);
5410 else
5411 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5412 ack |= TSINTR_SYS_WRAP;
5413 }
5414
5415 if (tsicr & E1000_TSICR_TXTS) {
5416 /* retrieve hardware timestamp */
5417 schedule_work(&adapter->ptp_tx_work);
5418 ack |= E1000_TSICR_TXTS;
5419 }
5420
5421 if (tsicr & TSINTR_TT0) {
5422 spin_lock(&adapter->tmreg_lock);
5423 ts = timespec64_add(adapter->perout[0].start,
5424 adapter->perout[0].period);
5425 /* u32 conversion of tv_sec is safe until y2106 */
5426 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5427 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5428 tsauxc = rd32(E1000_TSAUXC);
5429 tsauxc |= TSAUXC_EN_TT0;
5430 wr32(E1000_TSAUXC, tsauxc);
5431 adapter->perout[0].start = ts;
5432 spin_unlock(&adapter->tmreg_lock);
5433 ack |= TSINTR_TT0;
5434 }
5435
5436 if (tsicr & TSINTR_TT1) {
5437 spin_lock(&adapter->tmreg_lock);
5438 ts = timespec64_add(adapter->perout[1].start,
5439 adapter->perout[1].period);
5440 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5441 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5442 tsauxc = rd32(E1000_TSAUXC);
5443 tsauxc |= TSAUXC_EN_TT1;
5444 wr32(E1000_TSAUXC, tsauxc);
5445 adapter->perout[1].start = ts;
5446 spin_unlock(&adapter->tmreg_lock);
5447 ack |= TSINTR_TT1;
5448 }
5449
5450 if (tsicr & TSINTR_AUTT0) {
5451 nsec = rd32(E1000_AUXSTMPL0);
5452 sec = rd32(E1000_AUXSTMPH0);
5453 event.type = PTP_CLOCK_EXTTS;
5454 event.index = 0;
5455 event.timestamp = sec * 1000000000ULL + nsec;
5456 ptp_clock_event(adapter->ptp_clock, &event);
5457 ack |= TSINTR_AUTT0;
5458 }
5459
5460 if (tsicr & TSINTR_AUTT1) {
5461 nsec = rd32(E1000_AUXSTMPL1);
5462 sec = rd32(E1000_AUXSTMPH1);
5463 event.type = PTP_CLOCK_EXTTS;
5464 event.index = 1;
5465 event.timestamp = sec * 1000000000ULL + nsec;
5466 ptp_clock_event(adapter->ptp_clock, &event);
5467 ack |= TSINTR_AUTT1;
5468 }
5469
5470 /* acknowledge the interrupts */
5471 wr32(E1000_TSICR, ack);
5472 }
5473
5474 static irqreturn_t igb_msix_other(int irq, void *data)
5475 {
5476 struct igb_adapter *adapter = data;
5477 struct e1000_hw *hw = &adapter->hw;
5478 u32 icr = rd32(E1000_ICR);
5479 /* reading ICR causes bit 31 of EICR to be cleared */
5480
5481 if (icr & E1000_ICR_DRSTA)
5482 schedule_work(&adapter->reset_task);
5483
5484 if (icr & E1000_ICR_DOUTSYNC) {
5485 /* HW is reporting DMA is out of sync */
5486 adapter->stats.doosync++;
5487 /* The DMA Out of Sync is also indication of a spoof event
5488 * in IOV mode. Check the Wrong VM Behavior register to
5489 * see if it is really a spoof event.
5490 */
5491 igb_check_wvbr(adapter);
5492 }
5493
5494 /* Check for a mailbox event */
5495 if (icr & E1000_ICR_VMMB)
5496 igb_msg_task(adapter);
5497
5498 if (icr & E1000_ICR_LSC) {
5499 hw->mac.get_link_status = 1;
5500 /* guard against interrupt when we're going down */
5501 if (!test_bit(__IGB_DOWN, &adapter->state))
5502 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5503 }
5504
5505 if (icr & E1000_ICR_TS)
5506 igb_tsync_interrupt(adapter);
5507
5508 wr32(E1000_EIMS, adapter->eims_other);
5509
5510 return IRQ_HANDLED;
5511 }
5512
5513 static void igb_write_itr(struct igb_q_vector *q_vector)
5514 {
5515 struct igb_adapter *adapter = q_vector->adapter;
5516 u32 itr_val = q_vector->itr_val & 0x7FFC;
5517
5518 if (!q_vector->set_itr)
5519 return;
5520
5521 if (!itr_val)
5522 itr_val = 0x4;
5523
5524 if (adapter->hw.mac.type == e1000_82575)
5525 itr_val |= itr_val << 16;
5526 else
5527 itr_val |= E1000_EITR_CNT_IGNR;
5528
5529 writel(itr_val, q_vector->itr_register);
5530 q_vector->set_itr = 0;
5531 }
5532
5533 static irqreturn_t igb_msix_ring(int irq, void *data)
5534 {
5535 struct igb_q_vector *q_vector = data;
5536
5537 /* Write the ITR value calculated from the previous interrupt. */
5538 igb_write_itr(q_vector);
5539
5540 napi_schedule(&q_vector->napi);
5541
5542 return IRQ_HANDLED;
5543 }
5544
5545 #ifdef CONFIG_IGB_DCA
5546 static void igb_update_tx_dca(struct igb_adapter *adapter,
5547 struct igb_ring *tx_ring,
5548 int cpu)
5549 {
5550 struct e1000_hw *hw = &adapter->hw;
5551 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5552
5553 if (hw->mac.type != e1000_82575)
5554 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5555
5556 /* We can enable relaxed ordering for reads, but not writes when
5557 * DCA is enabled. This is due to a known issue in some chipsets
5558 * which will cause the DCA tag to be cleared.
5559 */
5560 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5561 E1000_DCA_TXCTRL_DATA_RRO_EN |
5562 E1000_DCA_TXCTRL_DESC_DCA_EN;
5563
5564 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5565 }
5566
5567 static void igb_update_rx_dca(struct igb_adapter *adapter,
5568 struct igb_ring *rx_ring,
5569 int cpu)
5570 {
5571 struct e1000_hw *hw = &adapter->hw;
5572 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5573
5574 if (hw->mac.type != e1000_82575)
5575 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5576
5577 /* We can enable relaxed ordering for reads, but not writes when
5578 * DCA is enabled. This is due to a known issue in some chipsets
5579 * which will cause the DCA tag to be cleared.
5580 */
5581 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5582 E1000_DCA_RXCTRL_DESC_DCA_EN;
5583
5584 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5585 }
5586
5587 static void igb_update_dca(struct igb_q_vector *q_vector)
5588 {
5589 struct igb_adapter *adapter = q_vector->adapter;
5590 int cpu = get_cpu();
5591
5592 if (q_vector->cpu == cpu)
5593 goto out_no_update;
5594
5595 if (q_vector->tx.ring)
5596 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5597
5598 if (q_vector->rx.ring)
5599 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5600
5601 q_vector->cpu = cpu;
5602 out_no_update:
5603 put_cpu();
5604 }
5605
5606 static void igb_setup_dca(struct igb_adapter *adapter)
5607 {
5608 struct e1000_hw *hw = &adapter->hw;
5609 int i;
5610
5611 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5612 return;
5613
5614 /* Always use CB2 mode, difference is masked in the CB driver. */
5615 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5616
5617 for (i = 0; i < adapter->num_q_vectors; i++) {
5618 adapter->q_vector[i]->cpu = -1;
5619 igb_update_dca(adapter->q_vector[i]);
5620 }
5621 }
5622
5623 static int __igb_notify_dca(struct device *dev, void *data)
5624 {
5625 struct net_device *netdev = dev_get_drvdata(dev);
5626 struct igb_adapter *adapter = netdev_priv(netdev);
5627 struct pci_dev *pdev = adapter->pdev;
5628 struct e1000_hw *hw = &adapter->hw;
5629 unsigned long event = *(unsigned long *)data;
5630
5631 switch (event) {
5632 case DCA_PROVIDER_ADD:
5633 /* if already enabled, don't do it again */
5634 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5635 break;
5636 if (dca_add_requester(dev) == 0) {
5637 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5638 dev_info(&pdev->dev, "DCA enabled\n");
5639 igb_setup_dca(adapter);
5640 break;
5641 }
5642 /* Fall Through since DCA is disabled. */
5643 case DCA_PROVIDER_REMOVE:
5644 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5645 /* without this a class_device is left
5646 * hanging around in the sysfs model
5647 */
5648 dca_remove_requester(dev);
5649 dev_info(&pdev->dev, "DCA disabled\n");
5650 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5651 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5652 }
5653 break;
5654 }
5655
5656 return 0;
5657 }
5658
5659 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5660 void *p)
5661 {
5662 int ret_val;
5663
5664 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5665 __igb_notify_dca);
5666
5667 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5668 }
5669 #endif /* CONFIG_IGB_DCA */
5670
5671 #ifdef CONFIG_PCI_IOV
5672 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5673 {
5674 unsigned char mac_addr[ETH_ALEN];
5675
5676 eth_zero_addr(mac_addr);
5677 igb_set_vf_mac(adapter, vf, mac_addr);
5678
5679 /* By default spoof check is enabled for all VFs */
5680 adapter->vf_data[vf].spoofchk_enabled = true;
5681
5682 return 0;
5683 }
5684
5685 #endif
5686 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5687 {
5688 struct e1000_hw *hw = &adapter->hw;
5689 u32 ping;
5690 int i;
5691
5692 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5693 ping = E1000_PF_CONTROL_MSG;
5694 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5695 ping |= E1000_VT_MSGTYPE_CTS;
5696 igb_write_mbx(hw, &ping, 1, i);
5697 }
5698 }
5699
5700 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5701 {
5702 struct e1000_hw *hw = &adapter->hw;
5703 u32 vmolr = rd32(E1000_VMOLR(vf));
5704 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5705
5706 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5707 IGB_VF_FLAG_MULTI_PROMISC);
5708 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5709
5710 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5711 vmolr |= E1000_VMOLR_MPME;
5712 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5713 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5714 } else {
5715 /* if we have hashes and we are clearing a multicast promisc
5716 * flag we need to write the hashes to the MTA as this step
5717 * was previously skipped
5718 */
5719 if (vf_data->num_vf_mc_hashes > 30) {
5720 vmolr |= E1000_VMOLR_MPME;
5721 } else if (vf_data->num_vf_mc_hashes) {
5722 int j;
5723
5724 vmolr |= E1000_VMOLR_ROMPE;
5725 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5726 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5727 }
5728 }
5729
5730 wr32(E1000_VMOLR(vf), vmolr);
5731
5732 /* there are flags left unprocessed, likely not supported */
5733 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5734 return -EINVAL;
5735
5736 return 0;
5737 }
5738
5739 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5740 u32 *msgbuf, u32 vf)
5741 {
5742 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5743 u16 *hash_list = (u16 *)&msgbuf[1];
5744 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5745 int i;
5746
5747 /* salt away the number of multicast addresses assigned
5748 * to this VF for later use to restore when the PF multi cast
5749 * list changes
5750 */
5751 vf_data->num_vf_mc_hashes = n;
5752
5753 /* only up to 30 hash values supported */
5754 if (n > 30)
5755 n = 30;
5756
5757 /* store the hashes for later use */
5758 for (i = 0; i < n; i++)
5759 vf_data->vf_mc_hashes[i] = hash_list[i];
5760
5761 /* Flush and reset the mta with the new values */
5762 igb_set_rx_mode(adapter->netdev);
5763
5764 return 0;
5765 }
5766
5767 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5768 {
5769 struct e1000_hw *hw = &adapter->hw;
5770 struct vf_data_storage *vf_data;
5771 int i, j;
5772
5773 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5774 u32 vmolr = rd32(E1000_VMOLR(i));
5775
5776 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5777
5778 vf_data = &adapter->vf_data[i];
5779
5780 if ((vf_data->num_vf_mc_hashes > 30) ||
5781 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5782 vmolr |= E1000_VMOLR_MPME;
5783 } else if (vf_data->num_vf_mc_hashes) {
5784 vmolr |= E1000_VMOLR_ROMPE;
5785 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5786 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5787 }
5788 wr32(E1000_VMOLR(i), vmolr);
5789 }
5790 }
5791
5792 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5793 {
5794 struct e1000_hw *hw = &adapter->hw;
5795 u32 pool_mask, reg, vid;
5796 int i;
5797
5798 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5799
5800 /* Find the vlan filter for this id */
5801 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5802 reg = rd32(E1000_VLVF(i));
5803
5804 /* remove the vf from the pool */
5805 reg &= ~pool_mask;
5806
5807 /* if pool is empty then remove entry from vfta */
5808 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5809 (reg & E1000_VLVF_VLANID_ENABLE)) {
5810 reg = 0;
5811 vid = reg & E1000_VLVF_VLANID_MASK;
5812 igb_vfta_set(hw, vid, false);
5813 }
5814
5815 wr32(E1000_VLVF(i), reg);
5816 }
5817
5818 adapter->vf_data[vf].vlans_enabled = 0;
5819 }
5820
5821 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5822 {
5823 struct e1000_hw *hw = &adapter->hw;
5824 u32 reg, i;
5825
5826 /* The vlvf table only exists on 82576 hardware and newer */
5827 if (hw->mac.type < e1000_82576)
5828 return -1;
5829
5830 /* we only need to do this if VMDq is enabled */
5831 if (!adapter->vfs_allocated_count)
5832 return -1;
5833
5834 /* Find the vlan filter for this id */
5835 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5836 reg = rd32(E1000_VLVF(i));
5837 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5838 vid == (reg & E1000_VLVF_VLANID_MASK))
5839 break;
5840 }
5841
5842 if (add) {
5843 if (i == E1000_VLVF_ARRAY_SIZE) {
5844 /* Did not find a matching VLAN ID entry that was
5845 * enabled. Search for a free filter entry, i.e.
5846 * one without the enable bit set
5847 */
5848 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5849 reg = rd32(E1000_VLVF(i));
5850 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5851 break;
5852 }
5853 }
5854 if (i < E1000_VLVF_ARRAY_SIZE) {
5855 /* Found an enabled/available entry */
5856 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5857
5858 /* if !enabled we need to set this up in vfta */
5859 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5860 /* add VID to filter table */
5861 igb_vfta_set(hw, vid, true);
5862 reg |= E1000_VLVF_VLANID_ENABLE;
5863 }
5864 reg &= ~E1000_VLVF_VLANID_MASK;
5865 reg |= vid;
5866 wr32(E1000_VLVF(i), reg);
5867
5868 /* do not modify RLPML for PF devices */
5869 if (vf >= adapter->vfs_allocated_count)
5870 return 0;
5871
5872 if (!adapter->vf_data[vf].vlans_enabled) {
5873 u32 size;
5874
5875 reg = rd32(E1000_VMOLR(vf));
5876 size = reg & E1000_VMOLR_RLPML_MASK;
5877 size += 4;
5878 reg &= ~E1000_VMOLR_RLPML_MASK;
5879 reg |= size;
5880 wr32(E1000_VMOLR(vf), reg);
5881 }
5882
5883 adapter->vf_data[vf].vlans_enabled++;
5884 }
5885 } else {
5886 if (i < E1000_VLVF_ARRAY_SIZE) {
5887 /* remove vf from the pool */
5888 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5889 /* if pool is empty then remove entry from vfta */
5890 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5891 reg = 0;
5892 igb_vfta_set(hw, vid, false);
5893 }
5894 wr32(E1000_VLVF(i), reg);
5895
5896 /* do not modify RLPML for PF devices */
5897 if (vf >= adapter->vfs_allocated_count)
5898 return 0;
5899
5900 adapter->vf_data[vf].vlans_enabled--;
5901 if (!adapter->vf_data[vf].vlans_enabled) {
5902 u32 size;
5903
5904 reg = rd32(E1000_VMOLR(vf));
5905 size = reg & E1000_VMOLR_RLPML_MASK;
5906 size -= 4;
5907 reg &= ~E1000_VMOLR_RLPML_MASK;
5908 reg |= size;
5909 wr32(E1000_VMOLR(vf), reg);
5910 }
5911 }
5912 }
5913 return 0;
5914 }
5915
5916 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5917 {
5918 struct e1000_hw *hw = &adapter->hw;
5919
5920 if (vid)
5921 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5922 else
5923 wr32(E1000_VMVIR(vf), 0);
5924 }
5925
5926 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5927 int vf, u16 vlan, u8 qos)
5928 {
5929 int err = 0;
5930 struct igb_adapter *adapter = netdev_priv(netdev);
5931
5932 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5933 return -EINVAL;
5934 if (vlan || qos) {
5935 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5936 if (err)
5937 goto out;
5938 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5939 igb_set_vmolr(adapter, vf, !vlan);
5940 adapter->vf_data[vf].pf_vlan = vlan;
5941 adapter->vf_data[vf].pf_qos = qos;
5942 dev_info(&adapter->pdev->dev,
5943 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5944 if (test_bit(__IGB_DOWN, &adapter->state)) {
5945 dev_warn(&adapter->pdev->dev,
5946 "The VF VLAN has been set, but the PF device is not up.\n");
5947 dev_warn(&adapter->pdev->dev,
5948 "Bring the PF device up before attempting to use the VF device.\n");
5949 }
5950 } else {
5951 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5952 false, vf);
5953 igb_set_vmvir(adapter, vlan, vf);
5954 igb_set_vmolr(adapter, vf, true);
5955 adapter->vf_data[vf].pf_vlan = 0;
5956 adapter->vf_data[vf].pf_qos = 0;
5957 }
5958 out:
5959 return err;
5960 }
5961
5962 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5963 {
5964 struct e1000_hw *hw = &adapter->hw;
5965 int i;
5966 u32 reg;
5967
5968 /* Find the vlan filter for this id */
5969 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5970 reg = rd32(E1000_VLVF(i));
5971 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5972 vid == (reg & E1000_VLVF_VLANID_MASK))
5973 break;
5974 }
5975
5976 if (i >= E1000_VLVF_ARRAY_SIZE)
5977 i = -1;
5978
5979 return i;
5980 }
5981
5982 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5983 {
5984 struct e1000_hw *hw = &adapter->hw;
5985 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5986 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5987 int err = 0;
5988
5989 /* If in promiscuous mode we need to make sure the PF also has
5990 * the VLAN filter set.
5991 */
5992 if (add && (adapter->netdev->flags & IFF_PROMISC))
5993 err = igb_vlvf_set(adapter, vid, add,
5994 adapter->vfs_allocated_count);
5995 if (err)
5996 goto out;
5997
5998 err = igb_vlvf_set(adapter, vid, add, vf);
5999
6000 if (err)
6001 goto out;
6002
6003 /* Go through all the checks to see if the VLAN filter should
6004 * be wiped completely.
6005 */
6006 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
6007 u32 vlvf, bits;
6008 int regndx = igb_find_vlvf_entry(adapter, vid);
6009
6010 if (regndx < 0)
6011 goto out;
6012 /* See if any other pools are set for this VLAN filter
6013 * entry other than the PF.
6014 */
6015 vlvf = bits = rd32(E1000_VLVF(regndx));
6016 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6017 adapter->vfs_allocated_count);
6018 /* If the filter was removed then ensure PF pool bit
6019 * is cleared if the PF only added itself to the pool
6020 * because the PF is in promiscuous mode.
6021 */
6022 if ((vlvf & VLAN_VID_MASK) == vid &&
6023 !test_bit(vid, adapter->active_vlans) &&
6024 !bits)
6025 igb_vlvf_set(adapter, vid, add,
6026 adapter->vfs_allocated_count);
6027 }
6028
6029 out:
6030 return err;
6031 }
6032
6033 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6034 {
6035 /* clear flags - except flag that indicates PF has set the MAC */
6036 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6037 adapter->vf_data[vf].last_nack = jiffies;
6038
6039 /* reset offloads to defaults */
6040 igb_set_vmolr(adapter, vf, true);
6041
6042 /* reset vlans for device */
6043 igb_clear_vf_vfta(adapter, vf);
6044 if (adapter->vf_data[vf].pf_vlan)
6045 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6046 adapter->vf_data[vf].pf_vlan,
6047 adapter->vf_data[vf].pf_qos);
6048 else
6049 igb_clear_vf_vfta(adapter, vf);
6050
6051 /* reset multicast table array for vf */
6052 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6053
6054 /* Flush and reset the mta with the new values */
6055 igb_set_rx_mode(adapter->netdev);
6056 }
6057
6058 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6059 {
6060 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6061
6062 /* clear mac address as we were hotplug removed/added */
6063 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6064 eth_zero_addr(vf_mac);
6065
6066 /* process remaining reset events */
6067 igb_vf_reset(adapter, vf);
6068 }
6069
6070 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6071 {
6072 struct e1000_hw *hw = &adapter->hw;
6073 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6074 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6075 u32 reg, msgbuf[3];
6076 u8 *addr = (u8 *)(&msgbuf[1]);
6077
6078 /* process all the same items cleared in a function level reset */
6079 igb_vf_reset(adapter, vf);
6080
6081 /* set vf mac address */
6082 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6083
6084 /* enable transmit and receive for vf */
6085 reg = rd32(E1000_VFTE);
6086 wr32(E1000_VFTE, reg | (1 << vf));
6087 reg = rd32(E1000_VFRE);
6088 wr32(E1000_VFRE, reg | (1 << vf));
6089
6090 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6091
6092 /* reply to reset with ack and vf mac address */
6093 if (!is_zero_ether_addr(vf_mac)) {
6094 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6095 memcpy(addr, vf_mac, ETH_ALEN);
6096 } else {
6097 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6098 }
6099 igb_write_mbx(hw, msgbuf, 3, vf);
6100 }
6101
6102 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6103 {
6104 /* The VF MAC Address is stored in a packed array of bytes
6105 * starting at the second 32 bit word of the msg array
6106 */
6107 unsigned char *addr = (char *)&msg[1];
6108 int err = -1;
6109
6110 if (is_valid_ether_addr(addr))
6111 err = igb_set_vf_mac(adapter, vf, addr);
6112
6113 return err;
6114 }
6115
6116 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6117 {
6118 struct e1000_hw *hw = &adapter->hw;
6119 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6120 u32 msg = E1000_VT_MSGTYPE_NACK;
6121
6122 /* if device isn't clear to send it shouldn't be reading either */
6123 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6124 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6125 igb_write_mbx(hw, &msg, 1, vf);
6126 vf_data->last_nack = jiffies;
6127 }
6128 }
6129
6130 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6131 {
6132 struct pci_dev *pdev = adapter->pdev;
6133 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6134 struct e1000_hw *hw = &adapter->hw;
6135 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6136 s32 retval;
6137
6138 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6139
6140 if (retval) {
6141 /* if receive failed revoke VF CTS stats and restart init */
6142 dev_err(&pdev->dev, "Error receiving message from VF\n");
6143 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6144 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6145 return;
6146 goto out;
6147 }
6148
6149 /* this is a message we already processed, do nothing */
6150 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6151 return;
6152
6153 /* until the vf completes a reset it should not be
6154 * allowed to start any configuration.
6155 */
6156 if (msgbuf[0] == E1000_VF_RESET) {
6157 igb_vf_reset_msg(adapter, vf);
6158 return;
6159 }
6160
6161 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6162 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6163 return;
6164 retval = -1;
6165 goto out;
6166 }
6167
6168 switch ((msgbuf[0] & 0xFFFF)) {
6169 case E1000_VF_SET_MAC_ADDR:
6170 retval = -EINVAL;
6171 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6172 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6173 else
6174 dev_warn(&pdev->dev,
6175 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6176 vf);
6177 break;
6178 case E1000_VF_SET_PROMISC:
6179 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6180 break;
6181 case E1000_VF_SET_MULTICAST:
6182 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6183 break;
6184 case E1000_VF_SET_LPE:
6185 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6186 break;
6187 case E1000_VF_SET_VLAN:
6188 retval = -1;
6189 if (vf_data->pf_vlan)
6190 dev_warn(&pdev->dev,
6191 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6192 vf);
6193 else
6194 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6195 break;
6196 default:
6197 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6198 retval = -1;
6199 break;
6200 }
6201
6202 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6203 out:
6204 /* notify the VF of the results of what it sent us */
6205 if (retval)
6206 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6207 else
6208 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6209
6210 igb_write_mbx(hw, msgbuf, 1, vf);
6211 }
6212
6213 static void igb_msg_task(struct igb_adapter *adapter)
6214 {
6215 struct e1000_hw *hw = &adapter->hw;
6216 u32 vf;
6217
6218 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6219 /* process any reset requests */
6220 if (!igb_check_for_rst(hw, vf))
6221 igb_vf_reset_event(adapter, vf);
6222
6223 /* process any messages pending */
6224 if (!igb_check_for_msg(hw, vf))
6225 igb_rcv_msg_from_vf(adapter, vf);
6226
6227 /* process any acks */
6228 if (!igb_check_for_ack(hw, vf))
6229 igb_rcv_ack_from_vf(adapter, vf);
6230 }
6231 }
6232
6233 /**
6234 * igb_set_uta - Set unicast filter table address
6235 * @adapter: board private structure
6236 *
6237 * The unicast table address is a register array of 32-bit registers.
6238 * The table is meant to be used in a way similar to how the MTA is used
6239 * however due to certain limitations in the hardware it is necessary to
6240 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6241 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6242 **/
6243 static void igb_set_uta(struct igb_adapter *adapter)
6244 {
6245 struct e1000_hw *hw = &adapter->hw;
6246 int i;
6247
6248 /* The UTA table only exists on 82576 hardware and newer */
6249 if (hw->mac.type < e1000_82576)
6250 return;
6251
6252 /* we only need to do this if VMDq is enabled */
6253 if (!adapter->vfs_allocated_count)
6254 return;
6255
6256 for (i = 0; i < hw->mac.uta_reg_count; i++)
6257 array_wr32(E1000_UTA, i, ~0);
6258 }
6259
6260 /**
6261 * igb_intr_msi - Interrupt Handler
6262 * @irq: interrupt number
6263 * @data: pointer to a network interface device structure
6264 **/
6265 static irqreturn_t igb_intr_msi(int irq, void *data)
6266 {
6267 struct igb_adapter *adapter = data;
6268 struct igb_q_vector *q_vector = adapter->q_vector[0];
6269 struct e1000_hw *hw = &adapter->hw;
6270 /* read ICR disables interrupts using IAM */
6271 u32 icr = rd32(E1000_ICR);
6272
6273 igb_write_itr(q_vector);
6274
6275 if (icr & E1000_ICR_DRSTA)
6276 schedule_work(&adapter->reset_task);
6277
6278 if (icr & E1000_ICR_DOUTSYNC) {
6279 /* HW is reporting DMA is out of sync */
6280 adapter->stats.doosync++;
6281 }
6282
6283 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6284 hw->mac.get_link_status = 1;
6285 if (!test_bit(__IGB_DOWN, &adapter->state))
6286 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6287 }
6288
6289 if (icr & E1000_ICR_TS)
6290 igb_tsync_interrupt(adapter);
6291
6292 napi_schedule(&q_vector->napi);
6293
6294 return IRQ_HANDLED;
6295 }
6296
6297 /**
6298 * igb_intr - Legacy Interrupt Handler
6299 * @irq: interrupt number
6300 * @data: pointer to a network interface device structure
6301 **/
6302 static irqreturn_t igb_intr(int irq, void *data)
6303 {
6304 struct igb_adapter *adapter = data;
6305 struct igb_q_vector *q_vector = adapter->q_vector[0];
6306 struct e1000_hw *hw = &adapter->hw;
6307 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6308 * need for the IMC write
6309 */
6310 u32 icr = rd32(E1000_ICR);
6311
6312 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6313 * not set, then the adapter didn't send an interrupt
6314 */
6315 if (!(icr & E1000_ICR_INT_ASSERTED))
6316 return IRQ_NONE;
6317
6318 igb_write_itr(q_vector);
6319
6320 if (icr & E1000_ICR_DRSTA)
6321 schedule_work(&adapter->reset_task);
6322
6323 if (icr & E1000_ICR_DOUTSYNC) {
6324 /* HW is reporting DMA is out of sync */
6325 adapter->stats.doosync++;
6326 }
6327
6328 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6329 hw->mac.get_link_status = 1;
6330 /* guard against interrupt when we're going down */
6331 if (!test_bit(__IGB_DOWN, &adapter->state))
6332 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6333 }
6334
6335 if (icr & E1000_ICR_TS)
6336 igb_tsync_interrupt(adapter);
6337
6338 napi_schedule(&q_vector->napi);
6339
6340 return IRQ_HANDLED;
6341 }
6342
6343 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6344 {
6345 struct igb_adapter *adapter = q_vector->adapter;
6346 struct e1000_hw *hw = &adapter->hw;
6347
6348 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6349 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6350 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6351 igb_set_itr(q_vector);
6352 else
6353 igb_update_ring_itr(q_vector);
6354 }
6355
6356 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6357 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6358 wr32(E1000_EIMS, q_vector->eims_value);
6359 else
6360 igb_irq_enable(adapter);
6361 }
6362 }
6363
6364 /**
6365 * igb_poll - NAPI Rx polling callback
6366 * @napi: napi polling structure
6367 * @budget: count of how many packets we should handle
6368 **/
6369 static int igb_poll(struct napi_struct *napi, int budget)
6370 {
6371 struct igb_q_vector *q_vector = container_of(napi,
6372 struct igb_q_vector,
6373 napi);
6374 bool clean_complete = true;
6375 int work_done = 0;
6376
6377 #ifdef CONFIG_IGB_DCA
6378 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6379 igb_update_dca(q_vector);
6380 #endif
6381 if (q_vector->tx.ring)
6382 clean_complete = igb_clean_tx_irq(q_vector);
6383
6384 if (q_vector->rx.ring) {
6385 int cleaned = igb_clean_rx_irq(q_vector, budget);
6386
6387 work_done += cleaned;
6388 clean_complete &= (cleaned < budget);
6389 }
6390
6391 /* If all work not completed, return budget and keep polling */
6392 if (!clean_complete)
6393 return budget;
6394
6395 /* If not enough Rx work done, exit the polling mode */
6396 napi_complete_done(napi, work_done);
6397 igb_ring_irq_enable(q_vector);
6398
6399 return 0;
6400 }
6401
6402 /**
6403 * igb_clean_tx_irq - Reclaim resources after transmit completes
6404 * @q_vector: pointer to q_vector containing needed info
6405 *
6406 * returns true if ring is completely cleaned
6407 **/
6408 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6409 {
6410 struct igb_adapter *adapter = q_vector->adapter;
6411 struct igb_ring *tx_ring = q_vector->tx.ring;
6412 struct igb_tx_buffer *tx_buffer;
6413 union e1000_adv_tx_desc *tx_desc;
6414 unsigned int total_bytes = 0, total_packets = 0;
6415 unsigned int budget = q_vector->tx.work_limit;
6416 unsigned int i = tx_ring->next_to_clean;
6417
6418 if (test_bit(__IGB_DOWN, &adapter->state))
6419 return true;
6420
6421 tx_buffer = &tx_ring->tx_buffer_info[i];
6422 tx_desc = IGB_TX_DESC(tx_ring, i);
6423 i -= tx_ring->count;
6424
6425 do {
6426 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6427
6428 /* if next_to_watch is not set then there is no work pending */
6429 if (!eop_desc)
6430 break;
6431
6432 /* prevent any other reads prior to eop_desc */
6433 read_barrier_depends();
6434
6435 /* if DD is not set pending work has not been completed */
6436 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6437 break;
6438
6439 /* clear next_to_watch to prevent false hangs */
6440 tx_buffer->next_to_watch = NULL;
6441
6442 /* update the statistics for this packet */
6443 total_bytes += tx_buffer->bytecount;
6444 total_packets += tx_buffer->gso_segs;
6445
6446 /* free the skb */
6447 dev_consume_skb_any(tx_buffer->skb);
6448
6449 /* unmap skb header data */
6450 dma_unmap_single(tx_ring->dev,
6451 dma_unmap_addr(tx_buffer, dma),
6452 dma_unmap_len(tx_buffer, len),
6453 DMA_TO_DEVICE);
6454
6455 /* clear tx_buffer data */
6456 tx_buffer->skb = NULL;
6457 dma_unmap_len_set(tx_buffer, len, 0);
6458
6459 /* clear last DMA location and unmap remaining buffers */
6460 while (tx_desc != eop_desc) {
6461 tx_buffer++;
6462 tx_desc++;
6463 i++;
6464 if (unlikely(!i)) {
6465 i -= tx_ring->count;
6466 tx_buffer = tx_ring->tx_buffer_info;
6467 tx_desc = IGB_TX_DESC(tx_ring, 0);
6468 }
6469
6470 /* unmap any remaining paged data */
6471 if (dma_unmap_len(tx_buffer, len)) {
6472 dma_unmap_page(tx_ring->dev,
6473 dma_unmap_addr(tx_buffer, dma),
6474 dma_unmap_len(tx_buffer, len),
6475 DMA_TO_DEVICE);
6476 dma_unmap_len_set(tx_buffer, len, 0);
6477 }
6478 }
6479
6480 /* move us one more past the eop_desc for start of next pkt */
6481 tx_buffer++;
6482 tx_desc++;
6483 i++;
6484 if (unlikely(!i)) {
6485 i -= tx_ring->count;
6486 tx_buffer = tx_ring->tx_buffer_info;
6487 tx_desc = IGB_TX_DESC(tx_ring, 0);
6488 }
6489
6490 /* issue prefetch for next Tx descriptor */
6491 prefetch(tx_desc);
6492
6493 /* update budget accounting */
6494 budget--;
6495 } while (likely(budget));
6496
6497 netdev_tx_completed_queue(txring_txq(tx_ring),
6498 total_packets, total_bytes);
6499 i += tx_ring->count;
6500 tx_ring->next_to_clean = i;
6501 u64_stats_update_begin(&tx_ring->tx_syncp);
6502 tx_ring->tx_stats.bytes += total_bytes;
6503 tx_ring->tx_stats.packets += total_packets;
6504 u64_stats_update_end(&tx_ring->tx_syncp);
6505 q_vector->tx.total_bytes += total_bytes;
6506 q_vector->tx.total_packets += total_packets;
6507
6508 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6509 struct e1000_hw *hw = &adapter->hw;
6510
6511 /* Detect a transmit hang in hardware, this serializes the
6512 * check with the clearing of time_stamp and movement of i
6513 */
6514 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6515 if (tx_buffer->next_to_watch &&
6516 time_after(jiffies, tx_buffer->time_stamp +
6517 (adapter->tx_timeout_factor * HZ)) &&
6518 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6519
6520 /* detected Tx unit hang */
6521 dev_err(tx_ring->dev,
6522 "Detected Tx Unit Hang\n"
6523 " Tx Queue <%d>\n"
6524 " TDH <%x>\n"
6525 " TDT <%x>\n"
6526 " next_to_use <%x>\n"
6527 " next_to_clean <%x>\n"
6528 "buffer_info[next_to_clean]\n"
6529 " time_stamp <%lx>\n"
6530 " next_to_watch <%p>\n"
6531 " jiffies <%lx>\n"
6532 " desc.status <%x>\n",
6533 tx_ring->queue_index,
6534 rd32(E1000_TDH(tx_ring->reg_idx)),
6535 readl(tx_ring->tail),
6536 tx_ring->next_to_use,
6537 tx_ring->next_to_clean,
6538 tx_buffer->time_stamp,
6539 tx_buffer->next_to_watch,
6540 jiffies,
6541 tx_buffer->next_to_watch->wb.status);
6542 netif_stop_subqueue(tx_ring->netdev,
6543 tx_ring->queue_index);
6544
6545 /* we are about to reset, no point in enabling stuff */
6546 return true;
6547 }
6548 }
6549
6550 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6551 if (unlikely(total_packets &&
6552 netif_carrier_ok(tx_ring->netdev) &&
6553 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6554 /* Make sure that anybody stopping the queue after this
6555 * sees the new next_to_clean.
6556 */
6557 smp_mb();
6558 if (__netif_subqueue_stopped(tx_ring->netdev,
6559 tx_ring->queue_index) &&
6560 !(test_bit(__IGB_DOWN, &adapter->state))) {
6561 netif_wake_subqueue(tx_ring->netdev,
6562 tx_ring->queue_index);
6563
6564 u64_stats_update_begin(&tx_ring->tx_syncp);
6565 tx_ring->tx_stats.restart_queue++;
6566 u64_stats_update_end(&tx_ring->tx_syncp);
6567 }
6568 }
6569
6570 return !!budget;
6571 }
6572
6573 /**
6574 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6575 * @rx_ring: rx descriptor ring to store buffers on
6576 * @old_buff: donor buffer to have page reused
6577 *
6578 * Synchronizes page for reuse by the adapter
6579 **/
6580 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6581 struct igb_rx_buffer *old_buff)
6582 {
6583 struct igb_rx_buffer *new_buff;
6584 u16 nta = rx_ring->next_to_alloc;
6585
6586 new_buff = &rx_ring->rx_buffer_info[nta];
6587
6588 /* update, and store next to alloc */
6589 nta++;
6590 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6591
6592 /* transfer page from old buffer to new buffer */
6593 *new_buff = *old_buff;
6594
6595 /* sync the buffer for use by the device */
6596 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6597 old_buff->page_offset,
6598 IGB_RX_BUFSZ,
6599 DMA_FROM_DEVICE);
6600 }
6601
6602 static inline bool igb_page_is_reserved(struct page *page)
6603 {
6604 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
6605 }
6606
6607 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6608 struct page *page,
6609 unsigned int truesize)
6610 {
6611 /* avoid re-using remote pages */
6612 if (unlikely(igb_page_is_reserved(page)))
6613 return false;
6614
6615 #if (PAGE_SIZE < 8192)
6616 /* if we are only owner of page we can reuse it */
6617 if (unlikely(page_count(page) != 1))
6618 return false;
6619
6620 /* flip page offset to other buffer */
6621 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6622 #else
6623 /* move offset up to the next cache line */
6624 rx_buffer->page_offset += truesize;
6625
6626 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6627 return false;
6628 #endif
6629
6630 /* Even if we own the page, we are not allowed to use atomic_set()
6631 * This would break get_page_unless_zero() users.
6632 */
6633 page_ref_inc(page);
6634
6635 return true;
6636 }
6637
6638 /**
6639 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6640 * @rx_ring: rx descriptor ring to transact packets on
6641 * @rx_buffer: buffer containing page to add
6642 * @rx_desc: descriptor containing length of buffer written by hardware
6643 * @skb: sk_buff to place the data into
6644 *
6645 * This function will add the data contained in rx_buffer->page to the skb.
6646 * This is done either through a direct copy if the data in the buffer is
6647 * less than the skb header size, otherwise it will just attach the page as
6648 * a frag to the skb.
6649 *
6650 * The function will then update the page offset if necessary and return
6651 * true if the buffer can be reused by the adapter.
6652 **/
6653 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6654 struct igb_rx_buffer *rx_buffer,
6655 union e1000_adv_rx_desc *rx_desc,
6656 struct sk_buff *skb)
6657 {
6658 struct page *page = rx_buffer->page;
6659 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6660 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6661 #if (PAGE_SIZE < 8192)
6662 unsigned int truesize = IGB_RX_BUFSZ;
6663 #else
6664 unsigned int truesize = SKB_DATA_ALIGN(size);
6665 #endif
6666 unsigned int pull_len;
6667
6668 if (unlikely(skb_is_nonlinear(skb)))
6669 goto add_tail_frag;
6670
6671 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
6672 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6673 va += IGB_TS_HDR_LEN;
6674 size -= IGB_TS_HDR_LEN;
6675 }
6676
6677 if (likely(size <= IGB_RX_HDR_LEN)) {
6678 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6679
6680 /* page is not reserved, we can reuse buffer as-is */
6681 if (likely(!igb_page_is_reserved(page)))
6682 return true;
6683
6684 /* this page cannot be reused so discard it */
6685 __free_page(page);
6686 return false;
6687 }
6688
6689 /* we need the header to contain the greater of either ETH_HLEN or
6690 * 60 bytes if the skb->len is less than 60 for skb_pad.
6691 */
6692 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6693
6694 /* align pull length to size of long to optimize memcpy performance */
6695 memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
6696
6697 /* update all of the pointers */
6698 va += pull_len;
6699 size -= pull_len;
6700
6701 add_tail_frag:
6702 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6703 (unsigned long)va & ~PAGE_MASK, size, truesize);
6704
6705 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6706 }
6707
6708 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6709 union e1000_adv_rx_desc *rx_desc,
6710 struct sk_buff *skb)
6711 {
6712 struct igb_rx_buffer *rx_buffer;
6713 struct page *page;
6714
6715 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6716 page = rx_buffer->page;
6717 prefetchw(page);
6718
6719 if (likely(!skb)) {
6720 void *page_addr = page_address(page) +
6721 rx_buffer->page_offset;
6722
6723 /* prefetch first cache line of first page */
6724 prefetch(page_addr);
6725 #if L1_CACHE_BYTES < 128
6726 prefetch(page_addr + L1_CACHE_BYTES);
6727 #endif
6728
6729 /* allocate a skb to store the frags */
6730 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6731 if (unlikely(!skb)) {
6732 rx_ring->rx_stats.alloc_failed++;
6733 return NULL;
6734 }
6735
6736 /* we will be copying header into skb->data in
6737 * pskb_may_pull so it is in our interest to prefetch
6738 * it now to avoid a possible cache miss
6739 */
6740 prefetchw(skb->data);
6741 }
6742
6743 /* we are reusing so sync this buffer for CPU use */
6744 dma_sync_single_range_for_cpu(rx_ring->dev,
6745 rx_buffer->dma,
6746 rx_buffer->page_offset,
6747 IGB_RX_BUFSZ,
6748 DMA_FROM_DEVICE);
6749
6750 /* pull page into skb */
6751 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6752 /* hand second half of page back to the ring */
6753 igb_reuse_rx_page(rx_ring, rx_buffer);
6754 } else {
6755 /* we are not reusing the buffer so unmap it */
6756 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6757 PAGE_SIZE, DMA_FROM_DEVICE);
6758 }
6759
6760 /* clear contents of rx_buffer */
6761 rx_buffer->page = NULL;
6762
6763 return skb;
6764 }
6765
6766 static inline void igb_rx_checksum(struct igb_ring *ring,
6767 union e1000_adv_rx_desc *rx_desc,
6768 struct sk_buff *skb)
6769 {
6770 skb_checksum_none_assert(skb);
6771
6772 /* Ignore Checksum bit is set */
6773 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6774 return;
6775
6776 /* Rx checksum disabled via ethtool */
6777 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6778 return;
6779
6780 /* TCP/UDP checksum error bit is set */
6781 if (igb_test_staterr(rx_desc,
6782 E1000_RXDEXT_STATERR_TCPE |
6783 E1000_RXDEXT_STATERR_IPE)) {
6784 /* work around errata with sctp packets where the TCPE aka
6785 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6786 * packets, (aka let the stack check the crc32c)
6787 */
6788 if (!((skb->len == 60) &&
6789 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6790 u64_stats_update_begin(&ring->rx_syncp);
6791 ring->rx_stats.csum_err++;
6792 u64_stats_update_end(&ring->rx_syncp);
6793 }
6794 /* let the stack verify checksum errors */
6795 return;
6796 }
6797 /* It must be a TCP or UDP packet with a valid checksum */
6798 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6799 E1000_RXD_STAT_UDPCS))
6800 skb->ip_summed = CHECKSUM_UNNECESSARY;
6801
6802 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6803 le32_to_cpu(rx_desc->wb.upper.status_error));
6804 }
6805
6806 static inline void igb_rx_hash(struct igb_ring *ring,
6807 union e1000_adv_rx_desc *rx_desc,
6808 struct sk_buff *skb)
6809 {
6810 if (ring->netdev->features & NETIF_F_RXHASH)
6811 skb_set_hash(skb,
6812 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6813 PKT_HASH_TYPE_L3);
6814 }
6815
6816 /**
6817 * igb_is_non_eop - process handling of non-EOP buffers
6818 * @rx_ring: Rx ring being processed
6819 * @rx_desc: Rx descriptor for current buffer
6820 * @skb: current socket buffer containing buffer in progress
6821 *
6822 * This function updates next to clean. If the buffer is an EOP buffer
6823 * this function exits returning false, otherwise it will place the
6824 * sk_buff in the next buffer to be chained and return true indicating
6825 * that this is in fact a non-EOP buffer.
6826 **/
6827 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6828 union e1000_adv_rx_desc *rx_desc)
6829 {
6830 u32 ntc = rx_ring->next_to_clean + 1;
6831
6832 /* fetch, update, and store next to clean */
6833 ntc = (ntc < rx_ring->count) ? ntc : 0;
6834 rx_ring->next_to_clean = ntc;
6835
6836 prefetch(IGB_RX_DESC(rx_ring, ntc));
6837
6838 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6839 return false;
6840
6841 return true;
6842 }
6843
6844 /**
6845 * igb_cleanup_headers - Correct corrupted or empty headers
6846 * @rx_ring: rx descriptor ring packet is being transacted on
6847 * @rx_desc: pointer to the EOP Rx descriptor
6848 * @skb: pointer to current skb being fixed
6849 *
6850 * Address the case where we are pulling data in on pages only
6851 * and as such no data is present in the skb header.
6852 *
6853 * In addition if skb is not at least 60 bytes we need to pad it so that
6854 * it is large enough to qualify as a valid Ethernet frame.
6855 *
6856 * Returns true if an error was encountered and skb was freed.
6857 **/
6858 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6859 union e1000_adv_rx_desc *rx_desc,
6860 struct sk_buff *skb)
6861 {
6862 if (unlikely((igb_test_staterr(rx_desc,
6863 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6864 struct net_device *netdev = rx_ring->netdev;
6865 if (!(netdev->features & NETIF_F_RXALL)) {
6866 dev_kfree_skb_any(skb);
6867 return true;
6868 }
6869 }
6870
6871 /* if eth_skb_pad returns an error the skb was freed */
6872 if (eth_skb_pad(skb))
6873 return true;
6874
6875 return false;
6876 }
6877
6878 /**
6879 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6880 * @rx_ring: rx descriptor ring packet is being transacted on
6881 * @rx_desc: pointer to the EOP Rx descriptor
6882 * @skb: pointer to current skb being populated
6883 *
6884 * This function checks the ring, descriptor, and packet information in
6885 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6886 * other fields within the skb.
6887 **/
6888 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6889 union e1000_adv_rx_desc *rx_desc,
6890 struct sk_buff *skb)
6891 {
6892 struct net_device *dev = rx_ring->netdev;
6893
6894 igb_rx_hash(rx_ring, rx_desc, skb);
6895
6896 igb_rx_checksum(rx_ring, rx_desc, skb);
6897
6898 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6899 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6900 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6901
6902 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6903 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6904 u16 vid;
6905
6906 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6907 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6908 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6909 else
6910 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6911
6912 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6913 }
6914
6915 skb_record_rx_queue(skb, rx_ring->queue_index);
6916
6917 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6918 }
6919
6920 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6921 {
6922 struct igb_ring *rx_ring = q_vector->rx.ring;
6923 struct sk_buff *skb = rx_ring->skb;
6924 unsigned int total_bytes = 0, total_packets = 0;
6925 u16 cleaned_count = igb_desc_unused(rx_ring);
6926
6927 while (likely(total_packets < budget)) {
6928 union e1000_adv_rx_desc *rx_desc;
6929
6930 /* return some buffers to hardware, one at a time is too slow */
6931 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6932 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6933 cleaned_count = 0;
6934 }
6935
6936 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6937
6938 if (!rx_desc->wb.upper.status_error)
6939 break;
6940
6941 /* This memory barrier is needed to keep us from reading
6942 * any other fields out of the rx_desc until we know the
6943 * descriptor has been written back
6944 */
6945 dma_rmb();
6946
6947 /* retrieve a buffer from the ring */
6948 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6949
6950 /* exit if we failed to retrieve a buffer */
6951 if (!skb)
6952 break;
6953
6954 cleaned_count++;
6955
6956 /* fetch next buffer in frame if non-eop */
6957 if (igb_is_non_eop(rx_ring, rx_desc))
6958 continue;
6959
6960 /* verify the packet layout is correct */
6961 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6962 skb = NULL;
6963 continue;
6964 }
6965
6966 /* probably a little skewed due to removing CRC */
6967 total_bytes += skb->len;
6968
6969 /* populate checksum, timestamp, VLAN, and protocol */
6970 igb_process_skb_fields(rx_ring, rx_desc, skb);
6971
6972 napi_gro_receive(&q_vector->napi, skb);
6973
6974 /* reset skb pointer */
6975 skb = NULL;
6976
6977 /* update budget accounting */
6978 total_packets++;
6979 }
6980
6981 /* place incomplete frames back on ring for completion */
6982 rx_ring->skb = skb;
6983
6984 u64_stats_update_begin(&rx_ring->rx_syncp);
6985 rx_ring->rx_stats.packets += total_packets;
6986 rx_ring->rx_stats.bytes += total_bytes;
6987 u64_stats_update_end(&rx_ring->rx_syncp);
6988 q_vector->rx.total_packets += total_packets;
6989 q_vector->rx.total_bytes += total_bytes;
6990
6991 if (cleaned_count)
6992 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6993
6994 return total_packets;
6995 }
6996
6997 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6998 struct igb_rx_buffer *bi)
6999 {
7000 struct page *page = bi->page;
7001 dma_addr_t dma;
7002
7003 /* since we are recycling buffers we should seldom need to alloc */
7004 if (likely(page))
7005 return true;
7006
7007 /* alloc new page for storage */
7008 page = dev_alloc_page();
7009 if (unlikely(!page)) {
7010 rx_ring->rx_stats.alloc_failed++;
7011 return false;
7012 }
7013
7014 /* map page for use */
7015 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7016
7017 /* if mapping failed free memory back to system since
7018 * there isn't much point in holding memory we can't use
7019 */
7020 if (dma_mapping_error(rx_ring->dev, dma)) {
7021 __free_page(page);
7022
7023 rx_ring->rx_stats.alloc_failed++;
7024 return false;
7025 }
7026
7027 bi->dma = dma;
7028 bi->page = page;
7029 bi->page_offset = 0;
7030
7031 return true;
7032 }
7033
7034 /**
7035 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7036 * @adapter: address of board private structure
7037 **/
7038 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7039 {
7040 union e1000_adv_rx_desc *rx_desc;
7041 struct igb_rx_buffer *bi;
7042 u16 i = rx_ring->next_to_use;
7043
7044 /* nothing to do */
7045 if (!cleaned_count)
7046 return;
7047
7048 rx_desc = IGB_RX_DESC(rx_ring, i);
7049 bi = &rx_ring->rx_buffer_info[i];
7050 i -= rx_ring->count;
7051
7052 do {
7053 if (!igb_alloc_mapped_page(rx_ring, bi))
7054 break;
7055
7056 /* Refresh the desc even if buffer_addrs didn't change
7057 * because each write-back erases this info.
7058 */
7059 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7060
7061 rx_desc++;
7062 bi++;
7063 i++;
7064 if (unlikely(!i)) {
7065 rx_desc = IGB_RX_DESC(rx_ring, 0);
7066 bi = rx_ring->rx_buffer_info;
7067 i -= rx_ring->count;
7068 }
7069
7070 /* clear the status bits for the next_to_use descriptor */
7071 rx_desc->wb.upper.status_error = 0;
7072
7073 cleaned_count--;
7074 } while (cleaned_count);
7075
7076 i += rx_ring->count;
7077
7078 if (rx_ring->next_to_use != i) {
7079 /* record the next descriptor to use */
7080 rx_ring->next_to_use = i;
7081
7082 /* update next to alloc since we have filled the ring */
7083 rx_ring->next_to_alloc = i;
7084
7085 /* Force memory writes to complete before letting h/w
7086 * know there are new descriptors to fetch. (Only
7087 * applicable for weak-ordered memory model archs,
7088 * such as IA-64).
7089 */
7090 wmb();
7091 writel(i, rx_ring->tail);
7092 }
7093 }
7094
7095 /**
7096 * igb_mii_ioctl -
7097 * @netdev:
7098 * @ifreq:
7099 * @cmd:
7100 **/
7101 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7102 {
7103 struct igb_adapter *adapter = netdev_priv(netdev);
7104 struct mii_ioctl_data *data = if_mii(ifr);
7105
7106 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7107 return -EOPNOTSUPP;
7108
7109 switch (cmd) {
7110 case SIOCGMIIPHY:
7111 data->phy_id = adapter->hw.phy.addr;
7112 break;
7113 case SIOCGMIIREG:
7114 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7115 &data->val_out))
7116 return -EIO;
7117 break;
7118 case SIOCSMIIREG:
7119 default:
7120 return -EOPNOTSUPP;
7121 }
7122 return 0;
7123 }
7124
7125 /**
7126 * igb_ioctl -
7127 * @netdev:
7128 * @ifreq:
7129 * @cmd:
7130 **/
7131 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7132 {
7133 switch (cmd) {
7134 case SIOCGMIIPHY:
7135 case SIOCGMIIREG:
7136 case SIOCSMIIREG:
7137 return igb_mii_ioctl(netdev, ifr, cmd);
7138 case SIOCGHWTSTAMP:
7139 return igb_ptp_get_ts_config(netdev, ifr);
7140 case SIOCSHWTSTAMP:
7141 return igb_ptp_set_ts_config(netdev, ifr);
7142 default:
7143 return -EOPNOTSUPP;
7144 }
7145 }
7146
7147 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7148 {
7149 struct igb_adapter *adapter = hw->back;
7150
7151 pci_read_config_word(adapter->pdev, reg, value);
7152 }
7153
7154 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7155 {
7156 struct igb_adapter *adapter = hw->back;
7157
7158 pci_write_config_word(adapter->pdev, reg, *value);
7159 }
7160
7161 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7162 {
7163 struct igb_adapter *adapter = hw->back;
7164
7165 if (pcie_capability_read_word(adapter->pdev, reg, value))
7166 return -E1000_ERR_CONFIG;
7167
7168 return 0;
7169 }
7170
7171 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7172 {
7173 struct igb_adapter *adapter = hw->back;
7174
7175 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7176 return -E1000_ERR_CONFIG;
7177
7178 return 0;
7179 }
7180
7181 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7182 {
7183 struct igb_adapter *adapter = netdev_priv(netdev);
7184 struct e1000_hw *hw = &adapter->hw;
7185 u32 ctrl, rctl;
7186 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7187
7188 if (enable) {
7189 /* enable VLAN tag insert/strip */
7190 ctrl = rd32(E1000_CTRL);
7191 ctrl |= E1000_CTRL_VME;
7192 wr32(E1000_CTRL, ctrl);
7193
7194 /* Disable CFI check */
7195 rctl = rd32(E1000_RCTL);
7196 rctl &= ~E1000_RCTL_CFIEN;
7197 wr32(E1000_RCTL, rctl);
7198 } else {
7199 /* disable VLAN tag insert/strip */
7200 ctrl = rd32(E1000_CTRL);
7201 ctrl &= ~E1000_CTRL_VME;
7202 wr32(E1000_CTRL, ctrl);
7203 }
7204
7205 igb_rlpml_set(adapter);
7206 }
7207
7208 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7209 __be16 proto, u16 vid)
7210 {
7211 struct igb_adapter *adapter = netdev_priv(netdev);
7212 struct e1000_hw *hw = &adapter->hw;
7213 int pf_id = adapter->vfs_allocated_count;
7214
7215 /* attempt to add filter to vlvf array */
7216 igb_vlvf_set(adapter, vid, true, pf_id);
7217
7218 /* add the filter since PF can receive vlans w/o entry in vlvf */
7219 igb_vfta_set(hw, vid, true);
7220
7221 set_bit(vid, adapter->active_vlans);
7222
7223 return 0;
7224 }
7225
7226 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7227 __be16 proto, u16 vid)
7228 {
7229 struct igb_adapter *adapter = netdev_priv(netdev);
7230 struct e1000_hw *hw = &adapter->hw;
7231 int pf_id = adapter->vfs_allocated_count;
7232 s32 err;
7233
7234 /* remove vlan from VLVF table array */
7235 err = igb_vlvf_set(adapter, vid, false, pf_id);
7236
7237 /* if vid was not present in VLVF just remove it from table */
7238 if (err)
7239 igb_vfta_set(hw, vid, false);
7240
7241 clear_bit(vid, adapter->active_vlans);
7242
7243 return 0;
7244 }
7245
7246 static void igb_restore_vlan(struct igb_adapter *adapter)
7247 {
7248 u16 vid;
7249
7250 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7251
7252 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7253 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7254 }
7255
7256 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7257 {
7258 struct pci_dev *pdev = adapter->pdev;
7259 struct e1000_mac_info *mac = &adapter->hw.mac;
7260
7261 mac->autoneg = 0;
7262
7263 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7264 * for the switch() below to work
7265 */
7266 if ((spd & 1) || (dplx & ~1))
7267 goto err_inval;
7268
7269 /* Fiber NIC's only allow 1000 gbps Full duplex
7270 * and 100Mbps Full duplex for 100baseFx sfp
7271 */
7272 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7273 switch (spd + dplx) {
7274 case SPEED_10 + DUPLEX_HALF:
7275 case SPEED_10 + DUPLEX_FULL:
7276 case SPEED_100 + DUPLEX_HALF:
7277 goto err_inval;
7278 default:
7279 break;
7280 }
7281 }
7282
7283 switch (spd + dplx) {
7284 case SPEED_10 + DUPLEX_HALF:
7285 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7286 break;
7287 case SPEED_10 + DUPLEX_FULL:
7288 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7289 break;
7290 case SPEED_100 + DUPLEX_HALF:
7291 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7292 break;
7293 case SPEED_100 + DUPLEX_FULL:
7294 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7295 break;
7296 case SPEED_1000 + DUPLEX_FULL:
7297 mac->autoneg = 1;
7298 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7299 break;
7300 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7301 default:
7302 goto err_inval;
7303 }
7304
7305 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7306 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7307
7308 return 0;
7309
7310 err_inval:
7311 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7312 return -EINVAL;
7313 }
7314
7315 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7316 bool runtime)
7317 {
7318 struct net_device *netdev = pci_get_drvdata(pdev);
7319 struct igb_adapter *adapter = netdev_priv(netdev);
7320 struct e1000_hw *hw = &adapter->hw;
7321 u32 ctrl, rctl, status;
7322 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7323 #ifdef CONFIG_PM
7324 int retval = 0;
7325 #endif
7326
7327 netif_device_detach(netdev);
7328
7329 if (netif_running(netdev))
7330 __igb_close(netdev, true);
7331
7332 igb_clear_interrupt_scheme(adapter);
7333
7334 #ifdef CONFIG_PM
7335 retval = pci_save_state(pdev);
7336 if (retval)
7337 return retval;
7338 #endif
7339
7340 status = rd32(E1000_STATUS);
7341 if (status & E1000_STATUS_LU)
7342 wufc &= ~E1000_WUFC_LNKC;
7343
7344 if (wufc) {
7345 igb_setup_rctl(adapter);
7346 igb_set_rx_mode(netdev);
7347
7348 /* turn on all-multi mode if wake on multicast is enabled */
7349 if (wufc & E1000_WUFC_MC) {
7350 rctl = rd32(E1000_RCTL);
7351 rctl |= E1000_RCTL_MPE;
7352 wr32(E1000_RCTL, rctl);
7353 }
7354
7355 ctrl = rd32(E1000_CTRL);
7356 /* advertise wake from D3Cold */
7357 #define E1000_CTRL_ADVD3WUC 0x00100000
7358 /* phy power management enable */
7359 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7360 ctrl |= E1000_CTRL_ADVD3WUC;
7361 wr32(E1000_CTRL, ctrl);
7362
7363 /* Allow time for pending master requests to run */
7364 igb_disable_pcie_master(hw);
7365
7366 wr32(E1000_WUC, E1000_WUC_PME_EN);
7367 wr32(E1000_WUFC, wufc);
7368 } else {
7369 wr32(E1000_WUC, 0);
7370 wr32(E1000_WUFC, 0);
7371 }
7372
7373 *enable_wake = wufc || adapter->en_mng_pt;
7374 if (!*enable_wake)
7375 igb_power_down_link(adapter);
7376 else
7377 igb_power_up_link(adapter);
7378
7379 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7380 * would have already happened in close and is redundant.
7381 */
7382 igb_release_hw_control(adapter);
7383
7384 pci_disable_device(pdev);
7385
7386 return 0;
7387 }
7388
7389 #ifdef CONFIG_PM
7390 #ifdef CONFIG_PM_SLEEP
7391 static int igb_suspend(struct device *dev)
7392 {
7393 int retval;
7394 bool wake;
7395 struct pci_dev *pdev = to_pci_dev(dev);
7396
7397 retval = __igb_shutdown(pdev, &wake, 0);
7398 if (retval)
7399 return retval;
7400
7401 if (wake) {
7402 pci_prepare_to_sleep(pdev);
7403 } else {
7404 pci_wake_from_d3(pdev, false);
7405 pci_set_power_state(pdev, PCI_D3hot);
7406 }
7407
7408 return 0;
7409 }
7410 #endif /* CONFIG_PM_SLEEP */
7411
7412 static int igb_resume(struct device *dev)
7413 {
7414 struct pci_dev *pdev = to_pci_dev(dev);
7415 struct net_device *netdev = pci_get_drvdata(pdev);
7416 struct igb_adapter *adapter = netdev_priv(netdev);
7417 struct e1000_hw *hw = &adapter->hw;
7418 u32 err;
7419
7420 pci_set_power_state(pdev, PCI_D0);
7421 pci_restore_state(pdev);
7422 pci_save_state(pdev);
7423
7424 if (!pci_device_is_present(pdev))
7425 return -ENODEV;
7426 err = pci_enable_device_mem(pdev);
7427 if (err) {
7428 dev_err(&pdev->dev,
7429 "igb: Cannot enable PCI device from suspend\n");
7430 return err;
7431 }
7432 pci_set_master(pdev);
7433
7434 pci_enable_wake(pdev, PCI_D3hot, 0);
7435 pci_enable_wake(pdev, PCI_D3cold, 0);
7436
7437 if (igb_init_interrupt_scheme(adapter, true)) {
7438 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7439 rtnl_unlock();
7440 return -ENOMEM;
7441 }
7442
7443 igb_reset(adapter);
7444
7445 /* let the f/w know that the h/w is now under the control of the
7446 * driver.
7447 */
7448 igb_get_hw_control(adapter);
7449
7450 wr32(E1000_WUS, ~0);
7451
7452 if (netdev->flags & IFF_UP) {
7453 rtnl_lock();
7454 err = __igb_open(netdev, true);
7455 rtnl_unlock();
7456 if (err)
7457 return err;
7458 }
7459
7460 netif_device_attach(netdev);
7461 return 0;
7462 }
7463
7464 static int igb_runtime_idle(struct device *dev)
7465 {
7466 struct pci_dev *pdev = to_pci_dev(dev);
7467 struct net_device *netdev = pci_get_drvdata(pdev);
7468 struct igb_adapter *adapter = netdev_priv(netdev);
7469
7470 if (!igb_has_link(adapter))
7471 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7472
7473 return -EBUSY;
7474 }
7475
7476 static int igb_runtime_suspend(struct device *dev)
7477 {
7478 struct pci_dev *pdev = to_pci_dev(dev);
7479 int retval;
7480 bool wake;
7481
7482 retval = __igb_shutdown(pdev, &wake, 1);
7483 if (retval)
7484 return retval;
7485
7486 if (wake) {
7487 pci_prepare_to_sleep(pdev);
7488 } else {
7489 pci_wake_from_d3(pdev, false);
7490 pci_set_power_state(pdev, PCI_D3hot);
7491 }
7492
7493 return 0;
7494 }
7495
7496 static int igb_runtime_resume(struct device *dev)
7497 {
7498 return igb_resume(dev);
7499 }
7500 #endif /* CONFIG_PM */
7501
7502 static void igb_shutdown(struct pci_dev *pdev)
7503 {
7504 bool wake;
7505
7506 __igb_shutdown(pdev, &wake, 0);
7507
7508 if (system_state == SYSTEM_POWER_OFF) {
7509 pci_wake_from_d3(pdev, wake);
7510 pci_set_power_state(pdev, PCI_D3hot);
7511 }
7512 }
7513
7514 #ifdef CONFIG_PCI_IOV
7515 static int igb_sriov_reinit(struct pci_dev *dev)
7516 {
7517 struct net_device *netdev = pci_get_drvdata(dev);
7518 struct igb_adapter *adapter = netdev_priv(netdev);
7519 struct pci_dev *pdev = adapter->pdev;
7520
7521 rtnl_lock();
7522
7523 if (netif_running(netdev))
7524 igb_close(netdev);
7525 else
7526 igb_reset(adapter);
7527
7528 igb_clear_interrupt_scheme(adapter);
7529
7530 igb_init_queue_configuration(adapter);
7531
7532 if (igb_init_interrupt_scheme(adapter, true)) {
7533 rtnl_unlock();
7534 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7535 return -ENOMEM;
7536 }
7537
7538 if (netif_running(netdev))
7539 igb_open(netdev);
7540
7541 rtnl_unlock();
7542
7543 return 0;
7544 }
7545
7546 static int igb_pci_disable_sriov(struct pci_dev *dev)
7547 {
7548 int err = igb_disable_sriov(dev);
7549
7550 if (!err)
7551 err = igb_sriov_reinit(dev);
7552
7553 return err;
7554 }
7555
7556 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7557 {
7558 int err = igb_enable_sriov(dev, num_vfs);
7559
7560 if (err)
7561 goto out;
7562
7563 err = igb_sriov_reinit(dev);
7564 if (!err)
7565 return num_vfs;
7566
7567 out:
7568 return err;
7569 }
7570
7571 #endif
7572 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7573 {
7574 #ifdef CONFIG_PCI_IOV
7575 if (num_vfs == 0)
7576 return igb_pci_disable_sriov(dev);
7577 else
7578 return igb_pci_enable_sriov(dev, num_vfs);
7579 #endif
7580 return 0;
7581 }
7582
7583 #ifdef CONFIG_NET_POLL_CONTROLLER
7584 /* Polling 'interrupt' - used by things like netconsole to send skbs
7585 * without having to re-enable interrupts. It's not called while
7586 * the interrupt routine is executing.
7587 */
7588 static void igb_netpoll(struct net_device *netdev)
7589 {
7590 struct igb_adapter *adapter = netdev_priv(netdev);
7591 struct e1000_hw *hw = &adapter->hw;
7592 struct igb_q_vector *q_vector;
7593 int i;
7594
7595 for (i = 0; i < adapter->num_q_vectors; i++) {
7596 q_vector = adapter->q_vector[i];
7597 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7598 wr32(E1000_EIMC, q_vector->eims_value);
7599 else
7600 igb_irq_disable(adapter);
7601 napi_schedule(&q_vector->napi);
7602 }
7603 }
7604 #endif /* CONFIG_NET_POLL_CONTROLLER */
7605
7606 /**
7607 * igb_io_error_detected - called when PCI error is detected
7608 * @pdev: Pointer to PCI device
7609 * @state: The current pci connection state
7610 *
7611 * This function is called after a PCI bus error affecting
7612 * this device has been detected.
7613 **/
7614 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7615 pci_channel_state_t state)
7616 {
7617 struct net_device *netdev = pci_get_drvdata(pdev);
7618 struct igb_adapter *adapter = netdev_priv(netdev);
7619
7620 netif_device_detach(netdev);
7621
7622 if (state == pci_channel_io_perm_failure)
7623 return PCI_ERS_RESULT_DISCONNECT;
7624
7625 if (netif_running(netdev))
7626 igb_down(adapter);
7627 pci_disable_device(pdev);
7628
7629 /* Request a slot slot reset. */
7630 return PCI_ERS_RESULT_NEED_RESET;
7631 }
7632
7633 /**
7634 * igb_io_slot_reset - called after the pci bus has been reset.
7635 * @pdev: Pointer to PCI device
7636 *
7637 * Restart the card from scratch, as if from a cold-boot. Implementation
7638 * resembles the first-half of the igb_resume routine.
7639 **/
7640 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7641 {
7642 struct net_device *netdev = pci_get_drvdata(pdev);
7643 struct igb_adapter *adapter = netdev_priv(netdev);
7644 struct e1000_hw *hw = &adapter->hw;
7645 pci_ers_result_t result;
7646 int err;
7647
7648 if (pci_enable_device_mem(pdev)) {
7649 dev_err(&pdev->dev,
7650 "Cannot re-enable PCI device after reset.\n");
7651 result = PCI_ERS_RESULT_DISCONNECT;
7652 } else {
7653 pci_set_master(pdev);
7654 pci_restore_state(pdev);
7655 pci_save_state(pdev);
7656
7657 pci_enable_wake(pdev, PCI_D3hot, 0);
7658 pci_enable_wake(pdev, PCI_D3cold, 0);
7659
7660 igb_reset(adapter);
7661 wr32(E1000_WUS, ~0);
7662 result = PCI_ERS_RESULT_RECOVERED;
7663 }
7664
7665 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7666 if (err) {
7667 dev_err(&pdev->dev,
7668 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7669 err);
7670 /* non-fatal, continue */
7671 }
7672
7673 return result;
7674 }
7675
7676 /**
7677 * igb_io_resume - called when traffic can start flowing again.
7678 * @pdev: Pointer to PCI device
7679 *
7680 * This callback is called when the error recovery driver tells us that
7681 * its OK to resume normal operation. Implementation resembles the
7682 * second-half of the igb_resume routine.
7683 */
7684 static void igb_io_resume(struct pci_dev *pdev)
7685 {
7686 struct net_device *netdev = pci_get_drvdata(pdev);
7687 struct igb_adapter *adapter = netdev_priv(netdev);
7688
7689 if (netif_running(netdev)) {
7690 if (igb_up(adapter)) {
7691 dev_err(&pdev->dev, "igb_up failed after reset\n");
7692 return;
7693 }
7694 }
7695
7696 netif_device_attach(netdev);
7697
7698 /* let the f/w know that the h/w is now under the control of the
7699 * driver.
7700 */
7701 igb_get_hw_control(adapter);
7702 }
7703
7704 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7705 u8 qsel)
7706 {
7707 u32 rar_low, rar_high;
7708 struct e1000_hw *hw = &adapter->hw;
7709
7710 /* HW expects these in little endian so we reverse the byte order
7711 * from network order (big endian) to little endian
7712 */
7713 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7714 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7715 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7716
7717 /* Indicate to hardware the Address is Valid. */
7718 rar_high |= E1000_RAH_AV;
7719
7720 if (hw->mac.type == e1000_82575)
7721 rar_high |= E1000_RAH_POOL_1 * qsel;
7722 else
7723 rar_high |= E1000_RAH_POOL_1 << qsel;
7724
7725 wr32(E1000_RAL(index), rar_low);
7726 wrfl();
7727 wr32(E1000_RAH(index), rar_high);
7728 wrfl();
7729 }
7730
7731 static int igb_set_vf_mac(struct igb_adapter *adapter,
7732 int vf, unsigned char *mac_addr)
7733 {
7734 struct e1000_hw *hw = &adapter->hw;
7735 /* VF MAC addresses start at end of receive addresses and moves
7736 * towards the first, as a result a collision should not be possible
7737 */
7738 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7739
7740 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7741
7742 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7743
7744 return 0;
7745 }
7746
7747 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7748 {
7749 struct igb_adapter *adapter = netdev_priv(netdev);
7750 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7751 return -EINVAL;
7752 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7753 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7754 dev_info(&adapter->pdev->dev,
7755 "Reload the VF driver to make this change effective.");
7756 if (test_bit(__IGB_DOWN, &adapter->state)) {
7757 dev_warn(&adapter->pdev->dev,
7758 "The VF MAC address has been set, but the PF device is not up.\n");
7759 dev_warn(&adapter->pdev->dev,
7760 "Bring the PF device up before attempting to use the VF device.\n");
7761 }
7762 return igb_set_vf_mac(adapter, vf, mac);
7763 }
7764
7765 static int igb_link_mbps(int internal_link_speed)
7766 {
7767 switch (internal_link_speed) {
7768 case SPEED_100:
7769 return 100;
7770 case SPEED_1000:
7771 return 1000;
7772 default:
7773 return 0;
7774 }
7775 }
7776
7777 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7778 int link_speed)
7779 {
7780 int rf_dec, rf_int;
7781 u32 bcnrc_val;
7782
7783 if (tx_rate != 0) {
7784 /* Calculate the rate factor values to set */
7785 rf_int = link_speed / tx_rate;
7786 rf_dec = (link_speed - (rf_int * tx_rate));
7787 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7788 tx_rate;
7789
7790 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7791 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7792 E1000_RTTBCNRC_RF_INT_MASK);
7793 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7794 } else {
7795 bcnrc_val = 0;
7796 }
7797
7798 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7799 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7800 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7801 */
7802 wr32(E1000_RTTBCNRM, 0x14);
7803 wr32(E1000_RTTBCNRC, bcnrc_val);
7804 }
7805
7806 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7807 {
7808 int actual_link_speed, i;
7809 bool reset_rate = false;
7810
7811 /* VF TX rate limit was not set or not supported */
7812 if ((adapter->vf_rate_link_speed == 0) ||
7813 (adapter->hw.mac.type != e1000_82576))
7814 return;
7815
7816 actual_link_speed = igb_link_mbps(adapter->link_speed);
7817 if (actual_link_speed != adapter->vf_rate_link_speed) {
7818 reset_rate = true;
7819 adapter->vf_rate_link_speed = 0;
7820 dev_info(&adapter->pdev->dev,
7821 "Link speed has been changed. VF Transmit rate is disabled\n");
7822 }
7823
7824 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7825 if (reset_rate)
7826 adapter->vf_data[i].tx_rate = 0;
7827
7828 igb_set_vf_rate_limit(&adapter->hw, i,
7829 adapter->vf_data[i].tx_rate,
7830 actual_link_speed);
7831 }
7832 }
7833
7834 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7835 int min_tx_rate, int max_tx_rate)
7836 {
7837 struct igb_adapter *adapter = netdev_priv(netdev);
7838 struct e1000_hw *hw = &adapter->hw;
7839 int actual_link_speed;
7840
7841 if (hw->mac.type != e1000_82576)
7842 return -EOPNOTSUPP;
7843
7844 if (min_tx_rate)
7845 return -EINVAL;
7846
7847 actual_link_speed = igb_link_mbps(adapter->link_speed);
7848 if ((vf >= adapter->vfs_allocated_count) ||
7849 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7850 (max_tx_rate < 0) ||
7851 (max_tx_rate > actual_link_speed))
7852 return -EINVAL;
7853
7854 adapter->vf_rate_link_speed = actual_link_speed;
7855 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7856 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7857
7858 return 0;
7859 }
7860
7861 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7862 bool setting)
7863 {
7864 struct igb_adapter *adapter = netdev_priv(netdev);
7865 struct e1000_hw *hw = &adapter->hw;
7866 u32 reg_val, reg_offset;
7867
7868 if (!adapter->vfs_allocated_count)
7869 return -EOPNOTSUPP;
7870
7871 if (vf >= adapter->vfs_allocated_count)
7872 return -EINVAL;
7873
7874 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7875 reg_val = rd32(reg_offset);
7876 if (setting)
7877 reg_val |= ((1 << vf) |
7878 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7879 else
7880 reg_val &= ~((1 << vf) |
7881 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7882 wr32(reg_offset, reg_val);
7883
7884 adapter->vf_data[vf].spoofchk_enabled = setting;
7885 return 0;
7886 }
7887
7888 static int igb_ndo_get_vf_config(struct net_device *netdev,
7889 int vf, struct ifla_vf_info *ivi)
7890 {
7891 struct igb_adapter *adapter = netdev_priv(netdev);
7892 if (vf >= adapter->vfs_allocated_count)
7893 return -EINVAL;
7894 ivi->vf = vf;
7895 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7896 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7897 ivi->min_tx_rate = 0;
7898 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7899 ivi->qos = adapter->vf_data[vf].pf_qos;
7900 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7901 return 0;
7902 }
7903
7904 static void igb_vmm_control(struct igb_adapter *adapter)
7905 {
7906 struct e1000_hw *hw = &adapter->hw;
7907 u32 reg;
7908
7909 switch (hw->mac.type) {
7910 case e1000_82575:
7911 case e1000_i210:
7912 case e1000_i211:
7913 case e1000_i354:
7914 default:
7915 /* replication is not supported for 82575 */
7916 return;
7917 case e1000_82576:
7918 /* notify HW that the MAC is adding vlan tags */
7919 reg = rd32(E1000_DTXCTL);
7920 reg |= E1000_DTXCTL_VLAN_ADDED;
7921 wr32(E1000_DTXCTL, reg);
7922 /* Fall through */
7923 case e1000_82580:
7924 /* enable replication vlan tag stripping */
7925 reg = rd32(E1000_RPLOLR);
7926 reg |= E1000_RPLOLR_STRVLAN;
7927 wr32(E1000_RPLOLR, reg);
7928 /* Fall through */
7929 case e1000_i350:
7930 /* none of the above registers are supported by i350 */
7931 break;
7932 }
7933
7934 if (adapter->vfs_allocated_count) {
7935 igb_vmdq_set_loopback_pf(hw, true);
7936 igb_vmdq_set_replication_pf(hw, true);
7937 igb_vmdq_set_anti_spoofing_pf(hw, true,
7938 adapter->vfs_allocated_count);
7939 } else {
7940 igb_vmdq_set_loopback_pf(hw, false);
7941 igb_vmdq_set_replication_pf(hw, false);
7942 }
7943 }
7944
7945 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7946 {
7947 struct e1000_hw *hw = &adapter->hw;
7948 u32 dmac_thr;
7949 u16 hwm;
7950
7951 if (hw->mac.type > e1000_82580) {
7952 if (adapter->flags & IGB_FLAG_DMAC) {
7953 u32 reg;
7954
7955 /* force threshold to 0. */
7956 wr32(E1000_DMCTXTH, 0);
7957
7958 /* DMA Coalescing high water mark needs to be greater
7959 * than the Rx threshold. Set hwm to PBA - max frame
7960 * size in 16B units, capping it at PBA - 6KB.
7961 */
7962 hwm = 64 * pba - adapter->max_frame_size / 16;
7963 if (hwm < 64 * (pba - 6))
7964 hwm = 64 * (pba - 6);
7965 reg = rd32(E1000_FCRTC);
7966 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7967 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7968 & E1000_FCRTC_RTH_COAL_MASK);
7969 wr32(E1000_FCRTC, reg);
7970
7971 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7972 * frame size, capping it at PBA - 10KB.
7973 */
7974 dmac_thr = pba - adapter->max_frame_size / 512;
7975 if (dmac_thr < pba - 10)
7976 dmac_thr = pba - 10;
7977 reg = rd32(E1000_DMACR);
7978 reg &= ~E1000_DMACR_DMACTHR_MASK;
7979 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7980 & E1000_DMACR_DMACTHR_MASK);
7981
7982 /* transition to L0x or L1 if available..*/
7983 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7984
7985 /* watchdog timer= +-1000 usec in 32usec intervals */
7986 reg |= (1000 >> 5);
7987
7988 /* Disable BMC-to-OS Watchdog Enable */
7989 if (hw->mac.type != e1000_i354)
7990 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7991
7992 wr32(E1000_DMACR, reg);
7993
7994 /* no lower threshold to disable
7995 * coalescing(smart fifb)-UTRESH=0
7996 */
7997 wr32(E1000_DMCRTRH, 0);
7998
7999 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8000
8001 wr32(E1000_DMCTLX, reg);
8002
8003 /* free space in tx packet buffer to wake from
8004 * DMA coal
8005 */
8006 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8007 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8008
8009 /* make low power state decision controlled
8010 * by DMA coal
8011 */
8012 reg = rd32(E1000_PCIEMISC);
8013 reg &= ~E1000_PCIEMISC_LX_DECISION;
8014 wr32(E1000_PCIEMISC, reg);
8015 } /* endif adapter->dmac is not disabled */
8016 } else if (hw->mac.type == e1000_82580) {
8017 u32 reg = rd32(E1000_PCIEMISC);
8018
8019 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8020 wr32(E1000_DMACR, 0);
8021 }
8022 }
8023
8024 /**
8025 * igb_read_i2c_byte - Reads 8 bit word over I2C
8026 * @hw: pointer to hardware structure
8027 * @byte_offset: byte offset to read
8028 * @dev_addr: device address
8029 * @data: value read
8030 *
8031 * Performs byte read operation over I2C interface at
8032 * a specified device address.
8033 **/
8034 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8035 u8 dev_addr, u8 *data)
8036 {
8037 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8038 struct i2c_client *this_client = adapter->i2c_client;
8039 s32 status;
8040 u16 swfw_mask = 0;
8041
8042 if (!this_client)
8043 return E1000_ERR_I2C;
8044
8045 swfw_mask = E1000_SWFW_PHY0_SM;
8046
8047 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8048 return E1000_ERR_SWFW_SYNC;
8049
8050 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8051 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8052
8053 if (status < 0)
8054 return E1000_ERR_I2C;
8055 else {
8056 *data = status;
8057 return 0;
8058 }
8059 }
8060
8061 /**
8062 * igb_write_i2c_byte - Writes 8 bit word over I2C
8063 * @hw: pointer to hardware structure
8064 * @byte_offset: byte offset to write
8065 * @dev_addr: device address
8066 * @data: value to write
8067 *
8068 * Performs byte write operation over I2C interface at
8069 * a specified device address.
8070 **/
8071 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8072 u8 dev_addr, u8 data)
8073 {
8074 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8075 struct i2c_client *this_client = adapter->i2c_client;
8076 s32 status;
8077 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8078
8079 if (!this_client)
8080 return E1000_ERR_I2C;
8081
8082 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8083 return E1000_ERR_SWFW_SYNC;
8084 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8085 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8086
8087 if (status)
8088 return E1000_ERR_I2C;
8089 else
8090 return 0;
8091
8092 }
8093
8094 int igb_reinit_queues(struct igb_adapter *adapter)
8095 {
8096 struct net_device *netdev = adapter->netdev;
8097 struct pci_dev *pdev = adapter->pdev;
8098 int err = 0;
8099
8100 if (netif_running(netdev))
8101 igb_close(netdev);
8102
8103 igb_reset_interrupt_capability(adapter);
8104
8105 if (igb_init_interrupt_scheme(adapter, true)) {
8106 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8107 return -ENOMEM;
8108 }
8109
8110 if (netif_running(netdev))
8111 err = igb_open(netdev);
8112
8113 return err;
8114 }
8115 /* igb_main.c */