]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <net/pkt_sched.h>
38 #include <linux/net_tstamp.h>
39 #include <linux/mii.h>
40 #include <linux/ethtool.h>
41 #include <linux/if.h>
42 #include <linux/if_vlan.h>
43 #include <linux/pci.h>
44 #include <linux/pci-aspm.h>
45 #include <linux/delay.h>
46 #include <linux/interrupt.h>
47 #include <linux/ip.h>
48 #include <linux/tcp.h>
49 #include <linux/sctp.h>
50 #include <linux/if_ether.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53 #include <linux/pm_runtime.h>
54 #include <linux/etherdevice.h>
55 #ifdef CONFIG_IGB_DCA
56 #include <linux/dca.h>
57 #endif
58 #include <linux/i2c.h>
59 #include "igb.h"
60
61 #define MAJ 5
62 #define MIN 4
63 #define BUILD 0
64 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
65 __stringify(BUILD) "-k"
66
67 enum queue_mode {
68 QUEUE_MODE_STRICT_PRIORITY,
69 QUEUE_MODE_STREAM_RESERVATION,
70 };
71
72 enum tx_queue_prio {
73 TX_QUEUE_PRIO_HIGH,
74 TX_QUEUE_PRIO_LOW,
75 };
76
77 char igb_driver_name[] = "igb";
78 char igb_driver_version[] = DRV_VERSION;
79 static const char igb_driver_string[] =
80 "Intel(R) Gigabit Ethernet Network Driver";
81 static const char igb_copyright[] =
82 "Copyright (c) 2007-2014 Intel Corporation.";
83
84 static const struct e1000_info *igb_info_tbl[] = {
85 [board_82575] = &e1000_82575_info,
86 };
87
88 static const struct pci_device_id igb_pci_tbl[] = {
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
114 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
115 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
116 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
117 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
118 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
119 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
120 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
121 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
122 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
123 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
124 /* required last entry */
125 {0, }
126 };
127
128 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
129
130 static int igb_setup_all_tx_resources(struct igb_adapter *);
131 static int igb_setup_all_rx_resources(struct igb_adapter *);
132 static void igb_free_all_tx_resources(struct igb_adapter *);
133 static void igb_free_all_rx_resources(struct igb_adapter *);
134 static void igb_setup_mrqc(struct igb_adapter *);
135 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
136 static void igb_remove(struct pci_dev *pdev);
137 static int igb_sw_init(struct igb_adapter *);
138 int igb_open(struct net_device *);
139 int igb_close(struct net_device *);
140 static void igb_configure(struct igb_adapter *);
141 static void igb_configure_tx(struct igb_adapter *);
142 static void igb_configure_rx(struct igb_adapter *);
143 static void igb_clean_all_tx_rings(struct igb_adapter *);
144 static void igb_clean_all_rx_rings(struct igb_adapter *);
145 static void igb_clean_tx_ring(struct igb_ring *);
146 static void igb_clean_rx_ring(struct igb_ring *);
147 static void igb_set_rx_mode(struct net_device *);
148 static void igb_update_phy_info(struct timer_list *);
149 static void igb_watchdog(struct timer_list *);
150 static void igb_watchdog_task(struct work_struct *);
151 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
152 static void igb_get_stats64(struct net_device *dev,
153 struct rtnl_link_stats64 *stats);
154 static int igb_change_mtu(struct net_device *, int);
155 static int igb_set_mac(struct net_device *, void *);
156 static void igb_set_uta(struct igb_adapter *adapter, bool set);
157 static irqreturn_t igb_intr(int irq, void *);
158 static irqreturn_t igb_intr_msi(int irq, void *);
159 static irqreturn_t igb_msix_other(int irq, void *);
160 static irqreturn_t igb_msix_ring(int irq, void *);
161 #ifdef CONFIG_IGB_DCA
162 static void igb_update_dca(struct igb_q_vector *);
163 static void igb_setup_dca(struct igb_adapter *);
164 #endif /* CONFIG_IGB_DCA */
165 static int igb_poll(struct napi_struct *, int);
166 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
167 static int igb_clean_rx_irq(struct igb_q_vector *, int);
168 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
169 static void igb_tx_timeout(struct net_device *);
170 static void igb_reset_task(struct work_struct *);
171 static void igb_vlan_mode(struct net_device *netdev,
172 netdev_features_t features);
173 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
174 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
175 static void igb_restore_vlan(struct igb_adapter *);
176 static void igb_rar_set_index(struct igb_adapter *, u32);
177 static void igb_ping_all_vfs(struct igb_adapter *);
178 static void igb_msg_task(struct igb_adapter *);
179 static void igb_vmm_control(struct igb_adapter *);
180 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
181 static void igb_flush_mac_table(struct igb_adapter *);
182 static int igb_available_rars(struct igb_adapter *, u8);
183 static void igb_set_default_mac_filter(struct igb_adapter *);
184 static int igb_uc_sync(struct net_device *, const unsigned char *);
185 static int igb_uc_unsync(struct net_device *, const unsigned char *);
186 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
187 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
188 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
189 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
190 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
191 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
192 bool setting);
193 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
194 struct ifla_vf_info *ivi);
195 static void igb_check_vf_rate_limit(struct igb_adapter *);
196 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
197 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
198
199 #ifdef CONFIG_PCI_IOV
200 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
201 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
202 static int igb_disable_sriov(struct pci_dev *dev);
203 static int igb_pci_disable_sriov(struct pci_dev *dev);
204 #endif
205
206 static int igb_suspend(struct device *);
207 static int igb_resume(struct device *);
208 static int igb_runtime_suspend(struct device *dev);
209 static int igb_runtime_resume(struct device *dev);
210 static int igb_runtime_idle(struct device *dev);
211 static const struct dev_pm_ops igb_pm_ops = {
212 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
213 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
214 igb_runtime_idle)
215 };
216 static void igb_shutdown(struct pci_dev *);
217 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
218 #ifdef CONFIG_IGB_DCA
219 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
220 static struct notifier_block dca_notifier = {
221 .notifier_call = igb_notify_dca,
222 .next = NULL,
223 .priority = 0
224 };
225 #endif
226 #ifdef CONFIG_NET_POLL_CONTROLLER
227 /* for netdump / net console */
228 static void igb_netpoll(struct net_device *);
229 #endif
230 #ifdef CONFIG_PCI_IOV
231 static unsigned int max_vfs;
232 module_param(max_vfs, uint, 0);
233 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
234 #endif /* CONFIG_PCI_IOV */
235
236 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
237 pci_channel_state_t);
238 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
239 static void igb_io_resume(struct pci_dev *);
240
241 static const struct pci_error_handlers igb_err_handler = {
242 .error_detected = igb_io_error_detected,
243 .slot_reset = igb_io_slot_reset,
244 .resume = igb_io_resume,
245 };
246
247 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
248
249 static struct pci_driver igb_driver = {
250 .name = igb_driver_name,
251 .id_table = igb_pci_tbl,
252 .probe = igb_probe,
253 .remove = igb_remove,
254 #ifdef CONFIG_PM
255 .driver.pm = &igb_pm_ops,
256 #endif
257 .shutdown = igb_shutdown,
258 .sriov_configure = igb_pci_sriov_configure,
259 .err_handler = &igb_err_handler
260 };
261
262 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
263 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
264 MODULE_LICENSE("GPL");
265 MODULE_VERSION(DRV_VERSION);
266
267 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
268 static int debug = -1;
269 module_param(debug, int, 0);
270 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
271
272 struct igb_reg_info {
273 u32 ofs;
274 char *name;
275 };
276
277 static const struct igb_reg_info igb_reg_info_tbl[] = {
278
279 /* General Registers */
280 {E1000_CTRL, "CTRL"},
281 {E1000_STATUS, "STATUS"},
282 {E1000_CTRL_EXT, "CTRL_EXT"},
283
284 /* Interrupt Registers */
285 {E1000_ICR, "ICR"},
286
287 /* RX Registers */
288 {E1000_RCTL, "RCTL"},
289 {E1000_RDLEN(0), "RDLEN"},
290 {E1000_RDH(0), "RDH"},
291 {E1000_RDT(0), "RDT"},
292 {E1000_RXDCTL(0), "RXDCTL"},
293 {E1000_RDBAL(0), "RDBAL"},
294 {E1000_RDBAH(0), "RDBAH"},
295
296 /* TX Registers */
297 {E1000_TCTL, "TCTL"},
298 {E1000_TDBAL(0), "TDBAL"},
299 {E1000_TDBAH(0), "TDBAH"},
300 {E1000_TDLEN(0), "TDLEN"},
301 {E1000_TDH(0), "TDH"},
302 {E1000_TDT(0), "TDT"},
303 {E1000_TXDCTL(0), "TXDCTL"},
304 {E1000_TDFH, "TDFH"},
305 {E1000_TDFT, "TDFT"},
306 {E1000_TDFHS, "TDFHS"},
307 {E1000_TDFPC, "TDFPC"},
308
309 /* List Terminator */
310 {}
311 };
312
313 /* igb_regdump - register printout routine */
314 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
315 {
316 int n = 0;
317 char rname[16];
318 u32 regs[8];
319
320 switch (reginfo->ofs) {
321 case E1000_RDLEN(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDLEN(n));
324 break;
325 case E1000_RDH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDH(n));
328 break;
329 case E1000_RDT(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDT(n));
332 break;
333 case E1000_RXDCTL(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_RXDCTL(n));
336 break;
337 case E1000_RDBAL(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_RDBAL(n));
340 break;
341 case E1000_RDBAH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_RDBAH(n));
344 break;
345 case E1000_TDBAL(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_RDBAL(n));
348 break;
349 case E1000_TDBAH(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TDBAH(n));
352 break;
353 case E1000_TDLEN(0):
354 for (n = 0; n < 4; n++)
355 regs[n] = rd32(E1000_TDLEN(n));
356 break;
357 case E1000_TDH(0):
358 for (n = 0; n < 4; n++)
359 regs[n] = rd32(E1000_TDH(n));
360 break;
361 case E1000_TDT(0):
362 for (n = 0; n < 4; n++)
363 regs[n] = rd32(E1000_TDT(n));
364 break;
365 case E1000_TXDCTL(0):
366 for (n = 0; n < 4; n++)
367 regs[n] = rd32(E1000_TXDCTL(n));
368 break;
369 default:
370 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
371 return;
372 }
373
374 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
375 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
376 regs[2], regs[3]);
377 }
378
379 /* igb_dump - Print registers, Tx-rings and Rx-rings */
380 static void igb_dump(struct igb_adapter *adapter)
381 {
382 struct net_device *netdev = adapter->netdev;
383 struct e1000_hw *hw = &adapter->hw;
384 struct igb_reg_info *reginfo;
385 struct igb_ring *tx_ring;
386 union e1000_adv_tx_desc *tx_desc;
387 struct my_u0 { u64 a; u64 b; } *u0;
388 struct igb_ring *rx_ring;
389 union e1000_adv_rx_desc *rx_desc;
390 u32 staterr;
391 u16 i, n;
392
393 if (!netif_msg_hw(adapter))
394 return;
395
396 /* Print netdevice Info */
397 if (netdev) {
398 dev_info(&adapter->pdev->dev, "Net device Info\n");
399 pr_info("Device Name state trans_start\n");
400 pr_info("%-15s %016lX %016lX\n", netdev->name,
401 netdev->state, dev_trans_start(netdev));
402 }
403
404 /* Print Registers */
405 dev_info(&adapter->pdev->dev, "Register Dump\n");
406 pr_info(" Register Name Value\n");
407 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
408 reginfo->name; reginfo++) {
409 igb_regdump(hw, reginfo);
410 }
411
412 /* Print TX Ring Summary */
413 if (!netdev || !netif_running(netdev))
414 goto exit;
415
416 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
417 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
418 for (n = 0; n < adapter->num_tx_queues; n++) {
419 struct igb_tx_buffer *buffer_info;
420 tx_ring = adapter->tx_ring[n];
421 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
422 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
423 n, tx_ring->next_to_use, tx_ring->next_to_clean,
424 (u64)dma_unmap_addr(buffer_info, dma),
425 dma_unmap_len(buffer_info, len),
426 buffer_info->next_to_watch,
427 (u64)buffer_info->time_stamp);
428 }
429
430 /* Print TX Rings */
431 if (!netif_msg_tx_done(adapter))
432 goto rx_ring_summary;
433
434 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
435
436 /* Transmit Descriptor Formats
437 *
438 * Advanced Transmit Descriptor
439 * +--------------------------------------------------------------+
440 * 0 | Buffer Address [63:0] |
441 * +--------------------------------------------------------------+
442 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
443 * +--------------------------------------------------------------+
444 * 63 46 45 40 39 38 36 35 32 31 24 15 0
445 */
446
447 for (n = 0; n < adapter->num_tx_queues; n++) {
448 tx_ring = adapter->tx_ring[n];
449 pr_info("------------------------------------\n");
450 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
451 pr_info("------------------------------------\n");
452 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
453
454 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
455 const char *next_desc;
456 struct igb_tx_buffer *buffer_info;
457 tx_desc = IGB_TX_DESC(tx_ring, i);
458 buffer_info = &tx_ring->tx_buffer_info[i];
459 u0 = (struct my_u0 *)tx_desc;
460 if (i == tx_ring->next_to_use &&
461 i == tx_ring->next_to_clean)
462 next_desc = " NTC/U";
463 else if (i == tx_ring->next_to_use)
464 next_desc = " NTU";
465 else if (i == tx_ring->next_to_clean)
466 next_desc = " NTC";
467 else
468 next_desc = "";
469
470 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
471 i, le64_to_cpu(u0->a),
472 le64_to_cpu(u0->b),
473 (u64)dma_unmap_addr(buffer_info, dma),
474 dma_unmap_len(buffer_info, len),
475 buffer_info->next_to_watch,
476 (u64)buffer_info->time_stamp,
477 buffer_info->skb, next_desc);
478
479 if (netif_msg_pktdata(adapter) && buffer_info->skb)
480 print_hex_dump(KERN_INFO, "",
481 DUMP_PREFIX_ADDRESS,
482 16, 1, buffer_info->skb->data,
483 dma_unmap_len(buffer_info, len),
484 true);
485 }
486 }
487
488 /* Print RX Rings Summary */
489 rx_ring_summary:
490 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
491 pr_info("Queue [NTU] [NTC]\n");
492 for (n = 0; n < adapter->num_rx_queues; n++) {
493 rx_ring = adapter->rx_ring[n];
494 pr_info(" %5d %5X %5X\n",
495 n, rx_ring->next_to_use, rx_ring->next_to_clean);
496 }
497
498 /* Print RX Rings */
499 if (!netif_msg_rx_status(adapter))
500 goto exit;
501
502 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
503
504 /* Advanced Receive Descriptor (Read) Format
505 * 63 1 0
506 * +-----------------------------------------------------+
507 * 0 | Packet Buffer Address [63:1] |A0/NSE|
508 * +----------------------------------------------+------+
509 * 8 | Header Buffer Address [63:1] | DD |
510 * +-----------------------------------------------------+
511 *
512 *
513 * Advanced Receive Descriptor (Write-Back) Format
514 *
515 * 63 48 47 32 31 30 21 20 17 16 4 3 0
516 * +------------------------------------------------------+
517 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
518 * | Checksum Ident | | | | Type | Type |
519 * +------------------------------------------------------+
520 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
521 * +------------------------------------------------------+
522 * 63 48 47 32 31 20 19 0
523 */
524
525 for (n = 0; n < adapter->num_rx_queues; n++) {
526 rx_ring = adapter->rx_ring[n];
527 pr_info("------------------------------------\n");
528 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
529 pr_info("------------------------------------\n");
530 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
531 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
532
533 for (i = 0; i < rx_ring->count; i++) {
534 const char *next_desc;
535 struct igb_rx_buffer *buffer_info;
536 buffer_info = &rx_ring->rx_buffer_info[i];
537 rx_desc = IGB_RX_DESC(rx_ring, i);
538 u0 = (struct my_u0 *)rx_desc;
539 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
540
541 if (i == rx_ring->next_to_use)
542 next_desc = " NTU";
543 else if (i == rx_ring->next_to_clean)
544 next_desc = " NTC";
545 else
546 next_desc = "";
547
548 if (staterr & E1000_RXD_STAT_DD) {
549 /* Descriptor Done */
550 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
551 "RWB", i,
552 le64_to_cpu(u0->a),
553 le64_to_cpu(u0->b),
554 next_desc);
555 } else {
556 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
557 "R ", i,
558 le64_to_cpu(u0->a),
559 le64_to_cpu(u0->b),
560 (u64)buffer_info->dma,
561 next_desc);
562
563 if (netif_msg_pktdata(adapter) &&
564 buffer_info->dma && buffer_info->page) {
565 print_hex_dump(KERN_INFO, "",
566 DUMP_PREFIX_ADDRESS,
567 16, 1,
568 page_address(buffer_info->page) +
569 buffer_info->page_offset,
570 igb_rx_bufsz(rx_ring), true);
571 }
572 }
573 }
574 }
575
576 exit:
577 return;
578 }
579
580 /**
581 * igb_get_i2c_data - Reads the I2C SDA data bit
582 * @hw: pointer to hardware structure
583 * @i2cctl: Current value of I2CCTL register
584 *
585 * Returns the I2C data bit value
586 **/
587 static int igb_get_i2c_data(void *data)
588 {
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 return !!(i2cctl & E1000_I2C_DATA_IN);
594 }
595
596 /**
597 * igb_set_i2c_data - Sets the I2C data bit
598 * @data: pointer to hardware structure
599 * @state: I2C data value (0 or 1) to set
600 *
601 * Sets the I2C data bit
602 **/
603 static void igb_set_i2c_data(void *data, int state)
604 {
605 struct igb_adapter *adapter = (struct igb_adapter *)data;
606 struct e1000_hw *hw = &adapter->hw;
607 s32 i2cctl = rd32(E1000_I2CPARAMS);
608
609 if (state)
610 i2cctl |= E1000_I2C_DATA_OUT;
611 else
612 i2cctl &= ~E1000_I2C_DATA_OUT;
613
614 i2cctl &= ~E1000_I2C_DATA_OE_N;
615 i2cctl |= E1000_I2C_CLK_OE_N;
616 wr32(E1000_I2CPARAMS, i2cctl);
617 wrfl();
618
619 }
620
621 /**
622 * igb_set_i2c_clk - Sets the I2C SCL clock
623 * @data: pointer to hardware structure
624 * @state: state to set clock
625 *
626 * Sets the I2C clock line to state
627 **/
628 static void igb_set_i2c_clk(void *data, int state)
629 {
630 struct igb_adapter *adapter = (struct igb_adapter *)data;
631 struct e1000_hw *hw = &adapter->hw;
632 s32 i2cctl = rd32(E1000_I2CPARAMS);
633
634 if (state) {
635 i2cctl |= E1000_I2C_CLK_OUT;
636 i2cctl &= ~E1000_I2C_CLK_OE_N;
637 } else {
638 i2cctl &= ~E1000_I2C_CLK_OUT;
639 i2cctl &= ~E1000_I2C_CLK_OE_N;
640 }
641 wr32(E1000_I2CPARAMS, i2cctl);
642 wrfl();
643 }
644
645 /**
646 * igb_get_i2c_clk - Gets the I2C SCL clock state
647 * @data: pointer to hardware structure
648 *
649 * Gets the I2C clock state
650 **/
651 static int igb_get_i2c_clk(void *data)
652 {
653 struct igb_adapter *adapter = (struct igb_adapter *)data;
654 struct e1000_hw *hw = &adapter->hw;
655 s32 i2cctl = rd32(E1000_I2CPARAMS);
656
657 return !!(i2cctl & E1000_I2C_CLK_IN);
658 }
659
660 static const struct i2c_algo_bit_data igb_i2c_algo = {
661 .setsda = igb_set_i2c_data,
662 .setscl = igb_set_i2c_clk,
663 .getsda = igb_get_i2c_data,
664 .getscl = igb_get_i2c_clk,
665 .udelay = 5,
666 .timeout = 20,
667 };
668
669 /**
670 * igb_get_hw_dev - return device
671 * @hw: pointer to hardware structure
672 *
673 * used by hardware layer to print debugging information
674 **/
675 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
676 {
677 struct igb_adapter *adapter = hw->back;
678 return adapter->netdev;
679 }
680
681 /**
682 * igb_init_module - Driver Registration Routine
683 *
684 * igb_init_module is the first routine called when the driver is
685 * loaded. All it does is register with the PCI subsystem.
686 **/
687 static int __init igb_init_module(void)
688 {
689 int ret;
690
691 pr_info("%s - version %s\n",
692 igb_driver_string, igb_driver_version);
693 pr_info("%s\n", igb_copyright);
694
695 #ifdef CONFIG_IGB_DCA
696 dca_register_notify(&dca_notifier);
697 #endif
698 ret = pci_register_driver(&igb_driver);
699 return ret;
700 }
701
702 module_init(igb_init_module);
703
704 /**
705 * igb_exit_module - Driver Exit Cleanup Routine
706 *
707 * igb_exit_module is called just before the driver is removed
708 * from memory.
709 **/
710 static void __exit igb_exit_module(void)
711 {
712 #ifdef CONFIG_IGB_DCA
713 dca_unregister_notify(&dca_notifier);
714 #endif
715 pci_unregister_driver(&igb_driver);
716 }
717
718 module_exit(igb_exit_module);
719
720 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
721 /**
722 * igb_cache_ring_register - Descriptor ring to register mapping
723 * @adapter: board private structure to initialize
724 *
725 * Once we know the feature-set enabled for the device, we'll cache
726 * the register offset the descriptor ring is assigned to.
727 **/
728 static void igb_cache_ring_register(struct igb_adapter *adapter)
729 {
730 int i = 0, j = 0;
731 u32 rbase_offset = adapter->vfs_allocated_count;
732
733 switch (adapter->hw.mac.type) {
734 case e1000_82576:
735 /* The queues are allocated for virtualization such that VF 0
736 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
737 * In order to avoid collision we start at the first free queue
738 * and continue consuming queues in the same sequence
739 */
740 if (adapter->vfs_allocated_count) {
741 for (; i < adapter->rss_queues; i++)
742 adapter->rx_ring[i]->reg_idx = rbase_offset +
743 Q_IDX_82576(i);
744 }
745 /* Fall through */
746 case e1000_82575:
747 case e1000_82580:
748 case e1000_i350:
749 case e1000_i354:
750 case e1000_i210:
751 case e1000_i211:
752 /* Fall through */
753 default:
754 for (; i < adapter->num_rx_queues; i++)
755 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
756 for (; j < adapter->num_tx_queues; j++)
757 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
758 break;
759 }
760 }
761
762 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
763 {
764 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
765 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
766 u32 value = 0;
767
768 if (E1000_REMOVED(hw_addr))
769 return ~value;
770
771 value = readl(&hw_addr[reg]);
772
773 /* reads should not return all F's */
774 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
775 struct net_device *netdev = igb->netdev;
776 hw->hw_addr = NULL;
777 netif_device_detach(netdev);
778 netdev_err(netdev, "PCIe link lost, device now detached\n");
779 }
780
781 return value;
782 }
783
784 /**
785 * igb_write_ivar - configure ivar for given MSI-X vector
786 * @hw: pointer to the HW structure
787 * @msix_vector: vector number we are allocating to a given ring
788 * @index: row index of IVAR register to write within IVAR table
789 * @offset: column offset of in IVAR, should be multiple of 8
790 *
791 * This function is intended to handle the writing of the IVAR register
792 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
793 * each containing an cause allocation for an Rx and Tx ring, and a
794 * variable number of rows depending on the number of queues supported.
795 **/
796 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
797 int index, int offset)
798 {
799 u32 ivar = array_rd32(E1000_IVAR0, index);
800
801 /* clear any bits that are currently set */
802 ivar &= ~((u32)0xFF << offset);
803
804 /* write vector and valid bit */
805 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
806
807 array_wr32(E1000_IVAR0, index, ivar);
808 }
809
810 #define IGB_N0_QUEUE -1
811 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
812 {
813 struct igb_adapter *adapter = q_vector->adapter;
814 struct e1000_hw *hw = &adapter->hw;
815 int rx_queue = IGB_N0_QUEUE;
816 int tx_queue = IGB_N0_QUEUE;
817 u32 msixbm = 0;
818
819 if (q_vector->rx.ring)
820 rx_queue = q_vector->rx.ring->reg_idx;
821 if (q_vector->tx.ring)
822 tx_queue = q_vector->tx.ring->reg_idx;
823
824 switch (hw->mac.type) {
825 case e1000_82575:
826 /* The 82575 assigns vectors using a bitmask, which matches the
827 * bitmask for the EICR/EIMS/EIMC registers. To assign one
828 * or more queues to a vector, we write the appropriate bits
829 * into the MSIXBM register for that vector.
830 */
831 if (rx_queue > IGB_N0_QUEUE)
832 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
833 if (tx_queue > IGB_N0_QUEUE)
834 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
835 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
836 msixbm |= E1000_EIMS_OTHER;
837 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
838 q_vector->eims_value = msixbm;
839 break;
840 case e1000_82576:
841 /* 82576 uses a table that essentially consists of 2 columns
842 * with 8 rows. The ordering is column-major so we use the
843 * lower 3 bits as the row index, and the 4th bit as the
844 * column offset.
845 */
846 if (rx_queue > IGB_N0_QUEUE)
847 igb_write_ivar(hw, msix_vector,
848 rx_queue & 0x7,
849 (rx_queue & 0x8) << 1);
850 if (tx_queue > IGB_N0_QUEUE)
851 igb_write_ivar(hw, msix_vector,
852 tx_queue & 0x7,
853 ((tx_queue & 0x8) << 1) + 8);
854 q_vector->eims_value = BIT(msix_vector);
855 break;
856 case e1000_82580:
857 case e1000_i350:
858 case e1000_i354:
859 case e1000_i210:
860 case e1000_i211:
861 /* On 82580 and newer adapters the scheme is similar to 82576
862 * however instead of ordering column-major we have things
863 * ordered row-major. So we traverse the table by using
864 * bit 0 as the column offset, and the remaining bits as the
865 * row index.
866 */
867 if (rx_queue > IGB_N0_QUEUE)
868 igb_write_ivar(hw, msix_vector,
869 rx_queue >> 1,
870 (rx_queue & 0x1) << 4);
871 if (tx_queue > IGB_N0_QUEUE)
872 igb_write_ivar(hw, msix_vector,
873 tx_queue >> 1,
874 ((tx_queue & 0x1) << 4) + 8);
875 q_vector->eims_value = BIT(msix_vector);
876 break;
877 default:
878 BUG();
879 break;
880 }
881
882 /* add q_vector eims value to global eims_enable_mask */
883 adapter->eims_enable_mask |= q_vector->eims_value;
884
885 /* configure q_vector to set itr on first interrupt */
886 q_vector->set_itr = 1;
887 }
888
889 /**
890 * igb_configure_msix - Configure MSI-X hardware
891 * @adapter: board private structure to initialize
892 *
893 * igb_configure_msix sets up the hardware to properly
894 * generate MSI-X interrupts.
895 **/
896 static void igb_configure_msix(struct igb_adapter *adapter)
897 {
898 u32 tmp;
899 int i, vector = 0;
900 struct e1000_hw *hw = &adapter->hw;
901
902 adapter->eims_enable_mask = 0;
903
904 /* set vector for other causes, i.e. link changes */
905 switch (hw->mac.type) {
906 case e1000_82575:
907 tmp = rd32(E1000_CTRL_EXT);
908 /* enable MSI-X PBA support*/
909 tmp |= E1000_CTRL_EXT_PBA_CLR;
910
911 /* Auto-Mask interrupts upon ICR read. */
912 tmp |= E1000_CTRL_EXT_EIAME;
913 tmp |= E1000_CTRL_EXT_IRCA;
914
915 wr32(E1000_CTRL_EXT, tmp);
916
917 /* enable msix_other interrupt */
918 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
919 adapter->eims_other = E1000_EIMS_OTHER;
920
921 break;
922
923 case e1000_82576:
924 case e1000_82580:
925 case e1000_i350:
926 case e1000_i354:
927 case e1000_i210:
928 case e1000_i211:
929 /* Turn on MSI-X capability first, or our settings
930 * won't stick. And it will take days to debug.
931 */
932 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
933 E1000_GPIE_PBA | E1000_GPIE_EIAME |
934 E1000_GPIE_NSICR);
935
936 /* enable msix_other interrupt */
937 adapter->eims_other = BIT(vector);
938 tmp = (vector++ | E1000_IVAR_VALID) << 8;
939
940 wr32(E1000_IVAR_MISC, tmp);
941 break;
942 default:
943 /* do nothing, since nothing else supports MSI-X */
944 break;
945 } /* switch (hw->mac.type) */
946
947 adapter->eims_enable_mask |= adapter->eims_other;
948
949 for (i = 0; i < adapter->num_q_vectors; i++)
950 igb_assign_vector(adapter->q_vector[i], vector++);
951
952 wrfl();
953 }
954
955 /**
956 * igb_request_msix - Initialize MSI-X interrupts
957 * @adapter: board private structure to initialize
958 *
959 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
960 * kernel.
961 **/
962 static int igb_request_msix(struct igb_adapter *adapter)
963 {
964 struct net_device *netdev = adapter->netdev;
965 int i, err = 0, vector = 0, free_vector = 0;
966
967 err = request_irq(adapter->msix_entries[vector].vector,
968 igb_msix_other, 0, netdev->name, adapter);
969 if (err)
970 goto err_out;
971
972 for (i = 0; i < adapter->num_q_vectors; i++) {
973 struct igb_q_vector *q_vector = adapter->q_vector[i];
974
975 vector++;
976
977 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
978
979 if (q_vector->rx.ring && q_vector->tx.ring)
980 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
981 q_vector->rx.ring->queue_index);
982 else if (q_vector->tx.ring)
983 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
984 q_vector->tx.ring->queue_index);
985 else if (q_vector->rx.ring)
986 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
987 q_vector->rx.ring->queue_index);
988 else
989 sprintf(q_vector->name, "%s-unused", netdev->name);
990
991 err = request_irq(adapter->msix_entries[vector].vector,
992 igb_msix_ring, 0, q_vector->name,
993 q_vector);
994 if (err)
995 goto err_free;
996 }
997
998 igb_configure_msix(adapter);
999 return 0;
1000
1001 err_free:
1002 /* free already assigned IRQs */
1003 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
1004
1005 vector--;
1006 for (i = 0; i < vector; i++) {
1007 free_irq(adapter->msix_entries[free_vector++].vector,
1008 adapter->q_vector[i]);
1009 }
1010 err_out:
1011 return err;
1012 }
1013
1014 /**
1015 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1016 * @adapter: board private structure to initialize
1017 * @v_idx: Index of vector to be freed
1018 *
1019 * This function frees the memory allocated to the q_vector.
1020 **/
1021 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1022 {
1023 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1024
1025 adapter->q_vector[v_idx] = NULL;
1026
1027 /* igb_get_stats64() might access the rings on this vector,
1028 * we must wait a grace period before freeing it.
1029 */
1030 if (q_vector)
1031 kfree_rcu(q_vector, rcu);
1032 }
1033
1034 /**
1035 * igb_reset_q_vector - Reset config for interrupt vector
1036 * @adapter: board private structure to initialize
1037 * @v_idx: Index of vector to be reset
1038 *
1039 * If NAPI is enabled it will delete any references to the
1040 * NAPI struct. This is preparation for igb_free_q_vector.
1041 **/
1042 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1043 {
1044 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1045
1046 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1047 * allocated. So, q_vector is NULL so we should stop here.
1048 */
1049 if (!q_vector)
1050 return;
1051
1052 if (q_vector->tx.ring)
1053 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1054
1055 if (q_vector->rx.ring)
1056 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1057
1058 netif_napi_del(&q_vector->napi);
1059
1060 }
1061
1062 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1063 {
1064 int v_idx = adapter->num_q_vectors;
1065
1066 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1067 pci_disable_msix(adapter->pdev);
1068 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1069 pci_disable_msi(adapter->pdev);
1070
1071 while (v_idx--)
1072 igb_reset_q_vector(adapter, v_idx);
1073 }
1074
1075 /**
1076 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1077 * @adapter: board private structure to initialize
1078 *
1079 * This function frees the memory allocated to the q_vectors. In addition if
1080 * NAPI is enabled it will delete any references to the NAPI struct prior
1081 * to freeing the q_vector.
1082 **/
1083 static void igb_free_q_vectors(struct igb_adapter *adapter)
1084 {
1085 int v_idx = adapter->num_q_vectors;
1086
1087 adapter->num_tx_queues = 0;
1088 adapter->num_rx_queues = 0;
1089 adapter->num_q_vectors = 0;
1090
1091 while (v_idx--) {
1092 igb_reset_q_vector(adapter, v_idx);
1093 igb_free_q_vector(adapter, v_idx);
1094 }
1095 }
1096
1097 /**
1098 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1099 * @adapter: board private structure to initialize
1100 *
1101 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1102 * MSI-X interrupts allocated.
1103 */
1104 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1105 {
1106 igb_free_q_vectors(adapter);
1107 igb_reset_interrupt_capability(adapter);
1108 }
1109
1110 /**
1111 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1112 * @adapter: board private structure to initialize
1113 * @msix: boolean value of MSIX capability
1114 *
1115 * Attempt to configure interrupts using the best available
1116 * capabilities of the hardware and kernel.
1117 **/
1118 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1119 {
1120 int err;
1121 int numvecs, i;
1122
1123 if (!msix)
1124 goto msi_only;
1125 adapter->flags |= IGB_FLAG_HAS_MSIX;
1126
1127 /* Number of supported queues. */
1128 adapter->num_rx_queues = adapter->rss_queues;
1129 if (adapter->vfs_allocated_count)
1130 adapter->num_tx_queues = 1;
1131 else
1132 adapter->num_tx_queues = adapter->rss_queues;
1133
1134 /* start with one vector for every Rx queue */
1135 numvecs = adapter->num_rx_queues;
1136
1137 /* if Tx handler is separate add 1 for every Tx queue */
1138 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1139 numvecs += adapter->num_tx_queues;
1140
1141 /* store the number of vectors reserved for queues */
1142 adapter->num_q_vectors = numvecs;
1143
1144 /* add 1 vector for link status interrupts */
1145 numvecs++;
1146 for (i = 0; i < numvecs; i++)
1147 adapter->msix_entries[i].entry = i;
1148
1149 err = pci_enable_msix_range(adapter->pdev,
1150 adapter->msix_entries,
1151 numvecs,
1152 numvecs);
1153 if (err > 0)
1154 return;
1155
1156 igb_reset_interrupt_capability(adapter);
1157
1158 /* If we can't do MSI-X, try MSI */
1159 msi_only:
1160 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1161 #ifdef CONFIG_PCI_IOV
1162 /* disable SR-IOV for non MSI-X configurations */
1163 if (adapter->vf_data) {
1164 struct e1000_hw *hw = &adapter->hw;
1165 /* disable iov and allow time for transactions to clear */
1166 pci_disable_sriov(adapter->pdev);
1167 msleep(500);
1168
1169 kfree(adapter->vf_mac_list);
1170 adapter->vf_mac_list = NULL;
1171 kfree(adapter->vf_data);
1172 adapter->vf_data = NULL;
1173 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1174 wrfl();
1175 msleep(100);
1176 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1177 }
1178 #endif
1179 adapter->vfs_allocated_count = 0;
1180 adapter->rss_queues = 1;
1181 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1182 adapter->num_rx_queues = 1;
1183 adapter->num_tx_queues = 1;
1184 adapter->num_q_vectors = 1;
1185 if (!pci_enable_msi(adapter->pdev))
1186 adapter->flags |= IGB_FLAG_HAS_MSI;
1187 }
1188
1189 static void igb_add_ring(struct igb_ring *ring,
1190 struct igb_ring_container *head)
1191 {
1192 head->ring = ring;
1193 head->count++;
1194 }
1195
1196 /**
1197 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1198 * @adapter: board private structure to initialize
1199 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1200 * @v_idx: index of vector in adapter struct
1201 * @txr_count: total number of Tx rings to allocate
1202 * @txr_idx: index of first Tx ring to allocate
1203 * @rxr_count: total number of Rx rings to allocate
1204 * @rxr_idx: index of first Rx ring to allocate
1205 *
1206 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1207 **/
1208 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1209 int v_count, int v_idx,
1210 int txr_count, int txr_idx,
1211 int rxr_count, int rxr_idx)
1212 {
1213 struct igb_q_vector *q_vector;
1214 struct igb_ring *ring;
1215 int ring_count, size;
1216
1217 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1218 if (txr_count > 1 || rxr_count > 1)
1219 return -ENOMEM;
1220
1221 ring_count = txr_count + rxr_count;
1222 size = sizeof(struct igb_q_vector) +
1223 (sizeof(struct igb_ring) * ring_count);
1224
1225 /* allocate q_vector and rings */
1226 q_vector = adapter->q_vector[v_idx];
1227 if (!q_vector) {
1228 q_vector = kzalloc(size, GFP_KERNEL);
1229 } else if (size > ksize(q_vector)) {
1230 kfree_rcu(q_vector, rcu);
1231 q_vector = kzalloc(size, GFP_KERNEL);
1232 } else {
1233 memset(q_vector, 0, size);
1234 }
1235 if (!q_vector)
1236 return -ENOMEM;
1237
1238 /* initialize NAPI */
1239 netif_napi_add(adapter->netdev, &q_vector->napi,
1240 igb_poll, 64);
1241
1242 /* tie q_vector and adapter together */
1243 adapter->q_vector[v_idx] = q_vector;
1244 q_vector->adapter = adapter;
1245
1246 /* initialize work limits */
1247 q_vector->tx.work_limit = adapter->tx_work_limit;
1248
1249 /* initialize ITR configuration */
1250 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1251 q_vector->itr_val = IGB_START_ITR;
1252
1253 /* initialize pointer to rings */
1254 ring = q_vector->ring;
1255
1256 /* intialize ITR */
1257 if (rxr_count) {
1258 /* rx or rx/tx vector */
1259 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1260 q_vector->itr_val = adapter->rx_itr_setting;
1261 } else {
1262 /* tx only vector */
1263 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1264 q_vector->itr_val = adapter->tx_itr_setting;
1265 }
1266
1267 if (txr_count) {
1268 /* assign generic ring traits */
1269 ring->dev = &adapter->pdev->dev;
1270 ring->netdev = adapter->netdev;
1271
1272 /* configure backlink on ring */
1273 ring->q_vector = q_vector;
1274
1275 /* update q_vector Tx values */
1276 igb_add_ring(ring, &q_vector->tx);
1277
1278 /* For 82575, context index must be unique per ring. */
1279 if (adapter->hw.mac.type == e1000_82575)
1280 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1281
1282 /* apply Tx specific ring traits */
1283 ring->count = adapter->tx_ring_count;
1284 ring->queue_index = txr_idx;
1285
1286 ring->cbs_enable = false;
1287 ring->idleslope = 0;
1288 ring->sendslope = 0;
1289 ring->hicredit = 0;
1290 ring->locredit = 0;
1291
1292 u64_stats_init(&ring->tx_syncp);
1293 u64_stats_init(&ring->tx_syncp2);
1294
1295 /* assign ring to adapter */
1296 adapter->tx_ring[txr_idx] = ring;
1297
1298 /* push pointer to next ring */
1299 ring++;
1300 }
1301
1302 if (rxr_count) {
1303 /* assign generic ring traits */
1304 ring->dev = &adapter->pdev->dev;
1305 ring->netdev = adapter->netdev;
1306
1307 /* configure backlink on ring */
1308 ring->q_vector = q_vector;
1309
1310 /* update q_vector Rx values */
1311 igb_add_ring(ring, &q_vector->rx);
1312
1313 /* set flag indicating ring supports SCTP checksum offload */
1314 if (adapter->hw.mac.type >= e1000_82576)
1315 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1316
1317 /* On i350, i354, i210, and i211, loopback VLAN packets
1318 * have the tag byte-swapped.
1319 */
1320 if (adapter->hw.mac.type >= e1000_i350)
1321 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1322
1323 /* apply Rx specific ring traits */
1324 ring->count = adapter->rx_ring_count;
1325 ring->queue_index = rxr_idx;
1326
1327 u64_stats_init(&ring->rx_syncp);
1328
1329 /* assign ring to adapter */
1330 adapter->rx_ring[rxr_idx] = ring;
1331 }
1332
1333 return 0;
1334 }
1335
1336
1337 /**
1338 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1339 * @adapter: board private structure to initialize
1340 *
1341 * We allocate one q_vector per queue interrupt. If allocation fails we
1342 * return -ENOMEM.
1343 **/
1344 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1345 {
1346 int q_vectors = adapter->num_q_vectors;
1347 int rxr_remaining = adapter->num_rx_queues;
1348 int txr_remaining = adapter->num_tx_queues;
1349 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1350 int err;
1351
1352 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1353 for (; rxr_remaining; v_idx++) {
1354 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1355 0, 0, 1, rxr_idx);
1356
1357 if (err)
1358 goto err_out;
1359
1360 /* update counts and index */
1361 rxr_remaining--;
1362 rxr_idx++;
1363 }
1364 }
1365
1366 for (; v_idx < q_vectors; v_idx++) {
1367 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1368 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1369
1370 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1371 tqpv, txr_idx, rqpv, rxr_idx);
1372
1373 if (err)
1374 goto err_out;
1375
1376 /* update counts and index */
1377 rxr_remaining -= rqpv;
1378 txr_remaining -= tqpv;
1379 rxr_idx++;
1380 txr_idx++;
1381 }
1382
1383 return 0;
1384
1385 err_out:
1386 adapter->num_tx_queues = 0;
1387 adapter->num_rx_queues = 0;
1388 adapter->num_q_vectors = 0;
1389
1390 while (v_idx--)
1391 igb_free_q_vector(adapter, v_idx);
1392
1393 return -ENOMEM;
1394 }
1395
1396 /**
1397 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1398 * @adapter: board private structure to initialize
1399 * @msix: boolean value of MSIX capability
1400 *
1401 * This function initializes the interrupts and allocates all of the queues.
1402 **/
1403 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1404 {
1405 struct pci_dev *pdev = adapter->pdev;
1406 int err;
1407
1408 igb_set_interrupt_capability(adapter, msix);
1409
1410 err = igb_alloc_q_vectors(adapter);
1411 if (err) {
1412 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1413 goto err_alloc_q_vectors;
1414 }
1415
1416 igb_cache_ring_register(adapter);
1417
1418 return 0;
1419
1420 err_alloc_q_vectors:
1421 igb_reset_interrupt_capability(adapter);
1422 return err;
1423 }
1424
1425 /**
1426 * igb_request_irq - initialize interrupts
1427 * @adapter: board private structure to initialize
1428 *
1429 * Attempts to configure interrupts using the best available
1430 * capabilities of the hardware and kernel.
1431 **/
1432 static int igb_request_irq(struct igb_adapter *adapter)
1433 {
1434 struct net_device *netdev = adapter->netdev;
1435 struct pci_dev *pdev = adapter->pdev;
1436 int err = 0;
1437
1438 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1439 err = igb_request_msix(adapter);
1440 if (!err)
1441 goto request_done;
1442 /* fall back to MSI */
1443 igb_free_all_tx_resources(adapter);
1444 igb_free_all_rx_resources(adapter);
1445
1446 igb_clear_interrupt_scheme(adapter);
1447 err = igb_init_interrupt_scheme(adapter, false);
1448 if (err)
1449 goto request_done;
1450
1451 igb_setup_all_tx_resources(adapter);
1452 igb_setup_all_rx_resources(adapter);
1453 igb_configure(adapter);
1454 }
1455
1456 igb_assign_vector(adapter->q_vector[0], 0);
1457
1458 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1459 err = request_irq(pdev->irq, igb_intr_msi, 0,
1460 netdev->name, adapter);
1461 if (!err)
1462 goto request_done;
1463
1464 /* fall back to legacy interrupts */
1465 igb_reset_interrupt_capability(adapter);
1466 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1467 }
1468
1469 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1470 netdev->name, adapter);
1471
1472 if (err)
1473 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1474 err);
1475
1476 request_done:
1477 return err;
1478 }
1479
1480 static void igb_free_irq(struct igb_adapter *adapter)
1481 {
1482 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1483 int vector = 0, i;
1484
1485 free_irq(adapter->msix_entries[vector++].vector, adapter);
1486
1487 for (i = 0; i < adapter->num_q_vectors; i++)
1488 free_irq(adapter->msix_entries[vector++].vector,
1489 adapter->q_vector[i]);
1490 } else {
1491 free_irq(adapter->pdev->irq, adapter);
1492 }
1493 }
1494
1495 /**
1496 * igb_irq_disable - Mask off interrupt generation on the NIC
1497 * @adapter: board private structure
1498 **/
1499 static void igb_irq_disable(struct igb_adapter *adapter)
1500 {
1501 struct e1000_hw *hw = &adapter->hw;
1502
1503 /* we need to be careful when disabling interrupts. The VFs are also
1504 * mapped into these registers and so clearing the bits can cause
1505 * issues on the VF drivers so we only need to clear what we set
1506 */
1507 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1508 u32 regval = rd32(E1000_EIAM);
1509
1510 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1511 wr32(E1000_EIMC, adapter->eims_enable_mask);
1512 regval = rd32(E1000_EIAC);
1513 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1514 }
1515
1516 wr32(E1000_IAM, 0);
1517 wr32(E1000_IMC, ~0);
1518 wrfl();
1519 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1520 int i;
1521
1522 for (i = 0; i < adapter->num_q_vectors; i++)
1523 synchronize_irq(adapter->msix_entries[i].vector);
1524 } else {
1525 synchronize_irq(adapter->pdev->irq);
1526 }
1527 }
1528
1529 /**
1530 * igb_irq_enable - Enable default interrupt generation settings
1531 * @adapter: board private structure
1532 **/
1533 static void igb_irq_enable(struct igb_adapter *adapter)
1534 {
1535 struct e1000_hw *hw = &adapter->hw;
1536
1537 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1538 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1539 u32 regval = rd32(E1000_EIAC);
1540
1541 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1542 regval = rd32(E1000_EIAM);
1543 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1544 wr32(E1000_EIMS, adapter->eims_enable_mask);
1545 if (adapter->vfs_allocated_count) {
1546 wr32(E1000_MBVFIMR, 0xFF);
1547 ims |= E1000_IMS_VMMB;
1548 }
1549 wr32(E1000_IMS, ims);
1550 } else {
1551 wr32(E1000_IMS, IMS_ENABLE_MASK |
1552 E1000_IMS_DRSTA);
1553 wr32(E1000_IAM, IMS_ENABLE_MASK |
1554 E1000_IMS_DRSTA);
1555 }
1556 }
1557
1558 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1559 {
1560 struct e1000_hw *hw = &adapter->hw;
1561 u16 pf_id = adapter->vfs_allocated_count;
1562 u16 vid = adapter->hw.mng_cookie.vlan_id;
1563 u16 old_vid = adapter->mng_vlan_id;
1564
1565 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1566 /* add VID to filter table */
1567 igb_vfta_set(hw, vid, pf_id, true, true);
1568 adapter->mng_vlan_id = vid;
1569 } else {
1570 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1571 }
1572
1573 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1574 (vid != old_vid) &&
1575 !test_bit(old_vid, adapter->active_vlans)) {
1576 /* remove VID from filter table */
1577 igb_vfta_set(hw, vid, pf_id, false, true);
1578 }
1579 }
1580
1581 /**
1582 * igb_release_hw_control - release control of the h/w to f/w
1583 * @adapter: address of board private structure
1584 *
1585 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1586 * For ASF and Pass Through versions of f/w this means that the
1587 * driver is no longer loaded.
1588 **/
1589 static void igb_release_hw_control(struct igb_adapter *adapter)
1590 {
1591 struct e1000_hw *hw = &adapter->hw;
1592 u32 ctrl_ext;
1593
1594 /* Let firmware take over control of h/w */
1595 ctrl_ext = rd32(E1000_CTRL_EXT);
1596 wr32(E1000_CTRL_EXT,
1597 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1598 }
1599
1600 /**
1601 * igb_get_hw_control - get control of the h/w from f/w
1602 * @adapter: address of board private structure
1603 *
1604 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1605 * For ASF and Pass Through versions of f/w this means that
1606 * the driver is loaded.
1607 **/
1608 static void igb_get_hw_control(struct igb_adapter *adapter)
1609 {
1610 struct e1000_hw *hw = &adapter->hw;
1611 u32 ctrl_ext;
1612
1613 /* Let firmware know the driver has taken over */
1614 ctrl_ext = rd32(E1000_CTRL_EXT);
1615 wr32(E1000_CTRL_EXT,
1616 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1617 }
1618
1619 static void enable_fqtss(struct igb_adapter *adapter, bool enable)
1620 {
1621 struct net_device *netdev = adapter->netdev;
1622 struct e1000_hw *hw = &adapter->hw;
1623
1624 WARN_ON(hw->mac.type != e1000_i210);
1625
1626 if (enable)
1627 adapter->flags |= IGB_FLAG_FQTSS;
1628 else
1629 adapter->flags &= ~IGB_FLAG_FQTSS;
1630
1631 if (netif_running(netdev))
1632 schedule_work(&adapter->reset_task);
1633 }
1634
1635 static bool is_fqtss_enabled(struct igb_adapter *adapter)
1636 {
1637 return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
1638 }
1639
1640 static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
1641 enum tx_queue_prio prio)
1642 {
1643 u32 val;
1644
1645 WARN_ON(hw->mac.type != e1000_i210);
1646 WARN_ON(queue < 0 || queue > 4);
1647
1648 val = rd32(E1000_I210_TXDCTL(queue));
1649
1650 if (prio == TX_QUEUE_PRIO_HIGH)
1651 val |= E1000_TXDCTL_PRIORITY;
1652 else
1653 val &= ~E1000_TXDCTL_PRIORITY;
1654
1655 wr32(E1000_I210_TXDCTL(queue), val);
1656 }
1657
1658 static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
1659 {
1660 u32 val;
1661
1662 WARN_ON(hw->mac.type != e1000_i210);
1663 WARN_ON(queue < 0 || queue > 1);
1664
1665 val = rd32(E1000_I210_TQAVCC(queue));
1666
1667 if (mode == QUEUE_MODE_STREAM_RESERVATION)
1668 val |= E1000_TQAVCC_QUEUEMODE;
1669 else
1670 val &= ~E1000_TQAVCC_QUEUEMODE;
1671
1672 wr32(E1000_I210_TQAVCC(queue), val);
1673 }
1674
1675 /**
1676 * igb_configure_cbs - Configure Credit-Based Shaper (CBS)
1677 * @adapter: pointer to adapter struct
1678 * @queue: queue number
1679 * @enable: true = enable CBS, false = disable CBS
1680 * @idleslope: idleSlope in kbps
1681 * @sendslope: sendSlope in kbps
1682 * @hicredit: hiCredit in bytes
1683 * @locredit: loCredit in bytes
1684 *
1685 * Configure CBS for a given hardware queue. When disabling, idleslope,
1686 * sendslope, hicredit, locredit arguments are ignored. Returns 0 if
1687 * success. Negative otherwise.
1688 **/
1689 static void igb_configure_cbs(struct igb_adapter *adapter, int queue,
1690 bool enable, int idleslope, int sendslope,
1691 int hicredit, int locredit)
1692 {
1693 struct net_device *netdev = adapter->netdev;
1694 struct e1000_hw *hw = &adapter->hw;
1695 u32 tqavcc;
1696 u16 value;
1697
1698 WARN_ON(hw->mac.type != e1000_i210);
1699 WARN_ON(queue < 0 || queue > 1);
1700
1701 if (enable) {
1702 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
1703 set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
1704
1705 /* According to i210 datasheet section 7.2.7.7, we should set
1706 * the 'idleSlope' field from TQAVCC register following the
1707 * equation:
1708 *
1709 * For 100 Mbps link speed:
1710 *
1711 * value = BW * 0x7735 * 0.2 (E1)
1712 *
1713 * For 1000Mbps link speed:
1714 *
1715 * value = BW * 0x7735 * 2 (E2)
1716 *
1717 * E1 and E2 can be merged into one equation as shown below.
1718 * Note that 'link-speed' is in Mbps.
1719 *
1720 * value = BW * 0x7735 * 2 * link-speed
1721 * -------------- (E3)
1722 * 1000
1723 *
1724 * 'BW' is the percentage bandwidth out of full link speed
1725 * which can be found with the following equation. Note that
1726 * idleSlope here is the parameter from this function which
1727 * is in kbps.
1728 *
1729 * BW = idleSlope
1730 * ----------------- (E4)
1731 * link-speed * 1000
1732 *
1733 * That said, we can come up with a generic equation to
1734 * calculate the value we should set it TQAVCC register by
1735 * replacing 'BW' in E3 by E4. The resulting equation is:
1736 *
1737 * value = idleSlope * 0x7735 * 2 * link-speed
1738 * ----------------- -------------- (E5)
1739 * link-speed * 1000 1000
1740 *
1741 * 'link-speed' is present in both sides of the fraction so
1742 * it is canceled out. The final equation is the following:
1743 *
1744 * value = idleSlope * 61034
1745 * ----------------- (E6)
1746 * 1000000
1747 */
1748 value = DIV_ROUND_UP_ULL(idleslope * 61034ULL, 1000000);
1749
1750 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1751 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1752 tqavcc |= value;
1753 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1754
1755 wr32(E1000_I210_TQAVHC(queue), 0x80000000 + hicredit * 0x7735);
1756 } else {
1757 set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
1758 set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
1759
1760 /* Set idleSlope to zero. */
1761 tqavcc = rd32(E1000_I210_TQAVCC(queue));
1762 tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
1763 wr32(E1000_I210_TQAVCC(queue), tqavcc);
1764
1765 /* Set hiCredit to zero. */
1766 wr32(E1000_I210_TQAVHC(queue), 0);
1767 }
1768
1769 /* XXX: In i210 controller the sendSlope and loCredit parameters from
1770 * CBS are not configurable by software so we don't do any 'controller
1771 * configuration' in respect to these parameters.
1772 */
1773
1774 netdev_dbg(netdev, "CBS %s: queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
1775 (enable) ? "enabled" : "disabled", queue,
1776 idleslope, sendslope, hicredit, locredit);
1777 }
1778
1779 static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
1780 bool enable, int idleslope, int sendslope,
1781 int hicredit, int locredit)
1782 {
1783 struct igb_ring *ring;
1784
1785 if (queue < 0 || queue > adapter->num_tx_queues)
1786 return -EINVAL;
1787
1788 ring = adapter->tx_ring[queue];
1789
1790 ring->cbs_enable = enable;
1791 ring->idleslope = idleslope;
1792 ring->sendslope = sendslope;
1793 ring->hicredit = hicredit;
1794 ring->locredit = locredit;
1795
1796 return 0;
1797 }
1798
1799 static bool is_any_cbs_enabled(struct igb_adapter *adapter)
1800 {
1801 struct igb_ring *ring;
1802 int i;
1803
1804 for (i = 0; i < adapter->num_tx_queues; i++) {
1805 ring = adapter->tx_ring[i];
1806
1807 if (ring->cbs_enable)
1808 return true;
1809 }
1810
1811 return false;
1812 }
1813
1814 static void igb_setup_tx_mode(struct igb_adapter *adapter)
1815 {
1816 struct net_device *netdev = adapter->netdev;
1817 struct e1000_hw *hw = &adapter->hw;
1818 u32 val;
1819
1820 /* Only i210 controller supports changing the transmission mode. */
1821 if (hw->mac.type != e1000_i210)
1822 return;
1823
1824 if (is_fqtss_enabled(adapter)) {
1825 int i, max_queue;
1826
1827 /* Configure TQAVCTRL register: set transmit mode to 'Qav',
1828 * set data fetch arbitration to 'round robin' and set data
1829 * transfer arbitration to 'credit shaper algorithm.
1830 */
1831 val = rd32(E1000_I210_TQAVCTRL);
1832 val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_DATATRANARB;
1833 val &= ~E1000_TQAVCTRL_DATAFETCHARB;
1834 wr32(E1000_I210_TQAVCTRL, val);
1835
1836 /* Configure Tx and Rx packet buffers sizes as described in
1837 * i210 datasheet section 7.2.7.7.
1838 */
1839 val = rd32(E1000_TXPBS);
1840 val &= ~I210_TXPBSIZE_MASK;
1841 val |= I210_TXPBSIZE_PB0_8KB | I210_TXPBSIZE_PB1_8KB |
1842 I210_TXPBSIZE_PB2_4KB | I210_TXPBSIZE_PB3_4KB;
1843 wr32(E1000_TXPBS, val);
1844
1845 val = rd32(E1000_RXPBS);
1846 val &= ~I210_RXPBSIZE_MASK;
1847 val |= I210_RXPBSIZE_PB_32KB;
1848 wr32(E1000_RXPBS, val);
1849
1850 /* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
1851 * register should not exceed the buffer size programmed in
1852 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
1853 * so according to the datasheet we should set MAX_TPKT_SIZE to
1854 * 4kB / 64.
1855 *
1856 * However, when we do so, no frame from queue 2 and 3 are
1857 * transmitted. It seems the MAX_TPKT_SIZE should not be great
1858 * or _equal_ to the buffer size programmed in TXPBS. For this
1859 * reason, we set set MAX_ TPKT_SIZE to (4kB - 1) / 64.
1860 */
1861 val = (4096 - 1) / 64;
1862 wr32(E1000_I210_DTXMXPKTSZ, val);
1863
1864 /* Since FQTSS mode is enabled, apply any CBS configuration
1865 * previously set. If no previous CBS configuration has been
1866 * done, then the initial configuration is applied, which means
1867 * CBS is disabled.
1868 */
1869 max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
1870 adapter->num_tx_queues : I210_SR_QUEUES_NUM;
1871
1872 for (i = 0; i < max_queue; i++) {
1873 struct igb_ring *ring = adapter->tx_ring[i];
1874
1875 igb_configure_cbs(adapter, i, ring->cbs_enable,
1876 ring->idleslope, ring->sendslope,
1877 ring->hicredit, ring->locredit);
1878 }
1879 } else {
1880 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
1881 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
1882 wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
1883
1884 val = rd32(E1000_I210_TQAVCTRL);
1885 /* According to Section 8.12.21, the other flags we've set when
1886 * enabling FQTSS are not relevant when disabling FQTSS so we
1887 * don't set they here.
1888 */
1889 val &= ~E1000_TQAVCTRL_XMIT_MODE;
1890 wr32(E1000_I210_TQAVCTRL, val);
1891 }
1892
1893 netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
1894 "enabled" : "disabled");
1895 }
1896
1897 /**
1898 * igb_configure - configure the hardware for RX and TX
1899 * @adapter: private board structure
1900 **/
1901 static void igb_configure(struct igb_adapter *adapter)
1902 {
1903 struct net_device *netdev = adapter->netdev;
1904 int i;
1905
1906 igb_get_hw_control(adapter);
1907 igb_set_rx_mode(netdev);
1908 igb_setup_tx_mode(adapter);
1909
1910 igb_restore_vlan(adapter);
1911
1912 igb_setup_tctl(adapter);
1913 igb_setup_mrqc(adapter);
1914 igb_setup_rctl(adapter);
1915
1916 igb_nfc_filter_restore(adapter);
1917 igb_configure_tx(adapter);
1918 igb_configure_rx(adapter);
1919
1920 igb_rx_fifo_flush_82575(&adapter->hw);
1921
1922 /* call igb_desc_unused which always leaves
1923 * at least 1 descriptor unused to make sure
1924 * next_to_use != next_to_clean
1925 */
1926 for (i = 0; i < adapter->num_rx_queues; i++) {
1927 struct igb_ring *ring = adapter->rx_ring[i];
1928 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1929 }
1930 }
1931
1932 /**
1933 * igb_power_up_link - Power up the phy/serdes link
1934 * @adapter: address of board private structure
1935 **/
1936 void igb_power_up_link(struct igb_adapter *adapter)
1937 {
1938 igb_reset_phy(&adapter->hw);
1939
1940 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1941 igb_power_up_phy_copper(&adapter->hw);
1942 else
1943 igb_power_up_serdes_link_82575(&adapter->hw);
1944
1945 igb_setup_link(&adapter->hw);
1946 }
1947
1948 /**
1949 * igb_power_down_link - Power down the phy/serdes link
1950 * @adapter: address of board private structure
1951 */
1952 static void igb_power_down_link(struct igb_adapter *adapter)
1953 {
1954 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1955 igb_power_down_phy_copper_82575(&adapter->hw);
1956 else
1957 igb_shutdown_serdes_link_82575(&adapter->hw);
1958 }
1959
1960 /**
1961 * Detect and switch function for Media Auto Sense
1962 * @adapter: address of the board private structure
1963 **/
1964 static void igb_check_swap_media(struct igb_adapter *adapter)
1965 {
1966 struct e1000_hw *hw = &adapter->hw;
1967 u32 ctrl_ext, connsw;
1968 bool swap_now = false;
1969
1970 ctrl_ext = rd32(E1000_CTRL_EXT);
1971 connsw = rd32(E1000_CONNSW);
1972
1973 /* need to live swap if current media is copper and we have fiber/serdes
1974 * to go to.
1975 */
1976
1977 if ((hw->phy.media_type == e1000_media_type_copper) &&
1978 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1979 swap_now = true;
1980 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1981 /* copper signal takes time to appear */
1982 if (adapter->copper_tries < 4) {
1983 adapter->copper_tries++;
1984 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1985 wr32(E1000_CONNSW, connsw);
1986 return;
1987 } else {
1988 adapter->copper_tries = 0;
1989 if ((connsw & E1000_CONNSW_PHYSD) &&
1990 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1991 swap_now = true;
1992 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1993 wr32(E1000_CONNSW, connsw);
1994 }
1995 }
1996 }
1997
1998 if (!swap_now)
1999 return;
2000
2001 switch (hw->phy.media_type) {
2002 case e1000_media_type_copper:
2003 netdev_info(adapter->netdev,
2004 "MAS: changing media to fiber/serdes\n");
2005 ctrl_ext |=
2006 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2007 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2008 adapter->copper_tries = 0;
2009 break;
2010 case e1000_media_type_internal_serdes:
2011 case e1000_media_type_fiber:
2012 netdev_info(adapter->netdev,
2013 "MAS: changing media to copper\n");
2014 ctrl_ext &=
2015 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
2016 adapter->flags |= IGB_FLAG_MEDIA_RESET;
2017 break;
2018 default:
2019 /* shouldn't get here during regular operation */
2020 netdev_err(adapter->netdev,
2021 "AMS: Invalid media type found, returning\n");
2022 break;
2023 }
2024 wr32(E1000_CTRL_EXT, ctrl_ext);
2025 }
2026
2027 /**
2028 * igb_up - Open the interface and prepare it to handle traffic
2029 * @adapter: board private structure
2030 **/
2031 int igb_up(struct igb_adapter *adapter)
2032 {
2033 struct e1000_hw *hw = &adapter->hw;
2034 int i;
2035
2036 /* hardware has been reset, we need to reload some things */
2037 igb_configure(adapter);
2038
2039 clear_bit(__IGB_DOWN, &adapter->state);
2040
2041 for (i = 0; i < adapter->num_q_vectors; i++)
2042 napi_enable(&(adapter->q_vector[i]->napi));
2043
2044 if (adapter->flags & IGB_FLAG_HAS_MSIX)
2045 igb_configure_msix(adapter);
2046 else
2047 igb_assign_vector(adapter->q_vector[0], 0);
2048
2049 /* Clear any pending interrupts. */
2050 rd32(E1000_ICR);
2051 igb_irq_enable(adapter);
2052
2053 /* notify VFs that reset has been completed */
2054 if (adapter->vfs_allocated_count) {
2055 u32 reg_data = rd32(E1000_CTRL_EXT);
2056
2057 reg_data |= E1000_CTRL_EXT_PFRSTD;
2058 wr32(E1000_CTRL_EXT, reg_data);
2059 }
2060
2061 netif_tx_start_all_queues(adapter->netdev);
2062
2063 /* start the watchdog. */
2064 hw->mac.get_link_status = 1;
2065 schedule_work(&adapter->watchdog_task);
2066
2067 if ((adapter->flags & IGB_FLAG_EEE) &&
2068 (!hw->dev_spec._82575.eee_disable))
2069 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
2070
2071 return 0;
2072 }
2073
2074 void igb_down(struct igb_adapter *adapter)
2075 {
2076 struct net_device *netdev = adapter->netdev;
2077 struct e1000_hw *hw = &adapter->hw;
2078 u32 tctl, rctl;
2079 int i;
2080
2081 /* signal that we're down so the interrupt handler does not
2082 * reschedule our watchdog timer
2083 */
2084 set_bit(__IGB_DOWN, &adapter->state);
2085
2086 /* disable receives in the hardware */
2087 rctl = rd32(E1000_RCTL);
2088 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
2089 /* flush and sleep below */
2090
2091 igb_nfc_filter_exit(adapter);
2092
2093 netif_carrier_off(netdev);
2094 netif_tx_stop_all_queues(netdev);
2095
2096 /* disable transmits in the hardware */
2097 tctl = rd32(E1000_TCTL);
2098 tctl &= ~E1000_TCTL_EN;
2099 wr32(E1000_TCTL, tctl);
2100 /* flush both disables and wait for them to finish */
2101 wrfl();
2102 usleep_range(10000, 11000);
2103
2104 igb_irq_disable(adapter);
2105
2106 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
2107
2108 for (i = 0; i < adapter->num_q_vectors; i++) {
2109 if (adapter->q_vector[i]) {
2110 napi_synchronize(&adapter->q_vector[i]->napi);
2111 napi_disable(&adapter->q_vector[i]->napi);
2112 }
2113 }
2114
2115 del_timer_sync(&adapter->watchdog_timer);
2116 del_timer_sync(&adapter->phy_info_timer);
2117
2118 /* record the stats before reset*/
2119 spin_lock(&adapter->stats64_lock);
2120 igb_update_stats(adapter);
2121 spin_unlock(&adapter->stats64_lock);
2122
2123 adapter->link_speed = 0;
2124 adapter->link_duplex = 0;
2125
2126 if (!pci_channel_offline(adapter->pdev))
2127 igb_reset(adapter);
2128
2129 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2130 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
2131
2132 igb_clean_all_tx_rings(adapter);
2133 igb_clean_all_rx_rings(adapter);
2134 #ifdef CONFIG_IGB_DCA
2135
2136 /* since we reset the hardware DCA settings were cleared */
2137 igb_setup_dca(adapter);
2138 #endif
2139 }
2140
2141 void igb_reinit_locked(struct igb_adapter *adapter)
2142 {
2143 WARN_ON(in_interrupt());
2144 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
2145 usleep_range(1000, 2000);
2146 igb_down(adapter);
2147 igb_up(adapter);
2148 clear_bit(__IGB_RESETTING, &adapter->state);
2149 }
2150
2151 /** igb_enable_mas - Media Autosense re-enable after swap
2152 *
2153 * @adapter: adapter struct
2154 **/
2155 static void igb_enable_mas(struct igb_adapter *adapter)
2156 {
2157 struct e1000_hw *hw = &adapter->hw;
2158 u32 connsw = rd32(E1000_CONNSW);
2159
2160 /* configure for SerDes media detect */
2161 if ((hw->phy.media_type == e1000_media_type_copper) &&
2162 (!(connsw & E1000_CONNSW_SERDESD))) {
2163 connsw |= E1000_CONNSW_ENRGSRC;
2164 connsw |= E1000_CONNSW_AUTOSENSE_EN;
2165 wr32(E1000_CONNSW, connsw);
2166 wrfl();
2167 }
2168 }
2169
2170 void igb_reset(struct igb_adapter *adapter)
2171 {
2172 struct pci_dev *pdev = adapter->pdev;
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct e1000_mac_info *mac = &hw->mac;
2175 struct e1000_fc_info *fc = &hw->fc;
2176 u32 pba, hwm;
2177
2178 /* Repartition Pba for greater than 9k mtu
2179 * To take effect CTRL.RST is required.
2180 */
2181 switch (mac->type) {
2182 case e1000_i350:
2183 case e1000_i354:
2184 case e1000_82580:
2185 pba = rd32(E1000_RXPBS);
2186 pba = igb_rxpbs_adjust_82580(pba);
2187 break;
2188 case e1000_82576:
2189 pba = rd32(E1000_RXPBS);
2190 pba &= E1000_RXPBS_SIZE_MASK_82576;
2191 break;
2192 case e1000_82575:
2193 case e1000_i210:
2194 case e1000_i211:
2195 default:
2196 pba = E1000_PBA_34K;
2197 break;
2198 }
2199
2200 if (mac->type == e1000_82575) {
2201 u32 min_rx_space, min_tx_space, needed_tx_space;
2202
2203 /* write Rx PBA so that hardware can report correct Tx PBA */
2204 wr32(E1000_PBA, pba);
2205
2206 /* To maintain wire speed transmits, the Tx FIFO should be
2207 * large enough to accommodate two full transmit packets,
2208 * rounded up to the next 1KB and expressed in KB. Likewise,
2209 * the Rx FIFO should be large enough to accommodate at least
2210 * one full receive packet and is similarly rounded up and
2211 * expressed in KB.
2212 */
2213 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
2214
2215 /* The Tx FIFO also stores 16 bytes of information about the Tx
2216 * but don't include Ethernet FCS because hardware appends it.
2217 * We only need to round down to the nearest 512 byte block
2218 * count since the value we care about is 2 frames, not 1.
2219 */
2220 min_tx_space = adapter->max_frame_size;
2221 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
2222 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
2223
2224 /* upper 16 bits has Tx packet buffer allocation size in KB */
2225 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
2226
2227 /* If current Tx allocation is less than the min Tx FIFO size,
2228 * and the min Tx FIFO size is less than the current Rx FIFO
2229 * allocation, take space away from current Rx allocation.
2230 */
2231 if (needed_tx_space < pba) {
2232 pba -= needed_tx_space;
2233
2234 /* if short on Rx space, Rx wins and must trump Tx
2235 * adjustment
2236 */
2237 if (pba < min_rx_space)
2238 pba = min_rx_space;
2239 }
2240
2241 /* adjust PBA for jumbo frames */
2242 wr32(E1000_PBA, pba);
2243 }
2244
2245 /* flow control settings
2246 * The high water mark must be low enough to fit one full frame
2247 * after transmitting the pause frame. As such we must have enough
2248 * space to allow for us to complete our current transmit and then
2249 * receive the frame that is in progress from the link partner.
2250 * Set it to:
2251 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
2252 */
2253 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
2254
2255 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
2256 fc->low_water = fc->high_water - 16;
2257 fc->pause_time = 0xFFFF;
2258 fc->send_xon = 1;
2259 fc->current_mode = fc->requested_mode;
2260
2261 /* disable receive for all VFs and wait one second */
2262 if (adapter->vfs_allocated_count) {
2263 int i;
2264
2265 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
2266 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
2267
2268 /* ping all the active vfs to let them know we are going down */
2269 igb_ping_all_vfs(adapter);
2270
2271 /* disable transmits and receives */
2272 wr32(E1000_VFRE, 0);
2273 wr32(E1000_VFTE, 0);
2274 }
2275
2276 /* Allow time for pending master requests to run */
2277 hw->mac.ops.reset_hw(hw);
2278 wr32(E1000_WUC, 0);
2279
2280 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
2281 /* need to resetup here after media swap */
2282 adapter->ei.get_invariants(hw);
2283 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
2284 }
2285 if ((mac->type == e1000_82575) &&
2286 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
2287 igb_enable_mas(adapter);
2288 }
2289 if (hw->mac.ops.init_hw(hw))
2290 dev_err(&pdev->dev, "Hardware Error\n");
2291
2292 /* RAR registers were cleared during init_hw, clear mac table */
2293 igb_flush_mac_table(adapter);
2294 __dev_uc_unsync(adapter->netdev, NULL);
2295
2296 /* Recover default RAR entry */
2297 igb_set_default_mac_filter(adapter);
2298
2299 /* Flow control settings reset on hardware reset, so guarantee flow
2300 * control is off when forcing speed.
2301 */
2302 if (!hw->mac.autoneg)
2303 igb_force_mac_fc(hw);
2304
2305 igb_init_dmac(adapter, pba);
2306 #ifdef CONFIG_IGB_HWMON
2307 /* Re-initialize the thermal sensor on i350 devices. */
2308 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2309 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2310 /* If present, re-initialize the external thermal sensor
2311 * interface.
2312 */
2313 if (adapter->ets)
2314 mac->ops.init_thermal_sensor_thresh(hw);
2315 }
2316 }
2317 #endif
2318 /* Re-establish EEE setting */
2319 if (hw->phy.media_type == e1000_media_type_copper) {
2320 switch (mac->type) {
2321 case e1000_i350:
2322 case e1000_i210:
2323 case e1000_i211:
2324 igb_set_eee_i350(hw, true, true);
2325 break;
2326 case e1000_i354:
2327 igb_set_eee_i354(hw, true, true);
2328 break;
2329 default:
2330 break;
2331 }
2332 }
2333 if (!netif_running(adapter->netdev))
2334 igb_power_down_link(adapter);
2335
2336 igb_update_mng_vlan(adapter);
2337
2338 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2339 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2340
2341 /* Re-enable PTP, where applicable. */
2342 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2343 igb_ptp_reset(adapter);
2344
2345 igb_get_phy_info(hw);
2346 }
2347
2348 static netdev_features_t igb_fix_features(struct net_device *netdev,
2349 netdev_features_t features)
2350 {
2351 /* Since there is no support for separate Rx/Tx vlan accel
2352 * enable/disable make sure Tx flag is always in same state as Rx.
2353 */
2354 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2355 features |= NETIF_F_HW_VLAN_CTAG_TX;
2356 else
2357 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2358
2359 return features;
2360 }
2361
2362 static int igb_set_features(struct net_device *netdev,
2363 netdev_features_t features)
2364 {
2365 netdev_features_t changed = netdev->features ^ features;
2366 struct igb_adapter *adapter = netdev_priv(netdev);
2367
2368 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2369 igb_vlan_mode(netdev, features);
2370
2371 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2372 return 0;
2373
2374 if (!(features & NETIF_F_NTUPLE)) {
2375 struct hlist_node *node2;
2376 struct igb_nfc_filter *rule;
2377
2378 spin_lock(&adapter->nfc_lock);
2379 hlist_for_each_entry_safe(rule, node2,
2380 &adapter->nfc_filter_list, nfc_node) {
2381 igb_erase_filter(adapter, rule);
2382 hlist_del(&rule->nfc_node);
2383 kfree(rule);
2384 }
2385 spin_unlock(&adapter->nfc_lock);
2386 adapter->nfc_filter_count = 0;
2387 }
2388
2389 netdev->features = features;
2390
2391 if (netif_running(netdev))
2392 igb_reinit_locked(adapter);
2393 else
2394 igb_reset(adapter);
2395
2396 return 0;
2397 }
2398
2399 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2400 struct net_device *dev,
2401 const unsigned char *addr, u16 vid,
2402 u16 flags)
2403 {
2404 /* guarantee we can provide a unique filter for the unicast address */
2405 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2406 struct igb_adapter *adapter = netdev_priv(dev);
2407 int vfn = adapter->vfs_allocated_count;
2408
2409 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2410 return -ENOMEM;
2411 }
2412
2413 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2414 }
2415
2416 #define IGB_MAX_MAC_HDR_LEN 127
2417 #define IGB_MAX_NETWORK_HDR_LEN 511
2418
2419 static netdev_features_t
2420 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2421 netdev_features_t features)
2422 {
2423 unsigned int network_hdr_len, mac_hdr_len;
2424
2425 /* Make certain the headers can be described by a context descriptor */
2426 mac_hdr_len = skb_network_header(skb) - skb->data;
2427 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2428 return features & ~(NETIF_F_HW_CSUM |
2429 NETIF_F_SCTP_CRC |
2430 NETIF_F_HW_VLAN_CTAG_TX |
2431 NETIF_F_TSO |
2432 NETIF_F_TSO6);
2433
2434 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2435 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2436 return features & ~(NETIF_F_HW_CSUM |
2437 NETIF_F_SCTP_CRC |
2438 NETIF_F_TSO |
2439 NETIF_F_TSO6);
2440
2441 /* We can only support IPV4 TSO in tunnels if we can mangle the
2442 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2443 */
2444 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2445 features &= ~NETIF_F_TSO;
2446
2447 return features;
2448 }
2449
2450 static int igb_offload_cbs(struct igb_adapter *adapter,
2451 struct tc_cbs_qopt_offload *qopt)
2452 {
2453 struct e1000_hw *hw = &adapter->hw;
2454 int err;
2455
2456 /* CBS offloading is only supported by i210 controller. */
2457 if (hw->mac.type != e1000_i210)
2458 return -EOPNOTSUPP;
2459
2460 /* CBS offloading is only supported by queue 0 and queue 1. */
2461 if (qopt->queue < 0 || qopt->queue > 1)
2462 return -EINVAL;
2463
2464 err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
2465 qopt->idleslope, qopt->sendslope,
2466 qopt->hicredit, qopt->locredit);
2467 if (err)
2468 return err;
2469
2470 if (is_fqtss_enabled(adapter)) {
2471 igb_configure_cbs(adapter, qopt->queue, qopt->enable,
2472 qopt->idleslope, qopt->sendslope,
2473 qopt->hicredit, qopt->locredit);
2474
2475 if (!is_any_cbs_enabled(adapter))
2476 enable_fqtss(adapter, false);
2477
2478 } else {
2479 enable_fqtss(adapter, true);
2480 }
2481
2482 return 0;
2483 }
2484
2485 static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
2486 void *type_data)
2487 {
2488 struct igb_adapter *adapter = netdev_priv(dev);
2489
2490 switch (type) {
2491 case TC_SETUP_CBS:
2492 return igb_offload_cbs(adapter, type_data);
2493
2494 default:
2495 return -EOPNOTSUPP;
2496 }
2497 }
2498
2499 static const struct net_device_ops igb_netdev_ops = {
2500 .ndo_open = igb_open,
2501 .ndo_stop = igb_close,
2502 .ndo_start_xmit = igb_xmit_frame,
2503 .ndo_get_stats64 = igb_get_stats64,
2504 .ndo_set_rx_mode = igb_set_rx_mode,
2505 .ndo_set_mac_address = igb_set_mac,
2506 .ndo_change_mtu = igb_change_mtu,
2507 .ndo_do_ioctl = igb_ioctl,
2508 .ndo_tx_timeout = igb_tx_timeout,
2509 .ndo_validate_addr = eth_validate_addr,
2510 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2511 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2512 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2513 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2514 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2515 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2516 .ndo_get_vf_config = igb_ndo_get_vf_config,
2517 #ifdef CONFIG_NET_POLL_CONTROLLER
2518 .ndo_poll_controller = igb_netpoll,
2519 #endif
2520 .ndo_fix_features = igb_fix_features,
2521 .ndo_set_features = igb_set_features,
2522 .ndo_fdb_add = igb_ndo_fdb_add,
2523 .ndo_features_check = igb_features_check,
2524 .ndo_setup_tc = igb_setup_tc,
2525 };
2526
2527 /**
2528 * igb_set_fw_version - Configure version string for ethtool
2529 * @adapter: adapter struct
2530 **/
2531 void igb_set_fw_version(struct igb_adapter *adapter)
2532 {
2533 struct e1000_hw *hw = &adapter->hw;
2534 struct e1000_fw_version fw;
2535
2536 igb_get_fw_version(hw, &fw);
2537
2538 switch (hw->mac.type) {
2539 case e1000_i210:
2540 case e1000_i211:
2541 if (!(igb_get_flash_presence_i210(hw))) {
2542 snprintf(adapter->fw_version,
2543 sizeof(adapter->fw_version),
2544 "%2d.%2d-%d",
2545 fw.invm_major, fw.invm_minor,
2546 fw.invm_img_type);
2547 break;
2548 }
2549 /* fall through */
2550 default:
2551 /* if option is rom valid, display its version too */
2552 if (fw.or_valid) {
2553 snprintf(adapter->fw_version,
2554 sizeof(adapter->fw_version),
2555 "%d.%d, 0x%08x, %d.%d.%d",
2556 fw.eep_major, fw.eep_minor, fw.etrack_id,
2557 fw.or_major, fw.or_build, fw.or_patch);
2558 /* no option rom */
2559 } else if (fw.etrack_id != 0X0000) {
2560 snprintf(adapter->fw_version,
2561 sizeof(adapter->fw_version),
2562 "%d.%d, 0x%08x",
2563 fw.eep_major, fw.eep_minor, fw.etrack_id);
2564 } else {
2565 snprintf(adapter->fw_version,
2566 sizeof(adapter->fw_version),
2567 "%d.%d.%d",
2568 fw.eep_major, fw.eep_minor, fw.eep_build);
2569 }
2570 break;
2571 }
2572 }
2573
2574 /**
2575 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2576 *
2577 * @adapter: adapter struct
2578 **/
2579 static void igb_init_mas(struct igb_adapter *adapter)
2580 {
2581 struct e1000_hw *hw = &adapter->hw;
2582 u16 eeprom_data;
2583
2584 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2585 switch (hw->bus.func) {
2586 case E1000_FUNC_0:
2587 if (eeprom_data & IGB_MAS_ENABLE_0) {
2588 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2589 netdev_info(adapter->netdev,
2590 "MAS: Enabling Media Autosense for port %d\n",
2591 hw->bus.func);
2592 }
2593 break;
2594 case E1000_FUNC_1:
2595 if (eeprom_data & IGB_MAS_ENABLE_1) {
2596 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2597 netdev_info(adapter->netdev,
2598 "MAS: Enabling Media Autosense for port %d\n",
2599 hw->bus.func);
2600 }
2601 break;
2602 case E1000_FUNC_2:
2603 if (eeprom_data & IGB_MAS_ENABLE_2) {
2604 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2605 netdev_info(adapter->netdev,
2606 "MAS: Enabling Media Autosense for port %d\n",
2607 hw->bus.func);
2608 }
2609 break;
2610 case E1000_FUNC_3:
2611 if (eeprom_data & IGB_MAS_ENABLE_3) {
2612 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2613 netdev_info(adapter->netdev,
2614 "MAS: Enabling Media Autosense for port %d\n",
2615 hw->bus.func);
2616 }
2617 break;
2618 default:
2619 /* Shouldn't get here */
2620 netdev_err(adapter->netdev,
2621 "MAS: Invalid port configuration, returning\n");
2622 break;
2623 }
2624 }
2625
2626 /**
2627 * igb_init_i2c - Init I2C interface
2628 * @adapter: pointer to adapter structure
2629 **/
2630 static s32 igb_init_i2c(struct igb_adapter *adapter)
2631 {
2632 s32 status = 0;
2633
2634 /* I2C interface supported on i350 devices */
2635 if (adapter->hw.mac.type != e1000_i350)
2636 return 0;
2637
2638 /* Initialize the i2c bus which is controlled by the registers.
2639 * This bus will use the i2c_algo_bit structue that implements
2640 * the protocol through toggling of the 4 bits in the register.
2641 */
2642 adapter->i2c_adap.owner = THIS_MODULE;
2643 adapter->i2c_algo = igb_i2c_algo;
2644 adapter->i2c_algo.data = adapter;
2645 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2646 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2647 strlcpy(adapter->i2c_adap.name, "igb BB",
2648 sizeof(adapter->i2c_adap.name));
2649 status = i2c_bit_add_bus(&adapter->i2c_adap);
2650 return status;
2651 }
2652
2653 /**
2654 * igb_probe - Device Initialization Routine
2655 * @pdev: PCI device information struct
2656 * @ent: entry in igb_pci_tbl
2657 *
2658 * Returns 0 on success, negative on failure
2659 *
2660 * igb_probe initializes an adapter identified by a pci_dev structure.
2661 * The OS initialization, configuring of the adapter private structure,
2662 * and a hardware reset occur.
2663 **/
2664 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2665 {
2666 struct net_device *netdev;
2667 struct igb_adapter *adapter;
2668 struct e1000_hw *hw;
2669 u16 eeprom_data = 0;
2670 s32 ret_val;
2671 static int global_quad_port_a; /* global quad port a indication */
2672 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2673 int err, pci_using_dac;
2674 u8 part_str[E1000_PBANUM_LENGTH];
2675
2676 /* Catch broken hardware that put the wrong VF device ID in
2677 * the PCIe SR-IOV capability.
2678 */
2679 if (pdev->is_virtfn) {
2680 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2681 pci_name(pdev), pdev->vendor, pdev->device);
2682 return -EINVAL;
2683 }
2684
2685 err = pci_enable_device_mem(pdev);
2686 if (err)
2687 return err;
2688
2689 pci_using_dac = 0;
2690 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2691 if (!err) {
2692 pci_using_dac = 1;
2693 } else {
2694 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2695 if (err) {
2696 dev_err(&pdev->dev,
2697 "No usable DMA configuration, aborting\n");
2698 goto err_dma;
2699 }
2700 }
2701
2702 err = pci_request_mem_regions(pdev, igb_driver_name);
2703 if (err)
2704 goto err_pci_reg;
2705
2706 pci_enable_pcie_error_reporting(pdev);
2707
2708 pci_set_master(pdev);
2709 pci_save_state(pdev);
2710
2711 err = -ENOMEM;
2712 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2713 IGB_MAX_TX_QUEUES);
2714 if (!netdev)
2715 goto err_alloc_etherdev;
2716
2717 SET_NETDEV_DEV(netdev, &pdev->dev);
2718
2719 pci_set_drvdata(pdev, netdev);
2720 adapter = netdev_priv(netdev);
2721 adapter->netdev = netdev;
2722 adapter->pdev = pdev;
2723 hw = &adapter->hw;
2724 hw->back = adapter;
2725 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2726
2727 err = -EIO;
2728 adapter->io_addr = pci_iomap(pdev, 0, 0);
2729 if (!adapter->io_addr)
2730 goto err_ioremap;
2731 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2732 hw->hw_addr = adapter->io_addr;
2733
2734 netdev->netdev_ops = &igb_netdev_ops;
2735 igb_set_ethtool_ops(netdev);
2736 netdev->watchdog_timeo = 5 * HZ;
2737
2738 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2739
2740 netdev->mem_start = pci_resource_start(pdev, 0);
2741 netdev->mem_end = pci_resource_end(pdev, 0);
2742
2743 /* PCI config space info */
2744 hw->vendor_id = pdev->vendor;
2745 hw->device_id = pdev->device;
2746 hw->revision_id = pdev->revision;
2747 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2748 hw->subsystem_device_id = pdev->subsystem_device;
2749
2750 /* Copy the default MAC, PHY and NVM function pointers */
2751 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2752 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2753 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2754 /* Initialize skew-specific constants */
2755 err = ei->get_invariants(hw);
2756 if (err)
2757 goto err_sw_init;
2758
2759 /* setup the private structure */
2760 err = igb_sw_init(adapter);
2761 if (err)
2762 goto err_sw_init;
2763
2764 igb_get_bus_info_pcie(hw);
2765
2766 hw->phy.autoneg_wait_to_complete = false;
2767
2768 /* Copper options */
2769 if (hw->phy.media_type == e1000_media_type_copper) {
2770 hw->phy.mdix = AUTO_ALL_MODES;
2771 hw->phy.disable_polarity_correction = false;
2772 hw->phy.ms_type = e1000_ms_hw_default;
2773 }
2774
2775 if (igb_check_reset_block(hw))
2776 dev_info(&pdev->dev,
2777 "PHY reset is blocked due to SOL/IDER session.\n");
2778
2779 /* features is initialized to 0 in allocation, it might have bits
2780 * set by igb_sw_init so we should use an or instead of an
2781 * assignment.
2782 */
2783 netdev->features |= NETIF_F_SG |
2784 NETIF_F_TSO |
2785 NETIF_F_TSO6 |
2786 NETIF_F_RXHASH |
2787 NETIF_F_RXCSUM |
2788 NETIF_F_HW_CSUM;
2789
2790 if (hw->mac.type >= e1000_82576)
2791 netdev->features |= NETIF_F_SCTP_CRC;
2792
2793 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2794 NETIF_F_GSO_GRE_CSUM | \
2795 NETIF_F_GSO_IPXIP4 | \
2796 NETIF_F_GSO_IPXIP6 | \
2797 NETIF_F_GSO_UDP_TUNNEL | \
2798 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2799
2800 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2801 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2802
2803 /* copy netdev features into list of user selectable features */
2804 netdev->hw_features |= netdev->features |
2805 NETIF_F_HW_VLAN_CTAG_RX |
2806 NETIF_F_HW_VLAN_CTAG_TX |
2807 NETIF_F_RXALL;
2808
2809 if (hw->mac.type >= e1000_i350)
2810 netdev->hw_features |= NETIF_F_NTUPLE;
2811
2812 if (pci_using_dac)
2813 netdev->features |= NETIF_F_HIGHDMA;
2814
2815 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2816 netdev->mpls_features |= NETIF_F_HW_CSUM;
2817 netdev->hw_enc_features |= netdev->vlan_features;
2818
2819 /* set this bit last since it cannot be part of vlan_features */
2820 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2821 NETIF_F_HW_VLAN_CTAG_RX |
2822 NETIF_F_HW_VLAN_CTAG_TX;
2823
2824 netdev->priv_flags |= IFF_SUPP_NOFCS;
2825
2826 netdev->priv_flags |= IFF_UNICAST_FLT;
2827
2828 /* MTU range: 68 - 9216 */
2829 netdev->min_mtu = ETH_MIN_MTU;
2830 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2831
2832 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2833
2834 /* before reading the NVM, reset the controller to put the device in a
2835 * known good starting state
2836 */
2837 hw->mac.ops.reset_hw(hw);
2838
2839 /* make sure the NVM is good , i211/i210 parts can have special NVM
2840 * that doesn't contain a checksum
2841 */
2842 switch (hw->mac.type) {
2843 case e1000_i210:
2844 case e1000_i211:
2845 if (igb_get_flash_presence_i210(hw)) {
2846 if (hw->nvm.ops.validate(hw) < 0) {
2847 dev_err(&pdev->dev,
2848 "The NVM Checksum Is Not Valid\n");
2849 err = -EIO;
2850 goto err_eeprom;
2851 }
2852 }
2853 break;
2854 default:
2855 if (hw->nvm.ops.validate(hw) < 0) {
2856 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2857 err = -EIO;
2858 goto err_eeprom;
2859 }
2860 break;
2861 }
2862
2863 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2864 /* copy the MAC address out of the NVM */
2865 if (hw->mac.ops.read_mac_addr(hw))
2866 dev_err(&pdev->dev, "NVM Read Error\n");
2867 }
2868
2869 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2870
2871 if (!is_valid_ether_addr(netdev->dev_addr)) {
2872 dev_err(&pdev->dev, "Invalid MAC Address\n");
2873 err = -EIO;
2874 goto err_eeprom;
2875 }
2876
2877 igb_set_default_mac_filter(adapter);
2878
2879 /* get firmware version for ethtool -i */
2880 igb_set_fw_version(adapter);
2881
2882 /* configure RXPBSIZE and TXPBSIZE */
2883 if (hw->mac.type == e1000_i210) {
2884 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2885 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2886 }
2887
2888 timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
2889 timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
2890
2891 INIT_WORK(&adapter->reset_task, igb_reset_task);
2892 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2893
2894 /* Initialize link properties that are user-changeable */
2895 adapter->fc_autoneg = true;
2896 hw->mac.autoneg = true;
2897 hw->phy.autoneg_advertised = 0x2f;
2898
2899 hw->fc.requested_mode = e1000_fc_default;
2900 hw->fc.current_mode = e1000_fc_default;
2901
2902 igb_validate_mdi_setting(hw);
2903
2904 /* By default, support wake on port A */
2905 if (hw->bus.func == 0)
2906 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2907
2908 /* Check the NVM for wake support on non-port A ports */
2909 if (hw->mac.type >= e1000_82580)
2910 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2911 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2912 &eeprom_data);
2913 else if (hw->bus.func == 1)
2914 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2915
2916 if (eeprom_data & IGB_EEPROM_APME)
2917 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2918
2919 /* now that we have the eeprom settings, apply the special cases where
2920 * the eeprom may be wrong or the board simply won't support wake on
2921 * lan on a particular port
2922 */
2923 switch (pdev->device) {
2924 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2925 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2926 break;
2927 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2928 case E1000_DEV_ID_82576_FIBER:
2929 case E1000_DEV_ID_82576_SERDES:
2930 /* Wake events only supported on port A for dual fiber
2931 * regardless of eeprom setting
2932 */
2933 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2934 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2935 break;
2936 case E1000_DEV_ID_82576_QUAD_COPPER:
2937 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2938 /* if quad port adapter, disable WoL on all but port A */
2939 if (global_quad_port_a != 0)
2940 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2941 else
2942 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2943 /* Reset for multiple quad port adapters */
2944 if (++global_quad_port_a == 4)
2945 global_quad_port_a = 0;
2946 break;
2947 default:
2948 /* If the device can't wake, don't set software support */
2949 if (!device_can_wakeup(&adapter->pdev->dev))
2950 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2951 }
2952
2953 /* initialize the wol settings based on the eeprom settings */
2954 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2955 adapter->wol |= E1000_WUFC_MAG;
2956
2957 /* Some vendors want WoL disabled by default, but still supported */
2958 if ((hw->mac.type == e1000_i350) &&
2959 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2960 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2961 adapter->wol = 0;
2962 }
2963
2964 /* Some vendors want the ability to Use the EEPROM setting as
2965 * enable/disable only, and not for capability
2966 */
2967 if (((hw->mac.type == e1000_i350) ||
2968 (hw->mac.type == e1000_i354)) &&
2969 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2970 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2971 adapter->wol = 0;
2972 }
2973 if (hw->mac.type == e1000_i350) {
2974 if (((pdev->subsystem_device == 0x5001) ||
2975 (pdev->subsystem_device == 0x5002)) &&
2976 (hw->bus.func == 0)) {
2977 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2978 adapter->wol = 0;
2979 }
2980 if (pdev->subsystem_device == 0x1F52)
2981 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2982 }
2983
2984 device_set_wakeup_enable(&adapter->pdev->dev,
2985 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2986
2987 /* reset the hardware with the new settings */
2988 igb_reset(adapter);
2989
2990 /* Init the I2C interface */
2991 err = igb_init_i2c(adapter);
2992 if (err) {
2993 dev_err(&pdev->dev, "failed to init i2c interface\n");
2994 goto err_eeprom;
2995 }
2996
2997 /* let the f/w know that the h/w is now under the control of the
2998 * driver.
2999 */
3000 igb_get_hw_control(adapter);
3001
3002 strcpy(netdev->name, "eth%d");
3003 err = register_netdev(netdev);
3004 if (err)
3005 goto err_register;
3006
3007 /* carrier off reporting is important to ethtool even BEFORE open */
3008 netif_carrier_off(netdev);
3009
3010 #ifdef CONFIG_IGB_DCA
3011 if (dca_add_requester(&pdev->dev) == 0) {
3012 adapter->flags |= IGB_FLAG_DCA_ENABLED;
3013 dev_info(&pdev->dev, "DCA enabled\n");
3014 igb_setup_dca(adapter);
3015 }
3016
3017 #endif
3018 #ifdef CONFIG_IGB_HWMON
3019 /* Initialize the thermal sensor on i350 devices. */
3020 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
3021 u16 ets_word;
3022
3023 /* Read the NVM to determine if this i350 device supports an
3024 * external thermal sensor.
3025 */
3026 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
3027 if (ets_word != 0x0000 && ets_word != 0xFFFF)
3028 adapter->ets = true;
3029 else
3030 adapter->ets = false;
3031 if (igb_sysfs_init(adapter))
3032 dev_err(&pdev->dev,
3033 "failed to allocate sysfs resources\n");
3034 } else {
3035 adapter->ets = false;
3036 }
3037 #endif
3038 /* Check if Media Autosense is enabled */
3039 adapter->ei = *ei;
3040 if (hw->dev_spec._82575.mas_capable)
3041 igb_init_mas(adapter);
3042
3043 /* do hw tstamp init after resetting */
3044 igb_ptp_init(adapter);
3045
3046 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
3047 /* print bus type/speed/width info, not applicable to i354 */
3048 if (hw->mac.type != e1000_i354) {
3049 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
3050 netdev->name,
3051 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
3052 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
3053 "unknown"),
3054 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
3055 "Width x4" :
3056 (hw->bus.width == e1000_bus_width_pcie_x2) ?
3057 "Width x2" :
3058 (hw->bus.width == e1000_bus_width_pcie_x1) ?
3059 "Width x1" : "unknown"), netdev->dev_addr);
3060 }
3061
3062 if ((hw->mac.type >= e1000_i210 ||
3063 igb_get_flash_presence_i210(hw))) {
3064 ret_val = igb_read_part_string(hw, part_str,
3065 E1000_PBANUM_LENGTH);
3066 } else {
3067 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
3068 }
3069
3070 if (ret_val)
3071 strcpy(part_str, "Unknown");
3072 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
3073 dev_info(&pdev->dev,
3074 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
3075 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
3076 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
3077 adapter->num_rx_queues, adapter->num_tx_queues);
3078 if (hw->phy.media_type == e1000_media_type_copper) {
3079 switch (hw->mac.type) {
3080 case e1000_i350:
3081 case e1000_i210:
3082 case e1000_i211:
3083 /* Enable EEE for internal copper PHY devices */
3084 err = igb_set_eee_i350(hw, true, true);
3085 if ((!err) &&
3086 (!hw->dev_spec._82575.eee_disable)) {
3087 adapter->eee_advert =
3088 MDIO_EEE_100TX | MDIO_EEE_1000T;
3089 adapter->flags |= IGB_FLAG_EEE;
3090 }
3091 break;
3092 case e1000_i354:
3093 if ((rd32(E1000_CTRL_EXT) &
3094 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
3095 err = igb_set_eee_i354(hw, true, true);
3096 if ((!err) &&
3097 (!hw->dev_spec._82575.eee_disable)) {
3098 adapter->eee_advert =
3099 MDIO_EEE_100TX | MDIO_EEE_1000T;
3100 adapter->flags |= IGB_FLAG_EEE;
3101 }
3102 }
3103 break;
3104 default:
3105 break;
3106 }
3107 }
3108 pm_runtime_put_noidle(&pdev->dev);
3109 return 0;
3110
3111 err_register:
3112 igb_release_hw_control(adapter);
3113 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
3114 err_eeprom:
3115 if (!igb_check_reset_block(hw))
3116 igb_reset_phy(hw);
3117
3118 if (hw->flash_address)
3119 iounmap(hw->flash_address);
3120 err_sw_init:
3121 kfree(adapter->mac_table);
3122 kfree(adapter->shadow_vfta);
3123 igb_clear_interrupt_scheme(adapter);
3124 #ifdef CONFIG_PCI_IOV
3125 igb_disable_sriov(pdev);
3126 #endif
3127 pci_iounmap(pdev, adapter->io_addr);
3128 err_ioremap:
3129 free_netdev(netdev);
3130 err_alloc_etherdev:
3131 pci_release_mem_regions(pdev);
3132 err_pci_reg:
3133 err_dma:
3134 pci_disable_device(pdev);
3135 return err;
3136 }
3137
3138 #ifdef CONFIG_PCI_IOV
3139 static int igb_disable_sriov(struct pci_dev *pdev)
3140 {
3141 struct net_device *netdev = pci_get_drvdata(pdev);
3142 struct igb_adapter *adapter = netdev_priv(netdev);
3143 struct e1000_hw *hw = &adapter->hw;
3144
3145 /* reclaim resources allocated to VFs */
3146 if (adapter->vf_data) {
3147 /* disable iov and allow time for transactions to clear */
3148 if (pci_vfs_assigned(pdev)) {
3149 dev_warn(&pdev->dev,
3150 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
3151 return -EPERM;
3152 } else {
3153 pci_disable_sriov(pdev);
3154 msleep(500);
3155 }
3156
3157 kfree(adapter->vf_mac_list);
3158 adapter->vf_mac_list = NULL;
3159 kfree(adapter->vf_data);
3160 adapter->vf_data = NULL;
3161 adapter->vfs_allocated_count = 0;
3162 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
3163 wrfl();
3164 msleep(100);
3165 dev_info(&pdev->dev, "IOV Disabled\n");
3166
3167 /* Re-enable DMA Coalescing flag since IOV is turned off */
3168 adapter->flags |= IGB_FLAG_DMAC;
3169 }
3170
3171 return 0;
3172 }
3173
3174 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
3175 {
3176 struct net_device *netdev = pci_get_drvdata(pdev);
3177 struct igb_adapter *adapter = netdev_priv(netdev);
3178 int old_vfs = pci_num_vf(pdev);
3179 struct vf_mac_filter *mac_list;
3180 int err = 0;
3181 int num_vf_mac_filters, i;
3182
3183 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
3184 err = -EPERM;
3185 goto out;
3186 }
3187 if (!num_vfs)
3188 goto out;
3189
3190 if (old_vfs) {
3191 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
3192 old_vfs, max_vfs);
3193 adapter->vfs_allocated_count = old_vfs;
3194 } else
3195 adapter->vfs_allocated_count = num_vfs;
3196
3197 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
3198 sizeof(struct vf_data_storage), GFP_KERNEL);
3199
3200 /* if allocation failed then we do not support SR-IOV */
3201 if (!adapter->vf_data) {
3202 adapter->vfs_allocated_count = 0;
3203 dev_err(&pdev->dev,
3204 "Unable to allocate memory for VF Data Storage\n");
3205 err = -ENOMEM;
3206 goto out;
3207 }
3208
3209 /* Due to the limited number of RAR entries calculate potential
3210 * number of MAC filters available for the VFs. Reserve entries
3211 * for PF default MAC, PF MAC filters and at least one RAR entry
3212 * for each VF for VF MAC.
3213 */
3214 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
3215 (1 + IGB_PF_MAC_FILTERS_RESERVED +
3216 adapter->vfs_allocated_count);
3217
3218 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
3219 sizeof(struct vf_mac_filter),
3220 GFP_KERNEL);
3221
3222 mac_list = adapter->vf_mac_list;
3223 INIT_LIST_HEAD(&adapter->vf_macs.l);
3224
3225 if (adapter->vf_mac_list) {
3226 /* Initialize list of VF MAC filters */
3227 for (i = 0; i < num_vf_mac_filters; i++) {
3228 mac_list->vf = -1;
3229 mac_list->free = true;
3230 list_add(&mac_list->l, &adapter->vf_macs.l);
3231 mac_list++;
3232 }
3233 } else {
3234 /* If we could not allocate memory for the VF MAC filters
3235 * we can continue without this feature but warn user.
3236 */
3237 dev_err(&pdev->dev,
3238 "Unable to allocate memory for VF MAC filter list\n");
3239 }
3240
3241 /* only call pci_enable_sriov() if no VFs are allocated already */
3242 if (!old_vfs) {
3243 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
3244 if (err)
3245 goto err_out;
3246 }
3247 dev_info(&pdev->dev, "%d VFs allocated\n",
3248 adapter->vfs_allocated_count);
3249 for (i = 0; i < adapter->vfs_allocated_count; i++)
3250 igb_vf_configure(adapter, i);
3251
3252 /* DMA Coalescing is not supported in IOV mode. */
3253 adapter->flags &= ~IGB_FLAG_DMAC;
3254 goto out;
3255
3256 err_out:
3257 kfree(adapter->vf_mac_list);
3258 adapter->vf_mac_list = NULL;
3259 kfree(adapter->vf_data);
3260 adapter->vf_data = NULL;
3261 adapter->vfs_allocated_count = 0;
3262 out:
3263 return err;
3264 }
3265
3266 #endif
3267 /**
3268 * igb_remove_i2c - Cleanup I2C interface
3269 * @adapter: pointer to adapter structure
3270 **/
3271 static void igb_remove_i2c(struct igb_adapter *adapter)
3272 {
3273 /* free the adapter bus structure */
3274 i2c_del_adapter(&adapter->i2c_adap);
3275 }
3276
3277 /**
3278 * igb_remove - Device Removal Routine
3279 * @pdev: PCI device information struct
3280 *
3281 * igb_remove is called by the PCI subsystem to alert the driver
3282 * that it should release a PCI device. The could be caused by a
3283 * Hot-Plug event, or because the driver is going to be removed from
3284 * memory.
3285 **/
3286 static void igb_remove(struct pci_dev *pdev)
3287 {
3288 struct net_device *netdev = pci_get_drvdata(pdev);
3289 struct igb_adapter *adapter = netdev_priv(netdev);
3290 struct e1000_hw *hw = &adapter->hw;
3291
3292 pm_runtime_get_noresume(&pdev->dev);
3293 #ifdef CONFIG_IGB_HWMON
3294 igb_sysfs_exit(adapter);
3295 #endif
3296 igb_remove_i2c(adapter);
3297 igb_ptp_stop(adapter);
3298 /* The watchdog timer may be rescheduled, so explicitly
3299 * disable watchdog from being rescheduled.
3300 */
3301 set_bit(__IGB_DOWN, &adapter->state);
3302 del_timer_sync(&adapter->watchdog_timer);
3303 del_timer_sync(&adapter->phy_info_timer);
3304
3305 cancel_work_sync(&adapter->reset_task);
3306 cancel_work_sync(&adapter->watchdog_task);
3307
3308 #ifdef CONFIG_IGB_DCA
3309 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
3310 dev_info(&pdev->dev, "DCA disabled\n");
3311 dca_remove_requester(&pdev->dev);
3312 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
3313 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
3314 }
3315 #endif
3316
3317 /* Release control of h/w to f/w. If f/w is AMT enabled, this
3318 * would have already happened in close and is redundant.
3319 */
3320 igb_release_hw_control(adapter);
3321
3322 #ifdef CONFIG_PCI_IOV
3323 igb_disable_sriov(pdev);
3324 #endif
3325
3326 unregister_netdev(netdev);
3327
3328 igb_clear_interrupt_scheme(adapter);
3329
3330 pci_iounmap(pdev, adapter->io_addr);
3331 if (hw->flash_address)
3332 iounmap(hw->flash_address);
3333 pci_release_mem_regions(pdev);
3334
3335 kfree(adapter->mac_table);
3336 kfree(adapter->shadow_vfta);
3337 free_netdev(netdev);
3338
3339 pci_disable_pcie_error_reporting(pdev);
3340
3341 pci_disable_device(pdev);
3342 }
3343
3344 /**
3345 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3346 * @adapter: board private structure to initialize
3347 *
3348 * This function initializes the vf specific data storage and then attempts to
3349 * allocate the VFs. The reason for ordering it this way is because it is much
3350 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3351 * the memory for the VFs.
3352 **/
3353 static void igb_probe_vfs(struct igb_adapter *adapter)
3354 {
3355 #ifdef CONFIG_PCI_IOV
3356 struct pci_dev *pdev = adapter->pdev;
3357 struct e1000_hw *hw = &adapter->hw;
3358
3359 /* Virtualization features not supported on i210 family. */
3360 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3361 return;
3362
3363 /* Of the below we really only want the effect of getting
3364 * IGB_FLAG_HAS_MSIX set (if available), without which
3365 * igb_enable_sriov() has no effect.
3366 */
3367 igb_set_interrupt_capability(adapter, true);
3368 igb_reset_interrupt_capability(adapter);
3369
3370 pci_sriov_set_totalvfs(pdev, 7);
3371 igb_enable_sriov(pdev, max_vfs);
3372
3373 #endif /* CONFIG_PCI_IOV */
3374 }
3375
3376 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3377 {
3378 struct e1000_hw *hw = &adapter->hw;
3379 u32 max_rss_queues;
3380
3381 /* Determine the maximum number of RSS queues supported. */
3382 switch (hw->mac.type) {
3383 case e1000_i211:
3384 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3385 break;
3386 case e1000_82575:
3387 case e1000_i210:
3388 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3389 break;
3390 case e1000_i350:
3391 /* I350 cannot do RSS and SR-IOV at the same time */
3392 if (!!adapter->vfs_allocated_count) {
3393 max_rss_queues = 1;
3394 break;
3395 }
3396 /* fall through */
3397 case e1000_82576:
3398 if (!!adapter->vfs_allocated_count) {
3399 max_rss_queues = 2;
3400 break;
3401 }
3402 /* fall through */
3403 case e1000_82580:
3404 case e1000_i354:
3405 default:
3406 max_rss_queues = IGB_MAX_RX_QUEUES;
3407 break;
3408 }
3409
3410 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3411
3412 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3413 }
3414
3415 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3416 const u32 max_rss_queues)
3417 {
3418 struct e1000_hw *hw = &adapter->hw;
3419
3420 /* Determine if we need to pair queues. */
3421 switch (hw->mac.type) {
3422 case e1000_82575:
3423 case e1000_i211:
3424 /* Device supports enough interrupts without queue pairing. */
3425 break;
3426 case e1000_82576:
3427 case e1000_82580:
3428 case e1000_i350:
3429 case e1000_i354:
3430 case e1000_i210:
3431 default:
3432 /* If rss_queues > half of max_rss_queues, pair the queues in
3433 * order to conserve interrupts due to limited supply.
3434 */
3435 if (adapter->rss_queues > (max_rss_queues / 2))
3436 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3437 else
3438 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3439 break;
3440 }
3441 }
3442
3443 /**
3444 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3445 * @adapter: board private structure to initialize
3446 *
3447 * igb_sw_init initializes the Adapter private data structure.
3448 * Fields are initialized based on PCI device information and
3449 * OS network device settings (MTU size).
3450 **/
3451 static int igb_sw_init(struct igb_adapter *adapter)
3452 {
3453 struct e1000_hw *hw = &adapter->hw;
3454 struct net_device *netdev = adapter->netdev;
3455 struct pci_dev *pdev = adapter->pdev;
3456
3457 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3458
3459 /* set default ring sizes */
3460 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3461 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3462
3463 /* set default ITR values */
3464 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3465 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3466
3467 /* set default work limits */
3468 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3469
3470 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3471 VLAN_HLEN;
3472 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3473
3474 spin_lock_init(&adapter->nfc_lock);
3475 spin_lock_init(&adapter->stats64_lock);
3476 #ifdef CONFIG_PCI_IOV
3477 switch (hw->mac.type) {
3478 case e1000_82576:
3479 case e1000_i350:
3480 if (max_vfs > 7) {
3481 dev_warn(&pdev->dev,
3482 "Maximum of 7 VFs per PF, using max\n");
3483 max_vfs = adapter->vfs_allocated_count = 7;
3484 } else
3485 adapter->vfs_allocated_count = max_vfs;
3486 if (adapter->vfs_allocated_count)
3487 dev_warn(&pdev->dev,
3488 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3489 break;
3490 default:
3491 break;
3492 }
3493 #endif /* CONFIG_PCI_IOV */
3494
3495 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3496 adapter->flags |= IGB_FLAG_HAS_MSIX;
3497
3498 adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3499 hw->mac.rar_entry_count, GFP_ATOMIC);
3500 if (!adapter->mac_table)
3501 return -ENOMEM;
3502
3503 igb_probe_vfs(adapter);
3504
3505 igb_init_queue_configuration(adapter);
3506
3507 /* Setup and initialize a copy of the hw vlan table array */
3508 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3509 GFP_ATOMIC);
3510 if (!adapter->shadow_vfta)
3511 return -ENOMEM;
3512
3513 /* This call may decrease the number of queues */
3514 if (igb_init_interrupt_scheme(adapter, true)) {
3515 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3516 return -ENOMEM;
3517 }
3518
3519 /* Explicitly disable IRQ since the NIC can be in any state. */
3520 igb_irq_disable(adapter);
3521
3522 if (hw->mac.type >= e1000_i350)
3523 adapter->flags &= ~IGB_FLAG_DMAC;
3524
3525 set_bit(__IGB_DOWN, &adapter->state);
3526 return 0;
3527 }
3528
3529 /**
3530 * igb_open - Called when a network interface is made active
3531 * @netdev: network interface device structure
3532 *
3533 * Returns 0 on success, negative value on failure
3534 *
3535 * The open entry point is called when a network interface is made
3536 * active by the system (IFF_UP). At this point all resources needed
3537 * for transmit and receive operations are allocated, the interrupt
3538 * handler is registered with the OS, the watchdog timer is started,
3539 * and the stack is notified that the interface is ready.
3540 **/
3541 static int __igb_open(struct net_device *netdev, bool resuming)
3542 {
3543 struct igb_adapter *adapter = netdev_priv(netdev);
3544 struct e1000_hw *hw = &adapter->hw;
3545 struct pci_dev *pdev = adapter->pdev;
3546 int err;
3547 int i;
3548
3549 /* disallow open during test */
3550 if (test_bit(__IGB_TESTING, &adapter->state)) {
3551 WARN_ON(resuming);
3552 return -EBUSY;
3553 }
3554
3555 if (!resuming)
3556 pm_runtime_get_sync(&pdev->dev);
3557
3558 netif_carrier_off(netdev);
3559
3560 /* allocate transmit descriptors */
3561 err = igb_setup_all_tx_resources(adapter);
3562 if (err)
3563 goto err_setup_tx;
3564
3565 /* allocate receive descriptors */
3566 err = igb_setup_all_rx_resources(adapter);
3567 if (err)
3568 goto err_setup_rx;
3569
3570 igb_power_up_link(adapter);
3571
3572 /* before we allocate an interrupt, we must be ready to handle it.
3573 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3574 * as soon as we call pci_request_irq, so we have to setup our
3575 * clean_rx handler before we do so.
3576 */
3577 igb_configure(adapter);
3578
3579 err = igb_request_irq(adapter);
3580 if (err)
3581 goto err_req_irq;
3582
3583 /* Notify the stack of the actual queue counts. */
3584 err = netif_set_real_num_tx_queues(adapter->netdev,
3585 adapter->num_tx_queues);
3586 if (err)
3587 goto err_set_queues;
3588
3589 err = netif_set_real_num_rx_queues(adapter->netdev,
3590 adapter->num_rx_queues);
3591 if (err)
3592 goto err_set_queues;
3593
3594 /* From here on the code is the same as igb_up() */
3595 clear_bit(__IGB_DOWN, &adapter->state);
3596
3597 for (i = 0; i < adapter->num_q_vectors; i++)
3598 napi_enable(&(adapter->q_vector[i]->napi));
3599
3600 /* Clear any pending interrupts. */
3601 rd32(E1000_ICR);
3602
3603 igb_irq_enable(adapter);
3604
3605 /* notify VFs that reset has been completed */
3606 if (adapter->vfs_allocated_count) {
3607 u32 reg_data = rd32(E1000_CTRL_EXT);
3608
3609 reg_data |= E1000_CTRL_EXT_PFRSTD;
3610 wr32(E1000_CTRL_EXT, reg_data);
3611 }
3612
3613 netif_tx_start_all_queues(netdev);
3614
3615 if (!resuming)
3616 pm_runtime_put(&pdev->dev);
3617
3618 /* start the watchdog. */
3619 hw->mac.get_link_status = 1;
3620 schedule_work(&adapter->watchdog_task);
3621
3622 return 0;
3623
3624 err_set_queues:
3625 igb_free_irq(adapter);
3626 err_req_irq:
3627 igb_release_hw_control(adapter);
3628 igb_power_down_link(adapter);
3629 igb_free_all_rx_resources(adapter);
3630 err_setup_rx:
3631 igb_free_all_tx_resources(adapter);
3632 err_setup_tx:
3633 igb_reset(adapter);
3634 if (!resuming)
3635 pm_runtime_put(&pdev->dev);
3636
3637 return err;
3638 }
3639
3640 int igb_open(struct net_device *netdev)
3641 {
3642 return __igb_open(netdev, false);
3643 }
3644
3645 /**
3646 * igb_close - Disables a network interface
3647 * @netdev: network interface device structure
3648 *
3649 * Returns 0, this is not allowed to fail
3650 *
3651 * The close entry point is called when an interface is de-activated
3652 * by the OS. The hardware is still under the driver's control, but
3653 * needs to be disabled. A global MAC reset is issued to stop the
3654 * hardware, and all transmit and receive resources are freed.
3655 **/
3656 static int __igb_close(struct net_device *netdev, bool suspending)
3657 {
3658 struct igb_adapter *adapter = netdev_priv(netdev);
3659 struct pci_dev *pdev = adapter->pdev;
3660
3661 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3662
3663 if (!suspending)
3664 pm_runtime_get_sync(&pdev->dev);
3665
3666 igb_down(adapter);
3667 igb_free_irq(adapter);
3668
3669 igb_free_all_tx_resources(adapter);
3670 igb_free_all_rx_resources(adapter);
3671
3672 if (!suspending)
3673 pm_runtime_put_sync(&pdev->dev);
3674 return 0;
3675 }
3676
3677 int igb_close(struct net_device *netdev)
3678 {
3679 if (netif_device_present(netdev))
3680 return __igb_close(netdev, false);
3681 return 0;
3682 }
3683
3684 /**
3685 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3686 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3687 *
3688 * Return 0 on success, negative on failure
3689 **/
3690 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3691 {
3692 struct device *dev = tx_ring->dev;
3693 int size;
3694
3695 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3696
3697 tx_ring->tx_buffer_info = vmalloc(size);
3698 if (!tx_ring->tx_buffer_info)
3699 goto err;
3700
3701 /* round up to nearest 4K */
3702 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3703 tx_ring->size = ALIGN(tx_ring->size, 4096);
3704
3705 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3706 &tx_ring->dma, GFP_KERNEL);
3707 if (!tx_ring->desc)
3708 goto err;
3709
3710 tx_ring->next_to_use = 0;
3711 tx_ring->next_to_clean = 0;
3712
3713 return 0;
3714
3715 err:
3716 vfree(tx_ring->tx_buffer_info);
3717 tx_ring->tx_buffer_info = NULL;
3718 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3719 return -ENOMEM;
3720 }
3721
3722 /**
3723 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3724 * (Descriptors) for all queues
3725 * @adapter: board private structure
3726 *
3727 * Return 0 on success, negative on failure
3728 **/
3729 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3730 {
3731 struct pci_dev *pdev = adapter->pdev;
3732 int i, err = 0;
3733
3734 for (i = 0; i < adapter->num_tx_queues; i++) {
3735 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3736 if (err) {
3737 dev_err(&pdev->dev,
3738 "Allocation for Tx Queue %u failed\n", i);
3739 for (i--; i >= 0; i--)
3740 igb_free_tx_resources(adapter->tx_ring[i]);
3741 break;
3742 }
3743 }
3744
3745 return err;
3746 }
3747
3748 /**
3749 * igb_setup_tctl - configure the transmit control registers
3750 * @adapter: Board private structure
3751 **/
3752 void igb_setup_tctl(struct igb_adapter *adapter)
3753 {
3754 struct e1000_hw *hw = &adapter->hw;
3755 u32 tctl;
3756
3757 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3758 wr32(E1000_TXDCTL(0), 0);
3759
3760 /* Program the Transmit Control Register */
3761 tctl = rd32(E1000_TCTL);
3762 tctl &= ~E1000_TCTL_CT;
3763 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3764 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3765
3766 igb_config_collision_dist(hw);
3767
3768 /* Enable transmits */
3769 tctl |= E1000_TCTL_EN;
3770
3771 wr32(E1000_TCTL, tctl);
3772 }
3773
3774 /**
3775 * igb_configure_tx_ring - Configure transmit ring after Reset
3776 * @adapter: board private structure
3777 * @ring: tx ring to configure
3778 *
3779 * Configure a transmit ring after a reset.
3780 **/
3781 void igb_configure_tx_ring(struct igb_adapter *adapter,
3782 struct igb_ring *ring)
3783 {
3784 struct e1000_hw *hw = &adapter->hw;
3785 u32 txdctl = 0;
3786 u64 tdba = ring->dma;
3787 int reg_idx = ring->reg_idx;
3788
3789 /* disable the queue */
3790 wr32(E1000_TXDCTL(reg_idx), 0);
3791 wrfl();
3792 mdelay(10);
3793
3794 wr32(E1000_TDLEN(reg_idx),
3795 ring->count * sizeof(union e1000_adv_tx_desc));
3796 wr32(E1000_TDBAL(reg_idx),
3797 tdba & 0x00000000ffffffffULL);
3798 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3799
3800 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3801 wr32(E1000_TDH(reg_idx), 0);
3802 writel(0, ring->tail);
3803
3804 txdctl |= IGB_TX_PTHRESH;
3805 txdctl |= IGB_TX_HTHRESH << 8;
3806 txdctl |= IGB_TX_WTHRESH << 16;
3807
3808 /* reinitialize tx_buffer_info */
3809 memset(ring->tx_buffer_info, 0,
3810 sizeof(struct igb_tx_buffer) * ring->count);
3811
3812 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3813 wr32(E1000_TXDCTL(reg_idx), txdctl);
3814 }
3815
3816 /**
3817 * igb_configure_tx - Configure transmit Unit after Reset
3818 * @adapter: board private structure
3819 *
3820 * Configure the Tx unit of the MAC after a reset.
3821 **/
3822 static void igb_configure_tx(struct igb_adapter *adapter)
3823 {
3824 int i;
3825
3826 for (i = 0; i < adapter->num_tx_queues; i++)
3827 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3828 }
3829
3830 /**
3831 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3832 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3833 *
3834 * Returns 0 on success, negative on failure
3835 **/
3836 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3837 {
3838 struct device *dev = rx_ring->dev;
3839 int size;
3840
3841 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3842
3843 rx_ring->rx_buffer_info = vmalloc(size);
3844 if (!rx_ring->rx_buffer_info)
3845 goto err;
3846
3847 /* Round up to nearest 4K */
3848 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3849 rx_ring->size = ALIGN(rx_ring->size, 4096);
3850
3851 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3852 &rx_ring->dma, GFP_KERNEL);
3853 if (!rx_ring->desc)
3854 goto err;
3855
3856 rx_ring->next_to_alloc = 0;
3857 rx_ring->next_to_clean = 0;
3858 rx_ring->next_to_use = 0;
3859
3860 return 0;
3861
3862 err:
3863 vfree(rx_ring->rx_buffer_info);
3864 rx_ring->rx_buffer_info = NULL;
3865 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3866 return -ENOMEM;
3867 }
3868
3869 /**
3870 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3871 * (Descriptors) for all queues
3872 * @adapter: board private structure
3873 *
3874 * Return 0 on success, negative on failure
3875 **/
3876 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3877 {
3878 struct pci_dev *pdev = adapter->pdev;
3879 int i, err = 0;
3880
3881 for (i = 0; i < adapter->num_rx_queues; i++) {
3882 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3883 if (err) {
3884 dev_err(&pdev->dev,
3885 "Allocation for Rx Queue %u failed\n", i);
3886 for (i--; i >= 0; i--)
3887 igb_free_rx_resources(adapter->rx_ring[i]);
3888 break;
3889 }
3890 }
3891
3892 return err;
3893 }
3894
3895 /**
3896 * igb_setup_mrqc - configure the multiple receive queue control registers
3897 * @adapter: Board private structure
3898 **/
3899 static void igb_setup_mrqc(struct igb_adapter *adapter)
3900 {
3901 struct e1000_hw *hw = &adapter->hw;
3902 u32 mrqc, rxcsum;
3903 u32 j, num_rx_queues;
3904 u32 rss_key[10];
3905
3906 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3907 for (j = 0; j < 10; j++)
3908 wr32(E1000_RSSRK(j), rss_key[j]);
3909
3910 num_rx_queues = adapter->rss_queues;
3911
3912 switch (hw->mac.type) {
3913 case e1000_82576:
3914 /* 82576 supports 2 RSS queues for SR-IOV */
3915 if (adapter->vfs_allocated_count)
3916 num_rx_queues = 2;
3917 break;
3918 default:
3919 break;
3920 }
3921
3922 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3923 for (j = 0; j < IGB_RETA_SIZE; j++)
3924 adapter->rss_indir_tbl[j] =
3925 (j * num_rx_queues) / IGB_RETA_SIZE;
3926 adapter->rss_indir_tbl_init = num_rx_queues;
3927 }
3928 igb_write_rss_indir_tbl(adapter);
3929
3930 /* Disable raw packet checksumming so that RSS hash is placed in
3931 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3932 * offloads as they are enabled by default
3933 */
3934 rxcsum = rd32(E1000_RXCSUM);
3935 rxcsum |= E1000_RXCSUM_PCSD;
3936
3937 if (adapter->hw.mac.type >= e1000_82576)
3938 /* Enable Receive Checksum Offload for SCTP */
3939 rxcsum |= E1000_RXCSUM_CRCOFL;
3940
3941 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3942 wr32(E1000_RXCSUM, rxcsum);
3943
3944 /* Generate RSS hash based on packet types, TCP/UDP
3945 * port numbers and/or IPv4/v6 src and dst addresses
3946 */
3947 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3948 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3949 E1000_MRQC_RSS_FIELD_IPV6 |
3950 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3951 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3952
3953 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3954 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3955 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3956 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3957
3958 /* If VMDq is enabled then we set the appropriate mode for that, else
3959 * we default to RSS so that an RSS hash is calculated per packet even
3960 * if we are only using one queue
3961 */
3962 if (adapter->vfs_allocated_count) {
3963 if (hw->mac.type > e1000_82575) {
3964 /* Set the default pool for the PF's first queue */
3965 u32 vtctl = rd32(E1000_VT_CTL);
3966
3967 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3968 E1000_VT_CTL_DISABLE_DEF_POOL);
3969 vtctl |= adapter->vfs_allocated_count <<
3970 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3971 wr32(E1000_VT_CTL, vtctl);
3972 }
3973 if (adapter->rss_queues > 1)
3974 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3975 else
3976 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3977 } else {
3978 if (hw->mac.type != e1000_i211)
3979 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3980 }
3981 igb_vmm_control(adapter);
3982
3983 wr32(E1000_MRQC, mrqc);
3984 }
3985
3986 /**
3987 * igb_setup_rctl - configure the receive control registers
3988 * @adapter: Board private structure
3989 **/
3990 void igb_setup_rctl(struct igb_adapter *adapter)
3991 {
3992 struct e1000_hw *hw = &adapter->hw;
3993 u32 rctl;
3994
3995 rctl = rd32(E1000_RCTL);
3996
3997 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3998 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3999
4000 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
4001 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
4002
4003 /* enable stripping of CRC. It's unlikely this will break BMC
4004 * redirection as it did with e1000. Newer features require
4005 * that the HW strips the CRC.
4006 */
4007 rctl |= E1000_RCTL_SECRC;
4008
4009 /* disable store bad packets and clear size bits. */
4010 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
4011
4012 /* enable LPE to allow for reception of jumbo frames */
4013 rctl |= E1000_RCTL_LPE;
4014
4015 /* disable queue 0 to prevent tail write w/o re-config */
4016 wr32(E1000_RXDCTL(0), 0);
4017
4018 /* Attention!!! For SR-IOV PF driver operations you must enable
4019 * queue drop for all VF and PF queues to prevent head of line blocking
4020 * if an un-trusted VF does not provide descriptors to hardware.
4021 */
4022 if (adapter->vfs_allocated_count) {
4023 /* set all queue drop enable bits */
4024 wr32(E1000_QDE, ALL_QUEUES);
4025 }
4026
4027 /* This is useful for sniffing bad packets. */
4028 if (adapter->netdev->features & NETIF_F_RXALL) {
4029 /* UPE and MPE will be handled by normal PROMISC logic
4030 * in e1000e_set_rx_mode
4031 */
4032 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
4033 E1000_RCTL_BAM | /* RX All Bcast Pkts */
4034 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
4035
4036 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
4037 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
4038 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
4039 * and that breaks VLANs.
4040 */
4041 }
4042
4043 wr32(E1000_RCTL, rctl);
4044 }
4045
4046 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
4047 int vfn)
4048 {
4049 struct e1000_hw *hw = &adapter->hw;
4050 u32 vmolr;
4051
4052 if (size > MAX_JUMBO_FRAME_SIZE)
4053 size = MAX_JUMBO_FRAME_SIZE;
4054
4055 vmolr = rd32(E1000_VMOLR(vfn));
4056 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4057 vmolr |= size | E1000_VMOLR_LPE;
4058 wr32(E1000_VMOLR(vfn), vmolr);
4059
4060 return 0;
4061 }
4062
4063 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
4064 int vfn, bool enable)
4065 {
4066 struct e1000_hw *hw = &adapter->hw;
4067 u32 val, reg;
4068
4069 if (hw->mac.type < e1000_82576)
4070 return;
4071
4072 if (hw->mac.type == e1000_i350)
4073 reg = E1000_DVMOLR(vfn);
4074 else
4075 reg = E1000_VMOLR(vfn);
4076
4077 val = rd32(reg);
4078 if (enable)
4079 val |= E1000_VMOLR_STRVLAN;
4080 else
4081 val &= ~(E1000_VMOLR_STRVLAN);
4082 wr32(reg, val);
4083 }
4084
4085 static inline void igb_set_vmolr(struct igb_adapter *adapter,
4086 int vfn, bool aupe)
4087 {
4088 struct e1000_hw *hw = &adapter->hw;
4089 u32 vmolr;
4090
4091 /* This register exists only on 82576 and newer so if we are older then
4092 * we should exit and do nothing
4093 */
4094 if (hw->mac.type < e1000_82576)
4095 return;
4096
4097 vmolr = rd32(E1000_VMOLR(vfn));
4098 if (aupe)
4099 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
4100 else
4101 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
4102
4103 /* clear all bits that might not be set */
4104 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
4105
4106 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
4107 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
4108 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
4109 * multicast packets
4110 */
4111 if (vfn <= adapter->vfs_allocated_count)
4112 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
4113
4114 wr32(E1000_VMOLR(vfn), vmolr);
4115 }
4116
4117 /**
4118 * igb_configure_rx_ring - Configure a receive ring after Reset
4119 * @adapter: board private structure
4120 * @ring: receive ring to be configured
4121 *
4122 * Configure the Rx unit of the MAC after a reset.
4123 **/
4124 void igb_configure_rx_ring(struct igb_adapter *adapter,
4125 struct igb_ring *ring)
4126 {
4127 struct e1000_hw *hw = &adapter->hw;
4128 union e1000_adv_rx_desc *rx_desc;
4129 u64 rdba = ring->dma;
4130 int reg_idx = ring->reg_idx;
4131 u32 srrctl = 0, rxdctl = 0;
4132
4133 /* disable the queue */
4134 wr32(E1000_RXDCTL(reg_idx), 0);
4135
4136 /* Set DMA base address registers */
4137 wr32(E1000_RDBAL(reg_idx),
4138 rdba & 0x00000000ffffffffULL);
4139 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
4140 wr32(E1000_RDLEN(reg_idx),
4141 ring->count * sizeof(union e1000_adv_rx_desc));
4142
4143 /* initialize head and tail */
4144 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
4145 wr32(E1000_RDH(reg_idx), 0);
4146 writel(0, ring->tail);
4147
4148 /* set descriptor configuration */
4149 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
4150 if (ring_uses_large_buffer(ring))
4151 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4152 else
4153 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
4154 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
4155 if (hw->mac.type >= e1000_82580)
4156 srrctl |= E1000_SRRCTL_TIMESTAMP;
4157 /* Only set Drop Enable if we are supporting multiple queues */
4158 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
4159 srrctl |= E1000_SRRCTL_DROP_EN;
4160
4161 wr32(E1000_SRRCTL(reg_idx), srrctl);
4162
4163 /* set filtering for VMDQ pools */
4164 igb_set_vmolr(adapter, reg_idx & 0x7, true);
4165
4166 rxdctl |= IGB_RX_PTHRESH;
4167 rxdctl |= IGB_RX_HTHRESH << 8;
4168 rxdctl |= IGB_RX_WTHRESH << 16;
4169
4170 /* initialize rx_buffer_info */
4171 memset(ring->rx_buffer_info, 0,
4172 sizeof(struct igb_rx_buffer) * ring->count);
4173
4174 /* initialize Rx descriptor 0 */
4175 rx_desc = IGB_RX_DESC(ring, 0);
4176 rx_desc->wb.upper.length = 0;
4177
4178 /* enable receive descriptor fetching */
4179 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
4180 wr32(E1000_RXDCTL(reg_idx), rxdctl);
4181 }
4182
4183 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
4184 struct igb_ring *rx_ring)
4185 {
4186 /* set build_skb and buffer size flags */
4187 clear_ring_build_skb_enabled(rx_ring);
4188 clear_ring_uses_large_buffer(rx_ring);
4189
4190 if (adapter->flags & IGB_FLAG_RX_LEGACY)
4191 return;
4192
4193 set_ring_build_skb_enabled(rx_ring);
4194
4195 #if (PAGE_SIZE < 8192)
4196 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4197 return;
4198
4199 set_ring_uses_large_buffer(rx_ring);
4200 #endif
4201 }
4202
4203 /**
4204 * igb_configure_rx - Configure receive Unit after Reset
4205 * @adapter: board private structure
4206 *
4207 * Configure the Rx unit of the MAC after a reset.
4208 **/
4209 static void igb_configure_rx(struct igb_adapter *adapter)
4210 {
4211 int i;
4212
4213 /* set the correct pool for the PF default MAC address in entry 0 */
4214 igb_set_default_mac_filter(adapter);
4215
4216 /* Setup the HW Rx Head and Tail Descriptor Pointers and
4217 * the Base and Length of the Rx Descriptor Ring
4218 */
4219 for (i = 0; i < adapter->num_rx_queues; i++) {
4220 struct igb_ring *rx_ring = adapter->rx_ring[i];
4221
4222 igb_set_rx_buffer_len(adapter, rx_ring);
4223 igb_configure_rx_ring(adapter, rx_ring);
4224 }
4225 }
4226
4227 /**
4228 * igb_free_tx_resources - Free Tx Resources per Queue
4229 * @tx_ring: Tx descriptor ring for a specific queue
4230 *
4231 * Free all transmit software resources
4232 **/
4233 void igb_free_tx_resources(struct igb_ring *tx_ring)
4234 {
4235 igb_clean_tx_ring(tx_ring);
4236
4237 vfree(tx_ring->tx_buffer_info);
4238 tx_ring->tx_buffer_info = NULL;
4239
4240 /* if not set, then don't free */
4241 if (!tx_ring->desc)
4242 return;
4243
4244 dma_free_coherent(tx_ring->dev, tx_ring->size,
4245 tx_ring->desc, tx_ring->dma);
4246
4247 tx_ring->desc = NULL;
4248 }
4249
4250 /**
4251 * igb_free_all_tx_resources - Free Tx Resources for All Queues
4252 * @adapter: board private structure
4253 *
4254 * Free all transmit software resources
4255 **/
4256 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
4257 {
4258 int i;
4259
4260 for (i = 0; i < adapter->num_tx_queues; i++)
4261 if (adapter->tx_ring[i])
4262 igb_free_tx_resources(adapter->tx_ring[i]);
4263 }
4264
4265 /**
4266 * igb_clean_tx_ring - Free Tx Buffers
4267 * @tx_ring: ring to be cleaned
4268 **/
4269 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
4270 {
4271 u16 i = tx_ring->next_to_clean;
4272 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
4273
4274 while (i != tx_ring->next_to_use) {
4275 union e1000_adv_tx_desc *eop_desc, *tx_desc;
4276
4277 /* Free all the Tx ring sk_buffs */
4278 dev_kfree_skb_any(tx_buffer->skb);
4279
4280 /* unmap skb header data */
4281 dma_unmap_single(tx_ring->dev,
4282 dma_unmap_addr(tx_buffer, dma),
4283 dma_unmap_len(tx_buffer, len),
4284 DMA_TO_DEVICE);
4285
4286 /* check for eop_desc to determine the end of the packet */
4287 eop_desc = tx_buffer->next_to_watch;
4288 tx_desc = IGB_TX_DESC(tx_ring, i);
4289
4290 /* unmap remaining buffers */
4291 while (tx_desc != eop_desc) {
4292 tx_buffer++;
4293 tx_desc++;
4294 i++;
4295 if (unlikely(i == tx_ring->count)) {
4296 i = 0;
4297 tx_buffer = tx_ring->tx_buffer_info;
4298 tx_desc = IGB_TX_DESC(tx_ring, 0);
4299 }
4300
4301 /* unmap any remaining paged data */
4302 if (dma_unmap_len(tx_buffer, len))
4303 dma_unmap_page(tx_ring->dev,
4304 dma_unmap_addr(tx_buffer, dma),
4305 dma_unmap_len(tx_buffer, len),
4306 DMA_TO_DEVICE);
4307 }
4308
4309 /* move us one more past the eop_desc for start of next pkt */
4310 tx_buffer++;
4311 i++;
4312 if (unlikely(i == tx_ring->count)) {
4313 i = 0;
4314 tx_buffer = tx_ring->tx_buffer_info;
4315 }
4316 }
4317
4318 /* reset BQL for queue */
4319 netdev_tx_reset_queue(txring_txq(tx_ring));
4320
4321 /* reset next_to_use and next_to_clean */
4322 tx_ring->next_to_use = 0;
4323 tx_ring->next_to_clean = 0;
4324 }
4325
4326 /**
4327 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
4328 * @adapter: board private structure
4329 **/
4330 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
4331 {
4332 int i;
4333
4334 for (i = 0; i < adapter->num_tx_queues; i++)
4335 if (adapter->tx_ring[i])
4336 igb_clean_tx_ring(adapter->tx_ring[i]);
4337 }
4338
4339 /**
4340 * igb_free_rx_resources - Free Rx Resources
4341 * @rx_ring: ring to clean the resources from
4342 *
4343 * Free all receive software resources
4344 **/
4345 void igb_free_rx_resources(struct igb_ring *rx_ring)
4346 {
4347 igb_clean_rx_ring(rx_ring);
4348
4349 vfree(rx_ring->rx_buffer_info);
4350 rx_ring->rx_buffer_info = NULL;
4351
4352 /* if not set, then don't free */
4353 if (!rx_ring->desc)
4354 return;
4355
4356 dma_free_coherent(rx_ring->dev, rx_ring->size,
4357 rx_ring->desc, rx_ring->dma);
4358
4359 rx_ring->desc = NULL;
4360 }
4361
4362 /**
4363 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4364 * @adapter: board private structure
4365 *
4366 * Free all receive software resources
4367 **/
4368 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4369 {
4370 int i;
4371
4372 for (i = 0; i < adapter->num_rx_queues; i++)
4373 if (adapter->rx_ring[i])
4374 igb_free_rx_resources(adapter->rx_ring[i]);
4375 }
4376
4377 /**
4378 * igb_clean_rx_ring - Free Rx Buffers per Queue
4379 * @rx_ring: ring to free buffers from
4380 **/
4381 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4382 {
4383 u16 i = rx_ring->next_to_clean;
4384
4385 if (rx_ring->skb)
4386 dev_kfree_skb(rx_ring->skb);
4387 rx_ring->skb = NULL;
4388
4389 /* Free all the Rx ring sk_buffs */
4390 while (i != rx_ring->next_to_alloc) {
4391 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4392
4393 /* Invalidate cache lines that may have been written to by
4394 * device so that we avoid corrupting memory.
4395 */
4396 dma_sync_single_range_for_cpu(rx_ring->dev,
4397 buffer_info->dma,
4398 buffer_info->page_offset,
4399 igb_rx_bufsz(rx_ring),
4400 DMA_FROM_DEVICE);
4401
4402 /* free resources associated with mapping */
4403 dma_unmap_page_attrs(rx_ring->dev,
4404 buffer_info->dma,
4405 igb_rx_pg_size(rx_ring),
4406 DMA_FROM_DEVICE,
4407 IGB_RX_DMA_ATTR);
4408 __page_frag_cache_drain(buffer_info->page,
4409 buffer_info->pagecnt_bias);
4410
4411 i++;
4412 if (i == rx_ring->count)
4413 i = 0;
4414 }
4415
4416 rx_ring->next_to_alloc = 0;
4417 rx_ring->next_to_clean = 0;
4418 rx_ring->next_to_use = 0;
4419 }
4420
4421 /**
4422 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4423 * @adapter: board private structure
4424 **/
4425 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4426 {
4427 int i;
4428
4429 for (i = 0; i < adapter->num_rx_queues; i++)
4430 if (adapter->rx_ring[i])
4431 igb_clean_rx_ring(adapter->rx_ring[i]);
4432 }
4433
4434 /**
4435 * igb_set_mac - Change the Ethernet Address of the NIC
4436 * @netdev: network interface device structure
4437 * @p: pointer to an address structure
4438 *
4439 * Returns 0 on success, negative on failure
4440 **/
4441 static int igb_set_mac(struct net_device *netdev, void *p)
4442 {
4443 struct igb_adapter *adapter = netdev_priv(netdev);
4444 struct e1000_hw *hw = &adapter->hw;
4445 struct sockaddr *addr = p;
4446
4447 if (!is_valid_ether_addr(addr->sa_data))
4448 return -EADDRNOTAVAIL;
4449
4450 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4451 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4452
4453 /* set the correct pool for the new PF MAC address in entry 0 */
4454 igb_set_default_mac_filter(adapter);
4455
4456 return 0;
4457 }
4458
4459 /**
4460 * igb_write_mc_addr_list - write multicast addresses to MTA
4461 * @netdev: network interface device structure
4462 *
4463 * Writes multicast address list to the MTA hash table.
4464 * Returns: -ENOMEM on failure
4465 * 0 on no addresses written
4466 * X on writing X addresses to MTA
4467 **/
4468 static int igb_write_mc_addr_list(struct net_device *netdev)
4469 {
4470 struct igb_adapter *adapter = netdev_priv(netdev);
4471 struct e1000_hw *hw = &adapter->hw;
4472 struct netdev_hw_addr *ha;
4473 u8 *mta_list;
4474 int i;
4475
4476 if (netdev_mc_empty(netdev)) {
4477 /* nothing to program, so clear mc list */
4478 igb_update_mc_addr_list(hw, NULL, 0);
4479 igb_restore_vf_multicasts(adapter);
4480 return 0;
4481 }
4482
4483 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4484 if (!mta_list)
4485 return -ENOMEM;
4486
4487 /* The shared function expects a packed array of only addresses. */
4488 i = 0;
4489 netdev_for_each_mc_addr(ha, netdev)
4490 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4491
4492 igb_update_mc_addr_list(hw, mta_list, i);
4493 kfree(mta_list);
4494
4495 return netdev_mc_count(netdev);
4496 }
4497
4498 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4499 {
4500 struct e1000_hw *hw = &adapter->hw;
4501 u32 i, pf_id;
4502
4503 switch (hw->mac.type) {
4504 case e1000_i210:
4505 case e1000_i211:
4506 case e1000_i350:
4507 /* VLAN filtering needed for VLAN prio filter */
4508 if (adapter->netdev->features & NETIF_F_NTUPLE)
4509 break;
4510 /* fall through */
4511 case e1000_82576:
4512 case e1000_82580:
4513 case e1000_i354:
4514 /* VLAN filtering needed for pool filtering */
4515 if (adapter->vfs_allocated_count)
4516 break;
4517 /* fall through */
4518 default:
4519 return 1;
4520 }
4521
4522 /* We are already in VLAN promisc, nothing to do */
4523 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4524 return 0;
4525
4526 if (!adapter->vfs_allocated_count)
4527 goto set_vfta;
4528
4529 /* Add PF to all active pools */
4530 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4531
4532 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4533 u32 vlvf = rd32(E1000_VLVF(i));
4534
4535 vlvf |= BIT(pf_id);
4536 wr32(E1000_VLVF(i), vlvf);
4537 }
4538
4539 set_vfta:
4540 /* Set all bits in the VLAN filter table array */
4541 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4542 hw->mac.ops.write_vfta(hw, i, ~0U);
4543
4544 /* Set flag so we don't redo unnecessary work */
4545 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4546
4547 return 0;
4548 }
4549
4550 #define VFTA_BLOCK_SIZE 8
4551 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4552 {
4553 struct e1000_hw *hw = &adapter->hw;
4554 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4555 u32 vid_start = vfta_offset * 32;
4556 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4557 u32 i, vid, word, bits, pf_id;
4558
4559 /* guarantee that we don't scrub out management VLAN */
4560 vid = adapter->mng_vlan_id;
4561 if (vid >= vid_start && vid < vid_end)
4562 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4563
4564 if (!adapter->vfs_allocated_count)
4565 goto set_vfta;
4566
4567 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4568
4569 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4570 u32 vlvf = rd32(E1000_VLVF(i));
4571
4572 /* pull VLAN ID from VLVF */
4573 vid = vlvf & VLAN_VID_MASK;
4574
4575 /* only concern ourselves with a certain range */
4576 if (vid < vid_start || vid >= vid_end)
4577 continue;
4578
4579 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4580 /* record VLAN ID in VFTA */
4581 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4582
4583 /* if PF is part of this then continue */
4584 if (test_bit(vid, adapter->active_vlans))
4585 continue;
4586 }
4587
4588 /* remove PF from the pool */
4589 bits = ~BIT(pf_id);
4590 bits &= rd32(E1000_VLVF(i));
4591 wr32(E1000_VLVF(i), bits);
4592 }
4593
4594 set_vfta:
4595 /* extract values from active_vlans and write back to VFTA */
4596 for (i = VFTA_BLOCK_SIZE; i--;) {
4597 vid = (vfta_offset + i) * 32;
4598 word = vid / BITS_PER_LONG;
4599 bits = vid % BITS_PER_LONG;
4600
4601 vfta[i] |= adapter->active_vlans[word] >> bits;
4602
4603 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4604 }
4605 }
4606
4607 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4608 {
4609 u32 i;
4610
4611 /* We are not in VLAN promisc, nothing to do */
4612 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4613 return;
4614
4615 /* Set flag so we don't redo unnecessary work */
4616 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4617
4618 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4619 igb_scrub_vfta(adapter, i);
4620 }
4621
4622 /**
4623 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4624 * @netdev: network interface device structure
4625 *
4626 * The set_rx_mode entry point is called whenever the unicast or multicast
4627 * address lists or the network interface flags are updated. This routine is
4628 * responsible for configuring the hardware for proper unicast, multicast,
4629 * promiscuous mode, and all-multi behavior.
4630 **/
4631 static void igb_set_rx_mode(struct net_device *netdev)
4632 {
4633 struct igb_adapter *adapter = netdev_priv(netdev);
4634 struct e1000_hw *hw = &adapter->hw;
4635 unsigned int vfn = adapter->vfs_allocated_count;
4636 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4637 int count;
4638
4639 /* Check for Promiscuous and All Multicast modes */
4640 if (netdev->flags & IFF_PROMISC) {
4641 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4642 vmolr |= E1000_VMOLR_MPME;
4643
4644 /* enable use of UTA filter to force packets to default pool */
4645 if (hw->mac.type == e1000_82576)
4646 vmolr |= E1000_VMOLR_ROPE;
4647 } else {
4648 if (netdev->flags & IFF_ALLMULTI) {
4649 rctl |= E1000_RCTL_MPE;
4650 vmolr |= E1000_VMOLR_MPME;
4651 } else {
4652 /* Write addresses to the MTA, if the attempt fails
4653 * then we should just turn on promiscuous mode so
4654 * that we can at least receive multicast traffic
4655 */
4656 count = igb_write_mc_addr_list(netdev);
4657 if (count < 0) {
4658 rctl |= E1000_RCTL_MPE;
4659 vmolr |= E1000_VMOLR_MPME;
4660 } else if (count) {
4661 vmolr |= E1000_VMOLR_ROMPE;
4662 }
4663 }
4664 }
4665
4666 /* Write addresses to available RAR registers, if there is not
4667 * sufficient space to store all the addresses then enable
4668 * unicast promiscuous mode
4669 */
4670 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4671 rctl |= E1000_RCTL_UPE;
4672 vmolr |= E1000_VMOLR_ROPE;
4673 }
4674
4675 /* enable VLAN filtering by default */
4676 rctl |= E1000_RCTL_VFE;
4677
4678 /* disable VLAN filtering for modes that require it */
4679 if ((netdev->flags & IFF_PROMISC) ||
4680 (netdev->features & NETIF_F_RXALL)) {
4681 /* if we fail to set all rules then just clear VFE */
4682 if (igb_vlan_promisc_enable(adapter))
4683 rctl &= ~E1000_RCTL_VFE;
4684 } else {
4685 igb_vlan_promisc_disable(adapter);
4686 }
4687
4688 /* update state of unicast, multicast, and VLAN filtering modes */
4689 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4690 E1000_RCTL_VFE);
4691 wr32(E1000_RCTL, rctl);
4692
4693 #if (PAGE_SIZE < 8192)
4694 if (!adapter->vfs_allocated_count) {
4695 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4696 rlpml = IGB_MAX_FRAME_BUILD_SKB;
4697 }
4698 #endif
4699 wr32(E1000_RLPML, rlpml);
4700
4701 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4702 * the VMOLR to enable the appropriate modes. Without this workaround
4703 * we will have issues with VLAN tag stripping not being done for frames
4704 * that are only arriving because we are the default pool
4705 */
4706 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4707 return;
4708
4709 /* set UTA to appropriate mode */
4710 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4711
4712 vmolr |= rd32(E1000_VMOLR(vfn)) &
4713 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4714
4715 /* enable Rx jumbo frames, restrict as needed to support build_skb */
4716 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4717 #if (PAGE_SIZE < 8192)
4718 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4719 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4720 else
4721 #endif
4722 vmolr |= MAX_JUMBO_FRAME_SIZE;
4723 vmolr |= E1000_VMOLR_LPE;
4724
4725 wr32(E1000_VMOLR(vfn), vmolr);
4726
4727 igb_restore_vf_multicasts(adapter);
4728 }
4729
4730 static void igb_check_wvbr(struct igb_adapter *adapter)
4731 {
4732 struct e1000_hw *hw = &adapter->hw;
4733 u32 wvbr = 0;
4734
4735 switch (hw->mac.type) {
4736 case e1000_82576:
4737 case e1000_i350:
4738 wvbr = rd32(E1000_WVBR);
4739 if (!wvbr)
4740 return;
4741 break;
4742 default:
4743 break;
4744 }
4745
4746 adapter->wvbr |= wvbr;
4747 }
4748
4749 #define IGB_STAGGERED_QUEUE_OFFSET 8
4750
4751 static void igb_spoof_check(struct igb_adapter *adapter)
4752 {
4753 int j;
4754
4755 if (!adapter->wvbr)
4756 return;
4757
4758 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4759 if (adapter->wvbr & BIT(j) ||
4760 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4761 dev_warn(&adapter->pdev->dev,
4762 "Spoof event(s) detected on VF %d\n", j);
4763 adapter->wvbr &=
4764 ~(BIT(j) |
4765 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4766 }
4767 }
4768 }
4769
4770 /* Need to wait a few seconds after link up to get diagnostic information from
4771 * the phy
4772 */
4773 static void igb_update_phy_info(struct timer_list *t)
4774 {
4775 struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4776 igb_get_phy_info(&adapter->hw);
4777 }
4778
4779 /**
4780 * igb_has_link - check shared code for link and determine up/down
4781 * @adapter: pointer to driver private info
4782 **/
4783 bool igb_has_link(struct igb_adapter *adapter)
4784 {
4785 struct e1000_hw *hw = &adapter->hw;
4786 bool link_active = false;
4787
4788 /* get_link_status is set on LSC (link status) interrupt or
4789 * rx sequence error interrupt. get_link_status will stay
4790 * false until the e1000_check_for_link establishes link
4791 * for copper adapters ONLY
4792 */
4793 switch (hw->phy.media_type) {
4794 case e1000_media_type_copper:
4795 if (!hw->mac.get_link_status)
4796 return true;
4797 case e1000_media_type_internal_serdes:
4798 hw->mac.ops.check_for_link(hw);
4799 link_active = !hw->mac.get_link_status;
4800 break;
4801 default:
4802 case e1000_media_type_unknown:
4803 break;
4804 }
4805
4806 if (((hw->mac.type == e1000_i210) ||
4807 (hw->mac.type == e1000_i211)) &&
4808 (hw->phy.id == I210_I_PHY_ID)) {
4809 if (!netif_carrier_ok(adapter->netdev)) {
4810 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4811 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4812 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4813 adapter->link_check_timeout = jiffies;
4814 }
4815 }
4816
4817 return link_active;
4818 }
4819
4820 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4821 {
4822 bool ret = false;
4823 u32 ctrl_ext, thstat;
4824
4825 /* check for thermal sensor event on i350 copper only */
4826 if (hw->mac.type == e1000_i350) {
4827 thstat = rd32(E1000_THSTAT);
4828 ctrl_ext = rd32(E1000_CTRL_EXT);
4829
4830 if ((hw->phy.media_type == e1000_media_type_copper) &&
4831 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4832 ret = !!(thstat & event);
4833 }
4834
4835 return ret;
4836 }
4837
4838 /**
4839 * igb_check_lvmmc - check for malformed packets received
4840 * and indicated in LVMMC register
4841 * @adapter: pointer to adapter
4842 **/
4843 static void igb_check_lvmmc(struct igb_adapter *adapter)
4844 {
4845 struct e1000_hw *hw = &adapter->hw;
4846 u32 lvmmc;
4847
4848 lvmmc = rd32(E1000_LVMMC);
4849 if (lvmmc) {
4850 if (unlikely(net_ratelimit())) {
4851 netdev_warn(adapter->netdev,
4852 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4853 lvmmc);
4854 }
4855 }
4856 }
4857
4858 /**
4859 * igb_watchdog - Timer Call-back
4860 * @data: pointer to adapter cast into an unsigned long
4861 **/
4862 static void igb_watchdog(struct timer_list *t)
4863 {
4864 struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4865 /* Do the rest outside of interrupt context */
4866 schedule_work(&adapter->watchdog_task);
4867 }
4868
4869 static void igb_watchdog_task(struct work_struct *work)
4870 {
4871 struct igb_adapter *adapter = container_of(work,
4872 struct igb_adapter,
4873 watchdog_task);
4874 struct e1000_hw *hw = &adapter->hw;
4875 struct e1000_phy_info *phy = &hw->phy;
4876 struct net_device *netdev = adapter->netdev;
4877 u32 link;
4878 int i;
4879 u32 connsw;
4880 u16 phy_data, retry_count = 20;
4881
4882 link = igb_has_link(adapter);
4883
4884 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4885 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4886 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4887 else
4888 link = false;
4889 }
4890
4891 /* Force link down if we have fiber to swap to */
4892 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4893 if (hw->phy.media_type == e1000_media_type_copper) {
4894 connsw = rd32(E1000_CONNSW);
4895 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4896 link = 0;
4897 }
4898 }
4899 if (link) {
4900 /* Perform a reset if the media type changed. */
4901 if (hw->dev_spec._82575.media_changed) {
4902 hw->dev_spec._82575.media_changed = false;
4903 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4904 igb_reset(adapter);
4905 }
4906 /* Cancel scheduled suspend requests. */
4907 pm_runtime_resume(netdev->dev.parent);
4908
4909 if (!netif_carrier_ok(netdev)) {
4910 u32 ctrl;
4911
4912 hw->mac.ops.get_speed_and_duplex(hw,
4913 &adapter->link_speed,
4914 &adapter->link_duplex);
4915
4916 ctrl = rd32(E1000_CTRL);
4917 /* Links status message must follow this format */
4918 netdev_info(netdev,
4919 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4920 netdev->name,
4921 adapter->link_speed,
4922 adapter->link_duplex == FULL_DUPLEX ?
4923 "Full" : "Half",
4924 (ctrl & E1000_CTRL_TFCE) &&
4925 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4926 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4927 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4928
4929 /* disable EEE if enabled */
4930 if ((adapter->flags & IGB_FLAG_EEE) &&
4931 (adapter->link_duplex == HALF_DUPLEX)) {
4932 dev_info(&adapter->pdev->dev,
4933 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4934 adapter->hw.dev_spec._82575.eee_disable = true;
4935 adapter->flags &= ~IGB_FLAG_EEE;
4936 }
4937
4938 /* check if SmartSpeed worked */
4939 igb_check_downshift(hw);
4940 if (phy->speed_downgraded)
4941 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4942
4943 /* check for thermal sensor event */
4944 if (igb_thermal_sensor_event(hw,
4945 E1000_THSTAT_LINK_THROTTLE))
4946 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4947
4948 /* adjust timeout factor according to speed/duplex */
4949 adapter->tx_timeout_factor = 1;
4950 switch (adapter->link_speed) {
4951 case SPEED_10:
4952 adapter->tx_timeout_factor = 14;
4953 break;
4954 case SPEED_100:
4955 /* maybe add some timeout factor ? */
4956 break;
4957 }
4958
4959 if (adapter->link_speed != SPEED_1000)
4960 goto no_wait;
4961
4962 /* wait for Remote receiver status OK */
4963 retry_read_status:
4964 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4965 &phy_data)) {
4966 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4967 retry_count) {
4968 msleep(100);
4969 retry_count--;
4970 goto retry_read_status;
4971 } else if (!retry_count) {
4972 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4973 }
4974 } else {
4975 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4976 }
4977 no_wait:
4978 netif_carrier_on(netdev);
4979
4980 igb_ping_all_vfs(adapter);
4981 igb_check_vf_rate_limit(adapter);
4982
4983 /* link state has changed, schedule phy info update */
4984 if (!test_bit(__IGB_DOWN, &adapter->state))
4985 mod_timer(&adapter->phy_info_timer,
4986 round_jiffies(jiffies + 2 * HZ));
4987 }
4988 } else {
4989 if (netif_carrier_ok(netdev)) {
4990 adapter->link_speed = 0;
4991 adapter->link_duplex = 0;
4992
4993 /* check for thermal sensor event */
4994 if (igb_thermal_sensor_event(hw,
4995 E1000_THSTAT_PWR_DOWN)) {
4996 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4997 }
4998
4999 /* Links status message must follow this format */
5000 netdev_info(netdev, "igb: %s NIC Link is Down\n",
5001 netdev->name);
5002 netif_carrier_off(netdev);
5003
5004 igb_ping_all_vfs(adapter);
5005
5006 /* link state has changed, schedule phy info update */
5007 if (!test_bit(__IGB_DOWN, &adapter->state))
5008 mod_timer(&adapter->phy_info_timer,
5009 round_jiffies(jiffies + 2 * HZ));
5010
5011 /* link is down, time to check for alternate media */
5012 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
5013 igb_check_swap_media(adapter);
5014 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5015 schedule_work(&adapter->reset_task);
5016 /* return immediately */
5017 return;
5018 }
5019 }
5020 pm_schedule_suspend(netdev->dev.parent,
5021 MSEC_PER_SEC * 5);
5022
5023 /* also check for alternate media here */
5024 } else if (!netif_carrier_ok(netdev) &&
5025 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
5026 igb_check_swap_media(adapter);
5027 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
5028 schedule_work(&adapter->reset_task);
5029 /* return immediately */
5030 return;
5031 }
5032 }
5033 }
5034
5035 spin_lock(&adapter->stats64_lock);
5036 igb_update_stats(adapter);
5037 spin_unlock(&adapter->stats64_lock);
5038
5039 for (i = 0; i < adapter->num_tx_queues; i++) {
5040 struct igb_ring *tx_ring = adapter->tx_ring[i];
5041 if (!netif_carrier_ok(netdev)) {
5042 /* We've lost link, so the controller stops DMA,
5043 * but we've got queued Tx work that's never going
5044 * to get done, so reset controller to flush Tx.
5045 * (Do the reset outside of interrupt context).
5046 */
5047 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
5048 adapter->tx_timeout_count++;
5049 schedule_work(&adapter->reset_task);
5050 /* return immediately since reset is imminent */
5051 return;
5052 }
5053 }
5054
5055 /* Force detection of hung controller every watchdog period */
5056 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5057 }
5058
5059 /* Cause software interrupt to ensure Rx ring is cleaned */
5060 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
5061 u32 eics = 0;
5062
5063 for (i = 0; i < adapter->num_q_vectors; i++)
5064 eics |= adapter->q_vector[i]->eims_value;
5065 wr32(E1000_EICS, eics);
5066 } else {
5067 wr32(E1000_ICS, E1000_ICS_RXDMT0);
5068 }
5069
5070 igb_spoof_check(adapter);
5071 igb_ptp_rx_hang(adapter);
5072 igb_ptp_tx_hang(adapter);
5073
5074 /* Check LVMMC register on i350/i354 only */
5075 if ((adapter->hw.mac.type == e1000_i350) ||
5076 (adapter->hw.mac.type == e1000_i354))
5077 igb_check_lvmmc(adapter);
5078
5079 /* Reset the timer */
5080 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5081 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
5082 mod_timer(&adapter->watchdog_timer,
5083 round_jiffies(jiffies + HZ));
5084 else
5085 mod_timer(&adapter->watchdog_timer,
5086 round_jiffies(jiffies + 2 * HZ));
5087 }
5088 }
5089
5090 enum latency_range {
5091 lowest_latency = 0,
5092 low_latency = 1,
5093 bulk_latency = 2,
5094 latency_invalid = 255
5095 };
5096
5097 /**
5098 * igb_update_ring_itr - update the dynamic ITR value based on packet size
5099 * @q_vector: pointer to q_vector
5100 *
5101 * Stores a new ITR value based on strictly on packet size. This
5102 * algorithm is less sophisticated than that used in igb_update_itr,
5103 * due to the difficulty of synchronizing statistics across multiple
5104 * receive rings. The divisors and thresholds used by this function
5105 * were determined based on theoretical maximum wire speed and testing
5106 * data, in order to minimize response time while increasing bulk
5107 * throughput.
5108 * This functionality is controlled by ethtool's coalescing settings.
5109 * NOTE: This function is called only when operating in a multiqueue
5110 * receive environment.
5111 **/
5112 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
5113 {
5114 int new_val = q_vector->itr_val;
5115 int avg_wire_size = 0;
5116 struct igb_adapter *adapter = q_vector->adapter;
5117 unsigned int packets;
5118
5119 /* For non-gigabit speeds, just fix the interrupt rate at 4000
5120 * ints/sec - ITR timer value of 120 ticks.
5121 */
5122 if (adapter->link_speed != SPEED_1000) {
5123 new_val = IGB_4K_ITR;
5124 goto set_itr_val;
5125 }
5126
5127 packets = q_vector->rx.total_packets;
5128 if (packets)
5129 avg_wire_size = q_vector->rx.total_bytes / packets;
5130
5131 packets = q_vector->tx.total_packets;
5132 if (packets)
5133 avg_wire_size = max_t(u32, avg_wire_size,
5134 q_vector->tx.total_bytes / packets);
5135
5136 /* if avg_wire_size isn't set no work was done */
5137 if (!avg_wire_size)
5138 goto clear_counts;
5139
5140 /* Add 24 bytes to size to account for CRC, preamble, and gap */
5141 avg_wire_size += 24;
5142
5143 /* Don't starve jumbo frames */
5144 avg_wire_size = min(avg_wire_size, 3000);
5145
5146 /* Give a little boost to mid-size frames */
5147 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
5148 new_val = avg_wire_size / 3;
5149 else
5150 new_val = avg_wire_size / 2;
5151
5152 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5153 if (new_val < IGB_20K_ITR &&
5154 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5155 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5156 new_val = IGB_20K_ITR;
5157
5158 set_itr_val:
5159 if (new_val != q_vector->itr_val) {
5160 q_vector->itr_val = new_val;
5161 q_vector->set_itr = 1;
5162 }
5163 clear_counts:
5164 q_vector->rx.total_bytes = 0;
5165 q_vector->rx.total_packets = 0;
5166 q_vector->tx.total_bytes = 0;
5167 q_vector->tx.total_packets = 0;
5168 }
5169
5170 /**
5171 * igb_update_itr - update the dynamic ITR value based on statistics
5172 * @q_vector: pointer to q_vector
5173 * @ring_container: ring info to update the itr for
5174 *
5175 * Stores a new ITR value based on packets and byte
5176 * counts during the last interrupt. The advantage of per interrupt
5177 * computation is faster updates and more accurate ITR for the current
5178 * traffic pattern. Constants in this function were computed
5179 * based on theoretical maximum wire speed and thresholds were set based
5180 * on testing data as well as attempting to minimize response time
5181 * while increasing bulk throughput.
5182 * This functionality is controlled by ethtool's coalescing settings.
5183 * NOTE: These calculations are only valid when operating in a single-
5184 * queue environment.
5185 **/
5186 static void igb_update_itr(struct igb_q_vector *q_vector,
5187 struct igb_ring_container *ring_container)
5188 {
5189 unsigned int packets = ring_container->total_packets;
5190 unsigned int bytes = ring_container->total_bytes;
5191 u8 itrval = ring_container->itr;
5192
5193 /* no packets, exit with status unchanged */
5194 if (packets == 0)
5195 return;
5196
5197 switch (itrval) {
5198 case lowest_latency:
5199 /* handle TSO and jumbo frames */
5200 if (bytes/packets > 8000)
5201 itrval = bulk_latency;
5202 else if ((packets < 5) && (bytes > 512))
5203 itrval = low_latency;
5204 break;
5205 case low_latency: /* 50 usec aka 20000 ints/s */
5206 if (bytes > 10000) {
5207 /* this if handles the TSO accounting */
5208 if (bytes/packets > 8000)
5209 itrval = bulk_latency;
5210 else if ((packets < 10) || ((bytes/packets) > 1200))
5211 itrval = bulk_latency;
5212 else if ((packets > 35))
5213 itrval = lowest_latency;
5214 } else if (bytes/packets > 2000) {
5215 itrval = bulk_latency;
5216 } else if (packets <= 2 && bytes < 512) {
5217 itrval = lowest_latency;
5218 }
5219 break;
5220 case bulk_latency: /* 250 usec aka 4000 ints/s */
5221 if (bytes > 25000) {
5222 if (packets > 35)
5223 itrval = low_latency;
5224 } else if (bytes < 1500) {
5225 itrval = low_latency;
5226 }
5227 break;
5228 }
5229
5230 /* clear work counters since we have the values we need */
5231 ring_container->total_bytes = 0;
5232 ring_container->total_packets = 0;
5233
5234 /* write updated itr to ring container */
5235 ring_container->itr = itrval;
5236 }
5237
5238 static void igb_set_itr(struct igb_q_vector *q_vector)
5239 {
5240 struct igb_adapter *adapter = q_vector->adapter;
5241 u32 new_itr = q_vector->itr_val;
5242 u8 current_itr = 0;
5243
5244 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
5245 if (adapter->link_speed != SPEED_1000) {
5246 current_itr = 0;
5247 new_itr = IGB_4K_ITR;
5248 goto set_itr_now;
5249 }
5250
5251 igb_update_itr(q_vector, &q_vector->tx);
5252 igb_update_itr(q_vector, &q_vector->rx);
5253
5254 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
5255
5256 /* conservative mode (itr 3) eliminates the lowest_latency setting */
5257 if (current_itr == lowest_latency &&
5258 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
5259 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
5260 current_itr = low_latency;
5261
5262 switch (current_itr) {
5263 /* counts and packets in update_itr are dependent on these numbers */
5264 case lowest_latency:
5265 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
5266 break;
5267 case low_latency:
5268 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
5269 break;
5270 case bulk_latency:
5271 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
5272 break;
5273 default:
5274 break;
5275 }
5276
5277 set_itr_now:
5278 if (new_itr != q_vector->itr_val) {
5279 /* this attempts to bias the interrupt rate towards Bulk
5280 * by adding intermediate steps when interrupt rate is
5281 * increasing
5282 */
5283 new_itr = new_itr > q_vector->itr_val ?
5284 max((new_itr * q_vector->itr_val) /
5285 (new_itr + (q_vector->itr_val >> 2)),
5286 new_itr) : new_itr;
5287 /* Don't write the value here; it resets the adapter's
5288 * internal timer, and causes us to delay far longer than
5289 * we should between interrupts. Instead, we write the ITR
5290 * value at the beginning of the next interrupt so the timing
5291 * ends up being correct.
5292 */
5293 q_vector->itr_val = new_itr;
5294 q_vector->set_itr = 1;
5295 }
5296 }
5297
5298 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
5299 u32 type_tucmd, u32 mss_l4len_idx)
5300 {
5301 struct e1000_adv_tx_context_desc *context_desc;
5302 u16 i = tx_ring->next_to_use;
5303
5304 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
5305
5306 i++;
5307 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
5308
5309 /* set bits to identify this as an advanced context descriptor */
5310 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
5311
5312 /* For 82575, context index must be unique per ring. */
5313 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5314 mss_l4len_idx |= tx_ring->reg_idx << 4;
5315
5316 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
5317 context_desc->seqnum_seed = 0;
5318 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
5319 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
5320 }
5321
5322 static int igb_tso(struct igb_ring *tx_ring,
5323 struct igb_tx_buffer *first,
5324 u8 *hdr_len)
5325 {
5326 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
5327 struct sk_buff *skb = first->skb;
5328 union {
5329 struct iphdr *v4;
5330 struct ipv6hdr *v6;
5331 unsigned char *hdr;
5332 } ip;
5333 union {
5334 struct tcphdr *tcp;
5335 unsigned char *hdr;
5336 } l4;
5337 u32 paylen, l4_offset;
5338 int err;
5339
5340 if (skb->ip_summed != CHECKSUM_PARTIAL)
5341 return 0;
5342
5343 if (!skb_is_gso(skb))
5344 return 0;
5345
5346 err = skb_cow_head(skb, 0);
5347 if (err < 0)
5348 return err;
5349
5350 ip.hdr = skb_network_header(skb);
5351 l4.hdr = skb_checksum_start(skb);
5352
5353 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5354 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5355
5356 /* initialize outer IP header fields */
5357 if (ip.v4->version == 4) {
5358 unsigned char *csum_start = skb_checksum_start(skb);
5359 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5360
5361 /* IP header will have to cancel out any data that
5362 * is not a part of the outer IP header
5363 */
5364 ip.v4->check = csum_fold(csum_partial(trans_start,
5365 csum_start - trans_start,
5366 0));
5367 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5368
5369 ip.v4->tot_len = 0;
5370 first->tx_flags |= IGB_TX_FLAGS_TSO |
5371 IGB_TX_FLAGS_CSUM |
5372 IGB_TX_FLAGS_IPV4;
5373 } else {
5374 ip.v6->payload_len = 0;
5375 first->tx_flags |= IGB_TX_FLAGS_TSO |
5376 IGB_TX_FLAGS_CSUM;
5377 }
5378
5379 /* determine offset of inner transport header */
5380 l4_offset = l4.hdr - skb->data;
5381
5382 /* compute length of segmentation header */
5383 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5384
5385 /* remove payload length from inner checksum */
5386 paylen = skb->len - l4_offset;
5387 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5388
5389 /* update gso size and bytecount with header size */
5390 first->gso_segs = skb_shinfo(skb)->gso_segs;
5391 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5392
5393 /* MSS L4LEN IDX */
5394 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5395 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5396
5397 /* VLAN MACLEN IPLEN */
5398 vlan_macip_lens = l4.hdr - ip.hdr;
5399 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5400 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5401
5402 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5403
5404 return 1;
5405 }
5406
5407 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5408 {
5409 unsigned int offset = 0;
5410
5411 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5412
5413 return offset == skb_checksum_start_offset(skb);
5414 }
5415
5416 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5417 {
5418 struct sk_buff *skb = first->skb;
5419 u32 vlan_macip_lens = 0;
5420 u32 type_tucmd = 0;
5421
5422 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5423 csum_failed:
5424 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5425 return;
5426 goto no_csum;
5427 }
5428
5429 switch (skb->csum_offset) {
5430 case offsetof(struct tcphdr, check):
5431 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5432 /* fall through */
5433 case offsetof(struct udphdr, check):
5434 break;
5435 case offsetof(struct sctphdr, checksum):
5436 /* validate that this is actually an SCTP request */
5437 if (((first->protocol == htons(ETH_P_IP)) &&
5438 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5439 ((first->protocol == htons(ETH_P_IPV6)) &&
5440 igb_ipv6_csum_is_sctp(skb))) {
5441 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5442 break;
5443 }
5444 default:
5445 skb_checksum_help(skb);
5446 goto csum_failed;
5447 }
5448
5449 /* update TX checksum flag */
5450 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5451 vlan_macip_lens = skb_checksum_start_offset(skb) -
5452 skb_network_offset(skb);
5453 no_csum:
5454 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5455 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5456
5457 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5458 }
5459
5460 #define IGB_SET_FLAG(_input, _flag, _result) \
5461 ((_flag <= _result) ? \
5462 ((u32)(_input & _flag) * (_result / _flag)) : \
5463 ((u32)(_input & _flag) / (_flag / _result)))
5464
5465 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5466 {
5467 /* set type for advanced descriptor with frame checksum insertion */
5468 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5469 E1000_ADVTXD_DCMD_DEXT |
5470 E1000_ADVTXD_DCMD_IFCS;
5471
5472 /* set HW vlan bit if vlan is present */
5473 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5474 (E1000_ADVTXD_DCMD_VLE));
5475
5476 /* set segmentation bits for TSO */
5477 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5478 (E1000_ADVTXD_DCMD_TSE));
5479
5480 /* set timestamp bit if present */
5481 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5482 (E1000_ADVTXD_MAC_TSTAMP));
5483
5484 /* insert frame checksum */
5485 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5486
5487 return cmd_type;
5488 }
5489
5490 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5491 union e1000_adv_tx_desc *tx_desc,
5492 u32 tx_flags, unsigned int paylen)
5493 {
5494 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5495
5496 /* 82575 requires a unique index per ring */
5497 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5498 olinfo_status |= tx_ring->reg_idx << 4;
5499
5500 /* insert L4 checksum */
5501 olinfo_status |= IGB_SET_FLAG(tx_flags,
5502 IGB_TX_FLAGS_CSUM,
5503 (E1000_TXD_POPTS_TXSM << 8));
5504
5505 /* insert IPv4 checksum */
5506 olinfo_status |= IGB_SET_FLAG(tx_flags,
5507 IGB_TX_FLAGS_IPV4,
5508 (E1000_TXD_POPTS_IXSM << 8));
5509
5510 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5511 }
5512
5513 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5514 {
5515 struct net_device *netdev = tx_ring->netdev;
5516
5517 netif_stop_subqueue(netdev, tx_ring->queue_index);
5518
5519 /* Herbert's original patch had:
5520 * smp_mb__after_netif_stop_queue();
5521 * but since that doesn't exist yet, just open code it.
5522 */
5523 smp_mb();
5524
5525 /* We need to check again in a case another CPU has just
5526 * made room available.
5527 */
5528 if (igb_desc_unused(tx_ring) < size)
5529 return -EBUSY;
5530
5531 /* A reprieve! */
5532 netif_wake_subqueue(netdev, tx_ring->queue_index);
5533
5534 u64_stats_update_begin(&tx_ring->tx_syncp2);
5535 tx_ring->tx_stats.restart_queue2++;
5536 u64_stats_update_end(&tx_ring->tx_syncp2);
5537
5538 return 0;
5539 }
5540
5541 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5542 {
5543 if (igb_desc_unused(tx_ring) >= size)
5544 return 0;
5545 return __igb_maybe_stop_tx(tx_ring, size);
5546 }
5547
5548 static int igb_tx_map(struct igb_ring *tx_ring,
5549 struct igb_tx_buffer *first,
5550 const u8 hdr_len)
5551 {
5552 struct sk_buff *skb = first->skb;
5553 struct igb_tx_buffer *tx_buffer;
5554 union e1000_adv_tx_desc *tx_desc;
5555 struct skb_frag_struct *frag;
5556 dma_addr_t dma;
5557 unsigned int data_len, size;
5558 u32 tx_flags = first->tx_flags;
5559 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5560 u16 i = tx_ring->next_to_use;
5561
5562 tx_desc = IGB_TX_DESC(tx_ring, i);
5563
5564 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5565
5566 size = skb_headlen(skb);
5567 data_len = skb->data_len;
5568
5569 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5570
5571 tx_buffer = first;
5572
5573 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5574 if (dma_mapping_error(tx_ring->dev, dma))
5575 goto dma_error;
5576
5577 /* record length, and DMA address */
5578 dma_unmap_len_set(tx_buffer, len, size);
5579 dma_unmap_addr_set(tx_buffer, dma, dma);
5580
5581 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5582
5583 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5584 tx_desc->read.cmd_type_len =
5585 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5586
5587 i++;
5588 tx_desc++;
5589 if (i == tx_ring->count) {
5590 tx_desc = IGB_TX_DESC(tx_ring, 0);
5591 i = 0;
5592 }
5593 tx_desc->read.olinfo_status = 0;
5594
5595 dma += IGB_MAX_DATA_PER_TXD;
5596 size -= IGB_MAX_DATA_PER_TXD;
5597
5598 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5599 }
5600
5601 if (likely(!data_len))
5602 break;
5603
5604 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5605
5606 i++;
5607 tx_desc++;
5608 if (i == tx_ring->count) {
5609 tx_desc = IGB_TX_DESC(tx_ring, 0);
5610 i = 0;
5611 }
5612 tx_desc->read.olinfo_status = 0;
5613
5614 size = skb_frag_size(frag);
5615 data_len -= size;
5616
5617 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5618 size, DMA_TO_DEVICE);
5619
5620 tx_buffer = &tx_ring->tx_buffer_info[i];
5621 }
5622
5623 /* write last descriptor with RS and EOP bits */
5624 cmd_type |= size | IGB_TXD_DCMD;
5625 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5626
5627 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5628
5629 /* set the timestamp */
5630 first->time_stamp = jiffies;
5631
5632 /* Force memory writes to complete before letting h/w know there
5633 * are new descriptors to fetch. (Only applicable for weak-ordered
5634 * memory model archs, such as IA-64).
5635 *
5636 * We also need this memory barrier to make certain all of the
5637 * status bits have been updated before next_to_watch is written.
5638 */
5639 wmb();
5640
5641 /* set next_to_watch value indicating a packet is present */
5642 first->next_to_watch = tx_desc;
5643
5644 i++;
5645 if (i == tx_ring->count)
5646 i = 0;
5647
5648 tx_ring->next_to_use = i;
5649
5650 /* Make sure there is space in the ring for the next send. */
5651 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5652
5653 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5654 writel(i, tx_ring->tail);
5655
5656 /* we need this if more than one processor can write to our tail
5657 * at a time, it synchronizes IO on IA64/Altix systems
5658 */
5659 mmiowb();
5660 }
5661 return 0;
5662
5663 dma_error:
5664 dev_err(tx_ring->dev, "TX DMA map failed\n");
5665 tx_buffer = &tx_ring->tx_buffer_info[i];
5666
5667 /* clear dma mappings for failed tx_buffer_info map */
5668 while (tx_buffer != first) {
5669 if (dma_unmap_len(tx_buffer, len))
5670 dma_unmap_page(tx_ring->dev,
5671 dma_unmap_addr(tx_buffer, dma),
5672 dma_unmap_len(tx_buffer, len),
5673 DMA_TO_DEVICE);
5674 dma_unmap_len_set(tx_buffer, len, 0);
5675
5676 if (i-- == 0)
5677 i += tx_ring->count;
5678 tx_buffer = &tx_ring->tx_buffer_info[i];
5679 }
5680
5681 if (dma_unmap_len(tx_buffer, len))
5682 dma_unmap_single(tx_ring->dev,
5683 dma_unmap_addr(tx_buffer, dma),
5684 dma_unmap_len(tx_buffer, len),
5685 DMA_TO_DEVICE);
5686 dma_unmap_len_set(tx_buffer, len, 0);
5687
5688 dev_kfree_skb_any(tx_buffer->skb);
5689 tx_buffer->skb = NULL;
5690
5691 tx_ring->next_to_use = i;
5692
5693 return -1;
5694 }
5695
5696 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5697 struct igb_ring *tx_ring)
5698 {
5699 struct igb_tx_buffer *first;
5700 int tso;
5701 u32 tx_flags = 0;
5702 unsigned short f;
5703 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5704 __be16 protocol = vlan_get_protocol(skb);
5705 u8 hdr_len = 0;
5706
5707 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5708 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5709 * + 2 desc gap to keep tail from touching head,
5710 * + 1 desc for context descriptor,
5711 * otherwise try next time
5712 */
5713 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5714 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5715
5716 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5717 /* this is a hard error */
5718 return NETDEV_TX_BUSY;
5719 }
5720
5721 /* record the location of the first descriptor for this packet */
5722 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5723 first->skb = skb;
5724 first->bytecount = skb->len;
5725 first->gso_segs = 1;
5726
5727 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5728 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5729
5730 if (adapter->tstamp_config.tx_type & HWTSTAMP_TX_ON &&
5731 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5732 &adapter->state)) {
5733 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5734 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5735
5736 adapter->ptp_tx_skb = skb_get(skb);
5737 adapter->ptp_tx_start = jiffies;
5738 if (adapter->hw.mac.type == e1000_82576)
5739 schedule_work(&adapter->ptp_tx_work);
5740 } else {
5741 adapter->tx_hwtstamp_skipped++;
5742 }
5743 }
5744
5745 skb_tx_timestamp(skb);
5746
5747 if (skb_vlan_tag_present(skb)) {
5748 tx_flags |= IGB_TX_FLAGS_VLAN;
5749 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5750 }
5751
5752 /* record initial flags and protocol */
5753 first->tx_flags = tx_flags;
5754 first->protocol = protocol;
5755
5756 tso = igb_tso(tx_ring, first, &hdr_len);
5757 if (tso < 0)
5758 goto out_drop;
5759 else if (!tso)
5760 igb_tx_csum(tx_ring, first);
5761
5762 if (igb_tx_map(tx_ring, first, hdr_len))
5763 goto cleanup_tx_tstamp;
5764
5765 return NETDEV_TX_OK;
5766
5767 out_drop:
5768 dev_kfree_skb_any(first->skb);
5769 first->skb = NULL;
5770 cleanup_tx_tstamp:
5771 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5772 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5773
5774 dev_kfree_skb_any(adapter->ptp_tx_skb);
5775 adapter->ptp_tx_skb = NULL;
5776 if (adapter->hw.mac.type == e1000_82576)
5777 cancel_work_sync(&adapter->ptp_tx_work);
5778 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5779 }
5780
5781 return NETDEV_TX_OK;
5782 }
5783
5784 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5785 struct sk_buff *skb)
5786 {
5787 unsigned int r_idx = skb->queue_mapping;
5788
5789 if (r_idx >= adapter->num_tx_queues)
5790 r_idx = r_idx % adapter->num_tx_queues;
5791
5792 return adapter->tx_ring[r_idx];
5793 }
5794
5795 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5796 struct net_device *netdev)
5797 {
5798 struct igb_adapter *adapter = netdev_priv(netdev);
5799
5800 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5801 * in order to meet this minimum size requirement.
5802 */
5803 if (skb_put_padto(skb, 17))
5804 return NETDEV_TX_OK;
5805
5806 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5807 }
5808
5809 /**
5810 * igb_tx_timeout - Respond to a Tx Hang
5811 * @netdev: network interface device structure
5812 **/
5813 static void igb_tx_timeout(struct net_device *netdev)
5814 {
5815 struct igb_adapter *adapter = netdev_priv(netdev);
5816 struct e1000_hw *hw = &adapter->hw;
5817
5818 /* Do the reset outside of interrupt context */
5819 adapter->tx_timeout_count++;
5820
5821 if (hw->mac.type >= e1000_82580)
5822 hw->dev_spec._82575.global_device_reset = true;
5823
5824 schedule_work(&adapter->reset_task);
5825 wr32(E1000_EICS,
5826 (adapter->eims_enable_mask & ~adapter->eims_other));
5827 }
5828
5829 static void igb_reset_task(struct work_struct *work)
5830 {
5831 struct igb_adapter *adapter;
5832 adapter = container_of(work, struct igb_adapter, reset_task);
5833
5834 igb_dump(adapter);
5835 netdev_err(adapter->netdev, "Reset adapter\n");
5836 igb_reinit_locked(adapter);
5837 }
5838
5839 /**
5840 * igb_get_stats64 - Get System Network Statistics
5841 * @netdev: network interface device structure
5842 * @stats: rtnl_link_stats64 pointer
5843 **/
5844 static void igb_get_stats64(struct net_device *netdev,
5845 struct rtnl_link_stats64 *stats)
5846 {
5847 struct igb_adapter *adapter = netdev_priv(netdev);
5848
5849 spin_lock(&adapter->stats64_lock);
5850 igb_update_stats(adapter);
5851 memcpy(stats, &adapter->stats64, sizeof(*stats));
5852 spin_unlock(&adapter->stats64_lock);
5853 }
5854
5855 /**
5856 * igb_change_mtu - Change the Maximum Transfer Unit
5857 * @netdev: network interface device structure
5858 * @new_mtu: new value for maximum frame size
5859 *
5860 * Returns 0 on success, negative on failure
5861 **/
5862 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5863 {
5864 struct igb_adapter *adapter = netdev_priv(netdev);
5865 struct pci_dev *pdev = adapter->pdev;
5866 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5867
5868 /* adjust max frame to be at least the size of a standard frame */
5869 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5870 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5871
5872 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5873 usleep_range(1000, 2000);
5874
5875 /* igb_down has a dependency on max_frame_size */
5876 adapter->max_frame_size = max_frame;
5877
5878 if (netif_running(netdev))
5879 igb_down(adapter);
5880
5881 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5882 netdev->mtu, new_mtu);
5883 netdev->mtu = new_mtu;
5884
5885 if (netif_running(netdev))
5886 igb_up(adapter);
5887 else
5888 igb_reset(adapter);
5889
5890 clear_bit(__IGB_RESETTING, &adapter->state);
5891
5892 return 0;
5893 }
5894
5895 /**
5896 * igb_update_stats - Update the board statistics counters
5897 * @adapter: board private structure
5898 **/
5899 void igb_update_stats(struct igb_adapter *adapter)
5900 {
5901 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5902 struct e1000_hw *hw = &adapter->hw;
5903 struct pci_dev *pdev = adapter->pdev;
5904 u32 reg, mpc;
5905 int i;
5906 u64 bytes, packets;
5907 unsigned int start;
5908 u64 _bytes, _packets;
5909
5910 /* Prevent stats update while adapter is being reset, or if the pci
5911 * connection is down.
5912 */
5913 if (adapter->link_speed == 0)
5914 return;
5915 if (pci_channel_offline(pdev))
5916 return;
5917
5918 bytes = 0;
5919 packets = 0;
5920
5921 rcu_read_lock();
5922 for (i = 0; i < adapter->num_rx_queues; i++) {
5923 struct igb_ring *ring = adapter->rx_ring[i];
5924 u32 rqdpc = rd32(E1000_RQDPC(i));
5925 if (hw->mac.type >= e1000_i210)
5926 wr32(E1000_RQDPC(i), 0);
5927
5928 if (rqdpc) {
5929 ring->rx_stats.drops += rqdpc;
5930 net_stats->rx_fifo_errors += rqdpc;
5931 }
5932
5933 do {
5934 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5935 _bytes = ring->rx_stats.bytes;
5936 _packets = ring->rx_stats.packets;
5937 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5938 bytes += _bytes;
5939 packets += _packets;
5940 }
5941
5942 net_stats->rx_bytes = bytes;
5943 net_stats->rx_packets = packets;
5944
5945 bytes = 0;
5946 packets = 0;
5947 for (i = 0; i < adapter->num_tx_queues; i++) {
5948 struct igb_ring *ring = adapter->tx_ring[i];
5949 do {
5950 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5951 _bytes = ring->tx_stats.bytes;
5952 _packets = ring->tx_stats.packets;
5953 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5954 bytes += _bytes;
5955 packets += _packets;
5956 }
5957 net_stats->tx_bytes = bytes;
5958 net_stats->tx_packets = packets;
5959 rcu_read_unlock();
5960
5961 /* read stats registers */
5962 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5963 adapter->stats.gprc += rd32(E1000_GPRC);
5964 adapter->stats.gorc += rd32(E1000_GORCL);
5965 rd32(E1000_GORCH); /* clear GORCL */
5966 adapter->stats.bprc += rd32(E1000_BPRC);
5967 adapter->stats.mprc += rd32(E1000_MPRC);
5968 adapter->stats.roc += rd32(E1000_ROC);
5969
5970 adapter->stats.prc64 += rd32(E1000_PRC64);
5971 adapter->stats.prc127 += rd32(E1000_PRC127);
5972 adapter->stats.prc255 += rd32(E1000_PRC255);
5973 adapter->stats.prc511 += rd32(E1000_PRC511);
5974 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5975 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5976 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5977 adapter->stats.sec += rd32(E1000_SEC);
5978
5979 mpc = rd32(E1000_MPC);
5980 adapter->stats.mpc += mpc;
5981 net_stats->rx_fifo_errors += mpc;
5982 adapter->stats.scc += rd32(E1000_SCC);
5983 adapter->stats.ecol += rd32(E1000_ECOL);
5984 adapter->stats.mcc += rd32(E1000_MCC);
5985 adapter->stats.latecol += rd32(E1000_LATECOL);
5986 adapter->stats.dc += rd32(E1000_DC);
5987 adapter->stats.rlec += rd32(E1000_RLEC);
5988 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5989 adapter->stats.xontxc += rd32(E1000_XONTXC);
5990 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5991 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5992 adapter->stats.fcruc += rd32(E1000_FCRUC);
5993 adapter->stats.gptc += rd32(E1000_GPTC);
5994 adapter->stats.gotc += rd32(E1000_GOTCL);
5995 rd32(E1000_GOTCH); /* clear GOTCL */
5996 adapter->stats.rnbc += rd32(E1000_RNBC);
5997 adapter->stats.ruc += rd32(E1000_RUC);
5998 adapter->stats.rfc += rd32(E1000_RFC);
5999 adapter->stats.rjc += rd32(E1000_RJC);
6000 adapter->stats.tor += rd32(E1000_TORH);
6001 adapter->stats.tot += rd32(E1000_TOTH);
6002 adapter->stats.tpr += rd32(E1000_TPR);
6003
6004 adapter->stats.ptc64 += rd32(E1000_PTC64);
6005 adapter->stats.ptc127 += rd32(E1000_PTC127);
6006 adapter->stats.ptc255 += rd32(E1000_PTC255);
6007 adapter->stats.ptc511 += rd32(E1000_PTC511);
6008 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
6009 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
6010
6011 adapter->stats.mptc += rd32(E1000_MPTC);
6012 adapter->stats.bptc += rd32(E1000_BPTC);
6013
6014 adapter->stats.tpt += rd32(E1000_TPT);
6015 adapter->stats.colc += rd32(E1000_COLC);
6016
6017 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
6018 /* read internal phy specific stats */
6019 reg = rd32(E1000_CTRL_EXT);
6020 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
6021 adapter->stats.rxerrc += rd32(E1000_RXERRC);
6022
6023 /* this stat has invalid values on i210/i211 */
6024 if ((hw->mac.type != e1000_i210) &&
6025 (hw->mac.type != e1000_i211))
6026 adapter->stats.tncrs += rd32(E1000_TNCRS);
6027 }
6028
6029 adapter->stats.tsctc += rd32(E1000_TSCTC);
6030 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
6031
6032 adapter->stats.iac += rd32(E1000_IAC);
6033 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
6034 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
6035 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
6036 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
6037 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
6038 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
6039 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
6040 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
6041
6042 /* Fill out the OS statistics structure */
6043 net_stats->multicast = adapter->stats.mprc;
6044 net_stats->collisions = adapter->stats.colc;
6045
6046 /* Rx Errors */
6047
6048 /* RLEC on some newer hardware can be incorrect so build
6049 * our own version based on RUC and ROC
6050 */
6051 net_stats->rx_errors = adapter->stats.rxerrc +
6052 adapter->stats.crcerrs + adapter->stats.algnerrc +
6053 adapter->stats.ruc + adapter->stats.roc +
6054 adapter->stats.cexterr;
6055 net_stats->rx_length_errors = adapter->stats.ruc +
6056 adapter->stats.roc;
6057 net_stats->rx_crc_errors = adapter->stats.crcerrs;
6058 net_stats->rx_frame_errors = adapter->stats.algnerrc;
6059 net_stats->rx_missed_errors = adapter->stats.mpc;
6060
6061 /* Tx Errors */
6062 net_stats->tx_errors = adapter->stats.ecol +
6063 adapter->stats.latecol;
6064 net_stats->tx_aborted_errors = adapter->stats.ecol;
6065 net_stats->tx_window_errors = adapter->stats.latecol;
6066 net_stats->tx_carrier_errors = adapter->stats.tncrs;
6067
6068 /* Tx Dropped needs to be maintained elsewhere */
6069
6070 /* Management Stats */
6071 adapter->stats.mgptc += rd32(E1000_MGTPTC);
6072 adapter->stats.mgprc += rd32(E1000_MGTPRC);
6073 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
6074
6075 /* OS2BMC Stats */
6076 reg = rd32(E1000_MANC);
6077 if (reg & E1000_MANC_EN_BMC2OS) {
6078 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
6079 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
6080 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
6081 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
6082 }
6083 }
6084
6085 static void igb_tsync_interrupt(struct igb_adapter *adapter)
6086 {
6087 struct e1000_hw *hw = &adapter->hw;
6088 struct ptp_clock_event event;
6089 struct timespec64 ts;
6090 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
6091
6092 if (tsicr & TSINTR_SYS_WRAP) {
6093 event.type = PTP_CLOCK_PPS;
6094 if (adapter->ptp_caps.pps)
6095 ptp_clock_event(adapter->ptp_clock, &event);
6096 ack |= TSINTR_SYS_WRAP;
6097 }
6098
6099 if (tsicr & E1000_TSICR_TXTS) {
6100 /* retrieve hardware timestamp */
6101 schedule_work(&adapter->ptp_tx_work);
6102 ack |= E1000_TSICR_TXTS;
6103 }
6104
6105 if (tsicr & TSINTR_TT0) {
6106 spin_lock(&adapter->tmreg_lock);
6107 ts = timespec64_add(adapter->perout[0].start,
6108 adapter->perout[0].period);
6109 /* u32 conversion of tv_sec is safe until y2106 */
6110 wr32(E1000_TRGTTIML0, ts.tv_nsec);
6111 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
6112 tsauxc = rd32(E1000_TSAUXC);
6113 tsauxc |= TSAUXC_EN_TT0;
6114 wr32(E1000_TSAUXC, tsauxc);
6115 adapter->perout[0].start = ts;
6116 spin_unlock(&adapter->tmreg_lock);
6117 ack |= TSINTR_TT0;
6118 }
6119
6120 if (tsicr & TSINTR_TT1) {
6121 spin_lock(&adapter->tmreg_lock);
6122 ts = timespec64_add(adapter->perout[1].start,
6123 adapter->perout[1].period);
6124 wr32(E1000_TRGTTIML1, ts.tv_nsec);
6125 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
6126 tsauxc = rd32(E1000_TSAUXC);
6127 tsauxc |= TSAUXC_EN_TT1;
6128 wr32(E1000_TSAUXC, tsauxc);
6129 adapter->perout[1].start = ts;
6130 spin_unlock(&adapter->tmreg_lock);
6131 ack |= TSINTR_TT1;
6132 }
6133
6134 if (tsicr & TSINTR_AUTT0) {
6135 nsec = rd32(E1000_AUXSTMPL0);
6136 sec = rd32(E1000_AUXSTMPH0);
6137 event.type = PTP_CLOCK_EXTTS;
6138 event.index = 0;
6139 event.timestamp = sec * 1000000000ULL + nsec;
6140 ptp_clock_event(adapter->ptp_clock, &event);
6141 ack |= TSINTR_AUTT0;
6142 }
6143
6144 if (tsicr & TSINTR_AUTT1) {
6145 nsec = rd32(E1000_AUXSTMPL1);
6146 sec = rd32(E1000_AUXSTMPH1);
6147 event.type = PTP_CLOCK_EXTTS;
6148 event.index = 1;
6149 event.timestamp = sec * 1000000000ULL + nsec;
6150 ptp_clock_event(adapter->ptp_clock, &event);
6151 ack |= TSINTR_AUTT1;
6152 }
6153
6154 /* acknowledge the interrupts */
6155 wr32(E1000_TSICR, ack);
6156 }
6157
6158 static irqreturn_t igb_msix_other(int irq, void *data)
6159 {
6160 struct igb_adapter *adapter = data;
6161 struct e1000_hw *hw = &adapter->hw;
6162 u32 icr = rd32(E1000_ICR);
6163 /* reading ICR causes bit 31 of EICR to be cleared */
6164
6165 if (icr & E1000_ICR_DRSTA)
6166 schedule_work(&adapter->reset_task);
6167
6168 if (icr & E1000_ICR_DOUTSYNC) {
6169 /* HW is reporting DMA is out of sync */
6170 adapter->stats.doosync++;
6171 /* The DMA Out of Sync is also indication of a spoof event
6172 * in IOV mode. Check the Wrong VM Behavior register to
6173 * see if it is really a spoof event.
6174 */
6175 igb_check_wvbr(adapter);
6176 }
6177
6178 /* Check for a mailbox event */
6179 if (icr & E1000_ICR_VMMB)
6180 igb_msg_task(adapter);
6181
6182 if (icr & E1000_ICR_LSC) {
6183 hw->mac.get_link_status = 1;
6184 /* guard against interrupt when we're going down */
6185 if (!test_bit(__IGB_DOWN, &adapter->state))
6186 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6187 }
6188
6189 if (icr & E1000_ICR_TS)
6190 igb_tsync_interrupt(adapter);
6191
6192 wr32(E1000_EIMS, adapter->eims_other);
6193
6194 return IRQ_HANDLED;
6195 }
6196
6197 static void igb_write_itr(struct igb_q_vector *q_vector)
6198 {
6199 struct igb_adapter *adapter = q_vector->adapter;
6200 u32 itr_val = q_vector->itr_val & 0x7FFC;
6201
6202 if (!q_vector->set_itr)
6203 return;
6204
6205 if (!itr_val)
6206 itr_val = 0x4;
6207
6208 if (adapter->hw.mac.type == e1000_82575)
6209 itr_val |= itr_val << 16;
6210 else
6211 itr_val |= E1000_EITR_CNT_IGNR;
6212
6213 writel(itr_val, q_vector->itr_register);
6214 q_vector->set_itr = 0;
6215 }
6216
6217 static irqreturn_t igb_msix_ring(int irq, void *data)
6218 {
6219 struct igb_q_vector *q_vector = data;
6220
6221 /* Write the ITR value calculated from the previous interrupt. */
6222 igb_write_itr(q_vector);
6223
6224 napi_schedule(&q_vector->napi);
6225
6226 return IRQ_HANDLED;
6227 }
6228
6229 #ifdef CONFIG_IGB_DCA
6230 static void igb_update_tx_dca(struct igb_adapter *adapter,
6231 struct igb_ring *tx_ring,
6232 int cpu)
6233 {
6234 struct e1000_hw *hw = &adapter->hw;
6235 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
6236
6237 if (hw->mac.type != e1000_82575)
6238 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
6239
6240 /* We can enable relaxed ordering for reads, but not writes when
6241 * DCA is enabled. This is due to a known issue in some chipsets
6242 * which will cause the DCA tag to be cleared.
6243 */
6244 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
6245 E1000_DCA_TXCTRL_DATA_RRO_EN |
6246 E1000_DCA_TXCTRL_DESC_DCA_EN;
6247
6248 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
6249 }
6250
6251 static void igb_update_rx_dca(struct igb_adapter *adapter,
6252 struct igb_ring *rx_ring,
6253 int cpu)
6254 {
6255 struct e1000_hw *hw = &adapter->hw;
6256 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
6257
6258 if (hw->mac.type != e1000_82575)
6259 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
6260
6261 /* We can enable relaxed ordering for reads, but not writes when
6262 * DCA is enabled. This is due to a known issue in some chipsets
6263 * which will cause the DCA tag to be cleared.
6264 */
6265 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
6266 E1000_DCA_RXCTRL_DESC_DCA_EN;
6267
6268 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
6269 }
6270
6271 static void igb_update_dca(struct igb_q_vector *q_vector)
6272 {
6273 struct igb_adapter *adapter = q_vector->adapter;
6274 int cpu = get_cpu();
6275
6276 if (q_vector->cpu == cpu)
6277 goto out_no_update;
6278
6279 if (q_vector->tx.ring)
6280 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
6281
6282 if (q_vector->rx.ring)
6283 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
6284
6285 q_vector->cpu = cpu;
6286 out_no_update:
6287 put_cpu();
6288 }
6289
6290 static void igb_setup_dca(struct igb_adapter *adapter)
6291 {
6292 struct e1000_hw *hw = &adapter->hw;
6293 int i;
6294
6295 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
6296 return;
6297
6298 /* Always use CB2 mode, difference is masked in the CB driver. */
6299 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
6300
6301 for (i = 0; i < adapter->num_q_vectors; i++) {
6302 adapter->q_vector[i]->cpu = -1;
6303 igb_update_dca(adapter->q_vector[i]);
6304 }
6305 }
6306
6307 static int __igb_notify_dca(struct device *dev, void *data)
6308 {
6309 struct net_device *netdev = dev_get_drvdata(dev);
6310 struct igb_adapter *adapter = netdev_priv(netdev);
6311 struct pci_dev *pdev = adapter->pdev;
6312 struct e1000_hw *hw = &adapter->hw;
6313 unsigned long event = *(unsigned long *)data;
6314
6315 switch (event) {
6316 case DCA_PROVIDER_ADD:
6317 /* if already enabled, don't do it again */
6318 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
6319 break;
6320 if (dca_add_requester(dev) == 0) {
6321 adapter->flags |= IGB_FLAG_DCA_ENABLED;
6322 dev_info(&pdev->dev, "DCA enabled\n");
6323 igb_setup_dca(adapter);
6324 break;
6325 }
6326 /* Fall Through since DCA is disabled. */
6327 case DCA_PROVIDER_REMOVE:
6328 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
6329 /* without this a class_device is left
6330 * hanging around in the sysfs model
6331 */
6332 dca_remove_requester(dev);
6333 dev_info(&pdev->dev, "DCA disabled\n");
6334 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
6335 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
6336 }
6337 break;
6338 }
6339
6340 return 0;
6341 }
6342
6343 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
6344 void *p)
6345 {
6346 int ret_val;
6347
6348 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6349 __igb_notify_dca);
6350
6351 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6352 }
6353 #endif /* CONFIG_IGB_DCA */
6354
6355 #ifdef CONFIG_PCI_IOV
6356 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6357 {
6358 unsigned char mac_addr[ETH_ALEN];
6359
6360 eth_zero_addr(mac_addr);
6361 igb_set_vf_mac(adapter, vf, mac_addr);
6362
6363 /* By default spoof check is enabled for all VFs */
6364 adapter->vf_data[vf].spoofchk_enabled = true;
6365
6366 return 0;
6367 }
6368
6369 #endif
6370 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6371 {
6372 struct e1000_hw *hw = &adapter->hw;
6373 u32 ping;
6374 int i;
6375
6376 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6377 ping = E1000_PF_CONTROL_MSG;
6378 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6379 ping |= E1000_VT_MSGTYPE_CTS;
6380 igb_write_mbx(hw, &ping, 1, i);
6381 }
6382 }
6383
6384 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6385 {
6386 struct e1000_hw *hw = &adapter->hw;
6387 u32 vmolr = rd32(E1000_VMOLR(vf));
6388 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6389
6390 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6391 IGB_VF_FLAG_MULTI_PROMISC);
6392 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6393
6394 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6395 vmolr |= E1000_VMOLR_MPME;
6396 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6397 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6398 } else {
6399 /* if we have hashes and we are clearing a multicast promisc
6400 * flag we need to write the hashes to the MTA as this step
6401 * was previously skipped
6402 */
6403 if (vf_data->num_vf_mc_hashes > 30) {
6404 vmolr |= E1000_VMOLR_MPME;
6405 } else if (vf_data->num_vf_mc_hashes) {
6406 int j;
6407
6408 vmolr |= E1000_VMOLR_ROMPE;
6409 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6410 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6411 }
6412 }
6413
6414 wr32(E1000_VMOLR(vf), vmolr);
6415
6416 /* there are flags left unprocessed, likely not supported */
6417 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6418 return -EINVAL;
6419
6420 return 0;
6421 }
6422
6423 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6424 u32 *msgbuf, u32 vf)
6425 {
6426 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6427 u16 *hash_list = (u16 *)&msgbuf[1];
6428 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6429 int i;
6430
6431 /* salt away the number of multicast addresses assigned
6432 * to this VF for later use to restore when the PF multi cast
6433 * list changes
6434 */
6435 vf_data->num_vf_mc_hashes = n;
6436
6437 /* only up to 30 hash values supported */
6438 if (n > 30)
6439 n = 30;
6440
6441 /* store the hashes for later use */
6442 for (i = 0; i < n; i++)
6443 vf_data->vf_mc_hashes[i] = hash_list[i];
6444
6445 /* Flush and reset the mta with the new values */
6446 igb_set_rx_mode(adapter->netdev);
6447
6448 return 0;
6449 }
6450
6451 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6452 {
6453 struct e1000_hw *hw = &adapter->hw;
6454 struct vf_data_storage *vf_data;
6455 int i, j;
6456
6457 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6458 u32 vmolr = rd32(E1000_VMOLR(i));
6459
6460 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6461
6462 vf_data = &adapter->vf_data[i];
6463
6464 if ((vf_data->num_vf_mc_hashes > 30) ||
6465 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6466 vmolr |= E1000_VMOLR_MPME;
6467 } else if (vf_data->num_vf_mc_hashes) {
6468 vmolr |= E1000_VMOLR_ROMPE;
6469 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6470 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6471 }
6472 wr32(E1000_VMOLR(i), vmolr);
6473 }
6474 }
6475
6476 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6477 {
6478 struct e1000_hw *hw = &adapter->hw;
6479 u32 pool_mask, vlvf_mask, i;
6480
6481 /* create mask for VF and other pools */
6482 pool_mask = E1000_VLVF_POOLSEL_MASK;
6483 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6484
6485 /* drop PF from pool bits */
6486 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6487 adapter->vfs_allocated_count);
6488
6489 /* Find the vlan filter for this id */
6490 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6491 u32 vlvf = rd32(E1000_VLVF(i));
6492 u32 vfta_mask, vid, vfta;
6493
6494 /* remove the vf from the pool */
6495 if (!(vlvf & vlvf_mask))
6496 continue;
6497
6498 /* clear out bit from VLVF */
6499 vlvf ^= vlvf_mask;
6500
6501 /* if other pools are present, just remove ourselves */
6502 if (vlvf & pool_mask)
6503 goto update_vlvfb;
6504
6505 /* if PF is present, leave VFTA */
6506 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6507 goto update_vlvf;
6508
6509 vid = vlvf & E1000_VLVF_VLANID_MASK;
6510 vfta_mask = BIT(vid % 32);
6511
6512 /* clear bit from VFTA */
6513 vfta = adapter->shadow_vfta[vid / 32];
6514 if (vfta & vfta_mask)
6515 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6516 update_vlvf:
6517 /* clear pool selection enable */
6518 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6519 vlvf &= E1000_VLVF_POOLSEL_MASK;
6520 else
6521 vlvf = 0;
6522 update_vlvfb:
6523 /* clear pool bits */
6524 wr32(E1000_VLVF(i), vlvf);
6525 }
6526 }
6527
6528 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6529 {
6530 u32 vlvf;
6531 int idx;
6532
6533 /* short cut the special case */
6534 if (vlan == 0)
6535 return 0;
6536
6537 /* Search for the VLAN id in the VLVF entries */
6538 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6539 vlvf = rd32(E1000_VLVF(idx));
6540 if ((vlvf & VLAN_VID_MASK) == vlan)
6541 break;
6542 }
6543
6544 return idx;
6545 }
6546
6547 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6548 {
6549 struct e1000_hw *hw = &adapter->hw;
6550 u32 bits, pf_id;
6551 int idx;
6552
6553 idx = igb_find_vlvf_entry(hw, vid);
6554 if (!idx)
6555 return;
6556
6557 /* See if any other pools are set for this VLAN filter
6558 * entry other than the PF.
6559 */
6560 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6561 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6562 bits &= rd32(E1000_VLVF(idx));
6563
6564 /* Disable the filter so this falls into the default pool. */
6565 if (!bits) {
6566 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6567 wr32(E1000_VLVF(idx), BIT(pf_id));
6568 else
6569 wr32(E1000_VLVF(idx), 0);
6570 }
6571 }
6572
6573 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6574 bool add, u32 vf)
6575 {
6576 int pf_id = adapter->vfs_allocated_count;
6577 struct e1000_hw *hw = &adapter->hw;
6578 int err;
6579
6580 /* If VLAN overlaps with one the PF is currently monitoring make
6581 * sure that we are able to allocate a VLVF entry. This may be
6582 * redundant but it guarantees PF will maintain visibility to
6583 * the VLAN.
6584 */
6585 if (add && test_bit(vid, adapter->active_vlans)) {
6586 err = igb_vfta_set(hw, vid, pf_id, true, false);
6587 if (err)
6588 return err;
6589 }
6590
6591 err = igb_vfta_set(hw, vid, vf, add, false);
6592
6593 if (add && !err)
6594 return err;
6595
6596 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6597 * we may need to drop the PF pool bit in order to allow us to free
6598 * up the VLVF resources.
6599 */
6600 if (test_bit(vid, adapter->active_vlans) ||
6601 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6602 igb_update_pf_vlvf(adapter, vid);
6603
6604 return err;
6605 }
6606
6607 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6608 {
6609 struct e1000_hw *hw = &adapter->hw;
6610
6611 if (vid)
6612 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6613 else
6614 wr32(E1000_VMVIR(vf), 0);
6615 }
6616
6617 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6618 u16 vlan, u8 qos)
6619 {
6620 int err;
6621
6622 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6623 if (err)
6624 return err;
6625
6626 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6627 igb_set_vmolr(adapter, vf, !vlan);
6628
6629 /* revoke access to previous VLAN */
6630 if (vlan != adapter->vf_data[vf].pf_vlan)
6631 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6632 false, vf);
6633
6634 adapter->vf_data[vf].pf_vlan = vlan;
6635 adapter->vf_data[vf].pf_qos = qos;
6636 igb_set_vf_vlan_strip(adapter, vf, true);
6637 dev_info(&adapter->pdev->dev,
6638 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6639 if (test_bit(__IGB_DOWN, &adapter->state)) {
6640 dev_warn(&adapter->pdev->dev,
6641 "The VF VLAN has been set, but the PF device is not up.\n");
6642 dev_warn(&adapter->pdev->dev,
6643 "Bring the PF device up before attempting to use the VF device.\n");
6644 }
6645
6646 return err;
6647 }
6648
6649 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6650 {
6651 /* Restore tagless access via VLAN 0 */
6652 igb_set_vf_vlan(adapter, 0, true, vf);
6653
6654 igb_set_vmvir(adapter, 0, vf);
6655 igb_set_vmolr(adapter, vf, true);
6656
6657 /* Remove any PF assigned VLAN */
6658 if (adapter->vf_data[vf].pf_vlan)
6659 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6660 false, vf);
6661
6662 adapter->vf_data[vf].pf_vlan = 0;
6663 adapter->vf_data[vf].pf_qos = 0;
6664 igb_set_vf_vlan_strip(adapter, vf, false);
6665
6666 return 0;
6667 }
6668
6669 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6670 u16 vlan, u8 qos, __be16 vlan_proto)
6671 {
6672 struct igb_adapter *adapter = netdev_priv(netdev);
6673
6674 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6675 return -EINVAL;
6676
6677 if (vlan_proto != htons(ETH_P_8021Q))
6678 return -EPROTONOSUPPORT;
6679
6680 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6681 igb_disable_port_vlan(adapter, vf);
6682 }
6683
6684 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6685 {
6686 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6687 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6688 int ret;
6689
6690 if (adapter->vf_data[vf].pf_vlan)
6691 return -1;
6692
6693 /* VLAN 0 is a special case, don't allow it to be removed */
6694 if (!vid && !add)
6695 return 0;
6696
6697 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6698 if (!ret)
6699 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6700 return ret;
6701 }
6702
6703 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6704 {
6705 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6706
6707 /* clear flags - except flag that indicates PF has set the MAC */
6708 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6709 vf_data->last_nack = jiffies;
6710
6711 /* reset vlans for device */
6712 igb_clear_vf_vfta(adapter, vf);
6713 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6714 igb_set_vmvir(adapter, vf_data->pf_vlan |
6715 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6716 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6717 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6718
6719 /* reset multicast table array for vf */
6720 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6721
6722 /* Flush and reset the mta with the new values */
6723 igb_set_rx_mode(adapter->netdev);
6724 }
6725
6726 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6727 {
6728 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6729
6730 /* clear mac address as we were hotplug removed/added */
6731 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6732 eth_zero_addr(vf_mac);
6733
6734 /* process remaining reset events */
6735 igb_vf_reset(adapter, vf);
6736 }
6737
6738 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6739 {
6740 struct e1000_hw *hw = &adapter->hw;
6741 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6742 u32 reg, msgbuf[3];
6743 u8 *addr = (u8 *)(&msgbuf[1]);
6744
6745 /* process all the same items cleared in a function level reset */
6746 igb_vf_reset(adapter, vf);
6747
6748 /* set vf mac address */
6749 igb_set_vf_mac(adapter, vf, vf_mac);
6750
6751 /* enable transmit and receive for vf */
6752 reg = rd32(E1000_VFTE);
6753 wr32(E1000_VFTE, reg | BIT(vf));
6754 reg = rd32(E1000_VFRE);
6755 wr32(E1000_VFRE, reg | BIT(vf));
6756
6757 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6758
6759 /* reply to reset with ack and vf mac address */
6760 if (!is_zero_ether_addr(vf_mac)) {
6761 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6762 memcpy(addr, vf_mac, ETH_ALEN);
6763 } else {
6764 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6765 }
6766 igb_write_mbx(hw, msgbuf, 3, vf);
6767 }
6768
6769 static void igb_flush_mac_table(struct igb_adapter *adapter)
6770 {
6771 struct e1000_hw *hw = &adapter->hw;
6772 int i;
6773
6774 for (i = 0; i < hw->mac.rar_entry_count; i++) {
6775 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6776 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6777 adapter->mac_table[i].queue = 0;
6778 igb_rar_set_index(adapter, i);
6779 }
6780 }
6781
6782 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6783 {
6784 struct e1000_hw *hw = &adapter->hw;
6785 /* do not count rar entries reserved for VFs MAC addresses */
6786 int rar_entries = hw->mac.rar_entry_count -
6787 adapter->vfs_allocated_count;
6788 int i, count = 0;
6789
6790 for (i = 0; i < rar_entries; i++) {
6791 /* do not count default entries */
6792 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6793 continue;
6794
6795 /* do not count "in use" entries for different queues */
6796 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6797 (adapter->mac_table[i].queue != queue))
6798 continue;
6799
6800 count++;
6801 }
6802
6803 return count;
6804 }
6805
6806 /* Set default MAC address for the PF in the first RAR entry */
6807 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6808 {
6809 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6810
6811 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6812 mac_table->queue = adapter->vfs_allocated_count;
6813 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6814
6815 igb_rar_set_index(adapter, 0);
6816 }
6817
6818 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6819 const u8 queue)
6820 {
6821 struct e1000_hw *hw = &adapter->hw;
6822 int rar_entries = hw->mac.rar_entry_count -
6823 adapter->vfs_allocated_count;
6824 int i;
6825
6826 if (is_zero_ether_addr(addr))
6827 return -EINVAL;
6828
6829 /* Search for the first empty entry in the MAC table.
6830 * Do not touch entries at the end of the table reserved for the VF MAC
6831 * addresses.
6832 */
6833 for (i = 0; i < rar_entries; i++) {
6834 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6835 continue;
6836
6837 ether_addr_copy(adapter->mac_table[i].addr, addr);
6838 adapter->mac_table[i].queue = queue;
6839 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6840
6841 igb_rar_set_index(adapter, i);
6842 return i;
6843 }
6844
6845 return -ENOSPC;
6846 }
6847
6848 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6849 const u8 queue)
6850 {
6851 struct e1000_hw *hw = &adapter->hw;
6852 int rar_entries = hw->mac.rar_entry_count -
6853 adapter->vfs_allocated_count;
6854 int i;
6855
6856 if (is_zero_ether_addr(addr))
6857 return -EINVAL;
6858
6859 /* Search for matching entry in the MAC table based on given address
6860 * and queue. Do not touch entries at the end of the table reserved
6861 * for the VF MAC addresses.
6862 */
6863 for (i = 0; i < rar_entries; i++) {
6864 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6865 continue;
6866 if (adapter->mac_table[i].queue != queue)
6867 continue;
6868 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6869 continue;
6870
6871 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6872 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6873 adapter->mac_table[i].queue = 0;
6874
6875 igb_rar_set_index(adapter, i);
6876 return 0;
6877 }
6878
6879 return -ENOENT;
6880 }
6881
6882 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6883 {
6884 struct igb_adapter *adapter = netdev_priv(netdev);
6885 int ret;
6886
6887 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6888
6889 return min_t(int, ret, 0);
6890 }
6891
6892 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6893 {
6894 struct igb_adapter *adapter = netdev_priv(netdev);
6895
6896 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6897
6898 return 0;
6899 }
6900
6901 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6902 const u32 info, const u8 *addr)
6903 {
6904 struct pci_dev *pdev = adapter->pdev;
6905 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6906 struct list_head *pos;
6907 struct vf_mac_filter *entry = NULL;
6908 int ret = 0;
6909
6910 switch (info) {
6911 case E1000_VF_MAC_FILTER_CLR:
6912 /* remove all unicast MAC filters related to the current VF */
6913 list_for_each(pos, &adapter->vf_macs.l) {
6914 entry = list_entry(pos, struct vf_mac_filter, l);
6915 if (entry->vf == vf) {
6916 entry->vf = -1;
6917 entry->free = true;
6918 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6919 }
6920 }
6921 break;
6922 case E1000_VF_MAC_FILTER_ADD:
6923 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6924 dev_warn(&pdev->dev,
6925 "VF %d requested MAC filter but is administratively denied\n",
6926 vf);
6927 return -EINVAL;
6928 }
6929
6930 if (!is_valid_ether_addr(addr)) {
6931 dev_warn(&pdev->dev,
6932 "VF %d attempted to set invalid MAC filter\n",
6933 vf);
6934 return -EINVAL;
6935 }
6936
6937 /* try to find empty slot in the list */
6938 list_for_each(pos, &adapter->vf_macs.l) {
6939 entry = list_entry(pos, struct vf_mac_filter, l);
6940 if (entry->free)
6941 break;
6942 }
6943
6944 if (entry && entry->free) {
6945 entry->free = false;
6946 entry->vf = vf;
6947 ether_addr_copy(entry->vf_mac, addr);
6948
6949 ret = igb_add_mac_filter(adapter, addr, vf);
6950 ret = min_t(int, ret, 0);
6951 } else {
6952 ret = -ENOSPC;
6953 }
6954
6955 if (ret == -ENOSPC)
6956 dev_warn(&pdev->dev,
6957 "VF %d has requested MAC filter but there is no space for it\n",
6958 vf);
6959 break;
6960 default:
6961 ret = -EINVAL;
6962 break;
6963 }
6964
6965 return ret;
6966 }
6967
6968 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6969 {
6970 struct pci_dev *pdev = adapter->pdev;
6971 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6972 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
6973
6974 /* The VF MAC Address is stored in a packed array of bytes
6975 * starting at the second 32 bit word of the msg array
6976 */
6977 unsigned char *addr = (unsigned char *)&msg[1];
6978 int ret = 0;
6979
6980 if (!info) {
6981 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6982 dev_warn(&pdev->dev,
6983 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6984 vf);
6985 return -EINVAL;
6986 }
6987
6988 if (!is_valid_ether_addr(addr)) {
6989 dev_warn(&pdev->dev,
6990 "VF %d attempted to set invalid MAC\n",
6991 vf);
6992 return -EINVAL;
6993 }
6994
6995 ret = igb_set_vf_mac(adapter, vf, addr);
6996 } else {
6997 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
6998 }
6999
7000 return ret;
7001 }
7002
7003 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
7004 {
7005 struct e1000_hw *hw = &adapter->hw;
7006 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7007 u32 msg = E1000_VT_MSGTYPE_NACK;
7008
7009 /* if device isn't clear to send it shouldn't be reading either */
7010 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
7011 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
7012 igb_write_mbx(hw, &msg, 1, vf);
7013 vf_data->last_nack = jiffies;
7014 }
7015 }
7016
7017 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
7018 {
7019 struct pci_dev *pdev = adapter->pdev;
7020 u32 msgbuf[E1000_VFMAILBOX_SIZE];
7021 struct e1000_hw *hw = &adapter->hw;
7022 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
7023 s32 retval;
7024
7025 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
7026
7027 if (retval) {
7028 /* if receive failed revoke VF CTS stats and restart init */
7029 dev_err(&pdev->dev, "Error receiving message from VF\n");
7030 vf_data->flags &= ~IGB_VF_FLAG_CTS;
7031 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7032 goto unlock;
7033 goto out;
7034 }
7035
7036 /* this is a message we already processed, do nothing */
7037 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
7038 goto unlock;
7039
7040 /* until the vf completes a reset it should not be
7041 * allowed to start any configuration.
7042 */
7043 if (msgbuf[0] == E1000_VF_RESET) {
7044 /* unlocks mailbox */
7045 igb_vf_reset_msg(adapter, vf);
7046 return;
7047 }
7048
7049 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
7050 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
7051 goto unlock;
7052 retval = -1;
7053 goto out;
7054 }
7055
7056 switch ((msgbuf[0] & 0xFFFF)) {
7057 case E1000_VF_SET_MAC_ADDR:
7058 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
7059 break;
7060 case E1000_VF_SET_PROMISC:
7061 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
7062 break;
7063 case E1000_VF_SET_MULTICAST:
7064 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
7065 break;
7066 case E1000_VF_SET_LPE:
7067 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
7068 break;
7069 case E1000_VF_SET_VLAN:
7070 retval = -1;
7071 if (vf_data->pf_vlan)
7072 dev_warn(&pdev->dev,
7073 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
7074 vf);
7075 else
7076 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
7077 break;
7078 default:
7079 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
7080 retval = -1;
7081 break;
7082 }
7083
7084 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
7085 out:
7086 /* notify the VF of the results of what it sent us */
7087 if (retval)
7088 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
7089 else
7090 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
7091
7092 /* unlocks mailbox */
7093 igb_write_mbx(hw, msgbuf, 1, vf);
7094 return;
7095
7096 unlock:
7097 igb_unlock_mbx(hw, vf);
7098 }
7099
7100 static void igb_msg_task(struct igb_adapter *adapter)
7101 {
7102 struct e1000_hw *hw = &adapter->hw;
7103 u32 vf;
7104
7105 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
7106 /* process any reset requests */
7107 if (!igb_check_for_rst(hw, vf))
7108 igb_vf_reset_event(adapter, vf);
7109
7110 /* process any messages pending */
7111 if (!igb_check_for_msg(hw, vf))
7112 igb_rcv_msg_from_vf(adapter, vf);
7113
7114 /* process any acks */
7115 if (!igb_check_for_ack(hw, vf))
7116 igb_rcv_ack_from_vf(adapter, vf);
7117 }
7118 }
7119
7120 /**
7121 * igb_set_uta - Set unicast filter table address
7122 * @adapter: board private structure
7123 * @set: boolean indicating if we are setting or clearing bits
7124 *
7125 * The unicast table address is a register array of 32-bit registers.
7126 * The table is meant to be used in a way similar to how the MTA is used
7127 * however due to certain limitations in the hardware it is necessary to
7128 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
7129 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
7130 **/
7131 static void igb_set_uta(struct igb_adapter *adapter, bool set)
7132 {
7133 struct e1000_hw *hw = &adapter->hw;
7134 u32 uta = set ? ~0 : 0;
7135 int i;
7136
7137 /* we only need to do this if VMDq is enabled */
7138 if (!adapter->vfs_allocated_count)
7139 return;
7140
7141 for (i = hw->mac.uta_reg_count; i--;)
7142 array_wr32(E1000_UTA, i, uta);
7143 }
7144
7145 /**
7146 * igb_intr_msi - Interrupt Handler
7147 * @irq: interrupt number
7148 * @data: pointer to a network interface device structure
7149 **/
7150 static irqreturn_t igb_intr_msi(int irq, void *data)
7151 {
7152 struct igb_adapter *adapter = data;
7153 struct igb_q_vector *q_vector = adapter->q_vector[0];
7154 struct e1000_hw *hw = &adapter->hw;
7155 /* read ICR disables interrupts using IAM */
7156 u32 icr = rd32(E1000_ICR);
7157
7158 igb_write_itr(q_vector);
7159
7160 if (icr & E1000_ICR_DRSTA)
7161 schedule_work(&adapter->reset_task);
7162
7163 if (icr & E1000_ICR_DOUTSYNC) {
7164 /* HW is reporting DMA is out of sync */
7165 adapter->stats.doosync++;
7166 }
7167
7168 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7169 hw->mac.get_link_status = 1;
7170 if (!test_bit(__IGB_DOWN, &adapter->state))
7171 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7172 }
7173
7174 if (icr & E1000_ICR_TS)
7175 igb_tsync_interrupt(adapter);
7176
7177 napi_schedule(&q_vector->napi);
7178
7179 return IRQ_HANDLED;
7180 }
7181
7182 /**
7183 * igb_intr - Legacy Interrupt Handler
7184 * @irq: interrupt number
7185 * @data: pointer to a network interface device structure
7186 **/
7187 static irqreturn_t igb_intr(int irq, void *data)
7188 {
7189 struct igb_adapter *adapter = data;
7190 struct igb_q_vector *q_vector = adapter->q_vector[0];
7191 struct e1000_hw *hw = &adapter->hw;
7192 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
7193 * need for the IMC write
7194 */
7195 u32 icr = rd32(E1000_ICR);
7196
7197 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
7198 * not set, then the adapter didn't send an interrupt
7199 */
7200 if (!(icr & E1000_ICR_INT_ASSERTED))
7201 return IRQ_NONE;
7202
7203 igb_write_itr(q_vector);
7204
7205 if (icr & E1000_ICR_DRSTA)
7206 schedule_work(&adapter->reset_task);
7207
7208 if (icr & E1000_ICR_DOUTSYNC) {
7209 /* HW is reporting DMA is out of sync */
7210 adapter->stats.doosync++;
7211 }
7212
7213 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
7214 hw->mac.get_link_status = 1;
7215 /* guard against interrupt when we're going down */
7216 if (!test_bit(__IGB_DOWN, &adapter->state))
7217 mod_timer(&adapter->watchdog_timer, jiffies + 1);
7218 }
7219
7220 if (icr & E1000_ICR_TS)
7221 igb_tsync_interrupt(adapter);
7222
7223 napi_schedule(&q_vector->napi);
7224
7225 return IRQ_HANDLED;
7226 }
7227
7228 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
7229 {
7230 struct igb_adapter *adapter = q_vector->adapter;
7231 struct e1000_hw *hw = &adapter->hw;
7232
7233 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
7234 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
7235 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
7236 igb_set_itr(q_vector);
7237 else
7238 igb_update_ring_itr(q_vector);
7239 }
7240
7241 if (!test_bit(__IGB_DOWN, &adapter->state)) {
7242 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7243 wr32(E1000_EIMS, q_vector->eims_value);
7244 else
7245 igb_irq_enable(adapter);
7246 }
7247 }
7248
7249 /**
7250 * igb_poll - NAPI Rx polling callback
7251 * @napi: napi polling structure
7252 * @budget: count of how many packets we should handle
7253 **/
7254 static int igb_poll(struct napi_struct *napi, int budget)
7255 {
7256 struct igb_q_vector *q_vector = container_of(napi,
7257 struct igb_q_vector,
7258 napi);
7259 bool clean_complete = true;
7260 int work_done = 0;
7261
7262 #ifdef CONFIG_IGB_DCA
7263 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
7264 igb_update_dca(q_vector);
7265 #endif
7266 if (q_vector->tx.ring)
7267 clean_complete = igb_clean_tx_irq(q_vector, budget);
7268
7269 if (q_vector->rx.ring) {
7270 int cleaned = igb_clean_rx_irq(q_vector, budget);
7271
7272 work_done += cleaned;
7273 if (cleaned >= budget)
7274 clean_complete = false;
7275 }
7276
7277 /* If all work not completed, return budget and keep polling */
7278 if (!clean_complete)
7279 return budget;
7280
7281 /* If not enough Rx work done, exit the polling mode */
7282 napi_complete_done(napi, work_done);
7283 igb_ring_irq_enable(q_vector);
7284
7285 return 0;
7286 }
7287
7288 /**
7289 * igb_clean_tx_irq - Reclaim resources after transmit completes
7290 * @q_vector: pointer to q_vector containing needed info
7291 * @napi_budget: Used to determine if we are in netpoll
7292 *
7293 * returns true if ring is completely cleaned
7294 **/
7295 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
7296 {
7297 struct igb_adapter *adapter = q_vector->adapter;
7298 struct igb_ring *tx_ring = q_vector->tx.ring;
7299 struct igb_tx_buffer *tx_buffer;
7300 union e1000_adv_tx_desc *tx_desc;
7301 unsigned int total_bytes = 0, total_packets = 0;
7302 unsigned int budget = q_vector->tx.work_limit;
7303 unsigned int i = tx_ring->next_to_clean;
7304
7305 if (test_bit(__IGB_DOWN, &adapter->state))
7306 return true;
7307
7308 tx_buffer = &tx_ring->tx_buffer_info[i];
7309 tx_desc = IGB_TX_DESC(tx_ring, i);
7310 i -= tx_ring->count;
7311
7312 do {
7313 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
7314
7315 /* if next_to_watch is not set then there is no work pending */
7316 if (!eop_desc)
7317 break;
7318
7319 /* prevent any other reads prior to eop_desc */
7320 read_barrier_depends();
7321
7322 /* if DD is not set pending work has not been completed */
7323 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
7324 break;
7325
7326 /* clear next_to_watch to prevent false hangs */
7327 tx_buffer->next_to_watch = NULL;
7328
7329 /* update the statistics for this packet */
7330 total_bytes += tx_buffer->bytecount;
7331 total_packets += tx_buffer->gso_segs;
7332
7333 /* free the skb */
7334 napi_consume_skb(tx_buffer->skb, napi_budget);
7335
7336 /* unmap skb header data */
7337 dma_unmap_single(tx_ring->dev,
7338 dma_unmap_addr(tx_buffer, dma),
7339 dma_unmap_len(tx_buffer, len),
7340 DMA_TO_DEVICE);
7341
7342 /* clear tx_buffer data */
7343 dma_unmap_len_set(tx_buffer, len, 0);
7344
7345 /* clear last DMA location and unmap remaining buffers */
7346 while (tx_desc != eop_desc) {
7347 tx_buffer++;
7348 tx_desc++;
7349 i++;
7350 if (unlikely(!i)) {
7351 i -= tx_ring->count;
7352 tx_buffer = tx_ring->tx_buffer_info;
7353 tx_desc = IGB_TX_DESC(tx_ring, 0);
7354 }
7355
7356 /* unmap any remaining paged data */
7357 if (dma_unmap_len(tx_buffer, len)) {
7358 dma_unmap_page(tx_ring->dev,
7359 dma_unmap_addr(tx_buffer, dma),
7360 dma_unmap_len(tx_buffer, len),
7361 DMA_TO_DEVICE);
7362 dma_unmap_len_set(tx_buffer, len, 0);
7363 }
7364 }
7365
7366 /* move us one more past the eop_desc for start of next pkt */
7367 tx_buffer++;
7368 tx_desc++;
7369 i++;
7370 if (unlikely(!i)) {
7371 i -= tx_ring->count;
7372 tx_buffer = tx_ring->tx_buffer_info;
7373 tx_desc = IGB_TX_DESC(tx_ring, 0);
7374 }
7375
7376 /* issue prefetch for next Tx descriptor */
7377 prefetch(tx_desc);
7378
7379 /* update budget accounting */
7380 budget--;
7381 } while (likely(budget));
7382
7383 netdev_tx_completed_queue(txring_txq(tx_ring),
7384 total_packets, total_bytes);
7385 i += tx_ring->count;
7386 tx_ring->next_to_clean = i;
7387 u64_stats_update_begin(&tx_ring->tx_syncp);
7388 tx_ring->tx_stats.bytes += total_bytes;
7389 tx_ring->tx_stats.packets += total_packets;
7390 u64_stats_update_end(&tx_ring->tx_syncp);
7391 q_vector->tx.total_bytes += total_bytes;
7392 q_vector->tx.total_packets += total_packets;
7393
7394 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7395 struct e1000_hw *hw = &adapter->hw;
7396
7397 /* Detect a transmit hang in hardware, this serializes the
7398 * check with the clearing of time_stamp and movement of i
7399 */
7400 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7401 if (tx_buffer->next_to_watch &&
7402 time_after(jiffies, tx_buffer->time_stamp +
7403 (adapter->tx_timeout_factor * HZ)) &&
7404 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7405
7406 /* detected Tx unit hang */
7407 dev_err(tx_ring->dev,
7408 "Detected Tx Unit Hang\n"
7409 " Tx Queue <%d>\n"
7410 " TDH <%x>\n"
7411 " TDT <%x>\n"
7412 " next_to_use <%x>\n"
7413 " next_to_clean <%x>\n"
7414 "buffer_info[next_to_clean]\n"
7415 " time_stamp <%lx>\n"
7416 " next_to_watch <%p>\n"
7417 " jiffies <%lx>\n"
7418 " desc.status <%x>\n",
7419 tx_ring->queue_index,
7420 rd32(E1000_TDH(tx_ring->reg_idx)),
7421 readl(tx_ring->tail),
7422 tx_ring->next_to_use,
7423 tx_ring->next_to_clean,
7424 tx_buffer->time_stamp,
7425 tx_buffer->next_to_watch,
7426 jiffies,
7427 tx_buffer->next_to_watch->wb.status);
7428 netif_stop_subqueue(tx_ring->netdev,
7429 tx_ring->queue_index);
7430
7431 /* we are about to reset, no point in enabling stuff */
7432 return true;
7433 }
7434 }
7435
7436 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7437 if (unlikely(total_packets &&
7438 netif_carrier_ok(tx_ring->netdev) &&
7439 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7440 /* Make sure that anybody stopping the queue after this
7441 * sees the new next_to_clean.
7442 */
7443 smp_mb();
7444 if (__netif_subqueue_stopped(tx_ring->netdev,
7445 tx_ring->queue_index) &&
7446 !(test_bit(__IGB_DOWN, &adapter->state))) {
7447 netif_wake_subqueue(tx_ring->netdev,
7448 tx_ring->queue_index);
7449
7450 u64_stats_update_begin(&tx_ring->tx_syncp);
7451 tx_ring->tx_stats.restart_queue++;
7452 u64_stats_update_end(&tx_ring->tx_syncp);
7453 }
7454 }
7455
7456 return !!budget;
7457 }
7458
7459 /**
7460 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7461 * @rx_ring: rx descriptor ring to store buffers on
7462 * @old_buff: donor buffer to have page reused
7463 *
7464 * Synchronizes page for reuse by the adapter
7465 **/
7466 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7467 struct igb_rx_buffer *old_buff)
7468 {
7469 struct igb_rx_buffer *new_buff;
7470 u16 nta = rx_ring->next_to_alloc;
7471
7472 new_buff = &rx_ring->rx_buffer_info[nta];
7473
7474 /* update, and store next to alloc */
7475 nta++;
7476 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7477
7478 /* Transfer page from old buffer to new buffer.
7479 * Move each member individually to avoid possible store
7480 * forwarding stalls.
7481 */
7482 new_buff->dma = old_buff->dma;
7483 new_buff->page = old_buff->page;
7484 new_buff->page_offset = old_buff->page_offset;
7485 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7486 }
7487
7488 static inline bool igb_page_is_reserved(struct page *page)
7489 {
7490 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7491 }
7492
7493 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7494 {
7495 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7496 struct page *page = rx_buffer->page;
7497
7498 /* avoid re-using remote pages */
7499 if (unlikely(igb_page_is_reserved(page)))
7500 return false;
7501
7502 #if (PAGE_SIZE < 8192)
7503 /* if we are only owner of page we can reuse it */
7504 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7505 return false;
7506 #else
7507 #define IGB_LAST_OFFSET \
7508 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7509
7510 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7511 return false;
7512 #endif
7513
7514 /* If we have drained the page fragment pool we need to update
7515 * the pagecnt_bias and page count so that we fully restock the
7516 * number of references the driver holds.
7517 */
7518 if (unlikely(!pagecnt_bias)) {
7519 page_ref_add(page, USHRT_MAX);
7520 rx_buffer->pagecnt_bias = USHRT_MAX;
7521 }
7522
7523 return true;
7524 }
7525
7526 /**
7527 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7528 * @rx_ring: rx descriptor ring to transact packets on
7529 * @rx_buffer: buffer containing page to add
7530 * @skb: sk_buff to place the data into
7531 * @size: size of buffer to be added
7532 *
7533 * This function will add the data contained in rx_buffer->page to the skb.
7534 **/
7535 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7536 struct igb_rx_buffer *rx_buffer,
7537 struct sk_buff *skb,
7538 unsigned int size)
7539 {
7540 #if (PAGE_SIZE < 8192)
7541 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7542 #else
7543 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7544 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7545 SKB_DATA_ALIGN(size);
7546 #endif
7547 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7548 rx_buffer->page_offset, size, truesize);
7549 #if (PAGE_SIZE < 8192)
7550 rx_buffer->page_offset ^= truesize;
7551 #else
7552 rx_buffer->page_offset += truesize;
7553 #endif
7554 }
7555
7556 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7557 struct igb_rx_buffer *rx_buffer,
7558 union e1000_adv_rx_desc *rx_desc,
7559 unsigned int size)
7560 {
7561 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7562 #if (PAGE_SIZE < 8192)
7563 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7564 #else
7565 unsigned int truesize = SKB_DATA_ALIGN(size);
7566 #endif
7567 unsigned int headlen;
7568 struct sk_buff *skb;
7569
7570 /* prefetch first cache line of first page */
7571 prefetch(va);
7572 #if L1_CACHE_BYTES < 128
7573 prefetch(va + L1_CACHE_BYTES);
7574 #endif
7575
7576 /* allocate a skb to store the frags */
7577 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7578 if (unlikely(!skb))
7579 return NULL;
7580
7581 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7582 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7583 va += IGB_TS_HDR_LEN;
7584 size -= IGB_TS_HDR_LEN;
7585 }
7586
7587 /* Determine available headroom for copy */
7588 headlen = size;
7589 if (headlen > IGB_RX_HDR_LEN)
7590 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7591
7592 /* align pull length to size of long to optimize memcpy performance */
7593 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7594
7595 /* update all of the pointers */
7596 size -= headlen;
7597 if (size) {
7598 skb_add_rx_frag(skb, 0, rx_buffer->page,
7599 (va + headlen) - page_address(rx_buffer->page),
7600 size, truesize);
7601 #if (PAGE_SIZE < 8192)
7602 rx_buffer->page_offset ^= truesize;
7603 #else
7604 rx_buffer->page_offset += truesize;
7605 #endif
7606 } else {
7607 rx_buffer->pagecnt_bias++;
7608 }
7609
7610 return skb;
7611 }
7612
7613 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7614 struct igb_rx_buffer *rx_buffer,
7615 union e1000_adv_rx_desc *rx_desc,
7616 unsigned int size)
7617 {
7618 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7619 #if (PAGE_SIZE < 8192)
7620 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7621 #else
7622 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7623 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7624 #endif
7625 struct sk_buff *skb;
7626
7627 /* prefetch first cache line of first page */
7628 prefetch(va);
7629 #if L1_CACHE_BYTES < 128
7630 prefetch(va + L1_CACHE_BYTES);
7631 #endif
7632
7633 /* build an skb around the page buffer */
7634 skb = build_skb(va - IGB_SKB_PAD, truesize);
7635 if (unlikely(!skb))
7636 return NULL;
7637
7638 /* update pointers within the skb to store the data */
7639 skb_reserve(skb, IGB_SKB_PAD);
7640 __skb_put(skb, size);
7641
7642 /* pull timestamp out of packet data */
7643 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7644 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7645 __skb_pull(skb, IGB_TS_HDR_LEN);
7646 }
7647
7648 /* update buffer offset */
7649 #if (PAGE_SIZE < 8192)
7650 rx_buffer->page_offset ^= truesize;
7651 #else
7652 rx_buffer->page_offset += truesize;
7653 #endif
7654
7655 return skb;
7656 }
7657
7658 static inline void igb_rx_checksum(struct igb_ring *ring,
7659 union e1000_adv_rx_desc *rx_desc,
7660 struct sk_buff *skb)
7661 {
7662 skb_checksum_none_assert(skb);
7663
7664 /* Ignore Checksum bit is set */
7665 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7666 return;
7667
7668 /* Rx checksum disabled via ethtool */
7669 if (!(ring->netdev->features & NETIF_F_RXCSUM))
7670 return;
7671
7672 /* TCP/UDP checksum error bit is set */
7673 if (igb_test_staterr(rx_desc,
7674 E1000_RXDEXT_STATERR_TCPE |
7675 E1000_RXDEXT_STATERR_IPE)) {
7676 /* work around errata with sctp packets where the TCPE aka
7677 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7678 * packets, (aka let the stack check the crc32c)
7679 */
7680 if (!((skb->len == 60) &&
7681 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7682 u64_stats_update_begin(&ring->rx_syncp);
7683 ring->rx_stats.csum_err++;
7684 u64_stats_update_end(&ring->rx_syncp);
7685 }
7686 /* let the stack verify checksum errors */
7687 return;
7688 }
7689 /* It must be a TCP or UDP packet with a valid checksum */
7690 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7691 E1000_RXD_STAT_UDPCS))
7692 skb->ip_summed = CHECKSUM_UNNECESSARY;
7693
7694 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7695 le32_to_cpu(rx_desc->wb.upper.status_error));
7696 }
7697
7698 static inline void igb_rx_hash(struct igb_ring *ring,
7699 union e1000_adv_rx_desc *rx_desc,
7700 struct sk_buff *skb)
7701 {
7702 if (ring->netdev->features & NETIF_F_RXHASH)
7703 skb_set_hash(skb,
7704 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7705 PKT_HASH_TYPE_L3);
7706 }
7707
7708 /**
7709 * igb_is_non_eop - process handling of non-EOP buffers
7710 * @rx_ring: Rx ring being processed
7711 * @rx_desc: Rx descriptor for current buffer
7712 * @skb: current socket buffer containing buffer in progress
7713 *
7714 * This function updates next to clean. If the buffer is an EOP buffer
7715 * this function exits returning false, otherwise it will place the
7716 * sk_buff in the next buffer to be chained and return true indicating
7717 * that this is in fact a non-EOP buffer.
7718 **/
7719 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7720 union e1000_adv_rx_desc *rx_desc)
7721 {
7722 u32 ntc = rx_ring->next_to_clean + 1;
7723
7724 /* fetch, update, and store next to clean */
7725 ntc = (ntc < rx_ring->count) ? ntc : 0;
7726 rx_ring->next_to_clean = ntc;
7727
7728 prefetch(IGB_RX_DESC(rx_ring, ntc));
7729
7730 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7731 return false;
7732
7733 return true;
7734 }
7735
7736 /**
7737 * igb_cleanup_headers - Correct corrupted or empty headers
7738 * @rx_ring: rx descriptor ring packet is being transacted on
7739 * @rx_desc: pointer to the EOP Rx descriptor
7740 * @skb: pointer to current skb being fixed
7741 *
7742 * Address the case where we are pulling data in on pages only
7743 * and as such no data is present in the skb header.
7744 *
7745 * In addition if skb is not at least 60 bytes we need to pad it so that
7746 * it is large enough to qualify as a valid Ethernet frame.
7747 *
7748 * Returns true if an error was encountered and skb was freed.
7749 **/
7750 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7751 union e1000_adv_rx_desc *rx_desc,
7752 struct sk_buff *skb)
7753 {
7754 if (unlikely((igb_test_staterr(rx_desc,
7755 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7756 struct net_device *netdev = rx_ring->netdev;
7757 if (!(netdev->features & NETIF_F_RXALL)) {
7758 dev_kfree_skb_any(skb);
7759 return true;
7760 }
7761 }
7762
7763 /* if eth_skb_pad returns an error the skb was freed */
7764 if (eth_skb_pad(skb))
7765 return true;
7766
7767 return false;
7768 }
7769
7770 /**
7771 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7772 * @rx_ring: rx descriptor ring packet is being transacted on
7773 * @rx_desc: pointer to the EOP Rx descriptor
7774 * @skb: pointer to current skb being populated
7775 *
7776 * This function checks the ring, descriptor, and packet information in
7777 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7778 * other fields within the skb.
7779 **/
7780 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7781 union e1000_adv_rx_desc *rx_desc,
7782 struct sk_buff *skb)
7783 {
7784 struct net_device *dev = rx_ring->netdev;
7785
7786 igb_rx_hash(rx_ring, rx_desc, skb);
7787
7788 igb_rx_checksum(rx_ring, rx_desc, skb);
7789
7790 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7791 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7792 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7793
7794 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7795 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7796 u16 vid;
7797
7798 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7799 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7800 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7801 else
7802 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7803
7804 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7805 }
7806
7807 skb_record_rx_queue(skb, rx_ring->queue_index);
7808
7809 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7810 }
7811
7812 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7813 const unsigned int size)
7814 {
7815 struct igb_rx_buffer *rx_buffer;
7816
7817 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7818 prefetchw(rx_buffer->page);
7819
7820 /* we are reusing so sync this buffer for CPU use */
7821 dma_sync_single_range_for_cpu(rx_ring->dev,
7822 rx_buffer->dma,
7823 rx_buffer->page_offset,
7824 size,
7825 DMA_FROM_DEVICE);
7826
7827 rx_buffer->pagecnt_bias--;
7828
7829 return rx_buffer;
7830 }
7831
7832 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7833 struct igb_rx_buffer *rx_buffer)
7834 {
7835 if (igb_can_reuse_rx_page(rx_buffer)) {
7836 /* hand second half of page back to the ring */
7837 igb_reuse_rx_page(rx_ring, rx_buffer);
7838 } else {
7839 /* We are not reusing the buffer so unmap it and free
7840 * any references we are holding to it
7841 */
7842 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7843 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7844 IGB_RX_DMA_ATTR);
7845 __page_frag_cache_drain(rx_buffer->page,
7846 rx_buffer->pagecnt_bias);
7847 }
7848
7849 /* clear contents of rx_buffer */
7850 rx_buffer->page = NULL;
7851 }
7852
7853 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7854 {
7855 struct igb_ring *rx_ring = q_vector->rx.ring;
7856 struct sk_buff *skb = rx_ring->skb;
7857 unsigned int total_bytes = 0, total_packets = 0;
7858 u16 cleaned_count = igb_desc_unused(rx_ring);
7859
7860 while (likely(total_packets < budget)) {
7861 union e1000_adv_rx_desc *rx_desc;
7862 struct igb_rx_buffer *rx_buffer;
7863 unsigned int size;
7864
7865 /* return some buffers to hardware, one at a time is too slow */
7866 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7867 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7868 cleaned_count = 0;
7869 }
7870
7871 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7872 size = le16_to_cpu(rx_desc->wb.upper.length);
7873 if (!size)
7874 break;
7875
7876 /* This memory barrier is needed to keep us from reading
7877 * any other fields out of the rx_desc until we know the
7878 * descriptor has been written back
7879 */
7880 dma_rmb();
7881
7882 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7883
7884 /* retrieve a buffer from the ring */
7885 if (skb)
7886 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7887 else if (ring_uses_build_skb(rx_ring))
7888 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7889 else
7890 skb = igb_construct_skb(rx_ring, rx_buffer,
7891 rx_desc, size);
7892
7893 /* exit if we failed to retrieve a buffer */
7894 if (!skb) {
7895 rx_ring->rx_stats.alloc_failed++;
7896 rx_buffer->pagecnt_bias++;
7897 break;
7898 }
7899
7900 igb_put_rx_buffer(rx_ring, rx_buffer);
7901 cleaned_count++;
7902
7903 /* fetch next buffer in frame if non-eop */
7904 if (igb_is_non_eop(rx_ring, rx_desc))
7905 continue;
7906
7907 /* verify the packet layout is correct */
7908 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7909 skb = NULL;
7910 continue;
7911 }
7912
7913 /* probably a little skewed due to removing CRC */
7914 total_bytes += skb->len;
7915
7916 /* populate checksum, timestamp, VLAN, and protocol */
7917 igb_process_skb_fields(rx_ring, rx_desc, skb);
7918
7919 napi_gro_receive(&q_vector->napi, skb);
7920
7921 /* reset skb pointer */
7922 skb = NULL;
7923
7924 /* update budget accounting */
7925 total_packets++;
7926 }
7927
7928 /* place incomplete frames back on ring for completion */
7929 rx_ring->skb = skb;
7930
7931 u64_stats_update_begin(&rx_ring->rx_syncp);
7932 rx_ring->rx_stats.packets += total_packets;
7933 rx_ring->rx_stats.bytes += total_bytes;
7934 u64_stats_update_end(&rx_ring->rx_syncp);
7935 q_vector->rx.total_packets += total_packets;
7936 q_vector->rx.total_bytes += total_bytes;
7937
7938 if (cleaned_count)
7939 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7940
7941 return total_packets;
7942 }
7943
7944 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7945 {
7946 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7947 }
7948
7949 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7950 struct igb_rx_buffer *bi)
7951 {
7952 struct page *page = bi->page;
7953 dma_addr_t dma;
7954
7955 /* since we are recycling buffers we should seldom need to alloc */
7956 if (likely(page))
7957 return true;
7958
7959 /* alloc new page for storage */
7960 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
7961 if (unlikely(!page)) {
7962 rx_ring->rx_stats.alloc_failed++;
7963 return false;
7964 }
7965
7966 /* map page for use */
7967 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
7968 igb_rx_pg_size(rx_ring),
7969 DMA_FROM_DEVICE,
7970 IGB_RX_DMA_ATTR);
7971
7972 /* if mapping failed free memory back to system since
7973 * there isn't much point in holding memory we can't use
7974 */
7975 if (dma_mapping_error(rx_ring->dev, dma)) {
7976 __free_pages(page, igb_rx_pg_order(rx_ring));
7977
7978 rx_ring->rx_stats.alloc_failed++;
7979 return false;
7980 }
7981
7982 bi->dma = dma;
7983 bi->page = page;
7984 bi->page_offset = igb_rx_offset(rx_ring);
7985 bi->pagecnt_bias = 1;
7986
7987 return true;
7988 }
7989
7990 /**
7991 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7992 * @adapter: address of board private structure
7993 **/
7994 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7995 {
7996 union e1000_adv_rx_desc *rx_desc;
7997 struct igb_rx_buffer *bi;
7998 u16 i = rx_ring->next_to_use;
7999 u16 bufsz;
8000
8001 /* nothing to do */
8002 if (!cleaned_count)
8003 return;
8004
8005 rx_desc = IGB_RX_DESC(rx_ring, i);
8006 bi = &rx_ring->rx_buffer_info[i];
8007 i -= rx_ring->count;
8008
8009 bufsz = igb_rx_bufsz(rx_ring);
8010
8011 do {
8012 if (!igb_alloc_mapped_page(rx_ring, bi))
8013 break;
8014
8015 /* sync the buffer for use by the device */
8016 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
8017 bi->page_offset, bufsz,
8018 DMA_FROM_DEVICE);
8019
8020 /* Refresh the desc even if buffer_addrs didn't change
8021 * because each write-back erases this info.
8022 */
8023 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
8024
8025 rx_desc++;
8026 bi++;
8027 i++;
8028 if (unlikely(!i)) {
8029 rx_desc = IGB_RX_DESC(rx_ring, 0);
8030 bi = rx_ring->rx_buffer_info;
8031 i -= rx_ring->count;
8032 }
8033
8034 /* clear the length for the next_to_use descriptor */
8035 rx_desc->wb.upper.length = 0;
8036
8037 cleaned_count--;
8038 } while (cleaned_count);
8039
8040 i += rx_ring->count;
8041
8042 if (rx_ring->next_to_use != i) {
8043 /* record the next descriptor to use */
8044 rx_ring->next_to_use = i;
8045
8046 /* update next to alloc since we have filled the ring */
8047 rx_ring->next_to_alloc = i;
8048
8049 /* Force memory writes to complete before letting h/w
8050 * know there are new descriptors to fetch. (Only
8051 * applicable for weak-ordered memory model archs,
8052 * such as IA-64).
8053 */
8054 wmb();
8055 writel(i, rx_ring->tail);
8056 }
8057 }
8058
8059 /**
8060 * igb_mii_ioctl -
8061 * @netdev:
8062 * @ifreq:
8063 * @cmd:
8064 **/
8065 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8066 {
8067 struct igb_adapter *adapter = netdev_priv(netdev);
8068 struct mii_ioctl_data *data = if_mii(ifr);
8069
8070 if (adapter->hw.phy.media_type != e1000_media_type_copper)
8071 return -EOPNOTSUPP;
8072
8073 switch (cmd) {
8074 case SIOCGMIIPHY:
8075 data->phy_id = adapter->hw.phy.addr;
8076 break;
8077 case SIOCGMIIREG:
8078 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
8079 &data->val_out))
8080 return -EIO;
8081 break;
8082 case SIOCSMIIREG:
8083 default:
8084 return -EOPNOTSUPP;
8085 }
8086 return 0;
8087 }
8088
8089 /**
8090 * igb_ioctl -
8091 * @netdev:
8092 * @ifreq:
8093 * @cmd:
8094 **/
8095 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
8096 {
8097 switch (cmd) {
8098 case SIOCGMIIPHY:
8099 case SIOCGMIIREG:
8100 case SIOCSMIIREG:
8101 return igb_mii_ioctl(netdev, ifr, cmd);
8102 case SIOCGHWTSTAMP:
8103 return igb_ptp_get_ts_config(netdev, ifr);
8104 case SIOCSHWTSTAMP:
8105 return igb_ptp_set_ts_config(netdev, ifr);
8106 default:
8107 return -EOPNOTSUPP;
8108 }
8109 }
8110
8111 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8112 {
8113 struct igb_adapter *adapter = hw->back;
8114
8115 pci_read_config_word(adapter->pdev, reg, value);
8116 }
8117
8118 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
8119 {
8120 struct igb_adapter *adapter = hw->back;
8121
8122 pci_write_config_word(adapter->pdev, reg, *value);
8123 }
8124
8125 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8126 {
8127 struct igb_adapter *adapter = hw->back;
8128
8129 if (pcie_capability_read_word(adapter->pdev, reg, value))
8130 return -E1000_ERR_CONFIG;
8131
8132 return 0;
8133 }
8134
8135 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
8136 {
8137 struct igb_adapter *adapter = hw->back;
8138
8139 if (pcie_capability_write_word(adapter->pdev, reg, *value))
8140 return -E1000_ERR_CONFIG;
8141
8142 return 0;
8143 }
8144
8145 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
8146 {
8147 struct igb_adapter *adapter = netdev_priv(netdev);
8148 struct e1000_hw *hw = &adapter->hw;
8149 u32 ctrl, rctl;
8150 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
8151
8152 if (enable) {
8153 /* enable VLAN tag insert/strip */
8154 ctrl = rd32(E1000_CTRL);
8155 ctrl |= E1000_CTRL_VME;
8156 wr32(E1000_CTRL, ctrl);
8157
8158 /* Disable CFI check */
8159 rctl = rd32(E1000_RCTL);
8160 rctl &= ~E1000_RCTL_CFIEN;
8161 wr32(E1000_RCTL, rctl);
8162 } else {
8163 /* disable VLAN tag insert/strip */
8164 ctrl = rd32(E1000_CTRL);
8165 ctrl &= ~E1000_CTRL_VME;
8166 wr32(E1000_CTRL, ctrl);
8167 }
8168
8169 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
8170 }
8171
8172 static int igb_vlan_rx_add_vid(struct net_device *netdev,
8173 __be16 proto, u16 vid)
8174 {
8175 struct igb_adapter *adapter = netdev_priv(netdev);
8176 struct e1000_hw *hw = &adapter->hw;
8177 int pf_id = adapter->vfs_allocated_count;
8178
8179 /* add the filter since PF can receive vlans w/o entry in vlvf */
8180 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8181 igb_vfta_set(hw, vid, pf_id, true, !!vid);
8182
8183 set_bit(vid, adapter->active_vlans);
8184
8185 return 0;
8186 }
8187
8188 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
8189 __be16 proto, u16 vid)
8190 {
8191 struct igb_adapter *adapter = netdev_priv(netdev);
8192 int pf_id = adapter->vfs_allocated_count;
8193 struct e1000_hw *hw = &adapter->hw;
8194
8195 /* remove VID from filter table */
8196 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
8197 igb_vfta_set(hw, vid, pf_id, false, true);
8198
8199 clear_bit(vid, adapter->active_vlans);
8200
8201 return 0;
8202 }
8203
8204 static void igb_restore_vlan(struct igb_adapter *adapter)
8205 {
8206 u16 vid = 1;
8207
8208 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
8209 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
8210
8211 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
8212 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
8213 }
8214
8215 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
8216 {
8217 struct pci_dev *pdev = adapter->pdev;
8218 struct e1000_mac_info *mac = &adapter->hw.mac;
8219
8220 mac->autoneg = 0;
8221
8222 /* Make sure dplx is at most 1 bit and lsb of speed is not set
8223 * for the switch() below to work
8224 */
8225 if ((spd & 1) || (dplx & ~1))
8226 goto err_inval;
8227
8228 /* Fiber NIC's only allow 1000 gbps Full duplex
8229 * and 100Mbps Full duplex for 100baseFx sfp
8230 */
8231 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
8232 switch (spd + dplx) {
8233 case SPEED_10 + DUPLEX_HALF:
8234 case SPEED_10 + DUPLEX_FULL:
8235 case SPEED_100 + DUPLEX_HALF:
8236 goto err_inval;
8237 default:
8238 break;
8239 }
8240 }
8241
8242 switch (spd + dplx) {
8243 case SPEED_10 + DUPLEX_HALF:
8244 mac->forced_speed_duplex = ADVERTISE_10_HALF;
8245 break;
8246 case SPEED_10 + DUPLEX_FULL:
8247 mac->forced_speed_duplex = ADVERTISE_10_FULL;
8248 break;
8249 case SPEED_100 + DUPLEX_HALF:
8250 mac->forced_speed_duplex = ADVERTISE_100_HALF;
8251 break;
8252 case SPEED_100 + DUPLEX_FULL:
8253 mac->forced_speed_duplex = ADVERTISE_100_FULL;
8254 break;
8255 case SPEED_1000 + DUPLEX_FULL:
8256 mac->autoneg = 1;
8257 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
8258 break;
8259 case SPEED_1000 + DUPLEX_HALF: /* not supported */
8260 default:
8261 goto err_inval;
8262 }
8263
8264 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
8265 adapter->hw.phy.mdix = AUTO_ALL_MODES;
8266
8267 return 0;
8268
8269 err_inval:
8270 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
8271 return -EINVAL;
8272 }
8273
8274 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
8275 bool runtime)
8276 {
8277 struct net_device *netdev = pci_get_drvdata(pdev);
8278 struct igb_adapter *adapter = netdev_priv(netdev);
8279 struct e1000_hw *hw = &adapter->hw;
8280 u32 ctrl, rctl, status;
8281 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
8282 #ifdef CONFIG_PM
8283 int retval = 0;
8284 #endif
8285
8286 rtnl_lock();
8287 netif_device_detach(netdev);
8288
8289 if (netif_running(netdev))
8290 __igb_close(netdev, true);
8291
8292 igb_ptp_suspend(adapter);
8293
8294 igb_clear_interrupt_scheme(adapter);
8295 rtnl_unlock();
8296
8297 #ifdef CONFIG_PM
8298 retval = pci_save_state(pdev);
8299 if (retval)
8300 return retval;
8301 #endif
8302
8303 status = rd32(E1000_STATUS);
8304 if (status & E1000_STATUS_LU)
8305 wufc &= ~E1000_WUFC_LNKC;
8306
8307 if (wufc) {
8308 igb_setup_rctl(adapter);
8309 igb_set_rx_mode(netdev);
8310
8311 /* turn on all-multi mode if wake on multicast is enabled */
8312 if (wufc & E1000_WUFC_MC) {
8313 rctl = rd32(E1000_RCTL);
8314 rctl |= E1000_RCTL_MPE;
8315 wr32(E1000_RCTL, rctl);
8316 }
8317
8318 ctrl = rd32(E1000_CTRL);
8319 /* advertise wake from D3Cold */
8320 #define E1000_CTRL_ADVD3WUC 0x00100000
8321 /* phy power management enable */
8322 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
8323 ctrl |= E1000_CTRL_ADVD3WUC;
8324 wr32(E1000_CTRL, ctrl);
8325
8326 /* Allow time for pending master requests to run */
8327 igb_disable_pcie_master(hw);
8328
8329 wr32(E1000_WUC, E1000_WUC_PME_EN);
8330 wr32(E1000_WUFC, wufc);
8331 } else {
8332 wr32(E1000_WUC, 0);
8333 wr32(E1000_WUFC, 0);
8334 }
8335
8336 *enable_wake = wufc || adapter->en_mng_pt;
8337 if (!*enable_wake)
8338 igb_power_down_link(adapter);
8339 else
8340 igb_power_up_link(adapter);
8341
8342 /* Release control of h/w to f/w. If f/w is AMT enabled, this
8343 * would have already happened in close and is redundant.
8344 */
8345 igb_release_hw_control(adapter);
8346
8347 pci_disable_device(pdev);
8348
8349 return 0;
8350 }
8351
8352 static void igb_deliver_wake_packet(struct net_device *netdev)
8353 {
8354 struct igb_adapter *adapter = netdev_priv(netdev);
8355 struct e1000_hw *hw = &adapter->hw;
8356 struct sk_buff *skb;
8357 u32 wupl;
8358
8359 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8360
8361 /* WUPM stores only the first 128 bytes of the wake packet.
8362 * Read the packet only if we have the whole thing.
8363 */
8364 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8365 return;
8366
8367 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8368 if (!skb)
8369 return;
8370
8371 skb_put(skb, wupl);
8372
8373 /* Ensure reads are 32-bit aligned */
8374 wupl = roundup(wupl, 4);
8375
8376 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8377
8378 skb->protocol = eth_type_trans(skb, netdev);
8379 netif_rx(skb);
8380 }
8381
8382 static int __maybe_unused igb_suspend(struct device *dev)
8383 {
8384 int retval;
8385 bool wake;
8386 struct pci_dev *pdev = to_pci_dev(dev);
8387
8388 retval = __igb_shutdown(pdev, &wake, 0);
8389 if (retval)
8390 return retval;
8391
8392 if (wake) {
8393 pci_prepare_to_sleep(pdev);
8394 } else {
8395 pci_wake_from_d3(pdev, false);
8396 pci_set_power_state(pdev, PCI_D3hot);
8397 }
8398
8399 return 0;
8400 }
8401
8402 static int __maybe_unused igb_resume(struct device *dev)
8403 {
8404 struct pci_dev *pdev = to_pci_dev(dev);
8405 struct net_device *netdev = pci_get_drvdata(pdev);
8406 struct igb_adapter *adapter = netdev_priv(netdev);
8407 struct e1000_hw *hw = &adapter->hw;
8408 u32 err, val;
8409
8410 pci_set_power_state(pdev, PCI_D0);
8411 pci_restore_state(pdev);
8412 pci_save_state(pdev);
8413
8414 if (!pci_device_is_present(pdev))
8415 return -ENODEV;
8416 err = pci_enable_device_mem(pdev);
8417 if (err) {
8418 dev_err(&pdev->dev,
8419 "igb: Cannot enable PCI device from suspend\n");
8420 return err;
8421 }
8422 pci_set_master(pdev);
8423
8424 pci_enable_wake(pdev, PCI_D3hot, 0);
8425 pci_enable_wake(pdev, PCI_D3cold, 0);
8426
8427 if (igb_init_interrupt_scheme(adapter, true)) {
8428 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8429 return -ENOMEM;
8430 }
8431
8432 igb_reset(adapter);
8433
8434 /* let the f/w know that the h/w is now under the control of the
8435 * driver.
8436 */
8437 igb_get_hw_control(adapter);
8438
8439 val = rd32(E1000_WUS);
8440 if (val & WAKE_PKT_WUS)
8441 igb_deliver_wake_packet(netdev);
8442
8443 wr32(E1000_WUS, ~0);
8444
8445 rtnl_lock();
8446 if (!err && netif_running(netdev))
8447 err = __igb_open(netdev, true);
8448
8449 if (!err)
8450 netif_device_attach(netdev);
8451 rtnl_unlock();
8452
8453 return err;
8454 }
8455
8456 static int __maybe_unused igb_runtime_idle(struct device *dev)
8457 {
8458 struct pci_dev *pdev = to_pci_dev(dev);
8459 struct net_device *netdev = pci_get_drvdata(pdev);
8460 struct igb_adapter *adapter = netdev_priv(netdev);
8461
8462 if (!igb_has_link(adapter))
8463 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8464
8465 return -EBUSY;
8466 }
8467
8468 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8469 {
8470 struct pci_dev *pdev = to_pci_dev(dev);
8471 int retval;
8472 bool wake;
8473
8474 retval = __igb_shutdown(pdev, &wake, 1);
8475 if (retval)
8476 return retval;
8477
8478 if (wake) {
8479 pci_prepare_to_sleep(pdev);
8480 } else {
8481 pci_wake_from_d3(pdev, false);
8482 pci_set_power_state(pdev, PCI_D3hot);
8483 }
8484
8485 return 0;
8486 }
8487
8488 static int __maybe_unused igb_runtime_resume(struct device *dev)
8489 {
8490 return igb_resume(dev);
8491 }
8492
8493 static void igb_shutdown(struct pci_dev *pdev)
8494 {
8495 bool wake;
8496
8497 __igb_shutdown(pdev, &wake, 0);
8498
8499 if (system_state == SYSTEM_POWER_OFF) {
8500 pci_wake_from_d3(pdev, wake);
8501 pci_set_power_state(pdev, PCI_D3hot);
8502 }
8503 }
8504
8505 #ifdef CONFIG_PCI_IOV
8506 static int igb_sriov_reinit(struct pci_dev *dev)
8507 {
8508 struct net_device *netdev = pci_get_drvdata(dev);
8509 struct igb_adapter *adapter = netdev_priv(netdev);
8510 struct pci_dev *pdev = adapter->pdev;
8511
8512 rtnl_lock();
8513
8514 if (netif_running(netdev))
8515 igb_close(netdev);
8516 else
8517 igb_reset(adapter);
8518
8519 igb_clear_interrupt_scheme(adapter);
8520
8521 igb_init_queue_configuration(adapter);
8522
8523 if (igb_init_interrupt_scheme(adapter, true)) {
8524 rtnl_unlock();
8525 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8526 return -ENOMEM;
8527 }
8528
8529 if (netif_running(netdev))
8530 igb_open(netdev);
8531
8532 rtnl_unlock();
8533
8534 return 0;
8535 }
8536
8537 static int igb_pci_disable_sriov(struct pci_dev *dev)
8538 {
8539 int err = igb_disable_sriov(dev);
8540
8541 if (!err)
8542 err = igb_sriov_reinit(dev);
8543
8544 return err;
8545 }
8546
8547 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8548 {
8549 int err = igb_enable_sriov(dev, num_vfs);
8550
8551 if (err)
8552 goto out;
8553
8554 err = igb_sriov_reinit(dev);
8555 if (!err)
8556 return num_vfs;
8557
8558 out:
8559 return err;
8560 }
8561
8562 #endif
8563 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8564 {
8565 #ifdef CONFIG_PCI_IOV
8566 if (num_vfs == 0)
8567 return igb_pci_disable_sriov(dev);
8568 else
8569 return igb_pci_enable_sriov(dev, num_vfs);
8570 #endif
8571 return 0;
8572 }
8573
8574 #ifdef CONFIG_NET_POLL_CONTROLLER
8575 /* Polling 'interrupt' - used by things like netconsole to send skbs
8576 * without having to re-enable interrupts. It's not called while
8577 * the interrupt routine is executing.
8578 */
8579 static void igb_netpoll(struct net_device *netdev)
8580 {
8581 struct igb_adapter *adapter = netdev_priv(netdev);
8582 struct e1000_hw *hw = &adapter->hw;
8583 struct igb_q_vector *q_vector;
8584 int i;
8585
8586 for (i = 0; i < adapter->num_q_vectors; i++) {
8587 q_vector = adapter->q_vector[i];
8588 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8589 wr32(E1000_EIMC, q_vector->eims_value);
8590 else
8591 igb_irq_disable(adapter);
8592 napi_schedule(&q_vector->napi);
8593 }
8594 }
8595 #endif /* CONFIG_NET_POLL_CONTROLLER */
8596
8597 /**
8598 * igb_io_error_detected - called when PCI error is detected
8599 * @pdev: Pointer to PCI device
8600 * @state: The current pci connection state
8601 *
8602 * This function is called after a PCI bus error affecting
8603 * this device has been detected.
8604 **/
8605 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8606 pci_channel_state_t state)
8607 {
8608 struct net_device *netdev = pci_get_drvdata(pdev);
8609 struct igb_adapter *adapter = netdev_priv(netdev);
8610
8611 netif_device_detach(netdev);
8612
8613 if (state == pci_channel_io_perm_failure)
8614 return PCI_ERS_RESULT_DISCONNECT;
8615
8616 if (netif_running(netdev))
8617 igb_down(adapter);
8618 pci_disable_device(pdev);
8619
8620 /* Request a slot slot reset. */
8621 return PCI_ERS_RESULT_NEED_RESET;
8622 }
8623
8624 /**
8625 * igb_io_slot_reset - called after the pci bus has been reset.
8626 * @pdev: Pointer to PCI device
8627 *
8628 * Restart the card from scratch, as if from a cold-boot. Implementation
8629 * resembles the first-half of the igb_resume routine.
8630 **/
8631 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8632 {
8633 struct net_device *netdev = pci_get_drvdata(pdev);
8634 struct igb_adapter *adapter = netdev_priv(netdev);
8635 struct e1000_hw *hw = &adapter->hw;
8636 pci_ers_result_t result;
8637 int err;
8638
8639 if (pci_enable_device_mem(pdev)) {
8640 dev_err(&pdev->dev,
8641 "Cannot re-enable PCI device after reset.\n");
8642 result = PCI_ERS_RESULT_DISCONNECT;
8643 } else {
8644 pci_set_master(pdev);
8645 pci_restore_state(pdev);
8646 pci_save_state(pdev);
8647
8648 pci_enable_wake(pdev, PCI_D3hot, 0);
8649 pci_enable_wake(pdev, PCI_D3cold, 0);
8650
8651 /* In case of PCI error, adapter lose its HW address
8652 * so we should re-assign it here.
8653 */
8654 hw->hw_addr = adapter->io_addr;
8655
8656 igb_reset(adapter);
8657 wr32(E1000_WUS, ~0);
8658 result = PCI_ERS_RESULT_RECOVERED;
8659 }
8660
8661 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8662 if (err) {
8663 dev_err(&pdev->dev,
8664 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8665 err);
8666 /* non-fatal, continue */
8667 }
8668
8669 return result;
8670 }
8671
8672 /**
8673 * igb_io_resume - called when traffic can start flowing again.
8674 * @pdev: Pointer to PCI device
8675 *
8676 * This callback is called when the error recovery driver tells us that
8677 * its OK to resume normal operation. Implementation resembles the
8678 * second-half of the igb_resume routine.
8679 */
8680 static void igb_io_resume(struct pci_dev *pdev)
8681 {
8682 struct net_device *netdev = pci_get_drvdata(pdev);
8683 struct igb_adapter *adapter = netdev_priv(netdev);
8684
8685 if (netif_running(netdev)) {
8686 if (igb_up(adapter)) {
8687 dev_err(&pdev->dev, "igb_up failed after reset\n");
8688 return;
8689 }
8690 }
8691
8692 netif_device_attach(netdev);
8693
8694 /* let the f/w know that the h/w is now under the control of the
8695 * driver.
8696 */
8697 igb_get_hw_control(adapter);
8698 }
8699
8700 /**
8701 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8702 * @adapter: Pointer to adapter structure
8703 * @index: Index of the RAR entry which need to be synced with MAC table
8704 **/
8705 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8706 {
8707 struct e1000_hw *hw = &adapter->hw;
8708 u32 rar_low, rar_high;
8709 u8 *addr = adapter->mac_table[index].addr;
8710
8711 /* HW expects these to be in network order when they are plugged
8712 * into the registers which are little endian. In order to guarantee
8713 * that ordering we need to do an leXX_to_cpup here in order to be
8714 * ready for the byteswap that occurs with writel
8715 */
8716 rar_low = le32_to_cpup((__le32 *)(addr));
8717 rar_high = le16_to_cpup((__le16 *)(addr + 4));
8718
8719 /* Indicate to hardware the Address is Valid. */
8720 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8721 rar_high |= E1000_RAH_AV;
8722
8723 if (hw->mac.type == e1000_82575)
8724 rar_high |= E1000_RAH_POOL_1 *
8725 adapter->mac_table[index].queue;
8726 else
8727 rar_high |= E1000_RAH_POOL_1 <<
8728 adapter->mac_table[index].queue;
8729 }
8730
8731 wr32(E1000_RAL(index), rar_low);
8732 wrfl();
8733 wr32(E1000_RAH(index), rar_high);
8734 wrfl();
8735 }
8736
8737 static int igb_set_vf_mac(struct igb_adapter *adapter,
8738 int vf, unsigned char *mac_addr)
8739 {
8740 struct e1000_hw *hw = &adapter->hw;
8741 /* VF MAC addresses start at end of receive addresses and moves
8742 * towards the first, as a result a collision should not be possible
8743 */
8744 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8745 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8746
8747 ether_addr_copy(vf_mac_addr, mac_addr);
8748 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8749 adapter->mac_table[rar_entry].queue = vf;
8750 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8751 igb_rar_set_index(adapter, rar_entry);
8752
8753 return 0;
8754 }
8755
8756 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8757 {
8758 struct igb_adapter *adapter = netdev_priv(netdev);
8759 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
8760 return -EINVAL;
8761 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8762 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
8763 dev_info(&adapter->pdev->dev,
8764 "Reload the VF driver to make this change effective.");
8765 if (test_bit(__IGB_DOWN, &adapter->state)) {
8766 dev_warn(&adapter->pdev->dev,
8767 "The VF MAC address has been set, but the PF device is not up.\n");
8768 dev_warn(&adapter->pdev->dev,
8769 "Bring the PF device up before attempting to use the VF device.\n");
8770 }
8771 return igb_set_vf_mac(adapter, vf, mac);
8772 }
8773
8774 static int igb_link_mbps(int internal_link_speed)
8775 {
8776 switch (internal_link_speed) {
8777 case SPEED_100:
8778 return 100;
8779 case SPEED_1000:
8780 return 1000;
8781 default:
8782 return 0;
8783 }
8784 }
8785
8786 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8787 int link_speed)
8788 {
8789 int rf_dec, rf_int;
8790 u32 bcnrc_val;
8791
8792 if (tx_rate != 0) {
8793 /* Calculate the rate factor values to set */
8794 rf_int = link_speed / tx_rate;
8795 rf_dec = (link_speed - (rf_int * tx_rate));
8796 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8797 tx_rate;
8798
8799 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8800 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8801 E1000_RTTBCNRC_RF_INT_MASK);
8802 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8803 } else {
8804 bcnrc_val = 0;
8805 }
8806
8807 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8808 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8809 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8810 */
8811 wr32(E1000_RTTBCNRM, 0x14);
8812 wr32(E1000_RTTBCNRC, bcnrc_val);
8813 }
8814
8815 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8816 {
8817 int actual_link_speed, i;
8818 bool reset_rate = false;
8819
8820 /* VF TX rate limit was not set or not supported */
8821 if ((adapter->vf_rate_link_speed == 0) ||
8822 (adapter->hw.mac.type != e1000_82576))
8823 return;
8824
8825 actual_link_speed = igb_link_mbps(adapter->link_speed);
8826 if (actual_link_speed != adapter->vf_rate_link_speed) {
8827 reset_rate = true;
8828 adapter->vf_rate_link_speed = 0;
8829 dev_info(&adapter->pdev->dev,
8830 "Link speed has been changed. VF Transmit rate is disabled\n");
8831 }
8832
8833 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8834 if (reset_rate)
8835 adapter->vf_data[i].tx_rate = 0;
8836
8837 igb_set_vf_rate_limit(&adapter->hw, i,
8838 adapter->vf_data[i].tx_rate,
8839 actual_link_speed);
8840 }
8841 }
8842
8843 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8844 int min_tx_rate, int max_tx_rate)
8845 {
8846 struct igb_adapter *adapter = netdev_priv(netdev);
8847 struct e1000_hw *hw = &adapter->hw;
8848 int actual_link_speed;
8849
8850 if (hw->mac.type != e1000_82576)
8851 return -EOPNOTSUPP;
8852
8853 if (min_tx_rate)
8854 return -EINVAL;
8855
8856 actual_link_speed = igb_link_mbps(adapter->link_speed);
8857 if ((vf >= adapter->vfs_allocated_count) ||
8858 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8859 (max_tx_rate < 0) ||
8860 (max_tx_rate > actual_link_speed))
8861 return -EINVAL;
8862
8863 adapter->vf_rate_link_speed = actual_link_speed;
8864 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8865 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8866
8867 return 0;
8868 }
8869
8870 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8871 bool setting)
8872 {
8873 struct igb_adapter *adapter = netdev_priv(netdev);
8874 struct e1000_hw *hw = &adapter->hw;
8875 u32 reg_val, reg_offset;
8876
8877 if (!adapter->vfs_allocated_count)
8878 return -EOPNOTSUPP;
8879
8880 if (vf >= adapter->vfs_allocated_count)
8881 return -EINVAL;
8882
8883 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8884 reg_val = rd32(reg_offset);
8885 if (setting)
8886 reg_val |= (BIT(vf) |
8887 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8888 else
8889 reg_val &= ~(BIT(vf) |
8890 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8891 wr32(reg_offset, reg_val);
8892
8893 adapter->vf_data[vf].spoofchk_enabled = setting;
8894 return 0;
8895 }
8896
8897 static int igb_ndo_get_vf_config(struct net_device *netdev,
8898 int vf, struct ifla_vf_info *ivi)
8899 {
8900 struct igb_adapter *adapter = netdev_priv(netdev);
8901 if (vf >= adapter->vfs_allocated_count)
8902 return -EINVAL;
8903 ivi->vf = vf;
8904 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8905 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8906 ivi->min_tx_rate = 0;
8907 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8908 ivi->qos = adapter->vf_data[vf].pf_qos;
8909 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8910 return 0;
8911 }
8912
8913 static void igb_vmm_control(struct igb_adapter *adapter)
8914 {
8915 struct e1000_hw *hw = &adapter->hw;
8916 u32 reg;
8917
8918 switch (hw->mac.type) {
8919 case e1000_82575:
8920 case e1000_i210:
8921 case e1000_i211:
8922 case e1000_i354:
8923 default:
8924 /* replication is not supported for 82575 */
8925 return;
8926 case e1000_82576:
8927 /* notify HW that the MAC is adding vlan tags */
8928 reg = rd32(E1000_DTXCTL);
8929 reg |= E1000_DTXCTL_VLAN_ADDED;
8930 wr32(E1000_DTXCTL, reg);
8931 /* Fall through */
8932 case e1000_82580:
8933 /* enable replication vlan tag stripping */
8934 reg = rd32(E1000_RPLOLR);
8935 reg |= E1000_RPLOLR_STRVLAN;
8936 wr32(E1000_RPLOLR, reg);
8937 /* Fall through */
8938 case e1000_i350:
8939 /* none of the above registers are supported by i350 */
8940 break;
8941 }
8942
8943 if (adapter->vfs_allocated_count) {
8944 igb_vmdq_set_loopback_pf(hw, true);
8945 igb_vmdq_set_replication_pf(hw, true);
8946 igb_vmdq_set_anti_spoofing_pf(hw, true,
8947 adapter->vfs_allocated_count);
8948 } else {
8949 igb_vmdq_set_loopback_pf(hw, false);
8950 igb_vmdq_set_replication_pf(hw, false);
8951 }
8952 }
8953
8954 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8955 {
8956 struct e1000_hw *hw = &adapter->hw;
8957 u32 dmac_thr;
8958 u16 hwm;
8959
8960 if (hw->mac.type > e1000_82580) {
8961 if (adapter->flags & IGB_FLAG_DMAC) {
8962 u32 reg;
8963
8964 /* force threshold to 0. */
8965 wr32(E1000_DMCTXTH, 0);
8966
8967 /* DMA Coalescing high water mark needs to be greater
8968 * than the Rx threshold. Set hwm to PBA - max frame
8969 * size in 16B units, capping it at PBA - 6KB.
8970 */
8971 hwm = 64 * (pba - 6);
8972 reg = rd32(E1000_FCRTC);
8973 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8974 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8975 & E1000_FCRTC_RTH_COAL_MASK);
8976 wr32(E1000_FCRTC, reg);
8977
8978 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8979 * frame size, capping it at PBA - 10KB.
8980 */
8981 dmac_thr = pba - 10;
8982 reg = rd32(E1000_DMACR);
8983 reg &= ~E1000_DMACR_DMACTHR_MASK;
8984 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8985 & E1000_DMACR_DMACTHR_MASK);
8986
8987 /* transition to L0x or L1 if available..*/
8988 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8989
8990 /* watchdog timer= +-1000 usec in 32usec intervals */
8991 reg |= (1000 >> 5);
8992
8993 /* Disable BMC-to-OS Watchdog Enable */
8994 if (hw->mac.type != e1000_i354)
8995 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8996
8997 wr32(E1000_DMACR, reg);
8998
8999 /* no lower threshold to disable
9000 * coalescing(smart fifb)-UTRESH=0
9001 */
9002 wr32(E1000_DMCRTRH, 0);
9003
9004 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
9005
9006 wr32(E1000_DMCTLX, reg);
9007
9008 /* free space in tx packet buffer to wake from
9009 * DMA coal
9010 */
9011 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
9012 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
9013
9014 /* make low power state decision controlled
9015 * by DMA coal
9016 */
9017 reg = rd32(E1000_PCIEMISC);
9018 reg &= ~E1000_PCIEMISC_LX_DECISION;
9019 wr32(E1000_PCIEMISC, reg);
9020 } /* endif adapter->dmac is not disabled */
9021 } else if (hw->mac.type == e1000_82580) {
9022 u32 reg = rd32(E1000_PCIEMISC);
9023
9024 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
9025 wr32(E1000_DMACR, 0);
9026 }
9027 }
9028
9029 /**
9030 * igb_read_i2c_byte - Reads 8 bit word over I2C
9031 * @hw: pointer to hardware structure
9032 * @byte_offset: byte offset to read
9033 * @dev_addr: device address
9034 * @data: value read
9035 *
9036 * Performs byte read operation over I2C interface at
9037 * a specified device address.
9038 **/
9039 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9040 u8 dev_addr, u8 *data)
9041 {
9042 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9043 struct i2c_client *this_client = adapter->i2c_client;
9044 s32 status;
9045 u16 swfw_mask = 0;
9046
9047 if (!this_client)
9048 return E1000_ERR_I2C;
9049
9050 swfw_mask = E1000_SWFW_PHY0_SM;
9051
9052 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9053 return E1000_ERR_SWFW_SYNC;
9054
9055 status = i2c_smbus_read_byte_data(this_client, byte_offset);
9056 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9057
9058 if (status < 0)
9059 return E1000_ERR_I2C;
9060 else {
9061 *data = status;
9062 return 0;
9063 }
9064 }
9065
9066 /**
9067 * igb_write_i2c_byte - Writes 8 bit word over I2C
9068 * @hw: pointer to hardware structure
9069 * @byte_offset: byte offset to write
9070 * @dev_addr: device address
9071 * @data: value to write
9072 *
9073 * Performs byte write operation over I2C interface at
9074 * a specified device address.
9075 **/
9076 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
9077 u8 dev_addr, u8 data)
9078 {
9079 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
9080 struct i2c_client *this_client = adapter->i2c_client;
9081 s32 status;
9082 u16 swfw_mask = E1000_SWFW_PHY0_SM;
9083
9084 if (!this_client)
9085 return E1000_ERR_I2C;
9086
9087 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
9088 return E1000_ERR_SWFW_SYNC;
9089 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
9090 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
9091
9092 if (status)
9093 return E1000_ERR_I2C;
9094 else
9095 return 0;
9096
9097 }
9098
9099 int igb_reinit_queues(struct igb_adapter *adapter)
9100 {
9101 struct net_device *netdev = adapter->netdev;
9102 struct pci_dev *pdev = adapter->pdev;
9103 int err = 0;
9104
9105 if (netif_running(netdev))
9106 igb_close(netdev);
9107
9108 igb_reset_interrupt_capability(adapter);
9109
9110 if (igb_init_interrupt_scheme(adapter, true)) {
9111 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
9112 return -ENOMEM;
9113 }
9114
9115 if (netif_running(netdev))
9116 err = igb_open(netdev);
9117
9118 return err;
9119 }
9120
9121 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
9122 {
9123 struct igb_nfc_filter *rule;
9124
9125 spin_lock(&adapter->nfc_lock);
9126
9127 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9128 igb_erase_filter(adapter, rule);
9129
9130 spin_unlock(&adapter->nfc_lock);
9131 }
9132
9133 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
9134 {
9135 struct igb_nfc_filter *rule;
9136
9137 spin_lock(&adapter->nfc_lock);
9138
9139 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
9140 igb_add_filter(adapter, rule);
9141
9142 spin_unlock(&adapter->nfc_lock);
9143 }
9144 /* igb_main.c */