]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
x86/cpu/amd: Give access to the number of nodes in a physical package
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 static int igb_runtime_suspend(struct device *dev);
190 static int igb_runtime_resume(struct device *dev);
191 static int igb_runtime_idle(struct device *dev);
192 static const struct dev_pm_ops igb_pm_ops = {
193 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195 igb_runtime_idle)
196 };
197 #endif
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
206 };
207 #endif
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void igb_netpoll(struct net_device *);
211 #endif
212 #ifdef CONFIG_PCI_IOV
213 static unsigned int max_vfs;
214 module_param(max_vfs, uint, 0);
215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216 #endif /* CONFIG_PCI_IOV */
217
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219 pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222
223 static const struct pci_error_handlers igb_err_handler = {
224 .error_detected = igb_io_error_detected,
225 .slot_reset = igb_io_slot_reset,
226 .resume = igb_io_resume,
227 };
228
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231 static struct pci_driver igb_driver = {
232 .name = igb_driver_name,
233 .id_table = igb_pci_tbl,
234 .probe = igb_probe,
235 .remove = igb_remove,
236 #ifdef CONFIG_PM
237 .driver.pm = &igb_pm_ops,
238 #endif
239 .shutdown = igb_shutdown,
240 .sriov_configure = igb_pci_sriov_configure,
241 .err_handler = &igb_err_handler
242 };
243
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254 struct igb_reg_info {
255 u32 ofs;
256 char *name;
257 };
258
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261 /* General Registers */
262 {E1000_CTRL, "CTRL"},
263 {E1000_STATUS, "STATUS"},
264 {E1000_CTRL_EXT, "CTRL_EXT"},
265
266 /* Interrupt Registers */
267 {E1000_ICR, "ICR"},
268
269 /* RX Registers */
270 {E1000_RCTL, "RCTL"},
271 {E1000_RDLEN(0), "RDLEN"},
272 {E1000_RDH(0), "RDH"},
273 {E1000_RDT(0), "RDT"},
274 {E1000_RXDCTL(0), "RXDCTL"},
275 {E1000_RDBAL(0), "RDBAL"},
276 {E1000_RDBAH(0), "RDBAH"},
277
278 /* TX Registers */
279 {E1000_TCTL, "TCTL"},
280 {E1000_TDBAL(0), "TDBAL"},
281 {E1000_TDBAH(0), "TDBAH"},
282 {E1000_TDLEN(0), "TDLEN"},
283 {E1000_TDH(0), "TDH"},
284 {E1000_TDT(0), "TDT"},
285 {E1000_TXDCTL(0), "TXDCTL"},
286 {E1000_TDFH, "TDFH"},
287 {E1000_TDFT, "TDFT"},
288 {E1000_TDFHS, "TDFHS"},
289 {E1000_TDFPC, "TDFPC"},
290
291 /* List Terminator */
292 {}
293 };
294
295 /* igb_regdump - register printout routine */
296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297 {
298 int n = 0;
299 char rname[16];
300 u32 regs[8];
301
302 switch (reginfo->ofs) {
303 case E1000_RDLEN(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDLEN(n));
306 break;
307 case E1000_RDH(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDH(n));
310 break;
311 case E1000_RDT(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RDT(n));
314 break;
315 case E1000_RXDCTL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RXDCTL(n));
318 break;
319 case E1000_RDBAL(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAL(n));
322 break;
323 case E1000_RDBAH(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAH(n));
326 break;
327 case E1000_TDBAL(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_RDBAL(n));
330 break;
331 case E1000_TDBAH(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDBAH(n));
334 break;
335 case E1000_TDLEN(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDLEN(n));
338 break;
339 case E1000_TDH(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDH(n));
342 break;
343 case E1000_TDT(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TDT(n));
346 break;
347 case E1000_TXDCTL(0):
348 for (n = 0; n < 4; n++)
349 regs[n] = rd32(E1000_TXDCTL(n));
350 break;
351 default:
352 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353 return;
354 }
355
356 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358 regs[2], regs[3]);
359 }
360
361 /* igb_dump - Print registers, Tx-rings and Rx-rings */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364 struct net_device *netdev = adapter->netdev;
365 struct e1000_hw *hw = &adapter->hw;
366 struct igb_reg_info *reginfo;
367 struct igb_ring *tx_ring;
368 union e1000_adv_tx_desc *tx_desc;
369 struct my_u0 { u64 a; u64 b; } *u0;
370 struct igb_ring *rx_ring;
371 union e1000_adv_rx_desc *rx_desc;
372 u32 staterr;
373 u16 i, n;
374
375 if (!netif_msg_hw(adapter))
376 return;
377
378 /* Print netdevice Info */
379 if (netdev) {
380 dev_info(&adapter->pdev->dev, "Net device Info\n");
381 pr_info("Device Name state trans_start last_rx\n");
382 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383 netdev->state, netdev->trans_start, netdev->last_rx);
384 }
385
386 /* Print Registers */
387 dev_info(&adapter->pdev->dev, "Register Dump\n");
388 pr_info(" Register Name Value\n");
389 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390 reginfo->name; reginfo++) {
391 igb_regdump(hw, reginfo);
392 }
393
394 /* Print TX Ring Summary */
395 if (!netdev || !netif_running(netdev))
396 goto exit;
397
398 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
400 for (n = 0; n < adapter->num_tx_queues; n++) {
401 struct igb_tx_buffer *buffer_info;
402 tx_ring = adapter->tx_ring[n];
403 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405 n, tx_ring->next_to_use, tx_ring->next_to_clean,
406 (u64)dma_unmap_addr(buffer_info, dma),
407 dma_unmap_len(buffer_info, len),
408 buffer_info->next_to_watch,
409 (u64)buffer_info->time_stamp);
410 }
411
412 /* Print TX Rings */
413 if (!netif_msg_tx_done(adapter))
414 goto rx_ring_summary;
415
416 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418 /* Transmit Descriptor Formats
419 *
420 * Advanced Transmit Descriptor
421 * +--------------------------------------------------------------+
422 * 0 | Buffer Address [63:0] |
423 * +--------------------------------------------------------------+
424 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
425 * +--------------------------------------------------------------+
426 * 63 46 45 40 39 38 36 35 32 31 24 15 0
427 */
428
429 for (n = 0; n < adapter->num_tx_queues; n++) {
430 tx_ring = adapter->tx_ring[n];
431 pr_info("------------------------------------\n");
432 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433 pr_info("------------------------------------\n");
434 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
435
436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437 const char *next_desc;
438 struct igb_tx_buffer *buffer_info;
439 tx_desc = IGB_TX_DESC(tx_ring, i);
440 buffer_info = &tx_ring->tx_buffer_info[i];
441 u0 = (struct my_u0 *)tx_desc;
442 if (i == tx_ring->next_to_use &&
443 i == tx_ring->next_to_clean)
444 next_desc = " NTC/U";
445 else if (i == tx_ring->next_to_use)
446 next_desc = " NTU";
447 else if (i == tx_ring->next_to_clean)
448 next_desc = " NTC";
449 else
450 next_desc = "";
451
452 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
453 i, le64_to_cpu(u0->a),
454 le64_to_cpu(u0->b),
455 (u64)dma_unmap_addr(buffer_info, dma),
456 dma_unmap_len(buffer_info, len),
457 buffer_info->next_to_watch,
458 (u64)buffer_info->time_stamp,
459 buffer_info->skb, next_desc);
460
461 if (netif_msg_pktdata(adapter) && buffer_info->skb)
462 print_hex_dump(KERN_INFO, "",
463 DUMP_PREFIX_ADDRESS,
464 16, 1, buffer_info->skb->data,
465 dma_unmap_len(buffer_info, len),
466 true);
467 }
468 }
469
470 /* Print RX Rings Summary */
471 rx_ring_summary:
472 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473 pr_info("Queue [NTU] [NTC]\n");
474 for (n = 0; n < adapter->num_rx_queues; n++) {
475 rx_ring = adapter->rx_ring[n];
476 pr_info(" %5d %5X %5X\n",
477 n, rx_ring->next_to_use, rx_ring->next_to_clean);
478 }
479
480 /* Print RX Rings */
481 if (!netif_msg_rx_status(adapter))
482 goto exit;
483
484 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486 /* Advanced Receive Descriptor (Read) Format
487 * 63 1 0
488 * +-----------------------------------------------------+
489 * 0 | Packet Buffer Address [63:1] |A0/NSE|
490 * +----------------------------------------------+------+
491 * 8 | Header Buffer Address [63:1] | DD |
492 * +-----------------------------------------------------+
493 *
494 *
495 * Advanced Receive Descriptor (Write-Back) Format
496 *
497 * 63 48 47 32 31 30 21 20 17 16 4 3 0
498 * +------------------------------------------------------+
499 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
500 * | Checksum Ident | | | | Type | Type |
501 * +------------------------------------------------------+
502 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503 * +------------------------------------------------------+
504 * 63 48 47 32 31 20 19 0
505 */
506
507 for (n = 0; n < adapter->num_rx_queues; n++) {
508 rx_ring = adapter->rx_ring[n];
509 pr_info("------------------------------------\n");
510 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511 pr_info("------------------------------------\n");
512 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
513 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515 for (i = 0; i < rx_ring->count; i++) {
516 const char *next_desc;
517 struct igb_rx_buffer *buffer_info;
518 buffer_info = &rx_ring->rx_buffer_info[i];
519 rx_desc = IGB_RX_DESC(rx_ring, i);
520 u0 = (struct my_u0 *)rx_desc;
521 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523 if (i == rx_ring->next_to_use)
524 next_desc = " NTU";
525 else if (i == rx_ring->next_to_clean)
526 next_desc = " NTC";
527 else
528 next_desc = "";
529
530 if (staterr & E1000_RXD_STAT_DD) {
531 /* Descriptor Done */
532 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
533 "RWB", i,
534 le64_to_cpu(u0->a),
535 le64_to_cpu(u0->b),
536 next_desc);
537 } else {
538 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
539 "R ", i,
540 le64_to_cpu(u0->a),
541 le64_to_cpu(u0->b),
542 (u64)buffer_info->dma,
543 next_desc);
544
545 if (netif_msg_pktdata(adapter) &&
546 buffer_info->dma && buffer_info->page) {
547 print_hex_dump(KERN_INFO, "",
548 DUMP_PREFIX_ADDRESS,
549 16, 1,
550 page_address(buffer_info->page) +
551 buffer_info->page_offset,
552 IGB_RX_BUFSZ, true);
553 }
554 }
555 }
556 }
557
558 exit:
559 return;
560 }
561
562 /**
563 * igb_get_i2c_data - Reads the I2C SDA data bit
564 * @hw: pointer to hardware structure
565 * @i2cctl: Current value of I2CCTL register
566 *
567 * Returns the I2C data bit value
568 **/
569 static int igb_get_i2c_data(void *data)
570 {
571 struct igb_adapter *adapter = (struct igb_adapter *)data;
572 struct e1000_hw *hw = &adapter->hw;
573 s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575 return !!(i2cctl & E1000_I2C_DATA_IN);
576 }
577
578 /**
579 * igb_set_i2c_data - Sets the I2C data bit
580 * @data: pointer to hardware structure
581 * @state: I2C data value (0 or 1) to set
582 *
583 * Sets the I2C data bit
584 **/
585 static void igb_set_i2c_data(void *data, int state)
586 {
587 struct igb_adapter *adapter = (struct igb_adapter *)data;
588 struct e1000_hw *hw = &adapter->hw;
589 s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591 if (state)
592 i2cctl |= E1000_I2C_DATA_OUT;
593 else
594 i2cctl &= ~E1000_I2C_DATA_OUT;
595
596 i2cctl &= ~E1000_I2C_DATA_OE_N;
597 i2cctl |= E1000_I2C_CLK_OE_N;
598 wr32(E1000_I2CPARAMS, i2cctl);
599 wrfl();
600
601 }
602
603 /**
604 * igb_set_i2c_clk - Sets the I2C SCL clock
605 * @data: pointer to hardware structure
606 * @state: state to set clock
607 *
608 * Sets the I2C clock line to state
609 **/
610 static void igb_set_i2c_clk(void *data, int state)
611 {
612 struct igb_adapter *adapter = (struct igb_adapter *)data;
613 struct e1000_hw *hw = &adapter->hw;
614 s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616 if (state) {
617 i2cctl |= E1000_I2C_CLK_OUT;
618 i2cctl &= ~E1000_I2C_CLK_OE_N;
619 } else {
620 i2cctl &= ~E1000_I2C_CLK_OUT;
621 i2cctl &= ~E1000_I2C_CLK_OE_N;
622 }
623 wr32(E1000_I2CPARAMS, i2cctl);
624 wrfl();
625 }
626
627 /**
628 * igb_get_i2c_clk - Gets the I2C SCL clock state
629 * @data: pointer to hardware structure
630 *
631 * Gets the I2C clock state
632 **/
633 static int igb_get_i2c_clk(void *data)
634 {
635 struct igb_adapter *adapter = (struct igb_adapter *)data;
636 struct e1000_hw *hw = &adapter->hw;
637 s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639 return !!(i2cctl & E1000_I2C_CLK_IN);
640 }
641
642 static const struct i2c_algo_bit_data igb_i2c_algo = {
643 .setsda = igb_set_i2c_data,
644 .setscl = igb_set_i2c_clk,
645 .getsda = igb_get_i2c_data,
646 .getscl = igb_get_i2c_clk,
647 .udelay = 5,
648 .timeout = 20,
649 };
650
651 /**
652 * igb_get_hw_dev - return device
653 * @hw: pointer to hardware structure
654 *
655 * used by hardware layer to print debugging information
656 **/
657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658 {
659 struct igb_adapter *adapter = hw->back;
660 return adapter->netdev;
661 }
662
663 /**
664 * igb_init_module - Driver Registration Routine
665 *
666 * igb_init_module is the first routine called when the driver is
667 * loaded. All it does is register with the PCI subsystem.
668 **/
669 static int __init igb_init_module(void)
670 {
671 int ret;
672
673 pr_info("%s - version %s\n",
674 igb_driver_string, igb_driver_version);
675 pr_info("%s\n", igb_copyright);
676
677 #ifdef CONFIG_IGB_DCA
678 dca_register_notify(&dca_notifier);
679 #endif
680 ret = pci_register_driver(&igb_driver);
681 return ret;
682 }
683
684 module_init(igb_init_module);
685
686 /**
687 * igb_exit_module - Driver Exit Cleanup Routine
688 *
689 * igb_exit_module is called just before the driver is removed
690 * from memory.
691 **/
692 static void __exit igb_exit_module(void)
693 {
694 #ifdef CONFIG_IGB_DCA
695 dca_unregister_notify(&dca_notifier);
696 #endif
697 pci_unregister_driver(&igb_driver);
698 }
699
700 module_exit(igb_exit_module);
701
702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703 /**
704 * igb_cache_ring_register - Descriptor ring to register mapping
705 * @adapter: board private structure to initialize
706 *
707 * Once we know the feature-set enabled for the device, we'll cache
708 * the register offset the descriptor ring is assigned to.
709 **/
710 static void igb_cache_ring_register(struct igb_adapter *adapter)
711 {
712 int i = 0, j = 0;
713 u32 rbase_offset = adapter->vfs_allocated_count;
714
715 switch (adapter->hw.mac.type) {
716 case e1000_82576:
717 /* The queues are allocated for virtualization such that VF 0
718 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719 * In order to avoid collision we start at the first free queue
720 * and continue consuming queues in the same sequence
721 */
722 if (adapter->vfs_allocated_count) {
723 for (; i < adapter->rss_queues; i++)
724 adapter->rx_ring[i]->reg_idx = rbase_offset +
725 Q_IDX_82576(i);
726 }
727 /* Fall through */
728 case e1000_82575:
729 case e1000_82580:
730 case e1000_i350:
731 case e1000_i354:
732 case e1000_i210:
733 case e1000_i211:
734 /* Fall through */
735 default:
736 for (; i < adapter->num_rx_queues; i++)
737 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738 for (; j < adapter->num_tx_queues; j++)
739 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740 break;
741 }
742 }
743
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745 {
746 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748 u32 value = 0;
749
750 if (E1000_REMOVED(hw_addr))
751 return ~value;
752
753 value = readl(&hw_addr[reg]);
754
755 /* reads should not return all F's */
756 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757 struct net_device *netdev = igb->netdev;
758 hw->hw_addr = NULL;
759 netif_device_detach(netdev);
760 netdev_err(netdev, "PCIe link lost, device now detached\n");
761 }
762
763 return value;
764 }
765
766 /**
767 * igb_write_ivar - configure ivar for given MSI-X vector
768 * @hw: pointer to the HW structure
769 * @msix_vector: vector number we are allocating to a given ring
770 * @index: row index of IVAR register to write within IVAR table
771 * @offset: column offset of in IVAR, should be multiple of 8
772 *
773 * This function is intended to handle the writing of the IVAR register
774 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
775 * each containing an cause allocation for an Rx and Tx ring, and a
776 * variable number of rows depending on the number of queues supported.
777 **/
778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779 int index, int offset)
780 {
781 u32 ivar = array_rd32(E1000_IVAR0, index);
782
783 /* clear any bits that are currently set */
784 ivar &= ~((u32)0xFF << offset);
785
786 /* write vector and valid bit */
787 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789 array_wr32(E1000_IVAR0, index, ivar);
790 }
791
792 #define IGB_N0_QUEUE -1
793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 {
795 struct igb_adapter *adapter = q_vector->adapter;
796 struct e1000_hw *hw = &adapter->hw;
797 int rx_queue = IGB_N0_QUEUE;
798 int tx_queue = IGB_N0_QUEUE;
799 u32 msixbm = 0;
800
801 if (q_vector->rx.ring)
802 rx_queue = q_vector->rx.ring->reg_idx;
803 if (q_vector->tx.ring)
804 tx_queue = q_vector->tx.ring->reg_idx;
805
806 switch (hw->mac.type) {
807 case e1000_82575:
808 /* The 82575 assigns vectors using a bitmask, which matches the
809 * bitmask for the EICR/EIMS/EIMC registers. To assign one
810 * or more queues to a vector, we write the appropriate bits
811 * into the MSIXBM register for that vector.
812 */
813 if (rx_queue > IGB_N0_QUEUE)
814 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815 if (tx_queue > IGB_N0_QUEUE)
816 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818 msixbm |= E1000_EIMS_OTHER;
819 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820 q_vector->eims_value = msixbm;
821 break;
822 case e1000_82576:
823 /* 82576 uses a table that essentially consists of 2 columns
824 * with 8 rows. The ordering is column-major so we use the
825 * lower 3 bits as the row index, and the 4th bit as the
826 * column offset.
827 */
828 if (rx_queue > IGB_N0_QUEUE)
829 igb_write_ivar(hw, msix_vector,
830 rx_queue & 0x7,
831 (rx_queue & 0x8) << 1);
832 if (tx_queue > IGB_N0_QUEUE)
833 igb_write_ivar(hw, msix_vector,
834 tx_queue & 0x7,
835 ((tx_queue & 0x8) << 1) + 8);
836 q_vector->eims_value = 1 << msix_vector;
837 break;
838 case e1000_82580:
839 case e1000_i350:
840 case e1000_i354:
841 case e1000_i210:
842 case e1000_i211:
843 /* On 82580 and newer adapters the scheme is similar to 82576
844 * however instead of ordering column-major we have things
845 * ordered row-major. So we traverse the table by using
846 * bit 0 as the column offset, and the remaining bits as the
847 * row index.
848 */
849 if (rx_queue > IGB_N0_QUEUE)
850 igb_write_ivar(hw, msix_vector,
851 rx_queue >> 1,
852 (rx_queue & 0x1) << 4);
853 if (tx_queue > IGB_N0_QUEUE)
854 igb_write_ivar(hw, msix_vector,
855 tx_queue >> 1,
856 ((tx_queue & 0x1) << 4) + 8);
857 q_vector->eims_value = 1 << msix_vector;
858 break;
859 default:
860 BUG();
861 break;
862 }
863
864 /* add q_vector eims value to global eims_enable_mask */
865 adapter->eims_enable_mask |= q_vector->eims_value;
866
867 /* configure q_vector to set itr on first interrupt */
868 q_vector->set_itr = 1;
869 }
870
871 /**
872 * igb_configure_msix - Configure MSI-X hardware
873 * @adapter: board private structure to initialize
874 *
875 * igb_configure_msix sets up the hardware to properly
876 * generate MSI-X interrupts.
877 **/
878 static void igb_configure_msix(struct igb_adapter *adapter)
879 {
880 u32 tmp;
881 int i, vector = 0;
882 struct e1000_hw *hw = &adapter->hw;
883
884 adapter->eims_enable_mask = 0;
885
886 /* set vector for other causes, i.e. link changes */
887 switch (hw->mac.type) {
888 case e1000_82575:
889 tmp = rd32(E1000_CTRL_EXT);
890 /* enable MSI-X PBA support*/
891 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893 /* Auto-Mask interrupts upon ICR read. */
894 tmp |= E1000_CTRL_EXT_EIAME;
895 tmp |= E1000_CTRL_EXT_IRCA;
896
897 wr32(E1000_CTRL_EXT, tmp);
898
899 /* enable msix_other interrupt */
900 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901 adapter->eims_other = E1000_EIMS_OTHER;
902
903 break;
904
905 case e1000_82576:
906 case e1000_82580:
907 case e1000_i350:
908 case e1000_i354:
909 case e1000_i210:
910 case e1000_i211:
911 /* Turn on MSI-X capability first, or our settings
912 * won't stick. And it will take days to debug.
913 */
914 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915 E1000_GPIE_PBA | E1000_GPIE_EIAME |
916 E1000_GPIE_NSICR);
917
918 /* enable msix_other interrupt */
919 adapter->eims_other = 1 << vector;
920 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922 wr32(E1000_IVAR_MISC, tmp);
923 break;
924 default:
925 /* do nothing, since nothing else supports MSI-X */
926 break;
927 } /* switch (hw->mac.type) */
928
929 adapter->eims_enable_mask |= adapter->eims_other;
930
931 for (i = 0; i < adapter->num_q_vectors; i++)
932 igb_assign_vector(adapter->q_vector[i], vector++);
933
934 wrfl();
935 }
936
937 /**
938 * igb_request_msix - Initialize MSI-X interrupts
939 * @adapter: board private structure to initialize
940 *
941 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
942 * kernel.
943 **/
944 static int igb_request_msix(struct igb_adapter *adapter)
945 {
946 struct net_device *netdev = adapter->netdev;
947 struct e1000_hw *hw = &adapter->hw;
948 int i, err = 0, vector = 0, free_vector = 0;
949
950 err = request_irq(adapter->msix_entries[vector].vector,
951 igb_msix_other, 0, netdev->name, adapter);
952 if (err)
953 goto err_out;
954
955 for (i = 0; i < adapter->num_q_vectors; i++) {
956 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958 vector++;
959
960 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962 if (q_vector->rx.ring && q_vector->tx.ring)
963 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else if (q_vector->tx.ring)
966 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967 q_vector->tx.ring->queue_index);
968 else if (q_vector->rx.ring)
969 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970 q_vector->rx.ring->queue_index);
971 else
972 sprintf(q_vector->name, "%s-unused", netdev->name);
973
974 err = request_irq(adapter->msix_entries[vector].vector,
975 igb_msix_ring, 0, q_vector->name,
976 q_vector);
977 if (err)
978 goto err_free;
979 }
980
981 igb_configure_msix(adapter);
982 return 0;
983
984 err_free:
985 /* free already assigned IRQs */
986 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988 vector--;
989 for (i = 0; i < vector; i++) {
990 free_irq(adapter->msix_entries[free_vector++].vector,
991 adapter->q_vector[i]);
992 }
993 err_out:
994 return err;
995 }
996
997 /**
998 * igb_free_q_vector - Free memory allocated for specific interrupt vector
999 * @adapter: board private structure to initialize
1000 * @v_idx: Index of vector to be freed
1001 *
1002 * This function frees the memory allocated to the q_vector.
1003 **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008 adapter->q_vector[v_idx] = NULL;
1009
1010 /* igb_get_stats64() might access the rings on this vector,
1011 * we must wait a grace period before freeing it.
1012 */
1013 if (q_vector)
1014 kfree_rcu(q_vector, rcu);
1015 }
1016
1017 /**
1018 * igb_reset_q_vector - Reset config for interrupt vector
1019 * @adapter: board private structure to initialize
1020 * @v_idx: Index of vector to be reset
1021 *
1022 * If NAPI is enabled it will delete any references to the
1023 * NAPI struct. This is preparation for igb_free_q_vector.
1024 **/
1025 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026 {
1027 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1030 * allocated. So, q_vector is NULL so we should stop here.
1031 */
1032 if (!q_vector)
1033 return;
1034
1035 if (q_vector->tx.ring)
1036 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038 if (q_vector->rx.ring)
1039 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041 netif_napi_del(&q_vector->napi);
1042
1043 }
1044
1045 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046 {
1047 int v_idx = adapter->num_q_vectors;
1048
1049 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050 pci_disable_msix(adapter->pdev);
1051 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052 pci_disable_msi(adapter->pdev);
1053
1054 while (v_idx--)
1055 igb_reset_q_vector(adapter, v_idx);
1056 }
1057
1058 /**
1059 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1060 * @adapter: board private structure to initialize
1061 *
1062 * This function frees the memory allocated to the q_vectors. In addition if
1063 * NAPI is enabled it will delete any references to the NAPI struct prior
1064 * to freeing the q_vector.
1065 **/
1066 static void igb_free_q_vectors(struct igb_adapter *adapter)
1067 {
1068 int v_idx = adapter->num_q_vectors;
1069
1070 adapter->num_tx_queues = 0;
1071 adapter->num_rx_queues = 0;
1072 adapter->num_q_vectors = 0;
1073
1074 while (v_idx--) {
1075 igb_reset_q_vector(adapter, v_idx);
1076 igb_free_q_vector(adapter, v_idx);
1077 }
1078 }
1079
1080 /**
1081 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082 * @adapter: board private structure to initialize
1083 *
1084 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1085 * MSI-X interrupts allocated.
1086 */
1087 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088 {
1089 igb_free_q_vectors(adapter);
1090 igb_reset_interrupt_capability(adapter);
1091 }
1092
1093 /**
1094 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1095 * @adapter: board private structure to initialize
1096 * @msix: boolean value of MSIX capability
1097 *
1098 * Attempt to configure interrupts using the best available
1099 * capabilities of the hardware and kernel.
1100 **/
1101 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102 {
1103 int err;
1104 int numvecs, i;
1105
1106 if (!msix)
1107 goto msi_only;
1108 adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110 /* Number of supported queues. */
1111 adapter->num_rx_queues = adapter->rss_queues;
1112 if (adapter->vfs_allocated_count)
1113 adapter->num_tx_queues = 1;
1114 else
1115 adapter->num_tx_queues = adapter->rss_queues;
1116
1117 /* start with one vector for every Rx queue */
1118 numvecs = adapter->num_rx_queues;
1119
1120 /* if Tx handler is separate add 1 for every Tx queue */
1121 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122 numvecs += adapter->num_tx_queues;
1123
1124 /* store the number of vectors reserved for queues */
1125 adapter->num_q_vectors = numvecs;
1126
1127 /* add 1 vector for link status interrupts */
1128 numvecs++;
1129 for (i = 0; i < numvecs; i++)
1130 adapter->msix_entries[i].entry = i;
1131
1132 err = pci_enable_msix_range(adapter->pdev,
1133 adapter->msix_entries,
1134 numvecs,
1135 numvecs);
1136 if (err > 0)
1137 return;
1138
1139 igb_reset_interrupt_capability(adapter);
1140
1141 /* If we can't do MSI-X, try MSI */
1142 msi_only:
1143 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144 #ifdef CONFIG_PCI_IOV
1145 /* disable SR-IOV for non MSI-X configurations */
1146 if (adapter->vf_data) {
1147 struct e1000_hw *hw = &adapter->hw;
1148 /* disable iov and allow time for transactions to clear */
1149 pci_disable_sriov(adapter->pdev);
1150 msleep(500);
1151
1152 kfree(adapter->vf_data);
1153 adapter->vf_data = NULL;
1154 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155 wrfl();
1156 msleep(100);
1157 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158 }
1159 #endif
1160 adapter->vfs_allocated_count = 0;
1161 adapter->rss_queues = 1;
1162 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163 adapter->num_rx_queues = 1;
1164 adapter->num_tx_queues = 1;
1165 adapter->num_q_vectors = 1;
1166 if (!pci_enable_msi(adapter->pdev))
1167 adapter->flags |= IGB_FLAG_HAS_MSI;
1168 }
1169
1170 static void igb_add_ring(struct igb_ring *ring,
1171 struct igb_ring_container *head)
1172 {
1173 head->ring = ring;
1174 head->count++;
1175 }
1176
1177 /**
1178 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179 * @adapter: board private structure to initialize
1180 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1181 * @v_idx: index of vector in adapter struct
1182 * @txr_count: total number of Tx rings to allocate
1183 * @txr_idx: index of first Tx ring to allocate
1184 * @rxr_count: total number of Rx rings to allocate
1185 * @rxr_idx: index of first Rx ring to allocate
1186 *
1187 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1188 **/
1189 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190 int v_count, int v_idx,
1191 int txr_count, int txr_idx,
1192 int rxr_count, int rxr_idx)
1193 {
1194 struct igb_q_vector *q_vector;
1195 struct igb_ring *ring;
1196 int ring_count, size;
1197
1198 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199 if (txr_count > 1 || rxr_count > 1)
1200 return -ENOMEM;
1201
1202 ring_count = txr_count + rxr_count;
1203 size = sizeof(struct igb_q_vector) +
1204 (sizeof(struct igb_ring) * ring_count);
1205
1206 /* allocate q_vector and rings */
1207 q_vector = adapter->q_vector[v_idx];
1208 if (!q_vector)
1209 q_vector = kzalloc(size, GFP_KERNEL);
1210 if (!q_vector)
1211 return -ENOMEM;
1212
1213 /* initialize NAPI */
1214 netif_napi_add(adapter->netdev, &q_vector->napi,
1215 igb_poll, 64);
1216
1217 /* tie q_vector and adapter together */
1218 adapter->q_vector[v_idx] = q_vector;
1219 q_vector->adapter = adapter;
1220
1221 /* initialize work limits */
1222 q_vector->tx.work_limit = adapter->tx_work_limit;
1223
1224 /* initialize ITR configuration */
1225 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1226 q_vector->itr_val = IGB_START_ITR;
1227
1228 /* initialize pointer to rings */
1229 ring = q_vector->ring;
1230
1231 /* intialize ITR */
1232 if (rxr_count) {
1233 /* rx or rx/tx vector */
1234 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1235 q_vector->itr_val = adapter->rx_itr_setting;
1236 } else {
1237 /* tx only vector */
1238 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1239 q_vector->itr_val = adapter->tx_itr_setting;
1240 }
1241
1242 if (txr_count) {
1243 /* assign generic ring traits */
1244 ring->dev = &adapter->pdev->dev;
1245 ring->netdev = adapter->netdev;
1246
1247 /* configure backlink on ring */
1248 ring->q_vector = q_vector;
1249
1250 /* update q_vector Tx values */
1251 igb_add_ring(ring, &q_vector->tx);
1252
1253 /* For 82575, context index must be unique per ring. */
1254 if (adapter->hw.mac.type == e1000_82575)
1255 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1256
1257 /* apply Tx specific ring traits */
1258 ring->count = adapter->tx_ring_count;
1259 ring->queue_index = txr_idx;
1260
1261 u64_stats_init(&ring->tx_syncp);
1262 u64_stats_init(&ring->tx_syncp2);
1263
1264 /* assign ring to adapter */
1265 adapter->tx_ring[txr_idx] = ring;
1266
1267 /* push pointer to next ring */
1268 ring++;
1269 }
1270
1271 if (rxr_count) {
1272 /* assign generic ring traits */
1273 ring->dev = &adapter->pdev->dev;
1274 ring->netdev = adapter->netdev;
1275
1276 /* configure backlink on ring */
1277 ring->q_vector = q_vector;
1278
1279 /* update q_vector Rx values */
1280 igb_add_ring(ring, &q_vector->rx);
1281
1282 /* set flag indicating ring supports SCTP checksum offload */
1283 if (adapter->hw.mac.type >= e1000_82576)
1284 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1285
1286 /* On i350, i354, i210, and i211, loopback VLAN packets
1287 * have the tag byte-swapped.
1288 */
1289 if (adapter->hw.mac.type >= e1000_i350)
1290 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1291
1292 /* apply Rx specific ring traits */
1293 ring->count = adapter->rx_ring_count;
1294 ring->queue_index = rxr_idx;
1295
1296 u64_stats_init(&ring->rx_syncp);
1297
1298 /* assign ring to adapter */
1299 adapter->rx_ring[rxr_idx] = ring;
1300 }
1301
1302 return 0;
1303 }
1304
1305
1306 /**
1307 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1308 * @adapter: board private structure to initialize
1309 *
1310 * We allocate one q_vector per queue interrupt. If allocation fails we
1311 * return -ENOMEM.
1312 **/
1313 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1314 {
1315 int q_vectors = adapter->num_q_vectors;
1316 int rxr_remaining = adapter->num_rx_queues;
1317 int txr_remaining = adapter->num_tx_queues;
1318 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1319 int err;
1320
1321 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1322 for (; rxr_remaining; v_idx++) {
1323 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1324 0, 0, 1, rxr_idx);
1325
1326 if (err)
1327 goto err_out;
1328
1329 /* update counts and index */
1330 rxr_remaining--;
1331 rxr_idx++;
1332 }
1333 }
1334
1335 for (; v_idx < q_vectors; v_idx++) {
1336 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1337 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1338
1339 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1340 tqpv, txr_idx, rqpv, rxr_idx);
1341
1342 if (err)
1343 goto err_out;
1344
1345 /* update counts and index */
1346 rxr_remaining -= rqpv;
1347 txr_remaining -= tqpv;
1348 rxr_idx++;
1349 txr_idx++;
1350 }
1351
1352 return 0;
1353
1354 err_out:
1355 adapter->num_tx_queues = 0;
1356 adapter->num_rx_queues = 0;
1357 adapter->num_q_vectors = 0;
1358
1359 while (v_idx--)
1360 igb_free_q_vector(adapter, v_idx);
1361
1362 return -ENOMEM;
1363 }
1364
1365 /**
1366 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1367 * @adapter: board private structure to initialize
1368 * @msix: boolean value of MSIX capability
1369 *
1370 * This function initializes the interrupts and allocates all of the queues.
1371 **/
1372 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1373 {
1374 struct pci_dev *pdev = adapter->pdev;
1375 int err;
1376
1377 igb_set_interrupt_capability(adapter, msix);
1378
1379 err = igb_alloc_q_vectors(adapter);
1380 if (err) {
1381 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1382 goto err_alloc_q_vectors;
1383 }
1384
1385 igb_cache_ring_register(adapter);
1386
1387 return 0;
1388
1389 err_alloc_q_vectors:
1390 igb_reset_interrupt_capability(adapter);
1391 return err;
1392 }
1393
1394 /**
1395 * igb_request_irq - initialize interrupts
1396 * @adapter: board private structure to initialize
1397 *
1398 * Attempts to configure interrupts using the best available
1399 * capabilities of the hardware and kernel.
1400 **/
1401 static int igb_request_irq(struct igb_adapter *adapter)
1402 {
1403 struct net_device *netdev = adapter->netdev;
1404 struct pci_dev *pdev = adapter->pdev;
1405 int err = 0;
1406
1407 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1408 err = igb_request_msix(adapter);
1409 if (!err)
1410 goto request_done;
1411 /* fall back to MSI */
1412 igb_free_all_tx_resources(adapter);
1413 igb_free_all_rx_resources(adapter);
1414
1415 igb_clear_interrupt_scheme(adapter);
1416 err = igb_init_interrupt_scheme(adapter, false);
1417 if (err)
1418 goto request_done;
1419
1420 igb_setup_all_tx_resources(adapter);
1421 igb_setup_all_rx_resources(adapter);
1422 igb_configure(adapter);
1423 }
1424
1425 igb_assign_vector(adapter->q_vector[0], 0);
1426
1427 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1428 err = request_irq(pdev->irq, igb_intr_msi, 0,
1429 netdev->name, adapter);
1430 if (!err)
1431 goto request_done;
1432
1433 /* fall back to legacy interrupts */
1434 igb_reset_interrupt_capability(adapter);
1435 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1436 }
1437
1438 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1439 netdev->name, adapter);
1440
1441 if (err)
1442 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1443 err);
1444
1445 request_done:
1446 return err;
1447 }
1448
1449 static void igb_free_irq(struct igb_adapter *adapter)
1450 {
1451 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1452 int vector = 0, i;
1453
1454 free_irq(adapter->msix_entries[vector++].vector, adapter);
1455
1456 for (i = 0; i < adapter->num_q_vectors; i++)
1457 free_irq(adapter->msix_entries[vector++].vector,
1458 adapter->q_vector[i]);
1459 } else {
1460 free_irq(adapter->pdev->irq, adapter);
1461 }
1462 }
1463
1464 /**
1465 * igb_irq_disable - Mask off interrupt generation on the NIC
1466 * @adapter: board private structure
1467 **/
1468 static void igb_irq_disable(struct igb_adapter *adapter)
1469 {
1470 struct e1000_hw *hw = &adapter->hw;
1471
1472 /* we need to be careful when disabling interrupts. The VFs are also
1473 * mapped into these registers and so clearing the bits can cause
1474 * issues on the VF drivers so we only need to clear what we set
1475 */
1476 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477 u32 regval = rd32(E1000_EIAM);
1478
1479 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1480 wr32(E1000_EIMC, adapter->eims_enable_mask);
1481 regval = rd32(E1000_EIAC);
1482 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1483 }
1484
1485 wr32(E1000_IAM, 0);
1486 wr32(E1000_IMC, ~0);
1487 wrfl();
1488 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489 int i;
1490
1491 for (i = 0; i < adapter->num_q_vectors; i++)
1492 synchronize_irq(adapter->msix_entries[i].vector);
1493 } else {
1494 synchronize_irq(adapter->pdev->irq);
1495 }
1496 }
1497
1498 /**
1499 * igb_irq_enable - Enable default interrupt generation settings
1500 * @adapter: board private structure
1501 **/
1502 static void igb_irq_enable(struct igb_adapter *adapter)
1503 {
1504 struct e1000_hw *hw = &adapter->hw;
1505
1506 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508 u32 regval = rd32(E1000_EIAC);
1509
1510 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1511 regval = rd32(E1000_EIAM);
1512 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1513 wr32(E1000_EIMS, adapter->eims_enable_mask);
1514 if (adapter->vfs_allocated_count) {
1515 wr32(E1000_MBVFIMR, 0xFF);
1516 ims |= E1000_IMS_VMMB;
1517 }
1518 wr32(E1000_IMS, ims);
1519 } else {
1520 wr32(E1000_IMS, IMS_ENABLE_MASK |
1521 E1000_IMS_DRSTA);
1522 wr32(E1000_IAM, IMS_ENABLE_MASK |
1523 E1000_IMS_DRSTA);
1524 }
1525 }
1526
1527 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1528 {
1529 struct e1000_hw *hw = &adapter->hw;
1530 u16 vid = adapter->hw.mng_cookie.vlan_id;
1531 u16 old_vid = adapter->mng_vlan_id;
1532
1533 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1534 /* add VID to filter table */
1535 igb_vfta_set(hw, vid, true);
1536 adapter->mng_vlan_id = vid;
1537 } else {
1538 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1539 }
1540
1541 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1542 (vid != old_vid) &&
1543 !test_bit(old_vid, adapter->active_vlans)) {
1544 /* remove VID from filter table */
1545 igb_vfta_set(hw, old_vid, false);
1546 }
1547 }
1548
1549 /**
1550 * igb_release_hw_control - release control of the h/w to f/w
1551 * @adapter: address of board private structure
1552 *
1553 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1554 * For ASF and Pass Through versions of f/w this means that the
1555 * driver is no longer loaded.
1556 **/
1557 static void igb_release_hw_control(struct igb_adapter *adapter)
1558 {
1559 struct e1000_hw *hw = &adapter->hw;
1560 u32 ctrl_ext;
1561
1562 /* Let firmware take over control of h/w */
1563 ctrl_ext = rd32(E1000_CTRL_EXT);
1564 wr32(E1000_CTRL_EXT,
1565 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1566 }
1567
1568 /**
1569 * igb_get_hw_control - get control of the h/w from f/w
1570 * @adapter: address of board private structure
1571 *
1572 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1573 * For ASF and Pass Through versions of f/w this means that
1574 * the driver is loaded.
1575 **/
1576 static void igb_get_hw_control(struct igb_adapter *adapter)
1577 {
1578 struct e1000_hw *hw = &adapter->hw;
1579 u32 ctrl_ext;
1580
1581 /* Let firmware know the driver has taken over */
1582 ctrl_ext = rd32(E1000_CTRL_EXT);
1583 wr32(E1000_CTRL_EXT,
1584 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1585 }
1586
1587 /**
1588 * igb_configure - configure the hardware for RX and TX
1589 * @adapter: private board structure
1590 **/
1591 static void igb_configure(struct igb_adapter *adapter)
1592 {
1593 struct net_device *netdev = adapter->netdev;
1594 int i;
1595
1596 igb_get_hw_control(adapter);
1597 igb_set_rx_mode(netdev);
1598
1599 igb_restore_vlan(adapter);
1600
1601 igb_setup_tctl(adapter);
1602 igb_setup_mrqc(adapter);
1603 igb_setup_rctl(adapter);
1604
1605 igb_configure_tx(adapter);
1606 igb_configure_rx(adapter);
1607
1608 igb_rx_fifo_flush_82575(&adapter->hw);
1609
1610 /* call igb_desc_unused which always leaves
1611 * at least 1 descriptor unused to make sure
1612 * next_to_use != next_to_clean
1613 */
1614 for (i = 0; i < adapter->num_rx_queues; i++) {
1615 struct igb_ring *ring = adapter->rx_ring[i];
1616 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1617 }
1618 }
1619
1620 /**
1621 * igb_power_up_link - Power up the phy/serdes link
1622 * @adapter: address of board private structure
1623 **/
1624 void igb_power_up_link(struct igb_adapter *adapter)
1625 {
1626 igb_reset_phy(&adapter->hw);
1627
1628 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1629 igb_power_up_phy_copper(&adapter->hw);
1630 else
1631 igb_power_up_serdes_link_82575(&adapter->hw);
1632
1633 igb_setup_link(&adapter->hw);
1634 }
1635
1636 /**
1637 * igb_power_down_link - Power down the phy/serdes link
1638 * @adapter: address of board private structure
1639 */
1640 static void igb_power_down_link(struct igb_adapter *adapter)
1641 {
1642 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1643 igb_power_down_phy_copper_82575(&adapter->hw);
1644 else
1645 igb_shutdown_serdes_link_82575(&adapter->hw);
1646 }
1647
1648 /**
1649 * Detect and switch function for Media Auto Sense
1650 * @adapter: address of the board private structure
1651 **/
1652 static void igb_check_swap_media(struct igb_adapter *adapter)
1653 {
1654 struct e1000_hw *hw = &adapter->hw;
1655 u32 ctrl_ext, connsw;
1656 bool swap_now = false;
1657
1658 ctrl_ext = rd32(E1000_CTRL_EXT);
1659 connsw = rd32(E1000_CONNSW);
1660
1661 /* need to live swap if current media is copper and we have fiber/serdes
1662 * to go to.
1663 */
1664
1665 if ((hw->phy.media_type == e1000_media_type_copper) &&
1666 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1667 swap_now = true;
1668 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1669 /* copper signal takes time to appear */
1670 if (adapter->copper_tries < 4) {
1671 adapter->copper_tries++;
1672 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1673 wr32(E1000_CONNSW, connsw);
1674 return;
1675 } else {
1676 adapter->copper_tries = 0;
1677 if ((connsw & E1000_CONNSW_PHYSD) &&
1678 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1679 swap_now = true;
1680 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1681 wr32(E1000_CONNSW, connsw);
1682 }
1683 }
1684 }
1685
1686 if (!swap_now)
1687 return;
1688
1689 switch (hw->phy.media_type) {
1690 case e1000_media_type_copper:
1691 netdev_info(adapter->netdev,
1692 "MAS: changing media to fiber/serdes\n");
1693 ctrl_ext |=
1694 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1695 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1696 adapter->copper_tries = 0;
1697 break;
1698 case e1000_media_type_internal_serdes:
1699 case e1000_media_type_fiber:
1700 netdev_info(adapter->netdev,
1701 "MAS: changing media to copper\n");
1702 ctrl_ext &=
1703 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705 break;
1706 default:
1707 /* shouldn't get here during regular operation */
1708 netdev_err(adapter->netdev,
1709 "AMS: Invalid media type found, returning\n");
1710 break;
1711 }
1712 wr32(E1000_CTRL_EXT, ctrl_ext);
1713 }
1714
1715 /**
1716 * igb_up - Open the interface and prepare it to handle traffic
1717 * @adapter: board private structure
1718 **/
1719 int igb_up(struct igb_adapter *adapter)
1720 {
1721 struct e1000_hw *hw = &adapter->hw;
1722 int i;
1723
1724 /* hardware has been reset, we need to reload some things */
1725 igb_configure(adapter);
1726
1727 clear_bit(__IGB_DOWN, &adapter->state);
1728
1729 for (i = 0; i < adapter->num_q_vectors; i++)
1730 napi_enable(&(adapter->q_vector[i]->napi));
1731
1732 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1733 igb_configure_msix(adapter);
1734 else
1735 igb_assign_vector(adapter->q_vector[0], 0);
1736
1737 /* Clear any pending interrupts. */
1738 rd32(E1000_ICR);
1739 igb_irq_enable(adapter);
1740
1741 /* notify VFs that reset has been completed */
1742 if (adapter->vfs_allocated_count) {
1743 u32 reg_data = rd32(E1000_CTRL_EXT);
1744
1745 reg_data |= E1000_CTRL_EXT_PFRSTD;
1746 wr32(E1000_CTRL_EXT, reg_data);
1747 }
1748
1749 netif_tx_start_all_queues(adapter->netdev);
1750
1751 /* start the watchdog. */
1752 hw->mac.get_link_status = 1;
1753 schedule_work(&adapter->watchdog_task);
1754
1755 if ((adapter->flags & IGB_FLAG_EEE) &&
1756 (!hw->dev_spec._82575.eee_disable))
1757 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1758
1759 return 0;
1760 }
1761
1762 void igb_down(struct igb_adapter *adapter)
1763 {
1764 struct net_device *netdev = adapter->netdev;
1765 struct e1000_hw *hw = &adapter->hw;
1766 u32 tctl, rctl;
1767 int i;
1768
1769 /* signal that we're down so the interrupt handler does not
1770 * reschedule our watchdog timer
1771 */
1772 set_bit(__IGB_DOWN, &adapter->state);
1773
1774 /* disable receives in the hardware */
1775 rctl = rd32(E1000_RCTL);
1776 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1777 /* flush and sleep below */
1778
1779 netif_carrier_off(netdev);
1780 netif_tx_stop_all_queues(netdev);
1781
1782 /* disable transmits in the hardware */
1783 tctl = rd32(E1000_TCTL);
1784 tctl &= ~E1000_TCTL_EN;
1785 wr32(E1000_TCTL, tctl);
1786 /* flush both disables and wait for them to finish */
1787 wrfl();
1788 usleep_range(10000, 11000);
1789
1790 igb_irq_disable(adapter);
1791
1792 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1793
1794 for (i = 0; i < adapter->num_q_vectors; i++) {
1795 if (adapter->q_vector[i]) {
1796 napi_synchronize(&adapter->q_vector[i]->napi);
1797 napi_disable(&adapter->q_vector[i]->napi);
1798 }
1799 }
1800
1801 del_timer_sync(&adapter->watchdog_timer);
1802 del_timer_sync(&adapter->phy_info_timer);
1803
1804 /* record the stats before reset*/
1805 spin_lock(&adapter->stats64_lock);
1806 igb_update_stats(adapter, &adapter->stats64);
1807 spin_unlock(&adapter->stats64_lock);
1808
1809 adapter->link_speed = 0;
1810 adapter->link_duplex = 0;
1811
1812 if (!pci_channel_offline(adapter->pdev))
1813 igb_reset(adapter);
1814 igb_clean_all_tx_rings(adapter);
1815 igb_clean_all_rx_rings(adapter);
1816 #ifdef CONFIG_IGB_DCA
1817
1818 /* since we reset the hardware DCA settings were cleared */
1819 igb_setup_dca(adapter);
1820 #endif
1821 }
1822
1823 void igb_reinit_locked(struct igb_adapter *adapter)
1824 {
1825 WARN_ON(in_interrupt());
1826 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1827 usleep_range(1000, 2000);
1828 igb_down(adapter);
1829 igb_up(adapter);
1830 clear_bit(__IGB_RESETTING, &adapter->state);
1831 }
1832
1833 /** igb_enable_mas - Media Autosense re-enable after swap
1834 *
1835 * @adapter: adapter struct
1836 **/
1837 static s32 igb_enable_mas(struct igb_adapter *adapter)
1838 {
1839 struct e1000_hw *hw = &adapter->hw;
1840 u32 connsw;
1841 s32 ret_val = 0;
1842
1843 connsw = rd32(E1000_CONNSW);
1844 if (!(hw->phy.media_type == e1000_media_type_copper))
1845 return ret_val;
1846
1847 /* configure for SerDes media detect */
1848 if (!(connsw & E1000_CONNSW_SERDESD)) {
1849 connsw |= E1000_CONNSW_ENRGSRC;
1850 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1851 wr32(E1000_CONNSW, connsw);
1852 wrfl();
1853 } else if (connsw & E1000_CONNSW_SERDESD) {
1854 /* already SerDes, no need to enable anything */
1855 return ret_val;
1856 } else {
1857 netdev_info(adapter->netdev,
1858 "MAS: Unable to configure feature, disabling..\n");
1859 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1860 }
1861 return ret_val;
1862 }
1863
1864 void igb_reset(struct igb_adapter *adapter)
1865 {
1866 struct pci_dev *pdev = adapter->pdev;
1867 struct e1000_hw *hw = &adapter->hw;
1868 struct e1000_mac_info *mac = &hw->mac;
1869 struct e1000_fc_info *fc = &hw->fc;
1870 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1871
1872 /* Repartition Pba for greater than 9k mtu
1873 * To take effect CTRL.RST is required.
1874 */
1875 switch (mac->type) {
1876 case e1000_i350:
1877 case e1000_i354:
1878 case e1000_82580:
1879 pba = rd32(E1000_RXPBS);
1880 pba = igb_rxpbs_adjust_82580(pba);
1881 break;
1882 case e1000_82576:
1883 pba = rd32(E1000_RXPBS);
1884 pba &= E1000_RXPBS_SIZE_MASK_82576;
1885 break;
1886 case e1000_82575:
1887 case e1000_i210:
1888 case e1000_i211:
1889 default:
1890 pba = E1000_PBA_34K;
1891 break;
1892 }
1893
1894 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1895 (mac->type < e1000_82576)) {
1896 /* adjust PBA for jumbo frames */
1897 wr32(E1000_PBA, pba);
1898
1899 /* To maintain wire speed transmits, the Tx FIFO should be
1900 * large enough to accommodate two full transmit packets,
1901 * rounded up to the next 1KB and expressed in KB. Likewise,
1902 * the Rx FIFO should be large enough to accommodate at least
1903 * one full receive packet and is similarly rounded up and
1904 * expressed in KB.
1905 */
1906 pba = rd32(E1000_PBA);
1907 /* upper 16 bits has Tx packet buffer allocation size in KB */
1908 tx_space = pba >> 16;
1909 /* lower 16 bits has Rx packet buffer allocation size in KB */
1910 pba &= 0xffff;
1911 /* the Tx fifo also stores 16 bytes of information about the Tx
1912 * but don't include ethernet FCS because hardware appends it
1913 */
1914 min_tx_space = (adapter->max_frame_size +
1915 sizeof(union e1000_adv_tx_desc) -
1916 ETH_FCS_LEN) * 2;
1917 min_tx_space = ALIGN(min_tx_space, 1024);
1918 min_tx_space >>= 10;
1919 /* software strips receive CRC, so leave room for it */
1920 min_rx_space = adapter->max_frame_size;
1921 min_rx_space = ALIGN(min_rx_space, 1024);
1922 min_rx_space >>= 10;
1923
1924 /* If current Tx allocation is less than the min Tx FIFO size,
1925 * and the min Tx FIFO size is less than the current Rx FIFO
1926 * allocation, take space away from current Rx allocation
1927 */
1928 if (tx_space < min_tx_space &&
1929 ((min_tx_space - tx_space) < pba)) {
1930 pba = pba - (min_tx_space - tx_space);
1931
1932 /* if short on Rx space, Rx wins and must trump Tx
1933 * adjustment
1934 */
1935 if (pba < min_rx_space)
1936 pba = min_rx_space;
1937 }
1938 wr32(E1000_PBA, pba);
1939 }
1940
1941 /* flow control settings */
1942 /* The high water mark must be low enough to fit one full frame
1943 * (or the size used for early receive) above it in the Rx FIFO.
1944 * Set it to the lower of:
1945 * - 90% of the Rx FIFO size, or
1946 * - the full Rx FIFO size minus one full frame
1947 */
1948 hwm = min(((pba << 10) * 9 / 10),
1949 ((pba << 10) - 2 * adapter->max_frame_size));
1950
1951 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1952 fc->low_water = fc->high_water - 16;
1953 fc->pause_time = 0xFFFF;
1954 fc->send_xon = 1;
1955 fc->current_mode = fc->requested_mode;
1956
1957 /* disable receive for all VFs and wait one second */
1958 if (adapter->vfs_allocated_count) {
1959 int i;
1960
1961 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1962 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1963
1964 /* ping all the active vfs to let them know we are going down */
1965 igb_ping_all_vfs(adapter);
1966
1967 /* disable transmits and receives */
1968 wr32(E1000_VFRE, 0);
1969 wr32(E1000_VFTE, 0);
1970 }
1971
1972 /* Allow time for pending master requests to run */
1973 hw->mac.ops.reset_hw(hw);
1974 wr32(E1000_WUC, 0);
1975
1976 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1977 /* need to resetup here after media swap */
1978 adapter->ei.get_invariants(hw);
1979 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1980 }
1981 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1982 if (igb_enable_mas(adapter))
1983 dev_err(&pdev->dev,
1984 "Error enabling Media Auto Sense\n");
1985 }
1986 if (hw->mac.ops.init_hw(hw))
1987 dev_err(&pdev->dev, "Hardware Error\n");
1988
1989 /* Flow control settings reset on hardware reset, so guarantee flow
1990 * control is off when forcing speed.
1991 */
1992 if (!hw->mac.autoneg)
1993 igb_force_mac_fc(hw);
1994
1995 igb_init_dmac(adapter, pba);
1996 #ifdef CONFIG_IGB_HWMON
1997 /* Re-initialize the thermal sensor on i350 devices. */
1998 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1999 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2000 /* If present, re-initialize the external thermal sensor
2001 * interface.
2002 */
2003 if (adapter->ets)
2004 mac->ops.init_thermal_sensor_thresh(hw);
2005 }
2006 }
2007 #endif
2008 /* Re-establish EEE setting */
2009 if (hw->phy.media_type == e1000_media_type_copper) {
2010 switch (mac->type) {
2011 case e1000_i350:
2012 case e1000_i210:
2013 case e1000_i211:
2014 igb_set_eee_i350(hw, true, true);
2015 break;
2016 case e1000_i354:
2017 igb_set_eee_i354(hw, true, true);
2018 break;
2019 default:
2020 break;
2021 }
2022 }
2023 if (!netif_running(adapter->netdev))
2024 igb_power_down_link(adapter);
2025
2026 igb_update_mng_vlan(adapter);
2027
2028 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2029 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2030
2031 /* Re-enable PTP, where applicable. */
2032 igb_ptp_reset(adapter);
2033
2034 igb_get_phy_info(hw);
2035 }
2036
2037 static netdev_features_t igb_fix_features(struct net_device *netdev,
2038 netdev_features_t features)
2039 {
2040 /* Since there is no support for separate Rx/Tx vlan accel
2041 * enable/disable make sure Tx flag is always in same state as Rx.
2042 */
2043 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2044 features |= NETIF_F_HW_VLAN_CTAG_TX;
2045 else
2046 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2047
2048 return features;
2049 }
2050
2051 static int igb_set_features(struct net_device *netdev,
2052 netdev_features_t features)
2053 {
2054 netdev_features_t changed = netdev->features ^ features;
2055 struct igb_adapter *adapter = netdev_priv(netdev);
2056
2057 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2058 igb_vlan_mode(netdev, features);
2059
2060 if (!(changed & NETIF_F_RXALL))
2061 return 0;
2062
2063 netdev->features = features;
2064
2065 if (netif_running(netdev))
2066 igb_reinit_locked(adapter);
2067 else
2068 igb_reset(adapter);
2069
2070 return 0;
2071 }
2072
2073 static const struct net_device_ops igb_netdev_ops = {
2074 .ndo_open = igb_open,
2075 .ndo_stop = igb_close,
2076 .ndo_start_xmit = igb_xmit_frame,
2077 .ndo_get_stats64 = igb_get_stats64,
2078 .ndo_set_rx_mode = igb_set_rx_mode,
2079 .ndo_set_mac_address = igb_set_mac,
2080 .ndo_change_mtu = igb_change_mtu,
2081 .ndo_do_ioctl = igb_ioctl,
2082 .ndo_tx_timeout = igb_tx_timeout,
2083 .ndo_validate_addr = eth_validate_addr,
2084 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2085 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2086 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2087 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2088 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2089 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2090 .ndo_get_vf_config = igb_ndo_get_vf_config,
2091 #ifdef CONFIG_NET_POLL_CONTROLLER
2092 .ndo_poll_controller = igb_netpoll,
2093 #endif
2094 .ndo_fix_features = igb_fix_features,
2095 .ndo_set_features = igb_set_features,
2096 .ndo_features_check = passthru_features_check,
2097 };
2098
2099 /**
2100 * igb_set_fw_version - Configure version string for ethtool
2101 * @adapter: adapter struct
2102 **/
2103 void igb_set_fw_version(struct igb_adapter *adapter)
2104 {
2105 struct e1000_hw *hw = &adapter->hw;
2106 struct e1000_fw_version fw;
2107
2108 igb_get_fw_version(hw, &fw);
2109
2110 switch (hw->mac.type) {
2111 case e1000_i210:
2112 case e1000_i211:
2113 if (!(igb_get_flash_presence_i210(hw))) {
2114 snprintf(adapter->fw_version,
2115 sizeof(adapter->fw_version),
2116 "%2d.%2d-%d",
2117 fw.invm_major, fw.invm_minor,
2118 fw.invm_img_type);
2119 break;
2120 }
2121 /* fall through */
2122 default:
2123 /* if option is rom valid, display its version too */
2124 if (fw.or_valid) {
2125 snprintf(adapter->fw_version,
2126 sizeof(adapter->fw_version),
2127 "%d.%d, 0x%08x, %d.%d.%d",
2128 fw.eep_major, fw.eep_minor, fw.etrack_id,
2129 fw.or_major, fw.or_build, fw.or_patch);
2130 /* no option rom */
2131 } else if (fw.etrack_id != 0X0000) {
2132 snprintf(adapter->fw_version,
2133 sizeof(adapter->fw_version),
2134 "%d.%d, 0x%08x",
2135 fw.eep_major, fw.eep_minor, fw.etrack_id);
2136 } else {
2137 snprintf(adapter->fw_version,
2138 sizeof(adapter->fw_version),
2139 "%d.%d.%d",
2140 fw.eep_major, fw.eep_minor, fw.eep_build);
2141 }
2142 break;
2143 }
2144 }
2145
2146 /**
2147 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2148 *
2149 * @adapter: adapter struct
2150 **/
2151 static void igb_init_mas(struct igb_adapter *adapter)
2152 {
2153 struct e1000_hw *hw = &adapter->hw;
2154 u16 eeprom_data;
2155
2156 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2157 switch (hw->bus.func) {
2158 case E1000_FUNC_0:
2159 if (eeprom_data & IGB_MAS_ENABLE_0) {
2160 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2161 netdev_info(adapter->netdev,
2162 "MAS: Enabling Media Autosense for port %d\n",
2163 hw->bus.func);
2164 }
2165 break;
2166 case E1000_FUNC_1:
2167 if (eeprom_data & IGB_MAS_ENABLE_1) {
2168 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2169 netdev_info(adapter->netdev,
2170 "MAS: Enabling Media Autosense for port %d\n",
2171 hw->bus.func);
2172 }
2173 break;
2174 case E1000_FUNC_2:
2175 if (eeprom_data & IGB_MAS_ENABLE_2) {
2176 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2177 netdev_info(adapter->netdev,
2178 "MAS: Enabling Media Autosense for port %d\n",
2179 hw->bus.func);
2180 }
2181 break;
2182 case E1000_FUNC_3:
2183 if (eeprom_data & IGB_MAS_ENABLE_3) {
2184 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2185 netdev_info(adapter->netdev,
2186 "MAS: Enabling Media Autosense for port %d\n",
2187 hw->bus.func);
2188 }
2189 break;
2190 default:
2191 /* Shouldn't get here */
2192 netdev_err(adapter->netdev,
2193 "MAS: Invalid port configuration, returning\n");
2194 break;
2195 }
2196 }
2197
2198 /**
2199 * igb_init_i2c - Init I2C interface
2200 * @adapter: pointer to adapter structure
2201 **/
2202 static s32 igb_init_i2c(struct igb_adapter *adapter)
2203 {
2204 s32 status = 0;
2205
2206 /* I2C interface supported on i350 devices */
2207 if (adapter->hw.mac.type != e1000_i350)
2208 return 0;
2209
2210 /* Initialize the i2c bus which is controlled by the registers.
2211 * This bus will use the i2c_algo_bit structue that implements
2212 * the protocol through toggling of the 4 bits in the register.
2213 */
2214 adapter->i2c_adap.owner = THIS_MODULE;
2215 adapter->i2c_algo = igb_i2c_algo;
2216 adapter->i2c_algo.data = adapter;
2217 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2218 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2219 strlcpy(adapter->i2c_adap.name, "igb BB",
2220 sizeof(adapter->i2c_adap.name));
2221 status = i2c_bit_add_bus(&adapter->i2c_adap);
2222 return status;
2223 }
2224
2225 /**
2226 * igb_probe - Device Initialization Routine
2227 * @pdev: PCI device information struct
2228 * @ent: entry in igb_pci_tbl
2229 *
2230 * Returns 0 on success, negative on failure
2231 *
2232 * igb_probe initializes an adapter identified by a pci_dev structure.
2233 * The OS initialization, configuring of the adapter private structure,
2234 * and a hardware reset occur.
2235 **/
2236 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2237 {
2238 struct net_device *netdev;
2239 struct igb_adapter *adapter;
2240 struct e1000_hw *hw;
2241 u16 eeprom_data = 0;
2242 s32 ret_val;
2243 static int global_quad_port_a; /* global quad port a indication */
2244 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2245 int err, pci_using_dac;
2246 u8 part_str[E1000_PBANUM_LENGTH];
2247
2248 /* Catch broken hardware that put the wrong VF device ID in
2249 * the PCIe SR-IOV capability.
2250 */
2251 if (pdev->is_virtfn) {
2252 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2253 pci_name(pdev), pdev->vendor, pdev->device);
2254 return -EINVAL;
2255 }
2256
2257 err = pci_enable_device_mem(pdev);
2258 if (err)
2259 return err;
2260
2261 pci_using_dac = 0;
2262 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2263 if (!err) {
2264 pci_using_dac = 1;
2265 } else {
2266 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2267 if (err) {
2268 dev_err(&pdev->dev,
2269 "No usable DMA configuration, aborting\n");
2270 goto err_dma;
2271 }
2272 }
2273
2274 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2275 IORESOURCE_MEM),
2276 igb_driver_name);
2277 if (err)
2278 goto err_pci_reg;
2279
2280 pci_enable_pcie_error_reporting(pdev);
2281
2282 pci_set_master(pdev);
2283 pci_save_state(pdev);
2284
2285 err = -ENOMEM;
2286 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2287 IGB_MAX_TX_QUEUES);
2288 if (!netdev)
2289 goto err_alloc_etherdev;
2290
2291 SET_NETDEV_DEV(netdev, &pdev->dev);
2292
2293 pci_set_drvdata(pdev, netdev);
2294 adapter = netdev_priv(netdev);
2295 adapter->netdev = netdev;
2296 adapter->pdev = pdev;
2297 hw = &adapter->hw;
2298 hw->back = adapter;
2299 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2300
2301 err = -EIO;
2302 hw->hw_addr = pci_iomap(pdev, 0, 0);
2303 if (!hw->hw_addr)
2304 goto err_ioremap;
2305
2306 netdev->netdev_ops = &igb_netdev_ops;
2307 igb_set_ethtool_ops(netdev);
2308 netdev->watchdog_timeo = 5 * HZ;
2309
2310 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2311
2312 netdev->mem_start = pci_resource_start(pdev, 0);
2313 netdev->mem_end = pci_resource_end(pdev, 0);
2314
2315 /* PCI config space info */
2316 hw->vendor_id = pdev->vendor;
2317 hw->device_id = pdev->device;
2318 hw->revision_id = pdev->revision;
2319 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2320 hw->subsystem_device_id = pdev->subsystem_device;
2321
2322 /* Copy the default MAC, PHY and NVM function pointers */
2323 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2324 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2325 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2326 /* Initialize skew-specific constants */
2327 err = ei->get_invariants(hw);
2328 if (err)
2329 goto err_sw_init;
2330
2331 /* setup the private structure */
2332 err = igb_sw_init(adapter);
2333 if (err)
2334 goto err_sw_init;
2335
2336 igb_get_bus_info_pcie(hw);
2337
2338 hw->phy.autoneg_wait_to_complete = false;
2339
2340 /* Copper options */
2341 if (hw->phy.media_type == e1000_media_type_copper) {
2342 hw->phy.mdix = AUTO_ALL_MODES;
2343 hw->phy.disable_polarity_correction = false;
2344 hw->phy.ms_type = e1000_ms_hw_default;
2345 }
2346
2347 if (igb_check_reset_block(hw))
2348 dev_info(&pdev->dev,
2349 "PHY reset is blocked due to SOL/IDER session.\n");
2350
2351 /* features is initialized to 0 in allocation, it might have bits
2352 * set by igb_sw_init so we should use an or instead of an
2353 * assignment.
2354 */
2355 netdev->features |= NETIF_F_SG |
2356 NETIF_F_IP_CSUM |
2357 NETIF_F_IPV6_CSUM |
2358 NETIF_F_TSO |
2359 NETIF_F_TSO6 |
2360 NETIF_F_RXHASH |
2361 NETIF_F_RXCSUM |
2362 NETIF_F_HW_VLAN_CTAG_RX |
2363 NETIF_F_HW_VLAN_CTAG_TX;
2364
2365 /* copy netdev features into list of user selectable features */
2366 netdev->hw_features |= netdev->features;
2367 netdev->hw_features |= NETIF_F_RXALL;
2368
2369 /* set this bit last since it cannot be part of hw_features */
2370 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2371
2372 netdev->vlan_features |= NETIF_F_TSO |
2373 NETIF_F_TSO6 |
2374 NETIF_F_IP_CSUM |
2375 NETIF_F_IPV6_CSUM |
2376 NETIF_F_SG;
2377
2378 netdev->priv_flags |= IFF_SUPP_NOFCS;
2379
2380 if (pci_using_dac) {
2381 netdev->features |= NETIF_F_HIGHDMA;
2382 netdev->vlan_features |= NETIF_F_HIGHDMA;
2383 }
2384
2385 if (hw->mac.type >= e1000_82576) {
2386 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2387 netdev->features |= NETIF_F_SCTP_CSUM;
2388 }
2389
2390 netdev->priv_flags |= IFF_UNICAST_FLT;
2391
2392 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2393
2394 /* before reading the NVM, reset the controller to put the device in a
2395 * known good starting state
2396 */
2397 hw->mac.ops.reset_hw(hw);
2398
2399 /* make sure the NVM is good , i211/i210 parts can have special NVM
2400 * that doesn't contain a checksum
2401 */
2402 switch (hw->mac.type) {
2403 case e1000_i210:
2404 case e1000_i211:
2405 if (igb_get_flash_presence_i210(hw)) {
2406 if (hw->nvm.ops.validate(hw) < 0) {
2407 dev_err(&pdev->dev,
2408 "The NVM Checksum Is Not Valid\n");
2409 err = -EIO;
2410 goto err_eeprom;
2411 }
2412 }
2413 break;
2414 default:
2415 if (hw->nvm.ops.validate(hw) < 0) {
2416 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2417 err = -EIO;
2418 goto err_eeprom;
2419 }
2420 break;
2421 }
2422
2423 /* copy the MAC address out of the NVM */
2424 if (hw->mac.ops.read_mac_addr(hw))
2425 dev_err(&pdev->dev, "NVM Read Error\n");
2426
2427 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2428
2429 if (!is_valid_ether_addr(netdev->dev_addr)) {
2430 dev_err(&pdev->dev, "Invalid MAC Address\n");
2431 err = -EIO;
2432 goto err_eeprom;
2433 }
2434
2435 /* get firmware version for ethtool -i */
2436 igb_set_fw_version(adapter);
2437
2438 /* configure RXPBSIZE and TXPBSIZE */
2439 if (hw->mac.type == e1000_i210) {
2440 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2441 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2442 }
2443
2444 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2445 (unsigned long) adapter);
2446 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2447 (unsigned long) adapter);
2448
2449 INIT_WORK(&adapter->reset_task, igb_reset_task);
2450 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2451
2452 /* Initialize link properties that are user-changeable */
2453 adapter->fc_autoneg = true;
2454 hw->mac.autoneg = true;
2455 hw->phy.autoneg_advertised = 0x2f;
2456
2457 hw->fc.requested_mode = e1000_fc_default;
2458 hw->fc.current_mode = e1000_fc_default;
2459
2460 igb_validate_mdi_setting(hw);
2461
2462 /* By default, support wake on port A */
2463 if (hw->bus.func == 0)
2464 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2465
2466 /* Check the NVM for wake support on non-port A ports */
2467 if (hw->mac.type >= e1000_82580)
2468 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2469 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2470 &eeprom_data);
2471 else if (hw->bus.func == 1)
2472 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2473
2474 if (eeprom_data & IGB_EEPROM_APME)
2475 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2476
2477 /* now that we have the eeprom settings, apply the special cases where
2478 * the eeprom may be wrong or the board simply won't support wake on
2479 * lan on a particular port
2480 */
2481 switch (pdev->device) {
2482 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2483 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2484 break;
2485 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2486 case E1000_DEV_ID_82576_FIBER:
2487 case E1000_DEV_ID_82576_SERDES:
2488 /* Wake events only supported on port A for dual fiber
2489 * regardless of eeprom setting
2490 */
2491 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2492 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2493 break;
2494 case E1000_DEV_ID_82576_QUAD_COPPER:
2495 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2496 /* if quad port adapter, disable WoL on all but port A */
2497 if (global_quad_port_a != 0)
2498 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2499 else
2500 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2501 /* Reset for multiple quad port adapters */
2502 if (++global_quad_port_a == 4)
2503 global_quad_port_a = 0;
2504 break;
2505 default:
2506 /* If the device can't wake, don't set software support */
2507 if (!device_can_wakeup(&adapter->pdev->dev))
2508 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2509 }
2510
2511 /* initialize the wol settings based on the eeprom settings */
2512 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2513 adapter->wol |= E1000_WUFC_MAG;
2514
2515 /* Some vendors want WoL disabled by default, but still supported */
2516 if ((hw->mac.type == e1000_i350) &&
2517 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2518 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2519 adapter->wol = 0;
2520 }
2521
2522 device_set_wakeup_enable(&adapter->pdev->dev,
2523 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2524
2525 /* reset the hardware with the new settings */
2526 igb_reset(adapter);
2527
2528 /* Init the I2C interface */
2529 err = igb_init_i2c(adapter);
2530 if (err) {
2531 dev_err(&pdev->dev, "failed to init i2c interface\n");
2532 goto err_eeprom;
2533 }
2534
2535 /* let the f/w know that the h/w is now under the control of the
2536 * driver.
2537 */
2538 igb_get_hw_control(adapter);
2539
2540 strcpy(netdev->name, "eth%d");
2541 err = register_netdev(netdev);
2542 if (err)
2543 goto err_register;
2544
2545 /* carrier off reporting is important to ethtool even BEFORE open */
2546 netif_carrier_off(netdev);
2547
2548 #ifdef CONFIG_IGB_DCA
2549 if (dca_add_requester(&pdev->dev) == 0) {
2550 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2551 dev_info(&pdev->dev, "DCA enabled\n");
2552 igb_setup_dca(adapter);
2553 }
2554
2555 #endif
2556 #ifdef CONFIG_IGB_HWMON
2557 /* Initialize the thermal sensor on i350 devices. */
2558 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2559 u16 ets_word;
2560
2561 /* Read the NVM to determine if this i350 device supports an
2562 * external thermal sensor.
2563 */
2564 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2565 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2566 adapter->ets = true;
2567 else
2568 adapter->ets = false;
2569 if (igb_sysfs_init(adapter))
2570 dev_err(&pdev->dev,
2571 "failed to allocate sysfs resources\n");
2572 } else {
2573 adapter->ets = false;
2574 }
2575 #endif
2576 /* Check if Media Autosense is enabled */
2577 adapter->ei = *ei;
2578 if (hw->dev_spec._82575.mas_capable)
2579 igb_init_mas(adapter);
2580
2581 /* do hw tstamp init after resetting */
2582 igb_ptp_init(adapter);
2583
2584 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2585 /* print bus type/speed/width info, not applicable to i354 */
2586 if (hw->mac.type != e1000_i354) {
2587 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2588 netdev->name,
2589 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2590 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2591 "unknown"),
2592 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2593 "Width x4" :
2594 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2595 "Width x2" :
2596 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2597 "Width x1" : "unknown"), netdev->dev_addr);
2598 }
2599
2600 if ((hw->mac.type >= e1000_i210 ||
2601 igb_get_flash_presence_i210(hw))) {
2602 ret_val = igb_read_part_string(hw, part_str,
2603 E1000_PBANUM_LENGTH);
2604 } else {
2605 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2606 }
2607
2608 if (ret_val)
2609 strcpy(part_str, "Unknown");
2610 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2611 dev_info(&pdev->dev,
2612 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2613 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2614 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2615 adapter->num_rx_queues, adapter->num_tx_queues);
2616 if (hw->phy.media_type == e1000_media_type_copper) {
2617 switch (hw->mac.type) {
2618 case e1000_i350:
2619 case e1000_i210:
2620 case e1000_i211:
2621 /* Enable EEE for internal copper PHY devices */
2622 err = igb_set_eee_i350(hw, true, true);
2623 if ((!err) &&
2624 (!hw->dev_spec._82575.eee_disable)) {
2625 adapter->eee_advert =
2626 MDIO_EEE_100TX | MDIO_EEE_1000T;
2627 adapter->flags |= IGB_FLAG_EEE;
2628 }
2629 break;
2630 case e1000_i354:
2631 if ((rd32(E1000_CTRL_EXT) &
2632 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2633 err = igb_set_eee_i354(hw, true, true);
2634 if ((!err) &&
2635 (!hw->dev_spec._82575.eee_disable)) {
2636 adapter->eee_advert =
2637 MDIO_EEE_100TX | MDIO_EEE_1000T;
2638 adapter->flags |= IGB_FLAG_EEE;
2639 }
2640 }
2641 break;
2642 default:
2643 break;
2644 }
2645 }
2646 pm_runtime_put_noidle(&pdev->dev);
2647 return 0;
2648
2649 err_register:
2650 igb_release_hw_control(adapter);
2651 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2652 err_eeprom:
2653 if (!igb_check_reset_block(hw))
2654 igb_reset_phy(hw);
2655
2656 if (hw->flash_address)
2657 iounmap(hw->flash_address);
2658 err_sw_init:
2659 igb_clear_interrupt_scheme(adapter);
2660 pci_iounmap(pdev, hw->hw_addr);
2661 err_ioremap:
2662 free_netdev(netdev);
2663 err_alloc_etherdev:
2664 pci_release_selected_regions(pdev,
2665 pci_select_bars(pdev, IORESOURCE_MEM));
2666 err_pci_reg:
2667 err_dma:
2668 pci_disable_device(pdev);
2669 return err;
2670 }
2671
2672 #ifdef CONFIG_PCI_IOV
2673 static int igb_disable_sriov(struct pci_dev *pdev)
2674 {
2675 struct net_device *netdev = pci_get_drvdata(pdev);
2676 struct igb_adapter *adapter = netdev_priv(netdev);
2677 struct e1000_hw *hw = &adapter->hw;
2678
2679 /* reclaim resources allocated to VFs */
2680 if (adapter->vf_data) {
2681 /* disable iov and allow time for transactions to clear */
2682 if (pci_vfs_assigned(pdev)) {
2683 dev_warn(&pdev->dev,
2684 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2685 return -EPERM;
2686 } else {
2687 pci_disable_sriov(pdev);
2688 msleep(500);
2689 }
2690
2691 kfree(adapter->vf_data);
2692 adapter->vf_data = NULL;
2693 adapter->vfs_allocated_count = 0;
2694 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2695 wrfl();
2696 msleep(100);
2697 dev_info(&pdev->dev, "IOV Disabled\n");
2698
2699 /* Re-enable DMA Coalescing flag since IOV is turned off */
2700 adapter->flags |= IGB_FLAG_DMAC;
2701 }
2702
2703 return 0;
2704 }
2705
2706 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2707 {
2708 struct net_device *netdev = pci_get_drvdata(pdev);
2709 struct igb_adapter *adapter = netdev_priv(netdev);
2710 int old_vfs = pci_num_vf(pdev);
2711 int err = 0;
2712 int i;
2713
2714 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2715 err = -EPERM;
2716 goto out;
2717 }
2718 if (!num_vfs)
2719 goto out;
2720
2721 if (old_vfs) {
2722 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2723 old_vfs, max_vfs);
2724 adapter->vfs_allocated_count = old_vfs;
2725 } else
2726 adapter->vfs_allocated_count = num_vfs;
2727
2728 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2729 sizeof(struct vf_data_storage), GFP_KERNEL);
2730
2731 /* if allocation failed then we do not support SR-IOV */
2732 if (!adapter->vf_data) {
2733 adapter->vfs_allocated_count = 0;
2734 dev_err(&pdev->dev,
2735 "Unable to allocate memory for VF Data Storage\n");
2736 err = -ENOMEM;
2737 goto out;
2738 }
2739
2740 /* only call pci_enable_sriov() if no VFs are allocated already */
2741 if (!old_vfs) {
2742 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2743 if (err)
2744 goto err_out;
2745 }
2746 dev_info(&pdev->dev, "%d VFs allocated\n",
2747 adapter->vfs_allocated_count);
2748 for (i = 0; i < adapter->vfs_allocated_count; i++)
2749 igb_vf_configure(adapter, i);
2750
2751 /* DMA Coalescing is not supported in IOV mode. */
2752 adapter->flags &= ~IGB_FLAG_DMAC;
2753 goto out;
2754
2755 err_out:
2756 kfree(adapter->vf_data);
2757 adapter->vf_data = NULL;
2758 adapter->vfs_allocated_count = 0;
2759 out:
2760 return err;
2761 }
2762
2763 #endif
2764 /**
2765 * igb_remove_i2c - Cleanup I2C interface
2766 * @adapter: pointer to adapter structure
2767 **/
2768 static void igb_remove_i2c(struct igb_adapter *adapter)
2769 {
2770 /* free the adapter bus structure */
2771 i2c_del_adapter(&adapter->i2c_adap);
2772 }
2773
2774 /**
2775 * igb_remove - Device Removal Routine
2776 * @pdev: PCI device information struct
2777 *
2778 * igb_remove is called by the PCI subsystem to alert the driver
2779 * that it should release a PCI device. The could be caused by a
2780 * Hot-Plug event, or because the driver is going to be removed from
2781 * memory.
2782 **/
2783 static void igb_remove(struct pci_dev *pdev)
2784 {
2785 struct net_device *netdev = pci_get_drvdata(pdev);
2786 struct igb_adapter *adapter = netdev_priv(netdev);
2787 struct e1000_hw *hw = &adapter->hw;
2788
2789 pm_runtime_get_noresume(&pdev->dev);
2790 #ifdef CONFIG_IGB_HWMON
2791 igb_sysfs_exit(adapter);
2792 #endif
2793 igb_remove_i2c(adapter);
2794 igb_ptp_stop(adapter);
2795 /* The watchdog timer may be rescheduled, so explicitly
2796 * disable watchdog from being rescheduled.
2797 */
2798 set_bit(__IGB_DOWN, &adapter->state);
2799 del_timer_sync(&adapter->watchdog_timer);
2800 del_timer_sync(&adapter->phy_info_timer);
2801
2802 cancel_work_sync(&adapter->reset_task);
2803 cancel_work_sync(&adapter->watchdog_task);
2804
2805 #ifdef CONFIG_IGB_DCA
2806 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2807 dev_info(&pdev->dev, "DCA disabled\n");
2808 dca_remove_requester(&pdev->dev);
2809 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2810 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2811 }
2812 #endif
2813
2814 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2815 * would have already happened in close and is redundant.
2816 */
2817 igb_release_hw_control(adapter);
2818
2819 unregister_netdev(netdev);
2820
2821 igb_clear_interrupt_scheme(adapter);
2822
2823 #ifdef CONFIG_PCI_IOV
2824 igb_disable_sriov(pdev);
2825 #endif
2826
2827 pci_iounmap(pdev, hw->hw_addr);
2828 if (hw->flash_address)
2829 iounmap(hw->flash_address);
2830 pci_release_selected_regions(pdev,
2831 pci_select_bars(pdev, IORESOURCE_MEM));
2832
2833 kfree(adapter->shadow_vfta);
2834 free_netdev(netdev);
2835
2836 pci_disable_pcie_error_reporting(pdev);
2837
2838 pci_disable_device(pdev);
2839 }
2840
2841 /**
2842 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2843 * @adapter: board private structure to initialize
2844 *
2845 * This function initializes the vf specific data storage and then attempts to
2846 * allocate the VFs. The reason for ordering it this way is because it is much
2847 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2848 * the memory for the VFs.
2849 **/
2850 static void igb_probe_vfs(struct igb_adapter *adapter)
2851 {
2852 #ifdef CONFIG_PCI_IOV
2853 struct pci_dev *pdev = adapter->pdev;
2854 struct e1000_hw *hw = &adapter->hw;
2855
2856 /* Virtualization features not supported on i210 family. */
2857 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2858 return;
2859
2860 pci_sriov_set_totalvfs(pdev, 7);
2861 igb_pci_enable_sriov(pdev, max_vfs);
2862
2863 #endif /* CONFIG_PCI_IOV */
2864 }
2865
2866 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2867 {
2868 struct e1000_hw *hw = &adapter->hw;
2869 u32 max_rss_queues;
2870
2871 /* Determine the maximum number of RSS queues supported. */
2872 switch (hw->mac.type) {
2873 case e1000_i211:
2874 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2875 break;
2876 case e1000_82575:
2877 case e1000_i210:
2878 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2879 break;
2880 case e1000_i350:
2881 /* I350 cannot do RSS and SR-IOV at the same time */
2882 if (!!adapter->vfs_allocated_count) {
2883 max_rss_queues = 1;
2884 break;
2885 }
2886 /* fall through */
2887 case e1000_82576:
2888 if (!!adapter->vfs_allocated_count) {
2889 max_rss_queues = 2;
2890 break;
2891 }
2892 /* fall through */
2893 case e1000_82580:
2894 case e1000_i354:
2895 default:
2896 max_rss_queues = IGB_MAX_RX_QUEUES;
2897 break;
2898 }
2899
2900 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2901
2902 /* Determine if we need to pair queues. */
2903 switch (hw->mac.type) {
2904 case e1000_82575:
2905 case e1000_i211:
2906 /* Device supports enough interrupts without queue pairing. */
2907 break;
2908 case e1000_82576:
2909 /* If VFs are going to be allocated with RSS queues then we
2910 * should pair the queues in order to conserve interrupts due
2911 * to limited supply.
2912 */
2913 if ((adapter->rss_queues > 1) &&
2914 (adapter->vfs_allocated_count > 6))
2915 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2916 /* fall through */
2917 case e1000_82580:
2918 case e1000_i350:
2919 case e1000_i354:
2920 case e1000_i210:
2921 default:
2922 /* If rss_queues > half of max_rss_queues, pair the queues in
2923 * order to conserve interrupts due to limited supply.
2924 */
2925 if (adapter->rss_queues > (max_rss_queues / 2))
2926 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2927 break;
2928 }
2929 }
2930
2931 /**
2932 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2933 * @adapter: board private structure to initialize
2934 *
2935 * igb_sw_init initializes the Adapter private data structure.
2936 * Fields are initialized based on PCI device information and
2937 * OS network device settings (MTU size).
2938 **/
2939 static int igb_sw_init(struct igb_adapter *adapter)
2940 {
2941 struct e1000_hw *hw = &adapter->hw;
2942 struct net_device *netdev = adapter->netdev;
2943 struct pci_dev *pdev = adapter->pdev;
2944
2945 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2946
2947 /* set default ring sizes */
2948 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2949 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2950
2951 /* set default ITR values */
2952 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2953 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2954
2955 /* set default work limits */
2956 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2957
2958 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2959 VLAN_HLEN;
2960 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2961
2962 spin_lock_init(&adapter->stats64_lock);
2963 #ifdef CONFIG_PCI_IOV
2964 switch (hw->mac.type) {
2965 case e1000_82576:
2966 case e1000_i350:
2967 if (max_vfs > 7) {
2968 dev_warn(&pdev->dev,
2969 "Maximum of 7 VFs per PF, using max\n");
2970 max_vfs = adapter->vfs_allocated_count = 7;
2971 } else
2972 adapter->vfs_allocated_count = max_vfs;
2973 if (adapter->vfs_allocated_count)
2974 dev_warn(&pdev->dev,
2975 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2976 break;
2977 default:
2978 break;
2979 }
2980 #endif /* CONFIG_PCI_IOV */
2981
2982 igb_init_queue_configuration(adapter);
2983
2984 /* Setup and initialize a copy of the hw vlan table array */
2985 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2986 GFP_ATOMIC);
2987
2988 /* This call may decrease the number of queues */
2989 if (igb_init_interrupt_scheme(adapter, true)) {
2990 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2991 return -ENOMEM;
2992 }
2993
2994 igb_probe_vfs(adapter);
2995
2996 /* Explicitly disable IRQ since the NIC can be in any state. */
2997 igb_irq_disable(adapter);
2998
2999 if (hw->mac.type >= e1000_i350)
3000 adapter->flags &= ~IGB_FLAG_DMAC;
3001
3002 set_bit(__IGB_DOWN, &adapter->state);
3003 return 0;
3004 }
3005
3006 /**
3007 * igb_open - Called when a network interface is made active
3008 * @netdev: network interface device structure
3009 *
3010 * Returns 0 on success, negative value on failure
3011 *
3012 * The open entry point is called when a network interface is made
3013 * active by the system (IFF_UP). At this point all resources needed
3014 * for transmit and receive operations are allocated, the interrupt
3015 * handler is registered with the OS, the watchdog timer is started,
3016 * and the stack is notified that the interface is ready.
3017 **/
3018 static int __igb_open(struct net_device *netdev, bool resuming)
3019 {
3020 struct igb_adapter *adapter = netdev_priv(netdev);
3021 struct e1000_hw *hw = &adapter->hw;
3022 struct pci_dev *pdev = adapter->pdev;
3023 int err;
3024 int i;
3025
3026 /* disallow open during test */
3027 if (test_bit(__IGB_TESTING, &adapter->state)) {
3028 WARN_ON(resuming);
3029 return -EBUSY;
3030 }
3031
3032 if (!resuming)
3033 pm_runtime_get_sync(&pdev->dev);
3034
3035 netif_carrier_off(netdev);
3036
3037 /* allocate transmit descriptors */
3038 err = igb_setup_all_tx_resources(adapter);
3039 if (err)
3040 goto err_setup_tx;
3041
3042 /* allocate receive descriptors */
3043 err = igb_setup_all_rx_resources(adapter);
3044 if (err)
3045 goto err_setup_rx;
3046
3047 igb_power_up_link(adapter);
3048
3049 /* before we allocate an interrupt, we must be ready to handle it.
3050 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3051 * as soon as we call pci_request_irq, so we have to setup our
3052 * clean_rx handler before we do so.
3053 */
3054 igb_configure(adapter);
3055
3056 err = igb_request_irq(adapter);
3057 if (err)
3058 goto err_req_irq;
3059
3060 /* Notify the stack of the actual queue counts. */
3061 err = netif_set_real_num_tx_queues(adapter->netdev,
3062 adapter->num_tx_queues);
3063 if (err)
3064 goto err_set_queues;
3065
3066 err = netif_set_real_num_rx_queues(adapter->netdev,
3067 adapter->num_rx_queues);
3068 if (err)
3069 goto err_set_queues;
3070
3071 /* From here on the code is the same as igb_up() */
3072 clear_bit(__IGB_DOWN, &adapter->state);
3073
3074 for (i = 0; i < adapter->num_q_vectors; i++)
3075 napi_enable(&(adapter->q_vector[i]->napi));
3076
3077 /* Clear any pending interrupts. */
3078 rd32(E1000_ICR);
3079
3080 igb_irq_enable(adapter);
3081
3082 /* notify VFs that reset has been completed */
3083 if (adapter->vfs_allocated_count) {
3084 u32 reg_data = rd32(E1000_CTRL_EXT);
3085
3086 reg_data |= E1000_CTRL_EXT_PFRSTD;
3087 wr32(E1000_CTRL_EXT, reg_data);
3088 }
3089
3090 netif_tx_start_all_queues(netdev);
3091
3092 if (!resuming)
3093 pm_runtime_put(&pdev->dev);
3094
3095 /* start the watchdog. */
3096 hw->mac.get_link_status = 1;
3097 schedule_work(&adapter->watchdog_task);
3098
3099 return 0;
3100
3101 err_set_queues:
3102 igb_free_irq(adapter);
3103 err_req_irq:
3104 igb_release_hw_control(adapter);
3105 igb_power_down_link(adapter);
3106 igb_free_all_rx_resources(adapter);
3107 err_setup_rx:
3108 igb_free_all_tx_resources(adapter);
3109 err_setup_tx:
3110 igb_reset(adapter);
3111 if (!resuming)
3112 pm_runtime_put(&pdev->dev);
3113
3114 return err;
3115 }
3116
3117 static int igb_open(struct net_device *netdev)
3118 {
3119 return __igb_open(netdev, false);
3120 }
3121
3122 /**
3123 * igb_close - Disables a network interface
3124 * @netdev: network interface device structure
3125 *
3126 * Returns 0, this is not allowed to fail
3127 *
3128 * The close entry point is called when an interface is de-activated
3129 * by the OS. The hardware is still under the driver's control, but
3130 * needs to be disabled. A global MAC reset is issued to stop the
3131 * hardware, and all transmit and receive resources are freed.
3132 **/
3133 static int __igb_close(struct net_device *netdev, bool suspending)
3134 {
3135 struct igb_adapter *adapter = netdev_priv(netdev);
3136 struct pci_dev *pdev = adapter->pdev;
3137
3138 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3139
3140 if (!suspending)
3141 pm_runtime_get_sync(&pdev->dev);
3142
3143 igb_down(adapter);
3144 igb_free_irq(adapter);
3145
3146 igb_free_all_tx_resources(adapter);
3147 igb_free_all_rx_resources(adapter);
3148
3149 if (!suspending)
3150 pm_runtime_put_sync(&pdev->dev);
3151 return 0;
3152 }
3153
3154 static int igb_close(struct net_device *netdev)
3155 {
3156 return __igb_close(netdev, false);
3157 }
3158
3159 /**
3160 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3161 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3162 *
3163 * Return 0 on success, negative on failure
3164 **/
3165 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3166 {
3167 struct device *dev = tx_ring->dev;
3168 int size;
3169
3170 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3171
3172 tx_ring->tx_buffer_info = vzalloc(size);
3173 if (!tx_ring->tx_buffer_info)
3174 goto err;
3175
3176 /* round up to nearest 4K */
3177 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3178 tx_ring->size = ALIGN(tx_ring->size, 4096);
3179
3180 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3181 &tx_ring->dma, GFP_KERNEL);
3182 if (!tx_ring->desc)
3183 goto err;
3184
3185 tx_ring->next_to_use = 0;
3186 tx_ring->next_to_clean = 0;
3187
3188 return 0;
3189
3190 err:
3191 vfree(tx_ring->tx_buffer_info);
3192 tx_ring->tx_buffer_info = NULL;
3193 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3194 return -ENOMEM;
3195 }
3196
3197 /**
3198 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3199 * (Descriptors) for all queues
3200 * @adapter: board private structure
3201 *
3202 * Return 0 on success, negative on failure
3203 **/
3204 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3205 {
3206 struct pci_dev *pdev = adapter->pdev;
3207 int i, err = 0;
3208
3209 for (i = 0; i < adapter->num_tx_queues; i++) {
3210 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3211 if (err) {
3212 dev_err(&pdev->dev,
3213 "Allocation for Tx Queue %u failed\n", i);
3214 for (i--; i >= 0; i--)
3215 igb_free_tx_resources(adapter->tx_ring[i]);
3216 break;
3217 }
3218 }
3219
3220 return err;
3221 }
3222
3223 /**
3224 * igb_setup_tctl - configure the transmit control registers
3225 * @adapter: Board private structure
3226 **/
3227 void igb_setup_tctl(struct igb_adapter *adapter)
3228 {
3229 struct e1000_hw *hw = &adapter->hw;
3230 u32 tctl;
3231
3232 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3233 wr32(E1000_TXDCTL(0), 0);
3234
3235 /* Program the Transmit Control Register */
3236 tctl = rd32(E1000_TCTL);
3237 tctl &= ~E1000_TCTL_CT;
3238 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3239 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3240
3241 igb_config_collision_dist(hw);
3242
3243 /* Enable transmits */
3244 tctl |= E1000_TCTL_EN;
3245
3246 wr32(E1000_TCTL, tctl);
3247 }
3248
3249 /**
3250 * igb_configure_tx_ring - Configure transmit ring after Reset
3251 * @adapter: board private structure
3252 * @ring: tx ring to configure
3253 *
3254 * Configure a transmit ring after a reset.
3255 **/
3256 void igb_configure_tx_ring(struct igb_adapter *adapter,
3257 struct igb_ring *ring)
3258 {
3259 struct e1000_hw *hw = &adapter->hw;
3260 u32 txdctl = 0;
3261 u64 tdba = ring->dma;
3262 int reg_idx = ring->reg_idx;
3263
3264 /* disable the queue */
3265 wr32(E1000_TXDCTL(reg_idx), 0);
3266 wrfl();
3267 mdelay(10);
3268
3269 wr32(E1000_TDLEN(reg_idx),
3270 ring->count * sizeof(union e1000_adv_tx_desc));
3271 wr32(E1000_TDBAL(reg_idx),
3272 tdba & 0x00000000ffffffffULL);
3273 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3274
3275 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3276 wr32(E1000_TDH(reg_idx), 0);
3277 writel(0, ring->tail);
3278
3279 txdctl |= IGB_TX_PTHRESH;
3280 txdctl |= IGB_TX_HTHRESH << 8;
3281 txdctl |= IGB_TX_WTHRESH << 16;
3282
3283 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3284 wr32(E1000_TXDCTL(reg_idx), txdctl);
3285 }
3286
3287 /**
3288 * igb_configure_tx - Configure transmit Unit after Reset
3289 * @adapter: board private structure
3290 *
3291 * Configure the Tx unit of the MAC after a reset.
3292 **/
3293 static void igb_configure_tx(struct igb_adapter *adapter)
3294 {
3295 int i;
3296
3297 for (i = 0; i < adapter->num_tx_queues; i++)
3298 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3299 }
3300
3301 /**
3302 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3303 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3304 *
3305 * Returns 0 on success, negative on failure
3306 **/
3307 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3308 {
3309 struct device *dev = rx_ring->dev;
3310 int size;
3311
3312 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3313
3314 rx_ring->rx_buffer_info = vzalloc(size);
3315 if (!rx_ring->rx_buffer_info)
3316 goto err;
3317
3318 /* Round up to nearest 4K */
3319 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3320 rx_ring->size = ALIGN(rx_ring->size, 4096);
3321
3322 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3323 &rx_ring->dma, GFP_KERNEL);
3324 if (!rx_ring->desc)
3325 goto err;
3326
3327 rx_ring->next_to_alloc = 0;
3328 rx_ring->next_to_clean = 0;
3329 rx_ring->next_to_use = 0;
3330
3331 return 0;
3332
3333 err:
3334 vfree(rx_ring->rx_buffer_info);
3335 rx_ring->rx_buffer_info = NULL;
3336 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3337 return -ENOMEM;
3338 }
3339
3340 /**
3341 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3342 * (Descriptors) for all queues
3343 * @adapter: board private structure
3344 *
3345 * Return 0 on success, negative on failure
3346 **/
3347 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3348 {
3349 struct pci_dev *pdev = adapter->pdev;
3350 int i, err = 0;
3351
3352 for (i = 0; i < adapter->num_rx_queues; i++) {
3353 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3354 if (err) {
3355 dev_err(&pdev->dev,
3356 "Allocation for Rx Queue %u failed\n", i);
3357 for (i--; i >= 0; i--)
3358 igb_free_rx_resources(adapter->rx_ring[i]);
3359 break;
3360 }
3361 }
3362
3363 return err;
3364 }
3365
3366 /**
3367 * igb_setup_mrqc - configure the multiple receive queue control registers
3368 * @adapter: Board private structure
3369 **/
3370 static void igb_setup_mrqc(struct igb_adapter *adapter)
3371 {
3372 struct e1000_hw *hw = &adapter->hw;
3373 u32 mrqc, rxcsum;
3374 u32 j, num_rx_queues;
3375 u32 rss_key[10];
3376
3377 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3378 for (j = 0; j < 10; j++)
3379 wr32(E1000_RSSRK(j), rss_key[j]);
3380
3381 num_rx_queues = adapter->rss_queues;
3382
3383 switch (hw->mac.type) {
3384 case e1000_82576:
3385 /* 82576 supports 2 RSS queues for SR-IOV */
3386 if (adapter->vfs_allocated_count)
3387 num_rx_queues = 2;
3388 break;
3389 default:
3390 break;
3391 }
3392
3393 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3394 for (j = 0; j < IGB_RETA_SIZE; j++)
3395 adapter->rss_indir_tbl[j] =
3396 (j * num_rx_queues) / IGB_RETA_SIZE;
3397 adapter->rss_indir_tbl_init = num_rx_queues;
3398 }
3399 igb_write_rss_indir_tbl(adapter);
3400
3401 /* Disable raw packet checksumming so that RSS hash is placed in
3402 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3403 * offloads as they are enabled by default
3404 */
3405 rxcsum = rd32(E1000_RXCSUM);
3406 rxcsum |= E1000_RXCSUM_PCSD;
3407
3408 if (adapter->hw.mac.type >= e1000_82576)
3409 /* Enable Receive Checksum Offload for SCTP */
3410 rxcsum |= E1000_RXCSUM_CRCOFL;
3411
3412 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3413 wr32(E1000_RXCSUM, rxcsum);
3414
3415 /* Generate RSS hash based on packet types, TCP/UDP
3416 * port numbers and/or IPv4/v6 src and dst addresses
3417 */
3418 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3419 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3420 E1000_MRQC_RSS_FIELD_IPV6 |
3421 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3422 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3423
3424 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3425 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3426 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3427 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3428
3429 /* If VMDq is enabled then we set the appropriate mode for that, else
3430 * we default to RSS so that an RSS hash is calculated per packet even
3431 * if we are only using one queue
3432 */
3433 if (adapter->vfs_allocated_count) {
3434 if (hw->mac.type > e1000_82575) {
3435 /* Set the default pool for the PF's first queue */
3436 u32 vtctl = rd32(E1000_VT_CTL);
3437
3438 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3439 E1000_VT_CTL_DISABLE_DEF_POOL);
3440 vtctl |= adapter->vfs_allocated_count <<
3441 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3442 wr32(E1000_VT_CTL, vtctl);
3443 }
3444 if (adapter->rss_queues > 1)
3445 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3446 else
3447 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3448 } else {
3449 if (hw->mac.type != e1000_i211)
3450 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3451 }
3452 igb_vmm_control(adapter);
3453
3454 wr32(E1000_MRQC, mrqc);
3455 }
3456
3457 /**
3458 * igb_setup_rctl - configure the receive control registers
3459 * @adapter: Board private structure
3460 **/
3461 void igb_setup_rctl(struct igb_adapter *adapter)
3462 {
3463 struct e1000_hw *hw = &adapter->hw;
3464 u32 rctl;
3465
3466 rctl = rd32(E1000_RCTL);
3467
3468 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3469 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3470
3471 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3472 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3473
3474 /* enable stripping of CRC. It's unlikely this will break BMC
3475 * redirection as it did with e1000. Newer features require
3476 * that the HW strips the CRC.
3477 */
3478 rctl |= E1000_RCTL_SECRC;
3479
3480 /* disable store bad packets and clear size bits. */
3481 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3482
3483 /* enable LPE to prevent packets larger than max_frame_size */
3484 rctl |= E1000_RCTL_LPE;
3485
3486 /* disable queue 0 to prevent tail write w/o re-config */
3487 wr32(E1000_RXDCTL(0), 0);
3488
3489 /* Attention!!! For SR-IOV PF driver operations you must enable
3490 * queue drop for all VF and PF queues to prevent head of line blocking
3491 * if an un-trusted VF does not provide descriptors to hardware.
3492 */
3493 if (adapter->vfs_allocated_count) {
3494 /* set all queue drop enable bits */
3495 wr32(E1000_QDE, ALL_QUEUES);
3496 }
3497
3498 /* This is useful for sniffing bad packets. */
3499 if (adapter->netdev->features & NETIF_F_RXALL) {
3500 /* UPE and MPE will be handled by normal PROMISC logic
3501 * in e1000e_set_rx_mode
3502 */
3503 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3504 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3505 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3506
3507 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3508 E1000_RCTL_DPF | /* Allow filtered pause */
3509 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3510 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3511 * and that breaks VLANs.
3512 */
3513 }
3514
3515 wr32(E1000_RCTL, rctl);
3516 }
3517
3518 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3519 int vfn)
3520 {
3521 struct e1000_hw *hw = &adapter->hw;
3522 u32 vmolr;
3523
3524 /* if it isn't the PF check to see if VFs are enabled and
3525 * increase the size to support vlan tags
3526 */
3527 if (vfn < adapter->vfs_allocated_count &&
3528 adapter->vf_data[vfn].vlans_enabled)
3529 size += VLAN_TAG_SIZE;
3530
3531 vmolr = rd32(E1000_VMOLR(vfn));
3532 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3533 vmolr |= size | E1000_VMOLR_LPE;
3534 wr32(E1000_VMOLR(vfn), vmolr);
3535
3536 return 0;
3537 }
3538
3539 /**
3540 * igb_rlpml_set - set maximum receive packet size
3541 * @adapter: board private structure
3542 *
3543 * Configure maximum receivable packet size.
3544 **/
3545 static void igb_rlpml_set(struct igb_adapter *adapter)
3546 {
3547 u32 max_frame_size = adapter->max_frame_size;
3548 struct e1000_hw *hw = &adapter->hw;
3549 u16 pf_id = adapter->vfs_allocated_count;
3550
3551 if (pf_id) {
3552 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3553 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3554 * to our max jumbo frame size, in case we need to enable
3555 * jumbo frames on one of the rings later.
3556 * This will not pass over-length frames into the default
3557 * queue because it's gated by the VMOLR.RLPML.
3558 */
3559 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3560 }
3561
3562 wr32(E1000_RLPML, max_frame_size);
3563 }
3564
3565 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3566 int vfn, bool aupe)
3567 {
3568 struct e1000_hw *hw = &adapter->hw;
3569 u32 vmolr;
3570
3571 /* This register exists only on 82576 and newer so if we are older then
3572 * we should exit and do nothing
3573 */
3574 if (hw->mac.type < e1000_82576)
3575 return;
3576
3577 vmolr = rd32(E1000_VMOLR(vfn));
3578 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3579 if (hw->mac.type == e1000_i350) {
3580 u32 dvmolr;
3581
3582 dvmolr = rd32(E1000_DVMOLR(vfn));
3583 dvmolr |= E1000_DVMOLR_STRVLAN;
3584 wr32(E1000_DVMOLR(vfn), dvmolr);
3585 }
3586 if (aupe)
3587 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3588 else
3589 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3590
3591 /* clear all bits that might not be set */
3592 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3593
3594 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3595 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3596 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3597 * multicast packets
3598 */
3599 if (vfn <= adapter->vfs_allocated_count)
3600 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3601
3602 wr32(E1000_VMOLR(vfn), vmolr);
3603 }
3604
3605 /**
3606 * igb_configure_rx_ring - Configure a receive ring after Reset
3607 * @adapter: board private structure
3608 * @ring: receive ring to be configured
3609 *
3610 * Configure the Rx unit of the MAC after a reset.
3611 **/
3612 void igb_configure_rx_ring(struct igb_adapter *adapter,
3613 struct igb_ring *ring)
3614 {
3615 struct e1000_hw *hw = &adapter->hw;
3616 u64 rdba = ring->dma;
3617 int reg_idx = ring->reg_idx;
3618 u32 srrctl = 0, rxdctl = 0;
3619
3620 /* disable the queue */
3621 wr32(E1000_RXDCTL(reg_idx), 0);
3622
3623 /* Set DMA base address registers */
3624 wr32(E1000_RDBAL(reg_idx),
3625 rdba & 0x00000000ffffffffULL);
3626 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3627 wr32(E1000_RDLEN(reg_idx),
3628 ring->count * sizeof(union e1000_adv_rx_desc));
3629
3630 /* initialize head and tail */
3631 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3632 wr32(E1000_RDH(reg_idx), 0);
3633 writel(0, ring->tail);
3634
3635 /* set descriptor configuration */
3636 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3637 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3638 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3639 if (hw->mac.type >= e1000_82580)
3640 srrctl |= E1000_SRRCTL_TIMESTAMP;
3641 /* Only set Drop Enable if we are supporting multiple queues */
3642 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3643 srrctl |= E1000_SRRCTL_DROP_EN;
3644
3645 wr32(E1000_SRRCTL(reg_idx), srrctl);
3646
3647 /* set filtering for VMDQ pools */
3648 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3649
3650 rxdctl |= IGB_RX_PTHRESH;
3651 rxdctl |= IGB_RX_HTHRESH << 8;
3652 rxdctl |= IGB_RX_WTHRESH << 16;
3653
3654 /* enable receive descriptor fetching */
3655 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3656 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3657 }
3658
3659 /**
3660 * igb_configure_rx - Configure receive Unit after Reset
3661 * @adapter: board private structure
3662 *
3663 * Configure the Rx unit of the MAC after a reset.
3664 **/
3665 static void igb_configure_rx(struct igb_adapter *adapter)
3666 {
3667 int i;
3668
3669 /* set UTA to appropriate mode */
3670 igb_set_uta(adapter);
3671
3672 /* set the correct pool for the PF default MAC address in entry 0 */
3673 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3674 adapter->vfs_allocated_count);
3675
3676 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3677 * the Base and Length of the Rx Descriptor Ring
3678 */
3679 for (i = 0; i < adapter->num_rx_queues; i++)
3680 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3681 }
3682
3683 /**
3684 * igb_free_tx_resources - Free Tx Resources per Queue
3685 * @tx_ring: Tx descriptor ring for a specific queue
3686 *
3687 * Free all transmit software resources
3688 **/
3689 void igb_free_tx_resources(struct igb_ring *tx_ring)
3690 {
3691 igb_clean_tx_ring(tx_ring);
3692
3693 vfree(tx_ring->tx_buffer_info);
3694 tx_ring->tx_buffer_info = NULL;
3695
3696 /* if not set, then don't free */
3697 if (!tx_ring->desc)
3698 return;
3699
3700 dma_free_coherent(tx_ring->dev, tx_ring->size,
3701 tx_ring->desc, tx_ring->dma);
3702
3703 tx_ring->desc = NULL;
3704 }
3705
3706 /**
3707 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3708 * @adapter: board private structure
3709 *
3710 * Free all transmit software resources
3711 **/
3712 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3713 {
3714 int i;
3715
3716 for (i = 0; i < adapter->num_tx_queues; i++)
3717 if (adapter->tx_ring[i])
3718 igb_free_tx_resources(adapter->tx_ring[i]);
3719 }
3720
3721 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3722 struct igb_tx_buffer *tx_buffer)
3723 {
3724 if (tx_buffer->skb) {
3725 dev_kfree_skb_any(tx_buffer->skb);
3726 if (dma_unmap_len(tx_buffer, len))
3727 dma_unmap_single(ring->dev,
3728 dma_unmap_addr(tx_buffer, dma),
3729 dma_unmap_len(tx_buffer, len),
3730 DMA_TO_DEVICE);
3731 } else if (dma_unmap_len(tx_buffer, len)) {
3732 dma_unmap_page(ring->dev,
3733 dma_unmap_addr(tx_buffer, dma),
3734 dma_unmap_len(tx_buffer, len),
3735 DMA_TO_DEVICE);
3736 }
3737 tx_buffer->next_to_watch = NULL;
3738 tx_buffer->skb = NULL;
3739 dma_unmap_len_set(tx_buffer, len, 0);
3740 /* buffer_info must be completely set up in the transmit path */
3741 }
3742
3743 /**
3744 * igb_clean_tx_ring - Free Tx Buffers
3745 * @tx_ring: ring to be cleaned
3746 **/
3747 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3748 {
3749 struct igb_tx_buffer *buffer_info;
3750 unsigned long size;
3751 u16 i;
3752
3753 if (!tx_ring->tx_buffer_info)
3754 return;
3755 /* Free all the Tx ring sk_buffs */
3756
3757 for (i = 0; i < tx_ring->count; i++) {
3758 buffer_info = &tx_ring->tx_buffer_info[i];
3759 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3760 }
3761
3762 netdev_tx_reset_queue(txring_txq(tx_ring));
3763
3764 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3765 memset(tx_ring->tx_buffer_info, 0, size);
3766
3767 /* Zero out the descriptor ring */
3768 memset(tx_ring->desc, 0, tx_ring->size);
3769
3770 tx_ring->next_to_use = 0;
3771 tx_ring->next_to_clean = 0;
3772 }
3773
3774 /**
3775 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3776 * @adapter: board private structure
3777 **/
3778 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3779 {
3780 int i;
3781
3782 for (i = 0; i < adapter->num_tx_queues; i++)
3783 if (adapter->tx_ring[i])
3784 igb_clean_tx_ring(adapter->tx_ring[i]);
3785 }
3786
3787 /**
3788 * igb_free_rx_resources - Free Rx Resources
3789 * @rx_ring: ring to clean the resources from
3790 *
3791 * Free all receive software resources
3792 **/
3793 void igb_free_rx_resources(struct igb_ring *rx_ring)
3794 {
3795 igb_clean_rx_ring(rx_ring);
3796
3797 vfree(rx_ring->rx_buffer_info);
3798 rx_ring->rx_buffer_info = NULL;
3799
3800 /* if not set, then don't free */
3801 if (!rx_ring->desc)
3802 return;
3803
3804 dma_free_coherent(rx_ring->dev, rx_ring->size,
3805 rx_ring->desc, rx_ring->dma);
3806
3807 rx_ring->desc = NULL;
3808 }
3809
3810 /**
3811 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3812 * @adapter: board private structure
3813 *
3814 * Free all receive software resources
3815 **/
3816 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3817 {
3818 int i;
3819
3820 for (i = 0; i < adapter->num_rx_queues; i++)
3821 if (adapter->rx_ring[i])
3822 igb_free_rx_resources(adapter->rx_ring[i]);
3823 }
3824
3825 /**
3826 * igb_clean_rx_ring - Free Rx Buffers per Queue
3827 * @rx_ring: ring to free buffers from
3828 **/
3829 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3830 {
3831 unsigned long size;
3832 u16 i;
3833
3834 if (rx_ring->skb)
3835 dev_kfree_skb(rx_ring->skb);
3836 rx_ring->skb = NULL;
3837
3838 if (!rx_ring->rx_buffer_info)
3839 return;
3840
3841 /* Free all the Rx ring sk_buffs */
3842 for (i = 0; i < rx_ring->count; i++) {
3843 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3844
3845 if (!buffer_info->page)
3846 continue;
3847
3848 dma_unmap_page(rx_ring->dev,
3849 buffer_info->dma,
3850 PAGE_SIZE,
3851 DMA_FROM_DEVICE);
3852 __free_page(buffer_info->page);
3853
3854 buffer_info->page = NULL;
3855 }
3856
3857 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3858 memset(rx_ring->rx_buffer_info, 0, size);
3859
3860 /* Zero out the descriptor ring */
3861 memset(rx_ring->desc, 0, rx_ring->size);
3862
3863 rx_ring->next_to_alloc = 0;
3864 rx_ring->next_to_clean = 0;
3865 rx_ring->next_to_use = 0;
3866 }
3867
3868 /**
3869 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3870 * @adapter: board private structure
3871 **/
3872 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3873 {
3874 int i;
3875
3876 for (i = 0; i < adapter->num_rx_queues; i++)
3877 if (adapter->rx_ring[i])
3878 igb_clean_rx_ring(adapter->rx_ring[i]);
3879 }
3880
3881 /**
3882 * igb_set_mac - Change the Ethernet Address of the NIC
3883 * @netdev: network interface device structure
3884 * @p: pointer to an address structure
3885 *
3886 * Returns 0 on success, negative on failure
3887 **/
3888 static int igb_set_mac(struct net_device *netdev, void *p)
3889 {
3890 struct igb_adapter *adapter = netdev_priv(netdev);
3891 struct e1000_hw *hw = &adapter->hw;
3892 struct sockaddr *addr = p;
3893
3894 if (!is_valid_ether_addr(addr->sa_data))
3895 return -EADDRNOTAVAIL;
3896
3897 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3898 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3899
3900 /* set the correct pool for the new PF MAC address in entry 0 */
3901 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3902 adapter->vfs_allocated_count);
3903
3904 return 0;
3905 }
3906
3907 /**
3908 * igb_write_mc_addr_list - write multicast addresses to MTA
3909 * @netdev: network interface device structure
3910 *
3911 * Writes multicast address list to the MTA hash table.
3912 * Returns: -ENOMEM on failure
3913 * 0 on no addresses written
3914 * X on writing X addresses to MTA
3915 **/
3916 static int igb_write_mc_addr_list(struct net_device *netdev)
3917 {
3918 struct igb_adapter *adapter = netdev_priv(netdev);
3919 struct e1000_hw *hw = &adapter->hw;
3920 struct netdev_hw_addr *ha;
3921 u8 *mta_list;
3922 int i;
3923
3924 if (netdev_mc_empty(netdev)) {
3925 /* nothing to program, so clear mc list */
3926 igb_update_mc_addr_list(hw, NULL, 0);
3927 igb_restore_vf_multicasts(adapter);
3928 return 0;
3929 }
3930
3931 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3932 if (!mta_list)
3933 return -ENOMEM;
3934
3935 /* The shared function expects a packed array of only addresses. */
3936 i = 0;
3937 netdev_for_each_mc_addr(ha, netdev)
3938 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3939
3940 igb_update_mc_addr_list(hw, mta_list, i);
3941 kfree(mta_list);
3942
3943 return netdev_mc_count(netdev);
3944 }
3945
3946 /**
3947 * igb_write_uc_addr_list - write unicast addresses to RAR table
3948 * @netdev: network interface device structure
3949 *
3950 * Writes unicast address list to the RAR table.
3951 * Returns: -ENOMEM on failure/insufficient address space
3952 * 0 on no addresses written
3953 * X on writing X addresses to the RAR table
3954 **/
3955 static int igb_write_uc_addr_list(struct net_device *netdev)
3956 {
3957 struct igb_adapter *adapter = netdev_priv(netdev);
3958 struct e1000_hw *hw = &adapter->hw;
3959 unsigned int vfn = adapter->vfs_allocated_count;
3960 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3961 int count = 0;
3962
3963 /* return ENOMEM indicating insufficient memory for addresses */
3964 if (netdev_uc_count(netdev) > rar_entries)
3965 return -ENOMEM;
3966
3967 if (!netdev_uc_empty(netdev) && rar_entries) {
3968 struct netdev_hw_addr *ha;
3969
3970 netdev_for_each_uc_addr(ha, netdev) {
3971 if (!rar_entries)
3972 break;
3973 igb_rar_set_qsel(adapter, ha->addr,
3974 rar_entries--,
3975 vfn);
3976 count++;
3977 }
3978 }
3979 /* write the addresses in reverse order to avoid write combining */
3980 for (; rar_entries > 0 ; rar_entries--) {
3981 wr32(E1000_RAH(rar_entries), 0);
3982 wr32(E1000_RAL(rar_entries), 0);
3983 }
3984 wrfl();
3985
3986 return count;
3987 }
3988
3989 /**
3990 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3991 * @netdev: network interface device structure
3992 *
3993 * The set_rx_mode entry point is called whenever the unicast or multicast
3994 * address lists or the network interface flags are updated. This routine is
3995 * responsible for configuring the hardware for proper unicast, multicast,
3996 * promiscuous mode, and all-multi behavior.
3997 **/
3998 static void igb_set_rx_mode(struct net_device *netdev)
3999 {
4000 struct igb_adapter *adapter = netdev_priv(netdev);
4001 struct e1000_hw *hw = &adapter->hw;
4002 unsigned int vfn = adapter->vfs_allocated_count;
4003 u32 rctl, vmolr = 0;
4004 int count;
4005
4006 /* Check for Promiscuous and All Multicast modes */
4007 rctl = rd32(E1000_RCTL);
4008
4009 /* clear the effected bits */
4010 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4011
4012 if (netdev->flags & IFF_PROMISC) {
4013 /* retain VLAN HW filtering if in VT mode */
4014 if (adapter->vfs_allocated_count)
4015 rctl |= E1000_RCTL_VFE;
4016 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4017 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4018 } else {
4019 if (netdev->flags & IFF_ALLMULTI) {
4020 rctl |= E1000_RCTL_MPE;
4021 vmolr |= E1000_VMOLR_MPME;
4022 } else {
4023 /* Write addresses to the MTA, if the attempt fails
4024 * then we should just turn on promiscuous mode so
4025 * that we can at least receive multicast traffic
4026 */
4027 count = igb_write_mc_addr_list(netdev);
4028 if (count < 0) {
4029 rctl |= E1000_RCTL_MPE;
4030 vmolr |= E1000_VMOLR_MPME;
4031 } else if (count) {
4032 vmolr |= E1000_VMOLR_ROMPE;
4033 }
4034 }
4035 /* Write addresses to available RAR registers, if there is not
4036 * sufficient space to store all the addresses then enable
4037 * unicast promiscuous mode
4038 */
4039 count = igb_write_uc_addr_list(netdev);
4040 if (count < 0) {
4041 rctl |= E1000_RCTL_UPE;
4042 vmolr |= E1000_VMOLR_ROPE;
4043 }
4044 rctl |= E1000_RCTL_VFE;
4045 }
4046 wr32(E1000_RCTL, rctl);
4047
4048 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4049 * the VMOLR to enable the appropriate modes. Without this workaround
4050 * we will have issues with VLAN tag stripping not being done for frames
4051 * that are only arriving because we are the default pool
4052 */
4053 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4054 return;
4055
4056 vmolr |= rd32(E1000_VMOLR(vfn)) &
4057 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4058 wr32(E1000_VMOLR(vfn), vmolr);
4059 igb_restore_vf_multicasts(adapter);
4060 }
4061
4062 static void igb_check_wvbr(struct igb_adapter *adapter)
4063 {
4064 struct e1000_hw *hw = &adapter->hw;
4065 u32 wvbr = 0;
4066
4067 switch (hw->mac.type) {
4068 case e1000_82576:
4069 case e1000_i350:
4070 wvbr = rd32(E1000_WVBR);
4071 if (!wvbr)
4072 return;
4073 break;
4074 default:
4075 break;
4076 }
4077
4078 adapter->wvbr |= wvbr;
4079 }
4080
4081 #define IGB_STAGGERED_QUEUE_OFFSET 8
4082
4083 static void igb_spoof_check(struct igb_adapter *adapter)
4084 {
4085 int j;
4086
4087 if (!adapter->wvbr)
4088 return;
4089
4090 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4091 if (adapter->wvbr & (1 << j) ||
4092 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4093 dev_warn(&adapter->pdev->dev,
4094 "Spoof event(s) detected on VF %d\n", j);
4095 adapter->wvbr &=
4096 ~((1 << j) |
4097 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4098 }
4099 }
4100 }
4101
4102 /* Need to wait a few seconds after link up to get diagnostic information from
4103 * the phy
4104 */
4105 static void igb_update_phy_info(unsigned long data)
4106 {
4107 struct igb_adapter *adapter = (struct igb_adapter *) data;
4108 igb_get_phy_info(&adapter->hw);
4109 }
4110
4111 /**
4112 * igb_has_link - check shared code for link and determine up/down
4113 * @adapter: pointer to driver private info
4114 **/
4115 bool igb_has_link(struct igb_adapter *adapter)
4116 {
4117 struct e1000_hw *hw = &adapter->hw;
4118 bool link_active = false;
4119
4120 /* get_link_status is set on LSC (link status) interrupt or
4121 * rx sequence error interrupt. get_link_status will stay
4122 * false until the e1000_check_for_link establishes link
4123 * for copper adapters ONLY
4124 */
4125 switch (hw->phy.media_type) {
4126 case e1000_media_type_copper:
4127 if (!hw->mac.get_link_status)
4128 return true;
4129 case e1000_media_type_internal_serdes:
4130 hw->mac.ops.check_for_link(hw);
4131 link_active = !hw->mac.get_link_status;
4132 break;
4133 default:
4134 case e1000_media_type_unknown:
4135 break;
4136 }
4137
4138 if (((hw->mac.type == e1000_i210) ||
4139 (hw->mac.type == e1000_i211)) &&
4140 (hw->phy.id == I210_I_PHY_ID)) {
4141 if (!netif_carrier_ok(adapter->netdev)) {
4142 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4143 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4144 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4145 adapter->link_check_timeout = jiffies;
4146 }
4147 }
4148
4149 return link_active;
4150 }
4151
4152 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4153 {
4154 bool ret = false;
4155 u32 ctrl_ext, thstat;
4156
4157 /* check for thermal sensor event on i350 copper only */
4158 if (hw->mac.type == e1000_i350) {
4159 thstat = rd32(E1000_THSTAT);
4160 ctrl_ext = rd32(E1000_CTRL_EXT);
4161
4162 if ((hw->phy.media_type == e1000_media_type_copper) &&
4163 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4164 ret = !!(thstat & event);
4165 }
4166
4167 return ret;
4168 }
4169
4170 /**
4171 * igb_check_lvmmc - check for malformed packets received
4172 * and indicated in LVMMC register
4173 * @adapter: pointer to adapter
4174 **/
4175 static void igb_check_lvmmc(struct igb_adapter *adapter)
4176 {
4177 struct e1000_hw *hw = &adapter->hw;
4178 u32 lvmmc;
4179
4180 lvmmc = rd32(E1000_LVMMC);
4181 if (lvmmc) {
4182 if (unlikely(net_ratelimit())) {
4183 netdev_warn(adapter->netdev,
4184 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4185 lvmmc);
4186 }
4187 }
4188 }
4189
4190 /**
4191 * igb_watchdog - Timer Call-back
4192 * @data: pointer to adapter cast into an unsigned long
4193 **/
4194 static void igb_watchdog(unsigned long data)
4195 {
4196 struct igb_adapter *adapter = (struct igb_adapter *)data;
4197 /* Do the rest outside of interrupt context */
4198 schedule_work(&adapter->watchdog_task);
4199 }
4200
4201 static void igb_watchdog_task(struct work_struct *work)
4202 {
4203 struct igb_adapter *adapter = container_of(work,
4204 struct igb_adapter,
4205 watchdog_task);
4206 struct e1000_hw *hw = &adapter->hw;
4207 struct e1000_phy_info *phy = &hw->phy;
4208 struct net_device *netdev = adapter->netdev;
4209 u32 link;
4210 int i;
4211 u32 connsw;
4212
4213 link = igb_has_link(adapter);
4214
4215 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4216 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4217 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4218 else
4219 link = false;
4220 }
4221
4222 /* Force link down if we have fiber to swap to */
4223 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4224 if (hw->phy.media_type == e1000_media_type_copper) {
4225 connsw = rd32(E1000_CONNSW);
4226 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4227 link = 0;
4228 }
4229 }
4230 if (link) {
4231 /* Perform a reset if the media type changed. */
4232 if (hw->dev_spec._82575.media_changed) {
4233 hw->dev_spec._82575.media_changed = false;
4234 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4235 igb_reset(adapter);
4236 }
4237 /* Cancel scheduled suspend requests. */
4238 pm_runtime_resume(netdev->dev.parent);
4239
4240 if (!netif_carrier_ok(netdev)) {
4241 u32 ctrl;
4242
4243 hw->mac.ops.get_speed_and_duplex(hw,
4244 &adapter->link_speed,
4245 &adapter->link_duplex);
4246
4247 ctrl = rd32(E1000_CTRL);
4248 /* Links status message must follow this format */
4249 netdev_info(netdev,
4250 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4251 netdev->name,
4252 adapter->link_speed,
4253 adapter->link_duplex == FULL_DUPLEX ?
4254 "Full" : "Half",
4255 (ctrl & E1000_CTRL_TFCE) &&
4256 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4257 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4258 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4259
4260 /* disable EEE if enabled */
4261 if ((adapter->flags & IGB_FLAG_EEE) &&
4262 (adapter->link_duplex == HALF_DUPLEX)) {
4263 dev_info(&adapter->pdev->dev,
4264 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4265 adapter->hw.dev_spec._82575.eee_disable = true;
4266 adapter->flags &= ~IGB_FLAG_EEE;
4267 }
4268
4269 /* check if SmartSpeed worked */
4270 igb_check_downshift(hw);
4271 if (phy->speed_downgraded)
4272 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4273
4274 /* check for thermal sensor event */
4275 if (igb_thermal_sensor_event(hw,
4276 E1000_THSTAT_LINK_THROTTLE))
4277 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4278
4279 /* adjust timeout factor according to speed/duplex */
4280 adapter->tx_timeout_factor = 1;
4281 switch (adapter->link_speed) {
4282 case SPEED_10:
4283 adapter->tx_timeout_factor = 14;
4284 break;
4285 case SPEED_100:
4286 /* maybe add some timeout factor ? */
4287 break;
4288 }
4289
4290 netif_carrier_on(netdev);
4291
4292 igb_ping_all_vfs(adapter);
4293 igb_check_vf_rate_limit(adapter);
4294
4295 /* link state has changed, schedule phy info update */
4296 if (!test_bit(__IGB_DOWN, &adapter->state))
4297 mod_timer(&adapter->phy_info_timer,
4298 round_jiffies(jiffies + 2 * HZ));
4299 }
4300 } else {
4301 if (netif_carrier_ok(netdev)) {
4302 adapter->link_speed = 0;
4303 adapter->link_duplex = 0;
4304
4305 /* check for thermal sensor event */
4306 if (igb_thermal_sensor_event(hw,
4307 E1000_THSTAT_PWR_DOWN)) {
4308 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4309 }
4310
4311 /* Links status message must follow this format */
4312 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4313 netdev->name);
4314 netif_carrier_off(netdev);
4315
4316 igb_ping_all_vfs(adapter);
4317
4318 /* link state has changed, schedule phy info update */
4319 if (!test_bit(__IGB_DOWN, &adapter->state))
4320 mod_timer(&adapter->phy_info_timer,
4321 round_jiffies(jiffies + 2 * HZ));
4322
4323 /* link is down, time to check for alternate media */
4324 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4325 igb_check_swap_media(adapter);
4326 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4327 schedule_work(&adapter->reset_task);
4328 /* return immediately */
4329 return;
4330 }
4331 }
4332 pm_schedule_suspend(netdev->dev.parent,
4333 MSEC_PER_SEC * 5);
4334
4335 /* also check for alternate media here */
4336 } else if (!netif_carrier_ok(netdev) &&
4337 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4338 igb_check_swap_media(adapter);
4339 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4340 schedule_work(&adapter->reset_task);
4341 /* return immediately */
4342 return;
4343 }
4344 }
4345 }
4346
4347 spin_lock(&adapter->stats64_lock);
4348 igb_update_stats(adapter, &adapter->stats64);
4349 spin_unlock(&adapter->stats64_lock);
4350
4351 for (i = 0; i < adapter->num_tx_queues; i++) {
4352 struct igb_ring *tx_ring = adapter->tx_ring[i];
4353 if (!netif_carrier_ok(netdev)) {
4354 /* We've lost link, so the controller stops DMA,
4355 * but we've got queued Tx work that's never going
4356 * to get done, so reset controller to flush Tx.
4357 * (Do the reset outside of interrupt context).
4358 */
4359 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4360 adapter->tx_timeout_count++;
4361 schedule_work(&adapter->reset_task);
4362 /* return immediately since reset is imminent */
4363 return;
4364 }
4365 }
4366
4367 /* Force detection of hung controller every watchdog period */
4368 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4369 }
4370
4371 /* Cause software interrupt to ensure Rx ring is cleaned */
4372 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4373 u32 eics = 0;
4374
4375 for (i = 0; i < adapter->num_q_vectors; i++)
4376 eics |= adapter->q_vector[i]->eims_value;
4377 wr32(E1000_EICS, eics);
4378 } else {
4379 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4380 }
4381
4382 igb_spoof_check(adapter);
4383 igb_ptp_rx_hang(adapter);
4384
4385 /* Check LVMMC register on i350/i354 only */
4386 if ((adapter->hw.mac.type == e1000_i350) ||
4387 (adapter->hw.mac.type == e1000_i354))
4388 igb_check_lvmmc(adapter);
4389
4390 /* Reset the timer */
4391 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4392 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4393 mod_timer(&adapter->watchdog_timer,
4394 round_jiffies(jiffies + HZ));
4395 else
4396 mod_timer(&adapter->watchdog_timer,
4397 round_jiffies(jiffies + 2 * HZ));
4398 }
4399 }
4400
4401 enum latency_range {
4402 lowest_latency = 0,
4403 low_latency = 1,
4404 bulk_latency = 2,
4405 latency_invalid = 255
4406 };
4407
4408 /**
4409 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4410 * @q_vector: pointer to q_vector
4411 *
4412 * Stores a new ITR value based on strictly on packet size. This
4413 * algorithm is less sophisticated than that used in igb_update_itr,
4414 * due to the difficulty of synchronizing statistics across multiple
4415 * receive rings. The divisors and thresholds used by this function
4416 * were determined based on theoretical maximum wire speed and testing
4417 * data, in order to minimize response time while increasing bulk
4418 * throughput.
4419 * This functionality is controlled by ethtool's coalescing settings.
4420 * NOTE: This function is called only when operating in a multiqueue
4421 * receive environment.
4422 **/
4423 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4424 {
4425 int new_val = q_vector->itr_val;
4426 int avg_wire_size = 0;
4427 struct igb_adapter *adapter = q_vector->adapter;
4428 unsigned int packets;
4429
4430 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4431 * ints/sec - ITR timer value of 120 ticks.
4432 */
4433 if (adapter->link_speed != SPEED_1000) {
4434 new_val = IGB_4K_ITR;
4435 goto set_itr_val;
4436 }
4437
4438 packets = q_vector->rx.total_packets;
4439 if (packets)
4440 avg_wire_size = q_vector->rx.total_bytes / packets;
4441
4442 packets = q_vector->tx.total_packets;
4443 if (packets)
4444 avg_wire_size = max_t(u32, avg_wire_size,
4445 q_vector->tx.total_bytes / packets);
4446
4447 /* if avg_wire_size isn't set no work was done */
4448 if (!avg_wire_size)
4449 goto clear_counts;
4450
4451 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4452 avg_wire_size += 24;
4453
4454 /* Don't starve jumbo frames */
4455 avg_wire_size = min(avg_wire_size, 3000);
4456
4457 /* Give a little boost to mid-size frames */
4458 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4459 new_val = avg_wire_size / 3;
4460 else
4461 new_val = avg_wire_size / 2;
4462
4463 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4464 if (new_val < IGB_20K_ITR &&
4465 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4466 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4467 new_val = IGB_20K_ITR;
4468
4469 set_itr_val:
4470 if (new_val != q_vector->itr_val) {
4471 q_vector->itr_val = new_val;
4472 q_vector->set_itr = 1;
4473 }
4474 clear_counts:
4475 q_vector->rx.total_bytes = 0;
4476 q_vector->rx.total_packets = 0;
4477 q_vector->tx.total_bytes = 0;
4478 q_vector->tx.total_packets = 0;
4479 }
4480
4481 /**
4482 * igb_update_itr - update the dynamic ITR value based on statistics
4483 * @q_vector: pointer to q_vector
4484 * @ring_container: ring info to update the itr for
4485 *
4486 * Stores a new ITR value based on packets and byte
4487 * counts during the last interrupt. The advantage of per interrupt
4488 * computation is faster updates and more accurate ITR for the current
4489 * traffic pattern. Constants in this function were computed
4490 * based on theoretical maximum wire speed and thresholds were set based
4491 * on testing data as well as attempting to minimize response time
4492 * while increasing bulk throughput.
4493 * This functionality is controlled by ethtool's coalescing settings.
4494 * NOTE: These calculations are only valid when operating in a single-
4495 * queue environment.
4496 **/
4497 static void igb_update_itr(struct igb_q_vector *q_vector,
4498 struct igb_ring_container *ring_container)
4499 {
4500 unsigned int packets = ring_container->total_packets;
4501 unsigned int bytes = ring_container->total_bytes;
4502 u8 itrval = ring_container->itr;
4503
4504 /* no packets, exit with status unchanged */
4505 if (packets == 0)
4506 return;
4507
4508 switch (itrval) {
4509 case lowest_latency:
4510 /* handle TSO and jumbo frames */
4511 if (bytes/packets > 8000)
4512 itrval = bulk_latency;
4513 else if ((packets < 5) && (bytes > 512))
4514 itrval = low_latency;
4515 break;
4516 case low_latency: /* 50 usec aka 20000 ints/s */
4517 if (bytes > 10000) {
4518 /* this if handles the TSO accounting */
4519 if (bytes/packets > 8000)
4520 itrval = bulk_latency;
4521 else if ((packets < 10) || ((bytes/packets) > 1200))
4522 itrval = bulk_latency;
4523 else if ((packets > 35))
4524 itrval = lowest_latency;
4525 } else if (bytes/packets > 2000) {
4526 itrval = bulk_latency;
4527 } else if (packets <= 2 && bytes < 512) {
4528 itrval = lowest_latency;
4529 }
4530 break;
4531 case bulk_latency: /* 250 usec aka 4000 ints/s */
4532 if (bytes > 25000) {
4533 if (packets > 35)
4534 itrval = low_latency;
4535 } else if (bytes < 1500) {
4536 itrval = low_latency;
4537 }
4538 break;
4539 }
4540
4541 /* clear work counters since we have the values we need */
4542 ring_container->total_bytes = 0;
4543 ring_container->total_packets = 0;
4544
4545 /* write updated itr to ring container */
4546 ring_container->itr = itrval;
4547 }
4548
4549 static void igb_set_itr(struct igb_q_vector *q_vector)
4550 {
4551 struct igb_adapter *adapter = q_vector->adapter;
4552 u32 new_itr = q_vector->itr_val;
4553 u8 current_itr = 0;
4554
4555 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4556 if (adapter->link_speed != SPEED_1000) {
4557 current_itr = 0;
4558 new_itr = IGB_4K_ITR;
4559 goto set_itr_now;
4560 }
4561
4562 igb_update_itr(q_vector, &q_vector->tx);
4563 igb_update_itr(q_vector, &q_vector->rx);
4564
4565 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4566
4567 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4568 if (current_itr == lowest_latency &&
4569 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4570 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4571 current_itr = low_latency;
4572
4573 switch (current_itr) {
4574 /* counts and packets in update_itr are dependent on these numbers */
4575 case lowest_latency:
4576 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4577 break;
4578 case low_latency:
4579 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4580 break;
4581 case bulk_latency:
4582 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4583 break;
4584 default:
4585 break;
4586 }
4587
4588 set_itr_now:
4589 if (new_itr != q_vector->itr_val) {
4590 /* this attempts to bias the interrupt rate towards Bulk
4591 * by adding intermediate steps when interrupt rate is
4592 * increasing
4593 */
4594 new_itr = new_itr > q_vector->itr_val ?
4595 max((new_itr * q_vector->itr_val) /
4596 (new_itr + (q_vector->itr_val >> 2)),
4597 new_itr) : new_itr;
4598 /* Don't write the value here; it resets the adapter's
4599 * internal timer, and causes us to delay far longer than
4600 * we should between interrupts. Instead, we write the ITR
4601 * value at the beginning of the next interrupt so the timing
4602 * ends up being correct.
4603 */
4604 q_vector->itr_val = new_itr;
4605 q_vector->set_itr = 1;
4606 }
4607 }
4608
4609 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4610 u32 type_tucmd, u32 mss_l4len_idx)
4611 {
4612 struct e1000_adv_tx_context_desc *context_desc;
4613 u16 i = tx_ring->next_to_use;
4614
4615 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4616
4617 i++;
4618 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4619
4620 /* set bits to identify this as an advanced context descriptor */
4621 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4622
4623 /* For 82575, context index must be unique per ring. */
4624 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4625 mss_l4len_idx |= tx_ring->reg_idx << 4;
4626
4627 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4628 context_desc->seqnum_seed = 0;
4629 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4630 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4631 }
4632
4633 static int igb_tso(struct igb_ring *tx_ring,
4634 struct igb_tx_buffer *first,
4635 u8 *hdr_len)
4636 {
4637 struct sk_buff *skb = first->skb;
4638 u32 vlan_macip_lens, type_tucmd;
4639 u32 mss_l4len_idx, l4len;
4640 int err;
4641
4642 if (skb->ip_summed != CHECKSUM_PARTIAL)
4643 return 0;
4644
4645 if (!skb_is_gso(skb))
4646 return 0;
4647
4648 err = skb_cow_head(skb, 0);
4649 if (err < 0)
4650 return err;
4651
4652 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4653 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4654
4655 if (first->protocol == htons(ETH_P_IP)) {
4656 struct iphdr *iph = ip_hdr(skb);
4657 iph->tot_len = 0;
4658 iph->check = 0;
4659 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4660 iph->daddr, 0,
4661 IPPROTO_TCP,
4662 0);
4663 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4664 first->tx_flags |= IGB_TX_FLAGS_TSO |
4665 IGB_TX_FLAGS_CSUM |
4666 IGB_TX_FLAGS_IPV4;
4667 } else if (skb_is_gso_v6(skb)) {
4668 ipv6_hdr(skb)->payload_len = 0;
4669 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4670 &ipv6_hdr(skb)->daddr,
4671 0, IPPROTO_TCP, 0);
4672 first->tx_flags |= IGB_TX_FLAGS_TSO |
4673 IGB_TX_FLAGS_CSUM;
4674 }
4675
4676 /* compute header lengths */
4677 l4len = tcp_hdrlen(skb);
4678 *hdr_len = skb_transport_offset(skb) + l4len;
4679
4680 /* update gso size and bytecount with header size */
4681 first->gso_segs = skb_shinfo(skb)->gso_segs;
4682 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4683
4684 /* MSS L4LEN IDX */
4685 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4686 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4687
4688 /* VLAN MACLEN IPLEN */
4689 vlan_macip_lens = skb_network_header_len(skb);
4690 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4691 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4692
4693 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4694
4695 return 1;
4696 }
4697
4698 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4699 {
4700 struct sk_buff *skb = first->skb;
4701 u32 vlan_macip_lens = 0;
4702 u32 mss_l4len_idx = 0;
4703 u32 type_tucmd = 0;
4704
4705 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4706 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4707 return;
4708 } else {
4709 u8 l4_hdr = 0;
4710
4711 switch (first->protocol) {
4712 case htons(ETH_P_IP):
4713 vlan_macip_lens |= skb_network_header_len(skb);
4714 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4715 l4_hdr = ip_hdr(skb)->protocol;
4716 break;
4717 case htons(ETH_P_IPV6):
4718 vlan_macip_lens |= skb_network_header_len(skb);
4719 l4_hdr = ipv6_hdr(skb)->nexthdr;
4720 break;
4721 default:
4722 if (unlikely(net_ratelimit())) {
4723 dev_warn(tx_ring->dev,
4724 "partial checksum but proto=%x!\n",
4725 first->protocol);
4726 }
4727 break;
4728 }
4729
4730 switch (l4_hdr) {
4731 case IPPROTO_TCP:
4732 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4733 mss_l4len_idx = tcp_hdrlen(skb) <<
4734 E1000_ADVTXD_L4LEN_SHIFT;
4735 break;
4736 case IPPROTO_SCTP:
4737 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4738 mss_l4len_idx = sizeof(struct sctphdr) <<
4739 E1000_ADVTXD_L4LEN_SHIFT;
4740 break;
4741 case IPPROTO_UDP:
4742 mss_l4len_idx = sizeof(struct udphdr) <<
4743 E1000_ADVTXD_L4LEN_SHIFT;
4744 break;
4745 default:
4746 if (unlikely(net_ratelimit())) {
4747 dev_warn(tx_ring->dev,
4748 "partial checksum but l4 proto=%x!\n",
4749 l4_hdr);
4750 }
4751 break;
4752 }
4753
4754 /* update TX checksum flag */
4755 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4756 }
4757
4758 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4759 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4760
4761 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4762 }
4763
4764 #define IGB_SET_FLAG(_input, _flag, _result) \
4765 ((_flag <= _result) ? \
4766 ((u32)(_input & _flag) * (_result / _flag)) : \
4767 ((u32)(_input & _flag) / (_flag / _result)))
4768
4769 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4770 {
4771 /* set type for advanced descriptor with frame checksum insertion */
4772 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4773 E1000_ADVTXD_DCMD_DEXT |
4774 E1000_ADVTXD_DCMD_IFCS;
4775
4776 /* set HW vlan bit if vlan is present */
4777 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4778 (E1000_ADVTXD_DCMD_VLE));
4779
4780 /* set segmentation bits for TSO */
4781 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4782 (E1000_ADVTXD_DCMD_TSE));
4783
4784 /* set timestamp bit if present */
4785 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4786 (E1000_ADVTXD_MAC_TSTAMP));
4787
4788 /* insert frame checksum */
4789 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4790
4791 return cmd_type;
4792 }
4793
4794 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4795 union e1000_adv_tx_desc *tx_desc,
4796 u32 tx_flags, unsigned int paylen)
4797 {
4798 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4799
4800 /* 82575 requires a unique index per ring */
4801 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4802 olinfo_status |= tx_ring->reg_idx << 4;
4803
4804 /* insert L4 checksum */
4805 olinfo_status |= IGB_SET_FLAG(tx_flags,
4806 IGB_TX_FLAGS_CSUM,
4807 (E1000_TXD_POPTS_TXSM << 8));
4808
4809 /* insert IPv4 checksum */
4810 olinfo_status |= IGB_SET_FLAG(tx_flags,
4811 IGB_TX_FLAGS_IPV4,
4812 (E1000_TXD_POPTS_IXSM << 8));
4813
4814 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4815 }
4816
4817 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4818 {
4819 struct net_device *netdev = tx_ring->netdev;
4820
4821 netif_stop_subqueue(netdev, tx_ring->queue_index);
4822
4823 /* Herbert's original patch had:
4824 * smp_mb__after_netif_stop_queue();
4825 * but since that doesn't exist yet, just open code it.
4826 */
4827 smp_mb();
4828
4829 /* We need to check again in a case another CPU has just
4830 * made room available.
4831 */
4832 if (igb_desc_unused(tx_ring) < size)
4833 return -EBUSY;
4834
4835 /* A reprieve! */
4836 netif_wake_subqueue(netdev, tx_ring->queue_index);
4837
4838 u64_stats_update_begin(&tx_ring->tx_syncp2);
4839 tx_ring->tx_stats.restart_queue2++;
4840 u64_stats_update_end(&tx_ring->tx_syncp2);
4841
4842 return 0;
4843 }
4844
4845 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4846 {
4847 if (igb_desc_unused(tx_ring) >= size)
4848 return 0;
4849 return __igb_maybe_stop_tx(tx_ring, size);
4850 }
4851
4852 static void igb_tx_map(struct igb_ring *tx_ring,
4853 struct igb_tx_buffer *first,
4854 const u8 hdr_len)
4855 {
4856 struct sk_buff *skb = first->skb;
4857 struct igb_tx_buffer *tx_buffer;
4858 union e1000_adv_tx_desc *tx_desc;
4859 struct skb_frag_struct *frag;
4860 dma_addr_t dma;
4861 unsigned int data_len, size;
4862 u32 tx_flags = first->tx_flags;
4863 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4864 u16 i = tx_ring->next_to_use;
4865
4866 tx_desc = IGB_TX_DESC(tx_ring, i);
4867
4868 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4869
4870 size = skb_headlen(skb);
4871 data_len = skb->data_len;
4872
4873 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4874
4875 tx_buffer = first;
4876
4877 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4878 if (dma_mapping_error(tx_ring->dev, dma))
4879 goto dma_error;
4880
4881 /* record length, and DMA address */
4882 dma_unmap_len_set(tx_buffer, len, size);
4883 dma_unmap_addr_set(tx_buffer, dma, dma);
4884
4885 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4886
4887 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4888 tx_desc->read.cmd_type_len =
4889 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4890
4891 i++;
4892 tx_desc++;
4893 if (i == tx_ring->count) {
4894 tx_desc = IGB_TX_DESC(tx_ring, 0);
4895 i = 0;
4896 }
4897 tx_desc->read.olinfo_status = 0;
4898
4899 dma += IGB_MAX_DATA_PER_TXD;
4900 size -= IGB_MAX_DATA_PER_TXD;
4901
4902 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4903 }
4904
4905 if (likely(!data_len))
4906 break;
4907
4908 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4909
4910 i++;
4911 tx_desc++;
4912 if (i == tx_ring->count) {
4913 tx_desc = IGB_TX_DESC(tx_ring, 0);
4914 i = 0;
4915 }
4916 tx_desc->read.olinfo_status = 0;
4917
4918 size = skb_frag_size(frag);
4919 data_len -= size;
4920
4921 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4922 size, DMA_TO_DEVICE);
4923
4924 tx_buffer = &tx_ring->tx_buffer_info[i];
4925 }
4926
4927 /* write last descriptor with RS and EOP bits */
4928 cmd_type |= size | IGB_TXD_DCMD;
4929 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4930
4931 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4932
4933 /* set the timestamp */
4934 first->time_stamp = jiffies;
4935
4936 /* Force memory writes to complete before letting h/w know there
4937 * are new descriptors to fetch. (Only applicable for weak-ordered
4938 * memory model archs, such as IA-64).
4939 *
4940 * We also need this memory barrier to make certain all of the
4941 * status bits have been updated before next_to_watch is written.
4942 */
4943 wmb();
4944
4945 /* set next_to_watch value indicating a packet is present */
4946 first->next_to_watch = tx_desc;
4947
4948 i++;
4949 if (i == tx_ring->count)
4950 i = 0;
4951
4952 tx_ring->next_to_use = i;
4953
4954 /* Make sure there is space in the ring for the next send. */
4955 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4956
4957 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4958 writel(i, tx_ring->tail);
4959
4960 /* we need this if more than one processor can write to our tail
4961 * at a time, it synchronizes IO on IA64/Altix systems
4962 */
4963 mmiowb();
4964 }
4965 return;
4966
4967 dma_error:
4968 dev_err(tx_ring->dev, "TX DMA map failed\n");
4969
4970 /* clear dma mappings for failed tx_buffer_info map */
4971 for (;;) {
4972 tx_buffer = &tx_ring->tx_buffer_info[i];
4973 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4974 if (tx_buffer == first)
4975 break;
4976 if (i == 0)
4977 i = tx_ring->count;
4978 i--;
4979 }
4980
4981 tx_ring->next_to_use = i;
4982 }
4983
4984 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4985 struct igb_ring *tx_ring)
4986 {
4987 struct igb_tx_buffer *first;
4988 int tso;
4989 u32 tx_flags = 0;
4990 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4991 __be16 protocol = vlan_get_protocol(skb);
4992 u8 hdr_len = 0;
4993
4994 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4995 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4996 * + 2 desc gap to keep tail from touching head,
4997 * + 1 desc for context descriptor,
4998 * otherwise try next time
4999 */
5000 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5001 unsigned short f;
5002
5003 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5004 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5005 } else {
5006 count += skb_shinfo(skb)->nr_frags;
5007 }
5008
5009 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5010 /* this is a hard error */
5011 return NETDEV_TX_BUSY;
5012 }
5013
5014 /* record the location of the first descriptor for this packet */
5015 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5016 first->skb = skb;
5017 first->bytecount = skb->len;
5018 first->gso_segs = 1;
5019
5020 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5021 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5022
5023 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5024 &adapter->state)) {
5025 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5026 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5027
5028 adapter->ptp_tx_skb = skb_get(skb);
5029 adapter->ptp_tx_start = jiffies;
5030 if (adapter->hw.mac.type == e1000_82576)
5031 schedule_work(&adapter->ptp_tx_work);
5032 }
5033 }
5034
5035 skb_tx_timestamp(skb);
5036
5037 if (skb_vlan_tag_present(skb)) {
5038 tx_flags |= IGB_TX_FLAGS_VLAN;
5039 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5040 }
5041
5042 /* record initial flags and protocol */
5043 first->tx_flags = tx_flags;
5044 first->protocol = protocol;
5045
5046 tso = igb_tso(tx_ring, first, &hdr_len);
5047 if (tso < 0)
5048 goto out_drop;
5049 else if (!tso)
5050 igb_tx_csum(tx_ring, first);
5051
5052 igb_tx_map(tx_ring, first, hdr_len);
5053
5054 return NETDEV_TX_OK;
5055
5056 out_drop:
5057 igb_unmap_and_free_tx_resource(tx_ring, first);
5058
5059 return NETDEV_TX_OK;
5060 }
5061
5062 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5063 struct sk_buff *skb)
5064 {
5065 unsigned int r_idx = skb->queue_mapping;
5066
5067 if (r_idx >= adapter->num_tx_queues)
5068 r_idx = r_idx % adapter->num_tx_queues;
5069
5070 return adapter->tx_ring[r_idx];
5071 }
5072
5073 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5074 struct net_device *netdev)
5075 {
5076 struct igb_adapter *adapter = netdev_priv(netdev);
5077
5078 if (test_bit(__IGB_DOWN, &adapter->state)) {
5079 dev_kfree_skb_any(skb);
5080 return NETDEV_TX_OK;
5081 }
5082
5083 if (skb->len <= 0) {
5084 dev_kfree_skb_any(skb);
5085 return NETDEV_TX_OK;
5086 }
5087
5088 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5089 * in order to meet this minimum size requirement.
5090 */
5091 if (skb_put_padto(skb, 17))
5092 return NETDEV_TX_OK;
5093
5094 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5095 }
5096
5097 /**
5098 * igb_tx_timeout - Respond to a Tx Hang
5099 * @netdev: network interface device structure
5100 **/
5101 static void igb_tx_timeout(struct net_device *netdev)
5102 {
5103 struct igb_adapter *adapter = netdev_priv(netdev);
5104 struct e1000_hw *hw = &adapter->hw;
5105
5106 /* Do the reset outside of interrupt context */
5107 adapter->tx_timeout_count++;
5108
5109 if (hw->mac.type >= e1000_82580)
5110 hw->dev_spec._82575.global_device_reset = true;
5111
5112 schedule_work(&adapter->reset_task);
5113 wr32(E1000_EICS,
5114 (adapter->eims_enable_mask & ~adapter->eims_other));
5115 }
5116
5117 static void igb_reset_task(struct work_struct *work)
5118 {
5119 struct igb_adapter *adapter;
5120 adapter = container_of(work, struct igb_adapter, reset_task);
5121
5122 igb_dump(adapter);
5123 netdev_err(adapter->netdev, "Reset adapter\n");
5124 igb_reinit_locked(adapter);
5125 }
5126
5127 /**
5128 * igb_get_stats64 - Get System Network Statistics
5129 * @netdev: network interface device structure
5130 * @stats: rtnl_link_stats64 pointer
5131 **/
5132 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5133 struct rtnl_link_stats64 *stats)
5134 {
5135 struct igb_adapter *adapter = netdev_priv(netdev);
5136
5137 spin_lock(&adapter->stats64_lock);
5138 igb_update_stats(adapter, &adapter->stats64);
5139 memcpy(stats, &adapter->stats64, sizeof(*stats));
5140 spin_unlock(&adapter->stats64_lock);
5141
5142 return stats;
5143 }
5144
5145 /**
5146 * igb_change_mtu - Change the Maximum Transfer Unit
5147 * @netdev: network interface device structure
5148 * @new_mtu: new value for maximum frame size
5149 *
5150 * Returns 0 on success, negative on failure
5151 **/
5152 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5153 {
5154 struct igb_adapter *adapter = netdev_priv(netdev);
5155 struct pci_dev *pdev = adapter->pdev;
5156 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5157
5158 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5159 dev_err(&pdev->dev, "Invalid MTU setting\n");
5160 return -EINVAL;
5161 }
5162
5163 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5164 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5165 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5166 return -EINVAL;
5167 }
5168
5169 /* adjust max frame to be at least the size of a standard frame */
5170 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5171 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5172
5173 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5174 usleep_range(1000, 2000);
5175
5176 /* igb_down has a dependency on max_frame_size */
5177 adapter->max_frame_size = max_frame;
5178
5179 if (netif_running(netdev))
5180 igb_down(adapter);
5181
5182 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5183 netdev->mtu, new_mtu);
5184 netdev->mtu = new_mtu;
5185
5186 if (netif_running(netdev))
5187 igb_up(adapter);
5188 else
5189 igb_reset(adapter);
5190
5191 clear_bit(__IGB_RESETTING, &adapter->state);
5192
5193 return 0;
5194 }
5195
5196 /**
5197 * igb_update_stats - Update the board statistics counters
5198 * @adapter: board private structure
5199 **/
5200 void igb_update_stats(struct igb_adapter *adapter,
5201 struct rtnl_link_stats64 *net_stats)
5202 {
5203 struct e1000_hw *hw = &adapter->hw;
5204 struct pci_dev *pdev = adapter->pdev;
5205 u32 reg, mpc;
5206 int i;
5207 u64 bytes, packets;
5208 unsigned int start;
5209 u64 _bytes, _packets;
5210
5211 /* Prevent stats update while adapter is being reset, or if the pci
5212 * connection is down.
5213 */
5214 if (adapter->link_speed == 0)
5215 return;
5216 if (pci_channel_offline(pdev))
5217 return;
5218
5219 bytes = 0;
5220 packets = 0;
5221
5222 rcu_read_lock();
5223 for (i = 0; i < adapter->num_rx_queues; i++) {
5224 struct igb_ring *ring = adapter->rx_ring[i];
5225 u32 rqdpc = rd32(E1000_RQDPC(i));
5226 if (hw->mac.type >= e1000_i210)
5227 wr32(E1000_RQDPC(i), 0);
5228
5229 if (rqdpc) {
5230 ring->rx_stats.drops += rqdpc;
5231 net_stats->rx_fifo_errors += rqdpc;
5232 }
5233
5234 do {
5235 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5236 _bytes = ring->rx_stats.bytes;
5237 _packets = ring->rx_stats.packets;
5238 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5239 bytes += _bytes;
5240 packets += _packets;
5241 }
5242
5243 net_stats->rx_bytes = bytes;
5244 net_stats->rx_packets = packets;
5245
5246 bytes = 0;
5247 packets = 0;
5248 for (i = 0; i < adapter->num_tx_queues; i++) {
5249 struct igb_ring *ring = adapter->tx_ring[i];
5250 do {
5251 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5252 _bytes = ring->tx_stats.bytes;
5253 _packets = ring->tx_stats.packets;
5254 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5255 bytes += _bytes;
5256 packets += _packets;
5257 }
5258 net_stats->tx_bytes = bytes;
5259 net_stats->tx_packets = packets;
5260 rcu_read_unlock();
5261
5262 /* read stats registers */
5263 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5264 adapter->stats.gprc += rd32(E1000_GPRC);
5265 adapter->stats.gorc += rd32(E1000_GORCL);
5266 rd32(E1000_GORCH); /* clear GORCL */
5267 adapter->stats.bprc += rd32(E1000_BPRC);
5268 adapter->stats.mprc += rd32(E1000_MPRC);
5269 adapter->stats.roc += rd32(E1000_ROC);
5270
5271 adapter->stats.prc64 += rd32(E1000_PRC64);
5272 adapter->stats.prc127 += rd32(E1000_PRC127);
5273 adapter->stats.prc255 += rd32(E1000_PRC255);
5274 adapter->stats.prc511 += rd32(E1000_PRC511);
5275 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5276 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5277 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5278 adapter->stats.sec += rd32(E1000_SEC);
5279
5280 mpc = rd32(E1000_MPC);
5281 adapter->stats.mpc += mpc;
5282 net_stats->rx_fifo_errors += mpc;
5283 adapter->stats.scc += rd32(E1000_SCC);
5284 adapter->stats.ecol += rd32(E1000_ECOL);
5285 adapter->stats.mcc += rd32(E1000_MCC);
5286 adapter->stats.latecol += rd32(E1000_LATECOL);
5287 adapter->stats.dc += rd32(E1000_DC);
5288 adapter->stats.rlec += rd32(E1000_RLEC);
5289 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5290 adapter->stats.xontxc += rd32(E1000_XONTXC);
5291 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5292 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5293 adapter->stats.fcruc += rd32(E1000_FCRUC);
5294 adapter->stats.gptc += rd32(E1000_GPTC);
5295 adapter->stats.gotc += rd32(E1000_GOTCL);
5296 rd32(E1000_GOTCH); /* clear GOTCL */
5297 adapter->stats.rnbc += rd32(E1000_RNBC);
5298 adapter->stats.ruc += rd32(E1000_RUC);
5299 adapter->stats.rfc += rd32(E1000_RFC);
5300 adapter->stats.rjc += rd32(E1000_RJC);
5301 adapter->stats.tor += rd32(E1000_TORH);
5302 adapter->stats.tot += rd32(E1000_TOTH);
5303 adapter->stats.tpr += rd32(E1000_TPR);
5304
5305 adapter->stats.ptc64 += rd32(E1000_PTC64);
5306 adapter->stats.ptc127 += rd32(E1000_PTC127);
5307 adapter->stats.ptc255 += rd32(E1000_PTC255);
5308 adapter->stats.ptc511 += rd32(E1000_PTC511);
5309 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5310 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5311
5312 adapter->stats.mptc += rd32(E1000_MPTC);
5313 adapter->stats.bptc += rd32(E1000_BPTC);
5314
5315 adapter->stats.tpt += rd32(E1000_TPT);
5316 adapter->stats.colc += rd32(E1000_COLC);
5317
5318 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5319 /* read internal phy specific stats */
5320 reg = rd32(E1000_CTRL_EXT);
5321 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5322 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5323
5324 /* this stat has invalid values on i210/i211 */
5325 if ((hw->mac.type != e1000_i210) &&
5326 (hw->mac.type != e1000_i211))
5327 adapter->stats.tncrs += rd32(E1000_TNCRS);
5328 }
5329
5330 adapter->stats.tsctc += rd32(E1000_TSCTC);
5331 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5332
5333 adapter->stats.iac += rd32(E1000_IAC);
5334 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5335 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5336 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5337 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5338 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5339 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5340 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5341 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5342
5343 /* Fill out the OS statistics structure */
5344 net_stats->multicast = adapter->stats.mprc;
5345 net_stats->collisions = adapter->stats.colc;
5346
5347 /* Rx Errors */
5348
5349 /* RLEC on some newer hardware can be incorrect so build
5350 * our own version based on RUC and ROC
5351 */
5352 net_stats->rx_errors = adapter->stats.rxerrc +
5353 adapter->stats.crcerrs + adapter->stats.algnerrc +
5354 adapter->stats.ruc + adapter->stats.roc +
5355 adapter->stats.cexterr;
5356 net_stats->rx_length_errors = adapter->stats.ruc +
5357 adapter->stats.roc;
5358 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5359 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5360 net_stats->rx_missed_errors = adapter->stats.mpc;
5361
5362 /* Tx Errors */
5363 net_stats->tx_errors = adapter->stats.ecol +
5364 adapter->stats.latecol;
5365 net_stats->tx_aborted_errors = adapter->stats.ecol;
5366 net_stats->tx_window_errors = adapter->stats.latecol;
5367 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5368
5369 /* Tx Dropped needs to be maintained elsewhere */
5370
5371 /* Management Stats */
5372 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5373 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5374 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5375
5376 /* OS2BMC Stats */
5377 reg = rd32(E1000_MANC);
5378 if (reg & E1000_MANC_EN_BMC2OS) {
5379 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5380 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5381 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5382 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5383 }
5384 }
5385
5386 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5387 {
5388 struct e1000_hw *hw = &adapter->hw;
5389 struct ptp_clock_event event;
5390 struct timespec ts;
5391 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5392
5393 if (tsicr & TSINTR_SYS_WRAP) {
5394 event.type = PTP_CLOCK_PPS;
5395 if (adapter->ptp_caps.pps)
5396 ptp_clock_event(adapter->ptp_clock, &event);
5397 else
5398 dev_err(&adapter->pdev->dev, "unexpected SYS WRAP");
5399 ack |= TSINTR_SYS_WRAP;
5400 }
5401
5402 if (tsicr & E1000_TSICR_TXTS) {
5403 /* retrieve hardware timestamp */
5404 schedule_work(&adapter->ptp_tx_work);
5405 ack |= E1000_TSICR_TXTS;
5406 }
5407
5408 if (tsicr & TSINTR_TT0) {
5409 spin_lock(&adapter->tmreg_lock);
5410 ts = timespec_add(adapter->perout[0].start,
5411 adapter->perout[0].period);
5412 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5413 wr32(E1000_TRGTTIMH0, ts.tv_sec);
5414 tsauxc = rd32(E1000_TSAUXC);
5415 tsauxc |= TSAUXC_EN_TT0;
5416 wr32(E1000_TSAUXC, tsauxc);
5417 adapter->perout[0].start = ts;
5418 spin_unlock(&adapter->tmreg_lock);
5419 ack |= TSINTR_TT0;
5420 }
5421
5422 if (tsicr & TSINTR_TT1) {
5423 spin_lock(&adapter->tmreg_lock);
5424 ts = timespec_add(adapter->perout[1].start,
5425 adapter->perout[1].period);
5426 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5427 wr32(E1000_TRGTTIMH1, ts.tv_sec);
5428 tsauxc = rd32(E1000_TSAUXC);
5429 tsauxc |= TSAUXC_EN_TT1;
5430 wr32(E1000_TSAUXC, tsauxc);
5431 adapter->perout[1].start = ts;
5432 spin_unlock(&adapter->tmreg_lock);
5433 ack |= TSINTR_TT1;
5434 }
5435
5436 if (tsicr & TSINTR_AUTT0) {
5437 nsec = rd32(E1000_AUXSTMPL0);
5438 sec = rd32(E1000_AUXSTMPH0);
5439 event.type = PTP_CLOCK_EXTTS;
5440 event.index = 0;
5441 event.timestamp = sec * 1000000000ULL + nsec;
5442 ptp_clock_event(adapter->ptp_clock, &event);
5443 ack |= TSINTR_AUTT0;
5444 }
5445
5446 if (tsicr & TSINTR_AUTT1) {
5447 nsec = rd32(E1000_AUXSTMPL1);
5448 sec = rd32(E1000_AUXSTMPH1);
5449 event.type = PTP_CLOCK_EXTTS;
5450 event.index = 1;
5451 event.timestamp = sec * 1000000000ULL + nsec;
5452 ptp_clock_event(adapter->ptp_clock, &event);
5453 ack |= TSINTR_AUTT1;
5454 }
5455
5456 /* acknowledge the interrupts */
5457 wr32(E1000_TSICR, ack);
5458 }
5459
5460 static irqreturn_t igb_msix_other(int irq, void *data)
5461 {
5462 struct igb_adapter *adapter = data;
5463 struct e1000_hw *hw = &adapter->hw;
5464 u32 icr = rd32(E1000_ICR);
5465 /* reading ICR causes bit 31 of EICR to be cleared */
5466
5467 if (icr & E1000_ICR_DRSTA)
5468 schedule_work(&adapter->reset_task);
5469
5470 if (icr & E1000_ICR_DOUTSYNC) {
5471 /* HW is reporting DMA is out of sync */
5472 adapter->stats.doosync++;
5473 /* The DMA Out of Sync is also indication of a spoof event
5474 * in IOV mode. Check the Wrong VM Behavior register to
5475 * see if it is really a spoof event.
5476 */
5477 igb_check_wvbr(adapter);
5478 }
5479
5480 /* Check for a mailbox event */
5481 if (icr & E1000_ICR_VMMB)
5482 igb_msg_task(adapter);
5483
5484 if (icr & E1000_ICR_LSC) {
5485 hw->mac.get_link_status = 1;
5486 /* guard against interrupt when we're going down */
5487 if (!test_bit(__IGB_DOWN, &adapter->state))
5488 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5489 }
5490
5491 if (icr & E1000_ICR_TS)
5492 igb_tsync_interrupt(adapter);
5493
5494 wr32(E1000_EIMS, adapter->eims_other);
5495
5496 return IRQ_HANDLED;
5497 }
5498
5499 static void igb_write_itr(struct igb_q_vector *q_vector)
5500 {
5501 struct igb_adapter *adapter = q_vector->adapter;
5502 u32 itr_val = q_vector->itr_val & 0x7FFC;
5503
5504 if (!q_vector->set_itr)
5505 return;
5506
5507 if (!itr_val)
5508 itr_val = 0x4;
5509
5510 if (adapter->hw.mac.type == e1000_82575)
5511 itr_val |= itr_val << 16;
5512 else
5513 itr_val |= E1000_EITR_CNT_IGNR;
5514
5515 writel(itr_val, q_vector->itr_register);
5516 q_vector->set_itr = 0;
5517 }
5518
5519 static irqreturn_t igb_msix_ring(int irq, void *data)
5520 {
5521 struct igb_q_vector *q_vector = data;
5522
5523 /* Write the ITR value calculated from the previous interrupt. */
5524 igb_write_itr(q_vector);
5525
5526 napi_schedule(&q_vector->napi);
5527
5528 return IRQ_HANDLED;
5529 }
5530
5531 #ifdef CONFIG_IGB_DCA
5532 static void igb_update_tx_dca(struct igb_adapter *adapter,
5533 struct igb_ring *tx_ring,
5534 int cpu)
5535 {
5536 struct e1000_hw *hw = &adapter->hw;
5537 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5538
5539 if (hw->mac.type != e1000_82575)
5540 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5541
5542 /* We can enable relaxed ordering for reads, but not writes when
5543 * DCA is enabled. This is due to a known issue in some chipsets
5544 * which will cause the DCA tag to be cleared.
5545 */
5546 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5547 E1000_DCA_TXCTRL_DATA_RRO_EN |
5548 E1000_DCA_TXCTRL_DESC_DCA_EN;
5549
5550 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5551 }
5552
5553 static void igb_update_rx_dca(struct igb_adapter *adapter,
5554 struct igb_ring *rx_ring,
5555 int cpu)
5556 {
5557 struct e1000_hw *hw = &adapter->hw;
5558 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5559
5560 if (hw->mac.type != e1000_82575)
5561 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5562
5563 /* We can enable relaxed ordering for reads, but not writes when
5564 * DCA is enabled. This is due to a known issue in some chipsets
5565 * which will cause the DCA tag to be cleared.
5566 */
5567 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5568 E1000_DCA_RXCTRL_DESC_DCA_EN;
5569
5570 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5571 }
5572
5573 static void igb_update_dca(struct igb_q_vector *q_vector)
5574 {
5575 struct igb_adapter *adapter = q_vector->adapter;
5576 int cpu = get_cpu();
5577
5578 if (q_vector->cpu == cpu)
5579 goto out_no_update;
5580
5581 if (q_vector->tx.ring)
5582 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5583
5584 if (q_vector->rx.ring)
5585 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5586
5587 q_vector->cpu = cpu;
5588 out_no_update:
5589 put_cpu();
5590 }
5591
5592 static void igb_setup_dca(struct igb_adapter *adapter)
5593 {
5594 struct e1000_hw *hw = &adapter->hw;
5595 int i;
5596
5597 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5598 return;
5599
5600 /* Always use CB2 mode, difference is masked in the CB driver. */
5601 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5602
5603 for (i = 0; i < adapter->num_q_vectors; i++) {
5604 adapter->q_vector[i]->cpu = -1;
5605 igb_update_dca(adapter->q_vector[i]);
5606 }
5607 }
5608
5609 static int __igb_notify_dca(struct device *dev, void *data)
5610 {
5611 struct net_device *netdev = dev_get_drvdata(dev);
5612 struct igb_adapter *adapter = netdev_priv(netdev);
5613 struct pci_dev *pdev = adapter->pdev;
5614 struct e1000_hw *hw = &adapter->hw;
5615 unsigned long event = *(unsigned long *)data;
5616
5617 switch (event) {
5618 case DCA_PROVIDER_ADD:
5619 /* if already enabled, don't do it again */
5620 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5621 break;
5622 if (dca_add_requester(dev) == 0) {
5623 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5624 dev_info(&pdev->dev, "DCA enabled\n");
5625 igb_setup_dca(adapter);
5626 break;
5627 }
5628 /* Fall Through since DCA is disabled. */
5629 case DCA_PROVIDER_REMOVE:
5630 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5631 /* without this a class_device is left
5632 * hanging around in the sysfs model
5633 */
5634 dca_remove_requester(dev);
5635 dev_info(&pdev->dev, "DCA disabled\n");
5636 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5637 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5638 }
5639 break;
5640 }
5641
5642 return 0;
5643 }
5644
5645 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5646 void *p)
5647 {
5648 int ret_val;
5649
5650 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5651 __igb_notify_dca);
5652
5653 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5654 }
5655 #endif /* CONFIG_IGB_DCA */
5656
5657 #ifdef CONFIG_PCI_IOV
5658 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5659 {
5660 unsigned char mac_addr[ETH_ALEN];
5661
5662 eth_zero_addr(mac_addr);
5663 igb_set_vf_mac(adapter, vf, mac_addr);
5664
5665 /* By default spoof check is enabled for all VFs */
5666 adapter->vf_data[vf].spoofchk_enabled = true;
5667
5668 return 0;
5669 }
5670
5671 #endif
5672 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5673 {
5674 struct e1000_hw *hw = &adapter->hw;
5675 u32 ping;
5676 int i;
5677
5678 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5679 ping = E1000_PF_CONTROL_MSG;
5680 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5681 ping |= E1000_VT_MSGTYPE_CTS;
5682 igb_write_mbx(hw, &ping, 1, i);
5683 }
5684 }
5685
5686 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5687 {
5688 struct e1000_hw *hw = &adapter->hw;
5689 u32 vmolr = rd32(E1000_VMOLR(vf));
5690 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5691
5692 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5693 IGB_VF_FLAG_MULTI_PROMISC);
5694 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5695
5696 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5697 vmolr |= E1000_VMOLR_MPME;
5698 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5699 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5700 } else {
5701 /* if we have hashes and we are clearing a multicast promisc
5702 * flag we need to write the hashes to the MTA as this step
5703 * was previously skipped
5704 */
5705 if (vf_data->num_vf_mc_hashes > 30) {
5706 vmolr |= E1000_VMOLR_MPME;
5707 } else if (vf_data->num_vf_mc_hashes) {
5708 int j;
5709
5710 vmolr |= E1000_VMOLR_ROMPE;
5711 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5712 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5713 }
5714 }
5715
5716 wr32(E1000_VMOLR(vf), vmolr);
5717
5718 /* there are flags left unprocessed, likely not supported */
5719 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5720 return -EINVAL;
5721
5722 return 0;
5723 }
5724
5725 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5726 u32 *msgbuf, u32 vf)
5727 {
5728 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5729 u16 *hash_list = (u16 *)&msgbuf[1];
5730 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5731 int i;
5732
5733 /* salt away the number of multicast addresses assigned
5734 * to this VF for later use to restore when the PF multi cast
5735 * list changes
5736 */
5737 vf_data->num_vf_mc_hashes = n;
5738
5739 /* only up to 30 hash values supported */
5740 if (n > 30)
5741 n = 30;
5742
5743 /* store the hashes for later use */
5744 for (i = 0; i < n; i++)
5745 vf_data->vf_mc_hashes[i] = hash_list[i];
5746
5747 /* Flush and reset the mta with the new values */
5748 igb_set_rx_mode(adapter->netdev);
5749
5750 return 0;
5751 }
5752
5753 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5754 {
5755 struct e1000_hw *hw = &adapter->hw;
5756 struct vf_data_storage *vf_data;
5757 int i, j;
5758
5759 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5760 u32 vmolr = rd32(E1000_VMOLR(i));
5761
5762 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5763
5764 vf_data = &adapter->vf_data[i];
5765
5766 if ((vf_data->num_vf_mc_hashes > 30) ||
5767 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5768 vmolr |= E1000_VMOLR_MPME;
5769 } else if (vf_data->num_vf_mc_hashes) {
5770 vmolr |= E1000_VMOLR_ROMPE;
5771 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5772 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5773 }
5774 wr32(E1000_VMOLR(i), vmolr);
5775 }
5776 }
5777
5778 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5779 {
5780 struct e1000_hw *hw = &adapter->hw;
5781 u32 pool_mask, reg, vid;
5782 int i;
5783
5784 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5785
5786 /* Find the vlan filter for this id */
5787 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5788 reg = rd32(E1000_VLVF(i));
5789
5790 /* remove the vf from the pool */
5791 reg &= ~pool_mask;
5792
5793 /* if pool is empty then remove entry from vfta */
5794 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5795 (reg & E1000_VLVF_VLANID_ENABLE)) {
5796 reg = 0;
5797 vid = reg & E1000_VLVF_VLANID_MASK;
5798 igb_vfta_set(hw, vid, false);
5799 }
5800
5801 wr32(E1000_VLVF(i), reg);
5802 }
5803
5804 adapter->vf_data[vf].vlans_enabled = 0;
5805 }
5806
5807 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5808 {
5809 struct e1000_hw *hw = &adapter->hw;
5810 u32 reg, i;
5811
5812 /* The vlvf table only exists on 82576 hardware and newer */
5813 if (hw->mac.type < e1000_82576)
5814 return -1;
5815
5816 /* we only need to do this if VMDq is enabled */
5817 if (!adapter->vfs_allocated_count)
5818 return -1;
5819
5820 /* Find the vlan filter for this id */
5821 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5822 reg = rd32(E1000_VLVF(i));
5823 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5824 vid == (reg & E1000_VLVF_VLANID_MASK))
5825 break;
5826 }
5827
5828 if (add) {
5829 if (i == E1000_VLVF_ARRAY_SIZE) {
5830 /* Did not find a matching VLAN ID entry that was
5831 * enabled. Search for a free filter entry, i.e.
5832 * one without the enable bit set
5833 */
5834 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5835 reg = rd32(E1000_VLVF(i));
5836 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5837 break;
5838 }
5839 }
5840 if (i < E1000_VLVF_ARRAY_SIZE) {
5841 /* Found an enabled/available entry */
5842 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5843
5844 /* if !enabled we need to set this up in vfta */
5845 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5846 /* add VID to filter table */
5847 igb_vfta_set(hw, vid, true);
5848 reg |= E1000_VLVF_VLANID_ENABLE;
5849 }
5850 reg &= ~E1000_VLVF_VLANID_MASK;
5851 reg |= vid;
5852 wr32(E1000_VLVF(i), reg);
5853
5854 /* do not modify RLPML for PF devices */
5855 if (vf >= adapter->vfs_allocated_count)
5856 return 0;
5857
5858 if (!adapter->vf_data[vf].vlans_enabled) {
5859 u32 size;
5860
5861 reg = rd32(E1000_VMOLR(vf));
5862 size = reg & E1000_VMOLR_RLPML_MASK;
5863 size += 4;
5864 reg &= ~E1000_VMOLR_RLPML_MASK;
5865 reg |= size;
5866 wr32(E1000_VMOLR(vf), reg);
5867 }
5868
5869 adapter->vf_data[vf].vlans_enabled++;
5870 }
5871 } else {
5872 if (i < E1000_VLVF_ARRAY_SIZE) {
5873 /* remove vf from the pool */
5874 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5875 /* if pool is empty then remove entry from vfta */
5876 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5877 reg = 0;
5878 igb_vfta_set(hw, vid, false);
5879 }
5880 wr32(E1000_VLVF(i), reg);
5881
5882 /* do not modify RLPML for PF devices */
5883 if (vf >= adapter->vfs_allocated_count)
5884 return 0;
5885
5886 adapter->vf_data[vf].vlans_enabled--;
5887 if (!adapter->vf_data[vf].vlans_enabled) {
5888 u32 size;
5889
5890 reg = rd32(E1000_VMOLR(vf));
5891 size = reg & E1000_VMOLR_RLPML_MASK;
5892 size -= 4;
5893 reg &= ~E1000_VMOLR_RLPML_MASK;
5894 reg |= size;
5895 wr32(E1000_VMOLR(vf), reg);
5896 }
5897 }
5898 }
5899 return 0;
5900 }
5901
5902 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5903 {
5904 struct e1000_hw *hw = &adapter->hw;
5905
5906 if (vid)
5907 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5908 else
5909 wr32(E1000_VMVIR(vf), 0);
5910 }
5911
5912 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5913 int vf, u16 vlan, u8 qos)
5914 {
5915 int err = 0;
5916 struct igb_adapter *adapter = netdev_priv(netdev);
5917
5918 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5919 return -EINVAL;
5920 if (vlan || qos) {
5921 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5922 if (err)
5923 goto out;
5924 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5925 igb_set_vmolr(adapter, vf, !vlan);
5926 adapter->vf_data[vf].pf_vlan = vlan;
5927 adapter->vf_data[vf].pf_qos = qos;
5928 dev_info(&adapter->pdev->dev,
5929 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5930 if (test_bit(__IGB_DOWN, &adapter->state)) {
5931 dev_warn(&adapter->pdev->dev,
5932 "The VF VLAN has been set, but the PF device is not up.\n");
5933 dev_warn(&adapter->pdev->dev,
5934 "Bring the PF device up before attempting to use the VF device.\n");
5935 }
5936 } else {
5937 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5938 false, vf);
5939 igb_set_vmvir(adapter, vlan, vf);
5940 igb_set_vmolr(adapter, vf, true);
5941 adapter->vf_data[vf].pf_vlan = 0;
5942 adapter->vf_data[vf].pf_qos = 0;
5943 }
5944 out:
5945 return err;
5946 }
5947
5948 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5949 {
5950 struct e1000_hw *hw = &adapter->hw;
5951 int i;
5952 u32 reg;
5953
5954 /* Find the vlan filter for this id */
5955 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5956 reg = rd32(E1000_VLVF(i));
5957 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5958 vid == (reg & E1000_VLVF_VLANID_MASK))
5959 break;
5960 }
5961
5962 if (i >= E1000_VLVF_ARRAY_SIZE)
5963 i = -1;
5964
5965 return i;
5966 }
5967
5968 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5969 {
5970 struct e1000_hw *hw = &adapter->hw;
5971 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5972 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5973 int err = 0;
5974
5975 /* If in promiscuous mode we need to make sure the PF also has
5976 * the VLAN filter set.
5977 */
5978 if (add && (adapter->netdev->flags & IFF_PROMISC))
5979 err = igb_vlvf_set(adapter, vid, add,
5980 adapter->vfs_allocated_count);
5981 if (err)
5982 goto out;
5983
5984 err = igb_vlvf_set(adapter, vid, add, vf);
5985
5986 if (err)
5987 goto out;
5988
5989 /* Go through all the checks to see if the VLAN filter should
5990 * be wiped completely.
5991 */
5992 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5993 u32 vlvf, bits;
5994 int regndx = igb_find_vlvf_entry(adapter, vid);
5995
5996 if (regndx < 0)
5997 goto out;
5998 /* See if any other pools are set for this VLAN filter
5999 * entry other than the PF.
6000 */
6001 vlvf = bits = rd32(E1000_VLVF(regndx));
6002 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
6003 adapter->vfs_allocated_count);
6004 /* If the filter was removed then ensure PF pool bit
6005 * is cleared if the PF only added itself to the pool
6006 * because the PF is in promiscuous mode.
6007 */
6008 if ((vlvf & VLAN_VID_MASK) == vid &&
6009 !test_bit(vid, adapter->active_vlans) &&
6010 !bits)
6011 igb_vlvf_set(adapter, vid, add,
6012 adapter->vfs_allocated_count);
6013 }
6014
6015 out:
6016 return err;
6017 }
6018
6019 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6020 {
6021 /* clear flags - except flag that indicates PF has set the MAC */
6022 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
6023 adapter->vf_data[vf].last_nack = jiffies;
6024
6025 /* reset offloads to defaults */
6026 igb_set_vmolr(adapter, vf, true);
6027
6028 /* reset vlans for device */
6029 igb_clear_vf_vfta(adapter, vf);
6030 if (adapter->vf_data[vf].pf_vlan)
6031 igb_ndo_set_vf_vlan(adapter->netdev, vf,
6032 adapter->vf_data[vf].pf_vlan,
6033 adapter->vf_data[vf].pf_qos);
6034 else
6035 igb_clear_vf_vfta(adapter, vf);
6036
6037 /* reset multicast table array for vf */
6038 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6039
6040 /* Flush and reset the mta with the new values */
6041 igb_set_rx_mode(adapter->netdev);
6042 }
6043
6044 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6045 {
6046 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6047
6048 /* clear mac address as we were hotplug removed/added */
6049 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6050 eth_zero_addr(vf_mac);
6051
6052 /* process remaining reset events */
6053 igb_vf_reset(adapter, vf);
6054 }
6055
6056 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6057 {
6058 struct e1000_hw *hw = &adapter->hw;
6059 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6060 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6061 u32 reg, msgbuf[3];
6062 u8 *addr = (u8 *)(&msgbuf[1]);
6063
6064 /* process all the same items cleared in a function level reset */
6065 igb_vf_reset(adapter, vf);
6066
6067 /* set vf mac address */
6068 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6069
6070 /* enable transmit and receive for vf */
6071 reg = rd32(E1000_VFTE);
6072 wr32(E1000_VFTE, reg | (1 << vf));
6073 reg = rd32(E1000_VFRE);
6074 wr32(E1000_VFRE, reg | (1 << vf));
6075
6076 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6077
6078 /* reply to reset with ack and vf mac address */
6079 if (!is_zero_ether_addr(vf_mac)) {
6080 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6081 memcpy(addr, vf_mac, ETH_ALEN);
6082 } else {
6083 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6084 }
6085 igb_write_mbx(hw, msgbuf, 3, vf);
6086 }
6087
6088 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6089 {
6090 /* The VF MAC Address is stored in a packed array of bytes
6091 * starting at the second 32 bit word of the msg array
6092 */
6093 unsigned char *addr = (char *)&msg[1];
6094 int err = -1;
6095
6096 if (is_valid_ether_addr(addr))
6097 err = igb_set_vf_mac(adapter, vf, addr);
6098
6099 return err;
6100 }
6101
6102 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6103 {
6104 struct e1000_hw *hw = &adapter->hw;
6105 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6106 u32 msg = E1000_VT_MSGTYPE_NACK;
6107
6108 /* if device isn't clear to send it shouldn't be reading either */
6109 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6110 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6111 igb_write_mbx(hw, &msg, 1, vf);
6112 vf_data->last_nack = jiffies;
6113 }
6114 }
6115
6116 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6117 {
6118 struct pci_dev *pdev = adapter->pdev;
6119 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6120 struct e1000_hw *hw = &adapter->hw;
6121 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6122 s32 retval;
6123
6124 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6125
6126 if (retval) {
6127 /* if receive failed revoke VF CTS stats and restart init */
6128 dev_err(&pdev->dev, "Error receiving message from VF\n");
6129 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6130 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6131 return;
6132 goto out;
6133 }
6134
6135 /* this is a message we already processed, do nothing */
6136 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6137 return;
6138
6139 /* until the vf completes a reset it should not be
6140 * allowed to start any configuration.
6141 */
6142 if (msgbuf[0] == E1000_VF_RESET) {
6143 igb_vf_reset_msg(adapter, vf);
6144 return;
6145 }
6146
6147 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6148 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6149 return;
6150 retval = -1;
6151 goto out;
6152 }
6153
6154 switch ((msgbuf[0] & 0xFFFF)) {
6155 case E1000_VF_SET_MAC_ADDR:
6156 retval = -EINVAL;
6157 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6158 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6159 else
6160 dev_warn(&pdev->dev,
6161 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6162 vf);
6163 break;
6164 case E1000_VF_SET_PROMISC:
6165 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6166 break;
6167 case E1000_VF_SET_MULTICAST:
6168 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6169 break;
6170 case E1000_VF_SET_LPE:
6171 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6172 break;
6173 case E1000_VF_SET_VLAN:
6174 retval = -1;
6175 if (vf_data->pf_vlan)
6176 dev_warn(&pdev->dev,
6177 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6178 vf);
6179 else
6180 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6181 break;
6182 default:
6183 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6184 retval = -1;
6185 break;
6186 }
6187
6188 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6189 out:
6190 /* notify the VF of the results of what it sent us */
6191 if (retval)
6192 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6193 else
6194 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6195
6196 igb_write_mbx(hw, msgbuf, 1, vf);
6197 }
6198
6199 static void igb_msg_task(struct igb_adapter *adapter)
6200 {
6201 struct e1000_hw *hw = &adapter->hw;
6202 u32 vf;
6203
6204 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6205 /* process any reset requests */
6206 if (!igb_check_for_rst(hw, vf))
6207 igb_vf_reset_event(adapter, vf);
6208
6209 /* process any messages pending */
6210 if (!igb_check_for_msg(hw, vf))
6211 igb_rcv_msg_from_vf(adapter, vf);
6212
6213 /* process any acks */
6214 if (!igb_check_for_ack(hw, vf))
6215 igb_rcv_ack_from_vf(adapter, vf);
6216 }
6217 }
6218
6219 /**
6220 * igb_set_uta - Set unicast filter table address
6221 * @adapter: board private structure
6222 *
6223 * The unicast table address is a register array of 32-bit registers.
6224 * The table is meant to be used in a way similar to how the MTA is used
6225 * however due to certain limitations in the hardware it is necessary to
6226 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6227 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6228 **/
6229 static void igb_set_uta(struct igb_adapter *adapter)
6230 {
6231 struct e1000_hw *hw = &adapter->hw;
6232 int i;
6233
6234 /* The UTA table only exists on 82576 hardware and newer */
6235 if (hw->mac.type < e1000_82576)
6236 return;
6237
6238 /* we only need to do this if VMDq is enabled */
6239 if (!adapter->vfs_allocated_count)
6240 return;
6241
6242 for (i = 0; i < hw->mac.uta_reg_count; i++)
6243 array_wr32(E1000_UTA, i, ~0);
6244 }
6245
6246 /**
6247 * igb_intr_msi - Interrupt Handler
6248 * @irq: interrupt number
6249 * @data: pointer to a network interface device structure
6250 **/
6251 static irqreturn_t igb_intr_msi(int irq, void *data)
6252 {
6253 struct igb_adapter *adapter = data;
6254 struct igb_q_vector *q_vector = adapter->q_vector[0];
6255 struct e1000_hw *hw = &adapter->hw;
6256 /* read ICR disables interrupts using IAM */
6257 u32 icr = rd32(E1000_ICR);
6258
6259 igb_write_itr(q_vector);
6260
6261 if (icr & E1000_ICR_DRSTA)
6262 schedule_work(&adapter->reset_task);
6263
6264 if (icr & E1000_ICR_DOUTSYNC) {
6265 /* HW is reporting DMA is out of sync */
6266 adapter->stats.doosync++;
6267 }
6268
6269 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6270 hw->mac.get_link_status = 1;
6271 if (!test_bit(__IGB_DOWN, &adapter->state))
6272 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6273 }
6274
6275 if (icr & E1000_ICR_TS)
6276 igb_tsync_interrupt(adapter);
6277
6278 napi_schedule(&q_vector->napi);
6279
6280 return IRQ_HANDLED;
6281 }
6282
6283 /**
6284 * igb_intr - Legacy Interrupt Handler
6285 * @irq: interrupt number
6286 * @data: pointer to a network interface device structure
6287 **/
6288 static irqreturn_t igb_intr(int irq, void *data)
6289 {
6290 struct igb_adapter *adapter = data;
6291 struct igb_q_vector *q_vector = adapter->q_vector[0];
6292 struct e1000_hw *hw = &adapter->hw;
6293 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6294 * need for the IMC write
6295 */
6296 u32 icr = rd32(E1000_ICR);
6297
6298 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6299 * not set, then the adapter didn't send an interrupt
6300 */
6301 if (!(icr & E1000_ICR_INT_ASSERTED))
6302 return IRQ_NONE;
6303
6304 igb_write_itr(q_vector);
6305
6306 if (icr & E1000_ICR_DRSTA)
6307 schedule_work(&adapter->reset_task);
6308
6309 if (icr & E1000_ICR_DOUTSYNC) {
6310 /* HW is reporting DMA is out of sync */
6311 adapter->stats.doosync++;
6312 }
6313
6314 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6315 hw->mac.get_link_status = 1;
6316 /* guard against interrupt when we're going down */
6317 if (!test_bit(__IGB_DOWN, &adapter->state))
6318 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6319 }
6320
6321 if (icr & E1000_ICR_TS)
6322 igb_tsync_interrupt(adapter);
6323
6324 napi_schedule(&q_vector->napi);
6325
6326 return IRQ_HANDLED;
6327 }
6328
6329 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6330 {
6331 struct igb_adapter *adapter = q_vector->adapter;
6332 struct e1000_hw *hw = &adapter->hw;
6333
6334 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6335 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6336 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6337 igb_set_itr(q_vector);
6338 else
6339 igb_update_ring_itr(q_vector);
6340 }
6341
6342 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6343 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6344 wr32(E1000_EIMS, q_vector->eims_value);
6345 else
6346 igb_irq_enable(adapter);
6347 }
6348 }
6349
6350 /**
6351 * igb_poll - NAPI Rx polling callback
6352 * @napi: napi polling structure
6353 * @budget: count of how many packets we should handle
6354 **/
6355 static int igb_poll(struct napi_struct *napi, int budget)
6356 {
6357 struct igb_q_vector *q_vector = container_of(napi,
6358 struct igb_q_vector,
6359 napi);
6360 bool clean_complete = true;
6361
6362 #ifdef CONFIG_IGB_DCA
6363 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6364 igb_update_dca(q_vector);
6365 #endif
6366 if (q_vector->tx.ring)
6367 clean_complete = igb_clean_tx_irq(q_vector);
6368
6369 if (q_vector->rx.ring)
6370 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6371
6372 /* If all work not completed, return budget and keep polling */
6373 if (!clean_complete)
6374 return budget;
6375
6376 /* If not enough Rx work done, exit the polling mode */
6377 napi_complete(napi);
6378 igb_ring_irq_enable(q_vector);
6379
6380 return 0;
6381 }
6382
6383 /**
6384 * igb_clean_tx_irq - Reclaim resources after transmit completes
6385 * @q_vector: pointer to q_vector containing needed info
6386 *
6387 * returns true if ring is completely cleaned
6388 **/
6389 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6390 {
6391 struct igb_adapter *adapter = q_vector->adapter;
6392 struct igb_ring *tx_ring = q_vector->tx.ring;
6393 struct igb_tx_buffer *tx_buffer;
6394 union e1000_adv_tx_desc *tx_desc;
6395 unsigned int total_bytes = 0, total_packets = 0;
6396 unsigned int budget = q_vector->tx.work_limit;
6397 unsigned int i = tx_ring->next_to_clean;
6398
6399 if (test_bit(__IGB_DOWN, &adapter->state))
6400 return true;
6401
6402 tx_buffer = &tx_ring->tx_buffer_info[i];
6403 tx_desc = IGB_TX_DESC(tx_ring, i);
6404 i -= tx_ring->count;
6405
6406 do {
6407 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6408
6409 /* if next_to_watch is not set then there is no work pending */
6410 if (!eop_desc)
6411 break;
6412
6413 /* prevent any other reads prior to eop_desc */
6414 read_barrier_depends();
6415
6416 /* if DD is not set pending work has not been completed */
6417 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6418 break;
6419
6420 /* clear next_to_watch to prevent false hangs */
6421 tx_buffer->next_to_watch = NULL;
6422
6423 /* update the statistics for this packet */
6424 total_bytes += tx_buffer->bytecount;
6425 total_packets += tx_buffer->gso_segs;
6426
6427 /* free the skb */
6428 dev_consume_skb_any(tx_buffer->skb);
6429
6430 /* unmap skb header data */
6431 dma_unmap_single(tx_ring->dev,
6432 dma_unmap_addr(tx_buffer, dma),
6433 dma_unmap_len(tx_buffer, len),
6434 DMA_TO_DEVICE);
6435
6436 /* clear tx_buffer data */
6437 tx_buffer->skb = NULL;
6438 dma_unmap_len_set(tx_buffer, len, 0);
6439
6440 /* clear last DMA location and unmap remaining buffers */
6441 while (tx_desc != eop_desc) {
6442 tx_buffer++;
6443 tx_desc++;
6444 i++;
6445 if (unlikely(!i)) {
6446 i -= tx_ring->count;
6447 tx_buffer = tx_ring->tx_buffer_info;
6448 tx_desc = IGB_TX_DESC(tx_ring, 0);
6449 }
6450
6451 /* unmap any remaining paged data */
6452 if (dma_unmap_len(tx_buffer, len)) {
6453 dma_unmap_page(tx_ring->dev,
6454 dma_unmap_addr(tx_buffer, dma),
6455 dma_unmap_len(tx_buffer, len),
6456 DMA_TO_DEVICE);
6457 dma_unmap_len_set(tx_buffer, len, 0);
6458 }
6459 }
6460
6461 /* move us one more past the eop_desc for start of next pkt */
6462 tx_buffer++;
6463 tx_desc++;
6464 i++;
6465 if (unlikely(!i)) {
6466 i -= tx_ring->count;
6467 tx_buffer = tx_ring->tx_buffer_info;
6468 tx_desc = IGB_TX_DESC(tx_ring, 0);
6469 }
6470
6471 /* issue prefetch for next Tx descriptor */
6472 prefetch(tx_desc);
6473
6474 /* update budget accounting */
6475 budget--;
6476 } while (likely(budget));
6477
6478 netdev_tx_completed_queue(txring_txq(tx_ring),
6479 total_packets, total_bytes);
6480 i += tx_ring->count;
6481 tx_ring->next_to_clean = i;
6482 u64_stats_update_begin(&tx_ring->tx_syncp);
6483 tx_ring->tx_stats.bytes += total_bytes;
6484 tx_ring->tx_stats.packets += total_packets;
6485 u64_stats_update_end(&tx_ring->tx_syncp);
6486 q_vector->tx.total_bytes += total_bytes;
6487 q_vector->tx.total_packets += total_packets;
6488
6489 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6490 struct e1000_hw *hw = &adapter->hw;
6491
6492 /* Detect a transmit hang in hardware, this serializes the
6493 * check with the clearing of time_stamp and movement of i
6494 */
6495 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6496 if (tx_buffer->next_to_watch &&
6497 time_after(jiffies, tx_buffer->time_stamp +
6498 (adapter->tx_timeout_factor * HZ)) &&
6499 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6500
6501 /* detected Tx unit hang */
6502 dev_err(tx_ring->dev,
6503 "Detected Tx Unit Hang\n"
6504 " Tx Queue <%d>\n"
6505 " TDH <%x>\n"
6506 " TDT <%x>\n"
6507 " next_to_use <%x>\n"
6508 " next_to_clean <%x>\n"
6509 "buffer_info[next_to_clean]\n"
6510 " time_stamp <%lx>\n"
6511 " next_to_watch <%p>\n"
6512 " jiffies <%lx>\n"
6513 " desc.status <%x>\n",
6514 tx_ring->queue_index,
6515 rd32(E1000_TDH(tx_ring->reg_idx)),
6516 readl(tx_ring->tail),
6517 tx_ring->next_to_use,
6518 tx_ring->next_to_clean,
6519 tx_buffer->time_stamp,
6520 tx_buffer->next_to_watch,
6521 jiffies,
6522 tx_buffer->next_to_watch->wb.status);
6523 netif_stop_subqueue(tx_ring->netdev,
6524 tx_ring->queue_index);
6525
6526 /* we are about to reset, no point in enabling stuff */
6527 return true;
6528 }
6529 }
6530
6531 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6532 if (unlikely(total_packets &&
6533 netif_carrier_ok(tx_ring->netdev) &&
6534 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6535 /* Make sure that anybody stopping the queue after this
6536 * sees the new next_to_clean.
6537 */
6538 smp_mb();
6539 if (__netif_subqueue_stopped(tx_ring->netdev,
6540 tx_ring->queue_index) &&
6541 !(test_bit(__IGB_DOWN, &adapter->state))) {
6542 netif_wake_subqueue(tx_ring->netdev,
6543 tx_ring->queue_index);
6544
6545 u64_stats_update_begin(&tx_ring->tx_syncp);
6546 tx_ring->tx_stats.restart_queue++;
6547 u64_stats_update_end(&tx_ring->tx_syncp);
6548 }
6549 }
6550
6551 return !!budget;
6552 }
6553
6554 /**
6555 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6556 * @rx_ring: rx descriptor ring to store buffers on
6557 * @old_buff: donor buffer to have page reused
6558 *
6559 * Synchronizes page for reuse by the adapter
6560 **/
6561 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6562 struct igb_rx_buffer *old_buff)
6563 {
6564 struct igb_rx_buffer *new_buff;
6565 u16 nta = rx_ring->next_to_alloc;
6566
6567 new_buff = &rx_ring->rx_buffer_info[nta];
6568
6569 /* update, and store next to alloc */
6570 nta++;
6571 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6572
6573 /* transfer page from old buffer to new buffer */
6574 *new_buff = *old_buff;
6575
6576 /* sync the buffer for use by the device */
6577 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6578 old_buff->page_offset,
6579 IGB_RX_BUFSZ,
6580 DMA_FROM_DEVICE);
6581 }
6582
6583 static inline bool igb_page_is_reserved(struct page *page)
6584 {
6585 return (page_to_nid(page) != numa_mem_id()) || page->pfmemalloc;
6586 }
6587
6588 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6589 struct page *page,
6590 unsigned int truesize)
6591 {
6592 /* avoid re-using remote pages */
6593 if (unlikely(igb_page_is_reserved(page)))
6594 return false;
6595
6596 #if (PAGE_SIZE < 8192)
6597 /* if we are only owner of page we can reuse it */
6598 if (unlikely(page_count(page) != 1))
6599 return false;
6600
6601 /* flip page offset to other buffer */
6602 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6603 #else
6604 /* move offset up to the next cache line */
6605 rx_buffer->page_offset += truesize;
6606
6607 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6608 return false;
6609 #endif
6610
6611 /* Even if we own the page, we are not allowed to use atomic_set()
6612 * This would break get_page_unless_zero() users.
6613 */
6614 atomic_inc(&page->_count);
6615
6616 return true;
6617 }
6618
6619 /**
6620 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6621 * @rx_ring: rx descriptor ring to transact packets on
6622 * @rx_buffer: buffer containing page to add
6623 * @rx_desc: descriptor containing length of buffer written by hardware
6624 * @skb: sk_buff to place the data into
6625 *
6626 * This function will add the data contained in rx_buffer->page to the skb.
6627 * This is done either through a direct copy if the data in the buffer is
6628 * less than the skb header size, otherwise it will just attach the page as
6629 * a frag to the skb.
6630 *
6631 * The function will then update the page offset if necessary and return
6632 * true if the buffer can be reused by the adapter.
6633 **/
6634 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6635 struct igb_rx_buffer *rx_buffer,
6636 union e1000_adv_rx_desc *rx_desc,
6637 struct sk_buff *skb)
6638 {
6639 struct page *page = rx_buffer->page;
6640 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6641 #if (PAGE_SIZE < 8192)
6642 unsigned int truesize = IGB_RX_BUFSZ;
6643 #else
6644 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6645 #endif
6646
6647 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6648 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6649
6650 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6651 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6652 va += IGB_TS_HDR_LEN;
6653 size -= IGB_TS_HDR_LEN;
6654 }
6655
6656 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6657
6658 /* page is not reserved, we can reuse buffer as-is */
6659 if (likely(!igb_page_is_reserved(page)))
6660 return true;
6661
6662 /* this page cannot be reused so discard it */
6663 __free_page(page);
6664 return false;
6665 }
6666
6667 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6668 rx_buffer->page_offset, size, truesize);
6669
6670 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6671 }
6672
6673 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6674 union e1000_adv_rx_desc *rx_desc,
6675 struct sk_buff *skb)
6676 {
6677 struct igb_rx_buffer *rx_buffer;
6678 struct page *page;
6679
6680 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6681 page = rx_buffer->page;
6682 prefetchw(page);
6683
6684 if (likely(!skb)) {
6685 void *page_addr = page_address(page) +
6686 rx_buffer->page_offset;
6687
6688 /* prefetch first cache line of first page */
6689 prefetch(page_addr);
6690 #if L1_CACHE_BYTES < 128
6691 prefetch(page_addr + L1_CACHE_BYTES);
6692 #endif
6693
6694 /* allocate a skb to store the frags */
6695 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6696 if (unlikely(!skb)) {
6697 rx_ring->rx_stats.alloc_failed++;
6698 return NULL;
6699 }
6700
6701 /* we will be copying header into skb->data in
6702 * pskb_may_pull so it is in our interest to prefetch
6703 * it now to avoid a possible cache miss
6704 */
6705 prefetchw(skb->data);
6706 }
6707
6708 /* we are reusing so sync this buffer for CPU use */
6709 dma_sync_single_range_for_cpu(rx_ring->dev,
6710 rx_buffer->dma,
6711 rx_buffer->page_offset,
6712 IGB_RX_BUFSZ,
6713 DMA_FROM_DEVICE);
6714
6715 /* pull page into skb */
6716 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6717 /* hand second half of page back to the ring */
6718 igb_reuse_rx_page(rx_ring, rx_buffer);
6719 } else {
6720 /* we are not reusing the buffer so unmap it */
6721 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6722 PAGE_SIZE, DMA_FROM_DEVICE);
6723 }
6724
6725 /* clear contents of rx_buffer */
6726 rx_buffer->page = NULL;
6727
6728 return skb;
6729 }
6730
6731 static inline void igb_rx_checksum(struct igb_ring *ring,
6732 union e1000_adv_rx_desc *rx_desc,
6733 struct sk_buff *skb)
6734 {
6735 skb_checksum_none_assert(skb);
6736
6737 /* Ignore Checksum bit is set */
6738 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6739 return;
6740
6741 /* Rx checksum disabled via ethtool */
6742 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6743 return;
6744
6745 /* TCP/UDP checksum error bit is set */
6746 if (igb_test_staterr(rx_desc,
6747 E1000_RXDEXT_STATERR_TCPE |
6748 E1000_RXDEXT_STATERR_IPE)) {
6749 /* work around errata with sctp packets where the TCPE aka
6750 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6751 * packets, (aka let the stack check the crc32c)
6752 */
6753 if (!((skb->len == 60) &&
6754 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6755 u64_stats_update_begin(&ring->rx_syncp);
6756 ring->rx_stats.csum_err++;
6757 u64_stats_update_end(&ring->rx_syncp);
6758 }
6759 /* let the stack verify checksum errors */
6760 return;
6761 }
6762 /* It must be a TCP or UDP packet with a valid checksum */
6763 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6764 E1000_RXD_STAT_UDPCS))
6765 skb->ip_summed = CHECKSUM_UNNECESSARY;
6766
6767 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6768 le32_to_cpu(rx_desc->wb.upper.status_error));
6769 }
6770
6771 static inline void igb_rx_hash(struct igb_ring *ring,
6772 union e1000_adv_rx_desc *rx_desc,
6773 struct sk_buff *skb)
6774 {
6775 if (ring->netdev->features & NETIF_F_RXHASH)
6776 skb_set_hash(skb,
6777 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6778 PKT_HASH_TYPE_L3);
6779 }
6780
6781 /**
6782 * igb_is_non_eop - process handling of non-EOP buffers
6783 * @rx_ring: Rx ring being processed
6784 * @rx_desc: Rx descriptor for current buffer
6785 * @skb: current socket buffer containing buffer in progress
6786 *
6787 * This function updates next to clean. If the buffer is an EOP buffer
6788 * this function exits returning false, otherwise it will place the
6789 * sk_buff in the next buffer to be chained and return true indicating
6790 * that this is in fact a non-EOP buffer.
6791 **/
6792 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6793 union e1000_adv_rx_desc *rx_desc)
6794 {
6795 u32 ntc = rx_ring->next_to_clean + 1;
6796
6797 /* fetch, update, and store next to clean */
6798 ntc = (ntc < rx_ring->count) ? ntc : 0;
6799 rx_ring->next_to_clean = ntc;
6800
6801 prefetch(IGB_RX_DESC(rx_ring, ntc));
6802
6803 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6804 return false;
6805
6806 return true;
6807 }
6808
6809 /**
6810 * igb_pull_tail - igb specific version of skb_pull_tail
6811 * @rx_ring: rx descriptor ring packet is being transacted on
6812 * @rx_desc: pointer to the EOP Rx descriptor
6813 * @skb: pointer to current skb being adjusted
6814 *
6815 * This function is an igb specific version of __pskb_pull_tail. The
6816 * main difference between this version and the original function is that
6817 * this function can make several assumptions about the state of things
6818 * that allow for significant optimizations versus the standard function.
6819 * As a result we can do things like drop a frag and maintain an accurate
6820 * truesize for the skb.
6821 */
6822 static void igb_pull_tail(struct igb_ring *rx_ring,
6823 union e1000_adv_rx_desc *rx_desc,
6824 struct sk_buff *skb)
6825 {
6826 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6827 unsigned char *va;
6828 unsigned int pull_len;
6829
6830 /* it is valid to use page_address instead of kmap since we are
6831 * working with pages allocated out of the lomem pool per
6832 * alloc_page(GFP_ATOMIC)
6833 */
6834 va = skb_frag_address(frag);
6835
6836 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6837 /* retrieve timestamp from buffer */
6838 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6839
6840 /* update pointers to remove timestamp header */
6841 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6842 frag->page_offset += IGB_TS_HDR_LEN;
6843 skb->data_len -= IGB_TS_HDR_LEN;
6844 skb->len -= IGB_TS_HDR_LEN;
6845
6846 /* move va to start of packet data */
6847 va += IGB_TS_HDR_LEN;
6848 }
6849
6850 /* we need the header to contain the greater of either ETH_HLEN or
6851 * 60 bytes if the skb->len is less than 60 for skb_pad.
6852 */
6853 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6854
6855 /* align pull length to size of long to optimize memcpy performance */
6856 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6857
6858 /* update all of the pointers */
6859 skb_frag_size_sub(frag, pull_len);
6860 frag->page_offset += pull_len;
6861 skb->data_len -= pull_len;
6862 skb->tail += pull_len;
6863 }
6864
6865 /**
6866 * igb_cleanup_headers - Correct corrupted or empty headers
6867 * @rx_ring: rx descriptor ring packet is being transacted on
6868 * @rx_desc: pointer to the EOP Rx descriptor
6869 * @skb: pointer to current skb being fixed
6870 *
6871 * Address the case where we are pulling data in on pages only
6872 * and as such no data is present in the skb header.
6873 *
6874 * In addition if skb is not at least 60 bytes we need to pad it so that
6875 * it is large enough to qualify as a valid Ethernet frame.
6876 *
6877 * Returns true if an error was encountered and skb was freed.
6878 **/
6879 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6880 union e1000_adv_rx_desc *rx_desc,
6881 struct sk_buff *skb)
6882 {
6883 if (unlikely((igb_test_staterr(rx_desc,
6884 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6885 struct net_device *netdev = rx_ring->netdev;
6886 if (!(netdev->features & NETIF_F_RXALL)) {
6887 dev_kfree_skb_any(skb);
6888 return true;
6889 }
6890 }
6891
6892 /* place header in linear portion of buffer */
6893 if (skb_is_nonlinear(skb))
6894 igb_pull_tail(rx_ring, rx_desc, skb);
6895
6896 /* if eth_skb_pad returns an error the skb was freed */
6897 if (eth_skb_pad(skb))
6898 return true;
6899
6900 return false;
6901 }
6902
6903 /**
6904 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6905 * @rx_ring: rx descriptor ring packet is being transacted on
6906 * @rx_desc: pointer to the EOP Rx descriptor
6907 * @skb: pointer to current skb being populated
6908 *
6909 * This function checks the ring, descriptor, and packet information in
6910 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6911 * other fields within the skb.
6912 **/
6913 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6914 union e1000_adv_rx_desc *rx_desc,
6915 struct sk_buff *skb)
6916 {
6917 struct net_device *dev = rx_ring->netdev;
6918
6919 igb_rx_hash(rx_ring, rx_desc, skb);
6920
6921 igb_rx_checksum(rx_ring, rx_desc, skb);
6922
6923 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6924 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6925 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6926
6927 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6928 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6929 u16 vid;
6930
6931 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6932 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6933 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6934 else
6935 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6936
6937 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6938 }
6939
6940 skb_record_rx_queue(skb, rx_ring->queue_index);
6941
6942 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6943 }
6944
6945 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6946 {
6947 struct igb_ring *rx_ring = q_vector->rx.ring;
6948 struct sk_buff *skb = rx_ring->skb;
6949 unsigned int total_bytes = 0, total_packets = 0;
6950 u16 cleaned_count = igb_desc_unused(rx_ring);
6951
6952 while (likely(total_packets < budget)) {
6953 union e1000_adv_rx_desc *rx_desc;
6954
6955 /* return some buffers to hardware, one at a time is too slow */
6956 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6957 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6958 cleaned_count = 0;
6959 }
6960
6961 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6962
6963 if (!rx_desc->wb.upper.status_error)
6964 break;
6965
6966 /* This memory barrier is needed to keep us from reading
6967 * any other fields out of the rx_desc until we know the
6968 * descriptor has been written back
6969 */
6970 dma_rmb();
6971
6972 /* retrieve a buffer from the ring */
6973 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6974
6975 /* exit if we failed to retrieve a buffer */
6976 if (!skb)
6977 break;
6978
6979 cleaned_count++;
6980
6981 /* fetch next buffer in frame if non-eop */
6982 if (igb_is_non_eop(rx_ring, rx_desc))
6983 continue;
6984
6985 /* verify the packet layout is correct */
6986 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6987 skb = NULL;
6988 continue;
6989 }
6990
6991 /* probably a little skewed due to removing CRC */
6992 total_bytes += skb->len;
6993
6994 /* populate checksum, timestamp, VLAN, and protocol */
6995 igb_process_skb_fields(rx_ring, rx_desc, skb);
6996
6997 napi_gro_receive(&q_vector->napi, skb);
6998
6999 /* reset skb pointer */
7000 skb = NULL;
7001
7002 /* update budget accounting */
7003 total_packets++;
7004 }
7005
7006 /* place incomplete frames back on ring for completion */
7007 rx_ring->skb = skb;
7008
7009 u64_stats_update_begin(&rx_ring->rx_syncp);
7010 rx_ring->rx_stats.packets += total_packets;
7011 rx_ring->rx_stats.bytes += total_bytes;
7012 u64_stats_update_end(&rx_ring->rx_syncp);
7013 q_vector->rx.total_packets += total_packets;
7014 q_vector->rx.total_bytes += total_bytes;
7015
7016 if (cleaned_count)
7017 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7018
7019 return total_packets < budget;
7020 }
7021
7022 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7023 struct igb_rx_buffer *bi)
7024 {
7025 struct page *page = bi->page;
7026 dma_addr_t dma;
7027
7028 /* since we are recycling buffers we should seldom need to alloc */
7029 if (likely(page))
7030 return true;
7031
7032 /* alloc new page for storage */
7033 page = dev_alloc_page();
7034 if (unlikely(!page)) {
7035 rx_ring->rx_stats.alloc_failed++;
7036 return false;
7037 }
7038
7039 /* map page for use */
7040 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7041
7042 /* if mapping failed free memory back to system since
7043 * there isn't much point in holding memory we can't use
7044 */
7045 if (dma_mapping_error(rx_ring->dev, dma)) {
7046 __free_page(page);
7047
7048 rx_ring->rx_stats.alloc_failed++;
7049 return false;
7050 }
7051
7052 bi->dma = dma;
7053 bi->page = page;
7054 bi->page_offset = 0;
7055
7056 return true;
7057 }
7058
7059 /**
7060 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7061 * @adapter: address of board private structure
7062 **/
7063 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7064 {
7065 union e1000_adv_rx_desc *rx_desc;
7066 struct igb_rx_buffer *bi;
7067 u16 i = rx_ring->next_to_use;
7068
7069 /* nothing to do */
7070 if (!cleaned_count)
7071 return;
7072
7073 rx_desc = IGB_RX_DESC(rx_ring, i);
7074 bi = &rx_ring->rx_buffer_info[i];
7075 i -= rx_ring->count;
7076
7077 do {
7078 if (!igb_alloc_mapped_page(rx_ring, bi))
7079 break;
7080
7081 /* Refresh the desc even if buffer_addrs didn't change
7082 * because each write-back erases this info.
7083 */
7084 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7085
7086 rx_desc++;
7087 bi++;
7088 i++;
7089 if (unlikely(!i)) {
7090 rx_desc = IGB_RX_DESC(rx_ring, 0);
7091 bi = rx_ring->rx_buffer_info;
7092 i -= rx_ring->count;
7093 }
7094
7095 /* clear the status bits for the next_to_use descriptor */
7096 rx_desc->wb.upper.status_error = 0;
7097
7098 cleaned_count--;
7099 } while (cleaned_count);
7100
7101 i += rx_ring->count;
7102
7103 if (rx_ring->next_to_use != i) {
7104 /* record the next descriptor to use */
7105 rx_ring->next_to_use = i;
7106
7107 /* update next to alloc since we have filled the ring */
7108 rx_ring->next_to_alloc = i;
7109
7110 /* Force memory writes to complete before letting h/w
7111 * know there are new descriptors to fetch. (Only
7112 * applicable for weak-ordered memory model archs,
7113 * such as IA-64).
7114 */
7115 wmb();
7116 writel(i, rx_ring->tail);
7117 }
7118 }
7119
7120 /**
7121 * igb_mii_ioctl -
7122 * @netdev:
7123 * @ifreq:
7124 * @cmd:
7125 **/
7126 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7127 {
7128 struct igb_adapter *adapter = netdev_priv(netdev);
7129 struct mii_ioctl_data *data = if_mii(ifr);
7130
7131 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7132 return -EOPNOTSUPP;
7133
7134 switch (cmd) {
7135 case SIOCGMIIPHY:
7136 data->phy_id = adapter->hw.phy.addr;
7137 break;
7138 case SIOCGMIIREG:
7139 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7140 &data->val_out))
7141 return -EIO;
7142 break;
7143 case SIOCSMIIREG:
7144 default:
7145 return -EOPNOTSUPP;
7146 }
7147 return 0;
7148 }
7149
7150 /**
7151 * igb_ioctl -
7152 * @netdev:
7153 * @ifreq:
7154 * @cmd:
7155 **/
7156 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7157 {
7158 switch (cmd) {
7159 case SIOCGMIIPHY:
7160 case SIOCGMIIREG:
7161 case SIOCSMIIREG:
7162 return igb_mii_ioctl(netdev, ifr, cmd);
7163 case SIOCGHWTSTAMP:
7164 return igb_ptp_get_ts_config(netdev, ifr);
7165 case SIOCSHWTSTAMP:
7166 return igb_ptp_set_ts_config(netdev, ifr);
7167 default:
7168 return -EOPNOTSUPP;
7169 }
7170 }
7171
7172 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7173 {
7174 struct igb_adapter *adapter = hw->back;
7175
7176 pci_read_config_word(adapter->pdev, reg, value);
7177 }
7178
7179 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7180 {
7181 struct igb_adapter *adapter = hw->back;
7182
7183 pci_write_config_word(adapter->pdev, reg, *value);
7184 }
7185
7186 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7187 {
7188 struct igb_adapter *adapter = hw->back;
7189
7190 if (pcie_capability_read_word(adapter->pdev, reg, value))
7191 return -E1000_ERR_CONFIG;
7192
7193 return 0;
7194 }
7195
7196 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7197 {
7198 struct igb_adapter *adapter = hw->back;
7199
7200 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7201 return -E1000_ERR_CONFIG;
7202
7203 return 0;
7204 }
7205
7206 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7207 {
7208 struct igb_adapter *adapter = netdev_priv(netdev);
7209 struct e1000_hw *hw = &adapter->hw;
7210 u32 ctrl, rctl;
7211 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7212
7213 if (enable) {
7214 /* enable VLAN tag insert/strip */
7215 ctrl = rd32(E1000_CTRL);
7216 ctrl |= E1000_CTRL_VME;
7217 wr32(E1000_CTRL, ctrl);
7218
7219 /* Disable CFI check */
7220 rctl = rd32(E1000_RCTL);
7221 rctl &= ~E1000_RCTL_CFIEN;
7222 wr32(E1000_RCTL, rctl);
7223 } else {
7224 /* disable VLAN tag insert/strip */
7225 ctrl = rd32(E1000_CTRL);
7226 ctrl &= ~E1000_CTRL_VME;
7227 wr32(E1000_CTRL, ctrl);
7228 }
7229
7230 igb_rlpml_set(adapter);
7231 }
7232
7233 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7234 __be16 proto, u16 vid)
7235 {
7236 struct igb_adapter *adapter = netdev_priv(netdev);
7237 struct e1000_hw *hw = &adapter->hw;
7238 int pf_id = adapter->vfs_allocated_count;
7239
7240 /* attempt to add filter to vlvf array */
7241 igb_vlvf_set(adapter, vid, true, pf_id);
7242
7243 /* add the filter since PF can receive vlans w/o entry in vlvf */
7244 igb_vfta_set(hw, vid, true);
7245
7246 set_bit(vid, adapter->active_vlans);
7247
7248 return 0;
7249 }
7250
7251 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7252 __be16 proto, u16 vid)
7253 {
7254 struct igb_adapter *adapter = netdev_priv(netdev);
7255 struct e1000_hw *hw = &adapter->hw;
7256 int pf_id = adapter->vfs_allocated_count;
7257 s32 err;
7258
7259 /* remove vlan from VLVF table array */
7260 err = igb_vlvf_set(adapter, vid, false, pf_id);
7261
7262 /* if vid was not present in VLVF just remove it from table */
7263 if (err)
7264 igb_vfta_set(hw, vid, false);
7265
7266 clear_bit(vid, adapter->active_vlans);
7267
7268 return 0;
7269 }
7270
7271 static void igb_restore_vlan(struct igb_adapter *adapter)
7272 {
7273 u16 vid;
7274
7275 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7276
7277 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7278 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7279 }
7280
7281 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7282 {
7283 struct pci_dev *pdev = adapter->pdev;
7284 struct e1000_mac_info *mac = &adapter->hw.mac;
7285
7286 mac->autoneg = 0;
7287
7288 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7289 * for the switch() below to work
7290 */
7291 if ((spd & 1) || (dplx & ~1))
7292 goto err_inval;
7293
7294 /* Fiber NIC's only allow 1000 gbps Full duplex
7295 * and 100Mbps Full duplex for 100baseFx sfp
7296 */
7297 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7298 switch (spd + dplx) {
7299 case SPEED_10 + DUPLEX_HALF:
7300 case SPEED_10 + DUPLEX_FULL:
7301 case SPEED_100 + DUPLEX_HALF:
7302 goto err_inval;
7303 default:
7304 break;
7305 }
7306 }
7307
7308 switch (spd + dplx) {
7309 case SPEED_10 + DUPLEX_HALF:
7310 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7311 break;
7312 case SPEED_10 + DUPLEX_FULL:
7313 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7314 break;
7315 case SPEED_100 + DUPLEX_HALF:
7316 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7317 break;
7318 case SPEED_100 + DUPLEX_FULL:
7319 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7320 break;
7321 case SPEED_1000 + DUPLEX_FULL:
7322 mac->autoneg = 1;
7323 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7324 break;
7325 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7326 default:
7327 goto err_inval;
7328 }
7329
7330 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7331 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7332
7333 return 0;
7334
7335 err_inval:
7336 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7337 return -EINVAL;
7338 }
7339
7340 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7341 bool runtime)
7342 {
7343 struct net_device *netdev = pci_get_drvdata(pdev);
7344 struct igb_adapter *adapter = netdev_priv(netdev);
7345 struct e1000_hw *hw = &adapter->hw;
7346 u32 ctrl, rctl, status;
7347 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7348 #ifdef CONFIG_PM
7349 int retval = 0;
7350 #endif
7351
7352 netif_device_detach(netdev);
7353
7354 if (netif_running(netdev))
7355 __igb_close(netdev, true);
7356
7357 igb_clear_interrupt_scheme(adapter);
7358
7359 #ifdef CONFIG_PM
7360 retval = pci_save_state(pdev);
7361 if (retval)
7362 return retval;
7363 #endif
7364
7365 status = rd32(E1000_STATUS);
7366 if (status & E1000_STATUS_LU)
7367 wufc &= ~E1000_WUFC_LNKC;
7368
7369 if (wufc) {
7370 igb_setup_rctl(adapter);
7371 igb_set_rx_mode(netdev);
7372
7373 /* turn on all-multi mode if wake on multicast is enabled */
7374 if (wufc & E1000_WUFC_MC) {
7375 rctl = rd32(E1000_RCTL);
7376 rctl |= E1000_RCTL_MPE;
7377 wr32(E1000_RCTL, rctl);
7378 }
7379
7380 ctrl = rd32(E1000_CTRL);
7381 /* advertise wake from D3Cold */
7382 #define E1000_CTRL_ADVD3WUC 0x00100000
7383 /* phy power management enable */
7384 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7385 ctrl |= E1000_CTRL_ADVD3WUC;
7386 wr32(E1000_CTRL, ctrl);
7387
7388 /* Allow time for pending master requests to run */
7389 igb_disable_pcie_master(hw);
7390
7391 wr32(E1000_WUC, E1000_WUC_PME_EN);
7392 wr32(E1000_WUFC, wufc);
7393 } else {
7394 wr32(E1000_WUC, 0);
7395 wr32(E1000_WUFC, 0);
7396 }
7397
7398 *enable_wake = wufc || adapter->en_mng_pt;
7399 if (!*enable_wake)
7400 igb_power_down_link(adapter);
7401 else
7402 igb_power_up_link(adapter);
7403
7404 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7405 * would have already happened in close and is redundant.
7406 */
7407 igb_release_hw_control(adapter);
7408
7409 pci_disable_device(pdev);
7410
7411 return 0;
7412 }
7413
7414 #ifdef CONFIG_PM
7415 #ifdef CONFIG_PM_SLEEP
7416 static int igb_suspend(struct device *dev)
7417 {
7418 int retval;
7419 bool wake;
7420 struct pci_dev *pdev = to_pci_dev(dev);
7421
7422 retval = __igb_shutdown(pdev, &wake, 0);
7423 if (retval)
7424 return retval;
7425
7426 if (wake) {
7427 pci_prepare_to_sleep(pdev);
7428 } else {
7429 pci_wake_from_d3(pdev, false);
7430 pci_set_power_state(pdev, PCI_D3hot);
7431 }
7432
7433 return 0;
7434 }
7435 #endif /* CONFIG_PM_SLEEP */
7436
7437 static int igb_resume(struct device *dev)
7438 {
7439 struct pci_dev *pdev = to_pci_dev(dev);
7440 struct net_device *netdev = pci_get_drvdata(pdev);
7441 struct igb_adapter *adapter = netdev_priv(netdev);
7442 struct e1000_hw *hw = &adapter->hw;
7443 u32 err;
7444
7445 pci_set_power_state(pdev, PCI_D0);
7446 pci_restore_state(pdev);
7447 pci_save_state(pdev);
7448
7449 if (!pci_device_is_present(pdev))
7450 return -ENODEV;
7451 err = pci_enable_device_mem(pdev);
7452 if (err) {
7453 dev_err(&pdev->dev,
7454 "igb: Cannot enable PCI device from suspend\n");
7455 return err;
7456 }
7457 pci_set_master(pdev);
7458
7459 pci_enable_wake(pdev, PCI_D3hot, 0);
7460 pci_enable_wake(pdev, PCI_D3cold, 0);
7461
7462 if (igb_init_interrupt_scheme(adapter, true)) {
7463 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7464 return -ENOMEM;
7465 }
7466
7467 igb_reset(adapter);
7468
7469 /* let the f/w know that the h/w is now under the control of the
7470 * driver.
7471 */
7472 igb_get_hw_control(adapter);
7473
7474 wr32(E1000_WUS, ~0);
7475
7476 if (netdev->flags & IFF_UP) {
7477 rtnl_lock();
7478 err = __igb_open(netdev, true);
7479 rtnl_unlock();
7480 if (err)
7481 return err;
7482 }
7483
7484 netif_device_attach(netdev);
7485 return 0;
7486 }
7487
7488 static int igb_runtime_idle(struct device *dev)
7489 {
7490 struct pci_dev *pdev = to_pci_dev(dev);
7491 struct net_device *netdev = pci_get_drvdata(pdev);
7492 struct igb_adapter *adapter = netdev_priv(netdev);
7493
7494 if (!igb_has_link(adapter))
7495 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7496
7497 return -EBUSY;
7498 }
7499
7500 static int igb_runtime_suspend(struct device *dev)
7501 {
7502 struct pci_dev *pdev = to_pci_dev(dev);
7503 int retval;
7504 bool wake;
7505
7506 retval = __igb_shutdown(pdev, &wake, 1);
7507 if (retval)
7508 return retval;
7509
7510 if (wake) {
7511 pci_prepare_to_sleep(pdev);
7512 } else {
7513 pci_wake_from_d3(pdev, false);
7514 pci_set_power_state(pdev, PCI_D3hot);
7515 }
7516
7517 return 0;
7518 }
7519
7520 static int igb_runtime_resume(struct device *dev)
7521 {
7522 return igb_resume(dev);
7523 }
7524 #endif /* CONFIG_PM */
7525
7526 static void igb_shutdown(struct pci_dev *pdev)
7527 {
7528 bool wake;
7529
7530 __igb_shutdown(pdev, &wake, 0);
7531
7532 if (system_state == SYSTEM_POWER_OFF) {
7533 pci_wake_from_d3(pdev, wake);
7534 pci_set_power_state(pdev, PCI_D3hot);
7535 }
7536 }
7537
7538 #ifdef CONFIG_PCI_IOV
7539 static int igb_sriov_reinit(struct pci_dev *dev)
7540 {
7541 struct net_device *netdev = pci_get_drvdata(dev);
7542 struct igb_adapter *adapter = netdev_priv(netdev);
7543 struct pci_dev *pdev = adapter->pdev;
7544
7545 rtnl_lock();
7546
7547 if (netif_running(netdev))
7548 igb_close(netdev);
7549 else
7550 igb_reset(adapter);
7551
7552 igb_clear_interrupt_scheme(adapter);
7553
7554 igb_init_queue_configuration(adapter);
7555
7556 if (igb_init_interrupt_scheme(adapter, true)) {
7557 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7558 return -ENOMEM;
7559 }
7560
7561 if (netif_running(netdev))
7562 igb_open(netdev);
7563
7564 rtnl_unlock();
7565
7566 return 0;
7567 }
7568
7569 static int igb_pci_disable_sriov(struct pci_dev *dev)
7570 {
7571 int err = igb_disable_sriov(dev);
7572
7573 if (!err)
7574 err = igb_sriov_reinit(dev);
7575
7576 return err;
7577 }
7578
7579 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7580 {
7581 int err = igb_enable_sriov(dev, num_vfs);
7582
7583 if (err)
7584 goto out;
7585
7586 err = igb_sriov_reinit(dev);
7587 if (!err)
7588 return num_vfs;
7589
7590 out:
7591 return err;
7592 }
7593
7594 #endif
7595 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7596 {
7597 #ifdef CONFIG_PCI_IOV
7598 if (num_vfs == 0)
7599 return igb_pci_disable_sriov(dev);
7600 else
7601 return igb_pci_enable_sriov(dev, num_vfs);
7602 #endif
7603 return 0;
7604 }
7605
7606 #ifdef CONFIG_NET_POLL_CONTROLLER
7607 /* Polling 'interrupt' - used by things like netconsole to send skbs
7608 * without having to re-enable interrupts. It's not called while
7609 * the interrupt routine is executing.
7610 */
7611 static void igb_netpoll(struct net_device *netdev)
7612 {
7613 struct igb_adapter *adapter = netdev_priv(netdev);
7614 struct e1000_hw *hw = &adapter->hw;
7615 struct igb_q_vector *q_vector;
7616 int i;
7617
7618 for (i = 0; i < adapter->num_q_vectors; i++) {
7619 q_vector = adapter->q_vector[i];
7620 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7621 wr32(E1000_EIMC, q_vector->eims_value);
7622 else
7623 igb_irq_disable(adapter);
7624 napi_schedule(&q_vector->napi);
7625 }
7626 }
7627 #endif /* CONFIG_NET_POLL_CONTROLLER */
7628
7629 /**
7630 * igb_io_error_detected - called when PCI error is detected
7631 * @pdev: Pointer to PCI device
7632 * @state: The current pci connection state
7633 *
7634 * This function is called after a PCI bus error affecting
7635 * this device has been detected.
7636 **/
7637 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7638 pci_channel_state_t state)
7639 {
7640 struct net_device *netdev = pci_get_drvdata(pdev);
7641 struct igb_adapter *adapter = netdev_priv(netdev);
7642
7643 netif_device_detach(netdev);
7644
7645 if (state == pci_channel_io_perm_failure)
7646 return PCI_ERS_RESULT_DISCONNECT;
7647
7648 if (netif_running(netdev))
7649 igb_down(adapter);
7650 pci_disable_device(pdev);
7651
7652 /* Request a slot slot reset. */
7653 return PCI_ERS_RESULT_NEED_RESET;
7654 }
7655
7656 /**
7657 * igb_io_slot_reset - called after the pci bus has been reset.
7658 * @pdev: Pointer to PCI device
7659 *
7660 * Restart the card from scratch, as if from a cold-boot. Implementation
7661 * resembles the first-half of the igb_resume routine.
7662 **/
7663 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7664 {
7665 struct net_device *netdev = pci_get_drvdata(pdev);
7666 struct igb_adapter *adapter = netdev_priv(netdev);
7667 struct e1000_hw *hw = &adapter->hw;
7668 pci_ers_result_t result;
7669 int err;
7670
7671 if (pci_enable_device_mem(pdev)) {
7672 dev_err(&pdev->dev,
7673 "Cannot re-enable PCI device after reset.\n");
7674 result = PCI_ERS_RESULT_DISCONNECT;
7675 } else {
7676 pci_set_master(pdev);
7677 pci_restore_state(pdev);
7678 pci_save_state(pdev);
7679
7680 pci_enable_wake(pdev, PCI_D3hot, 0);
7681 pci_enable_wake(pdev, PCI_D3cold, 0);
7682
7683 igb_reset(adapter);
7684 wr32(E1000_WUS, ~0);
7685 result = PCI_ERS_RESULT_RECOVERED;
7686 }
7687
7688 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7689 if (err) {
7690 dev_err(&pdev->dev,
7691 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7692 err);
7693 /* non-fatal, continue */
7694 }
7695
7696 return result;
7697 }
7698
7699 /**
7700 * igb_io_resume - called when traffic can start flowing again.
7701 * @pdev: Pointer to PCI device
7702 *
7703 * This callback is called when the error recovery driver tells us that
7704 * its OK to resume normal operation. Implementation resembles the
7705 * second-half of the igb_resume routine.
7706 */
7707 static void igb_io_resume(struct pci_dev *pdev)
7708 {
7709 struct net_device *netdev = pci_get_drvdata(pdev);
7710 struct igb_adapter *adapter = netdev_priv(netdev);
7711
7712 if (netif_running(netdev)) {
7713 if (igb_up(adapter)) {
7714 dev_err(&pdev->dev, "igb_up failed after reset\n");
7715 return;
7716 }
7717 }
7718
7719 netif_device_attach(netdev);
7720
7721 /* let the f/w know that the h/w is now under the control of the
7722 * driver.
7723 */
7724 igb_get_hw_control(adapter);
7725 }
7726
7727 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7728 u8 qsel)
7729 {
7730 u32 rar_low, rar_high;
7731 struct e1000_hw *hw = &adapter->hw;
7732
7733 /* HW expects these in little endian so we reverse the byte order
7734 * from network order (big endian) to little endian
7735 */
7736 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7737 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7738 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7739
7740 /* Indicate to hardware the Address is Valid. */
7741 rar_high |= E1000_RAH_AV;
7742
7743 if (hw->mac.type == e1000_82575)
7744 rar_high |= E1000_RAH_POOL_1 * qsel;
7745 else
7746 rar_high |= E1000_RAH_POOL_1 << qsel;
7747
7748 wr32(E1000_RAL(index), rar_low);
7749 wrfl();
7750 wr32(E1000_RAH(index), rar_high);
7751 wrfl();
7752 }
7753
7754 static int igb_set_vf_mac(struct igb_adapter *adapter,
7755 int vf, unsigned char *mac_addr)
7756 {
7757 struct e1000_hw *hw = &adapter->hw;
7758 /* VF MAC addresses start at end of receive addresses and moves
7759 * towards the first, as a result a collision should not be possible
7760 */
7761 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7762
7763 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7764
7765 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7766
7767 return 0;
7768 }
7769
7770 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7771 {
7772 struct igb_adapter *adapter = netdev_priv(netdev);
7773 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7774 return -EINVAL;
7775 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7776 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7777 dev_info(&adapter->pdev->dev,
7778 "Reload the VF driver to make this change effective.");
7779 if (test_bit(__IGB_DOWN, &adapter->state)) {
7780 dev_warn(&adapter->pdev->dev,
7781 "The VF MAC address has been set, but the PF device is not up.\n");
7782 dev_warn(&adapter->pdev->dev,
7783 "Bring the PF device up before attempting to use the VF device.\n");
7784 }
7785 return igb_set_vf_mac(adapter, vf, mac);
7786 }
7787
7788 static int igb_link_mbps(int internal_link_speed)
7789 {
7790 switch (internal_link_speed) {
7791 case SPEED_100:
7792 return 100;
7793 case SPEED_1000:
7794 return 1000;
7795 default:
7796 return 0;
7797 }
7798 }
7799
7800 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7801 int link_speed)
7802 {
7803 int rf_dec, rf_int;
7804 u32 bcnrc_val;
7805
7806 if (tx_rate != 0) {
7807 /* Calculate the rate factor values to set */
7808 rf_int = link_speed / tx_rate;
7809 rf_dec = (link_speed - (rf_int * tx_rate));
7810 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7811 tx_rate;
7812
7813 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7814 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7815 E1000_RTTBCNRC_RF_INT_MASK);
7816 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7817 } else {
7818 bcnrc_val = 0;
7819 }
7820
7821 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7822 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7823 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7824 */
7825 wr32(E1000_RTTBCNRM, 0x14);
7826 wr32(E1000_RTTBCNRC, bcnrc_val);
7827 }
7828
7829 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7830 {
7831 int actual_link_speed, i;
7832 bool reset_rate = false;
7833
7834 /* VF TX rate limit was not set or not supported */
7835 if ((adapter->vf_rate_link_speed == 0) ||
7836 (adapter->hw.mac.type != e1000_82576))
7837 return;
7838
7839 actual_link_speed = igb_link_mbps(adapter->link_speed);
7840 if (actual_link_speed != adapter->vf_rate_link_speed) {
7841 reset_rate = true;
7842 adapter->vf_rate_link_speed = 0;
7843 dev_info(&adapter->pdev->dev,
7844 "Link speed has been changed. VF Transmit rate is disabled\n");
7845 }
7846
7847 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7848 if (reset_rate)
7849 adapter->vf_data[i].tx_rate = 0;
7850
7851 igb_set_vf_rate_limit(&adapter->hw, i,
7852 adapter->vf_data[i].tx_rate,
7853 actual_link_speed);
7854 }
7855 }
7856
7857 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7858 int min_tx_rate, int max_tx_rate)
7859 {
7860 struct igb_adapter *adapter = netdev_priv(netdev);
7861 struct e1000_hw *hw = &adapter->hw;
7862 int actual_link_speed;
7863
7864 if (hw->mac.type != e1000_82576)
7865 return -EOPNOTSUPP;
7866
7867 if (min_tx_rate)
7868 return -EINVAL;
7869
7870 actual_link_speed = igb_link_mbps(adapter->link_speed);
7871 if ((vf >= adapter->vfs_allocated_count) ||
7872 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7873 (max_tx_rate < 0) ||
7874 (max_tx_rate > actual_link_speed))
7875 return -EINVAL;
7876
7877 adapter->vf_rate_link_speed = actual_link_speed;
7878 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7879 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7880
7881 return 0;
7882 }
7883
7884 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7885 bool setting)
7886 {
7887 struct igb_adapter *adapter = netdev_priv(netdev);
7888 struct e1000_hw *hw = &adapter->hw;
7889 u32 reg_val, reg_offset;
7890
7891 if (!adapter->vfs_allocated_count)
7892 return -EOPNOTSUPP;
7893
7894 if (vf >= adapter->vfs_allocated_count)
7895 return -EINVAL;
7896
7897 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7898 reg_val = rd32(reg_offset);
7899 if (setting)
7900 reg_val |= ((1 << vf) |
7901 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7902 else
7903 reg_val &= ~((1 << vf) |
7904 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7905 wr32(reg_offset, reg_val);
7906
7907 adapter->vf_data[vf].spoofchk_enabled = setting;
7908 return 0;
7909 }
7910
7911 static int igb_ndo_get_vf_config(struct net_device *netdev,
7912 int vf, struct ifla_vf_info *ivi)
7913 {
7914 struct igb_adapter *adapter = netdev_priv(netdev);
7915 if (vf >= adapter->vfs_allocated_count)
7916 return -EINVAL;
7917 ivi->vf = vf;
7918 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7919 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7920 ivi->min_tx_rate = 0;
7921 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7922 ivi->qos = adapter->vf_data[vf].pf_qos;
7923 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7924 return 0;
7925 }
7926
7927 static void igb_vmm_control(struct igb_adapter *adapter)
7928 {
7929 struct e1000_hw *hw = &adapter->hw;
7930 u32 reg;
7931
7932 switch (hw->mac.type) {
7933 case e1000_82575:
7934 case e1000_i210:
7935 case e1000_i211:
7936 case e1000_i354:
7937 default:
7938 /* replication is not supported for 82575 */
7939 return;
7940 case e1000_82576:
7941 /* notify HW that the MAC is adding vlan tags */
7942 reg = rd32(E1000_DTXCTL);
7943 reg |= E1000_DTXCTL_VLAN_ADDED;
7944 wr32(E1000_DTXCTL, reg);
7945 /* Fall through */
7946 case e1000_82580:
7947 /* enable replication vlan tag stripping */
7948 reg = rd32(E1000_RPLOLR);
7949 reg |= E1000_RPLOLR_STRVLAN;
7950 wr32(E1000_RPLOLR, reg);
7951 /* Fall through */
7952 case e1000_i350:
7953 /* none of the above registers are supported by i350 */
7954 break;
7955 }
7956
7957 if (adapter->vfs_allocated_count) {
7958 igb_vmdq_set_loopback_pf(hw, true);
7959 igb_vmdq_set_replication_pf(hw, true);
7960 igb_vmdq_set_anti_spoofing_pf(hw, true,
7961 adapter->vfs_allocated_count);
7962 } else {
7963 igb_vmdq_set_loopback_pf(hw, false);
7964 igb_vmdq_set_replication_pf(hw, false);
7965 }
7966 }
7967
7968 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7969 {
7970 struct e1000_hw *hw = &adapter->hw;
7971 u32 dmac_thr;
7972 u16 hwm;
7973
7974 if (hw->mac.type > e1000_82580) {
7975 if (adapter->flags & IGB_FLAG_DMAC) {
7976 u32 reg;
7977
7978 /* force threshold to 0. */
7979 wr32(E1000_DMCTXTH, 0);
7980
7981 /* DMA Coalescing high water mark needs to be greater
7982 * than the Rx threshold. Set hwm to PBA - max frame
7983 * size in 16B units, capping it at PBA - 6KB.
7984 */
7985 hwm = 64 * pba - adapter->max_frame_size / 16;
7986 if (hwm < 64 * (pba - 6))
7987 hwm = 64 * (pba - 6);
7988 reg = rd32(E1000_FCRTC);
7989 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7990 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7991 & E1000_FCRTC_RTH_COAL_MASK);
7992 wr32(E1000_FCRTC, reg);
7993
7994 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7995 * frame size, capping it at PBA - 10KB.
7996 */
7997 dmac_thr = pba - adapter->max_frame_size / 512;
7998 if (dmac_thr < pba - 10)
7999 dmac_thr = pba - 10;
8000 reg = rd32(E1000_DMACR);
8001 reg &= ~E1000_DMACR_DMACTHR_MASK;
8002 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8003 & E1000_DMACR_DMACTHR_MASK);
8004
8005 /* transition to L0x or L1 if available..*/
8006 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8007
8008 /* watchdog timer= +-1000 usec in 32usec intervals */
8009 reg |= (1000 >> 5);
8010
8011 /* Disable BMC-to-OS Watchdog Enable */
8012 if (hw->mac.type != e1000_i354)
8013 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8014
8015 wr32(E1000_DMACR, reg);
8016
8017 /* no lower threshold to disable
8018 * coalescing(smart fifb)-UTRESH=0
8019 */
8020 wr32(E1000_DMCRTRH, 0);
8021
8022 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8023
8024 wr32(E1000_DMCTLX, reg);
8025
8026 /* free space in tx packet buffer to wake from
8027 * DMA coal
8028 */
8029 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8030 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8031
8032 /* make low power state decision controlled
8033 * by DMA coal
8034 */
8035 reg = rd32(E1000_PCIEMISC);
8036 reg &= ~E1000_PCIEMISC_LX_DECISION;
8037 wr32(E1000_PCIEMISC, reg);
8038 } /* endif adapter->dmac is not disabled */
8039 } else if (hw->mac.type == e1000_82580) {
8040 u32 reg = rd32(E1000_PCIEMISC);
8041
8042 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8043 wr32(E1000_DMACR, 0);
8044 }
8045 }
8046
8047 /**
8048 * igb_read_i2c_byte - Reads 8 bit word over I2C
8049 * @hw: pointer to hardware structure
8050 * @byte_offset: byte offset to read
8051 * @dev_addr: device address
8052 * @data: value read
8053 *
8054 * Performs byte read operation over I2C interface at
8055 * a specified device address.
8056 **/
8057 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8058 u8 dev_addr, u8 *data)
8059 {
8060 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8061 struct i2c_client *this_client = adapter->i2c_client;
8062 s32 status;
8063 u16 swfw_mask = 0;
8064
8065 if (!this_client)
8066 return E1000_ERR_I2C;
8067
8068 swfw_mask = E1000_SWFW_PHY0_SM;
8069
8070 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8071 return E1000_ERR_SWFW_SYNC;
8072
8073 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8074 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8075
8076 if (status < 0)
8077 return E1000_ERR_I2C;
8078 else {
8079 *data = status;
8080 return 0;
8081 }
8082 }
8083
8084 /**
8085 * igb_write_i2c_byte - Writes 8 bit word over I2C
8086 * @hw: pointer to hardware structure
8087 * @byte_offset: byte offset to write
8088 * @dev_addr: device address
8089 * @data: value to write
8090 *
8091 * Performs byte write operation over I2C interface at
8092 * a specified device address.
8093 **/
8094 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8095 u8 dev_addr, u8 data)
8096 {
8097 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8098 struct i2c_client *this_client = adapter->i2c_client;
8099 s32 status;
8100 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8101
8102 if (!this_client)
8103 return E1000_ERR_I2C;
8104
8105 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8106 return E1000_ERR_SWFW_SYNC;
8107 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8108 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8109
8110 if (status)
8111 return E1000_ERR_I2C;
8112 else
8113 return 0;
8114
8115 }
8116
8117 int igb_reinit_queues(struct igb_adapter *adapter)
8118 {
8119 struct net_device *netdev = adapter->netdev;
8120 struct pci_dev *pdev = adapter->pdev;
8121 int err = 0;
8122
8123 if (netif_running(netdev))
8124 igb_close(netdev);
8125
8126 igb_reset_interrupt_capability(adapter);
8127
8128 if (igb_init_interrupt_scheme(adapter, true)) {
8129 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8130 return -ENOMEM;
8131 }
8132
8133 if (netif_running(netdev))
8134 err = igb_open(netdev);
8135
8136 return err;
8137 }
8138 /* igb_main.c */