]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
87bdf1604ae2c5933e18827a0a7d5ad02942b936
[mirror_ubuntu-jammy-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/bitops.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/netdevice.h>
13 #include <linux/ipv6.h>
14 #include <linux/slab.h>
15 #include <net/checksum.h>
16 #include <net/ip6_checksum.h>
17 #include <net/pkt_sched.h>
18 #include <net/pkt_cls.h>
19 #include <linux/net_tstamp.h>
20 #include <linux/mii.h>
21 #include <linux/ethtool.h>
22 #include <linux/if.h>
23 #include <linux/if_vlan.h>
24 #include <linux/pci.h>
25 #include <linux/delay.h>
26 #include <linux/interrupt.h>
27 #include <linux/ip.h>
28 #include <linux/tcp.h>
29 #include <linux/sctp.h>
30 #include <linux/if_ether.h>
31 #include <linux/aer.h>
32 #include <linux/prefetch.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/etherdevice.h>
35 #ifdef CONFIG_IGB_DCA
36 #include <linux/dca.h>
37 #endif
38 #include <linux/i2c.h>
39 #include "igb.h"
40
41 #define MAJ 5
42 #define MIN 4
43 #define BUILD 0
44 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
45 __stringify(BUILD) "-k"
46
47 enum queue_mode {
48 QUEUE_MODE_STRICT_PRIORITY,
49 QUEUE_MODE_STREAM_RESERVATION,
50 };
51
52 enum tx_queue_prio {
53 TX_QUEUE_PRIO_HIGH,
54 TX_QUEUE_PRIO_LOW,
55 };
56
57 char igb_driver_name[] = "igb";
58 char igb_driver_version[] = DRV_VERSION;
59 static const char igb_driver_string[] =
60 "Intel(R) Gigabit Ethernet Network Driver";
61 static const char igb_copyright[] =
62 "Copyright (c) 2007-2014 Intel Corporation.";
63
64 static const struct e1000_info *igb_info_tbl[] = {
65 [board_82575] = &e1000_82575_info,
66 };
67
68 static const struct pci_device_id igb_pci_tbl[] = {
69 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
70 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
71 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
72 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
73 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
74 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
75 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
104 /* required last entry */
105 {0, }
106 };
107
108 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
109
110 static int igb_setup_all_tx_resources(struct igb_adapter *);
111 static int igb_setup_all_rx_resources(struct igb_adapter *);
112 static void igb_free_all_tx_resources(struct igb_adapter *);
113 static void igb_free_all_rx_resources(struct igb_adapter *);
114 static void igb_setup_mrqc(struct igb_adapter *);
115 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
116 static void igb_remove(struct pci_dev *pdev);
117 static int igb_sw_init(struct igb_adapter *);
118 int igb_open(struct net_device *);
119 int igb_close(struct net_device *);
120 static void igb_configure(struct igb_adapter *);
121 static void igb_configure_tx(struct igb_adapter *);
122 static void igb_configure_rx(struct igb_adapter *);
123 static void igb_clean_all_tx_rings(struct igb_adapter *);
124 static void igb_clean_all_rx_rings(struct igb_adapter *);
125 static void igb_clean_tx_ring(struct igb_ring *);
126 static void igb_clean_rx_ring(struct igb_ring *);
127 static void igb_set_rx_mode(struct net_device *);
128 static void igb_update_phy_info(struct timer_list *);
129 static void igb_watchdog(struct timer_list *);
130 static void igb_watchdog_task(struct work_struct *);
131 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
132 static void igb_get_stats64(struct net_device *dev,
133 struct rtnl_link_stats64 *stats);
134 static int igb_change_mtu(struct net_device *, int);
135 static int igb_set_mac(struct net_device *, void *);
136 static void igb_set_uta(struct igb_adapter *adapter, bool set);
137 static irqreturn_t igb_intr(int irq, void *);
138 static irqreturn_t igb_intr_msi(int irq, void *);
139 static irqreturn_t igb_msix_other(int irq, void *);
140 static irqreturn_t igb_msix_ring(int irq, void *);
141 #ifdef CONFIG_IGB_DCA
142 static void igb_update_dca(struct igb_q_vector *);
143 static void igb_setup_dca(struct igb_adapter *);
144 #endif /* CONFIG_IGB_DCA */
145 static int igb_poll(struct napi_struct *, int);
146 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
147 static int igb_clean_rx_irq(struct igb_q_vector *, int);
148 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
149 static void igb_tx_timeout(struct net_device *);
150 static void igb_reset_task(struct work_struct *);
151 static void igb_vlan_mode(struct net_device *netdev,
152 netdev_features_t features);
153 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
154 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
155 static void igb_restore_vlan(struct igb_adapter *);
156 static void igb_rar_set_index(struct igb_adapter *, u32);
157 static void igb_ping_all_vfs(struct igb_adapter *);
158 static void igb_msg_task(struct igb_adapter *);
159 static void igb_vmm_control(struct igb_adapter *);
160 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
161 static void igb_flush_mac_table(struct igb_adapter *);
162 static int igb_available_rars(struct igb_adapter *, u8);
163 static void igb_set_default_mac_filter(struct igb_adapter *);
164 static int igb_uc_sync(struct net_device *, const unsigned char *);
165 static int igb_uc_unsync(struct net_device *, const unsigned char *);
166 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
167 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
168 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
169 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
170 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
171 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
172 bool setting);
173 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
179 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
184 static int igb_disable_sriov(struct pci_dev *dev);
185 static int igb_pci_disable_sriov(struct pci_dev *dev);
186 #endif
187
188 static int igb_suspend(struct device *);
189 static int igb_resume(struct device *);
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 static const struct dev_pm_ops igb_pm_ops = {
194 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
195 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
196 igb_runtime_idle)
197 };
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203 .notifier_call = igb_notify_dca,
204 .next = NULL,
205 .priority = 0
206 };
207 #endif
208 #ifdef CONFIG_PCI_IOV
209 static unsigned int max_vfs;
210 module_param(max_vfs, uint, 0);
211 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
212 #endif /* CONFIG_PCI_IOV */
213
214 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
215 pci_channel_state_t);
216 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
217 static void igb_io_resume(struct pci_dev *);
218
219 static const struct pci_error_handlers igb_err_handler = {
220 .error_detected = igb_io_error_detected,
221 .slot_reset = igb_io_slot_reset,
222 .resume = igb_io_resume,
223 };
224
225 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
226
227 static struct pci_driver igb_driver = {
228 .name = igb_driver_name,
229 .id_table = igb_pci_tbl,
230 .probe = igb_probe,
231 .remove = igb_remove,
232 #ifdef CONFIG_PM
233 .driver.pm = &igb_pm_ops,
234 #endif
235 .shutdown = igb_shutdown,
236 .sriov_configure = igb_pci_sriov_configure,
237 .err_handler = &igb_err_handler
238 };
239
240 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
241 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
242 MODULE_LICENSE("GPL v2");
243 MODULE_VERSION(DRV_VERSION);
244
245 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
246 static int debug = -1;
247 module_param(debug, int, 0);
248 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
249
250 struct igb_reg_info {
251 u32 ofs;
252 char *name;
253 };
254
255 static const struct igb_reg_info igb_reg_info_tbl[] = {
256
257 /* General Registers */
258 {E1000_CTRL, "CTRL"},
259 {E1000_STATUS, "STATUS"},
260 {E1000_CTRL_EXT, "CTRL_EXT"},
261
262 /* Interrupt Registers */
263 {E1000_ICR, "ICR"},
264
265 /* RX Registers */
266 {E1000_RCTL, "RCTL"},
267 {E1000_RDLEN(0), "RDLEN"},
268 {E1000_RDH(0), "RDH"},
269 {E1000_RDT(0), "RDT"},
270 {E1000_RXDCTL(0), "RXDCTL"},
271 {E1000_RDBAL(0), "RDBAL"},
272 {E1000_RDBAH(0), "RDBAH"},
273
274 /* TX Registers */
275 {E1000_TCTL, "TCTL"},
276 {E1000_TDBAL(0), "TDBAL"},
277 {E1000_TDBAH(0), "TDBAH"},
278 {E1000_TDLEN(0), "TDLEN"},
279 {E1000_TDH(0), "TDH"},
280 {E1000_TDT(0), "TDT"},
281 {E1000_TXDCTL(0), "TXDCTL"},
282 {E1000_TDFH, "TDFH"},
283 {E1000_TDFT, "TDFT"},
284 {E1000_TDFHS, "TDFHS"},
285 {E1000_TDFPC, "TDFPC"},
286
287 /* List Terminator */
288 {}
289 };
290
291 /* igb_regdump - register printout routine */
292 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
293 {
294 int n = 0;
295 char rname[16];
296 u32 regs[8];
297
298 switch (reginfo->ofs) {
299 case E1000_RDLEN(0):
300 for (n = 0; n < 4; n++)
301 regs[n] = rd32(E1000_RDLEN(n));
302 break;
303 case E1000_RDH(0):
304 for (n = 0; n < 4; n++)
305 regs[n] = rd32(E1000_RDH(n));
306 break;
307 case E1000_RDT(0):
308 for (n = 0; n < 4; n++)
309 regs[n] = rd32(E1000_RDT(n));
310 break;
311 case E1000_RXDCTL(0):
312 for (n = 0; n < 4; n++)
313 regs[n] = rd32(E1000_RXDCTL(n));
314 break;
315 case E1000_RDBAL(0):
316 for (n = 0; n < 4; n++)
317 regs[n] = rd32(E1000_RDBAL(n));
318 break;
319 case E1000_RDBAH(0):
320 for (n = 0; n < 4; n++)
321 regs[n] = rd32(E1000_RDBAH(n));
322 break;
323 case E1000_TDBAL(0):
324 for (n = 0; n < 4; n++)
325 regs[n] = rd32(E1000_RDBAL(n));
326 break;
327 case E1000_TDBAH(0):
328 for (n = 0; n < 4; n++)
329 regs[n] = rd32(E1000_TDBAH(n));
330 break;
331 case E1000_TDLEN(0):
332 for (n = 0; n < 4; n++)
333 regs[n] = rd32(E1000_TDLEN(n));
334 break;
335 case E1000_TDH(0):
336 for (n = 0; n < 4; n++)
337 regs[n] = rd32(E1000_TDH(n));
338 break;
339 case E1000_TDT(0):
340 for (n = 0; n < 4; n++)
341 regs[n] = rd32(E1000_TDT(n));
342 break;
343 case E1000_TXDCTL(0):
344 for (n = 0; n < 4; n++)
345 regs[n] = rd32(E1000_TXDCTL(n));
346 break;
347 default:
348 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
349 return;
350 }
351
352 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
353 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
354 regs[2], regs[3]);
355 }
356
357 /* igb_dump - Print registers, Tx-rings and Rx-rings */
358 static void igb_dump(struct igb_adapter *adapter)
359 {
360 struct net_device *netdev = adapter->netdev;
361 struct e1000_hw *hw = &adapter->hw;
362 struct igb_reg_info *reginfo;
363 struct igb_ring *tx_ring;
364 union e1000_adv_tx_desc *tx_desc;
365 struct my_u0 { u64 a; u64 b; } *u0;
366 struct igb_ring *rx_ring;
367 union e1000_adv_rx_desc *rx_desc;
368 u32 staterr;
369 u16 i, n;
370
371 if (!netif_msg_hw(adapter))
372 return;
373
374 /* Print netdevice Info */
375 if (netdev) {
376 dev_info(&adapter->pdev->dev, "Net device Info\n");
377 pr_info("Device Name state trans_start\n");
378 pr_info("%-15s %016lX %016lX\n", netdev->name,
379 netdev->state, dev_trans_start(netdev));
380 }
381
382 /* Print Registers */
383 dev_info(&adapter->pdev->dev, "Register Dump\n");
384 pr_info(" Register Name Value\n");
385 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
386 reginfo->name; reginfo++) {
387 igb_regdump(hw, reginfo);
388 }
389
390 /* Print TX Ring Summary */
391 if (!netdev || !netif_running(netdev))
392 goto exit;
393
394 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
395 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
396 for (n = 0; n < adapter->num_tx_queues; n++) {
397 struct igb_tx_buffer *buffer_info;
398 tx_ring = adapter->tx_ring[n];
399 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
400 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
401 n, tx_ring->next_to_use, tx_ring->next_to_clean,
402 (u64)dma_unmap_addr(buffer_info, dma),
403 dma_unmap_len(buffer_info, len),
404 buffer_info->next_to_watch,
405 (u64)buffer_info->time_stamp);
406 }
407
408 /* Print TX Rings */
409 if (!netif_msg_tx_done(adapter))
410 goto rx_ring_summary;
411
412 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
413
414 /* Transmit Descriptor Formats
415 *
416 * Advanced Transmit Descriptor
417 * +--------------------------------------------------------------+
418 * 0 | Buffer Address [63:0] |
419 * +--------------------------------------------------------------+
420 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
421 * +--------------------------------------------------------------+
422 * 63 46 45 40 39 38 36 35 32 31 24 15 0
423 */
424
425 for (n = 0; n < adapter->num_tx_queues; n++) {
426 tx_ring = adapter->tx_ring[n];
427 pr_info("------------------------------------\n");
428 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
429 pr_info("------------------------------------\n");
430 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
431
432 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
433 const char *next_desc;
434 struct igb_tx_buffer *buffer_info;
435 tx_desc = IGB_TX_DESC(tx_ring, i);
436 buffer_info = &tx_ring->tx_buffer_info[i];
437 u0 = (struct my_u0 *)tx_desc;
438 if (i == tx_ring->next_to_use &&
439 i == tx_ring->next_to_clean)
440 next_desc = " NTC/U";
441 else if (i == tx_ring->next_to_use)
442 next_desc = " NTU";
443 else if (i == tx_ring->next_to_clean)
444 next_desc = " NTC";
445 else
446 next_desc = "";
447
448 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
449 i, le64_to_cpu(u0->a),
450 le64_to_cpu(u0->b),
451 (u64)dma_unmap_addr(buffer_info, dma),
452 dma_unmap_len(buffer_info, len),
453 buffer_info->next_to_watch,
454 (u64)buffer_info->time_stamp,
455 buffer_info->skb, next_desc);
456
457 if (netif_msg_pktdata(adapter) && buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
459 DUMP_PREFIX_ADDRESS,
460 16, 1, buffer_info->skb->data,
461 dma_unmap_len(buffer_info, len),
462 true);
463 }
464 }
465
466 /* Print RX Rings Summary */
467 rx_ring_summary:
468 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
469 pr_info("Queue [NTU] [NTC]\n");
470 for (n = 0; n < adapter->num_rx_queues; n++) {
471 rx_ring = adapter->rx_ring[n];
472 pr_info(" %5d %5X %5X\n",
473 n, rx_ring->next_to_use, rx_ring->next_to_clean);
474 }
475
476 /* Print RX Rings */
477 if (!netif_msg_rx_status(adapter))
478 goto exit;
479
480 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
481
482 /* Advanced Receive Descriptor (Read) Format
483 * 63 1 0
484 * +-----------------------------------------------------+
485 * 0 | Packet Buffer Address [63:1] |A0/NSE|
486 * +----------------------------------------------+------+
487 * 8 | Header Buffer Address [63:1] | DD |
488 * +-----------------------------------------------------+
489 *
490 *
491 * Advanced Receive Descriptor (Write-Back) Format
492 *
493 * 63 48 47 32 31 30 21 20 17 16 4 3 0
494 * +------------------------------------------------------+
495 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
496 * | Checksum Ident | | | | Type | Type |
497 * +------------------------------------------------------+
498 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
499 * +------------------------------------------------------+
500 * 63 48 47 32 31 20 19 0
501 */
502
503 for (n = 0; n < adapter->num_rx_queues; n++) {
504 rx_ring = adapter->rx_ring[n];
505 pr_info("------------------------------------\n");
506 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
507 pr_info("------------------------------------\n");
508 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
509 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
510
511 for (i = 0; i < rx_ring->count; i++) {
512 const char *next_desc;
513 struct igb_rx_buffer *buffer_info;
514 buffer_info = &rx_ring->rx_buffer_info[i];
515 rx_desc = IGB_RX_DESC(rx_ring, i);
516 u0 = (struct my_u0 *)rx_desc;
517 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
518
519 if (i == rx_ring->next_to_use)
520 next_desc = " NTU";
521 else if (i == rx_ring->next_to_clean)
522 next_desc = " NTC";
523 else
524 next_desc = "";
525
526 if (staterr & E1000_RXD_STAT_DD) {
527 /* Descriptor Done */
528 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
529 "RWB", i,
530 le64_to_cpu(u0->a),
531 le64_to_cpu(u0->b),
532 next_desc);
533 } else {
534 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
535 "R ", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 (u64)buffer_info->dma,
539 next_desc);
540
541 if (netif_msg_pktdata(adapter) &&
542 buffer_info->dma && buffer_info->page) {
543 print_hex_dump(KERN_INFO, "",
544 DUMP_PREFIX_ADDRESS,
545 16, 1,
546 page_address(buffer_info->page) +
547 buffer_info->page_offset,
548 igb_rx_bufsz(rx_ring), true);
549 }
550 }
551 }
552 }
553
554 exit:
555 return;
556 }
557
558 /**
559 * igb_get_i2c_data - Reads the I2C SDA data bit
560 * @hw: pointer to hardware structure
561 * @i2cctl: Current value of I2CCTL register
562 *
563 * Returns the I2C data bit value
564 **/
565 static int igb_get_i2c_data(void *data)
566 {
567 struct igb_adapter *adapter = (struct igb_adapter *)data;
568 struct e1000_hw *hw = &adapter->hw;
569 s32 i2cctl = rd32(E1000_I2CPARAMS);
570
571 return !!(i2cctl & E1000_I2C_DATA_IN);
572 }
573
574 /**
575 * igb_set_i2c_data - Sets the I2C data bit
576 * @data: pointer to hardware structure
577 * @state: I2C data value (0 or 1) to set
578 *
579 * Sets the I2C data bit
580 **/
581 static void igb_set_i2c_data(void *data, int state)
582 {
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 if (state)
588 i2cctl |= E1000_I2C_DATA_OUT;
589 else
590 i2cctl &= ~E1000_I2C_DATA_OUT;
591
592 i2cctl &= ~E1000_I2C_DATA_OE_N;
593 i2cctl |= E1000_I2C_CLK_OE_N;
594 wr32(E1000_I2CPARAMS, i2cctl);
595 wrfl();
596
597 }
598
599 /**
600 * igb_set_i2c_clk - Sets the I2C SCL clock
601 * @data: pointer to hardware structure
602 * @state: state to set clock
603 *
604 * Sets the I2C clock line to state
605 **/
606 static void igb_set_i2c_clk(void *data, int state)
607 {
608 struct igb_adapter *adapter = (struct igb_adapter *)data;
609 struct e1000_hw *hw = &adapter->hw;
610 s32 i2cctl = rd32(E1000_I2CPARAMS);
611
612 if (state) {
613 i2cctl |= E1000_I2C_CLK_OUT;
614 i2cctl &= ~E1000_I2C_CLK_OE_N;
615 } else {
616 i2cctl &= ~E1000_I2C_CLK_OUT;
617 i2cctl &= ~E1000_I2C_CLK_OE_N;
618 }
619 wr32(E1000_I2CPARAMS, i2cctl);
620 wrfl();
621 }
622
623 /**
624 * igb_get_i2c_clk - Gets the I2C SCL clock state
625 * @data: pointer to hardware structure
626 *
627 * Gets the I2C clock state
628 **/
629 static int igb_get_i2c_clk(void *data)
630 {
631 struct igb_adapter *adapter = (struct igb_adapter *)data;
632 struct e1000_hw *hw = &adapter->hw;
633 s32 i2cctl = rd32(E1000_I2CPARAMS);
634
635 return !!(i2cctl & E1000_I2C_CLK_IN);
636 }
637
638 static const struct i2c_algo_bit_data igb_i2c_algo = {
639 .setsda = igb_set_i2c_data,
640 .setscl = igb_set_i2c_clk,
641 .getsda = igb_get_i2c_data,
642 .getscl = igb_get_i2c_clk,
643 .udelay = 5,
644 .timeout = 20,
645 };
646
647 /**
648 * igb_get_hw_dev - return device
649 * @hw: pointer to hardware structure
650 *
651 * used by hardware layer to print debugging information
652 **/
653 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
654 {
655 struct igb_adapter *adapter = hw->back;
656 return adapter->netdev;
657 }
658
659 /**
660 * igb_init_module - Driver Registration Routine
661 *
662 * igb_init_module is the first routine called when the driver is
663 * loaded. All it does is register with the PCI subsystem.
664 **/
665 static int __init igb_init_module(void)
666 {
667 int ret;
668
669 pr_info("%s - version %s\n",
670 igb_driver_string, igb_driver_version);
671 pr_info("%s\n", igb_copyright);
672
673 #ifdef CONFIG_IGB_DCA
674 dca_register_notify(&dca_notifier);
675 #endif
676 ret = pci_register_driver(&igb_driver);
677 return ret;
678 }
679
680 module_init(igb_init_module);
681
682 /**
683 * igb_exit_module - Driver Exit Cleanup Routine
684 *
685 * igb_exit_module is called just before the driver is removed
686 * from memory.
687 **/
688 static void __exit igb_exit_module(void)
689 {
690 #ifdef CONFIG_IGB_DCA
691 dca_unregister_notify(&dca_notifier);
692 #endif
693 pci_unregister_driver(&igb_driver);
694 }
695
696 module_exit(igb_exit_module);
697
698 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
699 /**
700 * igb_cache_ring_register - Descriptor ring to register mapping
701 * @adapter: board private structure to initialize
702 *
703 * Once we know the feature-set enabled for the device, we'll cache
704 * the register offset the descriptor ring is assigned to.
705 **/
706 static void igb_cache_ring_register(struct igb_adapter *adapter)
707 {
708 int i = 0, j = 0;
709 u32 rbase_offset = adapter->vfs_allocated_count;
710
711 switch (adapter->hw.mac.type) {
712 case e1000_82576:
713 /* The queues are allocated for virtualization such that VF 0
714 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
715 * In order to avoid collision we start at the first free queue
716 * and continue consuming queues in the same sequence
717 */
718 if (adapter->vfs_allocated_count) {
719 for (; i < adapter->rss_queues; i++)
720 adapter->rx_ring[i]->reg_idx = rbase_offset +
721 Q_IDX_82576(i);
722 }
723 /* Fall through */
724 case e1000_82575:
725 case e1000_82580:
726 case e1000_i350:
727 case e1000_i354:
728 case e1000_i210:
729 case e1000_i211:
730 /* Fall through */
731 default:
732 for (; i < adapter->num_rx_queues; i++)
733 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
734 for (; j < adapter->num_tx_queues; j++)
735 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
736 break;
737 }
738 }
739
740 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
741 {
742 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
743 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
744 u32 value = 0;
745
746 if (E1000_REMOVED(hw_addr))
747 return ~value;
748
749 value = readl(&hw_addr[reg]);
750
751 /* reads should not return all F's */
752 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
753 struct net_device *netdev = igb->netdev;
754 hw->hw_addr = NULL;
755 netdev_err(netdev, "PCIe link lost\n");
756 }
757
758 return value;
759 }
760
761 /**
762 * igb_write_ivar - configure ivar for given MSI-X vector
763 * @hw: pointer to the HW structure
764 * @msix_vector: vector number we are allocating to a given ring
765 * @index: row index of IVAR register to write within IVAR table
766 * @offset: column offset of in IVAR, should be multiple of 8
767 *
768 * This function is intended to handle the writing of the IVAR register
769 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
770 * each containing an cause allocation for an Rx and Tx ring, and a
771 * variable number of rows depending on the number of queues supported.
772 **/
773 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
774 int index, int offset)
775 {
776 u32 ivar = array_rd32(E1000_IVAR0, index);
777
778 /* clear any bits that are currently set */
779 ivar &= ~((u32)0xFF << offset);
780
781 /* write vector and valid bit */
782 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
783
784 array_wr32(E1000_IVAR0, index, ivar);
785 }
786
787 #define IGB_N0_QUEUE -1
788 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
789 {
790 struct igb_adapter *adapter = q_vector->adapter;
791 struct e1000_hw *hw = &adapter->hw;
792 int rx_queue = IGB_N0_QUEUE;
793 int tx_queue = IGB_N0_QUEUE;
794 u32 msixbm = 0;
795
796 if (q_vector->rx.ring)
797 rx_queue = q_vector->rx.ring->reg_idx;
798 if (q_vector->tx.ring)
799 tx_queue = q_vector->tx.ring->reg_idx;
800
801 switch (hw->mac.type) {
802 case e1000_82575:
803 /* The 82575 assigns vectors using a bitmask, which matches the
804 * bitmask for the EICR/EIMS/EIMC registers. To assign one
805 * or more queues to a vector, we write the appropriate bits
806 * into the MSIXBM register for that vector.
807 */
808 if (rx_queue > IGB_N0_QUEUE)
809 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
810 if (tx_queue > IGB_N0_QUEUE)
811 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
812 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
813 msixbm |= E1000_EIMS_OTHER;
814 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
815 q_vector->eims_value = msixbm;
816 break;
817 case e1000_82576:
818 /* 82576 uses a table that essentially consists of 2 columns
819 * with 8 rows. The ordering is column-major so we use the
820 * lower 3 bits as the row index, and the 4th bit as the
821 * column offset.
822 */
823 if (rx_queue > IGB_N0_QUEUE)
824 igb_write_ivar(hw, msix_vector,
825 rx_queue & 0x7,
826 (rx_queue & 0x8) << 1);
827 if (tx_queue > IGB_N0_QUEUE)
828 igb_write_ivar(hw, msix_vector,
829 tx_queue & 0x7,
830 ((tx_queue & 0x8) << 1) + 8);
831 q_vector->eims_value = BIT(msix_vector);
832 break;
833 case e1000_82580:
834 case e1000_i350:
835 case e1000_i354:
836 case e1000_i210:
837 case e1000_i211:
838 /* On 82580 and newer adapters the scheme is similar to 82576
839 * however instead of ordering column-major we have things
840 * ordered row-major. So we traverse the table by using
841 * bit 0 as the column offset, and the remaining bits as the
842 * row index.
843 */
844 if (rx_queue > IGB_N0_QUEUE)
845 igb_write_ivar(hw, msix_vector,
846 rx_queue >> 1,
847 (rx_queue & 0x1) << 4);
848 if (tx_queue > IGB_N0_QUEUE)
849 igb_write_ivar(hw, msix_vector,
850 tx_queue >> 1,
851 ((tx_queue & 0x1) << 4) + 8);
852 q_vector->eims_value = BIT(msix_vector);
853 break;
854 default:
855 BUG();
856 break;
857 }
858
859 /* add q_vector eims value to global eims_enable_mask */
860 adapter->eims_enable_mask |= q_vector->eims_value;
861
862 /* configure q_vector to set itr on first interrupt */
863 q_vector->set_itr = 1;
864 }
865
866 /**
867 * igb_configure_msix - Configure MSI-X hardware
868 * @adapter: board private structure to initialize
869 *
870 * igb_configure_msix sets up the hardware to properly
871 * generate MSI-X interrupts.
872 **/
873 static void igb_configure_msix(struct igb_adapter *adapter)
874 {
875 u32 tmp;
876 int i, vector = 0;
877 struct e1000_hw *hw = &adapter->hw;
878
879 adapter->eims_enable_mask = 0;
880
881 /* set vector for other causes, i.e. link changes */
882 switch (hw->mac.type) {
883 case e1000_82575:
884 tmp = rd32(E1000_CTRL_EXT);
885 /* enable MSI-X PBA support*/
886 tmp |= E1000_CTRL_EXT_PBA_CLR;
887
888 /* Auto-Mask interrupts upon ICR read. */
889 tmp |= E1000_CTRL_EXT_EIAME;
890 tmp |= E1000_CTRL_EXT_IRCA;
891
892 wr32(E1000_CTRL_EXT, tmp);
893
894 /* enable msix_other interrupt */
895 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
896 adapter->eims_other = E1000_EIMS_OTHER;
897
898 break;
899
900 case e1000_82576:
901 case e1000_82580:
902 case e1000_i350:
903 case e1000_i354:
904 case e1000_i210:
905 case e1000_i211:
906 /* Turn on MSI-X capability first, or our settings
907 * won't stick. And it will take days to debug.
908 */
909 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
910 E1000_GPIE_PBA | E1000_GPIE_EIAME |
911 E1000_GPIE_NSICR);
912
913 /* enable msix_other interrupt */
914 adapter->eims_other = BIT(vector);
915 tmp = (vector++ | E1000_IVAR_VALID) << 8;
916
917 wr32(E1000_IVAR_MISC, tmp);
918 break;
919 default:
920 /* do nothing, since nothing else supports MSI-X */
921 break;
922 } /* switch (hw->mac.type) */
923
924 adapter->eims_enable_mask |= adapter->eims_other;
925
926 for (i = 0; i < adapter->num_q_vectors; i++)
927 igb_assign_vector(adapter->q_vector[i], vector++);
928
929 wrfl();
930 }
931
932 /**
933 * igb_request_msix - Initialize MSI-X interrupts
934 * @adapter: board private structure to initialize
935 *
936 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
937 * kernel.
938 **/
939 static int igb_request_msix(struct igb_adapter *adapter)
940 {
941 struct net_device *netdev = adapter->netdev;
942 int i, err = 0, vector = 0, free_vector = 0;
943
944 err = request_irq(adapter->msix_entries[vector].vector,
945 igb_msix_other, 0, netdev->name, adapter);
946 if (err)
947 goto err_out;
948
949 for (i = 0; i < adapter->num_q_vectors; i++) {
950 struct igb_q_vector *q_vector = adapter->q_vector[i];
951
952 vector++;
953
954 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
955
956 if (q_vector->rx.ring && q_vector->tx.ring)
957 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else if (q_vector->tx.ring)
960 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
961 q_vector->tx.ring->queue_index);
962 else if (q_vector->rx.ring)
963 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
964 q_vector->rx.ring->queue_index);
965 else
966 sprintf(q_vector->name, "%s-unused", netdev->name);
967
968 err = request_irq(adapter->msix_entries[vector].vector,
969 igb_msix_ring, 0, q_vector->name,
970 q_vector);
971 if (err)
972 goto err_free;
973 }
974
975 igb_configure_msix(adapter);
976 return 0;
977
978 err_free:
979 /* free already assigned IRQs */
980 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
981
982 vector--;
983 for (i = 0; i < vector; i++) {
984 free_irq(adapter->msix_entries[free_vector++].vector,
985 adapter->q_vector[i]);
986 }
987 err_out:
988 return err;
989 }
990
991 /**
992 * igb_free_q_vector - Free memory allocated for specific interrupt vector
993 * @adapter: board private structure to initialize
994 * @v_idx: Index of vector to be freed
995 *
996 * This function frees the memory allocated to the q_vector.
997 **/
998 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
999 {
1000 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1001
1002 adapter->q_vector[v_idx] = NULL;
1003
1004 /* igb_get_stats64() might access the rings on this vector,
1005 * we must wait a grace period before freeing it.
1006 */
1007 if (q_vector)
1008 kfree_rcu(q_vector, rcu);
1009 }
1010
1011 /**
1012 * igb_reset_q_vector - Reset config for interrupt vector
1013 * @adapter: board private structure to initialize
1014 * @v_idx: Index of vector to be reset
1015 *
1016 * If NAPI is enabled it will delete any references to the
1017 * NAPI struct. This is preparation for igb_free_q_vector.
1018 **/
1019 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1020 {
1021 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1022
1023 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1024 * allocated. So, q_vector is NULL so we should stop here.
1025 */
1026 if (!q_vector)
1027 return;
1028
1029 if (q_vector->tx.ring)
1030 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1031
1032 if (q_vector->rx.ring)
1033 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1034
1035 netif_napi_del(&q_vector->napi);
1036
1037 }
1038
1039 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1040 {
1041 int v_idx = adapter->num_q_vectors;
1042
1043 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1044 pci_disable_msix(adapter->pdev);
1045 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1046 pci_disable_msi(adapter->pdev);
1047
1048 while (v_idx--)
1049 igb_reset_q_vector(adapter, v_idx);
1050 }
1051
1052 /**
1053 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1054 * @adapter: board private structure to initialize
1055 *
1056 * This function frees the memory allocated to the q_vectors. In addition if
1057 * NAPI is enabled it will delete any references to the NAPI struct prior
1058 * to freeing the q_vector.
1059 **/
1060 static void igb_free_q_vectors(struct igb_adapter *adapter)
1061 {
1062 int v_idx = adapter->num_q_vectors;
1063
1064 adapter->num_tx_queues = 0;
1065 adapter->num_rx_queues = 0;
1066 adapter->num_q_vectors = 0;
1067
1068 while (v_idx--) {
1069 igb_reset_q_vector(adapter, v_idx);
1070 igb_free_q_vector(adapter, v_idx);
1071 }
1072 }
1073
1074 /**
1075 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1076 * @adapter: board private structure to initialize
1077 *
1078 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1079 * MSI-X interrupts allocated.
1080 */
1081 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1082 {
1083 igb_free_q_vectors(adapter);
1084 igb_reset_interrupt_capability(adapter);
1085 }
1086
1087 /**
1088 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1089 * @adapter: board private structure to initialize
1090 * @msix: boolean value of MSIX capability
1091 *
1092 * Attempt to configure interrupts using the best available
1093 * capabilities of the hardware and kernel.
1094 **/
1095 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1096 {
1097 int err;
1098 int numvecs, i;
1099
1100 if (!msix)
1101 goto msi_only;
1102 adapter->flags |= IGB_FLAG_HAS_MSIX;
1103
1104 /* Number of supported queues. */
1105 adapter->num_rx_queues = adapter->rss_queues;
1106 if (adapter->vfs_allocated_count)
1107 adapter->num_tx_queues = 1;
1108 else
1109 adapter->num_tx_queues = adapter->rss_queues;
1110
1111 /* start with one vector for every Rx queue */
1112 numvecs = adapter->num_rx_queues;
1113
1114 /* if Tx handler is separate add 1 for every Tx queue */
1115 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1116 numvecs += adapter->num_tx_queues;
1117
1118 /* store the number of vectors reserved for queues */
1119 adapter->num_q_vectors = numvecs;
1120
1121 /* add 1 vector for link status interrupts */
1122 numvecs++;
1123 for (i = 0; i < numvecs; i++)
1124 adapter->msix_entries[i].entry = i;
1125
1126 err = pci_enable_msix_range(adapter->pdev,
1127 adapter->msix_entries,
1128 numvecs,
1129 numvecs);
1130 if (err > 0)
1131 return;
1132
1133 igb_reset_interrupt_capability(adapter);
1134
1135 /* If we can't do MSI-X, try MSI */
1136 msi_only:
1137 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1138 #ifdef CONFIG_PCI_IOV
1139 /* disable SR-IOV for non MSI-X configurations */
1140 if (adapter->vf_data) {
1141 struct e1000_hw *hw = &adapter->hw;
1142 /* disable iov and allow time for transactions to clear */
1143 pci_disable_sriov(adapter->pdev);
1144 msleep(500);
1145
1146 kfree(adapter->vf_mac_list);
1147 adapter->vf_mac_list = NULL;
1148 kfree(adapter->vf_data);
1149 adapter->vf_data = NULL;
1150 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1151 wrfl();
1152 msleep(100);
1153 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1154 }
1155 #endif
1156 adapter->vfs_allocated_count = 0;
1157 adapter->rss_queues = 1;
1158 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1159 adapter->num_rx_queues = 1;
1160 adapter->num_tx_queues = 1;
1161 adapter->num_q_vectors = 1;
1162 if (!pci_enable_msi(adapter->pdev))
1163 adapter->flags |= IGB_FLAG_HAS_MSI;
1164 }
1165
1166 static void igb_add_ring(struct igb_ring *ring,
1167 struct igb_ring_container *head)
1168 {
1169 head->ring = ring;
1170 head->count++;
1171 }
1172
1173 /**
1174 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1175 * @adapter: board private structure to initialize
1176 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1177 * @v_idx: index of vector in adapter struct
1178 * @txr_count: total number of Tx rings to allocate
1179 * @txr_idx: index of first Tx ring to allocate
1180 * @rxr_count: total number of Rx rings to allocate
1181 * @rxr_idx: index of first Rx ring to allocate
1182 *
1183 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1184 **/
1185 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1186 int v_count, int v_idx,
1187 int txr_count, int txr_idx,
1188 int rxr_count, int rxr_idx)
1189 {
1190 struct igb_q_vector *q_vector;
1191 struct igb_ring *ring;
1192 int ring_count, size;
1193
1194 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1195 if (txr_count > 1 || rxr_count > 1)
1196 return -ENOMEM;
1197
1198 ring_count = txr_count + rxr_count;
1199 size = sizeof(struct igb_q_vector) +
1200 (sizeof(struct igb_ring) * ring_count);
1201
1202 /* allocate q_vector and rings */
1203 q_vector = adapter->q_vector[v_idx];
1204 if (!q_vector) {
1205 q_vector = kzalloc(size, GFP_KERNEL);
1206 } else if (size > ksize(q_vector)) {
1207 kfree_rcu(q_vector, rcu);
1208 q_vector = kzalloc(size, GFP_KERNEL);
1209 } else {
1210 memset(q_vector, 0, size);
1211 }
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 ring->cbs_enable = false;
1264 ring->idleslope = 0;
1265 ring->sendslope = 0;
1266 ring->hicredit = 0;
1267 ring->locredit = 0;
1268
1269 u64_stats_init(&ring->tx_syncp);
1270 u64_stats_init(&ring->tx_syncp2);
1271
1272 /* assign ring to adapter */
1273 adapter->tx_ring[txr_idx] = ring;
1274
1275 /* push pointer to next ring */
1276 ring++;
1277 }
1278
1279 if (rxr_count) {
1280 /* assign generic ring traits */
1281 ring->dev = &adapter->pdev->dev;
1282 ring->netdev = adapter->netdev;
1283
1284 /* configure backlink on ring */
1285 ring->q_vector = q_vector;
1286
1287 /* update q_vector Rx values */
1288 igb_add_ring(ring, &q_vector->rx);
1289
1290 /* set flag indicating ring supports SCTP checksum offload */
1291 if (adapter->hw.mac.type >= e1000_82576)
1292 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1293
1294 /* On i350, i354, i210, and i211, loopback VLAN packets
1295 * have the tag byte-swapped.
1296 */
1297 if (adapter->hw.mac.type >= e1000_i350)
1298 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1299
1300 /* apply Rx specific ring traits */
1301 ring->count = adapter->rx_ring_count;
1302 ring->queue_index = rxr_idx;
1303
1304 u64_stats_init(&ring->rx_syncp);
1305
1306 /* assign ring to adapter */
1307 adapter->rx_ring[rxr_idx] = ring;
1308 }
1309
1310 return 0;
1311 }
1312
1313
1314 /**
1315 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1316 * @adapter: board private structure to initialize
1317 *
1318 * We allocate one q_vector per queue interrupt. If allocation fails we
1319 * return -ENOMEM.
1320 **/
1321 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1322 {
1323 int q_vectors = adapter->num_q_vectors;
1324 int rxr_remaining = adapter->num_rx_queues;
1325 int txr_remaining = adapter->num_tx_queues;
1326 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1327 int err;
1328
1329 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1330 for (; rxr_remaining; v_idx++) {
1331 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1332 0, 0, 1, rxr_idx);
1333
1334 if (err)
1335 goto err_out;
1336
1337 /* update counts and index */
1338 rxr_remaining--;
1339 rxr_idx++;
1340 }
1341 }
1342
1343 for (; v_idx < q_vectors; v_idx++) {
1344 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1345 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1346
1347 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1348 tqpv, txr_idx, rqpv, rxr_idx);
1349
1350 if (err)
1351 goto err_out;
1352
1353 /* update counts and index */
1354 rxr_remaining -= rqpv;
1355 txr_remaining -= tqpv;
1356 rxr_idx++;
1357 txr_idx++;
1358 }
1359
1360 return 0;
1361
1362 err_out:
1363 adapter->num_tx_queues = 0;
1364 adapter->num_rx_queues = 0;
1365 adapter->num_q_vectors = 0;
1366
1367 while (v_idx--)
1368 igb_free_q_vector(adapter, v_idx);
1369
1370 return -ENOMEM;
1371 }
1372
1373 /**
1374 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1375 * @adapter: board private structure to initialize
1376 * @msix: boolean value of MSIX capability
1377 *
1378 * This function initializes the interrupts and allocates all of the queues.
1379 **/
1380 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1381 {
1382 struct pci_dev *pdev = adapter->pdev;
1383 int err;
1384
1385 igb_set_interrupt_capability(adapter, msix);
1386
1387 err = igb_alloc_q_vectors(adapter);
1388 if (err) {
1389 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1390 goto err_alloc_q_vectors;
1391 }
1392
1393 igb_cache_ring_register(adapter);
1394
1395 return 0;
1396
1397 err_alloc_q_vectors:
1398 igb_reset_interrupt_capability(adapter);
1399 return err;
1400 }
1401
1402 /**
1403 * igb_request_irq - initialize interrupts
1404 * @adapter: board private structure to initialize
1405 *
1406 * Attempts to configure interrupts using the best available
1407 * capabilities of the hardware and kernel.
1408 **/
1409 static int igb_request_irq(struct igb_adapter *adapter)
1410 {
1411 struct net_device *netdev = adapter->netdev;
1412 struct pci_dev *pdev = adapter->pdev;
1413 int err = 0;
1414
1415 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1416 err = igb_request_msix(adapter);
1417 if (!err)
1418 goto request_done;
1419 /* fall back to MSI */
1420 igb_free_all_tx_resources(adapter);
1421 igb_free_all_rx_resources(adapter);
1422
1423 igb_clear_interrupt_scheme(adapter);
1424 err = igb_init_interrupt_scheme(adapter, false);
1425 if (err)
1426 goto request_done;
1427
1428 igb_setup_all_tx_resources(adapter);
1429 igb_setup_all_rx_resources(adapter);
1430 igb_configure(adapter);
1431 }
1432
1433 igb_assign_vector(adapter->q_vector[0], 0);
1434
1435 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1436 err = request_irq(pdev->irq, igb_intr_msi, 0,
1437 netdev->name, adapter);
1438 if (!err)
1439 goto request_done;
1440
1441 /* fall back to legacy interrupts */
1442 igb_reset_interrupt_capability(adapter);
1443 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1444 }
1445
1446 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1447 netdev->name, adapter);
1448
1449 if (err)
1450 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1451 err);
1452
1453 request_done:
1454 return err;
1455 }
1456
1457 static void igb_free_irq(struct igb_adapter *adapter)
1458 {
1459 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1460 int vector = 0, i;
1461
1462 free_irq(adapter->msix_entries[vector++].vector, adapter);
1463
1464 for (i = 0; i < adapter->num_q_vectors; i++)
1465 free_irq(adapter->msix_entries[vector++].vector,
1466 adapter->q_vector[i]);
1467 } else {
1468 free_irq(adapter->pdev->irq, adapter);
1469 }
1470 }
1471
1472 /**
1473 * igb_irq_disable - Mask off interrupt generation on the NIC
1474 * @adapter: board private structure
1475 **/
1476 static void igb_irq_disable(struct igb_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* we need to be careful when disabling interrupts. The VFs are also
1481 * mapped into these registers and so clearing the bits can cause
1482 * issues on the VF drivers so we only need to clear what we set
1483 */
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 regval = rd32(E1000_EIAM);
1486
1487 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1488 wr32(E1000_EIMC, adapter->eims_enable_mask);
1489 regval = rd32(E1000_EIAC);
1490 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1491 }
1492
1493 wr32(E1000_IAM, 0);
1494 wr32(E1000_IMC, ~0);
1495 wrfl();
1496 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1497 int i;
1498
1499 for (i = 0; i < adapter->num_q_vectors; i++)
1500 synchronize_irq(adapter->msix_entries[i].vector);
1501 } else {
1502 synchronize_irq(adapter->pdev->irq);
1503 }
1504 }
1505
1506 /**
1507 * igb_irq_enable - Enable default interrupt generation settings
1508 * @adapter: board private structure
1509 **/
1510 static void igb_irq_enable(struct igb_adapter *adapter)
1511 {
1512 struct e1000_hw *hw = &adapter->hw;
1513
1514 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1515 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1516 u32 regval = rd32(E1000_EIAC);
1517
1518 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1519 regval = rd32(E1000_EIAM);
1520 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1521 wr32(E1000_EIMS, adapter->eims_enable_mask);
1522 if (adapter->vfs_allocated_count) {
1523 wr32(E1000_MBVFIMR, 0xFF);
1524 ims |= E1000_IMS_VMMB;
1525 }
1526 wr32(E1000_IMS, ims);
1527 } else {
1528 wr32(E1000_IMS, IMS_ENABLE_MASK |
1529 E1000_IMS_DRSTA);
1530 wr32(E1000_IAM, IMS_ENABLE_MASK |
1531 E1000_IMS_DRSTA);
1532 }
1533 }
1534
1535 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1536 {
1537 struct e1000_hw *hw = &adapter->hw;
1538 u16 pf_id = adapter->vfs_allocated_count;
1539 u16 vid = adapter->hw.mng_cookie.vlan_id;
1540 u16 old_vid = adapter->mng_vlan_id;
1541
1542 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1543 /* add VID to filter table */
1544 igb_vfta_set(hw, vid, pf_id, true, true);
1545 adapter->mng_vlan_id = vid;
1546 } else {
1547 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1548 }
1549
1550 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1551 (vid != old_vid) &&
1552 !test_bit(old_vid, adapter->active_vlans)) {
1553 /* remove VID from filter table */
1554 igb_vfta_set(hw, vid, pf_id, false, true);
1555 }
1556 }
1557
1558 /**
1559 * igb_release_hw_control - release control of the h/w to f/w
1560 * @adapter: address of board private structure
1561 *
1562 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1563 * For ASF and Pass Through versions of f/w this means that the
1564 * driver is no longer loaded.
1565 **/
1566 static void igb_release_hw_control(struct igb_adapter *adapter)
1567 {
1568 struct e1000_hw *hw = &adapter->hw;
1569 u32 ctrl_ext;
1570
1571 /* Let firmware take over control of h/w */
1572 ctrl_ext = rd32(E1000_CTRL_EXT);
1573 wr32(E1000_CTRL_EXT,
1574 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1575 }
1576
1577 /**
1578 * igb_get_hw_control - get control of the h/w from f/w
1579 * @adapter: address of board private structure
1580 *
1581 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1582 * For ASF and Pass Through versions of f/w this means that
1583 * the driver is loaded.
1584 **/
1585 static void igb_get_hw_control(struct igb_adapter *adapter)
1586 {
1587 struct e1000_hw *hw = &adapter->hw;
1588 u32 ctrl_ext;
1589
1590 /* Let firmware know the driver has taken over */
1591 ctrl_ext = rd32(E1000_CTRL_EXT);
1592 wr32(E1000_CTRL_EXT,
1593 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1594 }
1595
1596 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1597 {
1598 struct net_device *netdev = adapter->netdev;
1599 struct e1000_hw *hw = &adapter->hw;
1600
1601 WARN_ON(hw->mac.type != e1000_i210);
1602
1603 if (enable)
1604 adapter->flags |= IGB_FLAG_FQTSS;
1605 else
1606 adapter->flags &= ~IGB_FLAG_FQTSS;
1607
1608 if (netif_running(netdev))
1609 schedule_work(&adapter->reset_task);
1610 }
1611
1612 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1613 {
1614 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1615 }
1616
1617 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1618 enum tx_queue_prio prio)
1619 {
1620 u32 val;
1621
1622 WARN_ON(hw->mac.type != e1000_i210);
1623 WARN_ON(queue < 0 || queue > 4);
1624
1625 val = rd32(E1000_I210_TXDCTL(queue));
1626
1627 if (prio == TX_QUEUE_PRIO_HIGH)
1628 val |= E1000_TXDCTL_PRIORITY;
1629 else
1630 val &= ~E1000_TXDCTL_PRIORITY;
1631
1632 wr32(E1000_I210_TXDCTL(queue), val);
1633 }
1634
1635 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1636 {
1637 u32 val;
1638
1639 WARN_ON(hw->mac.type != e1000_i210);
1640 WARN_ON(queue < 0 || queue > 1);
1641
1642 val = rd32(E1000_I210_TQAVCC(queue));
1643
1644 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1645 val |= E1000_TQAVCC_QUEUEMODE;
1646 else
1647 val &= ~E1000_TQAVCC_QUEUEMODE;
1648
1649 wr32(E1000_I210_TQAVCC(queue), val);
1650 }
1651
1652 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1653 {
1654 int i;
1655
1656 for (i = 0; i < adapter->num_tx_queues; i++) {
1657 if (adapter->tx_ring[i]->cbs_enable)
1658 return true;
1659 }
1660
1661 return false;
1662 }
1663
1664 static bool is_any_txtime_enabled(struct igb_adapter *adapter)
1665 {
1666 int i;
1667
1668 for (i = 0; i < adapter->num_tx_queues; i++) {
1669 if (adapter->tx_ring[i]->launchtime_enable)
1670 return true;
1671 }
1672
1673 return false;
1674 }
1675
1676 /**
1677 * igb_config_tx_modes - Configure "Qav Tx mode" features on igb
1678 * @adapter: pointer to adapter struct
1679 * @queue: queue number
1680 *
1681 * Configure CBS and Launchtime for a given hardware queue.
1682 * Parameters are retrieved from the correct Tx ring, so
1683 * igb_save_cbs_params() and igb_save_txtime_params() should be used
1684 * for setting those correctly prior to this function being called.
1685 **/
1686 static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
1687 {
1688 struct igb_ring *ring = adapter->tx_ring[queue];
1689 struct net_device *netdev = adapter->netdev;
1690 struct e1000_hw *hw = &adapter->hw;
1691 u32 tqavcc, tqavctrl;
1692 u16 value;
1693
1694 WARN_ON(hw->mac.type != e1000_i210);
1695 WARN_ON(queue < 0 || queue > 1);
1696
1697 /* If any of the Qav features is enabled, configure queues as SR and
1698 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
1699 * as SP.
1700 */
1701 if (ring->cbs_enable || ring->launchtime_enable) {
1702 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704 } else {
1705 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1706 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1707 }
1708
1709 /* If CBS is enabled, set DataTranARB and config its parameters. */
1710 if (ring->cbs_enable || queue == 0) {
1711 /* i210 does not allow the queue 0 to be in the Strict
1712 * Priority mode while the Qav mode is enabled, so,
1713 * instead of disabling strict priority mode, we give
1714 * queue 0 the maximum of credits possible.
1715 *
1716 * See section 8.12.19 of the i210 datasheet, "Note:
1717 * Queue0 QueueMode must be set to 1b when
1718 * TransmitMode is set to Qav."
1719 */
1720 if (queue == 0 && !ring->cbs_enable) {
1721 /* max "linkspeed" idleslope in kbps */
1722 ring->idleslope = 1000000;
1723 ring->hicredit = ETH_FRAME_LEN;
1724 }
1725
1726 /* Always set data transfer arbitration to credit-based
1727 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
1728 * the queues.
1729 */
1730 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1731 tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
1732 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1733
1734 /* According to i210 datasheet section 7.2.7.7, we should set
1735 * the 'idleSlope' field from TQAVCC register following the
1736 * equation:
1737 *
1738 * For 100 Mbps link speed:
1739 *
1740 * value = BW * 0x7735 * 0.2 (E1)
1741 *
1742 * For 1000Mbps link speed:
1743 *
1744 * value = BW * 0x7735 * 2 (E2)
1745 *
1746 * E1 and E2 can be merged into one equation as shown below.
1747 * Note that 'link-speed' is in Mbps.
1748 *
1749 * value = BW * 0x7735 * 2 * link-speed
1750 * -------------- (E3)
1751 * 1000
1752 *
1753 * 'BW' is the percentage bandwidth out of full link speed
1754 * which can be found with the following equation. Note that
1755 * idleSlope here is the parameter from this function which
1756 * is in kbps.
1757 *
1758 * BW = idleSlope
1759 * ----------------- (E4)
1760 * link-speed * 1000
1761 *
1762 * That said, we can come up with a generic equation to
1763 * calculate the value we should set it TQAVCC register by
1764 * replacing 'BW' in E3 by E4. The resulting equation is:
1765 *
1766 * value = idleSlope * 0x7735 * 2 * link-speed
1767 * ----------------- -------------- (E5)
1768 * link-speed * 1000 1000
1769 *
1770 * 'link-speed' is present in both sides of the fraction so
1771 * it is canceled out. The final equation is the following:
1772 *
1773 * value = idleSlope * 61034
1774 * ----------------- (E6)
1775 * 1000000
1776 *
1777 * NOTE: For i210, given the above, we can see that idleslope
1778 * is represented in 16.38431 kbps units by the value at
1779 * the TQAVCC register (1Gbps / 61034), which reduces
1780 * the granularity for idleslope increments.
1781 * For instance, if you want to configure a 2576kbps
1782 * idleslope, the value to be written on the register
1783 * would have to be 157.23. If rounded down, you end
1784 * up with less bandwidth available than originally
1785 * required (~2572 kbps). If rounded up, you end up
1786 * with a higher bandwidth (~2589 kbps). Below the
1787 * approach we take is to always round up the
1788 * calculated value, so the resulting bandwidth might
1789 * be slightly higher for some configurations.
1790 */
1791 value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
1792
1793 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1794 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1795 tqavcc |= value;
1796 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1797
1798 wr32(E1000_I210_TQAVHC(queue),
1799 0x80000000 + ring->hicredit * 0x7735);
1800 } else {
1801
1802 /* Set idleSlope to zero. */
1803 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1804 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1805 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1806
1807 /* Set hiCredit to zero. */
1808 wr32(E1000_I210_TQAVHC(queue), 0);
1809
1810 /* If CBS is not enabled for any queues anymore, then return to
1811 * the default state of Data Transmission Arbitration on
1812 * TQAVCTRL.
1813 */
1814 if (!is_any_cbs_enabled(adapter)) {
1815 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1816 tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
1817 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1818 }
1819 }
1820
1821 /* If LaunchTime is enabled, set DataTranTIM. */
1822 if (ring->launchtime_enable) {
1823 /* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
1824 * for any of the SR queues, and configure fetchtime delta.
1825 * XXX NOTE:
1826 * - LaunchTime will be enabled for all SR queues.
1827 * - A fixed offset can be added relative to the launch
1828 * time of all packets if configured at reg LAUNCH_OS0.
1829 * We are keeping it as 0 for now (default value).
1830 */
1831 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1832 tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
1833 E1000_TQAVCTRL_FETCHTIME_DELTA;
1834 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1835 } else {
1836 /* If Launchtime is not enabled for any SR queues anymore,
1837 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
1838 * effectively disabling Launchtime.
1839 */
1840 if (!is_any_txtime_enabled(adapter)) {
1841 tqavctrl = rd32(E1000_I210_TQAVCTRL);
1842 tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
1843 tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
1844 wr32(E1000_I210_TQAVCTRL, tqavctrl);
1845 }
1846 }
1847
1848 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1849 * CBS are not configurable by software so we don't do any 'controller
1850 * configuration' in respect to these parameters.
1851 */
1852
1853 netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1854 ring->cbs_enable ? "enabled" : "disabled",
1855 ring->launchtime_enable ? "enabled" : "disabled",
1856 queue,
1857 ring->idleslope, ring->sendslope,
1858 ring->hicredit, ring->locredit);
1859 }
1860
1861 static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
1862 bool enable)
1863 {
1864 struct igb_ring *ring;
1865
1866 if (queue < 0 || queue > adapter->num_tx_queues)
1867 return -EINVAL;
1868
1869 ring = adapter->tx_ring[queue];
1870 ring->launchtime_enable = enable;
1871
1872 return 0;
1873 }
1874
1875 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1876 bool enable, int idleslope, int sendslope,
1877 int hicredit, int locredit)
1878 {
1879 struct igb_ring *ring;
1880
1881 if (queue < 0 || queue > adapter->num_tx_queues)
1882 return -EINVAL;
1883
1884 ring = adapter->tx_ring[queue];
1885
1886 ring->cbs_enable = enable;
1887 ring->idleslope = idleslope;
1888 ring->sendslope = sendslope;
1889 ring->hicredit = hicredit;
1890 ring->locredit = locredit;
1891
1892 return 0;
1893 }
1894
1895 /**
1896 * igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
1897 * @adapter: pointer to adapter struct
1898 *
1899 * Configure TQAVCTRL register switching the controller's Tx mode
1900 * if FQTSS mode is enabled or disabled. Additionally, will issue
1901 * a call to igb_config_tx_modes() per queue so any previously saved
1902 * Tx parameters are applied.
1903 **/
1904 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1905 {
1906 struct net_device *netdev = adapter->netdev;
1907 struct e1000_hw *hw = &adapter->hw;
1908 u32 val;
1909
1910 /* Only i210 controller supports changing the transmission mode. */
1911 if (hw->mac.type != e1000_i210)
1912 return;
1913
1914 if (is_fqtss_enabled(adapter)) {
1915 int i, max_queue;
1916
1917 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1918 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
1919 * so SP queues wait for SR ones.
1920 */
1921 val = rd32(E1000_I210_TQAVCTRL);
1922 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
1923 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1924 wr32(E1000_I210_TQAVCTRL, val);
1925
1926 /* Configure Tx and Rx packet buffers sizes as described in
1927 * i210 datasheet section 7.2.7.7.
1928 */
1929 val = rd32(E1000_TXPBS);
1930 val &= ~I210_TXPBSIZE_MASK;
1931 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1932 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1933 wr32(E1000_TXPBS, val);
1934
1935 val = rd32(E1000_RXPBS);
1936 val &= ~I210_RXPBSIZE_MASK;
1937 val |= I210_RXPBSIZE_PB_30KB;
1938 wr32(E1000_RXPBS, val);
1939
1940 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1941 * register should not exceed the buffer size programmed in
1942 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1943 * so according to the datasheet we should set MAX_TPKT_SIZE to
1944 * 4kB / 64.
1945 *
1946 * However, when we do so, no frame from queue 2 and 3 are
1947 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1948 * or _equal_ to the buffer size programmed in TXPBS. For this
1949 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1950 */
1951 val = (4096 - 1) / 64;
1952 wr32(E1000_I210_DTXMXPKTSZ, val);
1953
1954 /* Since FQTSS mode is enabled, apply any CBS configuration
1955 * previously set. If no previous CBS configuration has been
1956 * done, then the initial configuration is applied, which means
1957 * CBS is disabled.
1958 */
1959 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1960 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1961
1962 for (i = 0; i < max_queue; i++) {
1963 igb_config_tx_modes(adapter, i);
1964 }
1965 } else {
1966 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1967 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1968 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1969
1970 val = rd32(E1000_I210_TQAVCTRL);
1971 /* According to Section 8.12.21, the other flags we've set when
1972 * enabling FQTSS are not relevant when disabling FQTSS so we
1973 * don't set they here.
1974 */
1975 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1976 wr32(E1000_I210_TQAVCTRL, val);
1977 }
1978
1979 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1980 "enabled" : "disabled");
1981 }
1982
1983 /**
1984 * igb_configure - configure the hardware for RX and TX
1985 * @adapter: private board structure
1986 **/
1987 static void igb_configure(struct igb_adapter *adapter)
1988 {
1989 struct net_device *netdev = adapter->netdev;
1990 int i;
1991
1992 igb_get_hw_control(adapter);
1993 igb_set_rx_mode(netdev);
1994 igb_setup_tx_mode(adapter);
1995
1996 igb_restore_vlan(adapter);
1997
1998 igb_setup_tctl(adapter);
1999 igb_setup_mrqc(adapter);
2000 igb_setup_rctl(adapter);
2001
2002 igb_nfc_filter_restore(adapter);
2003 igb_configure_tx(adapter);
2004 igb_configure_rx(adapter);
2005
2006 igb_rx_fifo_flush_82575(&adapter->hw);
2007
2008 /* call igb_desc_unused which always leaves
2009 * at least 1 descriptor unused to make sure
2010 * next_to_use != next_to_clean
2011 */
2012 for (i = 0; i < adapter->num_rx_queues; i++) {
2013 struct igb_ring *ring = adapter->rx_ring[i];
2014 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
2015 }
2016 }
2017
2018 /**
2019 * igb_power_up_link - Power up the phy/serdes link
2020 * @adapter: address of board private structure
2021 **/
2022 void igb_power_up_link(struct igb_adapter *adapter)
2023 {
2024 igb_reset_phy(&adapter->hw);
2025
2026 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2027 igb_power_up_phy_copper(&adapter->hw);
2028 else
2029 igb_power_up_serdes_link_82575(&adapter->hw);
2030
2031 igb_setup_link(&adapter->hw);
2032 }
2033
2034 /**
2035 * igb_power_down_link - Power down the phy/serdes link
2036 * @adapter: address of board private structure
2037 */
2038 static void igb_power_down_link(struct igb_adapter *adapter)
2039 {
2040 if (adapter->hw.phy.media_type == e1000_media_type_copper)
2041 igb_power_down_phy_copper_82575(&adapter->hw);
2042 else
2043 igb_shutdown_serdes_link_82575(&adapter->hw);
2044 }
2045
2046 /**
2047 * Detect and switch function for Media Auto Sense
2048 * @adapter: address of the board private structure
2049 **/
2050 static void igb_check_swap_media(struct igb_adapter *adapter)
2051 {
2052 struct e1000_hw *hw = &adapter->hw;
2053 u32 ctrl_ext, connsw;
2054 bool swap_now = false;
2055
2056 ctrl_ext = rd32(E1000_CTRL_EXT);
2057 connsw = rd32(E1000_CONNSW);
2058
2059 /* need to live swap if current media is copper and we have fiber/serdes
2060 * to go to.
2061 */
2062
2063 if ((hw->phy.media_type == e1000_media_type_copper) &&
2064 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
2065 swap_now = true;
2066 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
2067 /* copper signal takes time to appear */
2068 if (adapter->copper_tries < 4) {
2069 adapter->copper_tries++;
2070 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
2071 wr32(E1000_CONNSW, connsw);
2072 return;
2073 } else {
2074 adapter->copper_tries = 0;
2075 if ((connsw & E1000_CONNSW_PHYSD) &&
2076 (!(connsw & E1000_CONNSW_PHY_PDN))) {
2077 swap_now = true;
2078 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
2079 wr32(E1000_CONNSW, connsw);
2080 }
2081 }
2082 }
2083
2084 if (!swap_now)
2085 return;
2086
2087 switch (hw->phy.media_type) {
2088 case e1000_media_type_copper:
2089 netdev_info(adapter->netdev,
2090 "MAS: changing media to fiber/serdes\n");
2091 ctrl_ext |=
2092 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2093 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2094 adapter->copper_tries = 0;
2095 break;
2096 case e1000_media_type_internal_serdes:
2097 case e1000_media_type_fiber:
2098 netdev_info(adapter->netdev,
2099 "MAS: changing media to copper\n");
2100 ctrl_ext &=
2101 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2102 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2103 break;
2104 default:
2105 /* shouldn't get here during regular operation */
2106 netdev_err(adapter->netdev,
2107 "AMS: Invalid media type found, returning\n");
2108 break;
2109 }
2110 wr32(E1000_CTRL_EXT, ctrl_ext);
2111 }
2112
2113 /**
2114 * igb_up - Open the interface and prepare it to handle traffic
2115 * @adapter: board private structure
2116 **/
2117 int igb_up(struct igb_adapter *adapter)
2118 {
2119 struct e1000_hw *hw = &adapter->hw;
2120 int i;
2121
2122 /* hardware has been reset, we need to reload some things */
2123 igb_configure(adapter);
2124
2125 clear_bit(__IGB_DOWN, &adapter->state);
2126
2127 for (i = 0; i < adapter->num_q_vectors; i++)
2128 napi_enable(&(adapter->q_vector[i]->napi));
2129
2130 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2131 igb_configure_msix(adapter);
2132 else
2133 igb_assign_vector(adapter->q_vector[0], 0);
2134
2135 /* Clear any pending interrupts. */
2136 rd32(E1000_TSICR);
2137 rd32(E1000_ICR);
2138 igb_irq_enable(adapter);
2139
2140 /* notify VFs that reset has been completed */
2141 if (adapter->vfs_allocated_count) {
2142 u32 reg_data = rd32(E1000_CTRL_EXT);
2143
2144 reg_data |= E1000_CTRL_EXT_PFRSTD;
2145 wr32(E1000_CTRL_EXT, reg_data);
2146 }
2147
2148 netif_tx_start_all_queues(adapter->netdev);
2149
2150 /* start the watchdog. */
2151 hw->mac.get_link_status = 1;
2152 schedule_work(&adapter->watchdog_task);
2153
2154 if ((adapter->flags & IGB_FLAG_EEE) &&
2155 (!hw->dev_spec._82575.eee_disable))
2156 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2157
2158 return 0;
2159 }
2160
2161 void igb_down(struct igb_adapter *adapter)
2162 {
2163 struct net_device *netdev = adapter->netdev;
2164 struct e1000_hw *hw = &adapter->hw;
2165 u32 tctl, rctl;
2166 int i;
2167
2168 /* signal that we're down so the interrupt handler does not
2169 * reschedule our watchdog timer
2170 */
2171 set_bit(__IGB_DOWN, &adapter->state);
2172
2173 /* disable receives in the hardware */
2174 rctl = rd32(E1000_RCTL);
2175 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2176 /* flush and sleep below */
2177
2178 igb_nfc_filter_exit(adapter);
2179
2180 netif_carrier_off(netdev);
2181 netif_tx_stop_all_queues(netdev);
2182
2183 /* disable transmits in the hardware */
2184 tctl = rd32(E1000_TCTL);
2185 tctl &= ~E1000_TCTL_EN;
2186 wr32(E1000_TCTL, tctl);
2187 /* flush both disables and wait for them to finish */
2188 wrfl();
2189 usleep_range(10000, 11000);
2190
2191 igb_irq_disable(adapter);
2192
2193 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2194
2195 for (i = 0; i < adapter->num_q_vectors; i++) {
2196 if (adapter->q_vector[i]) {
2197 napi_synchronize(&adapter->q_vector[i]->napi);
2198 napi_disable(&adapter->q_vector[i]->napi);
2199 }
2200 }
2201
2202 del_timer_sync(&adapter->watchdog_timer);
2203 del_timer_sync(&adapter->phy_info_timer);
2204
2205 /* record the stats before reset*/
2206 mutex_lock(&adapter->stats64_lock);
2207 igb_update_stats(adapter);
2208 mutex_unlock(&adapter->stats64_lock);
2209
2210 adapter->link_speed = 0;
2211 adapter->link_duplex = 0;
2212
2213 if (!pci_channel_offline(adapter->pdev))
2214 igb_reset(adapter);
2215
2216 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2217 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2218
2219 igb_clean_all_tx_rings(adapter);
2220 igb_clean_all_rx_rings(adapter);
2221 #ifdef CONFIG_IGB_DCA
2222
2223 /* since we reset the hardware DCA settings were cleared */
2224 igb_setup_dca(adapter);
2225 #endif
2226 }
2227
2228 void igb_reinit_locked(struct igb_adapter *adapter)
2229 {
2230 WARN_ON(in_interrupt());
2231 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2232 usleep_range(1000, 2000);
2233 igb_down(adapter);
2234 igb_up(adapter);
2235 clear_bit(__IGB_RESETTING, &adapter->state);
2236 }
2237
2238 /** igb_enable_mas - Media Autosense re-enable after swap
2239 *
2240 * @adapter: adapter struct
2241 **/
2242 static void igb_enable_mas(struct igb_adapter *adapter)
2243 {
2244 struct e1000_hw *hw = &adapter->hw;
2245 u32 connsw = rd32(E1000_CONNSW);
2246
2247 /* configure for SerDes media detect */
2248 if ((hw->phy.media_type == e1000_media_type_copper) &&
2249 (!(connsw & E1000_CONNSW_SERDESD))) {
2250 connsw |= E1000_CONNSW_ENRGSRC;
2251 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2252 wr32(E1000_CONNSW, connsw);
2253 wrfl();
2254 }
2255 }
2256
2257 void igb_reset(struct igb_adapter *adapter)
2258 {
2259 struct pci_dev *pdev = adapter->pdev;
2260 struct e1000_hw *hw = &adapter->hw;
2261 struct e1000_mac_info *mac = &hw->mac;
2262 struct e1000_fc_info *fc = &hw->fc;
2263 u32 pba, hwm;
2264
2265 /* Repartition Pba for greater than 9k mtu
2266 * To take effect CTRL.RST is required.
2267 */
2268 switch (mac->type) {
2269 case e1000_i350:
2270 case e1000_i354:
2271 case e1000_82580:
2272 pba = rd32(E1000_RXPBS);
2273 pba = igb_rxpbs_adjust_82580(pba);
2274 break;
2275 case e1000_82576:
2276 pba = rd32(E1000_RXPBS);
2277 pba &= E1000_RXPBS_SIZE_MASK_82576;
2278 break;
2279 case e1000_82575:
2280 case e1000_i210:
2281 case e1000_i211:
2282 default:
2283 pba = E1000_PBA_34K;
2284 break;
2285 }
2286
2287 if (mac->type == e1000_82575) {
2288 u32 min_rx_space, min_tx_space, needed_tx_space;
2289
2290 /* write Rx PBA so that hardware can report correct Tx PBA */
2291 wr32(E1000_PBA, pba);
2292
2293 /* To maintain wire speed transmits, the Tx FIFO should be
2294 * large enough to accommodate two full transmit packets,
2295 * rounded up to the next 1KB and expressed in KB. Likewise,
2296 * the Rx FIFO should be large enough to accommodate at least
2297 * one full receive packet and is similarly rounded up and
2298 * expressed in KB.
2299 */
2300 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2301
2302 /* The Tx FIFO also stores 16 bytes of information about the Tx
2303 * but don't include Ethernet FCS because hardware appends it.
2304 * We only need to round down to the nearest 512 byte block
2305 * count since the value we care about is 2 frames, not 1.
2306 */
2307 min_tx_space = adapter->max_frame_size;
2308 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2309 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2310
2311 /* upper 16 bits has Tx packet buffer allocation size in KB */
2312 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2313
2314 /* If current Tx allocation is less than the min Tx FIFO size,
2315 * and the min Tx FIFO size is less than the current Rx FIFO
2316 * allocation, take space away from current Rx allocation.
2317 */
2318 if (needed_tx_space < pba) {
2319 pba -= needed_tx_space;
2320
2321 /* if short on Rx space, Rx wins and must trump Tx
2322 * adjustment
2323 */
2324 if (pba < min_rx_space)
2325 pba = min_rx_space;
2326 }
2327
2328 /* adjust PBA for jumbo frames */
2329 wr32(E1000_PBA, pba);
2330 }
2331
2332 /* flow control settings
2333 * The high water mark must be low enough to fit one full frame
2334 * after transmitting the pause frame. As such we must have enough
2335 * space to allow for us to complete our current transmit and then
2336 * receive the frame that is in progress from the link partner.
2337 * Set it to:
2338 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2339 */
2340 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2341
2342 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2343 fc->low_water = fc->high_water - 16;
2344 fc->pause_time = 0xFFFF;
2345 fc->send_xon = 1;
2346 fc->current_mode = fc->requested_mode;
2347
2348 /* disable receive for all VFs and wait one second */
2349 if (adapter->vfs_allocated_count) {
2350 int i;
2351
2352 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2353 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2354
2355 /* ping all the active vfs to let them know we are going down */
2356 igb_ping_all_vfs(adapter);
2357
2358 /* disable transmits and receives */
2359 wr32(E1000_VFRE, 0);
2360 wr32(E1000_VFTE, 0);
2361 }
2362
2363 /* Allow time for pending master requests to run */
2364 hw->mac.ops.reset_hw(hw);
2365 wr32(E1000_WUC, 0);
2366
2367 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2368 /* need to resetup here after media swap */
2369 adapter->ei.get_invariants(hw);
2370 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2371 }
2372 if ((mac->type == e1000_82575) &&
2373 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2374 igb_enable_mas(adapter);
2375 }
2376 if (hw->mac.ops.init_hw(hw))
2377 dev_err(&pdev->dev, "Hardware Error\n");
2378
2379 /* RAR registers were cleared during init_hw, clear mac table */
2380 igb_flush_mac_table(adapter);
2381 __dev_uc_unsync(adapter->netdev, NULL);
2382
2383 /* Recover default RAR entry */
2384 igb_set_default_mac_filter(adapter);
2385
2386 /* Flow control settings reset on hardware reset, so guarantee flow
2387 * control is off when forcing speed.
2388 */
2389 if (!hw->mac.autoneg)
2390 igb_force_mac_fc(hw);
2391
2392 igb_init_dmac(adapter, pba);
2393 #ifdef CONFIG_IGB_HWMON
2394 /* Re-initialize the thermal sensor on i350 devices. */
2395 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2396 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2397 /* If present, re-initialize the external thermal sensor
2398 * interface.
2399 */
2400 if (adapter->ets)
2401 mac->ops.init_thermal_sensor_thresh(hw);
2402 }
2403 }
2404 #endif
2405 /* Re-establish EEE setting */
2406 if (hw->phy.media_type == e1000_media_type_copper) {
2407 switch (mac->type) {
2408 case e1000_i350:
2409 case e1000_i210:
2410 case e1000_i211:
2411 igb_set_eee_i350(hw, true, true);
2412 break;
2413 case e1000_i354:
2414 igb_set_eee_i354(hw, true, true);
2415 break;
2416 default:
2417 break;
2418 }
2419 }
2420 if (!netif_running(adapter->netdev))
2421 igb_power_down_link(adapter);
2422
2423 igb_update_mng_vlan(adapter);
2424
2425 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2426 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2427
2428 /* Re-enable PTP, where applicable. */
2429 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2430 igb_ptp_reset(adapter);
2431
2432 igb_get_phy_info(hw);
2433 }
2434
2435 static netdev_features_t igb_fix_features(struct net_device *netdev,
2436 netdev_features_t features)
2437 {
2438 /* Since there is no support for separate Rx/Tx vlan accel
2439 * enable/disable make sure Tx flag is always in same state as Rx.
2440 */
2441 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2442 features |= NETIF_F_HW_VLAN_CTAG_TX;
2443 else
2444 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2445
2446 return features;
2447 }
2448
2449 static int igb_set_features(struct net_device *netdev,
2450 netdev_features_t features)
2451 {
2452 netdev_features_t changed = netdev->features ^ features;
2453 struct igb_adapter *adapter = netdev_priv(netdev);
2454
2455 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2456 igb_vlan_mode(netdev, features);
2457
2458 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2459 return 0;
2460
2461 if (!(features & NETIF_F_NTUPLE)) {
2462 struct hlist_node *node2;
2463 struct igb_nfc_filter *rule;
2464
2465 spin_lock(&adapter->nfc_lock);
2466 hlist_for_each_entry_safe(rule, node2,
2467 &adapter->nfc_filter_list, nfc_node) {
2468 igb_erase_filter(adapter, rule);
2469 hlist_del(&rule->nfc_node);
2470 kfree(rule);
2471 }
2472 spin_unlock(&adapter->nfc_lock);
2473 adapter->nfc_filter_count = 0;
2474 }
2475
2476 netdev->features = features;
2477
2478 if (netif_running(netdev))
2479 igb_reinit_locked(adapter);
2480 else
2481 igb_reset(adapter);
2482
2483 return 0;
2484 }
2485
2486 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2487 struct net_device *dev,
2488 const unsigned char *addr, u16 vid,
2489 u16 flags)
2490 {
2491 /* guarantee we can provide a unique filter for the unicast address */
2492 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2493 struct igb_adapter *adapter = netdev_priv(dev);
2494 int vfn = adapter->vfs_allocated_count;
2495
2496 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2497 return -ENOMEM;
2498 }
2499
2500 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2501 }
2502
2503 #define IGB_MAX_MAC_HDR_LEN 127
2504 #define IGB_MAX_NETWORK_HDR_LEN 511
2505
2506 static netdev_features_t
2507 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2508 netdev_features_t features)
2509 {
2510 unsigned int network_hdr_len, mac_hdr_len;
2511
2512 /* Make certain the headers can be described by a context descriptor */
2513 mac_hdr_len = skb_network_header(skb) - skb->data;
2514 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2515 return features & ~(NETIF_F_HW_CSUM |
2516 NETIF_F_SCTP_CRC |
2517 NETIF_F_HW_VLAN_CTAG_TX |
2518 NETIF_F_TSO |
2519 NETIF_F_TSO6);
2520
2521 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2522 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2523 return features & ~(NETIF_F_HW_CSUM |
2524 NETIF_F_SCTP_CRC |
2525 NETIF_F_TSO |
2526 NETIF_F_TSO6);
2527
2528 /* We can only support IPV4 TSO in tunnels if we can mangle the
2529 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2530 */
2531 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2532 features &= ~NETIF_F_TSO;
2533
2534 return features;
2535 }
2536
2537 static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
2538 {
2539 if (!is_fqtss_enabled(adapter)) {
2540 enable_fqtss(adapter, true);
2541 return;
2542 }
2543
2544 igb_config_tx_modes(adapter, queue);
2545
2546 if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
2547 enable_fqtss(adapter, false);
2548 }
2549
2550 static int igb_offload_cbs(struct igb_adapter *adapter,
2551 struct tc_cbs_qopt_offload *qopt)
2552 {
2553 struct e1000_hw *hw = &adapter->hw;
2554 int err;
2555
2556 /* CBS offloading is only supported by i210 controller. */
2557 if (hw->mac.type != e1000_i210)
2558 return -EOPNOTSUPP;
2559
2560 /* CBS offloading is only supported by queue 0 and queue 1. */
2561 if (qopt->queue < 0 || qopt->queue > 1)
2562 return -EINVAL;
2563
2564 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2565 qopt->idleslope, qopt->sendslope,
2566 qopt->hicredit, qopt->locredit);
2567 if (err)
2568 return err;
2569
2570 igb_offload_apply(adapter, qopt->queue);
2571
2572 return 0;
2573 }
2574
2575 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
2576 #define VLAN_PRIO_FULL_MASK (0x07)
2577
2578 static int igb_parse_cls_flower(struct igb_adapter *adapter,
2579 struct tc_cls_flower_offload *f,
2580 int traffic_class,
2581 struct igb_nfc_filter *input)
2582 {
2583 struct netlink_ext_ack *extack = f->common.extack;
2584
2585 if (f->dissector->used_keys &
2586 ~(BIT(FLOW_DISSECTOR_KEY_BASIC) |
2587 BIT(FLOW_DISSECTOR_KEY_CONTROL) |
2588 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
2589 BIT(FLOW_DISSECTOR_KEY_VLAN))) {
2590 NL_SET_ERR_MSG_MOD(extack,
2591 "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
2592 return -EOPNOTSUPP;
2593 }
2594
2595 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
2596 struct flow_dissector_key_eth_addrs *key, *mask;
2597
2598 key = skb_flow_dissector_target(f->dissector,
2599 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2600 f->key);
2601 mask = skb_flow_dissector_target(f->dissector,
2602 FLOW_DISSECTOR_KEY_ETH_ADDRS,
2603 f->mask);
2604
2605 if (!is_zero_ether_addr(mask->dst)) {
2606 if (!is_broadcast_ether_addr(mask->dst)) {
2607 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
2608 return -EINVAL;
2609 }
2610
2611 input->filter.match_flags |=
2612 IGB_FILTER_FLAG_DST_MAC_ADDR;
2613 ether_addr_copy(input->filter.dst_addr, key->dst);
2614 }
2615
2616 if (!is_zero_ether_addr(mask->src)) {
2617 if (!is_broadcast_ether_addr(mask->src)) {
2618 NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
2619 return -EINVAL;
2620 }
2621
2622 input->filter.match_flags |=
2623 IGB_FILTER_FLAG_SRC_MAC_ADDR;
2624 ether_addr_copy(input->filter.src_addr, key->src);
2625 }
2626 }
2627
2628 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_BASIC)) {
2629 struct flow_dissector_key_basic *key, *mask;
2630
2631 key = skb_flow_dissector_target(f->dissector,
2632 FLOW_DISSECTOR_KEY_BASIC,
2633 f->key);
2634 mask = skb_flow_dissector_target(f->dissector,
2635 FLOW_DISSECTOR_KEY_BASIC,
2636 f->mask);
2637
2638 if (mask->n_proto) {
2639 if (mask->n_proto != ETHER_TYPE_FULL_MASK) {
2640 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
2641 return -EINVAL;
2642 }
2643
2644 input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
2645 input->filter.etype = key->n_proto;
2646 }
2647 }
2648
2649 if (dissector_uses_key(f->dissector, FLOW_DISSECTOR_KEY_VLAN)) {
2650 struct flow_dissector_key_vlan *key, *mask;
2651
2652 key = skb_flow_dissector_target(f->dissector,
2653 FLOW_DISSECTOR_KEY_VLAN,
2654 f->key);
2655 mask = skb_flow_dissector_target(f->dissector,
2656 FLOW_DISSECTOR_KEY_VLAN,
2657 f->mask);
2658
2659 if (mask->vlan_priority) {
2660 if (mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
2661 NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
2662 return -EINVAL;
2663 }
2664
2665 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2666 input->filter.vlan_tci = key->vlan_priority;
2667 }
2668 }
2669
2670 input->action = traffic_class;
2671 input->cookie = f->cookie;
2672
2673 return 0;
2674 }
2675
2676 static int igb_configure_clsflower(struct igb_adapter *adapter,
2677 struct tc_cls_flower_offload *cls_flower)
2678 {
2679 struct netlink_ext_ack *extack = cls_flower->common.extack;
2680 struct igb_nfc_filter *filter, *f;
2681 int err, tc;
2682
2683 tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
2684 if (tc < 0) {
2685 NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
2686 return -EINVAL;
2687 }
2688
2689 filter = kzalloc(sizeof(*filter), GFP_KERNEL);
2690 if (!filter)
2691 return -ENOMEM;
2692
2693 err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
2694 if (err < 0)
2695 goto err_parse;
2696
2697 spin_lock(&adapter->nfc_lock);
2698
2699 hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
2700 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2701 err = -EEXIST;
2702 NL_SET_ERR_MSG_MOD(extack,
2703 "This filter is already set in ethtool");
2704 goto err_locked;
2705 }
2706 }
2707
2708 hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
2709 if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
2710 err = -EEXIST;
2711 NL_SET_ERR_MSG_MOD(extack,
2712 "This filter is already set in cls_flower");
2713 goto err_locked;
2714 }
2715 }
2716
2717 err = igb_add_filter(adapter, filter);
2718 if (err < 0) {
2719 NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
2720 goto err_locked;
2721 }
2722
2723 hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
2724
2725 spin_unlock(&adapter->nfc_lock);
2726
2727 return 0;
2728
2729 err_locked:
2730 spin_unlock(&adapter->nfc_lock);
2731
2732 err_parse:
2733 kfree(filter);
2734
2735 return err;
2736 }
2737
2738 static int igb_delete_clsflower(struct igb_adapter *adapter,
2739 struct tc_cls_flower_offload *cls_flower)
2740 {
2741 struct igb_nfc_filter *filter;
2742 int err;
2743
2744 spin_lock(&adapter->nfc_lock);
2745
2746 hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
2747 if (filter->cookie == cls_flower->cookie)
2748 break;
2749
2750 if (!filter) {
2751 err = -ENOENT;
2752 goto out;
2753 }
2754
2755 err = igb_erase_filter(adapter, filter);
2756 if (err < 0)
2757 goto out;
2758
2759 hlist_del(&filter->nfc_node);
2760 kfree(filter);
2761
2762 out:
2763 spin_unlock(&adapter->nfc_lock);
2764
2765 return err;
2766 }
2767
2768 static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
2769 struct tc_cls_flower_offload *cls_flower)
2770 {
2771 switch (cls_flower->command) {
2772 case TC_CLSFLOWER_REPLACE:
2773 return igb_configure_clsflower(adapter, cls_flower);
2774 case TC_CLSFLOWER_DESTROY:
2775 return igb_delete_clsflower(adapter, cls_flower);
2776 case TC_CLSFLOWER_STATS:
2777 return -EOPNOTSUPP;
2778 default:
2779 return -EOPNOTSUPP;
2780 }
2781 }
2782
2783 static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2784 void *cb_priv)
2785 {
2786 struct igb_adapter *adapter = cb_priv;
2787
2788 if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
2789 return -EOPNOTSUPP;
2790
2791 switch (type) {
2792 case TC_SETUP_CLSFLOWER:
2793 return igb_setup_tc_cls_flower(adapter, type_data);
2794
2795 default:
2796 return -EOPNOTSUPP;
2797 }
2798 }
2799
2800 static int igb_setup_tc_block(struct igb_adapter *adapter,
2801 struct tc_block_offload *f)
2802 {
2803 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
2804 return -EOPNOTSUPP;
2805
2806 switch (f->command) {
2807 case TC_BLOCK_BIND:
2808 return tcf_block_cb_register(f->block, igb_setup_tc_block_cb,
2809 adapter, adapter, f->extack);
2810 case TC_BLOCK_UNBIND:
2811 tcf_block_cb_unregister(f->block, igb_setup_tc_block_cb,
2812 adapter);
2813 return 0;
2814 default:
2815 return -EOPNOTSUPP;
2816 }
2817 }
2818
2819 static int igb_offload_txtime(struct igb_adapter *adapter,
2820 struct tc_etf_qopt_offload *qopt)
2821 {
2822 struct e1000_hw *hw = &adapter->hw;
2823 int err;
2824
2825 /* Launchtime offloading is only supported by i210 controller. */
2826 if (hw->mac.type != e1000_i210)
2827 return -EOPNOTSUPP;
2828
2829 /* Launchtime offloading is only supported by queues 0 and 1. */
2830 if (qopt->queue < 0 || qopt->queue > 1)
2831 return -EINVAL;
2832
2833 err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
2834 if (err)
2835 return err;
2836
2837 igb_offload_apply(adapter, qopt->queue);
2838
2839 return 0;
2840 }
2841
2842 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2843 void *type_data)
2844 {
2845 struct igb_adapter *adapter = netdev_priv(dev);
2846
2847 switch (type) {
2848 case TC_SETUP_QDISC_CBS:
2849 return igb_offload_cbs(adapter, type_data);
2850 case TC_SETUP_BLOCK:
2851 return igb_setup_tc_block(adapter, type_data);
2852 case TC_SETUP_QDISC_ETF:
2853 return igb_offload_txtime(adapter, type_data);
2854
2855 default:
2856 return -EOPNOTSUPP;
2857 }
2858 }
2859
2860 static const struct net_device_ops igb_netdev_ops = {
2861 .ndo_open = igb_open,
2862 .ndo_stop = igb_close,
2863 .ndo_start_xmit = igb_xmit_frame,
2864 .ndo_get_stats64 = igb_get_stats64,
2865 .ndo_set_rx_mode = igb_set_rx_mode,
2866 .ndo_set_mac_address = igb_set_mac,
2867 .ndo_change_mtu = igb_change_mtu,
2868 .ndo_do_ioctl = igb_ioctl,
2869 .ndo_tx_timeout = igb_tx_timeout,
2870 .ndo_validate_addr = eth_validate_addr,
2871 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2872 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2873 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2874 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2875 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2876 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2877 .ndo_set_vf_trust = igb_ndo_set_vf_trust,
2878 .ndo_get_vf_config = igb_ndo_get_vf_config,
2879 .ndo_fix_features = igb_fix_features,
2880 .ndo_set_features = igb_set_features,
2881 .ndo_fdb_add = igb_ndo_fdb_add,
2882 .ndo_features_check = igb_features_check,
2883 .ndo_setup_tc = igb_setup_tc,
2884 };
2885
2886 /**
2887 * igb_set_fw_version - Configure version string for ethtool
2888 * @adapter: adapter struct
2889 **/
2890 void igb_set_fw_version(struct igb_adapter *adapter)
2891 {
2892 struct e1000_hw *hw = &adapter->hw;
2893 struct e1000_fw_version fw;
2894
2895 igb_get_fw_version(hw, &fw);
2896
2897 switch (hw->mac.type) {
2898 case e1000_i210:
2899 case e1000_i211:
2900 if (!(igb_get_flash_presence_i210(hw))) {
2901 snprintf(adapter->fw_version,
2902 sizeof(adapter->fw_version),
2903 "%2d.%2d-%d",
2904 fw.invm_major, fw.invm_minor,
2905 fw.invm_img_type);
2906 break;
2907 }
2908 /* fall through */
2909 default:
2910 /* if option is rom valid, display its version too */
2911 if (fw.or_valid) {
2912 snprintf(adapter->fw_version,
2913 sizeof(adapter->fw_version),
2914 "%d.%d, 0x%08x, %d.%d.%d",
2915 fw.eep_major, fw.eep_minor, fw.etrack_id,
2916 fw.or_major, fw.or_build, fw.or_patch);
2917 /* no option rom */
2918 } else if (fw.etrack_id != 0X0000) {
2919 snprintf(adapter->fw_version,
2920 sizeof(adapter->fw_version),
2921 "%d.%d, 0x%08x",
2922 fw.eep_major, fw.eep_minor, fw.etrack_id);
2923 } else {
2924 snprintf(adapter->fw_version,
2925 sizeof(adapter->fw_version),
2926 "%d.%d.%d",
2927 fw.eep_major, fw.eep_minor, fw.eep_build);
2928 }
2929 break;
2930 }
2931 }
2932
2933 /**
2934 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2935 *
2936 * @adapter: adapter struct
2937 **/
2938 static void igb_init_mas(struct igb_adapter *adapter)
2939 {
2940 struct e1000_hw *hw = &adapter->hw;
2941 u16 eeprom_data;
2942
2943 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2944 switch (hw->bus.func) {
2945 case E1000_FUNC_0:
2946 if (eeprom_data & IGB_MAS_ENABLE_0) {
2947 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2948 netdev_info(adapter->netdev,
2949 "MAS: Enabling Media Autosense for port %d\n",
2950 hw->bus.func);
2951 }
2952 break;
2953 case E1000_FUNC_1:
2954 if (eeprom_data & IGB_MAS_ENABLE_1) {
2955 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2956 netdev_info(adapter->netdev,
2957 "MAS: Enabling Media Autosense for port %d\n",
2958 hw->bus.func);
2959 }
2960 break;
2961 case E1000_FUNC_2:
2962 if (eeprom_data & IGB_MAS_ENABLE_2) {
2963 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2964 netdev_info(adapter->netdev,
2965 "MAS: Enabling Media Autosense for port %d\n",
2966 hw->bus.func);
2967 }
2968 break;
2969 case E1000_FUNC_3:
2970 if (eeprom_data & IGB_MAS_ENABLE_3) {
2971 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2972 netdev_info(adapter->netdev,
2973 "MAS: Enabling Media Autosense for port %d\n",
2974 hw->bus.func);
2975 }
2976 break;
2977 default:
2978 /* Shouldn't get here */
2979 netdev_err(adapter->netdev,
2980 "MAS: Invalid port configuration, returning\n");
2981 break;
2982 }
2983 }
2984
2985 /**
2986 * igb_init_i2c - Init I2C interface
2987 * @adapter: pointer to adapter structure
2988 **/
2989 static s32 igb_init_i2c(struct igb_adapter *adapter)
2990 {
2991 s32 status = 0;
2992
2993 /* I2C interface supported on i350 devices */
2994 if (adapter->hw.mac.type != e1000_i350)
2995 return 0;
2996
2997 /* Initialize the i2c bus which is controlled by the registers.
2998 * This bus will use the i2c_algo_bit structue that implements
2999 * the protocol through toggling of the 4 bits in the register.
3000 */
3001 adapter->i2c_adap.owner = THIS_MODULE;
3002 adapter->i2c_algo = igb_i2c_algo;
3003 adapter->i2c_algo.data = adapter;
3004 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
3005 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
3006 strlcpy(adapter->i2c_adap.name, "igb BB",
3007 sizeof(adapter->i2c_adap.name));
3008 status = i2c_bit_add_bus(&adapter->i2c_adap);
3009 return status;
3010 }
3011
3012 /**
3013 * igb_probe - Device Initialization Routine
3014 * @pdev: PCI device information struct
3015 * @ent: entry in igb_pci_tbl
3016 *
3017 * Returns 0 on success, negative on failure
3018 *
3019 * igb_probe initializes an adapter identified by a pci_dev structure.
3020 * The OS initialization, configuring of the adapter private structure,
3021 * and a hardware reset occur.
3022 **/
3023 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3024 {
3025 struct net_device *netdev;
3026 struct igb_adapter *adapter;
3027 struct e1000_hw *hw;
3028 u16 eeprom_data = 0;
3029 s32 ret_val;
3030 static int global_quad_port_a; /* global quad port a indication */
3031 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
3032 int err, pci_using_dac;
3033 u8 part_str[E1000_PBANUM_LENGTH];
3034
3035 /* Catch broken hardware that put the wrong VF device ID in
3036 * the PCIe SR-IOV capability.
3037 */
3038 if (pdev->is_virtfn) {
3039 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
3040 pci_name(pdev), pdev->vendor, pdev->device);
3041 return -EINVAL;
3042 }
3043
3044 err = pci_enable_device_mem(pdev);
3045 if (err)
3046 return err;
3047
3048 pci_using_dac = 0;
3049 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3050 if (!err) {
3051 pci_using_dac = 1;
3052 } else {
3053 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3054 if (err) {
3055 dev_err(&pdev->dev,
3056 "No usable DMA configuration, aborting\n");
3057 goto err_dma;
3058 }
3059 }
3060
3061 err = pci_request_mem_regions(pdev, igb_driver_name);
3062 if (err)
3063 goto err_pci_reg;
3064
3065 pci_enable_pcie_error_reporting(pdev);
3066
3067 pci_set_master(pdev);
3068 pci_save_state(pdev);
3069
3070 err = -ENOMEM;
3071 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
3072 IGB_MAX_TX_QUEUES);
3073 if (!netdev)
3074 goto err_alloc_etherdev;
3075
3076 SET_NETDEV_DEV(netdev, &pdev->dev);
3077
3078 pci_set_drvdata(pdev, netdev);
3079 adapter = netdev_priv(netdev);
3080 adapter->netdev = netdev;
3081 adapter->pdev = pdev;
3082 hw = &adapter->hw;
3083 hw->back = adapter;
3084 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3085
3086 err = -EIO;
3087 adapter->io_addr = pci_iomap(pdev, 0, 0);
3088 if (!adapter->io_addr)
3089 goto err_ioremap;
3090 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
3091 hw->hw_addr = adapter->io_addr;
3092
3093 netdev->netdev_ops = &igb_netdev_ops;
3094 igb_set_ethtool_ops(netdev);
3095 netdev->watchdog_timeo = 5 * HZ;
3096
3097 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
3098
3099 netdev->mem_start = pci_resource_start(pdev, 0);
3100 netdev->mem_end = pci_resource_end(pdev, 0);
3101
3102 /* PCI config space info */
3103 hw->vendor_id = pdev->vendor;
3104 hw->device_id = pdev->device;
3105 hw->revision_id = pdev->revision;
3106 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3107 hw->subsystem_device_id = pdev->subsystem_device;
3108
3109 /* Copy the default MAC, PHY and NVM function pointers */
3110 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
3111 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
3112 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
3113 /* Initialize skew-specific constants */
3114 err = ei->get_invariants(hw);
3115 if (err)
3116 goto err_sw_init;
3117
3118 /* setup the private structure */
3119 err = igb_sw_init(adapter);
3120 if (err)
3121 goto err_sw_init;
3122
3123 igb_get_bus_info_pcie(hw);
3124
3125 hw->phy.autoneg_wait_to_complete = false;
3126
3127 /* Copper options */
3128 if (hw->phy.media_type == e1000_media_type_copper) {
3129 hw->phy.mdix = AUTO_ALL_MODES;
3130 hw->phy.disable_polarity_correction = false;
3131 hw->phy.ms_type = e1000_ms_hw_default;
3132 }
3133
3134 if (igb_check_reset_block(hw))
3135 dev_info(&pdev->dev,
3136 "PHY reset is blocked due to SOL/IDER session.\n");
3137
3138 /* features is initialized to 0 in allocation, it might have bits
3139 * set by igb_sw_init so we should use an or instead of an
3140 * assignment.
3141 */
3142 netdev->features |= NETIF_F_SG |
3143 NETIF_F_TSO |
3144 NETIF_F_TSO6 |
3145 NETIF_F_RXHASH |
3146 NETIF_F_RXCSUM |
3147 NETIF_F_HW_CSUM;
3148
3149 if (hw->mac.type >= e1000_82576)
3150 netdev->features |= NETIF_F_SCTP_CRC;
3151
3152 if (hw->mac.type >= e1000_i350)
3153 netdev->features |= NETIF_F_HW_TC;
3154
3155 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
3156 NETIF_F_GSO_GRE_CSUM | \
3157 NETIF_F_GSO_IPXIP4 | \
3158 NETIF_F_GSO_IPXIP6 | \
3159 NETIF_F_GSO_UDP_TUNNEL | \
3160 NETIF_F_GSO_UDP_TUNNEL_CSUM)
3161
3162 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
3163 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
3164
3165 /* copy netdev features into list of user selectable features */
3166 netdev->hw_features |= netdev->features |
3167 NETIF_F_HW_VLAN_CTAG_RX |
3168 NETIF_F_HW_VLAN_CTAG_TX |
3169 NETIF_F_RXALL;
3170
3171 if (hw->mac.type >= e1000_i350)
3172 netdev->hw_features |= NETIF_F_NTUPLE;
3173
3174 if (pci_using_dac)
3175 netdev->features |= NETIF_F_HIGHDMA;
3176
3177 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
3178 netdev->mpls_features |= NETIF_F_HW_CSUM;
3179 netdev->hw_enc_features |= netdev->vlan_features;
3180
3181 /* set this bit last since it cannot be part of vlan_features */
3182 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
3183 NETIF_F_HW_VLAN_CTAG_RX |
3184 NETIF_F_HW_VLAN_CTAG_TX;
3185
3186 netdev->priv_flags |= IFF_SUPP_NOFCS;
3187
3188 netdev->priv_flags |= IFF_UNICAST_FLT;
3189
3190 /* MTU range: 68 - 9216 */
3191 netdev->min_mtu = ETH_MIN_MTU;
3192 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
3193
3194 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
3195
3196 /* before reading the NVM, reset the controller to put the device in a
3197 * known good starting state
3198 */
3199 hw->mac.ops.reset_hw(hw);
3200
3201 /* make sure the NVM is good , i211/i210 parts can have special NVM
3202 * that doesn't contain a checksum
3203 */
3204 switch (hw->mac.type) {
3205 case e1000_i210:
3206 case e1000_i211:
3207 if (igb_get_flash_presence_i210(hw)) {
3208 if (hw->nvm.ops.validate(hw) < 0) {
3209 dev_err(&pdev->dev,
3210 "The NVM Checksum Is Not Valid\n");
3211 err = -EIO;
3212 goto err_eeprom;
3213 }
3214 }
3215 break;
3216 default:
3217 if (hw->nvm.ops.validate(hw) < 0) {
3218 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
3219 err = -EIO;
3220 goto err_eeprom;
3221 }
3222 break;
3223 }
3224
3225 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
3226 /* copy the MAC address out of the NVM */
3227 if (hw->mac.ops.read_mac_addr(hw))
3228 dev_err(&pdev->dev, "NVM Read Error\n");
3229 }
3230
3231 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
3232
3233 if (!is_valid_ether_addr(netdev->dev_addr)) {
3234 dev_err(&pdev->dev, "Invalid MAC Address\n");
3235 err = -EIO;
3236 goto err_eeprom;
3237 }
3238
3239 igb_set_default_mac_filter(adapter);
3240
3241 /* get firmware version for ethtool -i */
3242 igb_set_fw_version(adapter);
3243
3244 /* configure RXPBSIZE and TXPBSIZE */
3245 if (hw->mac.type == e1000_i210) {
3246 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
3247 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
3248 }
3249
3250 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
3251 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
3252
3253 INIT_WORK(&adapter->reset_task, igb_reset_task);
3254 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
3255
3256 /* Initialize link properties that are user-changeable */
3257 adapter->fc_autoneg = true;
3258 hw->mac.autoneg = true;
3259 hw->phy.autoneg_advertised = 0x2f;
3260
3261 hw->fc.requested_mode = e1000_fc_default;
3262 hw->fc.current_mode = e1000_fc_default;
3263
3264 igb_validate_mdi_setting(hw);
3265
3266 /* By default, support wake on port A */
3267 if (hw->bus.func == 0)
3268 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3269
3270 /* Check the NVM for wake support on non-port A ports */
3271 if (hw->mac.type >= e1000_82580)
3272 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
3273 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
3274 &eeprom_data);
3275 else if (hw->bus.func == 1)
3276 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
3277
3278 if (eeprom_data & IGB_EEPROM_APME)
3279 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3280
3281 /* now that we have the eeprom settings, apply the special cases where
3282 * the eeprom may be wrong or the board simply won't support wake on
3283 * lan on a particular port
3284 */
3285 switch (pdev->device) {
3286 case E1000_DEV_ID_82575GB_QUAD_COPPER:
3287 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3288 break;
3289 case E1000_DEV_ID_82575EB_FIBER_SERDES:
3290 case E1000_DEV_ID_82576_FIBER:
3291 case E1000_DEV_ID_82576_SERDES:
3292 /* Wake events only supported on port A for dual fiber
3293 * regardless of eeprom setting
3294 */
3295 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
3296 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3297 break;
3298 case E1000_DEV_ID_82576_QUAD_COPPER:
3299 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
3300 /* if quad port adapter, disable WoL on all but port A */
3301 if (global_quad_port_a != 0)
3302 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3303 else
3304 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
3305 /* Reset for multiple quad port adapters */
3306 if (++global_quad_port_a == 4)
3307 global_quad_port_a = 0;
3308 break;
3309 default:
3310 /* If the device can't wake, don't set software support */
3311 if (!device_can_wakeup(&adapter->pdev->dev))
3312 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
3313 }
3314
3315 /* initialize the wol settings based on the eeprom settings */
3316 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
3317 adapter->wol |= E1000_WUFC_MAG;
3318
3319 /* Some vendors want WoL disabled by default, but still supported */
3320 if ((hw->mac.type == e1000_i350) &&
3321 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
3322 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3323 adapter->wol = 0;
3324 }
3325
3326 /* Some vendors want the ability to Use the EEPROM setting as
3327 * enable/disable only, and not for capability
3328 */
3329 if (((hw->mac.type == e1000_i350) ||
3330 (hw->mac.type == e1000_i354)) &&
3331 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
3332 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3333 adapter->wol = 0;
3334 }
3335 if (hw->mac.type == e1000_i350) {
3336 if (((pdev->subsystem_device == 0x5001) ||
3337 (pdev->subsystem_device == 0x5002)) &&
3338 (hw->bus.func == 0)) {
3339 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3340 adapter->wol = 0;
3341 }
3342 if (pdev->subsystem_device == 0x1F52)
3343 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
3344 }
3345
3346 device_set_wakeup_enable(&adapter->pdev->dev,
3347 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
3348
3349 /* reset the hardware with the new settings */
3350 igb_reset(adapter);
3351
3352 /* Init the I2C interface */
3353 err = igb_init_i2c(adapter);
3354 if (err) {
3355 dev_err(&pdev->dev, "failed to init i2c interface\n");
3356 goto err_eeprom;
3357 }
3358
3359 /* let the f/w know that the h/w is now under the control of the
3360 * driver.
3361 */
3362 igb_get_hw_control(adapter);
3363
3364 strcpy(netdev->name, "eth%d");
3365 err = register_netdev(netdev);
3366 if (err)
3367 goto err_register;
3368
3369 /* carrier off reporting is important to ethtool even BEFORE open */
3370 netif_carrier_off(netdev);
3371
3372 #ifdef CONFIG_IGB_DCA
3373 if (dca_add_requester(&pdev->dev) == 0) {
3374 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3375 dev_info(&pdev->dev, "DCA enabled\n");
3376 igb_setup_dca(adapter);
3377 }
3378
3379 #endif
3380 #ifdef CONFIG_IGB_HWMON
3381 /* Initialize the thermal sensor on i350 devices. */
3382 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3383 u16 ets_word;
3384
3385 /* Read the NVM to determine if this i350 device supports an
3386 * external thermal sensor.
3387 */
3388 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3389 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3390 adapter->ets = true;
3391 else
3392 adapter->ets = false;
3393 if (igb_sysfs_init(adapter))
3394 dev_err(&pdev->dev,
3395 "failed to allocate sysfs resources\n");
3396 } else {
3397 adapter->ets = false;
3398 }
3399 #endif
3400 /* Check if Media Autosense is enabled */
3401 adapter->ei = *ei;
3402 if (hw->dev_spec._82575.mas_capable)
3403 igb_init_mas(adapter);
3404
3405 /* do hw tstamp init after resetting */
3406 igb_ptp_init(adapter);
3407
3408 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3409 /* print bus type/speed/width info, not applicable to i354 */
3410 if (hw->mac.type != e1000_i354) {
3411 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3412 netdev->name,
3413 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3414 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3415 "unknown"),
3416 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3417 "Width x4" :
3418 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3419 "Width x2" :
3420 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3421 "Width x1" : "unknown"), netdev->dev_addr);
3422 }
3423
3424 if ((hw->mac.type >= e1000_i210 ||
3425 igb_get_flash_presence_i210(hw))) {
3426 ret_val = igb_read_part_string(hw, part_str,
3427 E1000_PBANUM_LENGTH);
3428 } else {
3429 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3430 }
3431
3432 if (ret_val)
3433 strcpy(part_str, "Unknown");
3434 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3435 dev_info(&pdev->dev,
3436 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3437 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3438 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3439 adapter->num_rx_queues, adapter->num_tx_queues);
3440 if (hw->phy.media_type == e1000_media_type_copper) {
3441 switch (hw->mac.type) {
3442 case e1000_i350:
3443 case e1000_i210:
3444 case e1000_i211:
3445 /* Enable EEE for internal copper PHY devices */
3446 err = igb_set_eee_i350(hw, true, true);
3447 if ((!err) &&
3448 (!hw->dev_spec._82575.eee_disable)) {
3449 adapter->eee_advert =
3450 MDIO_EEE_100TX | MDIO_EEE_1000T;
3451 adapter->flags |= IGB_FLAG_EEE;
3452 }
3453 break;
3454 case e1000_i354:
3455 if ((rd32(E1000_CTRL_EXT) &
3456 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3457 err = igb_set_eee_i354(hw, true, true);
3458 if ((!err) &&
3459 (!hw->dev_spec._82575.eee_disable)) {
3460 adapter->eee_advert =
3461 MDIO_EEE_100TX | MDIO_EEE_1000T;
3462 adapter->flags |= IGB_FLAG_EEE;
3463 }
3464 }
3465 break;
3466 default:
3467 break;
3468 }
3469 }
3470 pm_runtime_put_noidle(&pdev->dev);
3471 return 0;
3472
3473 err_register:
3474 igb_release_hw_control(adapter);
3475 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3476 err_eeprom:
3477 if (!igb_check_reset_block(hw))
3478 igb_reset_phy(hw);
3479
3480 if (hw->flash_address)
3481 iounmap(hw->flash_address);
3482 err_sw_init:
3483 kfree(adapter->mac_table);
3484 kfree(adapter->shadow_vfta);
3485 igb_clear_interrupt_scheme(adapter);
3486 #ifdef CONFIG_PCI_IOV
3487 igb_disable_sriov(pdev);
3488 #endif
3489 pci_iounmap(pdev, adapter->io_addr);
3490 err_ioremap:
3491 free_netdev(netdev);
3492 err_alloc_etherdev:
3493 pci_release_mem_regions(pdev);
3494 err_pci_reg:
3495 err_dma:
3496 pci_disable_device(pdev);
3497 return err;
3498 }
3499
3500 #ifdef CONFIG_PCI_IOV
3501 static int igb_disable_sriov(struct pci_dev *pdev)
3502 {
3503 struct net_device *netdev = pci_get_drvdata(pdev);
3504 struct igb_adapter *adapter = netdev_priv(netdev);
3505 struct e1000_hw *hw = &adapter->hw;
3506
3507 /* reclaim resources allocated to VFs */
3508 if (adapter->vf_data) {
3509 /* disable iov and allow time for transactions to clear */
3510 if (pci_vfs_assigned(pdev)) {
3511 dev_warn(&pdev->dev,
3512 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3513 return -EPERM;
3514 } else {
3515 pci_disable_sriov(pdev);
3516 msleep(500);
3517 }
3518
3519 kfree(adapter->vf_mac_list);
3520 adapter->vf_mac_list = NULL;
3521 kfree(adapter->vf_data);
3522 adapter->vf_data = NULL;
3523 adapter->vfs_allocated_count = 0;
3524 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3525 wrfl();
3526 msleep(100);
3527 dev_info(&pdev->dev, "IOV Disabled\n");
3528
3529 /* Re-enable DMA Coalescing flag since IOV is turned off */
3530 adapter->flags |= IGB_FLAG_DMAC;
3531 }
3532
3533 return 0;
3534 }
3535
3536 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3537 {
3538 struct net_device *netdev = pci_get_drvdata(pdev);
3539 struct igb_adapter *adapter = netdev_priv(netdev);
3540 int old_vfs = pci_num_vf(pdev);
3541 struct vf_mac_filter *mac_list;
3542 int err = 0;
3543 int num_vf_mac_filters, i;
3544
3545 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3546 err = -EPERM;
3547 goto out;
3548 }
3549 if (!num_vfs)
3550 goto out;
3551
3552 if (old_vfs) {
3553 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3554 old_vfs, max_vfs);
3555 adapter->vfs_allocated_count = old_vfs;
3556 } else
3557 adapter->vfs_allocated_count = num_vfs;
3558
3559 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3560 sizeof(struct vf_data_storage), GFP_KERNEL);
3561
3562 /* if allocation failed then we do not support SR-IOV */
3563 if (!adapter->vf_data) {
3564 adapter->vfs_allocated_count = 0;
3565 err = -ENOMEM;
3566 goto out;
3567 }
3568
3569 /* Due to the limited number of RAR entries calculate potential
3570 * number of MAC filters available for the VFs. Reserve entries
3571 * for PF default MAC, PF MAC filters and at least one RAR entry
3572 * for each VF for VF MAC.
3573 */
3574 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3575 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3576 adapter->vfs_allocated_count);
3577
3578 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3579 sizeof(struct vf_mac_filter),
3580 GFP_KERNEL);
3581
3582 mac_list = adapter->vf_mac_list;
3583 INIT_LIST_HEAD(&adapter->vf_macs.l);
3584
3585 if (adapter->vf_mac_list) {
3586 /* Initialize list of VF MAC filters */
3587 for (i = 0; i < num_vf_mac_filters; i++) {
3588 mac_list->vf = -1;
3589 mac_list->free = true;
3590 list_add(&mac_list->l, &adapter->vf_macs.l);
3591 mac_list++;
3592 }
3593 } else {
3594 /* If we could not allocate memory for the VF MAC filters
3595 * we can continue without this feature but warn user.
3596 */
3597 dev_err(&pdev->dev,
3598 "Unable to allocate memory for VF MAC filter list\n");
3599 }
3600
3601 /* only call pci_enable_sriov() if no VFs are allocated already */
3602 if (!old_vfs) {
3603 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3604 if (err)
3605 goto err_out;
3606 }
3607 dev_info(&pdev->dev, "%d VFs allocated\n",
3608 adapter->vfs_allocated_count);
3609 for (i = 0; i < adapter->vfs_allocated_count; i++)
3610 igb_vf_configure(adapter, i);
3611
3612 /* DMA Coalescing is not supported in IOV mode. */
3613 adapter->flags &= ~IGB_FLAG_DMAC;
3614 goto out;
3615
3616 err_out:
3617 kfree(adapter->vf_mac_list);
3618 adapter->vf_mac_list = NULL;
3619 kfree(adapter->vf_data);
3620 adapter->vf_data = NULL;
3621 adapter->vfs_allocated_count = 0;
3622 out:
3623 return err;
3624 }
3625
3626 #endif
3627 /**
3628 * igb_remove_i2c - Cleanup I2C interface
3629 * @adapter: pointer to adapter structure
3630 **/
3631 static void igb_remove_i2c(struct igb_adapter *adapter)
3632 {
3633 /* free the adapter bus structure */
3634 i2c_del_adapter(&adapter->i2c_adap);
3635 }
3636
3637 /**
3638 * igb_remove - Device Removal Routine
3639 * @pdev: PCI device information struct
3640 *
3641 * igb_remove is called by the PCI subsystem to alert the driver
3642 * that it should release a PCI device. The could be caused by a
3643 * Hot-Plug event, or because the driver is going to be removed from
3644 * memory.
3645 **/
3646 static void igb_remove(struct pci_dev *pdev)
3647 {
3648 struct net_device *netdev = pci_get_drvdata(pdev);
3649 struct igb_adapter *adapter = netdev_priv(netdev);
3650 struct e1000_hw *hw = &adapter->hw;
3651
3652 pm_runtime_get_noresume(&pdev->dev);
3653 #ifdef CONFIG_IGB_HWMON
3654 igb_sysfs_exit(adapter);
3655 #endif
3656 igb_remove_i2c(adapter);
3657 igb_ptp_stop(adapter);
3658 /* The watchdog timer may be rescheduled, so explicitly
3659 * disable watchdog from being rescheduled.
3660 */
3661 set_bit(__IGB_DOWN, &adapter->state);
3662 del_timer_sync(&adapter->watchdog_timer);
3663 del_timer_sync(&adapter->phy_info_timer);
3664
3665 cancel_work_sync(&adapter->reset_task);
3666 cancel_work_sync(&adapter->watchdog_task);
3667
3668 #ifdef CONFIG_IGB_DCA
3669 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3670 dev_info(&pdev->dev, "DCA disabled\n");
3671 dca_remove_requester(&pdev->dev);
3672 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3673 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3674 }
3675 #endif
3676
3677 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3678 * would have already happened in close and is redundant.
3679 */
3680 igb_release_hw_control(adapter);
3681
3682 #ifdef CONFIG_PCI_IOV
3683 igb_disable_sriov(pdev);
3684 #endif
3685
3686 unregister_netdev(netdev);
3687
3688 igb_clear_interrupt_scheme(adapter);
3689
3690 pci_iounmap(pdev, adapter->io_addr);
3691 if (hw->flash_address)
3692 iounmap(hw->flash_address);
3693 pci_release_mem_regions(pdev);
3694
3695 kfree(adapter->mac_table);
3696 kfree(adapter->shadow_vfta);
3697 free_netdev(netdev);
3698
3699 pci_disable_pcie_error_reporting(pdev);
3700
3701 pci_disable_device(pdev);
3702 }
3703
3704 /**
3705 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3706 * @adapter: board private structure to initialize
3707 *
3708 * This function initializes the vf specific data storage and then attempts to
3709 * allocate the VFs. The reason for ordering it this way is because it is much
3710 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3711 * the memory for the VFs.
3712 **/
3713 static void igb_probe_vfs(struct igb_adapter *adapter)
3714 {
3715 #ifdef CONFIG_PCI_IOV
3716 struct pci_dev *pdev = adapter->pdev;
3717 struct e1000_hw *hw = &adapter->hw;
3718
3719 /* Virtualization features not supported on i210 family. */
3720 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3721 return;
3722
3723 /* Of the below we really only want the effect of getting
3724 * IGB_FLAG_HAS_MSIX set (if available), without which
3725 * igb_enable_sriov() has no effect.
3726 */
3727 igb_set_interrupt_capability(adapter, true);
3728 igb_reset_interrupt_capability(adapter);
3729
3730 pci_sriov_set_totalvfs(pdev, 7);
3731 igb_enable_sriov(pdev, max_vfs);
3732
3733 #endif /* CONFIG_PCI_IOV */
3734 }
3735
3736 unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
3737 {
3738 struct e1000_hw *hw = &adapter->hw;
3739 unsigned int max_rss_queues;
3740
3741 /* Determine the maximum number of RSS queues supported. */
3742 switch (hw->mac.type) {
3743 case e1000_i211:
3744 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3745 break;
3746 case e1000_82575:
3747 case e1000_i210:
3748 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3749 break;
3750 case e1000_i350:
3751 /* I350 cannot do RSS and SR-IOV at the same time */
3752 if (!!adapter->vfs_allocated_count) {
3753 max_rss_queues = 1;
3754 break;
3755 }
3756 /* fall through */
3757 case e1000_82576:
3758 if (!!adapter->vfs_allocated_count) {
3759 max_rss_queues = 2;
3760 break;
3761 }
3762 /* fall through */
3763 case e1000_82580:
3764 case e1000_i354:
3765 default:
3766 max_rss_queues = IGB_MAX_RX_QUEUES;
3767 break;
3768 }
3769
3770 return max_rss_queues;
3771 }
3772
3773 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3774 {
3775 u32 max_rss_queues;
3776
3777 max_rss_queues = igb_get_max_rss_queues(adapter);
3778 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3779
3780 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3781 }
3782
3783 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3784 const u32 max_rss_queues)
3785 {
3786 struct e1000_hw *hw = &adapter->hw;
3787
3788 /* Determine if we need to pair queues. */
3789 switch (hw->mac.type) {
3790 case e1000_82575:
3791 case e1000_i211:
3792 /* Device supports enough interrupts without queue pairing. */
3793 break;
3794 case e1000_82576:
3795 case e1000_82580:
3796 case e1000_i350:
3797 case e1000_i354:
3798 case e1000_i210:
3799 default:
3800 /* If rss_queues > half of max_rss_queues, pair the queues in
3801 * order to conserve interrupts due to limited supply.
3802 */
3803 if (adapter->rss_queues > (max_rss_queues / 2))
3804 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3805 else
3806 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3807 break;
3808 }
3809 }
3810
3811 /**
3812 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3813 * @adapter: board private structure to initialize
3814 *
3815 * igb_sw_init initializes the Adapter private data structure.
3816 * Fields are initialized based on PCI device information and
3817 * OS network device settings (MTU size).
3818 **/
3819 static int igb_sw_init(struct igb_adapter *adapter)
3820 {
3821 struct e1000_hw *hw = &adapter->hw;
3822 struct net_device *netdev = adapter->netdev;
3823 struct pci_dev *pdev = adapter->pdev;
3824
3825 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3826
3827 /* set default ring sizes */
3828 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3829 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3830
3831 /* set default ITR values */
3832 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3833 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3834
3835 /* set default work limits */
3836 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3837
3838 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3839 VLAN_HLEN;
3840 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3841
3842 spin_lock_init(&adapter->nfc_lock);
3843 mutex_init(&adapter->stats64_lock);
3844 #ifdef CONFIG_PCI_IOV
3845 switch (hw->mac.type) {
3846 case e1000_82576:
3847 case e1000_i350:
3848 if (max_vfs > 7) {
3849 dev_warn(&pdev->dev,
3850 "Maximum of 7 VFs per PF, using max\n");
3851 max_vfs = adapter->vfs_allocated_count = 7;
3852 } else
3853 adapter->vfs_allocated_count = max_vfs;
3854 if (adapter->vfs_allocated_count)
3855 dev_warn(&pdev->dev,
3856 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3857 break;
3858 default:
3859 break;
3860 }
3861 #endif /* CONFIG_PCI_IOV */
3862
3863 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3864 adapter->flags |= IGB_FLAG_HAS_MSIX;
3865
3866 adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
3867 sizeof(struct igb_mac_addr),
3868 GFP_KERNEL);
3869 if (!adapter->mac_table)
3870 return -ENOMEM;
3871
3872 igb_probe_vfs(adapter);
3873
3874 igb_init_queue_configuration(adapter);
3875
3876 /* Setup and initialize a copy of the hw vlan table array */
3877 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3878 GFP_KERNEL);
3879 if (!adapter->shadow_vfta)
3880 return -ENOMEM;
3881
3882 /* This call may decrease the number of queues */
3883 if (igb_init_interrupt_scheme(adapter, true)) {
3884 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3885 return -ENOMEM;
3886 }
3887
3888 /* Explicitly disable IRQ since the NIC can be in any state. */
3889 igb_irq_disable(adapter);
3890
3891 if (hw->mac.type >= e1000_i350)
3892 adapter->flags &= ~IGB_FLAG_DMAC;
3893
3894 set_bit(__IGB_DOWN, &adapter->state);
3895 return 0;
3896 }
3897
3898 /**
3899 * igb_open - Called when a network interface is made active
3900 * @netdev: network interface device structure
3901 *
3902 * Returns 0 on success, negative value on failure
3903 *
3904 * The open entry point is called when a network interface is made
3905 * active by the system (IFF_UP). At this point all resources needed
3906 * for transmit and receive operations are allocated, the interrupt
3907 * handler is registered with the OS, the watchdog timer is started,
3908 * and the stack is notified that the interface is ready.
3909 **/
3910 static int __igb_open(struct net_device *netdev, bool resuming)
3911 {
3912 struct igb_adapter *adapter = netdev_priv(netdev);
3913 struct e1000_hw *hw = &adapter->hw;
3914 struct pci_dev *pdev = adapter->pdev;
3915 int err;
3916 int i;
3917
3918 /* disallow open during test */
3919 if (test_bit(__IGB_TESTING, &adapter->state)) {
3920 WARN_ON(resuming);
3921 return -EBUSY;
3922 }
3923
3924 if (!resuming)
3925 pm_runtime_get_sync(&pdev->dev);
3926
3927 netif_carrier_off(netdev);
3928
3929 /* allocate transmit descriptors */
3930 err = igb_setup_all_tx_resources(adapter);
3931 if (err)
3932 goto err_setup_tx;
3933
3934 /* allocate receive descriptors */
3935 err = igb_setup_all_rx_resources(adapter);
3936 if (err)
3937 goto err_setup_rx;
3938
3939 igb_power_up_link(adapter);
3940
3941 /* before we allocate an interrupt, we must be ready to handle it.
3942 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3943 * as soon as we call pci_request_irq, so we have to setup our
3944 * clean_rx handler before we do so.
3945 */
3946 igb_configure(adapter);
3947
3948 err = igb_request_irq(adapter);
3949 if (err)
3950 goto err_req_irq;
3951
3952 /* Notify the stack of the actual queue counts. */
3953 err = netif_set_real_num_tx_queues(adapter->netdev,
3954 adapter->num_tx_queues);
3955 if (err)
3956 goto err_set_queues;
3957
3958 err = netif_set_real_num_rx_queues(adapter->netdev,
3959 adapter->num_rx_queues);
3960 if (err)
3961 goto err_set_queues;
3962
3963 /* From here on the code is the same as igb_up() */
3964 clear_bit(__IGB_DOWN, &adapter->state);
3965
3966 for (i = 0; i < adapter->num_q_vectors; i++)
3967 napi_enable(&(adapter->q_vector[i]->napi));
3968
3969 /* Clear any pending interrupts. */
3970 rd32(E1000_TSICR);
3971 rd32(E1000_ICR);
3972
3973 igb_irq_enable(adapter);
3974
3975 /* notify VFs that reset has been completed */
3976 if (adapter->vfs_allocated_count) {
3977 u32 reg_data = rd32(E1000_CTRL_EXT);
3978
3979 reg_data |= E1000_CTRL_EXT_PFRSTD;
3980 wr32(E1000_CTRL_EXT, reg_data);
3981 }
3982
3983 netif_tx_start_all_queues(netdev);
3984
3985 if (!resuming)
3986 pm_runtime_put(&pdev->dev);
3987
3988 /* start the watchdog. */
3989 hw->mac.get_link_status = 1;
3990 schedule_work(&adapter->watchdog_task);
3991
3992 return 0;
3993
3994 err_set_queues:
3995 igb_free_irq(adapter);
3996 err_req_irq:
3997 igb_release_hw_control(adapter);
3998 igb_power_down_link(adapter);
3999 igb_free_all_rx_resources(adapter);
4000 err_setup_rx:
4001 igb_free_all_tx_resources(adapter);
4002 err_setup_tx:
4003 igb_reset(adapter);
4004 if (!resuming)
4005 pm_runtime_put(&pdev->dev);
4006
4007 return err;
4008 }
4009
4010 int igb_open(struct net_device *netdev)
4011 {
4012 return __igb_open(netdev, false);
4013 }
4014
4015 /**
4016 * igb_close - Disables a network interface
4017 * @netdev: network interface device structure
4018 *
4019 * Returns 0, this is not allowed to fail
4020 *
4021 * The close entry point is called when an interface is de-activated
4022 * by the OS. The hardware is still under the driver's control, but
4023 * needs to be disabled. A global MAC reset is issued to stop the
4024 * hardware, and all transmit and receive resources are freed.
4025 **/
4026 static int __igb_close(struct net_device *netdev, bool suspending)
4027 {
4028 struct igb_adapter *adapter = netdev_priv(netdev);
4029 struct pci_dev *pdev = adapter->pdev;
4030
4031 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
4032
4033 if (!suspending)
4034 pm_runtime_get_sync(&pdev->dev);
4035
4036 igb_down(adapter);
4037 igb_free_irq(adapter);
4038
4039 igb_free_all_tx_resources(adapter);
4040 igb_free_all_rx_resources(adapter);
4041
4042 if (!suspending)
4043 pm_runtime_put_sync(&pdev->dev);
4044 return 0;
4045 }
4046
4047 int igb_close(struct net_device *netdev)
4048 {
4049 if (netif_device_present(netdev) || netdev->dismantle)
4050 return __igb_close(netdev, false);
4051 return 0;
4052 }
4053
4054 /**
4055 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
4056 * @tx_ring: tx descriptor ring (for a specific queue) to setup
4057 *
4058 * Return 0 on success, negative on failure
4059 **/
4060 int igb_setup_tx_resources(struct igb_ring *tx_ring)
4061 {
4062 struct device *dev = tx_ring->dev;
4063 int size;
4064
4065 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
4066
4067 tx_ring->tx_buffer_info = vmalloc(size);
4068 if (!tx_ring->tx_buffer_info)
4069 goto err;
4070
4071 /* round up to nearest 4K */
4072 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
4073 tx_ring->size = ALIGN(tx_ring->size, 4096);
4074
4075 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
4076 &tx_ring->dma, GFP_KERNEL);
4077 if (!tx_ring->desc)
4078 goto err;
4079
4080 tx_ring->next_to_use = 0;
4081 tx_ring->next_to_clean = 0;
4082
4083 return 0;
4084
4085 err:
4086 vfree(tx_ring->tx_buffer_info);
4087 tx_ring->tx_buffer_info = NULL;
4088 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
4089 return -ENOMEM;
4090 }
4091
4092 /**
4093 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
4094 * (Descriptors) for all queues
4095 * @adapter: board private structure
4096 *
4097 * Return 0 on success, negative on failure
4098 **/
4099 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
4100 {
4101 struct pci_dev *pdev = adapter->pdev;
4102 int i, err = 0;
4103
4104 for (i = 0; i < adapter->num_tx_queues; i++) {
4105 err = igb_setup_tx_resources(adapter->tx_ring[i]);
4106 if (err) {
4107 dev_err(&pdev->dev,
4108 "Allocation for Tx Queue %u failed\n", i);
4109 for (i--; i >= 0; i--)
4110 igb_free_tx_resources(adapter->tx_ring[i]);
4111 break;
4112 }
4113 }
4114
4115 return err;
4116 }
4117
4118 /**
4119 * igb_setup_tctl - configure the transmit control registers
4120 * @adapter: Board private structure
4121 **/
4122 void igb_setup_tctl(struct igb_adapter *adapter)
4123 {
4124 struct e1000_hw *hw = &adapter->hw;
4125 u32 tctl;
4126
4127 /* disable queue 0 which is enabled by default on 82575 and 82576 */
4128 wr32(E1000_TXDCTL(0), 0);
4129
4130 /* Program the Transmit Control Register */
4131 tctl = rd32(E1000_TCTL);
4132 tctl &= ~E1000_TCTL_CT;
4133 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
4134 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
4135
4136 igb_config_collision_dist(hw);
4137
4138 /* Enable transmits */
4139 tctl |= E1000_TCTL_EN;
4140
4141 wr32(E1000_TCTL, tctl);
4142 }
4143
4144 /**
4145 * igb_configure_tx_ring - Configure transmit ring after Reset
4146 * @adapter: board private structure
4147 * @ring: tx ring to configure
4148 *
4149 * Configure a transmit ring after a reset.
4150 **/
4151 void igb_configure_tx_ring(struct igb_adapter *adapter,
4152 struct igb_ring *ring)
4153 {
4154 struct e1000_hw *hw = &adapter->hw;
4155 u32 txdctl = 0;
4156 u64 tdba = ring->dma;
4157 int reg_idx = ring->reg_idx;
4158
4159 wr32(E1000_TDLEN(reg_idx),
4160 ring->count * sizeof(union e1000_adv_tx_desc));
4161 wr32(E1000_TDBAL(reg_idx),
4162 tdba & 0x00000000ffffffffULL);
4163 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
4164
4165 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
4166 wr32(E1000_TDH(reg_idx), 0);
4167 writel(0, ring->tail);
4168
4169 txdctl |= IGB_TX_PTHRESH;
4170 txdctl |= IGB_TX_HTHRESH << 8;
4171 txdctl |= IGB_TX_WTHRESH << 16;
4172
4173 /* reinitialize tx_buffer_info */
4174 memset(ring->tx_buffer_info, 0,
4175 sizeof(struct igb_tx_buffer) * ring->count);
4176
4177 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
4178 wr32(E1000_TXDCTL(reg_idx), txdctl);
4179 }
4180
4181 /**
4182 * igb_configure_tx - Configure transmit Unit after Reset
4183 * @adapter: board private structure
4184 *
4185 * Configure the Tx unit of the MAC after a reset.
4186 **/
4187 static void igb_configure_tx(struct igb_adapter *adapter)
4188 {
4189 struct e1000_hw *hw = &adapter->hw;
4190 int i;
4191
4192 /* disable the queues */
4193 for (i = 0; i < adapter->num_tx_queues; i++)
4194 wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
4195
4196 wrfl();
4197 usleep_range(10000, 20000);
4198
4199 for (i = 0; i < adapter->num_tx_queues; i++)
4200 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
4201 }
4202
4203 /**
4204 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
4205 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
4206 *
4207 * Returns 0 on success, negative on failure
4208 **/
4209 int igb_setup_rx_resources(struct igb_ring *rx_ring)
4210 {
4211 struct device *dev = rx_ring->dev;
4212 int size;
4213
4214 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
4215
4216 rx_ring->rx_buffer_info = vmalloc(size);
4217 if (!rx_ring->rx_buffer_info)
4218 goto err;
4219
4220 /* Round up to nearest 4K */
4221 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
4222 rx_ring->size = ALIGN(rx_ring->size, 4096);
4223
4224 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
4225 &rx_ring->dma, GFP_KERNEL);
4226 if (!rx_ring->desc)
4227 goto err;
4228
4229 rx_ring->next_to_alloc = 0;
4230 rx_ring->next_to_clean = 0;
4231 rx_ring->next_to_use = 0;
4232
4233 return 0;
4234
4235 err:
4236 vfree(rx_ring->rx_buffer_info);
4237 rx_ring->rx_buffer_info = NULL;
4238 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
4239 return -ENOMEM;
4240 }
4241
4242 /**
4243 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
4244 * (Descriptors) for all queues
4245 * @adapter: board private structure
4246 *
4247 * Return 0 on success, negative on failure
4248 **/
4249 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
4250 {
4251 struct pci_dev *pdev = adapter->pdev;
4252 int i, err = 0;
4253
4254 for (i = 0; i < adapter->num_rx_queues; i++) {
4255 err = igb_setup_rx_resources(adapter->rx_ring[i]);
4256 if (err) {
4257 dev_err(&pdev->dev,
4258 "Allocation for Rx Queue %u failed\n", i);
4259 for (i--; i >= 0; i--)
4260 igb_free_rx_resources(adapter->rx_ring[i]);
4261 break;
4262 }
4263 }
4264
4265 return err;
4266 }
4267
4268 /**
4269 * igb_setup_mrqc - configure the multiple receive queue control registers
4270 * @adapter: Board private structure
4271 **/
4272 static void igb_setup_mrqc(struct igb_adapter *adapter)
4273 {
4274 struct e1000_hw *hw = &adapter->hw;
4275 u32 mrqc, rxcsum;
4276 u32 j, num_rx_queues;
4277 u32 rss_key[10];
4278
4279 netdev_rss_key_fill(rss_key, sizeof(rss_key));
4280 for (j = 0; j < 10; j++)
4281 wr32(E1000_RSSRK(j), rss_key[j]);
4282
4283 num_rx_queues = adapter->rss_queues;
4284
4285 switch (hw->mac.type) {
4286 case e1000_82576:
4287 /* 82576 supports 2 RSS queues for SR-IOV */
4288 if (adapter->vfs_allocated_count)
4289 num_rx_queues = 2;
4290 break;
4291 default:
4292 break;
4293 }
4294
4295 if (adapter->rss_indir_tbl_init != num_rx_queues) {
4296 for (j = 0; j < IGB_RETA_SIZE; j++)
4297 adapter->rss_indir_tbl[j] =
4298 (j * num_rx_queues) / IGB_RETA_SIZE;
4299 adapter->rss_indir_tbl_init = num_rx_queues;
4300 }
4301 igb_write_rss_indir_tbl(adapter);
4302
4303 /* Disable raw packet checksumming so that RSS hash is placed in
4304 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
4305 * offloads as they are enabled by default
4306 */
4307 rxcsum = rd32(E1000_RXCSUM);
4308 rxcsum |= E1000_RXCSUM_PCSD;
4309
4310 if (adapter->hw.mac.type >= e1000_82576)
4311 /* Enable Receive Checksum Offload for SCTP */
4312 rxcsum |= E1000_RXCSUM_CRCOFL;
4313
4314 /* Don't need to set TUOFL or IPOFL, they default to 1 */
4315 wr32(E1000_RXCSUM, rxcsum);
4316
4317 /* Generate RSS hash based on packet types, TCP/UDP
4318 * port numbers and/or IPv4/v6 src and dst addresses
4319 */
4320 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
4321 E1000_MRQC_RSS_FIELD_IPV4_TCP |
4322 E1000_MRQC_RSS_FIELD_IPV6 |
4323 E1000_MRQC_RSS_FIELD_IPV6_TCP |
4324 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
4325
4326 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
4327 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
4328 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
4329 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
4330
4331 /* If VMDq is enabled then we set the appropriate mode for that, else
4332 * we default to RSS so that an RSS hash is calculated per packet even
4333 * if we are only using one queue
4334 */
4335 if (adapter->vfs_allocated_count) {
4336 if (hw->mac.type > e1000_82575) {
4337 /* Set the default pool for the PF's first queue */
4338 u32 vtctl = rd32(E1000_VT_CTL);
4339
4340 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
4341 E1000_VT_CTL_DISABLE_DEF_POOL);
4342 vtctl |= adapter->vfs_allocated_count <<
4343 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
4344 wr32(E1000_VT_CTL, vtctl);
4345 }
4346 if (adapter->rss_queues > 1)
4347 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
4348 else
4349 mrqc |= E1000_MRQC_ENABLE_VMDQ;
4350 } else {
4351 if (hw->mac.type != e1000_i211)
4352 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
4353 }
4354 igb_vmm_control(adapter);
4355
4356 wr32(E1000_MRQC, mrqc);
4357 }
4358
4359 /**
4360 * igb_setup_rctl - configure the receive control registers
4361 * @adapter: Board private structure
4362 **/
4363 void igb_setup_rctl(struct igb_adapter *adapter)
4364 {
4365 struct e1000_hw *hw = &adapter->hw;
4366 u32 rctl;
4367
4368 rctl = rd32(E1000_RCTL);
4369
4370 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
4371 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
4372
4373 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4374 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4375
4376 /* enable stripping of CRC. It's unlikely this will break BMC
4377 * redirection as it did with e1000. Newer features require
4378 * that the HW strips the CRC.
4379 */
4380 rctl |= E1000_RCTL_SECRC;
4381
4382 /* disable store bad packets and clear size bits. */
4383 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4384
4385 /* enable LPE to allow for reception of jumbo frames */
4386 rctl |= E1000_RCTL_LPE;
4387
4388 /* disable queue 0 to prevent tail write w/o re-config */
4389 wr32(E1000_RXDCTL(0), 0);
4390
4391 /* Attention!!! For SR-IOV PF driver operations you must enable
4392 * queue drop for all VF and PF queues to prevent head of line blocking
4393 * if an un-trusted VF does not provide descriptors to hardware.
4394 */
4395 if (adapter->vfs_allocated_count) {
4396 /* set all queue drop enable bits */
4397 wr32(E1000_QDE, ALL_QUEUES);
4398 }
4399
4400 /* This is useful for sniffing bad packets. */
4401 if (adapter->netdev->features & NETIF_F_RXALL) {
4402 /* UPE and MPE will be handled by normal PROMISC logic
4403 * in e1000e_set_rx_mode
4404 */
4405 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4406 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4407 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4408
4409 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4410 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4411 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4412 * and that breaks VLANs.
4413 */
4414 }
4415
4416 wr32(E1000_RCTL, rctl);
4417 }
4418
4419 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4420 int vfn)
4421 {
4422 struct e1000_hw *hw = &adapter->hw;
4423 u32 vmolr;
4424
4425 if (size > MAX_JUMBO_FRAME_SIZE)
4426 size = MAX_JUMBO_FRAME_SIZE;
4427
4428 vmolr = rd32(E1000_VMOLR(vfn));
4429 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4430 vmolr |= size | E1000_VMOLR_LPE;
4431 wr32(E1000_VMOLR(vfn), vmolr);
4432
4433 return 0;
4434 }
4435
4436 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4437 int vfn, bool enable)
4438 {
4439 struct e1000_hw *hw = &adapter->hw;
4440 u32 val, reg;
4441
4442 if (hw->mac.type < e1000_82576)
4443 return;
4444
4445 if (hw->mac.type == e1000_i350)
4446 reg = E1000_DVMOLR(vfn);
4447 else
4448 reg = E1000_VMOLR(vfn);
4449
4450 val = rd32(reg);
4451 if (enable)
4452 val |= E1000_VMOLR_STRVLAN;
4453 else
4454 val &= ~(E1000_VMOLR_STRVLAN);
4455 wr32(reg, val);
4456 }
4457
4458 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4459 int vfn, bool aupe)
4460 {
4461 struct e1000_hw *hw = &adapter->hw;
4462 u32 vmolr;
4463
4464 /* This register exists only on 82576 and newer so if we are older then
4465 * we should exit and do nothing
4466 */
4467 if (hw->mac.type < e1000_82576)
4468 return;
4469
4470 vmolr = rd32(E1000_VMOLR(vfn));
4471 if (aupe)
4472 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4473 else
4474 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4475
4476 /* clear all bits that might not be set */
4477 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4478
4479 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4480 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4481 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4482 * multicast packets
4483 */
4484 if (vfn <= adapter->vfs_allocated_count)
4485 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4486
4487 wr32(E1000_VMOLR(vfn), vmolr);
4488 }
4489
4490 /**
4491 * igb_configure_rx_ring - Configure a receive ring after Reset
4492 * @adapter: board private structure
4493 * @ring: receive ring to be configured
4494 *
4495 * Configure the Rx unit of the MAC after a reset.
4496 **/
4497 void igb_configure_rx_ring(struct igb_adapter *adapter,
4498 struct igb_ring *ring)
4499 {
4500 struct e1000_hw *hw = &adapter->hw;
4501 union e1000_adv_rx_desc *rx_desc;
4502 u64 rdba = ring->dma;
4503 int reg_idx = ring->reg_idx;
4504 u32 srrctl = 0, rxdctl = 0;
4505
4506 /* disable the queue */
4507 wr32(E1000_RXDCTL(reg_idx), 0);
4508
4509 /* Set DMA base address registers */
4510 wr32(E1000_RDBAL(reg_idx),
4511 rdba & 0x00000000ffffffffULL);
4512 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4513 wr32(E1000_RDLEN(reg_idx),
4514 ring->count * sizeof(union e1000_adv_rx_desc));
4515
4516 /* initialize head and tail */
4517 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4518 wr32(E1000_RDH(reg_idx), 0);
4519 writel(0, ring->tail);
4520
4521 /* set descriptor configuration */
4522 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4523 if (ring_uses_large_buffer(ring))
4524 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4525 else
4526 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4527 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4528 if (hw->mac.type >= e1000_82580)
4529 srrctl |= E1000_SRRCTL_TIMESTAMP;
4530 /* Only set Drop Enable if we are supporting multiple queues */
4531 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4532 srrctl |= E1000_SRRCTL_DROP_EN;
4533
4534 wr32(E1000_SRRCTL(reg_idx), srrctl);
4535
4536 /* set filtering for VMDQ pools */
4537 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4538
4539 rxdctl |= IGB_RX_PTHRESH;
4540 rxdctl |= IGB_RX_HTHRESH << 8;
4541 rxdctl |= IGB_RX_WTHRESH << 16;
4542
4543 /* initialize rx_buffer_info */
4544 memset(ring->rx_buffer_info, 0,
4545 sizeof(struct igb_rx_buffer) * ring->count);
4546
4547 /* initialize Rx descriptor 0 */
4548 rx_desc = IGB_RX_DESC(ring, 0);
4549 rx_desc->wb.upper.length = 0;
4550
4551 /* enable receive descriptor fetching */
4552 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4553 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4554 }
4555
4556 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4557 struct igb_ring *rx_ring)
4558 {
4559 /* set build_skb and buffer size flags */
4560 clear_ring_build_skb_enabled(rx_ring);
4561 clear_ring_uses_large_buffer(rx_ring);
4562
4563 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4564 return;
4565
4566 set_ring_build_skb_enabled(rx_ring);
4567
4568 #if (PAGE_SIZE < 8192)
4569 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4570 return;
4571
4572 set_ring_uses_large_buffer(rx_ring);
4573 #endif
4574 }
4575
4576 /**
4577 * igb_configure_rx - Configure receive Unit after Reset
4578 * @adapter: board private structure
4579 *
4580 * Configure the Rx unit of the MAC after a reset.
4581 **/
4582 static void igb_configure_rx(struct igb_adapter *adapter)
4583 {
4584 int i;
4585
4586 /* set the correct pool for the PF default MAC address in entry 0 */
4587 igb_set_default_mac_filter(adapter);
4588
4589 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4590 * the Base and Length of the Rx Descriptor Ring
4591 */
4592 for (i = 0; i < adapter->num_rx_queues; i++) {
4593 struct igb_ring *rx_ring = adapter->rx_ring[i];
4594
4595 igb_set_rx_buffer_len(adapter, rx_ring);
4596 igb_configure_rx_ring(adapter, rx_ring);
4597 }
4598 }
4599
4600 /**
4601 * igb_free_tx_resources - Free Tx Resources per Queue
4602 * @tx_ring: Tx descriptor ring for a specific queue
4603 *
4604 * Free all transmit software resources
4605 **/
4606 void igb_free_tx_resources(struct igb_ring *tx_ring)
4607 {
4608 igb_clean_tx_ring(tx_ring);
4609
4610 vfree(tx_ring->tx_buffer_info);
4611 tx_ring->tx_buffer_info = NULL;
4612
4613 /* if not set, then don't free */
4614 if (!tx_ring->desc)
4615 return;
4616
4617 dma_free_coherent(tx_ring->dev, tx_ring->size,
4618 tx_ring->desc, tx_ring->dma);
4619
4620 tx_ring->desc = NULL;
4621 }
4622
4623 /**
4624 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4625 * @adapter: board private structure
4626 *
4627 * Free all transmit software resources
4628 **/
4629 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4630 {
4631 int i;
4632
4633 for (i = 0; i < adapter->num_tx_queues; i++)
4634 if (adapter->tx_ring[i])
4635 igb_free_tx_resources(adapter->tx_ring[i]);
4636 }
4637
4638 /**
4639 * igb_clean_tx_ring - Free Tx Buffers
4640 * @tx_ring: ring to be cleaned
4641 **/
4642 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4643 {
4644 u16 i = tx_ring->next_to_clean;
4645 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4646
4647 while (i != tx_ring->next_to_use) {
4648 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4649
4650 /* Free all the Tx ring sk_buffs */
4651 dev_kfree_skb_any(tx_buffer->skb);
4652
4653 /* unmap skb header data */
4654 dma_unmap_single(tx_ring->dev,
4655 dma_unmap_addr(tx_buffer, dma),
4656 dma_unmap_len(tx_buffer, len),
4657 DMA_TO_DEVICE);
4658
4659 /* check for eop_desc to determine the end of the packet */
4660 eop_desc = tx_buffer->next_to_watch;
4661 tx_desc = IGB_TX_DESC(tx_ring, i);
4662
4663 /* unmap remaining buffers */
4664 while (tx_desc != eop_desc) {
4665 tx_buffer++;
4666 tx_desc++;
4667 i++;
4668 if (unlikely(i == tx_ring->count)) {
4669 i = 0;
4670 tx_buffer = tx_ring->tx_buffer_info;
4671 tx_desc = IGB_TX_DESC(tx_ring, 0);
4672 }
4673
4674 /* unmap any remaining paged data */
4675 if (dma_unmap_len(tx_buffer, len))
4676 dma_unmap_page(tx_ring->dev,
4677 dma_unmap_addr(tx_buffer, dma),
4678 dma_unmap_len(tx_buffer, len),
4679 DMA_TO_DEVICE);
4680 }
4681
4682 /* move us one more past the eop_desc for start of next pkt */
4683 tx_buffer++;
4684 i++;
4685 if (unlikely(i == tx_ring->count)) {
4686 i = 0;
4687 tx_buffer = tx_ring->tx_buffer_info;
4688 }
4689 }
4690
4691 /* reset BQL for queue */
4692 netdev_tx_reset_queue(txring_txq(tx_ring));
4693
4694 /* reset next_to_use and next_to_clean */
4695 tx_ring->next_to_use = 0;
4696 tx_ring->next_to_clean = 0;
4697 }
4698
4699 /**
4700 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4701 * @adapter: board private structure
4702 **/
4703 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4704 {
4705 int i;
4706
4707 for (i = 0; i < adapter->num_tx_queues; i++)
4708 if (adapter->tx_ring[i])
4709 igb_clean_tx_ring(adapter->tx_ring[i]);
4710 }
4711
4712 /**
4713 * igb_free_rx_resources - Free Rx Resources
4714 * @rx_ring: ring to clean the resources from
4715 *
4716 * Free all receive software resources
4717 **/
4718 void igb_free_rx_resources(struct igb_ring *rx_ring)
4719 {
4720 igb_clean_rx_ring(rx_ring);
4721
4722 vfree(rx_ring->rx_buffer_info);
4723 rx_ring->rx_buffer_info = NULL;
4724
4725 /* if not set, then don't free */
4726 if (!rx_ring->desc)
4727 return;
4728
4729 dma_free_coherent(rx_ring->dev, rx_ring->size,
4730 rx_ring->desc, rx_ring->dma);
4731
4732 rx_ring->desc = NULL;
4733 }
4734
4735 /**
4736 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4737 * @adapter: board private structure
4738 *
4739 * Free all receive software resources
4740 **/
4741 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4742 {
4743 int i;
4744
4745 for (i = 0; i < adapter->num_rx_queues; i++)
4746 if (adapter->rx_ring[i])
4747 igb_free_rx_resources(adapter->rx_ring[i]);
4748 }
4749
4750 /**
4751 * igb_clean_rx_ring - Free Rx Buffers per Queue
4752 * @rx_ring: ring to free buffers from
4753 **/
4754 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4755 {
4756 u16 i = rx_ring->next_to_clean;
4757
4758 if (rx_ring->skb)
4759 dev_kfree_skb(rx_ring->skb);
4760 rx_ring->skb = NULL;
4761
4762 /* Free all the Rx ring sk_buffs */
4763 while (i != rx_ring->next_to_alloc) {
4764 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4765
4766 /* Invalidate cache lines that may have been written to by
4767 * device so that we avoid corrupting memory.
4768 */
4769 dma_sync_single_range_for_cpu(rx_ring->dev,
4770 buffer_info->dma,
4771 buffer_info->page_offset,
4772 igb_rx_bufsz(rx_ring),
4773 DMA_FROM_DEVICE);
4774
4775 /* free resources associated with mapping */
4776 dma_unmap_page_attrs(rx_ring->dev,
4777 buffer_info->dma,
4778 igb_rx_pg_size(rx_ring),
4779 DMA_FROM_DEVICE,
4780 IGB_RX_DMA_ATTR);
4781 __page_frag_cache_drain(buffer_info->page,
4782 buffer_info->pagecnt_bias);
4783
4784 i++;
4785 if (i == rx_ring->count)
4786 i = 0;
4787 }
4788
4789 rx_ring->next_to_alloc = 0;
4790 rx_ring->next_to_clean = 0;
4791 rx_ring->next_to_use = 0;
4792 }
4793
4794 /**
4795 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4796 * @adapter: board private structure
4797 **/
4798 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4799 {
4800 int i;
4801
4802 for (i = 0; i < adapter->num_rx_queues; i++)
4803 if (adapter->rx_ring[i])
4804 igb_clean_rx_ring(adapter->rx_ring[i]);
4805 }
4806
4807 /**
4808 * igb_set_mac - Change the Ethernet Address of the NIC
4809 * @netdev: network interface device structure
4810 * @p: pointer to an address structure
4811 *
4812 * Returns 0 on success, negative on failure
4813 **/
4814 static int igb_set_mac(struct net_device *netdev, void *p)
4815 {
4816 struct igb_adapter *adapter = netdev_priv(netdev);
4817 struct e1000_hw *hw = &adapter->hw;
4818 struct sockaddr *addr = p;
4819
4820 if (!is_valid_ether_addr(addr->sa_data))
4821 return -EADDRNOTAVAIL;
4822
4823 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4824 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4825
4826 /* set the correct pool for the new PF MAC address in entry 0 */
4827 igb_set_default_mac_filter(adapter);
4828
4829 return 0;
4830 }
4831
4832 /**
4833 * igb_write_mc_addr_list - write multicast addresses to MTA
4834 * @netdev: network interface device structure
4835 *
4836 * Writes multicast address list to the MTA hash table.
4837 * Returns: -ENOMEM on failure
4838 * 0 on no addresses written
4839 * X on writing X addresses to MTA
4840 **/
4841 static int igb_write_mc_addr_list(struct net_device *netdev)
4842 {
4843 struct igb_adapter *adapter = netdev_priv(netdev);
4844 struct e1000_hw *hw = &adapter->hw;
4845 struct netdev_hw_addr *ha;
4846 u8 *mta_list;
4847 int i;
4848
4849 if (netdev_mc_empty(netdev)) {
4850 /* nothing to program, so clear mc list */
4851 igb_update_mc_addr_list(hw, NULL, 0);
4852 igb_restore_vf_multicasts(adapter);
4853 return 0;
4854 }
4855
4856 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
4857 if (!mta_list)
4858 return -ENOMEM;
4859
4860 /* The shared function expects a packed array of only addresses. */
4861 i = 0;
4862 netdev_for_each_mc_addr(ha, netdev)
4863 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4864
4865 igb_update_mc_addr_list(hw, mta_list, i);
4866 kfree(mta_list);
4867
4868 return netdev_mc_count(netdev);
4869 }
4870
4871 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4872 {
4873 struct e1000_hw *hw = &adapter->hw;
4874 u32 i, pf_id;
4875
4876 switch (hw->mac.type) {
4877 case e1000_i210:
4878 case e1000_i211:
4879 case e1000_i350:
4880 /* VLAN filtering needed for VLAN prio filter */
4881 if (adapter->netdev->features & NETIF_F_NTUPLE)
4882 break;
4883 /* fall through */
4884 case e1000_82576:
4885 case e1000_82580:
4886 case e1000_i354:
4887 /* VLAN filtering needed for pool filtering */
4888 if (adapter->vfs_allocated_count)
4889 break;
4890 /* fall through */
4891 default:
4892 return 1;
4893 }
4894
4895 /* We are already in VLAN promisc, nothing to do */
4896 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4897 return 0;
4898
4899 if (!adapter->vfs_allocated_count)
4900 goto set_vfta;
4901
4902 /* Add PF to all active pools */
4903 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4904
4905 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4906 u32 vlvf = rd32(E1000_VLVF(i));
4907
4908 vlvf |= BIT(pf_id);
4909 wr32(E1000_VLVF(i), vlvf);
4910 }
4911
4912 set_vfta:
4913 /* Set all bits in the VLAN filter table array */
4914 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4915 hw->mac.ops.write_vfta(hw, i, ~0U);
4916
4917 /* Set flag so we don't redo unnecessary work */
4918 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4919
4920 return 0;
4921 }
4922
4923 #define VFTA_BLOCK_SIZE 8
4924 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4925 {
4926 struct e1000_hw *hw = &adapter->hw;
4927 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4928 u32 vid_start = vfta_offset * 32;
4929 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4930 u32 i, vid, word, bits, pf_id;
4931
4932 /* guarantee that we don't scrub out management VLAN */
4933 vid = adapter->mng_vlan_id;
4934 if (vid >= vid_start && vid < vid_end)
4935 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4936
4937 if (!adapter->vfs_allocated_count)
4938 goto set_vfta;
4939
4940 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4941
4942 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4943 u32 vlvf = rd32(E1000_VLVF(i));
4944
4945 /* pull VLAN ID from VLVF */
4946 vid = vlvf & VLAN_VID_MASK;
4947
4948 /* only concern ourselves with a certain range */
4949 if (vid < vid_start || vid >= vid_end)
4950 continue;
4951
4952 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4953 /* record VLAN ID in VFTA */
4954 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4955
4956 /* if PF is part of this then continue */
4957 if (test_bit(vid, adapter->active_vlans))
4958 continue;
4959 }
4960
4961 /* remove PF from the pool */
4962 bits = ~BIT(pf_id);
4963 bits &= rd32(E1000_VLVF(i));
4964 wr32(E1000_VLVF(i), bits);
4965 }
4966
4967 set_vfta:
4968 /* extract values from active_vlans and write back to VFTA */
4969 for (i = VFTA_BLOCK_SIZE; i--;) {
4970 vid = (vfta_offset + i) * 32;
4971 word = vid / BITS_PER_LONG;
4972 bits = vid % BITS_PER_LONG;
4973
4974 vfta[i] |= adapter->active_vlans[word] >> bits;
4975
4976 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4977 }
4978 }
4979
4980 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4981 {
4982 u32 i;
4983
4984 /* We are not in VLAN promisc, nothing to do */
4985 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4986 return;
4987
4988 /* Set flag so we don't redo unnecessary work */
4989 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4990
4991 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4992 igb_scrub_vfta(adapter, i);
4993 }
4994
4995 /**
4996 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4997 * @netdev: network interface device structure
4998 *
4999 * The set_rx_mode entry point is called whenever the unicast or multicast
5000 * address lists or the network interface flags are updated. This routine is
5001 * responsible for configuring the hardware for proper unicast, multicast,
5002 * promiscuous mode, and all-multi behavior.
5003 **/
5004 static void igb_set_rx_mode(struct net_device *netdev)
5005 {
5006 struct igb_adapter *adapter = netdev_priv(netdev);
5007 struct e1000_hw *hw = &adapter->hw;
5008 unsigned int vfn = adapter->vfs_allocated_count;
5009 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
5010 int count;
5011
5012 /* Check for Promiscuous and All Multicast modes */
5013 if (netdev->flags & IFF_PROMISC) {
5014 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
5015 vmolr |= E1000_VMOLR_MPME;
5016
5017 /* enable use of UTA filter to force packets to default pool */
5018 if (hw->mac.type == e1000_82576)
5019 vmolr |= E1000_VMOLR_ROPE;
5020 } else {
5021 if (netdev->flags & IFF_ALLMULTI) {
5022 rctl |= E1000_RCTL_MPE;
5023 vmolr |= E1000_VMOLR_MPME;
5024 } else {
5025 /* Write addresses to the MTA, if the attempt fails
5026 * then we should just turn on promiscuous mode so
5027 * that we can at least receive multicast traffic
5028 */
5029 count = igb_write_mc_addr_list(netdev);
5030 if (count < 0) {
5031 rctl |= E1000_RCTL_MPE;
5032 vmolr |= E1000_VMOLR_MPME;
5033 } else if (count) {
5034 vmolr |= E1000_VMOLR_ROMPE;
5035 }
5036 }
5037 }
5038
5039 /* Write addresses to available RAR registers, if there is not
5040 * sufficient space to store all the addresses then enable
5041 * unicast promiscuous mode
5042 */
5043 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
5044 rctl |= E1000_RCTL_UPE;
5045 vmolr |= E1000_VMOLR_ROPE;
5046 }
5047
5048 /* enable VLAN filtering by default */
5049 rctl |= E1000_RCTL_VFE;
5050
5051 /* disable VLAN filtering for modes that require it */
5052 if ((netdev->flags & IFF_PROMISC) ||
5053 (netdev->features & NETIF_F_RXALL)) {
5054 /* if we fail to set all rules then just clear VFE */
5055 if (igb_vlan_promisc_enable(adapter))
5056 rctl &= ~E1000_RCTL_VFE;
5057 } else {
5058 igb_vlan_promisc_disable(adapter);
5059 }
5060
5061 /* update state of unicast, multicast, and VLAN filtering modes */
5062 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
5063 E1000_RCTL_VFE);
5064 wr32(E1000_RCTL, rctl);
5065
5066 #if (PAGE_SIZE < 8192)
5067 if (!adapter->vfs_allocated_count) {
5068 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5069 rlpml = IGB_MAX_FRAME_BUILD_SKB;
5070 }
5071 #endif
5072 wr32(E1000_RLPML, rlpml);
5073
5074 /* In order to support SR-IOV and eventually VMDq it is necessary to set
5075 * the VMOLR to enable the appropriate modes. Without this workaround
5076 * we will have issues with VLAN tag stripping not being done for frames
5077 * that are only arriving because we are the default pool
5078 */
5079 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
5080 return;
5081
5082 /* set UTA to appropriate mode */
5083 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
5084
5085 vmolr |= rd32(E1000_VMOLR(vfn)) &
5086 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
5087
5088 /* enable Rx jumbo frames, restrict as needed to support build_skb */
5089 vmolr &= ~E1000_VMOLR_RLPML_MASK;
5090 #if (PAGE_SIZE < 8192)
5091 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
5092 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
5093 else
5094 #endif
5095 vmolr |= MAX_JUMBO_FRAME_SIZE;
5096 vmolr |= E1000_VMOLR_LPE;
5097
5098 wr32(E1000_VMOLR(vfn), vmolr);
5099
5100 igb_restore_vf_multicasts(adapter);
5101 }
5102
5103 static void igb_check_wvbr(struct igb_adapter *adapter)
5104 {
5105 struct e1000_hw *hw = &adapter->hw;
5106 u32 wvbr = 0;
5107
5108 switch (hw->mac.type) {
5109 case e1000_82576:
5110 case e1000_i350:
5111 wvbr = rd32(E1000_WVBR);
5112 if (!wvbr)
5113 return;
5114 break;
5115 default:
5116 break;
5117 }
5118
5119 adapter->wvbr |= wvbr;
5120 }
5121
5122 #define IGB_STAGGERED_QUEUE_OFFSET 8
5123
5124 static void igb_spoof_check(struct igb_adapter *adapter)
5125 {
5126 int j;
5127
5128 if (!adapter->wvbr)
5129 return;
5130
5131 for (j = 0; j < adapter->vfs_allocated_count; j++) {
5132 if (adapter->wvbr & BIT(j) ||
5133 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
5134 dev_warn(&adapter->pdev->dev,
5135 "Spoof event(s) detected on VF %d\n", j);
5136 adapter->wvbr &=
5137 ~(BIT(j) |
5138 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
5139 }
5140 }
5141 }
5142
5143 /* Need to wait a few seconds after link up to get diagnostic information from
5144 * the phy
5145 */
5146 static void igb_update_phy_info(struct timer_list *t)
5147 {
5148 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
5149 igb_get_phy_info(&adapter->hw);
5150 }
5151
5152 /**
5153 * igb_has_link - check shared code for link and determine up/down
5154 * @adapter: pointer to driver private info
5155 **/
5156 bool igb_has_link(struct igb_adapter *adapter)
5157 {
5158 struct e1000_hw *hw = &adapter->hw;
5159 bool link_active = false;
5160
5161 /* get_link_status is set on LSC (link status) interrupt or
5162 * rx sequence error interrupt. get_link_status will stay
5163 * false until the e1000_check_for_link establishes link
5164 * for copper adapters ONLY
5165 */
5166 switch (hw->phy.media_type) {
5167 case e1000_media_type_copper:
5168 if (!hw->mac.get_link_status)
5169 return true;
5170 /* fall through */
5171 case e1000_media_type_internal_serdes:
5172 hw->mac.ops.check_for_link(hw);
5173 link_active = !hw->mac.get_link_status;
5174 break;
5175 default:
5176 case e1000_media_type_unknown:
5177 break;
5178 }
5179
5180 if (((hw->mac.type == e1000_i210) ||
5181 (hw->mac.type == e1000_i211)) &&
5182 (hw->phy.id == I210_I_PHY_ID)) {
5183 if (!netif_carrier_ok(adapter->netdev)) {
5184 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5185 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
5186 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
5187 adapter->link_check_timeout = jiffies;
5188 }
5189 }
5190
5191 return link_active;
5192 }
5193
5194 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
5195 {
5196 bool ret = false;
5197 u32 ctrl_ext, thstat;
5198
5199 /* check for thermal sensor event on i350 copper only */
5200 if (hw->mac.type == e1000_i350) {
5201 thstat = rd32(E1000_THSTAT);
5202 ctrl_ext = rd32(E1000_CTRL_EXT);
5203
5204 if ((hw->phy.media_type == e1000_media_type_copper) &&
5205 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
5206 ret = !!(thstat & event);
5207 }
5208
5209 return ret;
5210 }
5211
5212 /**
5213 * igb_check_lvmmc - check for malformed packets received
5214 * and indicated in LVMMC register
5215 * @adapter: pointer to adapter
5216 **/
5217 static void igb_check_lvmmc(struct igb_adapter *adapter)
5218 {
5219 struct e1000_hw *hw = &adapter->hw;
5220 u32 lvmmc;
5221
5222 lvmmc = rd32(E1000_LVMMC);
5223 if (lvmmc) {
5224 if (unlikely(net_ratelimit())) {
5225 netdev_warn(adapter->netdev,
5226 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
5227 lvmmc);
5228 }
5229 }
5230 }
5231
5232 /**
5233 * igb_watchdog - Timer Call-back
5234 * @data: pointer to adapter cast into an unsigned long
5235 **/
5236 static void igb_watchdog(struct timer_list *t)
5237 {
5238 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5239 /* Do the rest outside of interrupt context */
5240 schedule_work(&adapter->watchdog_task);
5241 }
5242
5243 static void igb_watchdog_task(struct work_struct *work)
5244 {
5245 struct igb_adapter *adapter = container_of(work,
5246 struct igb_adapter,
5247 watchdog_task);
5248 struct e1000_hw *hw = &adapter->hw;
5249 struct e1000_phy_info *phy = &hw->phy;
5250 struct net_device *netdev = adapter->netdev;
5251 u32 link;
5252 int i;
5253 u32 connsw;
5254 u16 phy_data, retry_count = 20;
5255
5256 link = igb_has_link(adapter);
5257
5258 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
5259 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
5260 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
5261 else
5262 link = false;
5263 }
5264
5265 /* Force link down if we have fiber to swap to */
5266 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5267 if (hw->phy.media_type == e1000_media_type_copper) {
5268 connsw = rd32(E1000_CONNSW);
5269 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
5270 link = 0;
5271 }
5272 }
5273 if (link) {
5274 /* Perform a reset if the media type changed. */
5275 if (hw->dev_spec._82575.media_changed) {
5276 hw->dev_spec._82575.media_changed = false;
5277 adapter->flags |= IGB_FLAG_MEDIA_RESET;
5278 igb_reset(adapter);
5279 }
5280 /* Cancel scheduled suspend requests. */
5281 pm_runtime_resume(netdev->dev.parent);
5282
5283 if (!netif_carrier_ok(netdev)) {
5284 u32 ctrl;
5285
5286 hw->mac.ops.get_speed_and_duplex(hw,
5287 &adapter->link_speed,
5288 &adapter->link_duplex);
5289
5290 ctrl = rd32(E1000_CTRL);
5291 /* Links status message must follow this format */
5292 netdev_info(netdev,
5293 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5294 netdev->name,
5295 adapter->link_speed,
5296 adapter->link_duplex == FULL_DUPLEX ?
5297 "Full" : "Half",
5298 (ctrl & E1000_CTRL_TFCE) &&
5299 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
5300 (ctrl & E1000_CTRL_RFCE) ? "RX" :
5301 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
5302
5303 /* disable EEE if enabled */
5304 if ((adapter->flags & IGB_FLAG_EEE) &&
5305 (adapter->link_duplex == HALF_DUPLEX)) {
5306 dev_info(&adapter->pdev->dev,
5307 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
5308 adapter->hw.dev_spec._82575.eee_disable = true;
5309 adapter->flags &= ~IGB_FLAG_EEE;
5310 }
5311
5312 /* check if SmartSpeed worked */
5313 igb_check_downshift(hw);
5314 if (phy->speed_downgraded)
5315 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5316
5317 /* check for thermal sensor event */
5318 if (igb_thermal_sensor_event(hw,
5319 E1000_THSTAT_LINK_THROTTLE))
5320 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
5321
5322 /* adjust timeout factor according to speed/duplex */
5323 adapter->tx_timeout_factor = 1;
5324 switch (adapter->link_speed) {
5325 case SPEED_10:
5326 adapter->tx_timeout_factor = 14;
5327 break;
5328 case SPEED_100:
5329 /* maybe add some timeout factor ? */
5330 break;
5331 }
5332
5333 if (adapter->link_speed != SPEED_1000)
5334 goto no_wait;
5335
5336 /* wait for Remote receiver status OK */
5337 retry_read_status:
5338 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
5339 &phy_data)) {
5340 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5341 retry_count) {
5342 msleep(100);
5343 retry_count--;
5344 goto retry_read_status;
5345 } else if (!retry_count) {
5346 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
5347 }
5348 } else {
5349 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
5350 }
5351 no_wait:
5352 netif_carrier_on(netdev);
5353
5354 igb_ping_all_vfs(adapter);
5355 igb_check_vf_rate_limit(adapter);
5356
5357 /* link state has changed, schedule phy info update */
5358 if (!test_bit(__IGB_DOWN, &adapter->state))
5359 mod_timer(&adapter->phy_info_timer,
5360 round_jiffies(jiffies + 2 * HZ));
5361 }
5362 } else {
5363 if (netif_carrier_ok(netdev)) {
5364 adapter->link_speed = 0;
5365 adapter->link_duplex = 0;
5366
5367 /* check for thermal sensor event */
5368 if (igb_thermal_sensor_event(hw,
5369 E1000_THSTAT_PWR_DOWN)) {
5370 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
5371 }
5372
5373 /* Links status message must follow this format */
5374 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5375 netdev->name);
5376 netif_carrier_off(netdev);
5377
5378 igb_ping_all_vfs(adapter);
5379
5380 /* link state has changed, schedule phy info update */
5381 if (!test_bit(__IGB_DOWN, &adapter->state))
5382 mod_timer(&adapter->phy_info_timer,
5383 round_jiffies(jiffies + 2 * HZ));
5384
5385 /* link is down, time to check for alternate media */
5386 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5387 igb_check_swap_media(adapter);
5388 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5389 schedule_work(&adapter->reset_task);
5390 /* return immediately */
5391 return;
5392 }
5393 }
5394 pm_schedule_suspend(netdev->dev.parent,
5395 MSEC_PER_SEC * 5);
5396
5397 /* also check for alternate media here */
5398 } else if (!netif_carrier_ok(netdev) &&
5399 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5400 igb_check_swap_media(adapter);
5401 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5402 schedule_work(&adapter->reset_task);
5403 /* return immediately */
5404 return;
5405 }
5406 }
5407 }
5408
5409 mutex_lock(&adapter->stats64_lock);
5410 igb_update_stats(adapter);
5411 mutex_unlock(&adapter->stats64_lock);
5412
5413 for (i = 0; i < adapter->num_tx_queues; i++) {
5414 struct igb_ring *tx_ring = adapter->tx_ring[i];
5415 if (!netif_carrier_ok(netdev)) {
5416 /* We've lost link, so the controller stops DMA,
5417 * but we've got queued Tx work that's never going
5418 * to get done, so reset controller to flush Tx.
5419 * (Do the reset outside of interrupt context).
5420 */
5421 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5422 adapter->tx_timeout_count++;
5423 schedule_work(&adapter->reset_task);
5424 /* return immediately since reset is imminent */
5425 return;
5426 }
5427 }
5428
5429 /* Force detection of hung controller every watchdog period */
5430 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5431 }
5432
5433 /* Cause software interrupt to ensure Rx ring is cleaned */
5434 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5435 u32 eics = 0;
5436
5437 for (i = 0; i < adapter->num_q_vectors; i++)
5438 eics |= adapter->q_vector[i]->eims_value;
5439 wr32(E1000_EICS, eics);
5440 } else {
5441 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5442 }
5443
5444 igb_spoof_check(adapter);
5445 igb_ptp_rx_hang(adapter);
5446 igb_ptp_tx_hang(adapter);
5447
5448 /* Check LVMMC register on i350/i354 only */
5449 if ((adapter->hw.mac.type == e1000_i350) ||
5450 (adapter->hw.mac.type == e1000_i354))
5451 igb_check_lvmmc(adapter);
5452
5453 /* Reset the timer */
5454 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5455 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5456 mod_timer(&adapter->watchdog_timer,
5457 round_jiffies(jiffies + HZ));
5458 else
5459 mod_timer(&adapter->watchdog_timer,
5460 round_jiffies(jiffies + 2 * HZ));
5461 }
5462 }
5463
5464 enum latency_range {
5465 lowest_latency = 0,
5466 low_latency = 1,
5467 bulk_latency = 2,
5468 latency_invalid = 255
5469 };
5470
5471 /**
5472 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5473 * @q_vector: pointer to q_vector
5474 *
5475 * Stores a new ITR value based on strictly on packet size. This
5476 * algorithm is less sophisticated than that used in igb_update_itr,
5477 * due to the difficulty of synchronizing statistics across multiple
5478 * receive rings. The divisors and thresholds used by this function
5479 * were determined based on theoretical maximum wire speed and testing
5480 * data, in order to minimize response time while increasing bulk
5481 * throughput.
5482 * This functionality is controlled by ethtool's coalescing settings.
5483 * NOTE: This function is called only when operating in a multiqueue
5484 * receive environment.
5485 **/
5486 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5487 {
5488 int new_val = q_vector->itr_val;
5489 int avg_wire_size = 0;
5490 struct igb_adapter *adapter = q_vector->adapter;
5491 unsigned int packets;
5492
5493 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5494 * ints/sec - ITR timer value of 120 ticks.
5495 */
5496 if (adapter->link_speed != SPEED_1000) {
5497 new_val = IGB_4K_ITR;
5498 goto set_itr_val;
5499 }
5500
5501 packets = q_vector->rx.total_packets;
5502 if (packets)
5503 avg_wire_size = q_vector->rx.total_bytes / packets;
5504
5505 packets = q_vector->tx.total_packets;
5506 if (packets)
5507 avg_wire_size = max_t(u32, avg_wire_size,
5508 q_vector->tx.total_bytes / packets);
5509
5510 /* if avg_wire_size isn't set no work was done */
5511 if (!avg_wire_size)
5512 goto clear_counts;
5513
5514 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5515 avg_wire_size += 24;
5516
5517 /* Don't starve jumbo frames */
5518 avg_wire_size = min(avg_wire_size, 3000);
5519
5520 /* Give a little boost to mid-size frames */
5521 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5522 new_val = avg_wire_size / 3;
5523 else
5524 new_val = avg_wire_size / 2;
5525
5526 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5527 if (new_val < IGB_20K_ITR &&
5528 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5529 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5530 new_val = IGB_20K_ITR;
5531
5532 set_itr_val:
5533 if (new_val != q_vector->itr_val) {
5534 q_vector->itr_val = new_val;
5535 q_vector->set_itr = 1;
5536 }
5537 clear_counts:
5538 q_vector->rx.total_bytes = 0;
5539 q_vector->rx.total_packets = 0;
5540 q_vector->tx.total_bytes = 0;
5541 q_vector->tx.total_packets = 0;
5542 }
5543
5544 /**
5545 * igb_update_itr - update the dynamic ITR value based on statistics
5546 * @q_vector: pointer to q_vector
5547 * @ring_container: ring info to update the itr for
5548 *
5549 * Stores a new ITR value based on packets and byte
5550 * counts during the last interrupt. The advantage of per interrupt
5551 * computation is faster updates and more accurate ITR for the current
5552 * traffic pattern. Constants in this function were computed
5553 * based on theoretical maximum wire speed and thresholds were set based
5554 * on testing data as well as attempting to minimize response time
5555 * while increasing bulk throughput.
5556 * This functionality is controlled by ethtool's coalescing settings.
5557 * NOTE: These calculations are only valid when operating in a single-
5558 * queue environment.
5559 **/
5560 static void igb_update_itr(struct igb_q_vector *q_vector,
5561 struct igb_ring_container *ring_container)
5562 {
5563 unsigned int packets = ring_container->total_packets;
5564 unsigned int bytes = ring_container->total_bytes;
5565 u8 itrval = ring_container->itr;
5566
5567 /* no packets, exit with status unchanged */
5568 if (packets == 0)
5569 return;
5570
5571 switch (itrval) {
5572 case lowest_latency:
5573 /* handle TSO and jumbo frames */
5574 if (bytes/packets > 8000)
5575 itrval = bulk_latency;
5576 else if ((packets < 5) && (bytes > 512))
5577 itrval = low_latency;
5578 break;
5579 case low_latency: /* 50 usec aka 20000 ints/s */
5580 if (bytes > 10000) {
5581 /* this if handles the TSO accounting */
5582 if (bytes/packets > 8000)
5583 itrval = bulk_latency;
5584 else if ((packets < 10) || ((bytes/packets) > 1200))
5585 itrval = bulk_latency;
5586 else if ((packets > 35))
5587 itrval = lowest_latency;
5588 } else if (bytes/packets > 2000) {
5589 itrval = bulk_latency;
5590 } else if (packets <= 2 && bytes < 512) {
5591 itrval = lowest_latency;
5592 }
5593 break;
5594 case bulk_latency: /* 250 usec aka 4000 ints/s */
5595 if (bytes > 25000) {
5596 if (packets > 35)
5597 itrval = low_latency;
5598 } else if (bytes < 1500) {
5599 itrval = low_latency;
5600 }
5601 break;
5602 }
5603
5604 /* clear work counters since we have the values we need */
5605 ring_container->total_bytes = 0;
5606 ring_container->total_packets = 0;
5607
5608 /* write updated itr to ring container */
5609 ring_container->itr = itrval;
5610 }
5611
5612 static void igb_set_itr(struct igb_q_vector *q_vector)
5613 {
5614 struct igb_adapter *adapter = q_vector->adapter;
5615 u32 new_itr = q_vector->itr_val;
5616 u8 current_itr = 0;
5617
5618 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5619 if (adapter->link_speed != SPEED_1000) {
5620 current_itr = 0;
5621 new_itr = IGB_4K_ITR;
5622 goto set_itr_now;
5623 }
5624
5625 igb_update_itr(q_vector, &q_vector->tx);
5626 igb_update_itr(q_vector, &q_vector->rx);
5627
5628 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5629
5630 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5631 if (current_itr == lowest_latency &&
5632 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5633 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5634 current_itr = low_latency;
5635
5636 switch (current_itr) {
5637 /* counts and packets in update_itr are dependent on these numbers */
5638 case lowest_latency:
5639 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5640 break;
5641 case low_latency:
5642 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5643 break;
5644 case bulk_latency:
5645 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5646 break;
5647 default:
5648 break;
5649 }
5650
5651 set_itr_now:
5652 if (new_itr != q_vector->itr_val) {
5653 /* this attempts to bias the interrupt rate towards Bulk
5654 * by adding intermediate steps when interrupt rate is
5655 * increasing
5656 */
5657 new_itr = new_itr > q_vector->itr_val ?
5658 max((new_itr * q_vector->itr_val) /
5659 (new_itr + (q_vector->itr_val >> 2)),
5660 new_itr) : new_itr;
5661 /* Don't write the value here; it resets the adapter's
5662 * internal timer, and causes us to delay far longer than
5663 * we should between interrupts. Instead, we write the ITR
5664 * value at the beginning of the next interrupt so the timing
5665 * ends up being correct.
5666 */
5667 q_vector->itr_val = new_itr;
5668 q_vector->set_itr = 1;
5669 }
5670 }
5671
5672 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
5673 struct igb_tx_buffer *first,
5674 u32 vlan_macip_lens, u32 type_tucmd,
5675 u32 mss_l4len_idx)
5676 {
5677 struct e1000_adv_tx_context_desc *context_desc;
5678 u16 i = tx_ring->next_to_use;
5679 struct timespec64 ts;
5680
5681 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5682
5683 i++;
5684 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5685
5686 /* set bits to identify this as an advanced context descriptor */
5687 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5688
5689 /* For 82575, context index must be unique per ring. */
5690 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5691 mss_l4len_idx |= tx_ring->reg_idx << 4;
5692
5693 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5694 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5695 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5696
5697 /* We assume there is always a valid tx time available. Invalid times
5698 * should have been handled by the upper layers.
5699 */
5700 if (tx_ring->launchtime_enable) {
5701 ts = ns_to_timespec64(first->skb->tstamp);
5702 context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
5703 } else {
5704 context_desc->seqnum_seed = 0;
5705 }
5706 }
5707
5708 static int igb_tso(struct igb_ring *tx_ring,
5709 struct igb_tx_buffer *first,
5710 u8 *hdr_len)
5711 {
5712 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5713 struct sk_buff *skb = first->skb;
5714 union {
5715 struct iphdr *v4;
5716 struct ipv6hdr *v6;
5717 unsigned char *hdr;
5718 } ip;
5719 union {
5720 struct tcphdr *tcp;
5721 unsigned char *hdr;
5722 } l4;
5723 u32 paylen, l4_offset;
5724 int err;
5725
5726 if (skb->ip_summed != CHECKSUM_PARTIAL)
5727 return 0;
5728
5729 if (!skb_is_gso(skb))
5730 return 0;
5731
5732 err = skb_cow_head(skb, 0);
5733 if (err < 0)
5734 return err;
5735
5736 ip.hdr = skb_network_header(skb);
5737 l4.hdr = skb_checksum_start(skb);
5738
5739 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5740 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5741
5742 /* initialize outer IP header fields */
5743 if (ip.v4->version == 4) {
5744 unsigned char *csum_start = skb_checksum_start(skb);
5745 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5746
5747 /* IP header will have to cancel out any data that
5748 * is not a part of the outer IP header
5749 */
5750 ip.v4->check = csum_fold(csum_partial(trans_start,
5751 csum_start - trans_start,
5752 0));
5753 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5754
5755 ip.v4->tot_len = 0;
5756 first->tx_flags |= IGB_TX_FLAGS_TSO |
5757 IGB_TX_FLAGS_CSUM |
5758 IGB_TX_FLAGS_IPV4;
5759 } else {
5760 ip.v6->payload_len = 0;
5761 first->tx_flags |= IGB_TX_FLAGS_TSO |
5762 IGB_TX_FLAGS_CSUM;
5763 }
5764
5765 /* determine offset of inner transport header */
5766 l4_offset = l4.hdr - skb->data;
5767
5768 /* compute length of segmentation header */
5769 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5770
5771 /* remove payload length from inner checksum */
5772 paylen = skb->len - l4_offset;
5773 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5774
5775 /* update gso size and bytecount with header size */
5776 first->gso_segs = skb_shinfo(skb)->gso_segs;
5777 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5778
5779 /* MSS L4LEN IDX */
5780 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5781 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5782
5783 /* VLAN MACLEN IPLEN */
5784 vlan_macip_lens = l4.hdr - ip.hdr;
5785 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5786 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5787
5788 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
5789 type_tucmd, mss_l4len_idx);
5790
5791 return 1;
5792 }
5793
5794 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5795 {
5796 unsigned int offset = 0;
5797
5798 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5799
5800 return offset == skb_checksum_start_offset(skb);
5801 }
5802
5803 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5804 {
5805 struct sk_buff *skb = first->skb;
5806 u32 vlan_macip_lens = 0;
5807 u32 type_tucmd = 0;
5808
5809 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5810 csum_failed:
5811 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
5812 !tx_ring->launchtime_enable)
5813 return;
5814 goto no_csum;
5815 }
5816
5817 switch (skb->csum_offset) {
5818 case offsetof(struct tcphdr, check):
5819 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5820 /* fall through */
5821 case offsetof(struct udphdr, check):
5822 break;
5823 case offsetof(struct sctphdr, checksum):
5824 /* validate that this is actually an SCTP request */
5825 if (((first->protocol == htons(ETH_P_IP)) &&
5826 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5827 ((first->protocol == htons(ETH_P_IPV6)) &&
5828 igb_ipv6_csum_is_sctp(skb))) {
5829 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5830 break;
5831 }
5832 /* fall through */
5833 default:
5834 skb_checksum_help(skb);
5835 goto csum_failed;
5836 }
5837
5838 /* update TX checksum flag */
5839 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5840 vlan_macip_lens = skb_checksum_start_offset(skb) -
5841 skb_network_offset(skb);
5842 no_csum:
5843 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5844 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5845
5846 igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
5847 }
5848
5849 #define IGB_SET_FLAG(_input, _flag, _result) \
5850 ((_flag <= _result) ? \
5851 ((u32)(_input & _flag) * (_result / _flag)) : \
5852 ((u32)(_input & _flag) / (_flag / _result)))
5853
5854 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5855 {
5856 /* set type for advanced descriptor with frame checksum insertion */
5857 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5858 E1000_ADVTXD_DCMD_DEXT |
5859 E1000_ADVTXD_DCMD_IFCS;
5860
5861 /* set HW vlan bit if vlan is present */
5862 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5863 (E1000_ADVTXD_DCMD_VLE));
5864
5865 /* set segmentation bits for TSO */
5866 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5867 (E1000_ADVTXD_DCMD_TSE));
5868
5869 /* set timestamp bit if present */
5870 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5871 (E1000_ADVTXD_MAC_TSTAMP));
5872
5873 /* insert frame checksum */
5874 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5875
5876 return cmd_type;
5877 }
5878
5879 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5880 union e1000_adv_tx_desc *tx_desc,
5881 u32 tx_flags, unsigned int paylen)
5882 {
5883 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5884
5885 /* 82575 requires a unique index per ring */
5886 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5887 olinfo_status |= tx_ring->reg_idx << 4;
5888
5889 /* insert L4 checksum */
5890 olinfo_status |= IGB_SET_FLAG(tx_flags,
5891 IGB_TX_FLAGS_CSUM,
5892 (E1000_TXD_POPTS_TXSM << 8));
5893
5894 /* insert IPv4 checksum */
5895 olinfo_status |= IGB_SET_FLAG(tx_flags,
5896 IGB_TX_FLAGS_IPV4,
5897 (E1000_TXD_POPTS_IXSM << 8));
5898
5899 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5900 }
5901
5902 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5903 {
5904 struct net_device *netdev = tx_ring->netdev;
5905
5906 netif_stop_subqueue(netdev, tx_ring->queue_index);
5907
5908 /* Herbert's original patch had:
5909 * smp_mb__after_netif_stop_queue();
5910 * but since that doesn't exist yet, just open code it.
5911 */
5912 smp_mb();
5913
5914 /* We need to check again in a case another CPU has just
5915 * made room available.
5916 */
5917 if (igb_desc_unused(tx_ring) < size)
5918 return -EBUSY;
5919
5920 /* A reprieve! */
5921 netif_wake_subqueue(netdev, tx_ring->queue_index);
5922
5923 u64_stats_update_begin(&tx_ring->tx_syncp2);
5924 tx_ring->tx_stats.restart_queue2++;
5925 u64_stats_update_end(&tx_ring->tx_syncp2);
5926
5927 return 0;
5928 }
5929
5930 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5931 {
5932 if (igb_desc_unused(tx_ring) >= size)
5933 return 0;
5934 return __igb_maybe_stop_tx(tx_ring, size);
5935 }
5936
5937 static int igb_tx_map(struct igb_ring *tx_ring,
5938 struct igb_tx_buffer *first,
5939 const u8 hdr_len)
5940 {
5941 struct sk_buff *skb = first->skb;
5942 struct igb_tx_buffer *tx_buffer;
5943 union e1000_adv_tx_desc *tx_desc;
5944 struct skb_frag_struct *frag;
5945 dma_addr_t dma;
5946 unsigned int data_len, size;
5947 u32 tx_flags = first->tx_flags;
5948 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5949 u16 i = tx_ring->next_to_use;
5950
5951 tx_desc = IGB_TX_DESC(tx_ring, i);
5952
5953 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5954
5955 size = skb_headlen(skb);
5956 data_len = skb->data_len;
5957
5958 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5959
5960 tx_buffer = first;
5961
5962 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5963 if (dma_mapping_error(tx_ring->dev, dma))
5964 goto dma_error;
5965
5966 /* record length, and DMA address */
5967 dma_unmap_len_set(tx_buffer, len, size);
5968 dma_unmap_addr_set(tx_buffer, dma, dma);
5969
5970 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5971
5972 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5973 tx_desc->read.cmd_type_len =
5974 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5975
5976 i++;
5977 tx_desc++;
5978 if (i == tx_ring->count) {
5979 tx_desc = IGB_TX_DESC(tx_ring, 0);
5980 i = 0;
5981 }
5982 tx_desc->read.olinfo_status = 0;
5983
5984 dma += IGB_MAX_DATA_PER_TXD;
5985 size -= IGB_MAX_DATA_PER_TXD;
5986
5987 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5988 }
5989
5990 if (likely(!data_len))
5991 break;
5992
5993 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5994
5995 i++;
5996 tx_desc++;
5997 if (i == tx_ring->count) {
5998 tx_desc = IGB_TX_DESC(tx_ring, 0);
5999 i = 0;
6000 }
6001 tx_desc->read.olinfo_status = 0;
6002
6003 size = skb_frag_size(frag);
6004 data_len -= size;
6005
6006 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
6007 size, DMA_TO_DEVICE);
6008
6009 tx_buffer = &tx_ring->tx_buffer_info[i];
6010 }
6011
6012 /* write last descriptor with RS and EOP bits */
6013 cmd_type |= size | IGB_TXD_DCMD;
6014 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
6015
6016 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
6017
6018 /* set the timestamp */
6019 first->time_stamp = jiffies;
6020
6021 skb_tx_timestamp(skb);
6022
6023 /* Force memory writes to complete before letting h/w know there
6024 * are new descriptors to fetch. (Only applicable for weak-ordered
6025 * memory model archs, such as IA-64).
6026 *
6027 * We also need this memory barrier to make certain all of the
6028 * status bits have been updated before next_to_watch is written.
6029 */
6030 dma_wmb();
6031
6032 /* set next_to_watch value indicating a packet is present */
6033 first->next_to_watch = tx_desc;
6034
6035 i++;
6036 if (i == tx_ring->count)
6037 i = 0;
6038
6039 tx_ring->next_to_use = i;
6040
6041 /* Make sure there is space in the ring for the next send. */
6042 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
6043
6044 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
6045 writel(i, tx_ring->tail);
6046
6047 /* we need this if more than one processor can write to our tail
6048 * at a time, it synchronizes IO on IA64/Altix systems
6049 */
6050 mmiowb();
6051 }
6052 return 0;
6053
6054 dma_error:
6055 dev_err(tx_ring->dev, "TX DMA map failed\n");
6056 tx_buffer = &tx_ring->tx_buffer_info[i];
6057
6058 /* clear dma mappings for failed tx_buffer_info map */
6059 while (tx_buffer != first) {
6060 if (dma_unmap_len(tx_buffer, len))
6061 dma_unmap_page(tx_ring->dev,
6062 dma_unmap_addr(tx_buffer, dma),
6063 dma_unmap_len(tx_buffer, len),
6064 DMA_TO_DEVICE);
6065 dma_unmap_len_set(tx_buffer, len, 0);
6066
6067 if (i-- == 0)
6068 i += tx_ring->count;
6069 tx_buffer = &tx_ring->tx_buffer_info[i];
6070 }
6071
6072 if (dma_unmap_len(tx_buffer, len))
6073 dma_unmap_single(tx_ring->dev,
6074 dma_unmap_addr(tx_buffer, dma),
6075 dma_unmap_len(tx_buffer, len),
6076 DMA_TO_DEVICE);
6077 dma_unmap_len_set(tx_buffer, len, 0);
6078
6079 dev_kfree_skb_any(tx_buffer->skb);
6080 tx_buffer->skb = NULL;
6081
6082 tx_ring->next_to_use = i;
6083
6084 return -1;
6085 }
6086
6087 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
6088 struct igb_ring *tx_ring)
6089 {
6090 struct igb_tx_buffer *first;
6091 int tso;
6092 u32 tx_flags = 0;
6093 unsigned short f;
6094 u16 count = TXD_USE_COUNT(skb_headlen(skb));
6095 __be16 protocol = vlan_get_protocol(skb);
6096 u8 hdr_len = 0;
6097
6098 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
6099 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
6100 * + 2 desc gap to keep tail from touching head,
6101 * + 1 desc for context descriptor,
6102 * otherwise try next time
6103 */
6104 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
6105 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
6106
6107 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
6108 /* this is a hard error */
6109 return NETDEV_TX_BUSY;
6110 }
6111
6112 /* record the location of the first descriptor for this packet */
6113 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
6114 first->skb = skb;
6115 first->bytecount = skb->len;
6116 first->gso_segs = 1;
6117
6118 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
6119 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6120
6121 if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
6122 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
6123 &adapter->state)) {
6124 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
6125 tx_flags |= IGB_TX_FLAGS_TSTAMP;
6126
6127 adapter->ptp_tx_skb = skb_get(skb);
6128 adapter->ptp_tx_start = jiffies;
6129 if (adapter->hw.mac.type == e1000_82576)
6130 schedule_work(&adapter->ptp_tx_work);
6131 } else {
6132 adapter->tx_hwtstamp_skipped++;
6133 }
6134 }
6135
6136 if (skb_vlan_tag_present(skb)) {
6137 tx_flags |= IGB_TX_FLAGS_VLAN;
6138 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
6139 }
6140
6141 /* record initial flags and protocol */
6142 first->tx_flags = tx_flags;
6143 first->protocol = protocol;
6144
6145 tso = igb_tso(tx_ring, first, &hdr_len);
6146 if (tso < 0)
6147 goto out_drop;
6148 else if (!tso)
6149 igb_tx_csum(tx_ring, first);
6150
6151 if (igb_tx_map(tx_ring, first, hdr_len))
6152 goto cleanup_tx_tstamp;
6153
6154 return NETDEV_TX_OK;
6155
6156 out_drop:
6157 dev_kfree_skb_any(first->skb);
6158 first->skb = NULL;
6159 cleanup_tx_tstamp:
6160 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
6161 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
6162
6163 dev_kfree_skb_any(adapter->ptp_tx_skb);
6164 adapter->ptp_tx_skb = NULL;
6165 if (adapter->hw.mac.type == e1000_82576)
6166 cancel_work_sync(&adapter->ptp_tx_work);
6167 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
6168 }
6169
6170 return NETDEV_TX_OK;
6171 }
6172
6173 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
6174 struct sk_buff *skb)
6175 {
6176 unsigned int r_idx = skb->queue_mapping;
6177
6178 if (r_idx >= adapter->num_tx_queues)
6179 r_idx = r_idx % adapter->num_tx_queues;
6180
6181 return adapter->tx_ring[r_idx];
6182 }
6183
6184 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
6185 struct net_device *netdev)
6186 {
6187 struct igb_adapter *adapter = netdev_priv(netdev);
6188
6189 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
6190 * in order to meet this minimum size requirement.
6191 */
6192 if (skb_put_padto(skb, 17))
6193 return NETDEV_TX_OK;
6194
6195 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
6196 }
6197
6198 /**
6199 * igb_tx_timeout - Respond to a Tx Hang
6200 * @netdev: network interface device structure
6201 **/
6202 static void igb_tx_timeout(struct net_device *netdev)
6203 {
6204 struct igb_adapter *adapter = netdev_priv(netdev);
6205 struct e1000_hw *hw = &adapter->hw;
6206
6207 /* Do the reset outside of interrupt context */
6208 adapter->tx_timeout_count++;
6209
6210 if (hw->mac.type >= e1000_82580)
6211 hw->dev_spec._82575.global_device_reset = true;
6212
6213 schedule_work(&adapter->reset_task);
6214 wr32(E1000_EICS,
6215 (adapter->eims_enable_mask & ~adapter->eims_other));
6216 }
6217
6218 static void igb_reset_task(struct work_struct *work)
6219 {
6220 struct igb_adapter *adapter;
6221 adapter = container_of(work, struct igb_adapter, reset_task);
6222
6223 igb_dump(adapter);
6224 netdev_err(adapter->netdev, "Reset adapter\n");
6225 igb_reinit_locked(adapter);
6226 }
6227
6228 /**
6229 * igb_get_stats64 - Get System Network Statistics
6230 * @netdev: network interface device structure
6231 * @stats: rtnl_link_stats64 pointer
6232 **/
6233 static void igb_get_stats64(struct net_device *netdev,
6234 struct rtnl_link_stats64 *stats)
6235 {
6236 struct igb_adapter *adapter = netdev_priv(netdev);
6237
6238 mutex_lock(&adapter->stats64_lock);
6239 igb_update_stats(adapter);
6240 memcpy(stats, &adapter->stats64, sizeof(*stats));
6241 mutex_unlock(&adapter->stats64_lock);
6242 }
6243
6244 /**
6245 * igb_change_mtu - Change the Maximum Transfer Unit
6246 * @netdev: network interface device structure
6247 * @new_mtu: new value for maximum frame size
6248 *
6249 * Returns 0 on success, negative on failure
6250 **/
6251 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
6252 {
6253 struct igb_adapter *adapter = netdev_priv(netdev);
6254 struct pci_dev *pdev = adapter->pdev;
6255 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
6256
6257 /* adjust max frame to be at least the size of a standard frame */
6258 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
6259 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
6260
6261 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
6262 usleep_range(1000, 2000);
6263
6264 /* igb_down has a dependency on max_frame_size */
6265 adapter->max_frame_size = max_frame;
6266
6267 if (netif_running(netdev))
6268 igb_down(adapter);
6269
6270 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
6271 netdev->mtu, new_mtu);
6272 netdev->mtu = new_mtu;
6273
6274 if (netif_running(netdev))
6275 igb_up(adapter);
6276 else
6277 igb_reset(adapter);
6278
6279 clear_bit(__IGB_RESETTING, &adapter->state);
6280
6281 return 0;
6282 }
6283
6284 /**
6285 * igb_update_stats - Update the board statistics counters
6286 * @adapter: board private structure
6287 **/
6288 void igb_update_stats(struct igb_adapter *adapter)
6289 {
6290 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
6291 struct e1000_hw *hw = &adapter->hw;
6292 struct pci_dev *pdev = adapter->pdev;
6293 u32 reg, mpc;
6294 int i;
6295 u64 bytes, packets;
6296 unsigned int start;
6297 u64 _bytes, _packets;
6298
6299 /* Prevent stats update while adapter is being reset, or if the pci
6300 * connection is down.
6301 */
6302 if (adapter->link_speed == 0)
6303 return;
6304 if (pci_channel_offline(pdev))
6305 return;
6306
6307 bytes = 0;
6308 packets = 0;
6309
6310 rcu_read_lock();
6311 for (i = 0; i < adapter->num_rx_queues; i++) {
6312 struct igb_ring *ring = adapter->rx_ring[i];
6313 u32 rqdpc = rd32(E1000_RQDPC(i));
6314 if (hw->mac.type >= e1000_i210)
6315 wr32(E1000_RQDPC(i), 0);
6316
6317 if (rqdpc) {
6318 ring->rx_stats.drops += rqdpc;
6319 net_stats->rx_fifo_errors += rqdpc;
6320 }
6321
6322 do {
6323 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
6324 _bytes = ring->rx_stats.bytes;
6325 _packets = ring->rx_stats.packets;
6326 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
6327 bytes += _bytes;
6328 packets += _packets;
6329 }
6330
6331 net_stats->rx_bytes = bytes;
6332 net_stats->rx_packets = packets;
6333
6334 bytes = 0;
6335 packets = 0;
6336 for (i = 0; i < adapter->num_tx_queues; i++) {
6337 struct igb_ring *ring = adapter->tx_ring[i];
6338 do {
6339 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
6340 _bytes = ring->tx_stats.bytes;
6341 _packets = ring->tx_stats.packets;
6342 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
6343 bytes += _bytes;
6344 packets += _packets;
6345 }
6346 net_stats->tx_bytes = bytes;
6347 net_stats->tx_packets = packets;
6348 rcu_read_unlock();
6349
6350 /* read stats registers */
6351 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
6352 adapter->stats.gprc += rd32(E1000_GPRC);
6353 adapter->stats.gorc += rd32(E1000_GORCL);
6354 rd32(E1000_GORCH); /* clear GORCL */
6355 adapter->stats.bprc += rd32(E1000_BPRC);
6356 adapter->stats.mprc += rd32(E1000_MPRC);
6357 adapter->stats.roc += rd32(E1000_ROC);
6358
6359 adapter->stats.prc64 += rd32(E1000_PRC64);
6360 adapter->stats.prc127 += rd32(E1000_PRC127);
6361 adapter->stats.prc255 += rd32(E1000_PRC255);
6362 adapter->stats.prc511 += rd32(E1000_PRC511);
6363 adapter->stats.prc1023 += rd32(E1000_PRC1023);
6364 adapter->stats.prc1522 += rd32(E1000_PRC1522);
6365 adapter->stats.symerrs += rd32(E1000_SYMERRS);
6366 adapter->stats.sec += rd32(E1000_SEC);
6367
6368 mpc = rd32(E1000_MPC);
6369 adapter->stats.mpc += mpc;
6370 net_stats->rx_fifo_errors += mpc;
6371 adapter->stats.scc += rd32(E1000_SCC);
6372 adapter->stats.ecol += rd32(E1000_ECOL);
6373 adapter->stats.mcc += rd32(E1000_MCC);
6374 adapter->stats.latecol += rd32(E1000_LATECOL);
6375 adapter->stats.dc += rd32(E1000_DC);
6376 adapter->stats.rlec += rd32(E1000_RLEC);
6377 adapter->stats.xonrxc += rd32(E1000_XONRXC);
6378 adapter->stats.xontxc += rd32(E1000_XONTXC);
6379 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
6380 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
6381 adapter->stats.fcruc += rd32(E1000_FCRUC);
6382 adapter->stats.gptc += rd32(E1000_GPTC);
6383 adapter->stats.gotc += rd32(E1000_GOTCL);
6384 rd32(E1000_GOTCH); /* clear GOTCL */
6385 adapter->stats.rnbc += rd32(E1000_RNBC);
6386 adapter->stats.ruc += rd32(E1000_RUC);
6387 adapter->stats.rfc += rd32(E1000_RFC);
6388 adapter->stats.rjc += rd32(E1000_RJC);
6389 adapter->stats.tor += rd32(E1000_TORH);
6390 adapter->stats.tot += rd32(E1000_TOTH);
6391 adapter->stats.tpr += rd32(E1000_TPR);
6392
6393 adapter->stats.ptc64 += rd32(E1000_PTC64);
6394 adapter->stats.ptc127 += rd32(E1000_PTC127);
6395 adapter->stats.ptc255 += rd32(E1000_PTC255);
6396 adapter->stats.ptc511 += rd32(E1000_PTC511);
6397 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6398 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6399
6400 adapter->stats.mptc += rd32(E1000_MPTC);
6401 adapter->stats.bptc += rd32(E1000_BPTC);
6402
6403 adapter->stats.tpt += rd32(E1000_TPT);
6404 adapter->stats.colc += rd32(E1000_COLC);
6405
6406 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6407 /* read internal phy specific stats */
6408 reg = rd32(E1000_CTRL_EXT);
6409 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6410 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6411
6412 /* this stat has invalid values on i210/i211 */
6413 if ((hw->mac.type != e1000_i210) &&
6414 (hw->mac.type != e1000_i211))
6415 adapter->stats.tncrs += rd32(E1000_TNCRS);
6416 }
6417
6418 adapter->stats.tsctc += rd32(E1000_TSCTC);
6419 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6420
6421 adapter->stats.iac += rd32(E1000_IAC);
6422 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6423 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6424 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6425 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6426 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6427 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6428 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6429 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6430
6431 /* Fill out the OS statistics structure */
6432 net_stats->multicast = adapter->stats.mprc;
6433 net_stats->collisions = adapter->stats.colc;
6434
6435 /* Rx Errors */
6436
6437 /* RLEC on some newer hardware can be incorrect so build
6438 * our own version based on RUC and ROC
6439 */
6440 net_stats->rx_errors = adapter->stats.rxerrc +
6441 adapter->stats.crcerrs + adapter->stats.algnerrc +
6442 adapter->stats.ruc + adapter->stats.roc +
6443 adapter->stats.cexterr;
6444 net_stats->rx_length_errors = adapter->stats.ruc +
6445 adapter->stats.roc;
6446 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6447 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6448 net_stats->rx_missed_errors = adapter->stats.mpc;
6449
6450 /* Tx Errors */
6451 net_stats->tx_errors = adapter->stats.ecol +
6452 adapter->stats.latecol;
6453 net_stats->tx_aborted_errors = adapter->stats.ecol;
6454 net_stats->tx_window_errors = adapter->stats.latecol;
6455 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6456
6457 /* Tx Dropped needs to be maintained elsewhere */
6458
6459 /* Management Stats */
6460 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6461 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6462 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6463
6464 /* OS2BMC Stats */
6465 reg = rd32(E1000_MANC);
6466 if (reg & E1000_MANC_EN_BMC2OS) {
6467 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6468 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6469 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6470 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6471 }
6472 }
6473
6474 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6475 {
6476 struct e1000_hw *hw = &adapter->hw;
6477 struct ptp_clock_event event;
6478 struct timespec64 ts;
6479 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6480
6481 if (tsicr & TSINTR_SYS_WRAP) {
6482 event.type = PTP_CLOCK_PPS;
6483 if (adapter->ptp_caps.pps)
6484 ptp_clock_event(adapter->ptp_clock, &event);
6485 ack |= TSINTR_SYS_WRAP;
6486 }
6487
6488 if (tsicr & E1000_TSICR_TXTS) {
6489 /* retrieve hardware timestamp */
6490 schedule_work(&adapter->ptp_tx_work);
6491 ack |= E1000_TSICR_TXTS;
6492 }
6493
6494 if (tsicr & TSINTR_TT0) {
6495 spin_lock(&adapter->tmreg_lock);
6496 ts = timespec64_add(adapter->perout[0].start,
6497 adapter->perout[0].period);
6498 /* u32 conversion of tv_sec is safe until y2106 */
6499 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6500 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6501 tsauxc = rd32(E1000_TSAUXC);
6502 tsauxc |= TSAUXC_EN_TT0;
6503 wr32(E1000_TSAUXC, tsauxc);
6504 adapter->perout[0].start = ts;
6505 spin_unlock(&adapter->tmreg_lock);
6506 ack |= TSINTR_TT0;
6507 }
6508
6509 if (tsicr & TSINTR_TT1) {
6510 spin_lock(&adapter->tmreg_lock);
6511 ts = timespec64_add(adapter->perout[1].start,
6512 adapter->perout[1].period);
6513 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6514 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6515 tsauxc = rd32(E1000_TSAUXC);
6516 tsauxc |= TSAUXC_EN_TT1;
6517 wr32(E1000_TSAUXC, tsauxc);
6518 adapter->perout[1].start = ts;
6519 spin_unlock(&adapter->tmreg_lock);
6520 ack |= TSINTR_TT1;
6521 }
6522
6523 if (tsicr & TSINTR_AUTT0) {
6524 nsec = rd32(E1000_AUXSTMPL0);
6525 sec = rd32(E1000_AUXSTMPH0);
6526 event.type = PTP_CLOCK_EXTTS;
6527 event.index = 0;
6528 event.timestamp = sec * 1000000000ULL + nsec;
6529 ptp_clock_event(adapter->ptp_clock, &event);
6530 ack |= TSINTR_AUTT0;
6531 }
6532
6533 if (tsicr & TSINTR_AUTT1) {
6534 nsec = rd32(E1000_AUXSTMPL1);
6535 sec = rd32(E1000_AUXSTMPH1);
6536 event.type = PTP_CLOCK_EXTTS;
6537 event.index = 1;
6538 event.timestamp = sec * 1000000000ULL + nsec;
6539 ptp_clock_event(adapter->ptp_clock, &event);
6540 ack |= TSINTR_AUTT1;
6541 }
6542
6543 /* acknowledge the interrupts */
6544 wr32(E1000_TSICR, ack);
6545 }
6546
6547 static irqreturn_t igb_msix_other(int irq, void *data)
6548 {
6549 struct igb_adapter *adapter = data;
6550 struct e1000_hw *hw = &adapter->hw;
6551 u32 icr = rd32(E1000_ICR);
6552 /* reading ICR causes bit 31 of EICR to be cleared */
6553
6554 if (icr & E1000_ICR_DRSTA)
6555 schedule_work(&adapter->reset_task);
6556
6557 if (icr & E1000_ICR_DOUTSYNC) {
6558 /* HW is reporting DMA is out of sync */
6559 adapter->stats.doosync++;
6560 /* The DMA Out of Sync is also indication of a spoof event
6561 * in IOV mode. Check the Wrong VM Behavior register to
6562 * see if it is really a spoof event.
6563 */
6564 igb_check_wvbr(adapter);
6565 }
6566
6567 /* Check for a mailbox event */
6568 if (icr & E1000_ICR_VMMB)
6569 igb_msg_task(adapter);
6570
6571 if (icr & E1000_ICR_LSC) {
6572 hw->mac.get_link_status = 1;
6573 /* guard against interrupt when we're going down */
6574 if (!test_bit(__IGB_DOWN, &adapter->state))
6575 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6576 }
6577
6578 if (icr & E1000_ICR_TS)
6579 igb_tsync_interrupt(adapter);
6580
6581 wr32(E1000_EIMS, adapter->eims_other);
6582
6583 return IRQ_HANDLED;
6584 }
6585
6586 static void igb_write_itr(struct igb_q_vector *q_vector)
6587 {
6588 struct igb_adapter *adapter = q_vector->adapter;
6589 u32 itr_val = q_vector->itr_val & 0x7FFC;
6590
6591 if (!q_vector->set_itr)
6592 return;
6593
6594 if (!itr_val)
6595 itr_val = 0x4;
6596
6597 if (adapter->hw.mac.type == e1000_82575)
6598 itr_val |= itr_val << 16;
6599 else
6600 itr_val |= E1000_EITR_CNT_IGNR;
6601
6602 writel(itr_val, q_vector->itr_register);
6603 q_vector->set_itr = 0;
6604 }
6605
6606 static irqreturn_t igb_msix_ring(int irq, void *data)
6607 {
6608 struct igb_q_vector *q_vector = data;
6609
6610 /* Write the ITR value calculated from the previous interrupt. */
6611 igb_write_itr(q_vector);
6612
6613 napi_schedule(&q_vector->napi);
6614
6615 return IRQ_HANDLED;
6616 }
6617
6618 #ifdef CONFIG_IGB_DCA
6619 static void igb_update_tx_dca(struct igb_adapter *adapter,
6620 struct igb_ring *tx_ring,
6621 int cpu)
6622 {
6623 struct e1000_hw *hw = &adapter->hw;
6624 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6625
6626 if (hw->mac.type != e1000_82575)
6627 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6628
6629 /* We can enable relaxed ordering for reads, but not writes when
6630 * DCA is enabled. This is due to a known issue in some chipsets
6631 * which will cause the DCA tag to be cleared.
6632 */
6633 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6634 E1000_DCA_TXCTRL_DATA_RRO_EN |
6635 E1000_DCA_TXCTRL_DESC_DCA_EN;
6636
6637 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6638 }
6639
6640 static void igb_update_rx_dca(struct igb_adapter *adapter,
6641 struct igb_ring *rx_ring,
6642 int cpu)
6643 {
6644 struct e1000_hw *hw = &adapter->hw;
6645 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6646
6647 if (hw->mac.type != e1000_82575)
6648 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6649
6650 /* We can enable relaxed ordering for reads, but not writes when
6651 * DCA is enabled. This is due to a known issue in some chipsets
6652 * which will cause the DCA tag to be cleared.
6653 */
6654 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6655 E1000_DCA_RXCTRL_DESC_DCA_EN;
6656
6657 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6658 }
6659
6660 static void igb_update_dca(struct igb_q_vector *q_vector)
6661 {
6662 struct igb_adapter *adapter = q_vector->adapter;
6663 int cpu = get_cpu();
6664
6665 if (q_vector->cpu == cpu)
6666 goto out_no_update;
6667
6668 if (q_vector->tx.ring)
6669 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6670
6671 if (q_vector->rx.ring)
6672 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6673
6674 q_vector->cpu = cpu;
6675 out_no_update:
6676 put_cpu();
6677 }
6678
6679 static void igb_setup_dca(struct igb_adapter *adapter)
6680 {
6681 struct e1000_hw *hw = &adapter->hw;
6682 int i;
6683
6684 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6685 return;
6686
6687 /* Always use CB2 mode, difference is masked in the CB driver. */
6688 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6689
6690 for (i = 0; i < adapter->num_q_vectors; i++) {
6691 adapter->q_vector[i]->cpu = -1;
6692 igb_update_dca(adapter->q_vector[i]);
6693 }
6694 }
6695
6696 static int __igb_notify_dca(struct device *dev, void *data)
6697 {
6698 struct net_device *netdev = dev_get_drvdata(dev);
6699 struct igb_adapter *adapter = netdev_priv(netdev);
6700 struct pci_dev *pdev = adapter->pdev;
6701 struct e1000_hw *hw = &adapter->hw;
6702 unsigned long event = *(unsigned long *)data;
6703
6704 switch (event) {
6705 case DCA_PROVIDER_ADD:
6706 /* if already enabled, don't do it again */
6707 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6708 break;
6709 if (dca_add_requester(dev) == 0) {
6710 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6711 dev_info(&pdev->dev, "DCA enabled\n");
6712 igb_setup_dca(adapter);
6713 break;
6714 }
6715 /* Fall Through since DCA is disabled. */
6716 case DCA_PROVIDER_REMOVE:
6717 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6718 /* without this a class_device is left
6719 * hanging around in the sysfs model
6720 */
6721 dca_remove_requester(dev);
6722 dev_info(&pdev->dev, "DCA disabled\n");
6723 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6724 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6725 }
6726 break;
6727 }
6728
6729 return 0;
6730 }
6731
6732 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6733 void *p)
6734 {
6735 int ret_val;
6736
6737 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6738 __igb_notify_dca);
6739
6740 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6741 }
6742 #endif /* CONFIG_IGB_DCA */
6743
6744 #ifdef CONFIG_PCI_IOV
6745 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6746 {
6747 unsigned char mac_addr[ETH_ALEN];
6748
6749 eth_zero_addr(mac_addr);
6750 igb_set_vf_mac(adapter, vf, mac_addr);
6751
6752 /* By default spoof check is enabled for all VFs */
6753 adapter->vf_data[vf].spoofchk_enabled = true;
6754
6755 /* By default VFs are not trusted */
6756 adapter->vf_data[vf].trusted = false;
6757
6758 return 0;
6759 }
6760
6761 #endif
6762 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6763 {
6764 struct e1000_hw *hw = &adapter->hw;
6765 u32 ping;
6766 int i;
6767
6768 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6769 ping = E1000_PF_CONTROL_MSG;
6770 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6771 ping |= E1000_VT_MSGTYPE_CTS;
6772 igb_write_mbx(hw, &ping, 1, i);
6773 }
6774 }
6775
6776 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6777 {
6778 struct e1000_hw *hw = &adapter->hw;
6779 u32 vmolr = rd32(E1000_VMOLR(vf));
6780 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6781
6782 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6783 IGB_VF_FLAG_MULTI_PROMISC);
6784 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6785
6786 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6787 vmolr |= E1000_VMOLR_MPME;
6788 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6789 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6790 } else {
6791 /* if we have hashes and we are clearing a multicast promisc
6792 * flag we need to write the hashes to the MTA as this step
6793 * was previously skipped
6794 */
6795 if (vf_data->num_vf_mc_hashes > 30) {
6796 vmolr |= E1000_VMOLR_MPME;
6797 } else if (vf_data->num_vf_mc_hashes) {
6798 int j;
6799
6800 vmolr |= E1000_VMOLR_ROMPE;
6801 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6802 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6803 }
6804 }
6805
6806 wr32(E1000_VMOLR(vf), vmolr);
6807
6808 /* there are flags left unprocessed, likely not supported */
6809 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6810 return -EINVAL;
6811
6812 return 0;
6813 }
6814
6815 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6816 u32 *msgbuf, u32 vf)
6817 {
6818 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6819 u16 *hash_list = (u16 *)&msgbuf[1];
6820 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6821 int i;
6822
6823 /* salt away the number of multicast addresses assigned
6824 * to this VF for later use to restore when the PF multi cast
6825 * list changes
6826 */
6827 vf_data->num_vf_mc_hashes = n;
6828
6829 /* only up to 30 hash values supported */
6830 if (n > 30)
6831 n = 30;
6832
6833 /* store the hashes for later use */
6834 for (i = 0; i < n; i++)
6835 vf_data->vf_mc_hashes[i] = hash_list[i];
6836
6837 /* Flush and reset the mta with the new values */
6838 igb_set_rx_mode(adapter->netdev);
6839
6840 return 0;
6841 }
6842
6843 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6844 {
6845 struct e1000_hw *hw = &adapter->hw;
6846 struct vf_data_storage *vf_data;
6847 int i, j;
6848
6849 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6850 u32 vmolr = rd32(E1000_VMOLR(i));
6851
6852 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6853
6854 vf_data = &adapter->vf_data[i];
6855
6856 if ((vf_data->num_vf_mc_hashes > 30) ||
6857 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6858 vmolr |= E1000_VMOLR_MPME;
6859 } else if (vf_data->num_vf_mc_hashes) {
6860 vmolr |= E1000_VMOLR_ROMPE;
6861 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6862 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6863 }
6864 wr32(E1000_VMOLR(i), vmolr);
6865 }
6866 }
6867
6868 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6869 {
6870 struct e1000_hw *hw = &adapter->hw;
6871 u32 pool_mask, vlvf_mask, i;
6872
6873 /* create mask for VF and other pools */
6874 pool_mask = E1000_VLVF_POOLSEL_MASK;
6875 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6876
6877 /* drop PF from pool bits */
6878 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6879 adapter->vfs_allocated_count);
6880
6881 /* Find the vlan filter for this id */
6882 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6883 u32 vlvf = rd32(E1000_VLVF(i));
6884 u32 vfta_mask, vid, vfta;
6885
6886 /* remove the vf from the pool */
6887 if (!(vlvf & vlvf_mask))
6888 continue;
6889
6890 /* clear out bit from VLVF */
6891 vlvf ^= vlvf_mask;
6892
6893 /* if other pools are present, just remove ourselves */
6894 if (vlvf & pool_mask)
6895 goto update_vlvfb;
6896
6897 /* if PF is present, leave VFTA */
6898 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6899 goto update_vlvf;
6900
6901 vid = vlvf & E1000_VLVF_VLANID_MASK;
6902 vfta_mask = BIT(vid % 32);
6903
6904 /* clear bit from VFTA */
6905 vfta = adapter->shadow_vfta[vid / 32];
6906 if (vfta & vfta_mask)
6907 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6908 update_vlvf:
6909 /* clear pool selection enable */
6910 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6911 vlvf &= E1000_VLVF_POOLSEL_MASK;
6912 else
6913 vlvf = 0;
6914 update_vlvfb:
6915 /* clear pool bits */
6916 wr32(E1000_VLVF(i), vlvf);
6917 }
6918 }
6919
6920 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6921 {
6922 u32 vlvf;
6923 int idx;
6924
6925 /* short cut the special case */
6926 if (vlan == 0)
6927 return 0;
6928
6929 /* Search for the VLAN id in the VLVF entries */
6930 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6931 vlvf = rd32(E1000_VLVF(idx));
6932 if ((vlvf & VLAN_VID_MASK) == vlan)
6933 break;
6934 }
6935
6936 return idx;
6937 }
6938
6939 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6940 {
6941 struct e1000_hw *hw = &adapter->hw;
6942 u32 bits, pf_id;
6943 int idx;
6944
6945 idx = igb_find_vlvf_entry(hw, vid);
6946 if (!idx)
6947 return;
6948
6949 /* See if any other pools are set for this VLAN filter
6950 * entry other than the PF.
6951 */
6952 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6953 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6954 bits &= rd32(E1000_VLVF(idx));
6955
6956 /* Disable the filter so this falls into the default pool. */
6957 if (!bits) {
6958 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6959 wr32(E1000_VLVF(idx), BIT(pf_id));
6960 else
6961 wr32(E1000_VLVF(idx), 0);
6962 }
6963 }
6964
6965 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6966 bool add, u32 vf)
6967 {
6968 int pf_id = adapter->vfs_allocated_count;
6969 struct e1000_hw *hw = &adapter->hw;
6970 int err;
6971
6972 /* If VLAN overlaps with one the PF is currently monitoring make
6973 * sure that we are able to allocate a VLVF entry. This may be
6974 * redundant but it guarantees PF will maintain visibility to
6975 * the VLAN.
6976 */
6977 if (add && test_bit(vid, adapter->active_vlans)) {
6978 err = igb_vfta_set(hw, vid, pf_id, true, false);
6979 if (err)
6980 return err;
6981 }
6982
6983 err = igb_vfta_set(hw, vid, vf, add, false);
6984
6985 if (add && !err)
6986 return err;
6987
6988 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6989 * we may need to drop the PF pool bit in order to allow us to free
6990 * up the VLVF resources.
6991 */
6992 if (test_bit(vid, adapter->active_vlans) ||
6993 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6994 igb_update_pf_vlvf(adapter, vid);
6995
6996 return err;
6997 }
6998
6999 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
7000 {
7001 struct e1000_hw *hw = &adapter->hw;
7002
7003 if (vid)
7004 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
7005 else
7006 wr32(E1000_VMVIR(vf), 0);
7007 }
7008
7009 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
7010 u16 vlan, u8 qos)
7011 {
7012 int err;
7013
7014 err = igb_set_vf_vlan(adapter, vlan, true, vf);
7015 if (err)
7016 return err;
7017
7018 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
7019 igb_set_vmolr(adapter, vf, !vlan);
7020
7021 /* revoke access to previous VLAN */
7022 if (vlan != adapter->vf_data[vf].pf_vlan)
7023 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7024 false, vf);
7025
7026 adapter->vf_data[vf].pf_vlan = vlan;
7027 adapter->vf_data[vf].pf_qos = qos;
7028 igb_set_vf_vlan_strip(adapter, vf, true);
7029 dev_info(&adapter->pdev->dev,
7030 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
7031 if (test_bit(__IGB_DOWN, &adapter->state)) {
7032 dev_warn(&adapter->pdev->dev,
7033 "The VF VLAN has been set, but the PF device is not up.\n");
7034 dev_warn(&adapter->pdev->dev,
7035 "Bring the PF device up before attempting to use the VF device.\n");
7036 }
7037
7038 return err;
7039 }
7040
7041 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
7042 {
7043 /* Restore tagless access via VLAN 0 */
7044 igb_set_vf_vlan(adapter, 0, true, vf);
7045
7046 igb_set_vmvir(adapter, 0, vf);
7047 igb_set_vmolr(adapter, vf, true);
7048
7049 /* Remove any PF assigned VLAN */
7050 if (adapter->vf_data[vf].pf_vlan)
7051 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
7052 false, vf);
7053
7054 adapter->vf_data[vf].pf_vlan = 0;
7055 adapter->vf_data[vf].pf_qos = 0;
7056 igb_set_vf_vlan_strip(adapter, vf, false);
7057
7058 return 0;
7059 }
7060
7061 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
7062 u16 vlan, u8 qos, __be16 vlan_proto)
7063 {
7064 struct igb_adapter *adapter = netdev_priv(netdev);
7065
7066 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
7067 return -EINVAL;
7068
7069 if (vlan_proto != htons(ETH_P_8021Q))
7070 return -EPROTONOSUPPORT;
7071
7072 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
7073 igb_disable_port_vlan(adapter, vf);
7074 }
7075
7076 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
7077 {
7078 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
7079 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
7080 int ret;
7081
7082 if (adapter->vf_data[vf].pf_vlan)
7083 return -1;
7084
7085 /* VLAN 0 is a special case, don't allow it to be removed */
7086 if (!vid && !add)
7087 return 0;
7088
7089 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
7090 if (!ret)
7091 igb_set_vf_vlan_strip(adapter, vf, !!vid);
7092 return ret;
7093 }
7094
7095 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
7096 {
7097 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7098
7099 /* clear flags - except flag that indicates PF has set the MAC */
7100 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
7101 vf_data->last_nack = jiffies;
7102
7103 /* reset vlans for device */
7104 igb_clear_vf_vfta(adapter, vf);
7105 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
7106 igb_set_vmvir(adapter, vf_data->pf_vlan |
7107 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
7108 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
7109 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
7110
7111 /* reset multicast table array for vf */
7112 adapter->vf_data[vf].num_vf_mc_hashes = 0;
7113
7114 /* Flush and reset the mta with the new values */
7115 igb_set_rx_mode(adapter->netdev);
7116 }
7117
7118 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
7119 {
7120 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7121
7122 /* clear mac address as we were hotplug removed/added */
7123 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
7124 eth_zero_addr(vf_mac);
7125
7126 /* process remaining reset events */
7127 igb_vf_reset(adapter, vf);
7128 }
7129
7130 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
7131 {
7132 struct e1000_hw *hw = &adapter->hw;
7133 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
7134 u32 reg, msgbuf[3];
7135 u8 *addr = (u8 *)(&msgbuf[1]);
7136
7137 /* process all the same items cleared in a function level reset */
7138 igb_vf_reset(adapter, vf);
7139
7140 /* set vf mac address */
7141 igb_set_vf_mac(adapter, vf, vf_mac);
7142
7143 /* enable transmit and receive for vf */
7144 reg = rd32(E1000_VFTE);
7145 wr32(E1000_VFTE, reg | BIT(vf));
7146 reg = rd32(E1000_VFRE);
7147 wr32(E1000_VFRE, reg | BIT(vf));
7148
7149 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
7150
7151 /* reply to reset with ack and vf mac address */
7152 if (!is_zero_ether_addr(vf_mac)) {
7153 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
7154 memcpy(addr, vf_mac, ETH_ALEN);
7155 } else {
7156 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
7157 }
7158 igb_write_mbx(hw, msgbuf, 3, vf);
7159 }
7160
7161 static void igb_flush_mac_table(struct igb_adapter *adapter)
7162 {
7163 struct e1000_hw *hw = &adapter->hw;
7164 int i;
7165
7166 for (i = 0; i < hw->mac.rar_entry_count; i++) {
7167 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
7168 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7169 adapter->mac_table[i].queue = 0;
7170 igb_rar_set_index(adapter, i);
7171 }
7172 }
7173
7174 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
7175 {
7176 struct e1000_hw *hw = &adapter->hw;
7177 /* do not count rar entries reserved for VFs MAC addresses */
7178 int rar_entries = hw->mac.rar_entry_count -
7179 adapter->vfs_allocated_count;
7180 int i, count = 0;
7181
7182 for (i = 0; i < rar_entries; i++) {
7183 /* do not count default entries */
7184 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
7185 continue;
7186
7187 /* do not count "in use" entries for different queues */
7188 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
7189 (adapter->mac_table[i].queue != queue))
7190 continue;
7191
7192 count++;
7193 }
7194
7195 return count;
7196 }
7197
7198 /* Set default MAC address for the PF in the first RAR entry */
7199 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
7200 {
7201 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
7202
7203 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
7204 mac_table->queue = adapter->vfs_allocated_count;
7205 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7206
7207 igb_rar_set_index(adapter, 0);
7208 }
7209
7210 /* If the filter to be added and an already existing filter express
7211 * the same address and address type, it should be possible to only
7212 * override the other configurations, for example the queue to steer
7213 * traffic.
7214 */
7215 static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
7216 const u8 *addr, const u8 flags)
7217 {
7218 if (!(entry->state & IGB_MAC_STATE_IN_USE))
7219 return true;
7220
7221 if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
7222 (flags & IGB_MAC_STATE_SRC_ADDR))
7223 return false;
7224
7225 if (!ether_addr_equal(addr, entry->addr))
7226 return false;
7227
7228 return true;
7229 }
7230
7231 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
7232 * 'flags' is used to indicate what kind of match is made, match is by
7233 * default for the destination address, if matching by source address
7234 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
7235 */
7236 static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
7237 const u8 *addr, const u8 queue,
7238 const u8 flags)
7239 {
7240 struct e1000_hw *hw = &adapter->hw;
7241 int rar_entries = hw->mac.rar_entry_count -
7242 adapter->vfs_allocated_count;
7243 int i;
7244
7245 if (is_zero_ether_addr(addr))
7246 return -EINVAL;
7247
7248 /* Search for the first empty entry in the MAC table.
7249 * Do not touch entries at the end of the table reserved for the VF MAC
7250 * addresses.
7251 */
7252 for (i = 0; i < rar_entries; i++) {
7253 if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
7254 addr, flags))
7255 continue;
7256
7257 ether_addr_copy(adapter->mac_table[i].addr, addr);
7258 adapter->mac_table[i].queue = queue;
7259 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
7260
7261 igb_rar_set_index(adapter, i);
7262 return i;
7263 }
7264
7265 return -ENOSPC;
7266 }
7267
7268 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7269 const u8 queue)
7270 {
7271 return igb_add_mac_filter_flags(adapter, addr, queue, 0);
7272 }
7273
7274 /* Remove a MAC filter for 'addr' directing matching traffic to
7275 * 'queue', 'flags' is used to indicate what kind of match need to be
7276 * removed, match is by default for the destination address, if
7277 * matching by source address is to be removed the flag
7278 * IGB_MAC_STATE_SRC_ADDR can be used.
7279 */
7280 static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
7281 const u8 *addr, const u8 queue,
7282 const u8 flags)
7283 {
7284 struct e1000_hw *hw = &adapter->hw;
7285 int rar_entries = hw->mac.rar_entry_count -
7286 adapter->vfs_allocated_count;
7287 int i;
7288
7289 if (is_zero_ether_addr(addr))
7290 return -EINVAL;
7291
7292 /* Search for matching entry in the MAC table based on given address
7293 * and queue. Do not touch entries at the end of the table reserved
7294 * for the VF MAC addresses.
7295 */
7296 for (i = 0; i < rar_entries; i++) {
7297 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
7298 continue;
7299 if ((adapter->mac_table[i].state & flags) != flags)
7300 continue;
7301 if (adapter->mac_table[i].queue != queue)
7302 continue;
7303 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
7304 continue;
7305
7306 /* When a filter for the default address is "deleted",
7307 * we return it to its initial configuration
7308 */
7309 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
7310 adapter->mac_table[i].state =
7311 IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
7312 adapter->mac_table[i].queue =
7313 adapter->vfs_allocated_count;
7314 } else {
7315 adapter->mac_table[i].state = 0;
7316 adapter->mac_table[i].queue = 0;
7317 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
7318 }
7319
7320 igb_rar_set_index(adapter, i);
7321 return 0;
7322 }
7323
7324 return -ENOENT;
7325 }
7326
7327 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
7328 const u8 queue)
7329 {
7330 return igb_del_mac_filter_flags(adapter, addr, queue, 0);
7331 }
7332
7333 int igb_add_mac_steering_filter(struct igb_adapter *adapter,
7334 const u8 *addr, u8 queue, u8 flags)
7335 {
7336 struct e1000_hw *hw = &adapter->hw;
7337
7338 /* In theory, this should be supported on 82575 as well, but
7339 * that part wasn't easily accessible during development.
7340 */
7341 if (hw->mac.type != e1000_i210)
7342 return -EOPNOTSUPP;
7343
7344 return igb_add_mac_filter_flags(adapter, addr, queue,
7345 IGB_MAC_STATE_QUEUE_STEERING | flags);
7346 }
7347
7348 int igb_del_mac_steering_filter(struct igb_adapter *adapter,
7349 const u8 *addr, u8 queue, u8 flags)
7350 {
7351 return igb_del_mac_filter_flags(adapter, addr, queue,
7352 IGB_MAC_STATE_QUEUE_STEERING | flags);
7353 }
7354
7355 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
7356 {
7357 struct igb_adapter *adapter = netdev_priv(netdev);
7358 int ret;
7359
7360 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7361
7362 return min_t(int, ret, 0);
7363 }
7364
7365 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
7366 {
7367 struct igb_adapter *adapter = netdev_priv(netdev);
7368
7369 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
7370
7371 return 0;
7372 }
7373
7374 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
7375 const u32 info, const u8 *addr)
7376 {
7377 struct pci_dev *pdev = adapter->pdev;
7378 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7379 struct list_head *pos;
7380 struct vf_mac_filter *entry = NULL;
7381 int ret = 0;
7382
7383 switch (info) {
7384 case E1000_VF_MAC_FILTER_CLR:
7385 /* remove all unicast MAC filters related to the current VF */
7386 list_for_each(pos, &adapter->vf_macs.l) {
7387 entry = list_entry(pos, struct vf_mac_filter, l);
7388 if (entry->vf == vf) {
7389 entry->vf = -1;
7390 entry->free = true;
7391 igb_del_mac_filter(adapter, entry->vf_mac, vf);
7392 }
7393 }
7394 break;
7395 case E1000_VF_MAC_FILTER_ADD:
7396 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7397 !vf_data->trusted) {
7398 dev_warn(&pdev->dev,
7399 "VF %d requested MAC filter but is administratively denied\n",
7400 vf);
7401 return -EINVAL;
7402 }
7403 if (!is_valid_ether_addr(addr)) {
7404 dev_warn(&pdev->dev,
7405 "VF %d attempted to set invalid MAC filter\n",
7406 vf);
7407 return -EINVAL;
7408 }
7409
7410 /* try to find empty slot in the list */
7411 list_for_each(pos, &adapter->vf_macs.l) {
7412 entry = list_entry(pos, struct vf_mac_filter, l);
7413 if (entry->free)
7414 break;
7415 }
7416
7417 if (entry && entry->free) {
7418 entry->free = false;
7419 entry->vf = vf;
7420 ether_addr_copy(entry->vf_mac, addr);
7421
7422 ret = igb_add_mac_filter(adapter, addr, vf);
7423 ret = min_t(int, ret, 0);
7424 } else {
7425 ret = -ENOSPC;
7426 }
7427
7428 if (ret == -ENOSPC)
7429 dev_warn(&pdev->dev,
7430 "VF %d has requested MAC filter but there is no space for it\n",
7431 vf);
7432 break;
7433 default:
7434 ret = -EINVAL;
7435 break;
7436 }
7437
7438 return ret;
7439 }
7440
7441 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
7442 {
7443 struct pci_dev *pdev = adapter->pdev;
7444 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7445 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
7446
7447 /* The VF MAC Address is stored in a packed array of bytes
7448 * starting at the second 32 bit word of the msg array
7449 */
7450 unsigned char *addr = (unsigned char *)&msg[1];
7451 int ret = 0;
7452
7453 if (!info) {
7454 if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
7455 !vf_data->trusted) {
7456 dev_warn(&pdev->dev,
7457 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
7458 vf);
7459 return -EINVAL;
7460 }
7461
7462 if (!is_valid_ether_addr(addr)) {
7463 dev_warn(&pdev->dev,
7464 "VF %d attempted to set invalid MAC\n",
7465 vf);
7466 return -EINVAL;
7467 }
7468
7469 ret = igb_set_vf_mac(adapter, vf, addr);
7470 } else {
7471 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
7472 }
7473
7474 return ret;
7475 }
7476
7477 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7478 {
7479 struct e1000_hw *hw = &adapter->hw;
7480 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7481 u32 msg = E1000_VT_MSGTYPE_NACK;
7482
7483 /* if device isn't clear to send it shouldn't be reading either */
7484 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7485 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7486 igb_write_mbx(hw, &msg, 1, vf);
7487 vf_data->last_nack = jiffies;
7488 }
7489 }
7490
7491 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7492 {
7493 struct pci_dev *pdev = adapter->pdev;
7494 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7495 struct e1000_hw *hw = &adapter->hw;
7496 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7497 s32 retval;
7498
7499 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7500
7501 if (retval) {
7502 /* if receive failed revoke VF CTS stats and restart init */
7503 dev_err(&pdev->dev, "Error receiving message from VF\n");
7504 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7505 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7506 goto unlock;
7507 goto out;
7508 }
7509
7510 /* this is a message we already processed, do nothing */
7511 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7512 goto unlock;
7513
7514 /* until the vf completes a reset it should not be
7515 * allowed to start any configuration.
7516 */
7517 if (msgbuf[0] == E1000_VF_RESET) {
7518 /* unlocks mailbox */
7519 igb_vf_reset_msg(adapter, vf);
7520 return;
7521 }
7522
7523 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7524 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7525 goto unlock;
7526 retval = -1;
7527 goto out;
7528 }
7529
7530 switch ((msgbuf[0] & 0xFFFF)) {
7531 case E1000_VF_SET_MAC_ADDR:
7532 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7533 break;
7534 case E1000_VF_SET_PROMISC:
7535 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7536 break;
7537 case E1000_VF_SET_MULTICAST:
7538 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7539 break;
7540 case E1000_VF_SET_LPE:
7541 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7542 break;
7543 case E1000_VF_SET_VLAN:
7544 retval = -1;
7545 if (vf_data->pf_vlan)
7546 dev_warn(&pdev->dev,
7547 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7548 vf);
7549 else
7550 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7551 break;
7552 default:
7553 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7554 retval = -1;
7555 break;
7556 }
7557
7558 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7559 out:
7560 /* notify the VF of the results of what it sent us */
7561 if (retval)
7562 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7563 else
7564 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7565
7566 /* unlocks mailbox */
7567 igb_write_mbx(hw, msgbuf, 1, vf);
7568 return;
7569
7570 unlock:
7571 igb_unlock_mbx(hw, vf);
7572 }
7573
7574 static void igb_msg_task(struct igb_adapter *adapter)
7575 {
7576 struct e1000_hw *hw = &adapter->hw;
7577 u32 vf;
7578
7579 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7580 /* process any reset requests */
7581 if (!igb_check_for_rst(hw, vf))
7582 igb_vf_reset_event(adapter, vf);
7583
7584 /* process any messages pending */
7585 if (!igb_check_for_msg(hw, vf))
7586 igb_rcv_msg_from_vf(adapter, vf);
7587
7588 /* process any acks */
7589 if (!igb_check_for_ack(hw, vf))
7590 igb_rcv_ack_from_vf(adapter, vf);
7591 }
7592 }
7593
7594 /**
7595 * igb_set_uta - Set unicast filter table address
7596 * @adapter: board private structure
7597 * @set: boolean indicating if we are setting or clearing bits
7598 *
7599 * The unicast table address is a register array of 32-bit registers.
7600 * The table is meant to be used in a way similar to how the MTA is used
7601 * however due to certain limitations in the hardware it is necessary to
7602 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7603 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7604 **/
7605 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7606 {
7607 struct e1000_hw *hw = &adapter->hw;
7608 u32 uta = set ? ~0 : 0;
7609 int i;
7610
7611 /* we only need to do this if VMDq is enabled */
7612 if (!adapter->vfs_allocated_count)
7613 return;
7614
7615 for (i = hw->mac.uta_reg_count; i--;)
7616 array_wr32(E1000_UTA, i, uta);
7617 }
7618
7619 /**
7620 * igb_intr_msi - Interrupt Handler
7621 * @irq: interrupt number
7622 * @data: pointer to a network interface device structure
7623 **/
7624 static irqreturn_t igb_intr_msi(int irq, void *data)
7625 {
7626 struct igb_adapter *adapter = data;
7627 struct igb_q_vector *q_vector = adapter->q_vector[0];
7628 struct e1000_hw *hw = &adapter->hw;
7629 /* read ICR disables interrupts using IAM */
7630 u32 icr = rd32(E1000_ICR);
7631
7632 igb_write_itr(q_vector);
7633
7634 if (icr & E1000_ICR_DRSTA)
7635 schedule_work(&adapter->reset_task);
7636
7637 if (icr & E1000_ICR_DOUTSYNC) {
7638 /* HW is reporting DMA is out of sync */
7639 adapter->stats.doosync++;
7640 }
7641
7642 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7643 hw->mac.get_link_status = 1;
7644 if (!test_bit(__IGB_DOWN, &adapter->state))
7645 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7646 }
7647
7648 if (icr & E1000_ICR_TS)
7649 igb_tsync_interrupt(adapter);
7650
7651 napi_schedule(&q_vector->napi);
7652
7653 return IRQ_HANDLED;
7654 }
7655
7656 /**
7657 * igb_intr - Legacy Interrupt Handler
7658 * @irq: interrupt number
7659 * @data: pointer to a network interface device structure
7660 **/
7661 static irqreturn_t igb_intr(int irq, void *data)
7662 {
7663 struct igb_adapter *adapter = data;
7664 struct igb_q_vector *q_vector = adapter->q_vector[0];
7665 struct e1000_hw *hw = &adapter->hw;
7666 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7667 * need for the IMC write
7668 */
7669 u32 icr = rd32(E1000_ICR);
7670
7671 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7672 * not set, then the adapter didn't send an interrupt
7673 */
7674 if (!(icr & E1000_ICR_INT_ASSERTED))
7675 return IRQ_NONE;
7676
7677 igb_write_itr(q_vector);
7678
7679 if (icr & E1000_ICR_DRSTA)
7680 schedule_work(&adapter->reset_task);
7681
7682 if (icr & E1000_ICR_DOUTSYNC) {
7683 /* HW is reporting DMA is out of sync */
7684 adapter->stats.doosync++;
7685 }
7686
7687 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7688 hw->mac.get_link_status = 1;
7689 /* guard against interrupt when we're going down */
7690 if (!test_bit(__IGB_DOWN, &adapter->state))
7691 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7692 }
7693
7694 if (icr & E1000_ICR_TS)
7695 igb_tsync_interrupt(adapter);
7696
7697 napi_schedule(&q_vector->napi);
7698
7699 return IRQ_HANDLED;
7700 }
7701
7702 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7703 {
7704 struct igb_adapter *adapter = q_vector->adapter;
7705 struct e1000_hw *hw = &adapter->hw;
7706
7707 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7708 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7709 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7710 igb_set_itr(q_vector);
7711 else
7712 igb_update_ring_itr(q_vector);
7713 }
7714
7715 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7716 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7717 wr32(E1000_EIMS, q_vector->eims_value);
7718 else
7719 igb_irq_enable(adapter);
7720 }
7721 }
7722
7723 /**
7724 * igb_poll - NAPI Rx polling callback
7725 * @napi: napi polling structure
7726 * @budget: count of how many packets we should handle
7727 **/
7728 static int igb_poll(struct napi_struct *napi, int budget)
7729 {
7730 struct igb_q_vector *q_vector = container_of(napi,
7731 struct igb_q_vector,
7732 napi);
7733 bool clean_complete = true;
7734 int work_done = 0;
7735
7736 #ifdef CONFIG_IGB_DCA
7737 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7738 igb_update_dca(q_vector);
7739 #endif
7740 if (q_vector->tx.ring)
7741 clean_complete = igb_clean_tx_irq(q_vector, budget);
7742
7743 if (q_vector->rx.ring) {
7744 int cleaned = igb_clean_rx_irq(q_vector, budget);
7745
7746 work_done += cleaned;
7747 if (cleaned >= budget)
7748 clean_complete = false;
7749 }
7750
7751 /* If all work not completed, return budget and keep polling */
7752 if (!clean_complete)
7753 return budget;
7754
7755 /* Exit the polling mode, but don't re-enable interrupts if stack might
7756 * poll us due to busy-polling
7757 */
7758 if (likely(napi_complete_done(napi, work_done)))
7759 igb_ring_irq_enable(q_vector);
7760
7761 return min(work_done, budget - 1);
7762 }
7763
7764 /**
7765 * igb_clean_tx_irq - Reclaim resources after transmit completes
7766 * @q_vector: pointer to q_vector containing needed info
7767 * @napi_budget: Used to determine if we are in netpoll
7768 *
7769 * returns true if ring is completely cleaned
7770 **/
7771 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7772 {
7773 struct igb_adapter *adapter = q_vector->adapter;
7774 struct igb_ring *tx_ring = q_vector->tx.ring;
7775 struct igb_tx_buffer *tx_buffer;
7776 union e1000_adv_tx_desc *tx_desc;
7777 unsigned int total_bytes = 0, total_packets = 0;
7778 unsigned int budget = q_vector->tx.work_limit;
7779 unsigned int i = tx_ring->next_to_clean;
7780
7781 if (test_bit(__IGB_DOWN, &adapter->state))
7782 return true;
7783
7784 tx_buffer = &tx_ring->tx_buffer_info[i];
7785 tx_desc = IGB_TX_DESC(tx_ring, i);
7786 i -= tx_ring->count;
7787
7788 do {
7789 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7790
7791 /* if next_to_watch is not set then there is no work pending */
7792 if (!eop_desc)
7793 break;
7794
7795 /* prevent any other reads prior to eop_desc */
7796 smp_rmb();
7797
7798 /* if DD is not set pending work has not been completed */
7799 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7800 break;
7801
7802 /* clear next_to_watch to prevent false hangs */
7803 tx_buffer->next_to_watch = NULL;
7804
7805 /* update the statistics for this packet */
7806 total_bytes += tx_buffer->bytecount;
7807 total_packets += tx_buffer->gso_segs;
7808
7809 /* free the skb */
7810 napi_consume_skb(tx_buffer->skb, napi_budget);
7811
7812 /* unmap skb header data */
7813 dma_unmap_single(tx_ring->dev,
7814 dma_unmap_addr(tx_buffer, dma),
7815 dma_unmap_len(tx_buffer, len),
7816 DMA_TO_DEVICE);
7817
7818 /* clear tx_buffer data */
7819 dma_unmap_len_set(tx_buffer, len, 0);
7820
7821 /* clear last DMA location and unmap remaining buffers */
7822 while (tx_desc != eop_desc) {
7823 tx_buffer++;
7824 tx_desc++;
7825 i++;
7826 if (unlikely(!i)) {
7827 i -= tx_ring->count;
7828 tx_buffer = tx_ring->tx_buffer_info;
7829 tx_desc = IGB_TX_DESC(tx_ring, 0);
7830 }
7831
7832 /* unmap any remaining paged data */
7833 if (dma_unmap_len(tx_buffer, len)) {
7834 dma_unmap_page(tx_ring->dev,
7835 dma_unmap_addr(tx_buffer, dma),
7836 dma_unmap_len(tx_buffer, len),
7837 DMA_TO_DEVICE);
7838 dma_unmap_len_set(tx_buffer, len, 0);
7839 }
7840 }
7841
7842 /* move us one more past the eop_desc for start of next pkt */
7843 tx_buffer++;
7844 tx_desc++;
7845 i++;
7846 if (unlikely(!i)) {
7847 i -= tx_ring->count;
7848 tx_buffer = tx_ring->tx_buffer_info;
7849 tx_desc = IGB_TX_DESC(tx_ring, 0);
7850 }
7851
7852 /* issue prefetch for next Tx descriptor */
7853 prefetch(tx_desc);
7854
7855 /* update budget accounting */
7856 budget--;
7857 } while (likely(budget));
7858
7859 netdev_tx_completed_queue(txring_txq(tx_ring),
7860 total_packets, total_bytes);
7861 i += tx_ring->count;
7862 tx_ring->next_to_clean = i;
7863 u64_stats_update_begin(&tx_ring->tx_syncp);
7864 tx_ring->tx_stats.bytes += total_bytes;
7865 tx_ring->tx_stats.packets += total_packets;
7866 u64_stats_update_end(&tx_ring->tx_syncp);
7867 q_vector->tx.total_bytes += total_bytes;
7868 q_vector->tx.total_packets += total_packets;
7869
7870 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7871 struct e1000_hw *hw = &adapter->hw;
7872
7873 /* Detect a transmit hang in hardware, this serializes the
7874 * check with the clearing of time_stamp and movement of i
7875 */
7876 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7877 if (tx_buffer->next_to_watch &&
7878 time_after(jiffies, tx_buffer->time_stamp +
7879 (adapter->tx_timeout_factor * HZ)) &&
7880 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7881
7882 /* detected Tx unit hang */
7883 dev_err(tx_ring->dev,
7884 "Detected Tx Unit Hang\n"
7885 " Tx Queue <%d>\n"
7886 " TDH <%x>\n"
7887 " TDT <%x>\n"
7888 " next_to_use <%x>\n"
7889 " next_to_clean <%x>\n"
7890 "buffer_info[next_to_clean]\n"
7891 " time_stamp <%lx>\n"
7892 " next_to_watch <%p>\n"
7893 " jiffies <%lx>\n"
7894 " desc.status <%x>\n",
7895 tx_ring->queue_index,
7896 rd32(E1000_TDH(tx_ring->reg_idx)),
7897 readl(tx_ring->tail),
7898 tx_ring->next_to_use,
7899 tx_ring->next_to_clean,
7900 tx_buffer->time_stamp,
7901 tx_buffer->next_to_watch,
7902 jiffies,
7903 tx_buffer->next_to_watch->wb.status);
7904 netif_stop_subqueue(tx_ring->netdev,
7905 tx_ring->queue_index);
7906
7907 /* we are about to reset, no point in enabling stuff */
7908 return true;
7909 }
7910 }
7911
7912 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7913 if (unlikely(total_packets &&
7914 netif_carrier_ok(tx_ring->netdev) &&
7915 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7916 /* Make sure that anybody stopping the queue after this
7917 * sees the new next_to_clean.
7918 */
7919 smp_mb();
7920 if (__netif_subqueue_stopped(tx_ring->netdev,
7921 tx_ring->queue_index) &&
7922 !(test_bit(__IGB_DOWN, &adapter->state))) {
7923 netif_wake_subqueue(tx_ring->netdev,
7924 tx_ring->queue_index);
7925
7926 u64_stats_update_begin(&tx_ring->tx_syncp);
7927 tx_ring->tx_stats.restart_queue++;
7928 u64_stats_update_end(&tx_ring->tx_syncp);
7929 }
7930 }
7931
7932 return !!budget;
7933 }
7934
7935 /**
7936 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7937 * @rx_ring: rx descriptor ring to store buffers on
7938 * @old_buff: donor buffer to have page reused
7939 *
7940 * Synchronizes page for reuse by the adapter
7941 **/
7942 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7943 struct igb_rx_buffer *old_buff)
7944 {
7945 struct igb_rx_buffer *new_buff;
7946 u16 nta = rx_ring->next_to_alloc;
7947
7948 new_buff = &rx_ring->rx_buffer_info[nta];
7949
7950 /* update, and store next to alloc */
7951 nta++;
7952 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7953
7954 /* Transfer page from old buffer to new buffer.
7955 * Move each member individually to avoid possible store
7956 * forwarding stalls.
7957 */
7958 new_buff->dma = old_buff->dma;
7959 new_buff->page = old_buff->page;
7960 new_buff->page_offset = old_buff->page_offset;
7961 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7962 }
7963
7964 static inline bool igb_page_is_reserved(struct page *page)
7965 {
7966 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7967 }
7968
7969 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7970 {
7971 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7972 struct page *page = rx_buffer->page;
7973
7974 /* avoid re-using remote pages */
7975 if (unlikely(igb_page_is_reserved(page)))
7976 return false;
7977
7978 #if (PAGE_SIZE < 8192)
7979 /* if we are only owner of page we can reuse it */
7980 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7981 return false;
7982 #else
7983 #define IGB_LAST_OFFSET \
7984 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7985
7986 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7987 return false;
7988 #endif
7989
7990 /* If we have drained the page fragment pool we need to update
7991 * the pagecnt_bias and page count so that we fully restock the
7992 * number of references the driver holds.
7993 */
7994 if (unlikely(!pagecnt_bias)) {
7995 page_ref_add(page, USHRT_MAX);
7996 rx_buffer->pagecnt_bias = USHRT_MAX;
7997 }
7998
7999 return true;
8000 }
8001
8002 /**
8003 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
8004 * @rx_ring: rx descriptor ring to transact packets on
8005 * @rx_buffer: buffer containing page to add
8006 * @skb: sk_buff to place the data into
8007 * @size: size of buffer to be added
8008 *
8009 * This function will add the data contained in rx_buffer->page to the skb.
8010 **/
8011 static void igb_add_rx_frag(struct igb_ring *rx_ring,
8012 struct igb_rx_buffer *rx_buffer,
8013 struct sk_buff *skb,
8014 unsigned int size)
8015 {
8016 #if (PAGE_SIZE < 8192)
8017 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8018 #else
8019 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
8020 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
8021 SKB_DATA_ALIGN(size);
8022 #endif
8023 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
8024 rx_buffer->page_offset, size, truesize);
8025 #if (PAGE_SIZE < 8192)
8026 rx_buffer->page_offset ^= truesize;
8027 #else
8028 rx_buffer->page_offset += truesize;
8029 #endif
8030 }
8031
8032 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
8033 struct igb_rx_buffer *rx_buffer,
8034 union e1000_adv_rx_desc *rx_desc,
8035 unsigned int size)
8036 {
8037 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8038 #if (PAGE_SIZE < 8192)
8039 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8040 #else
8041 unsigned int truesize = SKB_DATA_ALIGN(size);
8042 #endif
8043 unsigned int headlen;
8044 struct sk_buff *skb;
8045
8046 /* prefetch first cache line of first page */
8047 prefetch(va);
8048 #if L1_CACHE_BYTES < 128
8049 prefetch(va + L1_CACHE_BYTES);
8050 #endif
8051
8052 /* allocate a skb to store the frags */
8053 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
8054 if (unlikely(!skb))
8055 return NULL;
8056
8057 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
8058 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
8059 va += IGB_TS_HDR_LEN;
8060 size -= IGB_TS_HDR_LEN;
8061 }
8062
8063 /* Determine available headroom for copy */
8064 headlen = size;
8065 if (headlen > IGB_RX_HDR_LEN)
8066 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
8067
8068 /* align pull length to size of long to optimize memcpy performance */
8069 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
8070
8071 /* update all of the pointers */
8072 size -= headlen;
8073 if (size) {
8074 skb_add_rx_frag(skb, 0, rx_buffer->page,
8075 (va + headlen) - page_address(rx_buffer->page),
8076 size, truesize);
8077 #if (PAGE_SIZE < 8192)
8078 rx_buffer->page_offset ^= truesize;
8079 #else
8080 rx_buffer->page_offset += truesize;
8081 #endif
8082 } else {
8083 rx_buffer->pagecnt_bias++;
8084 }
8085
8086 return skb;
8087 }
8088
8089 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
8090 struct igb_rx_buffer *rx_buffer,
8091 union e1000_adv_rx_desc *rx_desc,
8092 unsigned int size)
8093 {
8094 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
8095 #if (PAGE_SIZE < 8192)
8096 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
8097 #else
8098 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
8099 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
8100 #endif
8101 struct sk_buff *skb;
8102
8103 /* prefetch first cache line of first page */
8104 prefetch(va);
8105 #if L1_CACHE_BYTES < 128
8106 prefetch(va + L1_CACHE_BYTES);
8107 #endif
8108
8109 /* build an skb around the page buffer */
8110 skb = build_skb(va - IGB_SKB_PAD, truesize);
8111 if (unlikely(!skb))
8112 return NULL;
8113
8114 /* update pointers within the skb to store the data */
8115 skb_reserve(skb, IGB_SKB_PAD);
8116 __skb_put(skb, size);
8117
8118 /* pull timestamp out of packet data */
8119 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
8120 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
8121 __skb_pull(skb, IGB_TS_HDR_LEN);
8122 }
8123
8124 /* update buffer offset */
8125 #if (PAGE_SIZE < 8192)
8126 rx_buffer->page_offset ^= truesize;
8127 #else
8128 rx_buffer->page_offset += truesize;
8129 #endif
8130
8131 return skb;
8132 }
8133
8134 static inline void igb_rx_checksum(struct igb_ring *ring,
8135 union e1000_adv_rx_desc *rx_desc,
8136 struct sk_buff *skb)
8137 {
8138 skb_checksum_none_assert(skb);
8139
8140 /* Ignore Checksum bit is set */
8141 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
8142 return;
8143
8144 /* Rx checksum disabled via ethtool */
8145 if (!(ring->netdev->features & NETIF_F_RXCSUM))
8146 return;
8147
8148 /* TCP/UDP checksum error bit is set */
8149 if (igb_test_staterr(rx_desc,
8150 E1000_RXDEXT_STATERR_TCPE |
8151 E1000_RXDEXT_STATERR_IPE)) {
8152 /* work around errata with sctp packets where the TCPE aka
8153 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
8154 * packets, (aka let the stack check the crc32c)
8155 */
8156 if (!((skb->len == 60) &&
8157 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
8158 u64_stats_update_begin(&ring->rx_syncp);
8159 ring->rx_stats.csum_err++;
8160 u64_stats_update_end(&ring->rx_syncp);
8161 }
8162 /* let the stack verify checksum errors */
8163 return;
8164 }
8165 /* It must be a TCP or UDP packet with a valid checksum */
8166 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
8167 E1000_RXD_STAT_UDPCS))
8168 skb->ip_summed = CHECKSUM_UNNECESSARY;
8169
8170 dev_dbg(ring->dev, "cksum success: bits %08X\n",
8171 le32_to_cpu(rx_desc->wb.upper.status_error));
8172 }
8173
8174 static inline void igb_rx_hash(struct igb_ring *ring,
8175 union e1000_adv_rx_desc *rx_desc,
8176 struct sk_buff *skb)
8177 {
8178 if (ring->netdev->features & NETIF_F_RXHASH)
8179 skb_set_hash(skb,
8180 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
8181 PKT_HASH_TYPE_L3);
8182 }
8183
8184 /**
8185 * igb_is_non_eop - process handling of non-EOP buffers
8186 * @rx_ring: Rx ring being processed
8187 * @rx_desc: Rx descriptor for current buffer
8188 * @skb: current socket buffer containing buffer in progress
8189 *
8190 * This function updates next to clean. If the buffer is an EOP buffer
8191 * this function exits returning false, otherwise it will place the
8192 * sk_buff in the next buffer to be chained and return true indicating
8193 * that this is in fact a non-EOP buffer.
8194 **/
8195 static bool igb_is_non_eop(struct igb_ring *rx_ring,
8196 union e1000_adv_rx_desc *rx_desc)
8197 {
8198 u32 ntc = rx_ring->next_to_clean + 1;
8199
8200 /* fetch, update, and store next to clean */
8201 ntc = (ntc < rx_ring->count) ? ntc : 0;
8202 rx_ring->next_to_clean = ntc;
8203
8204 prefetch(IGB_RX_DESC(rx_ring, ntc));
8205
8206 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
8207 return false;
8208
8209 return true;
8210 }
8211
8212 /**
8213 * igb_cleanup_headers - Correct corrupted or empty headers
8214 * @rx_ring: rx descriptor ring packet is being transacted on
8215 * @rx_desc: pointer to the EOP Rx descriptor
8216 * @skb: pointer to current skb being fixed
8217 *
8218 * Address the case where we are pulling data in on pages only
8219 * and as such no data is present in the skb header.
8220 *
8221 * In addition if skb is not at least 60 bytes we need to pad it so that
8222 * it is large enough to qualify as a valid Ethernet frame.
8223 *
8224 * Returns true if an error was encountered and skb was freed.
8225 **/
8226 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
8227 union e1000_adv_rx_desc *rx_desc,
8228 struct sk_buff *skb)
8229 {
8230 if (unlikely((igb_test_staterr(rx_desc,
8231 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
8232 struct net_device *netdev = rx_ring->netdev;
8233 if (!(netdev->features & NETIF_F_RXALL)) {
8234 dev_kfree_skb_any(skb);
8235 return true;
8236 }
8237 }
8238
8239 /* if eth_skb_pad returns an error the skb was freed */
8240 if (eth_skb_pad(skb))
8241 return true;
8242
8243 return false;
8244 }
8245
8246 /**
8247 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
8248 * @rx_ring: rx descriptor ring packet is being transacted on
8249 * @rx_desc: pointer to the EOP Rx descriptor
8250 * @skb: pointer to current skb being populated
8251 *
8252 * This function checks the ring, descriptor, and packet information in
8253 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
8254 * other fields within the skb.
8255 **/
8256 static void igb_process_skb_fields(struct igb_ring *rx_ring,
8257 union e1000_adv_rx_desc *rx_desc,
8258 struct sk_buff *skb)
8259 {
8260 struct net_device *dev = rx_ring->netdev;
8261
8262 igb_rx_hash(rx_ring, rx_desc, skb);
8263
8264 igb_rx_checksum(rx_ring, rx_desc, skb);
8265
8266 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
8267 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
8268 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
8269
8270 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
8271 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
8272 u16 vid;
8273
8274 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
8275 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
8276 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
8277 else
8278 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
8279
8280 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
8281 }
8282
8283 skb_record_rx_queue(skb, rx_ring->queue_index);
8284
8285 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
8286 }
8287
8288 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
8289 const unsigned int size)
8290 {
8291 struct igb_rx_buffer *rx_buffer;
8292
8293 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
8294 prefetchw(rx_buffer->page);
8295
8296 /* we are reusing so sync this buffer for CPU use */
8297 dma_sync_single_range_for_cpu(rx_ring->dev,
8298 rx_buffer->dma,
8299 rx_buffer->page_offset,
8300 size,
8301 DMA_FROM_DEVICE);
8302
8303 rx_buffer->pagecnt_bias--;
8304
8305 return rx_buffer;
8306 }
8307
8308 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
8309 struct igb_rx_buffer *rx_buffer)
8310 {
8311 if (igb_can_reuse_rx_page(rx_buffer)) {
8312 /* hand second half of page back to the ring */
8313 igb_reuse_rx_page(rx_ring, rx_buffer);
8314 } else {
8315 /* We are not reusing the buffer so unmap it and free
8316 * any references we are holding to it
8317 */
8318 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
8319 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
8320 IGB_RX_DMA_ATTR);
8321 __page_frag_cache_drain(rx_buffer->page,
8322 rx_buffer->pagecnt_bias);
8323 }
8324
8325 /* clear contents of rx_buffer */
8326 rx_buffer->page = NULL;
8327 }
8328
8329 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
8330 {
8331 struct igb_ring *rx_ring = q_vector->rx.ring;
8332 struct sk_buff *skb = rx_ring->skb;
8333 unsigned int total_bytes = 0, total_packets = 0;
8334 u16 cleaned_count = igb_desc_unused(rx_ring);
8335
8336 while (likely(total_packets < budget)) {
8337 union e1000_adv_rx_desc *rx_desc;
8338 struct igb_rx_buffer *rx_buffer;
8339 unsigned int size;
8340
8341 /* return some buffers to hardware, one at a time is too slow */
8342 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
8343 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8344 cleaned_count = 0;
8345 }
8346
8347 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
8348 size = le16_to_cpu(rx_desc->wb.upper.length);
8349 if (!size)
8350 break;
8351
8352 /* This memory barrier is needed to keep us from reading
8353 * any other fields out of the rx_desc until we know the
8354 * descriptor has been written back
8355 */
8356 dma_rmb();
8357
8358 rx_buffer = igb_get_rx_buffer(rx_ring, size);
8359
8360 /* retrieve a buffer from the ring */
8361 if (skb)
8362 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
8363 else if (ring_uses_build_skb(rx_ring))
8364 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
8365 else
8366 skb = igb_construct_skb(rx_ring, rx_buffer,
8367 rx_desc, size);
8368
8369 /* exit if we failed to retrieve a buffer */
8370 if (!skb) {
8371 rx_ring->rx_stats.alloc_failed++;
8372 rx_buffer->pagecnt_bias++;
8373 break;
8374 }
8375
8376 igb_put_rx_buffer(rx_ring, rx_buffer);
8377 cleaned_count++;
8378
8379 /* fetch next buffer in frame if non-eop */
8380 if (igb_is_non_eop(rx_ring, rx_desc))
8381 continue;
8382
8383 /* verify the packet layout is correct */
8384 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
8385 skb = NULL;
8386 continue;
8387 }
8388
8389 /* probably a little skewed due to removing CRC */
8390 total_bytes += skb->len;
8391
8392 /* populate checksum, timestamp, VLAN, and protocol */
8393 igb_process_skb_fields(rx_ring, rx_desc, skb);
8394
8395 napi_gro_receive(&q_vector->napi, skb);
8396
8397 /* reset skb pointer */
8398 skb = NULL;
8399
8400 /* update budget accounting */
8401 total_packets++;
8402 }
8403
8404 /* place incomplete frames back on ring for completion */
8405 rx_ring->skb = skb;
8406
8407 u64_stats_update_begin(&rx_ring->rx_syncp);
8408 rx_ring->rx_stats.packets += total_packets;
8409 rx_ring->rx_stats.bytes += total_bytes;
8410 u64_stats_update_end(&rx_ring->rx_syncp);
8411 q_vector->rx.total_packets += total_packets;
8412 q_vector->rx.total_bytes += total_bytes;
8413
8414 if (cleaned_count)
8415 igb_alloc_rx_buffers(rx_ring, cleaned_count);
8416
8417 return total_packets;
8418 }
8419
8420 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
8421 {
8422 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
8423 }
8424
8425 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
8426 struct igb_rx_buffer *bi)
8427 {
8428 struct page *page = bi->page;
8429 dma_addr_t dma;
8430
8431 /* since we are recycling buffers we should seldom need to alloc */
8432 if (likely(page))
8433 return true;
8434
8435 /* alloc new page for storage */
8436 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
8437 if (unlikely(!page)) {
8438 rx_ring->rx_stats.alloc_failed++;
8439 return false;
8440 }
8441
8442 /* map page for use */
8443 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
8444 igb_rx_pg_size(rx_ring),
8445 DMA_FROM_DEVICE,
8446 IGB_RX_DMA_ATTR);
8447
8448 /* if mapping failed free memory back to system since
8449 * there isn't much point in holding memory we can't use
8450 */
8451 if (dma_mapping_error(rx_ring->dev, dma)) {
8452 __free_pages(page, igb_rx_pg_order(rx_ring));
8453
8454 rx_ring->rx_stats.alloc_failed++;
8455 return false;
8456 }
8457
8458 bi->dma = dma;
8459 bi->page = page;
8460 bi->page_offset = igb_rx_offset(rx_ring);
8461 bi->pagecnt_bias = 1;
8462
8463 return true;
8464 }
8465
8466 /**
8467 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
8468 * @adapter: address of board private structure
8469 **/
8470 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
8471 {
8472 union e1000_adv_rx_desc *rx_desc;
8473 struct igb_rx_buffer *bi;
8474 u16 i = rx_ring->next_to_use;
8475 u16 bufsz;
8476
8477 /* nothing to do */
8478 if (!cleaned_count)
8479 return;
8480
8481 rx_desc = IGB_RX_DESC(rx_ring, i);
8482 bi = &rx_ring->rx_buffer_info[i];
8483 i -= rx_ring->count;
8484
8485 bufsz = igb_rx_bufsz(rx_ring);
8486
8487 do {
8488 if (!igb_alloc_mapped_page(rx_ring, bi))
8489 break;
8490
8491 /* sync the buffer for use by the device */
8492 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8493 bi->page_offset, bufsz,
8494 DMA_FROM_DEVICE);
8495
8496 /* Refresh the desc even if buffer_addrs didn't change
8497 * because each write-back erases this info.
8498 */
8499 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8500
8501 rx_desc++;
8502 bi++;
8503 i++;
8504 if (unlikely(!i)) {
8505 rx_desc = IGB_RX_DESC(rx_ring, 0);
8506 bi = rx_ring->rx_buffer_info;
8507 i -= rx_ring->count;
8508 }
8509
8510 /* clear the length for the next_to_use descriptor */
8511 rx_desc->wb.upper.length = 0;
8512
8513 cleaned_count--;
8514 } while (cleaned_count);
8515
8516 i += rx_ring->count;
8517
8518 if (rx_ring->next_to_use != i) {
8519 /* record the next descriptor to use */
8520 rx_ring->next_to_use = i;
8521
8522 /* update next to alloc since we have filled the ring */
8523 rx_ring->next_to_alloc = i;
8524
8525 /* Force memory writes to complete before letting h/w
8526 * know there are new descriptors to fetch. (Only
8527 * applicable for weak-ordered memory model archs,
8528 * such as IA-64).
8529 */
8530 dma_wmb();
8531 writel(i, rx_ring->tail);
8532 }
8533 }
8534
8535 /**
8536 * igb_mii_ioctl -
8537 * @netdev:
8538 * @ifreq:
8539 * @cmd:
8540 **/
8541 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8542 {
8543 struct igb_adapter *adapter = netdev_priv(netdev);
8544 struct mii_ioctl_data *data = if_mii(ifr);
8545
8546 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8547 return -EOPNOTSUPP;
8548
8549 switch (cmd) {
8550 case SIOCGMIIPHY:
8551 data->phy_id = adapter->hw.phy.addr;
8552 break;
8553 case SIOCGMIIREG:
8554 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8555 &data->val_out))
8556 return -EIO;
8557 break;
8558 case SIOCSMIIREG:
8559 default:
8560 return -EOPNOTSUPP;
8561 }
8562 return 0;
8563 }
8564
8565 /**
8566 * igb_ioctl -
8567 * @netdev:
8568 * @ifreq:
8569 * @cmd:
8570 **/
8571 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8572 {
8573 switch (cmd) {
8574 case SIOCGMIIPHY:
8575 case SIOCGMIIREG:
8576 case SIOCSMIIREG:
8577 return igb_mii_ioctl(netdev, ifr, cmd);
8578 case SIOCGHWTSTAMP:
8579 return igb_ptp_get_ts_config(netdev, ifr);
8580 case SIOCSHWTSTAMP:
8581 return igb_ptp_set_ts_config(netdev, ifr);
8582 default:
8583 return -EOPNOTSUPP;
8584 }
8585 }
8586
8587 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8588 {
8589 struct igb_adapter *adapter = hw->back;
8590
8591 pci_read_config_word(adapter->pdev, reg, value);
8592 }
8593
8594 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8595 {
8596 struct igb_adapter *adapter = hw->back;
8597
8598 pci_write_config_word(adapter->pdev, reg, *value);
8599 }
8600
8601 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8602 {
8603 struct igb_adapter *adapter = hw->back;
8604
8605 if (pcie_capability_read_word(adapter->pdev, reg, value))
8606 return -E1000_ERR_CONFIG;
8607
8608 return 0;
8609 }
8610
8611 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8612 {
8613 struct igb_adapter *adapter = hw->back;
8614
8615 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8616 return -E1000_ERR_CONFIG;
8617
8618 return 0;
8619 }
8620
8621 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8622 {
8623 struct igb_adapter *adapter = netdev_priv(netdev);
8624 struct e1000_hw *hw = &adapter->hw;
8625 u32 ctrl, rctl;
8626 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8627
8628 if (enable) {
8629 /* enable VLAN tag insert/strip */
8630 ctrl = rd32(E1000_CTRL);
8631 ctrl |= E1000_CTRL_VME;
8632 wr32(E1000_CTRL, ctrl);
8633
8634 /* Disable CFI check */
8635 rctl = rd32(E1000_RCTL);
8636 rctl &= ~E1000_RCTL_CFIEN;
8637 wr32(E1000_RCTL, rctl);
8638 } else {
8639 /* disable VLAN tag insert/strip */
8640 ctrl = rd32(E1000_CTRL);
8641 ctrl &= ~E1000_CTRL_VME;
8642 wr32(E1000_CTRL, ctrl);
8643 }
8644
8645 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8646 }
8647
8648 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8649 __be16 proto, u16 vid)
8650 {
8651 struct igb_adapter *adapter = netdev_priv(netdev);
8652 struct e1000_hw *hw = &adapter->hw;
8653 int pf_id = adapter->vfs_allocated_count;
8654
8655 /* add the filter since PF can receive vlans w/o entry in vlvf */
8656 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8657 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8658
8659 set_bit(vid, adapter->active_vlans);
8660
8661 return 0;
8662 }
8663
8664 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8665 __be16 proto, u16 vid)
8666 {
8667 struct igb_adapter *adapter = netdev_priv(netdev);
8668 int pf_id = adapter->vfs_allocated_count;
8669 struct e1000_hw *hw = &adapter->hw;
8670
8671 /* remove VID from filter table */
8672 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8673 igb_vfta_set(hw, vid, pf_id, false, true);
8674
8675 clear_bit(vid, adapter->active_vlans);
8676
8677 return 0;
8678 }
8679
8680 static void igb_restore_vlan(struct igb_adapter *adapter)
8681 {
8682 u16 vid = 1;
8683
8684 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8685 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8686
8687 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8688 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8689 }
8690
8691 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8692 {
8693 struct pci_dev *pdev = adapter->pdev;
8694 struct e1000_mac_info *mac = &adapter->hw.mac;
8695
8696 mac->autoneg = 0;
8697
8698 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8699 * for the switch() below to work
8700 */
8701 if ((spd & 1) || (dplx & ~1))
8702 goto err_inval;
8703
8704 /* Fiber NIC's only allow 1000 gbps Full duplex
8705 * and 100Mbps Full duplex for 100baseFx sfp
8706 */
8707 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8708 switch (spd + dplx) {
8709 case SPEED_10 + DUPLEX_HALF:
8710 case SPEED_10 + DUPLEX_FULL:
8711 case SPEED_100 + DUPLEX_HALF:
8712 goto err_inval;
8713 default:
8714 break;
8715 }
8716 }
8717
8718 switch (spd + dplx) {
8719 case SPEED_10 + DUPLEX_HALF:
8720 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8721 break;
8722 case SPEED_10 + DUPLEX_FULL:
8723 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8724 break;
8725 case SPEED_100 + DUPLEX_HALF:
8726 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8727 break;
8728 case SPEED_100 + DUPLEX_FULL:
8729 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8730 break;
8731 case SPEED_1000 + DUPLEX_FULL:
8732 mac->autoneg = 1;
8733 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8734 break;
8735 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8736 default:
8737 goto err_inval;
8738 }
8739
8740 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8741 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8742
8743 return 0;
8744
8745 err_inval:
8746 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8747 return -EINVAL;
8748 }
8749
8750 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8751 bool runtime)
8752 {
8753 struct net_device *netdev = pci_get_drvdata(pdev);
8754 struct igb_adapter *adapter = netdev_priv(netdev);
8755 struct e1000_hw *hw = &adapter->hw;
8756 u32 ctrl, rctl, status;
8757 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8758 #ifdef CONFIG_PM
8759 int retval = 0;
8760 #endif
8761
8762 rtnl_lock();
8763 netif_device_detach(netdev);
8764
8765 if (netif_running(netdev))
8766 __igb_close(netdev, true);
8767
8768 igb_ptp_suspend(adapter);
8769
8770 igb_clear_interrupt_scheme(adapter);
8771 rtnl_unlock();
8772
8773 #ifdef CONFIG_PM
8774 if (!runtime) {
8775 retval = pci_save_state(pdev);
8776 if (retval)
8777 return retval;
8778 }
8779 #endif
8780
8781 status = rd32(E1000_STATUS);
8782 if (status & E1000_STATUS_LU)
8783 wufc &= ~E1000_WUFC_LNKC;
8784
8785 if (wufc) {
8786 igb_setup_rctl(adapter);
8787 igb_set_rx_mode(netdev);
8788
8789 /* turn on all-multi mode if wake on multicast is enabled */
8790 if (wufc & E1000_WUFC_MC) {
8791 rctl = rd32(E1000_RCTL);
8792 rctl |= E1000_RCTL_MPE;
8793 wr32(E1000_RCTL, rctl);
8794 }
8795
8796 ctrl = rd32(E1000_CTRL);
8797 /* advertise wake from D3Cold */
8798 #define E1000_CTRL_ADVD3WUC 0x00100000
8799 /* phy power management enable */
8800 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8801 ctrl |= E1000_CTRL_ADVD3WUC;
8802 wr32(E1000_CTRL, ctrl);
8803
8804 /* Allow time for pending master requests to run */
8805 igb_disable_pcie_master(hw);
8806
8807 wr32(E1000_WUC, E1000_WUC_PME_EN);
8808 wr32(E1000_WUFC, wufc);
8809 } else {
8810 wr32(E1000_WUC, 0);
8811 wr32(E1000_WUFC, 0);
8812 }
8813
8814 *enable_wake = wufc || adapter->en_mng_pt;
8815 if (!*enable_wake)
8816 igb_power_down_link(adapter);
8817 else
8818 igb_power_up_link(adapter);
8819
8820 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8821 * would have already happened in close and is redundant.
8822 */
8823 igb_release_hw_control(adapter);
8824
8825 pci_disable_device(pdev);
8826
8827 return 0;
8828 }
8829
8830 static void igb_deliver_wake_packet(struct net_device *netdev)
8831 {
8832 struct igb_adapter *adapter = netdev_priv(netdev);
8833 struct e1000_hw *hw = &adapter->hw;
8834 struct sk_buff *skb;
8835 u32 wupl;
8836
8837 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8838
8839 /* WUPM stores only the first 128 bytes of the wake packet.
8840 * Read the packet only if we have the whole thing.
8841 */
8842 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8843 return;
8844
8845 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8846 if (!skb)
8847 return;
8848
8849 skb_put(skb, wupl);
8850
8851 /* Ensure reads are 32-bit aligned */
8852 wupl = roundup(wupl, 4);
8853
8854 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8855
8856 skb->protocol = eth_type_trans(skb, netdev);
8857 netif_rx(skb);
8858 }
8859
8860 static int __maybe_unused igb_suspend(struct device *dev)
8861 {
8862 int retval;
8863 bool wake;
8864 struct pci_dev *pdev = to_pci_dev(dev);
8865
8866 retval = __igb_shutdown(pdev, &wake, 0);
8867 if (retval)
8868 return retval;
8869
8870 if (wake) {
8871 pci_prepare_to_sleep(pdev);
8872 } else {
8873 pci_wake_from_d3(pdev, false);
8874 pci_set_power_state(pdev, PCI_D3hot);
8875 }
8876
8877 return 0;
8878 }
8879
8880 static int __maybe_unused igb_resume(struct device *dev)
8881 {
8882 struct pci_dev *pdev = to_pci_dev(dev);
8883 struct net_device *netdev = pci_get_drvdata(pdev);
8884 struct igb_adapter *adapter = netdev_priv(netdev);
8885 struct e1000_hw *hw = &adapter->hw;
8886 u32 err, val;
8887
8888 pci_set_power_state(pdev, PCI_D0);
8889 pci_restore_state(pdev);
8890 pci_save_state(pdev);
8891
8892 if (!pci_device_is_present(pdev))
8893 return -ENODEV;
8894 err = pci_enable_device_mem(pdev);
8895 if (err) {
8896 dev_err(&pdev->dev,
8897 "igb: Cannot enable PCI device from suspend\n");
8898 return err;
8899 }
8900 pci_set_master(pdev);
8901
8902 pci_enable_wake(pdev, PCI_D3hot, 0);
8903 pci_enable_wake(pdev, PCI_D3cold, 0);
8904
8905 if (igb_init_interrupt_scheme(adapter, true)) {
8906 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8907 return -ENOMEM;
8908 }
8909
8910 igb_reset(adapter);
8911
8912 /* let the f/w know that the h/w is now under the control of the
8913 * driver.
8914 */
8915 igb_get_hw_control(adapter);
8916
8917 val = rd32(E1000_WUS);
8918 if (val & WAKE_PKT_WUS)
8919 igb_deliver_wake_packet(netdev);
8920
8921 wr32(E1000_WUS, ~0);
8922
8923 rtnl_lock();
8924 if (!err && netif_running(netdev))
8925 err = __igb_open(netdev, true);
8926
8927 if (!err)
8928 netif_device_attach(netdev);
8929 rtnl_unlock();
8930
8931 return err;
8932 }
8933
8934 static int __maybe_unused igb_runtime_idle(struct device *dev)
8935 {
8936 struct pci_dev *pdev = to_pci_dev(dev);
8937 struct net_device *netdev = pci_get_drvdata(pdev);
8938 struct igb_adapter *adapter = netdev_priv(netdev);
8939
8940 if (!igb_has_link(adapter))
8941 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8942
8943 return -EBUSY;
8944 }
8945
8946 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8947 {
8948 struct pci_dev *pdev = to_pci_dev(dev);
8949 int retval;
8950 bool wake;
8951
8952 retval = __igb_shutdown(pdev, &wake, 1);
8953 if (retval)
8954 return retval;
8955
8956 if (wake) {
8957 pci_prepare_to_sleep(pdev);
8958 } else {
8959 pci_wake_from_d3(pdev, false);
8960 pci_set_power_state(pdev, PCI_D3hot);
8961 }
8962
8963 return 0;
8964 }
8965
8966 static int __maybe_unused igb_runtime_resume(struct device *dev)
8967 {
8968 return igb_resume(dev);
8969 }
8970
8971 static void igb_shutdown(struct pci_dev *pdev)
8972 {
8973 bool wake;
8974
8975 __igb_shutdown(pdev, &wake, 0);
8976
8977 if (system_state == SYSTEM_POWER_OFF) {
8978 pci_wake_from_d3(pdev, wake);
8979 pci_set_power_state(pdev, PCI_D3hot);
8980 }
8981 }
8982
8983 #ifdef CONFIG_PCI_IOV
8984 static int igb_sriov_reinit(struct pci_dev *dev)
8985 {
8986 struct net_device *netdev = pci_get_drvdata(dev);
8987 struct igb_adapter *adapter = netdev_priv(netdev);
8988 struct pci_dev *pdev = adapter->pdev;
8989
8990 rtnl_lock();
8991
8992 if (netif_running(netdev))
8993 igb_close(netdev);
8994 else
8995 igb_reset(adapter);
8996
8997 igb_clear_interrupt_scheme(adapter);
8998
8999 igb_init_queue_configuration(adapter);
9000
9001 if (igb_init_interrupt_scheme(adapter, true)) {
9002 rtnl_unlock();
9003 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9004 return -ENOMEM;
9005 }
9006
9007 if (netif_running(netdev))
9008 igb_open(netdev);
9009
9010 rtnl_unlock();
9011
9012 return 0;
9013 }
9014
9015 static int igb_pci_disable_sriov(struct pci_dev *dev)
9016 {
9017 int err = igb_disable_sriov(dev);
9018
9019 if (!err)
9020 err = igb_sriov_reinit(dev);
9021
9022 return err;
9023 }
9024
9025 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
9026 {
9027 int err = igb_enable_sriov(dev, num_vfs);
9028
9029 if (err)
9030 goto out;
9031
9032 err = igb_sriov_reinit(dev);
9033 if (!err)
9034 return num_vfs;
9035
9036 out:
9037 return err;
9038 }
9039
9040 #endif
9041 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
9042 {
9043 #ifdef CONFIG_PCI_IOV
9044 if (num_vfs == 0)
9045 return igb_pci_disable_sriov(dev);
9046 else
9047 return igb_pci_enable_sriov(dev, num_vfs);
9048 #endif
9049 return 0;
9050 }
9051
9052 /**
9053 * igb_io_error_detected - called when PCI error is detected
9054 * @pdev: Pointer to PCI device
9055 * @state: The current pci connection state
9056 *
9057 * This function is called after a PCI bus error affecting
9058 * this device has been detected.
9059 **/
9060 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
9061 pci_channel_state_t state)
9062 {
9063 struct net_device *netdev = pci_get_drvdata(pdev);
9064 struct igb_adapter *adapter = netdev_priv(netdev);
9065
9066 netif_device_detach(netdev);
9067
9068 if (state == pci_channel_io_perm_failure)
9069 return PCI_ERS_RESULT_DISCONNECT;
9070
9071 if (netif_running(netdev))
9072 igb_down(adapter);
9073 pci_disable_device(pdev);
9074
9075 /* Request a slot slot reset. */
9076 return PCI_ERS_RESULT_NEED_RESET;
9077 }
9078
9079 /**
9080 * igb_io_slot_reset - called after the pci bus has been reset.
9081 * @pdev: Pointer to PCI device
9082 *
9083 * Restart the card from scratch, as if from a cold-boot. Implementation
9084 * resembles the first-half of the igb_resume routine.
9085 **/
9086 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
9087 {
9088 struct net_device *netdev = pci_get_drvdata(pdev);
9089 struct igb_adapter *adapter = netdev_priv(netdev);
9090 struct e1000_hw *hw = &adapter->hw;
9091 pci_ers_result_t result;
9092
9093 if (pci_enable_device_mem(pdev)) {
9094 dev_err(&pdev->dev,
9095 "Cannot re-enable PCI device after reset.\n");
9096 result = PCI_ERS_RESULT_DISCONNECT;
9097 } else {
9098 pci_set_master(pdev);
9099 pci_restore_state(pdev);
9100 pci_save_state(pdev);
9101
9102 pci_enable_wake(pdev, PCI_D3hot, 0);
9103 pci_enable_wake(pdev, PCI_D3cold, 0);
9104
9105 /* In case of PCI error, adapter lose its HW address
9106 * so we should re-assign it here.
9107 */
9108 hw->hw_addr = adapter->io_addr;
9109
9110 igb_reset(adapter);
9111 wr32(E1000_WUS, ~0);
9112 result = PCI_ERS_RESULT_RECOVERED;
9113 }
9114
9115 return result;
9116 }
9117
9118 /**
9119 * igb_io_resume - called when traffic can start flowing again.
9120 * @pdev: Pointer to PCI device
9121 *
9122 * This callback is called when the error recovery driver tells us that
9123 * its OK to resume normal operation. Implementation resembles the
9124 * second-half of the igb_resume routine.
9125 */
9126 static void igb_io_resume(struct pci_dev *pdev)
9127 {
9128 struct net_device *netdev = pci_get_drvdata(pdev);
9129 struct igb_adapter *adapter = netdev_priv(netdev);
9130
9131 if (netif_running(netdev)) {
9132 if (igb_up(adapter)) {
9133 dev_err(&pdev->dev, "igb_up failed after reset\n");
9134 return;
9135 }
9136 }
9137
9138 netif_device_attach(netdev);
9139
9140 /* let the f/w know that the h/w is now under the control of the
9141 * driver.
9142 */
9143 igb_get_hw_control(adapter);
9144 }
9145
9146 /**
9147 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
9148 * @adapter: Pointer to adapter structure
9149 * @index: Index of the RAR entry which need to be synced with MAC table
9150 **/
9151 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
9152 {
9153 struct e1000_hw *hw = &adapter->hw;
9154 u32 rar_low, rar_high;
9155 u8 *addr = adapter->mac_table[index].addr;
9156
9157 /* HW expects these to be in network order when they are plugged
9158 * into the registers which are little endian. In order to guarantee
9159 * that ordering we need to do an leXX_to_cpup here in order to be
9160 * ready for the byteswap that occurs with writel
9161 */
9162 rar_low = le32_to_cpup((__le32 *)(addr));
9163 rar_high = le16_to_cpup((__le16 *)(addr + 4));
9164
9165 /* Indicate to hardware the Address is Valid. */
9166 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
9167 if (is_valid_ether_addr(addr))
9168 rar_high |= E1000_RAH_AV;
9169
9170 if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
9171 rar_high |= E1000_RAH_ASEL_SRC_ADDR;
9172
9173 switch (hw->mac.type) {
9174 case e1000_82575:
9175 case e1000_i210:
9176 if (adapter->mac_table[index].state &
9177 IGB_MAC_STATE_QUEUE_STEERING)
9178 rar_high |= E1000_RAH_QSEL_ENABLE;
9179
9180 rar_high |= E1000_RAH_POOL_1 *
9181 adapter->mac_table[index].queue;
9182 break;
9183 default:
9184 rar_high |= E1000_RAH_POOL_1 <<
9185 adapter->mac_table[index].queue;
9186 break;
9187 }
9188 }
9189
9190 wr32(E1000_RAL(index), rar_low);
9191 wrfl();
9192 wr32(E1000_RAH(index), rar_high);
9193 wrfl();
9194 }
9195
9196 static int igb_set_vf_mac(struct igb_adapter *adapter,
9197 int vf, unsigned char *mac_addr)
9198 {
9199 struct e1000_hw *hw = &adapter->hw;
9200 /* VF MAC addresses start at end of receive addresses and moves
9201 * towards the first, as a result a collision should not be possible
9202 */
9203 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
9204 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
9205
9206 ether_addr_copy(vf_mac_addr, mac_addr);
9207 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
9208 adapter->mac_table[rar_entry].queue = vf;
9209 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
9210 igb_rar_set_index(adapter, rar_entry);
9211
9212 return 0;
9213 }
9214
9215 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
9216 {
9217 struct igb_adapter *adapter = netdev_priv(netdev);
9218
9219 if (vf >= adapter->vfs_allocated_count)
9220 return -EINVAL;
9221
9222 /* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
9223 * flag and allows to overwrite the MAC via VF netdev. This
9224 * is necessary to allow libvirt a way to restore the original
9225 * MAC after unbinding vfio-pci and reloading igbvf after shutting
9226 * down a VM.
9227 */
9228 if (is_zero_ether_addr(mac)) {
9229 adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
9230 dev_info(&adapter->pdev->dev,
9231 "remove administratively set MAC on VF %d\n",
9232 vf);
9233 } else if (is_valid_ether_addr(mac)) {
9234 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
9235 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
9236 mac, vf);
9237 dev_info(&adapter->pdev->dev,
9238 "Reload the VF driver to make this change effective.");
9239 /* Generate additional warning if PF is down */
9240 if (test_bit(__IGB_DOWN, &adapter->state)) {
9241 dev_warn(&adapter->pdev->dev,
9242 "The VF MAC address has been set, but the PF device is not up.\n");
9243 dev_warn(&adapter->pdev->dev,
9244 "Bring the PF device up before attempting to use the VF device.\n");
9245 }
9246 } else {
9247 return -EINVAL;
9248 }
9249 return igb_set_vf_mac(adapter, vf, mac);
9250 }
9251
9252 static int igb_link_mbps(int internal_link_speed)
9253 {
9254 switch (internal_link_speed) {
9255 case SPEED_100:
9256 return 100;
9257 case SPEED_1000:
9258 return 1000;
9259 default:
9260 return 0;
9261 }
9262 }
9263
9264 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
9265 int link_speed)
9266 {
9267 int rf_dec, rf_int;
9268 u32 bcnrc_val;
9269
9270 if (tx_rate != 0) {
9271 /* Calculate the rate factor values to set */
9272 rf_int = link_speed / tx_rate;
9273 rf_dec = (link_speed - (rf_int * tx_rate));
9274 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
9275 tx_rate;
9276
9277 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
9278 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
9279 E1000_RTTBCNRC_RF_INT_MASK);
9280 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
9281 } else {
9282 bcnrc_val = 0;
9283 }
9284
9285 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
9286 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
9287 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
9288 */
9289 wr32(E1000_RTTBCNRM, 0x14);
9290 wr32(E1000_RTTBCNRC, bcnrc_val);
9291 }
9292
9293 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
9294 {
9295 int actual_link_speed, i;
9296 bool reset_rate = false;
9297
9298 /* VF TX rate limit was not set or not supported */
9299 if ((adapter->vf_rate_link_speed == 0) ||
9300 (adapter->hw.mac.type != e1000_82576))
9301 return;
9302
9303 actual_link_speed = igb_link_mbps(adapter->link_speed);
9304 if (actual_link_speed != adapter->vf_rate_link_speed) {
9305 reset_rate = true;
9306 adapter->vf_rate_link_speed = 0;
9307 dev_info(&adapter->pdev->dev,
9308 "Link speed has been changed. VF Transmit rate is disabled\n");
9309 }
9310
9311 for (i = 0; i < adapter->vfs_allocated_count; i++) {
9312 if (reset_rate)
9313 adapter->vf_data[i].tx_rate = 0;
9314
9315 igb_set_vf_rate_limit(&adapter->hw, i,
9316 adapter->vf_data[i].tx_rate,
9317 actual_link_speed);
9318 }
9319 }
9320
9321 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
9322 int min_tx_rate, int max_tx_rate)
9323 {
9324 struct igb_adapter *adapter = netdev_priv(netdev);
9325 struct e1000_hw *hw = &adapter->hw;
9326 int actual_link_speed;
9327
9328 if (hw->mac.type != e1000_82576)
9329 return -EOPNOTSUPP;
9330
9331 if (min_tx_rate)
9332 return -EINVAL;
9333
9334 actual_link_speed = igb_link_mbps(adapter->link_speed);
9335 if ((vf >= adapter->vfs_allocated_count) ||
9336 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
9337 (max_tx_rate < 0) ||
9338 (max_tx_rate > actual_link_speed))
9339 return -EINVAL;
9340
9341 adapter->vf_rate_link_speed = actual_link_speed;
9342 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
9343 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
9344
9345 return 0;
9346 }
9347
9348 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
9349 bool setting)
9350 {
9351 struct igb_adapter *adapter = netdev_priv(netdev);
9352 struct e1000_hw *hw = &adapter->hw;
9353 u32 reg_val, reg_offset;
9354
9355 if (!adapter->vfs_allocated_count)
9356 return -EOPNOTSUPP;
9357
9358 if (vf >= adapter->vfs_allocated_count)
9359 return -EINVAL;
9360
9361 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
9362 reg_val = rd32(reg_offset);
9363 if (setting)
9364 reg_val |= (BIT(vf) |
9365 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9366 else
9367 reg_val &= ~(BIT(vf) |
9368 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
9369 wr32(reg_offset, reg_val);
9370
9371 adapter->vf_data[vf].spoofchk_enabled = setting;
9372 return 0;
9373 }
9374
9375 static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
9376 {
9377 struct igb_adapter *adapter = netdev_priv(netdev);
9378
9379 if (vf >= adapter->vfs_allocated_count)
9380 return -EINVAL;
9381 if (adapter->vf_data[vf].trusted == setting)
9382 return 0;
9383
9384 adapter->vf_data[vf].trusted = setting;
9385
9386 dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
9387 vf, setting ? "" : "not ");
9388 return 0;
9389 }
9390
9391 static int igb_ndo_get_vf_config(struct net_device *netdev,
9392 int vf, struct ifla_vf_info *ivi)
9393 {
9394 struct igb_adapter *adapter = netdev_priv(netdev);
9395 if (vf >= adapter->vfs_allocated_count)
9396 return -EINVAL;
9397 ivi->vf = vf;
9398 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
9399 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
9400 ivi->min_tx_rate = 0;
9401 ivi->vlan = adapter->vf_data[vf].pf_vlan;
9402 ivi->qos = adapter->vf_data[vf].pf_qos;
9403 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
9404 ivi->trusted = adapter->vf_data[vf].trusted;
9405 return 0;
9406 }
9407
9408 static void igb_vmm_control(struct igb_adapter *adapter)
9409 {
9410 struct e1000_hw *hw = &adapter->hw;
9411 u32 reg;
9412
9413 switch (hw->mac.type) {
9414 case e1000_82575:
9415 case e1000_i210:
9416 case e1000_i211:
9417 case e1000_i354:
9418 default:
9419 /* replication is not supported for 82575 */
9420 return;
9421 case e1000_82576:
9422 /* notify HW that the MAC is adding vlan tags */
9423 reg = rd32(E1000_DTXCTL);
9424 reg |= E1000_DTXCTL_VLAN_ADDED;
9425 wr32(E1000_DTXCTL, reg);
9426 /* Fall through */
9427 case e1000_82580:
9428 /* enable replication vlan tag stripping */
9429 reg = rd32(E1000_RPLOLR);
9430 reg |= E1000_RPLOLR_STRVLAN;
9431 wr32(E1000_RPLOLR, reg);
9432 /* Fall through */
9433 case e1000_i350:
9434 /* none of the above registers are supported by i350 */
9435 break;
9436 }
9437
9438 if (adapter->vfs_allocated_count) {
9439 igb_vmdq_set_loopback_pf(hw, true);
9440 igb_vmdq_set_replication_pf(hw, true);
9441 igb_vmdq_set_anti_spoofing_pf(hw, true,
9442 adapter->vfs_allocated_count);
9443 } else {
9444 igb_vmdq_set_loopback_pf(hw, false);
9445 igb_vmdq_set_replication_pf(hw, false);
9446 }
9447 }
9448
9449 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
9450 {
9451 struct e1000_hw *hw = &adapter->hw;
9452 u32 dmac_thr;
9453 u16 hwm;
9454
9455 if (hw->mac.type > e1000_82580) {
9456 if (adapter->flags & IGB_FLAG_DMAC) {
9457 u32 reg;
9458
9459 /* force threshold to 0. */
9460 wr32(E1000_DMCTXTH, 0);
9461
9462 /* DMA Coalescing high water mark needs to be greater
9463 * than the Rx threshold. Set hwm to PBA - max frame
9464 * size in 16B units, capping it at PBA - 6KB.
9465 */
9466 hwm = 64 * (pba - 6);
9467 reg = rd32(E1000_FCRTC);
9468 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
9469 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
9470 & E1000_FCRTC_RTH_COAL_MASK);
9471 wr32(E1000_FCRTC, reg);
9472
9473 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
9474 * frame size, capping it at PBA - 10KB.
9475 */
9476 dmac_thr = pba - 10;
9477 reg = rd32(E1000_DMACR);
9478 reg &= ~E1000_DMACR_DMACTHR_MASK;
9479 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
9480 & E1000_DMACR_DMACTHR_MASK);
9481
9482 /* transition to L0x or L1 if available..*/
9483 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
9484
9485 /* watchdog timer= +-1000 usec in 32usec intervals */
9486 reg |= (1000 >> 5);
9487
9488 /* Disable BMC-to-OS Watchdog Enable */
9489 if (hw->mac.type != e1000_i354)
9490 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
9491
9492 wr32(E1000_DMACR, reg);
9493
9494 /* no lower threshold to disable
9495 * coalescing(smart fifb)-UTRESH=0
9496 */
9497 wr32(E1000_DMCRTRH, 0);
9498
9499 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9500
9501 wr32(E1000_DMCTLX, reg);
9502
9503 /* free space in tx packet buffer to wake from
9504 * DMA coal
9505 */
9506 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9507 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9508
9509 /* make low power state decision controlled
9510 * by DMA coal
9511 */
9512 reg = rd32(E1000_PCIEMISC);
9513 reg &= ~E1000_PCIEMISC_LX_DECISION;
9514 wr32(E1000_PCIEMISC, reg);
9515 } /* endif adapter->dmac is not disabled */
9516 } else if (hw->mac.type == e1000_82580) {
9517 u32 reg = rd32(E1000_PCIEMISC);
9518
9519 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9520 wr32(E1000_DMACR, 0);
9521 }
9522 }
9523
9524 /**
9525 * igb_read_i2c_byte - Reads 8 bit word over I2C
9526 * @hw: pointer to hardware structure
9527 * @byte_offset: byte offset to read
9528 * @dev_addr: device address
9529 * @data: value read
9530 *
9531 * Performs byte read operation over I2C interface at
9532 * a specified device address.
9533 **/
9534 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9535 u8 dev_addr, u8 *data)
9536 {
9537 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9538 struct i2c_client *this_client = adapter->i2c_client;
9539 s32 status;
9540 u16 swfw_mask = 0;
9541
9542 if (!this_client)
9543 return E1000_ERR_I2C;
9544
9545 swfw_mask = E1000_SWFW_PHY0_SM;
9546
9547 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9548 return E1000_ERR_SWFW_SYNC;
9549
9550 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9551 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9552
9553 if (status < 0)
9554 return E1000_ERR_I2C;
9555 else {
9556 *data = status;
9557 return 0;
9558 }
9559 }
9560
9561 /**
9562 * igb_write_i2c_byte - Writes 8 bit word over I2C
9563 * @hw: pointer to hardware structure
9564 * @byte_offset: byte offset to write
9565 * @dev_addr: device address
9566 * @data: value to write
9567 *
9568 * Performs byte write operation over I2C interface at
9569 * a specified device address.
9570 **/
9571 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9572 u8 dev_addr, u8 data)
9573 {
9574 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9575 struct i2c_client *this_client = adapter->i2c_client;
9576 s32 status;
9577 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9578
9579 if (!this_client)
9580 return E1000_ERR_I2C;
9581
9582 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9583 return E1000_ERR_SWFW_SYNC;
9584 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9585 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9586
9587 if (status)
9588 return E1000_ERR_I2C;
9589 else
9590 return 0;
9591
9592 }
9593
9594 int igb_reinit_queues(struct igb_adapter *adapter)
9595 {
9596 struct net_device *netdev = adapter->netdev;
9597 struct pci_dev *pdev = adapter->pdev;
9598 int err = 0;
9599
9600 if (netif_running(netdev))
9601 igb_close(netdev);
9602
9603 igb_reset_interrupt_capability(adapter);
9604
9605 if (igb_init_interrupt_scheme(adapter, true)) {
9606 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9607 return -ENOMEM;
9608 }
9609
9610 if (netif_running(netdev))
9611 err = igb_open(netdev);
9612
9613 return err;
9614 }
9615
9616 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9617 {
9618 struct igb_nfc_filter *rule;
9619
9620 spin_lock(&adapter->nfc_lock);
9621
9622 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9623 igb_erase_filter(adapter, rule);
9624
9625 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
9626 igb_erase_filter(adapter, rule);
9627
9628 spin_unlock(&adapter->nfc_lock);
9629 }
9630
9631 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9632 {
9633 struct igb_nfc_filter *rule;
9634
9635 spin_lock(&adapter->nfc_lock);
9636
9637 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9638 igb_add_filter(adapter, rule);
9639
9640 spin_unlock(&adapter->nfc_lock);
9641 }
9642 /* igb_main.c */