]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[mirror_ubuntu-focal-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/etherdevice.h>
54 #ifdef CONFIG_IGB_DCA
55 #include <linux/dca.h>
56 #endif
57 #include <linux/i2c.h>
58 #include "igb.h"
59
60 #define MAJ 5
61 #define MIN 4
62 #define BUILD 0
63 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
64 __stringify(BUILD) "-k"
65 char igb_driver_name[] = "igb";
66 char igb_driver_version[] = DRV_VERSION;
67 static const char igb_driver_string[] =
68 "Intel(R) Gigabit Ethernet Network Driver";
69 static const char igb_copyright[] =
70 "Copyright (c) 2007-2014 Intel Corporation.";
71
72 static const struct e1000_info *igb_info_tbl[] = {
73 [board_82575] = &e1000_82575_info,
74 };
75
76 static const struct pci_device_id igb_pci_tbl[] = {
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
112 /* required last entry */
113 {0, }
114 };
115
116 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
117
118 static int igb_setup_all_tx_resources(struct igb_adapter *);
119 static int igb_setup_all_rx_resources(struct igb_adapter *);
120 static void igb_free_all_tx_resources(struct igb_adapter *);
121 static void igb_free_all_rx_resources(struct igb_adapter *);
122 static void igb_setup_mrqc(struct igb_adapter *);
123 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
124 static void igb_remove(struct pci_dev *pdev);
125 static int igb_sw_init(struct igb_adapter *);
126 int igb_open(struct net_device *);
127 int igb_close(struct net_device *);
128 static void igb_configure(struct igb_adapter *);
129 static void igb_configure_tx(struct igb_adapter *);
130 static void igb_configure_rx(struct igb_adapter *);
131 static void igb_clean_all_tx_rings(struct igb_adapter *);
132 static void igb_clean_all_rx_rings(struct igb_adapter *);
133 static void igb_clean_tx_ring(struct igb_ring *);
134 static void igb_clean_rx_ring(struct igb_ring *);
135 static void igb_set_rx_mode(struct net_device *);
136 static void igb_update_phy_info(unsigned long);
137 static void igb_watchdog(unsigned long);
138 static void igb_watchdog_task(struct work_struct *);
139 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
140 static void igb_get_stats64(struct net_device *dev,
141 struct rtnl_link_stats64 *stats);
142 static int igb_change_mtu(struct net_device *, int);
143 static int igb_set_mac(struct net_device *, void *);
144 static void igb_set_uta(struct igb_adapter *adapter, bool set);
145 static irqreturn_t igb_intr(int irq, void *);
146 static irqreturn_t igb_intr_msi(int irq, void *);
147 static irqreturn_t igb_msix_other(int irq, void *);
148 static irqreturn_t igb_msix_ring(int irq, void *);
149 #ifdef CONFIG_IGB_DCA
150 static void igb_update_dca(struct igb_q_vector *);
151 static void igb_setup_dca(struct igb_adapter *);
152 #endif /* CONFIG_IGB_DCA */
153 static int igb_poll(struct napi_struct *, int);
154 static bool igb_clean_tx_irq(struct igb_q_vector *, int);
155 static int igb_clean_rx_irq(struct igb_q_vector *, int);
156 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
157 static void igb_tx_timeout(struct net_device *);
158 static void igb_reset_task(struct work_struct *);
159 static void igb_vlan_mode(struct net_device *netdev,
160 netdev_features_t features);
161 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
162 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
163 static void igb_restore_vlan(struct igb_adapter *);
164 static void igb_rar_set_index(struct igb_adapter *, u32);
165 static void igb_ping_all_vfs(struct igb_adapter *);
166 static void igb_msg_task(struct igb_adapter *);
167 static void igb_vmm_control(struct igb_adapter *);
168 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
169 static void igb_flush_mac_table(struct igb_adapter *);
170 static int igb_available_rars(struct igb_adapter *, u8);
171 static void igb_set_default_mac_filter(struct igb_adapter *);
172 static int igb_uc_sync(struct net_device *, const unsigned char *);
173 static int igb_uc_unsync(struct net_device *, const unsigned char *);
174 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
175 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
176 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
177 int vf, u16 vlan, u8 qos, __be16 vlan_proto);
178 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
179 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
180 bool setting);
181 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
182 struct ifla_vf_info *ivi);
183 static void igb_check_vf_rate_limit(struct igb_adapter *);
184 static void igb_nfc_filter_exit(struct igb_adapter *adapter);
185 static void igb_nfc_filter_restore(struct igb_adapter *adapter);
186
187 #ifdef CONFIG_PCI_IOV
188 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
189 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
190 static int igb_disable_sriov(struct pci_dev *dev);
191 static int igb_pci_disable_sriov(struct pci_dev *dev);
192 #endif
193
194 static int igb_suspend(struct device *);
195 static int igb_resume(struct device *);
196 static int igb_runtime_suspend(struct device *dev);
197 static int igb_runtime_resume(struct device *dev);
198 static int igb_runtime_idle(struct device *dev);
199 static const struct dev_pm_ops igb_pm_ops = {
200 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
201 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
202 igb_runtime_idle)
203 };
204 static void igb_shutdown(struct pci_dev *);
205 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
206 #ifdef CONFIG_IGB_DCA
207 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
208 static struct notifier_block dca_notifier = {
209 .notifier_call = igb_notify_dca,
210 .next = NULL,
211 .priority = 0
212 };
213 #endif
214 #ifdef CONFIG_NET_POLL_CONTROLLER
215 /* for netdump / net console */
216 static void igb_netpoll(struct net_device *);
217 #endif
218 #ifdef CONFIG_PCI_IOV
219 static unsigned int max_vfs;
220 module_param(max_vfs, uint, 0);
221 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
222 #endif /* CONFIG_PCI_IOV */
223
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225 pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228
229 static const struct pci_error_handlers igb_err_handler = {
230 .error_detected = igb_io_error_detected,
231 .slot_reset = igb_io_slot_reset,
232 .resume = igb_io_resume,
233 };
234
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237 static struct pci_driver igb_driver = {
238 .name = igb_driver_name,
239 .id_table = igb_pci_tbl,
240 .probe = igb_probe,
241 .remove = igb_remove,
242 #ifdef CONFIG_PM
243 .driver.pm = &igb_pm_ops,
244 #endif
245 .shutdown = igb_shutdown,
246 .sriov_configure = igb_pci_sriov_configure,
247 .err_handler = &igb_err_handler
248 };
249
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260 struct igb_reg_info {
261 u32 ofs;
262 char *name;
263 };
264
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267 /* General Registers */
268 {E1000_CTRL, "CTRL"},
269 {E1000_STATUS, "STATUS"},
270 {E1000_CTRL_EXT, "CTRL_EXT"},
271
272 /* Interrupt Registers */
273 {E1000_ICR, "ICR"},
274
275 /* RX Registers */
276 {E1000_RCTL, "RCTL"},
277 {E1000_RDLEN(0), "RDLEN"},
278 {E1000_RDH(0), "RDH"},
279 {E1000_RDT(0), "RDT"},
280 {E1000_RXDCTL(0), "RXDCTL"},
281 {E1000_RDBAL(0), "RDBAL"},
282 {E1000_RDBAH(0), "RDBAH"},
283
284 /* TX Registers */
285 {E1000_TCTL, "TCTL"},
286 {E1000_TDBAL(0), "TDBAL"},
287 {E1000_TDBAH(0), "TDBAH"},
288 {E1000_TDLEN(0), "TDLEN"},
289 {E1000_TDH(0), "TDH"},
290 {E1000_TDT(0), "TDT"},
291 {E1000_TXDCTL(0), "TXDCTL"},
292 {E1000_TDFH, "TDFH"},
293 {E1000_TDFT, "TDFT"},
294 {E1000_TDFHS, "TDFHS"},
295 {E1000_TDFPC, "TDFPC"},
296
297 /* List Terminator */
298 {}
299 };
300
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304 int n = 0;
305 char rname[16];
306 u32 regs[8];
307
308 switch (reginfo->ofs) {
309 case E1000_RDLEN(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDLEN(n));
312 break;
313 case E1000_RDH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDH(n));
316 break;
317 case E1000_RDT(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDT(n));
320 break;
321 case E1000_RXDCTL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RXDCTL(n));
324 break;
325 case E1000_RDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_RDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAH(n));
332 break;
333 case E1000_TDBAL(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_RDBAL(n));
336 break;
337 case E1000_TDBAH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDBAH(n));
340 break;
341 case E1000_TDLEN(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDLEN(n));
344 break;
345 case E1000_TDH(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDH(n));
348 break;
349 case E1000_TDT(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TDT(n));
352 break;
353 case E1000_TXDCTL(0):
354 for (n = 0; n < 4; n++)
355 regs[n] = rd32(E1000_TXDCTL(n));
356 break;
357 default:
358 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 return;
360 }
361
362 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364 regs[2], regs[3]);
365 }
366
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370 struct net_device *netdev = adapter->netdev;
371 struct e1000_hw *hw = &adapter->hw;
372 struct igb_reg_info *reginfo;
373 struct igb_ring *tx_ring;
374 union e1000_adv_tx_desc *tx_desc;
375 struct my_u0 { u64 a; u64 b; } *u0;
376 struct igb_ring *rx_ring;
377 union e1000_adv_rx_desc *rx_desc;
378 u32 staterr;
379 u16 i, n;
380
381 if (!netif_msg_hw(adapter))
382 return;
383
384 /* Print netdevice Info */
385 if (netdev) {
386 dev_info(&adapter->pdev->dev, "Net device Info\n");
387 pr_info("Device Name state trans_start\n");
388 pr_info("%-15s %016lX %016lX\n", netdev->name,
389 netdev->state, dev_trans_start(netdev));
390 }
391
392 /* Print Registers */
393 dev_info(&adapter->pdev->dev, "Register Dump\n");
394 pr_info(" Register Name Value\n");
395 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
396 reginfo->name; reginfo++) {
397 igb_regdump(hw, reginfo);
398 }
399
400 /* Print TX Ring Summary */
401 if (!netdev || !netif_running(netdev))
402 goto exit;
403
404 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
405 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
406 for (n = 0; n < adapter->num_tx_queues; n++) {
407 struct igb_tx_buffer *buffer_info;
408 tx_ring = adapter->tx_ring[n];
409 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
410 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
411 n, tx_ring->next_to_use, tx_ring->next_to_clean,
412 (u64)dma_unmap_addr(buffer_info, dma),
413 dma_unmap_len(buffer_info, len),
414 buffer_info->next_to_watch,
415 (u64)buffer_info->time_stamp);
416 }
417
418 /* Print TX Rings */
419 if (!netif_msg_tx_done(adapter))
420 goto rx_ring_summary;
421
422 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
423
424 /* Transmit Descriptor Formats
425 *
426 * Advanced Transmit Descriptor
427 * +--------------------------------------------------------------+
428 * 0 | Buffer Address [63:0] |
429 * +--------------------------------------------------------------+
430 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
431 * +--------------------------------------------------------------+
432 * 63 46 45 40 39 38 36 35 32 31 24 15 0
433 */
434
435 for (n = 0; n < adapter->num_tx_queues; n++) {
436 tx_ring = adapter->tx_ring[n];
437 pr_info("------------------------------------\n");
438 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
439 pr_info("------------------------------------\n");
440 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
441
442 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
443 const char *next_desc;
444 struct igb_tx_buffer *buffer_info;
445 tx_desc = IGB_TX_DESC(tx_ring, i);
446 buffer_info = &tx_ring->tx_buffer_info[i];
447 u0 = (struct my_u0 *)tx_desc;
448 if (i == tx_ring->next_to_use &&
449 i == tx_ring->next_to_clean)
450 next_desc = " NTC/U";
451 else if (i == tx_ring->next_to_use)
452 next_desc = " NTU";
453 else if (i == tx_ring->next_to_clean)
454 next_desc = " NTC";
455 else
456 next_desc = "";
457
458 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
459 i, le64_to_cpu(u0->a),
460 le64_to_cpu(u0->b),
461 (u64)dma_unmap_addr(buffer_info, dma),
462 dma_unmap_len(buffer_info, len),
463 buffer_info->next_to_watch,
464 (u64)buffer_info->time_stamp,
465 buffer_info->skb, next_desc);
466
467 if (netif_msg_pktdata(adapter) && buffer_info->skb)
468 print_hex_dump(KERN_INFO, "",
469 DUMP_PREFIX_ADDRESS,
470 16, 1, buffer_info->skb->data,
471 dma_unmap_len(buffer_info, len),
472 true);
473 }
474 }
475
476 /* Print RX Rings Summary */
477 rx_ring_summary:
478 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
479 pr_info("Queue [NTU] [NTC]\n");
480 for (n = 0; n < adapter->num_rx_queues; n++) {
481 rx_ring = adapter->rx_ring[n];
482 pr_info(" %5d %5X %5X\n",
483 n, rx_ring->next_to_use, rx_ring->next_to_clean);
484 }
485
486 /* Print RX Rings */
487 if (!netif_msg_rx_status(adapter))
488 goto exit;
489
490 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
491
492 /* Advanced Receive Descriptor (Read) Format
493 * 63 1 0
494 * +-----------------------------------------------------+
495 * 0 | Packet Buffer Address [63:1] |A0/NSE|
496 * +----------------------------------------------+------+
497 * 8 | Header Buffer Address [63:1] | DD |
498 * +-----------------------------------------------------+
499 *
500 *
501 * Advanced Receive Descriptor (Write-Back) Format
502 *
503 * 63 48 47 32 31 30 21 20 17 16 4 3 0
504 * +------------------------------------------------------+
505 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
506 * | Checksum Ident | | | | Type | Type |
507 * +------------------------------------------------------+
508 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
509 * +------------------------------------------------------+
510 * 63 48 47 32 31 20 19 0
511 */
512
513 for (n = 0; n < adapter->num_rx_queues; n++) {
514 rx_ring = adapter->rx_ring[n];
515 pr_info("------------------------------------\n");
516 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
517 pr_info("------------------------------------\n");
518 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
519 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
520
521 for (i = 0; i < rx_ring->count; i++) {
522 const char *next_desc;
523 struct igb_rx_buffer *buffer_info;
524 buffer_info = &rx_ring->rx_buffer_info[i];
525 rx_desc = IGB_RX_DESC(rx_ring, i);
526 u0 = (struct my_u0 *)rx_desc;
527 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
528
529 if (i == rx_ring->next_to_use)
530 next_desc = " NTU";
531 else if (i == rx_ring->next_to_clean)
532 next_desc = " NTC";
533 else
534 next_desc = "";
535
536 if (staterr & E1000_RXD_STAT_DD) {
537 /* Descriptor Done */
538 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
539 "RWB", i,
540 le64_to_cpu(u0->a),
541 le64_to_cpu(u0->b),
542 next_desc);
543 } else {
544 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
545 "R ", i,
546 le64_to_cpu(u0->a),
547 le64_to_cpu(u0->b),
548 (u64)buffer_info->dma,
549 next_desc);
550
551 if (netif_msg_pktdata(adapter) &&
552 buffer_info->dma && buffer_info->page) {
553 print_hex_dump(KERN_INFO, "",
554 DUMP_PREFIX_ADDRESS,
555 16, 1,
556 page_address(buffer_info->page) +
557 buffer_info->page_offset,
558 igb_rx_bufsz(rx_ring), true);
559 }
560 }
561 }
562 }
563
564 exit:
565 return;
566 }
567
568 /**
569 * igb_get_i2c_data - Reads the I2C SDA data bit
570 * @hw: pointer to hardware structure
571 * @i2cctl: Current value of I2CCTL register
572 *
573 * Returns the I2C data bit value
574 **/
575 static int igb_get_i2c_data(void *data)
576 {
577 struct igb_adapter *adapter = (struct igb_adapter *)data;
578 struct e1000_hw *hw = &adapter->hw;
579 s32 i2cctl = rd32(E1000_I2CPARAMS);
580
581 return !!(i2cctl & E1000_I2C_DATA_IN);
582 }
583
584 /**
585 * igb_set_i2c_data - Sets the I2C data bit
586 * @data: pointer to hardware structure
587 * @state: I2C data value (0 or 1) to set
588 *
589 * Sets the I2C data bit
590 **/
591 static void igb_set_i2c_data(void *data, int state)
592 {
593 struct igb_adapter *adapter = (struct igb_adapter *)data;
594 struct e1000_hw *hw = &adapter->hw;
595 s32 i2cctl = rd32(E1000_I2CPARAMS);
596
597 if (state)
598 i2cctl |= E1000_I2C_DATA_OUT;
599 else
600 i2cctl &= ~E1000_I2C_DATA_OUT;
601
602 i2cctl &= ~E1000_I2C_DATA_OE_N;
603 i2cctl |= E1000_I2C_CLK_OE_N;
604 wr32(E1000_I2CPARAMS, i2cctl);
605 wrfl();
606
607 }
608
609 /**
610 * igb_set_i2c_clk - Sets the I2C SCL clock
611 * @data: pointer to hardware structure
612 * @state: state to set clock
613 *
614 * Sets the I2C clock line to state
615 **/
616 static void igb_set_i2c_clk(void *data, int state)
617 {
618 struct igb_adapter *adapter = (struct igb_adapter *)data;
619 struct e1000_hw *hw = &adapter->hw;
620 s32 i2cctl = rd32(E1000_I2CPARAMS);
621
622 if (state) {
623 i2cctl |= E1000_I2C_CLK_OUT;
624 i2cctl &= ~E1000_I2C_CLK_OE_N;
625 } else {
626 i2cctl &= ~E1000_I2C_CLK_OUT;
627 i2cctl &= ~E1000_I2C_CLK_OE_N;
628 }
629 wr32(E1000_I2CPARAMS, i2cctl);
630 wrfl();
631 }
632
633 /**
634 * igb_get_i2c_clk - Gets the I2C SCL clock state
635 * @data: pointer to hardware structure
636 *
637 * Gets the I2C clock state
638 **/
639 static int igb_get_i2c_clk(void *data)
640 {
641 struct igb_adapter *adapter = (struct igb_adapter *)data;
642 struct e1000_hw *hw = &adapter->hw;
643 s32 i2cctl = rd32(E1000_I2CPARAMS);
644
645 return !!(i2cctl & E1000_I2C_CLK_IN);
646 }
647
648 static const struct i2c_algo_bit_data igb_i2c_algo = {
649 .setsda = igb_set_i2c_data,
650 .setscl = igb_set_i2c_clk,
651 .getsda = igb_get_i2c_data,
652 .getscl = igb_get_i2c_clk,
653 .udelay = 5,
654 .timeout = 20,
655 };
656
657 /**
658 * igb_get_hw_dev - return device
659 * @hw: pointer to hardware structure
660 *
661 * used by hardware layer to print debugging information
662 **/
663 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
664 {
665 struct igb_adapter *adapter = hw->back;
666 return adapter->netdev;
667 }
668
669 /**
670 * igb_init_module - Driver Registration Routine
671 *
672 * igb_init_module is the first routine called when the driver is
673 * loaded. All it does is register with the PCI subsystem.
674 **/
675 static int __init igb_init_module(void)
676 {
677 int ret;
678
679 pr_info("%s - version %s\n",
680 igb_driver_string, igb_driver_version);
681 pr_info("%s\n", igb_copyright);
682
683 #ifdef CONFIG_IGB_DCA
684 dca_register_notify(&dca_notifier);
685 #endif
686 ret = pci_register_driver(&igb_driver);
687 return ret;
688 }
689
690 module_init(igb_init_module);
691
692 /**
693 * igb_exit_module - Driver Exit Cleanup Routine
694 *
695 * igb_exit_module is called just before the driver is removed
696 * from memory.
697 **/
698 static void __exit igb_exit_module(void)
699 {
700 #ifdef CONFIG_IGB_DCA
701 dca_unregister_notify(&dca_notifier);
702 #endif
703 pci_unregister_driver(&igb_driver);
704 }
705
706 module_exit(igb_exit_module);
707
708 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
709 /**
710 * igb_cache_ring_register - Descriptor ring to register mapping
711 * @adapter: board private structure to initialize
712 *
713 * Once we know the feature-set enabled for the device, we'll cache
714 * the register offset the descriptor ring is assigned to.
715 **/
716 static void igb_cache_ring_register(struct igb_adapter *adapter)
717 {
718 int i = 0, j = 0;
719 u32 rbase_offset = adapter->vfs_allocated_count;
720
721 switch (adapter->hw.mac.type) {
722 case e1000_82576:
723 /* The queues are allocated for virtualization such that VF 0
724 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
725 * In order to avoid collision we start at the first free queue
726 * and continue consuming queues in the same sequence
727 */
728 if (adapter->vfs_allocated_count) {
729 for (; i < adapter->rss_queues; i++)
730 adapter->rx_ring[i]->reg_idx = rbase_offset +
731 Q_IDX_82576(i);
732 }
733 /* Fall through */
734 case e1000_82575:
735 case e1000_82580:
736 case e1000_i350:
737 case e1000_i354:
738 case e1000_i210:
739 case e1000_i211:
740 /* Fall through */
741 default:
742 for (; i < adapter->num_rx_queues; i++)
743 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
744 for (; j < adapter->num_tx_queues; j++)
745 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
746 break;
747 }
748 }
749
750 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
751 {
752 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
753 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
754 u32 value = 0;
755
756 if (E1000_REMOVED(hw_addr))
757 return ~value;
758
759 value = readl(&hw_addr[reg]);
760
761 /* reads should not return all F's */
762 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
763 struct net_device *netdev = igb->netdev;
764 hw->hw_addr = NULL;
765 netif_device_detach(netdev);
766 netdev_err(netdev, "PCIe link lost, device now detached\n");
767 }
768
769 return value;
770 }
771
772 /**
773 * igb_write_ivar - configure ivar for given MSI-X vector
774 * @hw: pointer to the HW structure
775 * @msix_vector: vector number we are allocating to a given ring
776 * @index: row index of IVAR register to write within IVAR table
777 * @offset: column offset of in IVAR, should be multiple of 8
778 *
779 * This function is intended to handle the writing of the IVAR register
780 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
781 * each containing an cause allocation for an Rx and Tx ring, and a
782 * variable number of rows depending on the number of queues supported.
783 **/
784 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
785 int index, int offset)
786 {
787 u32 ivar = array_rd32(E1000_IVAR0, index);
788
789 /* clear any bits that are currently set */
790 ivar &= ~((u32)0xFF << offset);
791
792 /* write vector and valid bit */
793 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
794
795 array_wr32(E1000_IVAR0, index, ivar);
796 }
797
798 #define IGB_N0_QUEUE -1
799 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
800 {
801 struct igb_adapter *adapter = q_vector->adapter;
802 struct e1000_hw *hw = &adapter->hw;
803 int rx_queue = IGB_N0_QUEUE;
804 int tx_queue = IGB_N0_QUEUE;
805 u32 msixbm = 0;
806
807 if (q_vector->rx.ring)
808 rx_queue = q_vector->rx.ring->reg_idx;
809 if (q_vector->tx.ring)
810 tx_queue = q_vector->tx.ring->reg_idx;
811
812 switch (hw->mac.type) {
813 case e1000_82575:
814 /* The 82575 assigns vectors using a bitmask, which matches the
815 * bitmask for the EICR/EIMS/EIMC registers. To assign one
816 * or more queues to a vector, we write the appropriate bits
817 * into the MSIXBM register for that vector.
818 */
819 if (rx_queue > IGB_N0_QUEUE)
820 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
821 if (tx_queue > IGB_N0_QUEUE)
822 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
823 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
824 msixbm |= E1000_EIMS_OTHER;
825 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
826 q_vector->eims_value = msixbm;
827 break;
828 case e1000_82576:
829 /* 82576 uses a table that essentially consists of 2 columns
830 * with 8 rows. The ordering is column-major so we use the
831 * lower 3 bits as the row index, and the 4th bit as the
832 * column offset.
833 */
834 if (rx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 rx_queue & 0x7,
837 (rx_queue & 0x8) << 1);
838 if (tx_queue > IGB_N0_QUEUE)
839 igb_write_ivar(hw, msix_vector,
840 tx_queue & 0x7,
841 ((tx_queue & 0x8) << 1) + 8);
842 q_vector->eims_value = BIT(msix_vector);
843 break;
844 case e1000_82580:
845 case e1000_i350:
846 case e1000_i354:
847 case e1000_i210:
848 case e1000_i211:
849 /* On 82580 and newer adapters the scheme is similar to 82576
850 * however instead of ordering column-major we have things
851 * ordered row-major. So we traverse the table by using
852 * bit 0 as the column offset, and the remaining bits as the
853 * row index.
854 */
855 if (rx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 rx_queue >> 1,
858 (rx_queue & 0x1) << 4);
859 if (tx_queue > IGB_N0_QUEUE)
860 igb_write_ivar(hw, msix_vector,
861 tx_queue >> 1,
862 ((tx_queue & 0x1) << 4) + 8);
863 q_vector->eims_value = BIT(msix_vector);
864 break;
865 default:
866 BUG();
867 break;
868 }
869
870 /* add q_vector eims value to global eims_enable_mask */
871 adapter->eims_enable_mask |= q_vector->eims_value;
872
873 /* configure q_vector to set itr on first interrupt */
874 q_vector->set_itr = 1;
875 }
876
877 /**
878 * igb_configure_msix - Configure MSI-X hardware
879 * @adapter: board private structure to initialize
880 *
881 * igb_configure_msix sets up the hardware to properly
882 * generate MSI-X interrupts.
883 **/
884 static void igb_configure_msix(struct igb_adapter *adapter)
885 {
886 u32 tmp;
887 int i, vector = 0;
888 struct e1000_hw *hw = &adapter->hw;
889
890 adapter->eims_enable_mask = 0;
891
892 /* set vector for other causes, i.e. link changes */
893 switch (hw->mac.type) {
894 case e1000_82575:
895 tmp = rd32(E1000_CTRL_EXT);
896 /* enable MSI-X PBA support*/
897 tmp |= E1000_CTRL_EXT_PBA_CLR;
898
899 /* Auto-Mask interrupts upon ICR read. */
900 tmp |= E1000_CTRL_EXT_EIAME;
901 tmp |= E1000_CTRL_EXT_IRCA;
902
903 wr32(E1000_CTRL_EXT, tmp);
904
905 /* enable msix_other interrupt */
906 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
907 adapter->eims_other = E1000_EIMS_OTHER;
908
909 break;
910
911 case e1000_82576:
912 case e1000_82580:
913 case e1000_i350:
914 case e1000_i354:
915 case e1000_i210:
916 case e1000_i211:
917 /* Turn on MSI-X capability first, or our settings
918 * won't stick. And it will take days to debug.
919 */
920 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
921 E1000_GPIE_PBA | E1000_GPIE_EIAME |
922 E1000_GPIE_NSICR);
923
924 /* enable msix_other interrupt */
925 adapter->eims_other = BIT(vector);
926 tmp = (vector++ | E1000_IVAR_VALID) << 8;
927
928 wr32(E1000_IVAR_MISC, tmp);
929 break;
930 default:
931 /* do nothing, since nothing else supports MSI-X */
932 break;
933 } /* switch (hw->mac.type) */
934
935 adapter->eims_enable_mask |= adapter->eims_other;
936
937 for (i = 0; i < adapter->num_q_vectors; i++)
938 igb_assign_vector(adapter->q_vector[i], vector++);
939
940 wrfl();
941 }
942
943 /**
944 * igb_request_msix - Initialize MSI-X interrupts
945 * @adapter: board private structure to initialize
946 *
947 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
948 * kernel.
949 **/
950 static int igb_request_msix(struct igb_adapter *adapter)
951 {
952 struct net_device *netdev = adapter->netdev;
953 int i, err = 0, vector = 0, free_vector = 0;
954
955 err = request_irq(adapter->msix_entries[vector].vector,
956 igb_msix_other, 0, netdev->name, adapter);
957 if (err)
958 goto err_out;
959
960 for (i = 0; i < adapter->num_q_vectors; i++) {
961 struct igb_q_vector *q_vector = adapter->q_vector[i];
962
963 vector++;
964
965 q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
966
967 if (q_vector->rx.ring && q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
969 q_vector->rx.ring->queue_index);
970 else if (q_vector->tx.ring)
971 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
972 q_vector->tx.ring->queue_index);
973 else if (q_vector->rx.ring)
974 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
975 q_vector->rx.ring->queue_index);
976 else
977 sprintf(q_vector->name, "%s-unused", netdev->name);
978
979 err = request_irq(adapter->msix_entries[vector].vector,
980 igb_msix_ring, 0, q_vector->name,
981 q_vector);
982 if (err)
983 goto err_free;
984 }
985
986 igb_configure_msix(adapter);
987 return 0;
988
989 err_free:
990 /* free already assigned IRQs */
991 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
992
993 vector--;
994 for (i = 0; i < vector; i++) {
995 free_irq(adapter->msix_entries[free_vector++].vector,
996 adapter->q_vector[i]);
997 }
998 err_out:
999 return err;
1000 }
1001
1002 /**
1003 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1004 * @adapter: board private structure to initialize
1005 * @v_idx: Index of vector to be freed
1006 *
1007 * This function frees the memory allocated to the q_vector.
1008 **/
1009 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1010 {
1011 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1012
1013 adapter->q_vector[v_idx] = NULL;
1014
1015 /* igb_get_stats64() might access the rings on this vector,
1016 * we must wait a grace period before freeing it.
1017 */
1018 if (q_vector)
1019 kfree_rcu(q_vector, rcu);
1020 }
1021
1022 /**
1023 * igb_reset_q_vector - Reset config for interrupt vector
1024 * @adapter: board private structure to initialize
1025 * @v_idx: Index of vector to be reset
1026 *
1027 * If NAPI is enabled it will delete any references to the
1028 * NAPI struct. This is preparation for igb_free_q_vector.
1029 **/
1030 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1031 {
1032 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1033
1034 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1035 * allocated. So, q_vector is NULL so we should stop here.
1036 */
1037 if (!q_vector)
1038 return;
1039
1040 if (q_vector->tx.ring)
1041 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1042
1043 if (q_vector->rx.ring)
1044 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
1045
1046 netif_napi_del(&q_vector->napi);
1047
1048 }
1049
1050 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1051 {
1052 int v_idx = adapter->num_q_vectors;
1053
1054 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1055 pci_disable_msix(adapter->pdev);
1056 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1057 pci_disable_msi(adapter->pdev);
1058
1059 while (v_idx--)
1060 igb_reset_q_vector(adapter, v_idx);
1061 }
1062
1063 /**
1064 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1065 * @adapter: board private structure to initialize
1066 *
1067 * This function frees the memory allocated to the q_vectors. In addition if
1068 * NAPI is enabled it will delete any references to the NAPI struct prior
1069 * to freeing the q_vector.
1070 **/
1071 static void igb_free_q_vectors(struct igb_adapter *adapter)
1072 {
1073 int v_idx = adapter->num_q_vectors;
1074
1075 adapter->num_tx_queues = 0;
1076 adapter->num_rx_queues = 0;
1077 adapter->num_q_vectors = 0;
1078
1079 while (v_idx--) {
1080 igb_reset_q_vector(adapter, v_idx);
1081 igb_free_q_vector(adapter, v_idx);
1082 }
1083 }
1084
1085 /**
1086 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1087 * @adapter: board private structure to initialize
1088 *
1089 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1090 * MSI-X interrupts allocated.
1091 */
1092 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1093 {
1094 igb_free_q_vectors(adapter);
1095 igb_reset_interrupt_capability(adapter);
1096 }
1097
1098 /**
1099 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1100 * @adapter: board private structure to initialize
1101 * @msix: boolean value of MSIX capability
1102 *
1103 * Attempt to configure interrupts using the best available
1104 * capabilities of the hardware and kernel.
1105 **/
1106 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1107 {
1108 int err;
1109 int numvecs, i;
1110
1111 if (!msix)
1112 goto msi_only;
1113 adapter->flags |= IGB_FLAG_HAS_MSIX;
1114
1115 /* Number of supported queues. */
1116 adapter->num_rx_queues = adapter->rss_queues;
1117 if (adapter->vfs_allocated_count)
1118 adapter->num_tx_queues = 1;
1119 else
1120 adapter->num_tx_queues = adapter->rss_queues;
1121
1122 /* start with one vector for every Rx queue */
1123 numvecs = adapter->num_rx_queues;
1124
1125 /* if Tx handler is separate add 1 for every Tx queue */
1126 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1127 numvecs += adapter->num_tx_queues;
1128
1129 /* store the number of vectors reserved for queues */
1130 adapter->num_q_vectors = numvecs;
1131
1132 /* add 1 vector for link status interrupts */
1133 numvecs++;
1134 for (i = 0; i < numvecs; i++)
1135 adapter->msix_entries[i].entry = i;
1136
1137 err = pci_enable_msix_range(adapter->pdev,
1138 adapter->msix_entries,
1139 numvecs,
1140 numvecs);
1141 if (err > 0)
1142 return;
1143
1144 igb_reset_interrupt_capability(adapter);
1145
1146 /* If we can't do MSI-X, try MSI */
1147 msi_only:
1148 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1149 #ifdef CONFIG_PCI_IOV
1150 /* disable SR-IOV for non MSI-X configurations */
1151 if (adapter->vf_data) {
1152 struct e1000_hw *hw = &adapter->hw;
1153 /* disable iov and allow time for transactions to clear */
1154 pci_disable_sriov(adapter->pdev);
1155 msleep(500);
1156
1157 kfree(adapter->vf_mac_list);
1158 adapter->vf_mac_list = NULL;
1159 kfree(adapter->vf_data);
1160 adapter->vf_data = NULL;
1161 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1162 wrfl();
1163 msleep(100);
1164 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1165 }
1166 #endif
1167 adapter->vfs_allocated_count = 0;
1168 adapter->rss_queues = 1;
1169 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1170 adapter->num_rx_queues = 1;
1171 adapter->num_tx_queues = 1;
1172 adapter->num_q_vectors = 1;
1173 if (!pci_enable_msi(adapter->pdev))
1174 adapter->flags |= IGB_FLAG_HAS_MSI;
1175 }
1176
1177 static void igb_add_ring(struct igb_ring *ring,
1178 struct igb_ring_container *head)
1179 {
1180 head->ring = ring;
1181 head->count++;
1182 }
1183
1184 /**
1185 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1186 * @adapter: board private structure to initialize
1187 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1188 * @v_idx: index of vector in adapter struct
1189 * @txr_count: total number of Tx rings to allocate
1190 * @txr_idx: index of first Tx ring to allocate
1191 * @rxr_count: total number of Rx rings to allocate
1192 * @rxr_idx: index of first Rx ring to allocate
1193 *
1194 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1195 **/
1196 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1197 int v_count, int v_idx,
1198 int txr_count, int txr_idx,
1199 int rxr_count, int rxr_idx)
1200 {
1201 struct igb_q_vector *q_vector;
1202 struct igb_ring *ring;
1203 int ring_count, size;
1204
1205 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1206 if (txr_count > 1 || rxr_count > 1)
1207 return -ENOMEM;
1208
1209 ring_count = txr_count + rxr_count;
1210 size = sizeof(struct igb_q_vector) +
1211 (sizeof(struct igb_ring) * ring_count);
1212
1213 /* allocate q_vector and rings */
1214 q_vector = adapter->q_vector[v_idx];
1215 if (!q_vector) {
1216 q_vector = kzalloc(size, GFP_KERNEL);
1217 } else if (size > ksize(q_vector)) {
1218 kfree_rcu(q_vector, rcu);
1219 q_vector = kzalloc(size, GFP_KERNEL);
1220 } else {
1221 memset(q_vector, 0, size);
1222 }
1223 if (!q_vector)
1224 return -ENOMEM;
1225
1226 /* initialize NAPI */
1227 netif_napi_add(adapter->netdev, &q_vector->napi,
1228 igb_poll, 64);
1229
1230 /* tie q_vector and adapter together */
1231 adapter->q_vector[v_idx] = q_vector;
1232 q_vector->adapter = adapter;
1233
1234 /* initialize work limits */
1235 q_vector->tx.work_limit = adapter->tx_work_limit;
1236
1237 /* initialize ITR configuration */
1238 q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
1239 q_vector->itr_val = IGB_START_ITR;
1240
1241 /* initialize pointer to rings */
1242 ring = q_vector->ring;
1243
1244 /* intialize ITR */
1245 if (rxr_count) {
1246 /* rx or rx/tx vector */
1247 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1248 q_vector->itr_val = adapter->rx_itr_setting;
1249 } else {
1250 /* tx only vector */
1251 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1252 q_vector->itr_val = adapter->tx_itr_setting;
1253 }
1254
1255 if (txr_count) {
1256 /* assign generic ring traits */
1257 ring->dev = &adapter->pdev->dev;
1258 ring->netdev = adapter->netdev;
1259
1260 /* configure backlink on ring */
1261 ring->q_vector = q_vector;
1262
1263 /* update q_vector Tx values */
1264 igb_add_ring(ring, &q_vector->tx);
1265
1266 /* For 82575, context index must be unique per ring. */
1267 if (adapter->hw.mac.type == e1000_82575)
1268 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1269
1270 /* apply Tx specific ring traits */
1271 ring->count = adapter->tx_ring_count;
1272 ring->queue_index = txr_idx;
1273
1274 u64_stats_init(&ring->tx_syncp);
1275 u64_stats_init(&ring->tx_syncp2);
1276
1277 /* assign ring to adapter */
1278 adapter->tx_ring[txr_idx] = ring;
1279
1280 /* push pointer to next ring */
1281 ring++;
1282 }
1283
1284 if (rxr_count) {
1285 /* assign generic ring traits */
1286 ring->dev = &adapter->pdev->dev;
1287 ring->netdev = adapter->netdev;
1288
1289 /* configure backlink on ring */
1290 ring->q_vector = q_vector;
1291
1292 /* update q_vector Rx values */
1293 igb_add_ring(ring, &q_vector->rx);
1294
1295 /* set flag indicating ring supports SCTP checksum offload */
1296 if (adapter->hw.mac.type >= e1000_82576)
1297 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1298
1299 /* On i350, i354, i210, and i211, loopback VLAN packets
1300 * have the tag byte-swapped.
1301 */
1302 if (adapter->hw.mac.type >= e1000_i350)
1303 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1304
1305 /* apply Rx specific ring traits */
1306 ring->count = adapter->rx_ring_count;
1307 ring->queue_index = rxr_idx;
1308
1309 u64_stats_init(&ring->rx_syncp);
1310
1311 /* assign ring to adapter */
1312 adapter->rx_ring[rxr_idx] = ring;
1313 }
1314
1315 return 0;
1316 }
1317
1318
1319 /**
1320 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1321 * @adapter: board private structure to initialize
1322 *
1323 * We allocate one q_vector per queue interrupt. If allocation fails we
1324 * return -ENOMEM.
1325 **/
1326 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1327 {
1328 int q_vectors = adapter->num_q_vectors;
1329 int rxr_remaining = adapter->num_rx_queues;
1330 int txr_remaining = adapter->num_tx_queues;
1331 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1332 int err;
1333
1334 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1335 for (; rxr_remaining; v_idx++) {
1336 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1337 0, 0, 1, rxr_idx);
1338
1339 if (err)
1340 goto err_out;
1341
1342 /* update counts and index */
1343 rxr_remaining--;
1344 rxr_idx++;
1345 }
1346 }
1347
1348 for (; v_idx < q_vectors; v_idx++) {
1349 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1350 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1351
1352 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1353 tqpv, txr_idx, rqpv, rxr_idx);
1354
1355 if (err)
1356 goto err_out;
1357
1358 /* update counts and index */
1359 rxr_remaining -= rqpv;
1360 txr_remaining -= tqpv;
1361 rxr_idx++;
1362 txr_idx++;
1363 }
1364
1365 return 0;
1366
1367 err_out:
1368 adapter->num_tx_queues = 0;
1369 adapter->num_rx_queues = 0;
1370 adapter->num_q_vectors = 0;
1371
1372 while (v_idx--)
1373 igb_free_q_vector(adapter, v_idx);
1374
1375 return -ENOMEM;
1376 }
1377
1378 /**
1379 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1380 * @adapter: board private structure to initialize
1381 * @msix: boolean value of MSIX capability
1382 *
1383 * This function initializes the interrupts and allocates all of the queues.
1384 **/
1385 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1386 {
1387 struct pci_dev *pdev = adapter->pdev;
1388 int err;
1389
1390 igb_set_interrupt_capability(adapter, msix);
1391
1392 err = igb_alloc_q_vectors(adapter);
1393 if (err) {
1394 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1395 goto err_alloc_q_vectors;
1396 }
1397
1398 igb_cache_ring_register(adapter);
1399
1400 return 0;
1401
1402 err_alloc_q_vectors:
1403 igb_reset_interrupt_capability(adapter);
1404 return err;
1405 }
1406
1407 /**
1408 * igb_request_irq - initialize interrupts
1409 * @adapter: board private structure to initialize
1410 *
1411 * Attempts to configure interrupts using the best available
1412 * capabilities of the hardware and kernel.
1413 **/
1414 static int igb_request_irq(struct igb_adapter *adapter)
1415 {
1416 struct net_device *netdev = adapter->netdev;
1417 struct pci_dev *pdev = adapter->pdev;
1418 int err = 0;
1419
1420 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1421 err = igb_request_msix(adapter);
1422 if (!err)
1423 goto request_done;
1424 /* fall back to MSI */
1425 igb_free_all_tx_resources(adapter);
1426 igb_free_all_rx_resources(adapter);
1427
1428 igb_clear_interrupt_scheme(adapter);
1429 err = igb_init_interrupt_scheme(adapter, false);
1430 if (err)
1431 goto request_done;
1432
1433 igb_setup_all_tx_resources(adapter);
1434 igb_setup_all_rx_resources(adapter);
1435 igb_configure(adapter);
1436 }
1437
1438 igb_assign_vector(adapter->q_vector[0], 0);
1439
1440 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1441 err = request_irq(pdev->irq, igb_intr_msi, 0,
1442 netdev->name, adapter);
1443 if (!err)
1444 goto request_done;
1445
1446 /* fall back to legacy interrupts */
1447 igb_reset_interrupt_capability(adapter);
1448 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1449 }
1450
1451 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1452 netdev->name, adapter);
1453
1454 if (err)
1455 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1456 err);
1457
1458 request_done:
1459 return err;
1460 }
1461
1462 static void igb_free_irq(struct igb_adapter *adapter)
1463 {
1464 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1465 int vector = 0, i;
1466
1467 free_irq(adapter->msix_entries[vector++].vector, adapter);
1468
1469 for (i = 0; i < adapter->num_q_vectors; i++)
1470 free_irq(adapter->msix_entries[vector++].vector,
1471 adapter->q_vector[i]);
1472 } else {
1473 free_irq(adapter->pdev->irq, adapter);
1474 }
1475 }
1476
1477 /**
1478 * igb_irq_disable - Mask off interrupt generation on the NIC
1479 * @adapter: board private structure
1480 **/
1481 static void igb_irq_disable(struct igb_adapter *adapter)
1482 {
1483 struct e1000_hw *hw = &adapter->hw;
1484
1485 /* we need to be careful when disabling interrupts. The VFs are also
1486 * mapped into these registers and so clearing the bits can cause
1487 * issues on the VF drivers so we only need to clear what we set
1488 */
1489 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1490 u32 regval = rd32(E1000_EIAM);
1491
1492 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1493 wr32(E1000_EIMC, adapter->eims_enable_mask);
1494 regval = rd32(E1000_EIAC);
1495 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1496 }
1497
1498 wr32(E1000_IAM, 0);
1499 wr32(E1000_IMC, ~0);
1500 wrfl();
1501 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1502 int i;
1503
1504 for (i = 0; i < adapter->num_q_vectors; i++)
1505 synchronize_irq(adapter->msix_entries[i].vector);
1506 } else {
1507 synchronize_irq(adapter->pdev->irq);
1508 }
1509 }
1510
1511 /**
1512 * igb_irq_enable - Enable default interrupt generation settings
1513 * @adapter: board private structure
1514 **/
1515 static void igb_irq_enable(struct igb_adapter *adapter)
1516 {
1517 struct e1000_hw *hw = &adapter->hw;
1518
1519 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1520 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1521 u32 regval = rd32(E1000_EIAC);
1522
1523 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1524 regval = rd32(E1000_EIAM);
1525 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1526 wr32(E1000_EIMS, adapter->eims_enable_mask);
1527 if (adapter->vfs_allocated_count) {
1528 wr32(E1000_MBVFIMR, 0xFF);
1529 ims |= E1000_IMS_VMMB;
1530 }
1531 wr32(E1000_IMS, ims);
1532 } else {
1533 wr32(E1000_IMS, IMS_ENABLE_MASK |
1534 E1000_IMS_DRSTA);
1535 wr32(E1000_IAM, IMS_ENABLE_MASK |
1536 E1000_IMS_DRSTA);
1537 }
1538 }
1539
1540 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1541 {
1542 struct e1000_hw *hw = &adapter->hw;
1543 u16 pf_id = adapter->vfs_allocated_count;
1544 u16 vid = adapter->hw.mng_cookie.vlan_id;
1545 u16 old_vid = adapter->mng_vlan_id;
1546
1547 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1548 /* add VID to filter table */
1549 igb_vfta_set(hw, vid, pf_id, true, true);
1550 adapter->mng_vlan_id = vid;
1551 } else {
1552 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1553 }
1554
1555 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1556 (vid != old_vid) &&
1557 !test_bit(old_vid, adapter->active_vlans)) {
1558 /* remove VID from filter table */
1559 igb_vfta_set(hw, vid, pf_id, false, true);
1560 }
1561 }
1562
1563 /**
1564 * igb_release_hw_control - release control of the h/w to f/w
1565 * @adapter: address of board private structure
1566 *
1567 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1568 * For ASF and Pass Through versions of f/w this means that the
1569 * driver is no longer loaded.
1570 **/
1571 static void igb_release_hw_control(struct igb_adapter *adapter)
1572 {
1573 struct e1000_hw *hw = &adapter->hw;
1574 u32 ctrl_ext;
1575
1576 /* Let firmware take over control of h/w */
1577 ctrl_ext = rd32(E1000_CTRL_EXT);
1578 wr32(E1000_CTRL_EXT,
1579 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1580 }
1581
1582 /**
1583 * igb_get_hw_control - get control of the h/w from f/w
1584 * @adapter: address of board private structure
1585 *
1586 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1587 * For ASF and Pass Through versions of f/w this means that
1588 * the driver is loaded.
1589 **/
1590 static void igb_get_hw_control(struct igb_adapter *adapter)
1591 {
1592 struct e1000_hw *hw = &adapter->hw;
1593 u32 ctrl_ext;
1594
1595 /* Let firmware know the driver has taken over */
1596 ctrl_ext = rd32(E1000_CTRL_EXT);
1597 wr32(E1000_CTRL_EXT,
1598 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1599 }
1600
1601 /**
1602 * igb_configure - configure the hardware for RX and TX
1603 * @adapter: private board structure
1604 **/
1605 static void igb_configure(struct igb_adapter *adapter)
1606 {
1607 struct net_device *netdev = adapter->netdev;
1608 int i;
1609
1610 igb_get_hw_control(adapter);
1611 igb_set_rx_mode(netdev);
1612
1613 igb_restore_vlan(adapter);
1614
1615 igb_setup_tctl(adapter);
1616 igb_setup_mrqc(adapter);
1617 igb_setup_rctl(adapter);
1618
1619 igb_nfc_filter_restore(adapter);
1620 igb_configure_tx(adapter);
1621 igb_configure_rx(adapter);
1622
1623 igb_rx_fifo_flush_82575(&adapter->hw);
1624
1625 /* call igb_desc_unused which always leaves
1626 * at least 1 descriptor unused to make sure
1627 * next_to_use != next_to_clean
1628 */
1629 for (i = 0; i < adapter->num_rx_queues; i++) {
1630 struct igb_ring *ring = adapter->rx_ring[i];
1631 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1632 }
1633 }
1634
1635 /**
1636 * igb_power_up_link - Power up the phy/serdes link
1637 * @adapter: address of board private structure
1638 **/
1639 void igb_power_up_link(struct igb_adapter *adapter)
1640 {
1641 igb_reset_phy(&adapter->hw);
1642
1643 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1644 igb_power_up_phy_copper(&adapter->hw);
1645 else
1646 igb_power_up_serdes_link_82575(&adapter->hw);
1647
1648 igb_setup_link(&adapter->hw);
1649 }
1650
1651 /**
1652 * igb_power_down_link - Power down the phy/serdes link
1653 * @adapter: address of board private structure
1654 */
1655 static void igb_power_down_link(struct igb_adapter *adapter)
1656 {
1657 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1658 igb_power_down_phy_copper_82575(&adapter->hw);
1659 else
1660 igb_shutdown_serdes_link_82575(&adapter->hw);
1661 }
1662
1663 /**
1664 * Detect and switch function for Media Auto Sense
1665 * @adapter: address of the board private structure
1666 **/
1667 static void igb_check_swap_media(struct igb_adapter *adapter)
1668 {
1669 struct e1000_hw *hw = &adapter->hw;
1670 u32 ctrl_ext, connsw;
1671 bool swap_now = false;
1672
1673 ctrl_ext = rd32(E1000_CTRL_EXT);
1674 connsw = rd32(E1000_CONNSW);
1675
1676 /* need to live swap if current media is copper and we have fiber/serdes
1677 * to go to.
1678 */
1679
1680 if ((hw->phy.media_type == e1000_media_type_copper) &&
1681 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1682 swap_now = true;
1683 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1684 /* copper signal takes time to appear */
1685 if (adapter->copper_tries < 4) {
1686 adapter->copper_tries++;
1687 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1688 wr32(E1000_CONNSW, connsw);
1689 return;
1690 } else {
1691 adapter->copper_tries = 0;
1692 if ((connsw & E1000_CONNSW_PHYSD) &&
1693 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1694 swap_now = true;
1695 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1696 wr32(E1000_CONNSW, connsw);
1697 }
1698 }
1699 }
1700
1701 if (!swap_now)
1702 return;
1703
1704 switch (hw->phy.media_type) {
1705 case e1000_media_type_copper:
1706 netdev_info(adapter->netdev,
1707 "MAS: changing media to fiber/serdes\n");
1708 ctrl_ext |=
1709 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1710 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1711 adapter->copper_tries = 0;
1712 break;
1713 case e1000_media_type_internal_serdes:
1714 case e1000_media_type_fiber:
1715 netdev_info(adapter->netdev,
1716 "MAS: changing media to copper\n");
1717 ctrl_ext &=
1718 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1719 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1720 break;
1721 default:
1722 /* shouldn't get here during regular operation */
1723 netdev_err(adapter->netdev,
1724 "AMS: Invalid media type found, returning\n");
1725 break;
1726 }
1727 wr32(E1000_CTRL_EXT, ctrl_ext);
1728 }
1729
1730 /**
1731 * igb_up - Open the interface and prepare it to handle traffic
1732 * @adapter: board private structure
1733 **/
1734 int igb_up(struct igb_adapter *adapter)
1735 {
1736 struct e1000_hw *hw = &adapter->hw;
1737 int i;
1738
1739 /* hardware has been reset, we need to reload some things */
1740 igb_configure(adapter);
1741
1742 clear_bit(__IGB_DOWN, &adapter->state);
1743
1744 for (i = 0; i < adapter->num_q_vectors; i++)
1745 napi_enable(&(adapter->q_vector[i]->napi));
1746
1747 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1748 igb_configure_msix(adapter);
1749 else
1750 igb_assign_vector(adapter->q_vector[0], 0);
1751
1752 /* Clear any pending interrupts. */
1753 rd32(E1000_ICR);
1754 igb_irq_enable(adapter);
1755
1756 /* notify VFs that reset has been completed */
1757 if (adapter->vfs_allocated_count) {
1758 u32 reg_data = rd32(E1000_CTRL_EXT);
1759
1760 reg_data |= E1000_CTRL_EXT_PFRSTD;
1761 wr32(E1000_CTRL_EXT, reg_data);
1762 }
1763
1764 netif_tx_start_all_queues(adapter->netdev);
1765
1766 /* start the watchdog. */
1767 hw->mac.get_link_status = 1;
1768 schedule_work(&adapter->watchdog_task);
1769
1770 if ((adapter->flags & IGB_FLAG_EEE) &&
1771 (!hw->dev_spec._82575.eee_disable))
1772 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1773
1774 return 0;
1775 }
1776
1777 void igb_down(struct igb_adapter *adapter)
1778 {
1779 struct net_device *netdev = adapter->netdev;
1780 struct e1000_hw *hw = &adapter->hw;
1781 u32 tctl, rctl;
1782 int i;
1783
1784 /* signal that we're down so the interrupt handler does not
1785 * reschedule our watchdog timer
1786 */
1787 set_bit(__IGB_DOWN, &adapter->state);
1788
1789 /* disable receives in the hardware */
1790 rctl = rd32(E1000_RCTL);
1791 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1792 /* flush and sleep below */
1793
1794 igb_nfc_filter_exit(adapter);
1795
1796 netif_carrier_off(netdev);
1797 netif_tx_stop_all_queues(netdev);
1798
1799 /* disable transmits in the hardware */
1800 tctl = rd32(E1000_TCTL);
1801 tctl &= ~E1000_TCTL_EN;
1802 wr32(E1000_TCTL, tctl);
1803 /* flush both disables and wait for them to finish */
1804 wrfl();
1805 usleep_range(10000, 11000);
1806
1807 igb_irq_disable(adapter);
1808
1809 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1810
1811 for (i = 0; i < adapter->num_q_vectors; i++) {
1812 if (adapter->q_vector[i]) {
1813 napi_synchronize(&adapter->q_vector[i]->napi);
1814 napi_disable(&adapter->q_vector[i]->napi);
1815 }
1816 }
1817
1818 del_timer_sync(&adapter->watchdog_timer);
1819 del_timer_sync(&adapter->phy_info_timer);
1820
1821 /* record the stats before reset*/
1822 spin_lock(&adapter->stats64_lock);
1823 igb_update_stats(adapter);
1824 spin_unlock(&adapter->stats64_lock);
1825
1826 adapter->link_speed = 0;
1827 adapter->link_duplex = 0;
1828
1829 if (!pci_channel_offline(adapter->pdev))
1830 igb_reset(adapter);
1831
1832 /* clear VLAN promisc flag so VFTA will be updated if necessary */
1833 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
1834
1835 igb_clean_all_tx_rings(adapter);
1836 igb_clean_all_rx_rings(adapter);
1837 #ifdef CONFIG_IGB_DCA
1838
1839 /* since we reset the hardware DCA settings were cleared */
1840 igb_setup_dca(adapter);
1841 #endif
1842 }
1843
1844 void igb_reinit_locked(struct igb_adapter *adapter)
1845 {
1846 WARN_ON(in_interrupt());
1847 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1848 usleep_range(1000, 2000);
1849 igb_down(adapter);
1850 igb_up(adapter);
1851 clear_bit(__IGB_RESETTING, &adapter->state);
1852 }
1853
1854 /** igb_enable_mas - Media Autosense re-enable after swap
1855 *
1856 * @adapter: adapter struct
1857 **/
1858 static void igb_enable_mas(struct igb_adapter *adapter)
1859 {
1860 struct e1000_hw *hw = &adapter->hw;
1861 u32 connsw = rd32(E1000_CONNSW);
1862
1863 /* configure for SerDes media detect */
1864 if ((hw->phy.media_type == e1000_media_type_copper) &&
1865 (!(connsw & E1000_CONNSW_SERDESD))) {
1866 connsw |= E1000_CONNSW_ENRGSRC;
1867 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1868 wr32(E1000_CONNSW, connsw);
1869 wrfl();
1870 }
1871 }
1872
1873 void igb_reset(struct igb_adapter *adapter)
1874 {
1875 struct pci_dev *pdev = adapter->pdev;
1876 struct e1000_hw *hw = &adapter->hw;
1877 struct e1000_mac_info *mac = &hw->mac;
1878 struct e1000_fc_info *fc = &hw->fc;
1879 u32 pba, hwm;
1880
1881 /* Repartition Pba for greater than 9k mtu
1882 * To take effect CTRL.RST is required.
1883 */
1884 switch (mac->type) {
1885 case e1000_i350:
1886 case e1000_i354:
1887 case e1000_82580:
1888 pba = rd32(E1000_RXPBS);
1889 pba = igb_rxpbs_adjust_82580(pba);
1890 break;
1891 case e1000_82576:
1892 pba = rd32(E1000_RXPBS);
1893 pba &= E1000_RXPBS_SIZE_MASK_82576;
1894 break;
1895 case e1000_82575:
1896 case e1000_i210:
1897 case e1000_i211:
1898 default:
1899 pba = E1000_PBA_34K;
1900 break;
1901 }
1902
1903 if (mac->type == e1000_82575) {
1904 u32 min_rx_space, min_tx_space, needed_tx_space;
1905
1906 /* write Rx PBA so that hardware can report correct Tx PBA */
1907 wr32(E1000_PBA, pba);
1908
1909 /* To maintain wire speed transmits, the Tx FIFO should be
1910 * large enough to accommodate two full transmit packets,
1911 * rounded up to the next 1KB and expressed in KB. Likewise,
1912 * the Rx FIFO should be large enough to accommodate at least
1913 * one full receive packet and is similarly rounded up and
1914 * expressed in KB.
1915 */
1916 min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
1917
1918 /* The Tx FIFO also stores 16 bytes of information about the Tx
1919 * but don't include Ethernet FCS because hardware appends it.
1920 * We only need to round down to the nearest 512 byte block
1921 * count since the value we care about is 2 frames, not 1.
1922 */
1923 min_tx_space = adapter->max_frame_size;
1924 min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
1925 min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
1926
1927 /* upper 16 bits has Tx packet buffer allocation size in KB */
1928 needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
1929
1930 /* If current Tx allocation is less than the min Tx FIFO size,
1931 * and the min Tx FIFO size is less than the current Rx FIFO
1932 * allocation, take space away from current Rx allocation.
1933 */
1934 if (needed_tx_space < pba) {
1935 pba -= needed_tx_space;
1936
1937 /* if short on Rx space, Rx wins and must trump Tx
1938 * adjustment
1939 */
1940 if (pba < min_rx_space)
1941 pba = min_rx_space;
1942 }
1943
1944 /* adjust PBA for jumbo frames */
1945 wr32(E1000_PBA, pba);
1946 }
1947
1948 /* flow control settings
1949 * The high water mark must be low enough to fit one full frame
1950 * after transmitting the pause frame. As such we must have enough
1951 * space to allow for us to complete our current transmit and then
1952 * receive the frame that is in progress from the link partner.
1953 * Set it to:
1954 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
1955 */
1956 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
1957
1958 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1959 fc->low_water = fc->high_water - 16;
1960 fc->pause_time = 0xFFFF;
1961 fc->send_xon = 1;
1962 fc->current_mode = fc->requested_mode;
1963
1964 /* disable receive for all VFs and wait one second */
1965 if (adapter->vfs_allocated_count) {
1966 int i;
1967
1968 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1969 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1970
1971 /* ping all the active vfs to let them know we are going down */
1972 igb_ping_all_vfs(adapter);
1973
1974 /* disable transmits and receives */
1975 wr32(E1000_VFRE, 0);
1976 wr32(E1000_VFTE, 0);
1977 }
1978
1979 /* Allow time for pending master requests to run */
1980 hw->mac.ops.reset_hw(hw);
1981 wr32(E1000_WUC, 0);
1982
1983 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1984 /* need to resetup here after media swap */
1985 adapter->ei.get_invariants(hw);
1986 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1987 }
1988 if ((mac->type == e1000_82575) &&
1989 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
1990 igb_enable_mas(adapter);
1991 }
1992 if (hw->mac.ops.init_hw(hw))
1993 dev_err(&pdev->dev, "Hardware Error\n");
1994
1995 /* RAR registers were cleared during init_hw, clear mac table */
1996 igb_flush_mac_table(adapter);
1997 __dev_uc_unsync(adapter->netdev, NULL);
1998
1999 /* Recover default RAR entry */
2000 igb_set_default_mac_filter(adapter);
2001
2002 /* Flow control settings reset on hardware reset, so guarantee flow
2003 * control is off when forcing speed.
2004 */
2005 if (!hw->mac.autoneg)
2006 igb_force_mac_fc(hw);
2007
2008 igb_init_dmac(adapter, pba);
2009 #ifdef CONFIG_IGB_HWMON
2010 /* Re-initialize the thermal sensor on i350 devices. */
2011 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2012 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2013 /* If present, re-initialize the external thermal sensor
2014 * interface.
2015 */
2016 if (adapter->ets)
2017 mac->ops.init_thermal_sensor_thresh(hw);
2018 }
2019 }
2020 #endif
2021 /* Re-establish EEE setting */
2022 if (hw->phy.media_type == e1000_media_type_copper) {
2023 switch (mac->type) {
2024 case e1000_i350:
2025 case e1000_i210:
2026 case e1000_i211:
2027 igb_set_eee_i350(hw, true, true);
2028 break;
2029 case e1000_i354:
2030 igb_set_eee_i354(hw, true, true);
2031 break;
2032 default:
2033 break;
2034 }
2035 }
2036 if (!netif_running(adapter->netdev))
2037 igb_power_down_link(adapter);
2038
2039 igb_update_mng_vlan(adapter);
2040
2041 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2042 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2043
2044 /* Re-enable PTP, where applicable. */
2045 if (adapter->ptp_flags & IGB_PTP_ENABLED)
2046 igb_ptp_reset(adapter);
2047
2048 igb_get_phy_info(hw);
2049 }
2050
2051 static netdev_features_t igb_fix_features(struct net_device *netdev,
2052 netdev_features_t features)
2053 {
2054 /* Since there is no support for separate Rx/Tx vlan accel
2055 * enable/disable make sure Tx flag is always in same state as Rx.
2056 */
2057 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2058 features |= NETIF_F_HW_VLAN_CTAG_TX;
2059 else
2060 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2061
2062 return features;
2063 }
2064
2065 static int igb_set_features(struct net_device *netdev,
2066 netdev_features_t features)
2067 {
2068 netdev_features_t changed = netdev->features ^ features;
2069 struct igb_adapter *adapter = netdev_priv(netdev);
2070
2071 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2072 igb_vlan_mode(netdev, features);
2073
2074 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2075 return 0;
2076
2077 if (!(features & NETIF_F_NTUPLE)) {
2078 struct hlist_node *node2;
2079 struct igb_nfc_filter *rule;
2080
2081 spin_lock(&adapter->nfc_lock);
2082 hlist_for_each_entry_safe(rule, node2,
2083 &adapter->nfc_filter_list, nfc_node) {
2084 igb_erase_filter(adapter, rule);
2085 hlist_del(&rule->nfc_node);
2086 kfree(rule);
2087 }
2088 spin_unlock(&adapter->nfc_lock);
2089 adapter->nfc_filter_count = 0;
2090 }
2091
2092 netdev->features = features;
2093
2094 if (netif_running(netdev))
2095 igb_reinit_locked(adapter);
2096 else
2097 igb_reset(adapter);
2098
2099 return 0;
2100 }
2101
2102 static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
2103 struct net_device *dev,
2104 const unsigned char *addr, u16 vid,
2105 u16 flags)
2106 {
2107 /* guarantee we can provide a unique filter for the unicast address */
2108 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
2109 struct igb_adapter *adapter = netdev_priv(dev);
2110 int vfn = adapter->vfs_allocated_count;
2111
2112 if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
2113 return -ENOMEM;
2114 }
2115
2116 return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
2117 }
2118
2119 #define IGB_MAX_MAC_HDR_LEN 127
2120 #define IGB_MAX_NETWORK_HDR_LEN 511
2121
2122 static netdev_features_t
2123 igb_features_check(struct sk_buff *skb, struct net_device *dev,
2124 netdev_features_t features)
2125 {
2126 unsigned int network_hdr_len, mac_hdr_len;
2127
2128 /* Make certain the headers can be described by a context descriptor */
2129 mac_hdr_len = skb_network_header(skb) - skb->data;
2130 if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
2131 return features & ~(NETIF_F_HW_CSUM |
2132 NETIF_F_SCTP_CRC |
2133 NETIF_F_HW_VLAN_CTAG_TX |
2134 NETIF_F_TSO |
2135 NETIF_F_TSO6);
2136
2137 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2138 if (unlikely(network_hdr_len > IGB_MAX_NETWORK_HDR_LEN))
2139 return features & ~(NETIF_F_HW_CSUM |
2140 NETIF_F_SCTP_CRC |
2141 NETIF_F_TSO |
2142 NETIF_F_TSO6);
2143
2144 /* We can only support IPV4 TSO in tunnels if we can mangle the
2145 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2146 */
2147 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2148 features &= ~NETIF_F_TSO;
2149
2150 return features;
2151 }
2152
2153 static const struct net_device_ops igb_netdev_ops = {
2154 .ndo_open = igb_open,
2155 .ndo_stop = igb_close,
2156 .ndo_start_xmit = igb_xmit_frame,
2157 .ndo_get_stats64 = igb_get_stats64,
2158 .ndo_set_rx_mode = igb_set_rx_mode,
2159 .ndo_set_mac_address = igb_set_mac,
2160 .ndo_change_mtu = igb_change_mtu,
2161 .ndo_do_ioctl = igb_ioctl,
2162 .ndo_tx_timeout = igb_tx_timeout,
2163 .ndo_validate_addr = eth_validate_addr,
2164 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2165 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2166 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2167 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2168 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2169 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2170 .ndo_get_vf_config = igb_ndo_get_vf_config,
2171 #ifdef CONFIG_NET_POLL_CONTROLLER
2172 .ndo_poll_controller = igb_netpoll,
2173 #endif
2174 .ndo_fix_features = igb_fix_features,
2175 .ndo_set_features = igb_set_features,
2176 .ndo_fdb_add = igb_ndo_fdb_add,
2177 .ndo_features_check = igb_features_check,
2178 };
2179
2180 /**
2181 * igb_set_fw_version - Configure version string for ethtool
2182 * @adapter: adapter struct
2183 **/
2184 void igb_set_fw_version(struct igb_adapter *adapter)
2185 {
2186 struct e1000_hw *hw = &adapter->hw;
2187 struct e1000_fw_version fw;
2188
2189 igb_get_fw_version(hw, &fw);
2190
2191 switch (hw->mac.type) {
2192 case e1000_i210:
2193 case e1000_i211:
2194 if (!(igb_get_flash_presence_i210(hw))) {
2195 snprintf(adapter->fw_version,
2196 sizeof(adapter->fw_version),
2197 "%2d.%2d-%d",
2198 fw.invm_major, fw.invm_minor,
2199 fw.invm_img_type);
2200 break;
2201 }
2202 /* fall through */
2203 default:
2204 /* if option is rom valid, display its version too */
2205 if (fw.or_valid) {
2206 snprintf(adapter->fw_version,
2207 sizeof(adapter->fw_version),
2208 "%d.%d, 0x%08x, %d.%d.%d",
2209 fw.eep_major, fw.eep_minor, fw.etrack_id,
2210 fw.or_major, fw.or_build, fw.or_patch);
2211 /* no option rom */
2212 } else if (fw.etrack_id != 0X0000) {
2213 snprintf(adapter->fw_version,
2214 sizeof(adapter->fw_version),
2215 "%d.%d, 0x%08x",
2216 fw.eep_major, fw.eep_minor, fw.etrack_id);
2217 } else {
2218 snprintf(adapter->fw_version,
2219 sizeof(adapter->fw_version),
2220 "%d.%d.%d",
2221 fw.eep_major, fw.eep_minor, fw.eep_build);
2222 }
2223 break;
2224 }
2225 }
2226
2227 /**
2228 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2229 *
2230 * @adapter: adapter struct
2231 **/
2232 static void igb_init_mas(struct igb_adapter *adapter)
2233 {
2234 struct e1000_hw *hw = &adapter->hw;
2235 u16 eeprom_data;
2236
2237 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2238 switch (hw->bus.func) {
2239 case E1000_FUNC_0:
2240 if (eeprom_data & IGB_MAS_ENABLE_0) {
2241 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2242 netdev_info(adapter->netdev,
2243 "MAS: Enabling Media Autosense for port %d\n",
2244 hw->bus.func);
2245 }
2246 break;
2247 case E1000_FUNC_1:
2248 if (eeprom_data & IGB_MAS_ENABLE_1) {
2249 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2250 netdev_info(adapter->netdev,
2251 "MAS: Enabling Media Autosense for port %d\n",
2252 hw->bus.func);
2253 }
2254 break;
2255 case E1000_FUNC_2:
2256 if (eeprom_data & IGB_MAS_ENABLE_2) {
2257 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2258 netdev_info(adapter->netdev,
2259 "MAS: Enabling Media Autosense for port %d\n",
2260 hw->bus.func);
2261 }
2262 break;
2263 case E1000_FUNC_3:
2264 if (eeprom_data & IGB_MAS_ENABLE_3) {
2265 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2266 netdev_info(adapter->netdev,
2267 "MAS: Enabling Media Autosense for port %d\n",
2268 hw->bus.func);
2269 }
2270 break;
2271 default:
2272 /* Shouldn't get here */
2273 netdev_err(adapter->netdev,
2274 "MAS: Invalid port configuration, returning\n");
2275 break;
2276 }
2277 }
2278
2279 /**
2280 * igb_init_i2c - Init I2C interface
2281 * @adapter: pointer to adapter structure
2282 **/
2283 static s32 igb_init_i2c(struct igb_adapter *adapter)
2284 {
2285 s32 status = 0;
2286
2287 /* I2C interface supported on i350 devices */
2288 if (adapter->hw.mac.type != e1000_i350)
2289 return 0;
2290
2291 /* Initialize the i2c bus which is controlled by the registers.
2292 * This bus will use the i2c_algo_bit structue that implements
2293 * the protocol through toggling of the 4 bits in the register.
2294 */
2295 adapter->i2c_adap.owner = THIS_MODULE;
2296 adapter->i2c_algo = igb_i2c_algo;
2297 adapter->i2c_algo.data = adapter;
2298 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2299 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2300 strlcpy(adapter->i2c_adap.name, "igb BB",
2301 sizeof(adapter->i2c_adap.name));
2302 status = i2c_bit_add_bus(&adapter->i2c_adap);
2303 return status;
2304 }
2305
2306 /**
2307 * igb_probe - Device Initialization Routine
2308 * @pdev: PCI device information struct
2309 * @ent: entry in igb_pci_tbl
2310 *
2311 * Returns 0 on success, negative on failure
2312 *
2313 * igb_probe initializes an adapter identified by a pci_dev structure.
2314 * The OS initialization, configuring of the adapter private structure,
2315 * and a hardware reset occur.
2316 **/
2317 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2318 {
2319 struct net_device *netdev;
2320 struct igb_adapter *adapter;
2321 struct e1000_hw *hw;
2322 u16 eeprom_data = 0;
2323 s32 ret_val;
2324 static int global_quad_port_a; /* global quad port a indication */
2325 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2326 int err, pci_using_dac;
2327 u8 part_str[E1000_PBANUM_LENGTH];
2328
2329 /* Catch broken hardware that put the wrong VF device ID in
2330 * the PCIe SR-IOV capability.
2331 */
2332 if (pdev->is_virtfn) {
2333 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2334 pci_name(pdev), pdev->vendor, pdev->device);
2335 return -EINVAL;
2336 }
2337
2338 err = pci_enable_device_mem(pdev);
2339 if (err)
2340 return err;
2341
2342 pci_using_dac = 0;
2343 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2344 if (!err) {
2345 pci_using_dac = 1;
2346 } else {
2347 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2348 if (err) {
2349 dev_err(&pdev->dev,
2350 "No usable DMA configuration, aborting\n");
2351 goto err_dma;
2352 }
2353 }
2354
2355 err = pci_request_mem_regions(pdev, igb_driver_name);
2356 if (err)
2357 goto err_pci_reg;
2358
2359 pci_enable_pcie_error_reporting(pdev);
2360
2361 pci_set_master(pdev);
2362 pci_save_state(pdev);
2363
2364 err = -ENOMEM;
2365 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2366 IGB_MAX_TX_QUEUES);
2367 if (!netdev)
2368 goto err_alloc_etherdev;
2369
2370 SET_NETDEV_DEV(netdev, &pdev->dev);
2371
2372 pci_set_drvdata(pdev, netdev);
2373 adapter = netdev_priv(netdev);
2374 adapter->netdev = netdev;
2375 adapter->pdev = pdev;
2376 hw = &adapter->hw;
2377 hw->back = adapter;
2378 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2379
2380 err = -EIO;
2381 adapter->io_addr = pci_iomap(pdev, 0, 0);
2382 if (!adapter->io_addr)
2383 goto err_ioremap;
2384 /* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
2385 hw->hw_addr = adapter->io_addr;
2386
2387 netdev->netdev_ops = &igb_netdev_ops;
2388 igb_set_ethtool_ops(netdev);
2389 netdev->watchdog_timeo = 5 * HZ;
2390
2391 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2392
2393 netdev->mem_start = pci_resource_start(pdev, 0);
2394 netdev->mem_end = pci_resource_end(pdev, 0);
2395
2396 /* PCI config space info */
2397 hw->vendor_id = pdev->vendor;
2398 hw->device_id = pdev->device;
2399 hw->revision_id = pdev->revision;
2400 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2401 hw->subsystem_device_id = pdev->subsystem_device;
2402
2403 /* Copy the default MAC, PHY and NVM function pointers */
2404 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2405 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2406 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2407 /* Initialize skew-specific constants */
2408 err = ei->get_invariants(hw);
2409 if (err)
2410 goto err_sw_init;
2411
2412 /* setup the private structure */
2413 err = igb_sw_init(adapter);
2414 if (err)
2415 goto err_sw_init;
2416
2417 igb_get_bus_info_pcie(hw);
2418
2419 hw->phy.autoneg_wait_to_complete = false;
2420
2421 /* Copper options */
2422 if (hw->phy.media_type == e1000_media_type_copper) {
2423 hw->phy.mdix = AUTO_ALL_MODES;
2424 hw->phy.disable_polarity_correction = false;
2425 hw->phy.ms_type = e1000_ms_hw_default;
2426 }
2427
2428 if (igb_check_reset_block(hw))
2429 dev_info(&pdev->dev,
2430 "PHY reset is blocked due to SOL/IDER session.\n");
2431
2432 /* features is initialized to 0 in allocation, it might have bits
2433 * set by igb_sw_init so we should use an or instead of an
2434 * assignment.
2435 */
2436 netdev->features |= NETIF_F_SG |
2437 NETIF_F_TSO |
2438 NETIF_F_TSO6 |
2439 NETIF_F_RXHASH |
2440 NETIF_F_RXCSUM |
2441 NETIF_F_HW_CSUM;
2442
2443 if (hw->mac.type >= e1000_82576)
2444 netdev->features |= NETIF_F_SCTP_CRC;
2445
2446 #define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2447 NETIF_F_GSO_GRE_CSUM | \
2448 NETIF_F_GSO_IPXIP4 | \
2449 NETIF_F_GSO_IPXIP6 | \
2450 NETIF_F_GSO_UDP_TUNNEL | \
2451 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2452
2453 netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
2454 netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
2455
2456 /* copy netdev features into list of user selectable features */
2457 netdev->hw_features |= netdev->features |
2458 NETIF_F_HW_VLAN_CTAG_RX |
2459 NETIF_F_HW_VLAN_CTAG_TX |
2460 NETIF_F_RXALL;
2461
2462 if (hw->mac.type >= e1000_i350)
2463 netdev->hw_features |= NETIF_F_NTUPLE;
2464
2465 if (pci_using_dac)
2466 netdev->features |= NETIF_F_HIGHDMA;
2467
2468 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2469 netdev->mpls_features |= NETIF_F_HW_CSUM;
2470 netdev->hw_enc_features |= netdev->vlan_features;
2471
2472 /* set this bit last since it cannot be part of vlan_features */
2473 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2474 NETIF_F_HW_VLAN_CTAG_RX |
2475 NETIF_F_HW_VLAN_CTAG_TX;
2476
2477 netdev->priv_flags |= IFF_SUPP_NOFCS;
2478
2479 netdev->priv_flags |= IFF_UNICAST_FLT;
2480
2481 /* MTU range: 68 - 9216 */
2482 netdev->min_mtu = ETH_MIN_MTU;
2483 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
2484
2485 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2486
2487 /* before reading the NVM, reset the controller to put the device in a
2488 * known good starting state
2489 */
2490 hw->mac.ops.reset_hw(hw);
2491
2492 /* make sure the NVM is good , i211/i210 parts can have special NVM
2493 * that doesn't contain a checksum
2494 */
2495 switch (hw->mac.type) {
2496 case e1000_i210:
2497 case e1000_i211:
2498 if (igb_get_flash_presence_i210(hw)) {
2499 if (hw->nvm.ops.validate(hw) < 0) {
2500 dev_err(&pdev->dev,
2501 "The NVM Checksum Is Not Valid\n");
2502 err = -EIO;
2503 goto err_eeprom;
2504 }
2505 }
2506 break;
2507 default:
2508 if (hw->nvm.ops.validate(hw) < 0) {
2509 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2510 err = -EIO;
2511 goto err_eeprom;
2512 }
2513 break;
2514 }
2515
2516 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
2517 /* copy the MAC address out of the NVM */
2518 if (hw->mac.ops.read_mac_addr(hw))
2519 dev_err(&pdev->dev, "NVM Read Error\n");
2520 }
2521
2522 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2523
2524 if (!is_valid_ether_addr(netdev->dev_addr)) {
2525 dev_err(&pdev->dev, "Invalid MAC Address\n");
2526 err = -EIO;
2527 goto err_eeprom;
2528 }
2529
2530 igb_set_default_mac_filter(adapter);
2531
2532 /* get firmware version for ethtool -i */
2533 igb_set_fw_version(adapter);
2534
2535 /* configure RXPBSIZE and TXPBSIZE */
2536 if (hw->mac.type == e1000_i210) {
2537 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2538 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2539 }
2540
2541 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2542 (unsigned long) adapter);
2543 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2544 (unsigned long) adapter);
2545
2546 INIT_WORK(&adapter->reset_task, igb_reset_task);
2547 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2548
2549 /* Initialize link properties that are user-changeable */
2550 adapter->fc_autoneg = true;
2551 hw->mac.autoneg = true;
2552 hw->phy.autoneg_advertised = 0x2f;
2553
2554 hw->fc.requested_mode = e1000_fc_default;
2555 hw->fc.current_mode = e1000_fc_default;
2556
2557 igb_validate_mdi_setting(hw);
2558
2559 /* By default, support wake on port A */
2560 if (hw->bus.func == 0)
2561 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2562
2563 /* Check the NVM for wake support on non-port A ports */
2564 if (hw->mac.type >= e1000_82580)
2565 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2566 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2567 &eeprom_data);
2568 else if (hw->bus.func == 1)
2569 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2570
2571 if (eeprom_data & IGB_EEPROM_APME)
2572 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2573
2574 /* now that we have the eeprom settings, apply the special cases where
2575 * the eeprom may be wrong or the board simply won't support wake on
2576 * lan on a particular port
2577 */
2578 switch (pdev->device) {
2579 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2580 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2581 break;
2582 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2583 case E1000_DEV_ID_82576_FIBER:
2584 case E1000_DEV_ID_82576_SERDES:
2585 /* Wake events only supported on port A for dual fiber
2586 * regardless of eeprom setting
2587 */
2588 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2589 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2590 break;
2591 case E1000_DEV_ID_82576_QUAD_COPPER:
2592 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2593 /* if quad port adapter, disable WoL on all but port A */
2594 if (global_quad_port_a != 0)
2595 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2596 else
2597 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2598 /* Reset for multiple quad port adapters */
2599 if (++global_quad_port_a == 4)
2600 global_quad_port_a = 0;
2601 break;
2602 default:
2603 /* If the device can't wake, don't set software support */
2604 if (!device_can_wakeup(&adapter->pdev->dev))
2605 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2606 }
2607
2608 /* initialize the wol settings based on the eeprom settings */
2609 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2610 adapter->wol |= E1000_WUFC_MAG;
2611
2612 /* Some vendors want WoL disabled by default, but still supported */
2613 if ((hw->mac.type == e1000_i350) &&
2614 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2615 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2616 adapter->wol = 0;
2617 }
2618
2619 /* Some vendors want the ability to Use the EEPROM setting as
2620 * enable/disable only, and not for capability
2621 */
2622 if (((hw->mac.type == e1000_i350) ||
2623 (hw->mac.type == e1000_i354)) &&
2624 (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
2625 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2626 adapter->wol = 0;
2627 }
2628 if (hw->mac.type == e1000_i350) {
2629 if (((pdev->subsystem_device == 0x5001) ||
2630 (pdev->subsystem_device == 0x5002)) &&
2631 (hw->bus.func == 0)) {
2632 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2633 adapter->wol = 0;
2634 }
2635 if (pdev->subsystem_device == 0x1F52)
2636 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2637 }
2638
2639 device_set_wakeup_enable(&adapter->pdev->dev,
2640 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2641
2642 /* reset the hardware with the new settings */
2643 igb_reset(adapter);
2644
2645 /* Init the I2C interface */
2646 err = igb_init_i2c(adapter);
2647 if (err) {
2648 dev_err(&pdev->dev, "failed to init i2c interface\n");
2649 goto err_eeprom;
2650 }
2651
2652 /* let the f/w know that the h/w is now under the control of the
2653 * driver.
2654 */
2655 igb_get_hw_control(adapter);
2656
2657 strcpy(netdev->name, "eth%d");
2658 err = register_netdev(netdev);
2659 if (err)
2660 goto err_register;
2661
2662 /* carrier off reporting is important to ethtool even BEFORE open */
2663 netif_carrier_off(netdev);
2664
2665 #ifdef CONFIG_IGB_DCA
2666 if (dca_add_requester(&pdev->dev) == 0) {
2667 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2668 dev_info(&pdev->dev, "DCA enabled\n");
2669 igb_setup_dca(adapter);
2670 }
2671
2672 #endif
2673 #ifdef CONFIG_IGB_HWMON
2674 /* Initialize the thermal sensor on i350 devices. */
2675 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2676 u16 ets_word;
2677
2678 /* Read the NVM to determine if this i350 device supports an
2679 * external thermal sensor.
2680 */
2681 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2682 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2683 adapter->ets = true;
2684 else
2685 adapter->ets = false;
2686 if (igb_sysfs_init(adapter))
2687 dev_err(&pdev->dev,
2688 "failed to allocate sysfs resources\n");
2689 } else {
2690 adapter->ets = false;
2691 }
2692 #endif
2693 /* Check if Media Autosense is enabled */
2694 adapter->ei = *ei;
2695 if (hw->dev_spec._82575.mas_capable)
2696 igb_init_mas(adapter);
2697
2698 /* do hw tstamp init after resetting */
2699 igb_ptp_init(adapter);
2700
2701 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2702 /* print bus type/speed/width info, not applicable to i354 */
2703 if (hw->mac.type != e1000_i354) {
2704 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2705 netdev->name,
2706 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2707 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2708 "unknown"),
2709 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2710 "Width x4" :
2711 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2712 "Width x2" :
2713 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2714 "Width x1" : "unknown"), netdev->dev_addr);
2715 }
2716
2717 if ((hw->mac.type >= e1000_i210 ||
2718 igb_get_flash_presence_i210(hw))) {
2719 ret_val = igb_read_part_string(hw, part_str,
2720 E1000_PBANUM_LENGTH);
2721 } else {
2722 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2723 }
2724
2725 if (ret_val)
2726 strcpy(part_str, "Unknown");
2727 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2728 dev_info(&pdev->dev,
2729 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2730 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2731 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2732 adapter->num_rx_queues, adapter->num_tx_queues);
2733 if (hw->phy.media_type == e1000_media_type_copper) {
2734 switch (hw->mac.type) {
2735 case e1000_i350:
2736 case e1000_i210:
2737 case e1000_i211:
2738 /* Enable EEE for internal copper PHY devices */
2739 err = igb_set_eee_i350(hw, true, true);
2740 if ((!err) &&
2741 (!hw->dev_spec._82575.eee_disable)) {
2742 adapter->eee_advert =
2743 MDIO_EEE_100TX | MDIO_EEE_1000T;
2744 adapter->flags |= IGB_FLAG_EEE;
2745 }
2746 break;
2747 case e1000_i354:
2748 if ((rd32(E1000_CTRL_EXT) &
2749 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2750 err = igb_set_eee_i354(hw, true, true);
2751 if ((!err) &&
2752 (!hw->dev_spec._82575.eee_disable)) {
2753 adapter->eee_advert =
2754 MDIO_EEE_100TX | MDIO_EEE_1000T;
2755 adapter->flags |= IGB_FLAG_EEE;
2756 }
2757 }
2758 break;
2759 default:
2760 break;
2761 }
2762 }
2763 pm_runtime_put_noidle(&pdev->dev);
2764 return 0;
2765
2766 err_register:
2767 igb_release_hw_control(adapter);
2768 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2769 err_eeprom:
2770 if (!igb_check_reset_block(hw))
2771 igb_reset_phy(hw);
2772
2773 if (hw->flash_address)
2774 iounmap(hw->flash_address);
2775 err_sw_init:
2776 kfree(adapter->mac_table);
2777 kfree(adapter->shadow_vfta);
2778 igb_clear_interrupt_scheme(adapter);
2779 #ifdef CONFIG_PCI_IOV
2780 igb_disable_sriov(pdev);
2781 #endif
2782 pci_iounmap(pdev, adapter->io_addr);
2783 err_ioremap:
2784 free_netdev(netdev);
2785 err_alloc_etherdev:
2786 pci_release_mem_regions(pdev);
2787 err_pci_reg:
2788 err_dma:
2789 pci_disable_device(pdev);
2790 return err;
2791 }
2792
2793 #ifdef CONFIG_PCI_IOV
2794 static int igb_disable_sriov(struct pci_dev *pdev)
2795 {
2796 struct net_device *netdev = pci_get_drvdata(pdev);
2797 struct igb_adapter *adapter = netdev_priv(netdev);
2798 struct e1000_hw *hw = &adapter->hw;
2799
2800 /* reclaim resources allocated to VFs */
2801 if (adapter->vf_data) {
2802 /* disable iov and allow time for transactions to clear */
2803 if (pci_vfs_assigned(pdev)) {
2804 dev_warn(&pdev->dev,
2805 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2806 return -EPERM;
2807 } else {
2808 pci_disable_sriov(pdev);
2809 msleep(500);
2810 }
2811
2812 kfree(adapter->vf_mac_list);
2813 adapter->vf_mac_list = NULL;
2814 kfree(adapter->vf_data);
2815 adapter->vf_data = NULL;
2816 adapter->vfs_allocated_count = 0;
2817 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2818 wrfl();
2819 msleep(100);
2820 dev_info(&pdev->dev, "IOV Disabled\n");
2821
2822 /* Re-enable DMA Coalescing flag since IOV is turned off */
2823 adapter->flags |= IGB_FLAG_DMAC;
2824 }
2825
2826 return 0;
2827 }
2828
2829 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2830 {
2831 struct net_device *netdev = pci_get_drvdata(pdev);
2832 struct igb_adapter *adapter = netdev_priv(netdev);
2833 int old_vfs = pci_num_vf(pdev);
2834 struct vf_mac_filter *mac_list;
2835 int err = 0;
2836 int num_vf_mac_filters, i;
2837
2838 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2839 err = -EPERM;
2840 goto out;
2841 }
2842 if (!num_vfs)
2843 goto out;
2844
2845 if (old_vfs) {
2846 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2847 old_vfs, max_vfs);
2848 adapter->vfs_allocated_count = old_vfs;
2849 } else
2850 adapter->vfs_allocated_count = num_vfs;
2851
2852 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2853 sizeof(struct vf_data_storage), GFP_KERNEL);
2854
2855 /* if allocation failed then we do not support SR-IOV */
2856 if (!adapter->vf_data) {
2857 adapter->vfs_allocated_count = 0;
2858 dev_err(&pdev->dev,
2859 "Unable to allocate memory for VF Data Storage\n");
2860 err = -ENOMEM;
2861 goto out;
2862 }
2863
2864 /* Due to the limited number of RAR entries calculate potential
2865 * number of MAC filters available for the VFs. Reserve entries
2866 * for PF default MAC, PF MAC filters and at least one RAR entry
2867 * for each VF for VF MAC.
2868 */
2869 num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
2870 (1 + IGB_PF_MAC_FILTERS_RESERVED +
2871 adapter->vfs_allocated_count);
2872
2873 adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
2874 sizeof(struct vf_mac_filter),
2875 GFP_KERNEL);
2876
2877 mac_list = adapter->vf_mac_list;
2878 INIT_LIST_HEAD(&adapter->vf_macs.l);
2879
2880 if (adapter->vf_mac_list) {
2881 /* Initialize list of VF MAC filters */
2882 for (i = 0; i < num_vf_mac_filters; i++) {
2883 mac_list->vf = -1;
2884 mac_list->free = true;
2885 list_add(&mac_list->l, &adapter->vf_macs.l);
2886 mac_list++;
2887 }
2888 } else {
2889 /* If we could not allocate memory for the VF MAC filters
2890 * we can continue without this feature but warn user.
2891 */
2892 dev_err(&pdev->dev,
2893 "Unable to allocate memory for VF MAC filter list\n");
2894 }
2895
2896 /* only call pci_enable_sriov() if no VFs are allocated already */
2897 if (!old_vfs) {
2898 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2899 if (err)
2900 goto err_out;
2901 }
2902 dev_info(&pdev->dev, "%d VFs allocated\n",
2903 adapter->vfs_allocated_count);
2904 for (i = 0; i < adapter->vfs_allocated_count; i++)
2905 igb_vf_configure(adapter, i);
2906
2907 /* DMA Coalescing is not supported in IOV mode. */
2908 adapter->flags &= ~IGB_FLAG_DMAC;
2909 goto out;
2910
2911 err_out:
2912 kfree(adapter->vf_mac_list);
2913 adapter->vf_mac_list = NULL;
2914 kfree(adapter->vf_data);
2915 adapter->vf_data = NULL;
2916 adapter->vfs_allocated_count = 0;
2917 out:
2918 return err;
2919 }
2920
2921 #endif
2922 /**
2923 * igb_remove_i2c - Cleanup I2C interface
2924 * @adapter: pointer to adapter structure
2925 **/
2926 static void igb_remove_i2c(struct igb_adapter *adapter)
2927 {
2928 /* free the adapter bus structure */
2929 i2c_del_adapter(&adapter->i2c_adap);
2930 }
2931
2932 /**
2933 * igb_remove - Device Removal Routine
2934 * @pdev: PCI device information struct
2935 *
2936 * igb_remove is called by the PCI subsystem to alert the driver
2937 * that it should release a PCI device. The could be caused by a
2938 * Hot-Plug event, or because the driver is going to be removed from
2939 * memory.
2940 **/
2941 static void igb_remove(struct pci_dev *pdev)
2942 {
2943 struct net_device *netdev = pci_get_drvdata(pdev);
2944 struct igb_adapter *adapter = netdev_priv(netdev);
2945 struct e1000_hw *hw = &adapter->hw;
2946
2947 pm_runtime_get_noresume(&pdev->dev);
2948 #ifdef CONFIG_IGB_HWMON
2949 igb_sysfs_exit(adapter);
2950 #endif
2951 igb_remove_i2c(adapter);
2952 igb_ptp_stop(adapter);
2953 /* The watchdog timer may be rescheduled, so explicitly
2954 * disable watchdog from being rescheduled.
2955 */
2956 set_bit(__IGB_DOWN, &adapter->state);
2957 del_timer_sync(&adapter->watchdog_timer);
2958 del_timer_sync(&adapter->phy_info_timer);
2959
2960 cancel_work_sync(&adapter->reset_task);
2961 cancel_work_sync(&adapter->watchdog_task);
2962
2963 #ifdef CONFIG_IGB_DCA
2964 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2965 dev_info(&pdev->dev, "DCA disabled\n");
2966 dca_remove_requester(&pdev->dev);
2967 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2968 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2969 }
2970 #endif
2971
2972 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2973 * would have already happened in close and is redundant.
2974 */
2975 igb_release_hw_control(adapter);
2976
2977 #ifdef CONFIG_PCI_IOV
2978 igb_disable_sriov(pdev);
2979 #endif
2980
2981 unregister_netdev(netdev);
2982
2983 igb_clear_interrupt_scheme(adapter);
2984
2985 pci_iounmap(pdev, adapter->io_addr);
2986 if (hw->flash_address)
2987 iounmap(hw->flash_address);
2988 pci_release_mem_regions(pdev);
2989
2990 kfree(adapter->mac_table);
2991 kfree(adapter->shadow_vfta);
2992 free_netdev(netdev);
2993
2994 pci_disable_pcie_error_reporting(pdev);
2995
2996 pci_disable_device(pdev);
2997 }
2998
2999 /**
3000 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
3001 * @adapter: board private structure to initialize
3002 *
3003 * This function initializes the vf specific data storage and then attempts to
3004 * allocate the VFs. The reason for ordering it this way is because it is much
3005 * mor expensive time wise to disable SR-IOV than it is to allocate and free
3006 * the memory for the VFs.
3007 **/
3008 static void igb_probe_vfs(struct igb_adapter *adapter)
3009 {
3010 #ifdef CONFIG_PCI_IOV
3011 struct pci_dev *pdev = adapter->pdev;
3012 struct e1000_hw *hw = &adapter->hw;
3013
3014 /* Virtualization features not supported on i210 family. */
3015 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
3016 return;
3017
3018 /* Of the below we really only want the effect of getting
3019 * IGB_FLAG_HAS_MSIX set (if available), without which
3020 * igb_enable_sriov() has no effect.
3021 */
3022 igb_set_interrupt_capability(adapter, true);
3023 igb_reset_interrupt_capability(adapter);
3024
3025 pci_sriov_set_totalvfs(pdev, 7);
3026 igb_enable_sriov(pdev, max_vfs);
3027
3028 #endif /* CONFIG_PCI_IOV */
3029 }
3030
3031 static void igb_init_queue_configuration(struct igb_adapter *adapter)
3032 {
3033 struct e1000_hw *hw = &adapter->hw;
3034 u32 max_rss_queues;
3035
3036 /* Determine the maximum number of RSS queues supported. */
3037 switch (hw->mac.type) {
3038 case e1000_i211:
3039 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
3040 break;
3041 case e1000_82575:
3042 case e1000_i210:
3043 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
3044 break;
3045 case e1000_i350:
3046 /* I350 cannot do RSS and SR-IOV at the same time */
3047 if (!!adapter->vfs_allocated_count) {
3048 max_rss_queues = 1;
3049 break;
3050 }
3051 /* fall through */
3052 case e1000_82576:
3053 if (!!adapter->vfs_allocated_count) {
3054 max_rss_queues = 2;
3055 break;
3056 }
3057 /* fall through */
3058 case e1000_82580:
3059 case e1000_i354:
3060 default:
3061 max_rss_queues = IGB_MAX_RX_QUEUES;
3062 break;
3063 }
3064
3065 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3066
3067 igb_set_flag_queue_pairs(adapter, max_rss_queues);
3068 }
3069
3070 void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
3071 const u32 max_rss_queues)
3072 {
3073 struct e1000_hw *hw = &adapter->hw;
3074
3075 /* Determine if we need to pair queues. */
3076 switch (hw->mac.type) {
3077 case e1000_82575:
3078 case e1000_i211:
3079 /* Device supports enough interrupts without queue pairing. */
3080 break;
3081 case e1000_82576:
3082 case e1000_82580:
3083 case e1000_i350:
3084 case e1000_i354:
3085 case e1000_i210:
3086 default:
3087 /* If rss_queues > half of max_rss_queues, pair the queues in
3088 * order to conserve interrupts due to limited supply.
3089 */
3090 if (adapter->rss_queues > (max_rss_queues / 2))
3091 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
3092 else
3093 adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
3094 break;
3095 }
3096 }
3097
3098 /**
3099 * igb_sw_init - Initialize general software structures (struct igb_adapter)
3100 * @adapter: board private structure to initialize
3101 *
3102 * igb_sw_init initializes the Adapter private data structure.
3103 * Fields are initialized based on PCI device information and
3104 * OS network device settings (MTU size).
3105 **/
3106 static int igb_sw_init(struct igb_adapter *adapter)
3107 {
3108 struct e1000_hw *hw = &adapter->hw;
3109 struct net_device *netdev = adapter->netdev;
3110 struct pci_dev *pdev = adapter->pdev;
3111
3112 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
3113
3114 /* set default ring sizes */
3115 adapter->tx_ring_count = IGB_DEFAULT_TXD;
3116 adapter->rx_ring_count = IGB_DEFAULT_RXD;
3117
3118 /* set default ITR values */
3119 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
3120 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
3121
3122 /* set default work limits */
3123 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
3124
3125 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
3126 VLAN_HLEN;
3127 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3128
3129 spin_lock_init(&adapter->nfc_lock);
3130 spin_lock_init(&adapter->stats64_lock);
3131 #ifdef CONFIG_PCI_IOV
3132 switch (hw->mac.type) {
3133 case e1000_82576:
3134 case e1000_i350:
3135 if (max_vfs > 7) {
3136 dev_warn(&pdev->dev,
3137 "Maximum of 7 VFs per PF, using max\n");
3138 max_vfs = adapter->vfs_allocated_count = 7;
3139 } else
3140 adapter->vfs_allocated_count = max_vfs;
3141 if (adapter->vfs_allocated_count)
3142 dev_warn(&pdev->dev,
3143 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
3144 break;
3145 default:
3146 break;
3147 }
3148 #endif /* CONFIG_PCI_IOV */
3149
3150 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
3151 adapter->flags |= IGB_FLAG_HAS_MSIX;
3152
3153 adapter->mac_table = kzalloc(sizeof(struct igb_mac_addr) *
3154 hw->mac.rar_entry_count, GFP_ATOMIC);
3155 if (!adapter->mac_table)
3156 return -ENOMEM;
3157
3158 igb_probe_vfs(adapter);
3159
3160 igb_init_queue_configuration(adapter);
3161
3162 /* Setup and initialize a copy of the hw vlan table array */
3163 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
3164 GFP_ATOMIC);
3165
3166 /* This call may decrease the number of queues */
3167 if (igb_init_interrupt_scheme(adapter, true)) {
3168 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
3169 return -ENOMEM;
3170 }
3171
3172 /* Explicitly disable IRQ since the NIC can be in any state. */
3173 igb_irq_disable(adapter);
3174
3175 if (hw->mac.type >= e1000_i350)
3176 adapter->flags &= ~IGB_FLAG_DMAC;
3177
3178 set_bit(__IGB_DOWN, &adapter->state);
3179 return 0;
3180 }
3181
3182 /**
3183 * igb_open - Called when a network interface is made active
3184 * @netdev: network interface device structure
3185 *
3186 * Returns 0 on success, negative value on failure
3187 *
3188 * The open entry point is called when a network interface is made
3189 * active by the system (IFF_UP). At this point all resources needed
3190 * for transmit and receive operations are allocated, the interrupt
3191 * handler is registered with the OS, the watchdog timer is started,
3192 * and the stack is notified that the interface is ready.
3193 **/
3194 static int __igb_open(struct net_device *netdev, bool resuming)
3195 {
3196 struct igb_adapter *adapter = netdev_priv(netdev);
3197 struct e1000_hw *hw = &adapter->hw;
3198 struct pci_dev *pdev = adapter->pdev;
3199 int err;
3200 int i;
3201
3202 /* disallow open during test */
3203 if (test_bit(__IGB_TESTING, &adapter->state)) {
3204 WARN_ON(resuming);
3205 return -EBUSY;
3206 }
3207
3208 if (!resuming)
3209 pm_runtime_get_sync(&pdev->dev);
3210
3211 netif_carrier_off(netdev);
3212
3213 /* allocate transmit descriptors */
3214 err = igb_setup_all_tx_resources(adapter);
3215 if (err)
3216 goto err_setup_tx;
3217
3218 /* allocate receive descriptors */
3219 err = igb_setup_all_rx_resources(adapter);
3220 if (err)
3221 goto err_setup_rx;
3222
3223 igb_power_up_link(adapter);
3224
3225 /* before we allocate an interrupt, we must be ready to handle it.
3226 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3227 * as soon as we call pci_request_irq, so we have to setup our
3228 * clean_rx handler before we do so.
3229 */
3230 igb_configure(adapter);
3231
3232 err = igb_request_irq(adapter);
3233 if (err)
3234 goto err_req_irq;
3235
3236 /* Notify the stack of the actual queue counts. */
3237 err = netif_set_real_num_tx_queues(adapter->netdev,
3238 adapter->num_tx_queues);
3239 if (err)
3240 goto err_set_queues;
3241
3242 err = netif_set_real_num_rx_queues(adapter->netdev,
3243 adapter->num_rx_queues);
3244 if (err)
3245 goto err_set_queues;
3246
3247 /* From here on the code is the same as igb_up() */
3248 clear_bit(__IGB_DOWN, &adapter->state);
3249
3250 for (i = 0; i < adapter->num_q_vectors; i++)
3251 napi_enable(&(adapter->q_vector[i]->napi));
3252
3253 /* Clear any pending interrupts. */
3254 rd32(E1000_ICR);
3255
3256 igb_irq_enable(adapter);
3257
3258 /* notify VFs that reset has been completed */
3259 if (adapter->vfs_allocated_count) {
3260 u32 reg_data = rd32(E1000_CTRL_EXT);
3261
3262 reg_data |= E1000_CTRL_EXT_PFRSTD;
3263 wr32(E1000_CTRL_EXT, reg_data);
3264 }
3265
3266 netif_tx_start_all_queues(netdev);
3267
3268 if (!resuming)
3269 pm_runtime_put(&pdev->dev);
3270
3271 /* start the watchdog. */
3272 hw->mac.get_link_status = 1;
3273 schedule_work(&adapter->watchdog_task);
3274
3275 return 0;
3276
3277 err_set_queues:
3278 igb_free_irq(adapter);
3279 err_req_irq:
3280 igb_release_hw_control(adapter);
3281 igb_power_down_link(adapter);
3282 igb_free_all_rx_resources(adapter);
3283 err_setup_rx:
3284 igb_free_all_tx_resources(adapter);
3285 err_setup_tx:
3286 igb_reset(adapter);
3287 if (!resuming)
3288 pm_runtime_put(&pdev->dev);
3289
3290 return err;
3291 }
3292
3293 int igb_open(struct net_device *netdev)
3294 {
3295 return __igb_open(netdev, false);
3296 }
3297
3298 /**
3299 * igb_close - Disables a network interface
3300 * @netdev: network interface device structure
3301 *
3302 * Returns 0, this is not allowed to fail
3303 *
3304 * The close entry point is called when an interface is de-activated
3305 * by the OS. The hardware is still under the driver's control, but
3306 * needs to be disabled. A global MAC reset is issued to stop the
3307 * hardware, and all transmit and receive resources are freed.
3308 **/
3309 static int __igb_close(struct net_device *netdev, bool suspending)
3310 {
3311 struct igb_adapter *adapter = netdev_priv(netdev);
3312 struct pci_dev *pdev = adapter->pdev;
3313
3314 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3315
3316 if (!suspending)
3317 pm_runtime_get_sync(&pdev->dev);
3318
3319 igb_down(adapter);
3320 igb_free_irq(adapter);
3321
3322 igb_free_all_tx_resources(adapter);
3323 igb_free_all_rx_resources(adapter);
3324
3325 if (!suspending)
3326 pm_runtime_put_sync(&pdev->dev);
3327 return 0;
3328 }
3329
3330 int igb_close(struct net_device *netdev)
3331 {
3332 if (netif_device_present(netdev))
3333 return __igb_close(netdev, false);
3334 return 0;
3335 }
3336
3337 /**
3338 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3339 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3340 *
3341 * Return 0 on success, negative on failure
3342 **/
3343 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3344 {
3345 struct device *dev = tx_ring->dev;
3346 int size;
3347
3348 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3349
3350 tx_ring->tx_buffer_info = vmalloc(size);
3351 if (!tx_ring->tx_buffer_info)
3352 goto err;
3353
3354 /* round up to nearest 4K */
3355 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3356 tx_ring->size = ALIGN(tx_ring->size, 4096);
3357
3358 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3359 &tx_ring->dma, GFP_KERNEL);
3360 if (!tx_ring->desc)
3361 goto err;
3362
3363 tx_ring->next_to_use = 0;
3364 tx_ring->next_to_clean = 0;
3365
3366 return 0;
3367
3368 err:
3369 vfree(tx_ring->tx_buffer_info);
3370 tx_ring->tx_buffer_info = NULL;
3371 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3372 return -ENOMEM;
3373 }
3374
3375 /**
3376 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3377 * (Descriptors) for all queues
3378 * @adapter: board private structure
3379 *
3380 * Return 0 on success, negative on failure
3381 **/
3382 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3383 {
3384 struct pci_dev *pdev = adapter->pdev;
3385 int i, err = 0;
3386
3387 for (i = 0; i < adapter->num_tx_queues; i++) {
3388 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3389 if (err) {
3390 dev_err(&pdev->dev,
3391 "Allocation for Tx Queue %u failed\n", i);
3392 for (i--; i >= 0; i--)
3393 igb_free_tx_resources(adapter->tx_ring[i]);
3394 break;
3395 }
3396 }
3397
3398 return err;
3399 }
3400
3401 /**
3402 * igb_setup_tctl - configure the transmit control registers
3403 * @adapter: Board private structure
3404 **/
3405 void igb_setup_tctl(struct igb_adapter *adapter)
3406 {
3407 struct e1000_hw *hw = &adapter->hw;
3408 u32 tctl;
3409
3410 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3411 wr32(E1000_TXDCTL(0), 0);
3412
3413 /* Program the Transmit Control Register */
3414 tctl = rd32(E1000_TCTL);
3415 tctl &= ~E1000_TCTL_CT;
3416 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3417 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3418
3419 igb_config_collision_dist(hw);
3420
3421 /* Enable transmits */
3422 tctl |= E1000_TCTL_EN;
3423
3424 wr32(E1000_TCTL, tctl);
3425 }
3426
3427 /**
3428 * igb_configure_tx_ring - Configure transmit ring after Reset
3429 * @adapter: board private structure
3430 * @ring: tx ring to configure
3431 *
3432 * Configure a transmit ring after a reset.
3433 **/
3434 void igb_configure_tx_ring(struct igb_adapter *adapter,
3435 struct igb_ring *ring)
3436 {
3437 struct e1000_hw *hw = &adapter->hw;
3438 u32 txdctl = 0;
3439 u64 tdba = ring->dma;
3440 int reg_idx = ring->reg_idx;
3441
3442 /* disable the queue */
3443 wr32(E1000_TXDCTL(reg_idx), 0);
3444 wrfl();
3445 mdelay(10);
3446
3447 wr32(E1000_TDLEN(reg_idx),
3448 ring->count * sizeof(union e1000_adv_tx_desc));
3449 wr32(E1000_TDBAL(reg_idx),
3450 tdba & 0x00000000ffffffffULL);
3451 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3452
3453 ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
3454 wr32(E1000_TDH(reg_idx), 0);
3455 writel(0, ring->tail);
3456
3457 txdctl |= IGB_TX_PTHRESH;
3458 txdctl |= IGB_TX_HTHRESH << 8;
3459 txdctl |= IGB_TX_WTHRESH << 16;
3460
3461 /* reinitialize tx_buffer_info */
3462 memset(ring->tx_buffer_info, 0,
3463 sizeof(struct igb_tx_buffer) * ring->count);
3464
3465 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3466 wr32(E1000_TXDCTL(reg_idx), txdctl);
3467 }
3468
3469 /**
3470 * igb_configure_tx - Configure transmit Unit after Reset
3471 * @adapter: board private structure
3472 *
3473 * Configure the Tx unit of the MAC after a reset.
3474 **/
3475 static void igb_configure_tx(struct igb_adapter *adapter)
3476 {
3477 int i;
3478
3479 for (i = 0; i < adapter->num_tx_queues; i++)
3480 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3481 }
3482
3483 /**
3484 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3485 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3486 *
3487 * Returns 0 on success, negative on failure
3488 **/
3489 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3490 {
3491 struct device *dev = rx_ring->dev;
3492 int size;
3493
3494 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3495
3496 rx_ring->rx_buffer_info = vmalloc(size);
3497 if (!rx_ring->rx_buffer_info)
3498 goto err;
3499
3500 /* Round up to nearest 4K */
3501 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3502 rx_ring->size = ALIGN(rx_ring->size, 4096);
3503
3504 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3505 &rx_ring->dma, GFP_KERNEL);
3506 if (!rx_ring->desc)
3507 goto err;
3508
3509 rx_ring->next_to_alloc = 0;
3510 rx_ring->next_to_clean = 0;
3511 rx_ring->next_to_use = 0;
3512
3513 return 0;
3514
3515 err:
3516 vfree(rx_ring->rx_buffer_info);
3517 rx_ring->rx_buffer_info = NULL;
3518 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3519 return -ENOMEM;
3520 }
3521
3522 /**
3523 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3524 * (Descriptors) for all queues
3525 * @adapter: board private structure
3526 *
3527 * Return 0 on success, negative on failure
3528 **/
3529 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3530 {
3531 struct pci_dev *pdev = adapter->pdev;
3532 int i, err = 0;
3533
3534 for (i = 0; i < adapter->num_rx_queues; i++) {
3535 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3536 if (err) {
3537 dev_err(&pdev->dev,
3538 "Allocation for Rx Queue %u failed\n", i);
3539 for (i--; i >= 0; i--)
3540 igb_free_rx_resources(adapter->rx_ring[i]);
3541 break;
3542 }
3543 }
3544
3545 return err;
3546 }
3547
3548 /**
3549 * igb_setup_mrqc - configure the multiple receive queue control registers
3550 * @adapter: Board private structure
3551 **/
3552 static void igb_setup_mrqc(struct igb_adapter *adapter)
3553 {
3554 struct e1000_hw *hw = &adapter->hw;
3555 u32 mrqc, rxcsum;
3556 u32 j, num_rx_queues;
3557 u32 rss_key[10];
3558
3559 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3560 for (j = 0; j < 10; j++)
3561 wr32(E1000_RSSRK(j), rss_key[j]);
3562
3563 num_rx_queues = adapter->rss_queues;
3564
3565 switch (hw->mac.type) {
3566 case e1000_82576:
3567 /* 82576 supports 2 RSS queues for SR-IOV */
3568 if (adapter->vfs_allocated_count)
3569 num_rx_queues = 2;
3570 break;
3571 default:
3572 break;
3573 }
3574
3575 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3576 for (j = 0; j < IGB_RETA_SIZE; j++)
3577 adapter->rss_indir_tbl[j] =
3578 (j * num_rx_queues) / IGB_RETA_SIZE;
3579 adapter->rss_indir_tbl_init = num_rx_queues;
3580 }
3581 igb_write_rss_indir_tbl(adapter);
3582
3583 /* Disable raw packet checksumming so that RSS hash is placed in
3584 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3585 * offloads as they are enabled by default
3586 */
3587 rxcsum = rd32(E1000_RXCSUM);
3588 rxcsum |= E1000_RXCSUM_PCSD;
3589
3590 if (adapter->hw.mac.type >= e1000_82576)
3591 /* Enable Receive Checksum Offload for SCTP */
3592 rxcsum |= E1000_RXCSUM_CRCOFL;
3593
3594 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3595 wr32(E1000_RXCSUM, rxcsum);
3596
3597 /* Generate RSS hash based on packet types, TCP/UDP
3598 * port numbers and/or IPv4/v6 src and dst addresses
3599 */
3600 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3601 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3602 E1000_MRQC_RSS_FIELD_IPV6 |
3603 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3604 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3605
3606 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3607 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3608 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3609 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3610
3611 /* If VMDq is enabled then we set the appropriate mode for that, else
3612 * we default to RSS so that an RSS hash is calculated per packet even
3613 * if we are only using one queue
3614 */
3615 if (adapter->vfs_allocated_count) {
3616 if (hw->mac.type > e1000_82575) {
3617 /* Set the default pool for the PF's first queue */
3618 u32 vtctl = rd32(E1000_VT_CTL);
3619
3620 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3621 E1000_VT_CTL_DISABLE_DEF_POOL);
3622 vtctl |= adapter->vfs_allocated_count <<
3623 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3624 wr32(E1000_VT_CTL, vtctl);
3625 }
3626 if (adapter->rss_queues > 1)
3627 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
3628 else
3629 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3630 } else {
3631 if (hw->mac.type != e1000_i211)
3632 mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
3633 }
3634 igb_vmm_control(adapter);
3635
3636 wr32(E1000_MRQC, mrqc);
3637 }
3638
3639 /**
3640 * igb_setup_rctl - configure the receive control registers
3641 * @adapter: Board private structure
3642 **/
3643 void igb_setup_rctl(struct igb_adapter *adapter)
3644 {
3645 struct e1000_hw *hw = &adapter->hw;
3646 u32 rctl;
3647
3648 rctl = rd32(E1000_RCTL);
3649
3650 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3651 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3652
3653 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3654 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3655
3656 /* enable stripping of CRC. It's unlikely this will break BMC
3657 * redirection as it did with e1000. Newer features require
3658 * that the HW strips the CRC.
3659 */
3660 rctl |= E1000_RCTL_SECRC;
3661
3662 /* disable store bad packets and clear size bits. */
3663 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3664
3665 /* enable LPE to allow for reception of jumbo frames */
3666 rctl |= E1000_RCTL_LPE;
3667
3668 /* disable queue 0 to prevent tail write w/o re-config */
3669 wr32(E1000_RXDCTL(0), 0);
3670
3671 /* Attention!!! For SR-IOV PF driver operations you must enable
3672 * queue drop for all VF and PF queues to prevent head of line blocking
3673 * if an un-trusted VF does not provide descriptors to hardware.
3674 */
3675 if (adapter->vfs_allocated_count) {
3676 /* set all queue drop enable bits */
3677 wr32(E1000_QDE, ALL_QUEUES);
3678 }
3679
3680 /* This is useful for sniffing bad packets. */
3681 if (adapter->netdev->features & NETIF_F_RXALL) {
3682 /* UPE and MPE will be handled by normal PROMISC logic
3683 * in e1000e_set_rx_mode
3684 */
3685 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3686 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3687 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3688
3689 rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
3690 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3691 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3692 * and that breaks VLANs.
3693 */
3694 }
3695
3696 wr32(E1000_RCTL, rctl);
3697 }
3698
3699 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3700 int vfn)
3701 {
3702 struct e1000_hw *hw = &adapter->hw;
3703 u32 vmolr;
3704
3705 if (size > MAX_JUMBO_FRAME_SIZE)
3706 size = MAX_JUMBO_FRAME_SIZE;
3707
3708 vmolr = rd32(E1000_VMOLR(vfn));
3709 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3710 vmolr |= size | E1000_VMOLR_LPE;
3711 wr32(E1000_VMOLR(vfn), vmolr);
3712
3713 return 0;
3714 }
3715
3716 static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
3717 int vfn, bool enable)
3718 {
3719 struct e1000_hw *hw = &adapter->hw;
3720 u32 val, reg;
3721
3722 if (hw->mac.type < e1000_82576)
3723 return;
3724
3725 if (hw->mac.type == e1000_i350)
3726 reg = E1000_DVMOLR(vfn);
3727 else
3728 reg = E1000_VMOLR(vfn);
3729
3730 val = rd32(reg);
3731 if (enable)
3732 val |= E1000_VMOLR_STRVLAN;
3733 else
3734 val &= ~(E1000_VMOLR_STRVLAN);
3735 wr32(reg, val);
3736 }
3737
3738 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3739 int vfn, bool aupe)
3740 {
3741 struct e1000_hw *hw = &adapter->hw;
3742 u32 vmolr;
3743
3744 /* This register exists only on 82576 and newer so if we are older then
3745 * we should exit and do nothing
3746 */
3747 if (hw->mac.type < e1000_82576)
3748 return;
3749
3750 vmolr = rd32(E1000_VMOLR(vfn));
3751 if (aupe)
3752 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3753 else
3754 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3755
3756 /* clear all bits that might not be set */
3757 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3758
3759 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3760 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3761 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3762 * multicast packets
3763 */
3764 if (vfn <= adapter->vfs_allocated_count)
3765 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3766
3767 wr32(E1000_VMOLR(vfn), vmolr);
3768 }
3769
3770 /**
3771 * igb_configure_rx_ring - Configure a receive ring after Reset
3772 * @adapter: board private structure
3773 * @ring: receive ring to be configured
3774 *
3775 * Configure the Rx unit of the MAC after a reset.
3776 **/
3777 void igb_configure_rx_ring(struct igb_adapter *adapter,
3778 struct igb_ring *ring)
3779 {
3780 struct e1000_hw *hw = &adapter->hw;
3781 union e1000_adv_rx_desc *rx_desc;
3782 u64 rdba = ring->dma;
3783 int reg_idx = ring->reg_idx;
3784 u32 srrctl = 0, rxdctl = 0;
3785
3786 /* disable the queue */
3787 wr32(E1000_RXDCTL(reg_idx), 0);
3788
3789 /* Set DMA base address registers */
3790 wr32(E1000_RDBAL(reg_idx),
3791 rdba & 0x00000000ffffffffULL);
3792 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3793 wr32(E1000_RDLEN(reg_idx),
3794 ring->count * sizeof(union e1000_adv_rx_desc));
3795
3796 /* initialize head and tail */
3797 ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
3798 wr32(E1000_RDH(reg_idx), 0);
3799 writel(0, ring->tail);
3800
3801 /* set descriptor configuration */
3802 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3803 if (ring_uses_large_buffer(ring))
3804 srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3805 else
3806 srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3807 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3808 if (hw->mac.type >= e1000_82580)
3809 srrctl |= E1000_SRRCTL_TIMESTAMP;
3810 /* Only set Drop Enable if we are supporting multiple queues */
3811 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3812 srrctl |= E1000_SRRCTL_DROP_EN;
3813
3814 wr32(E1000_SRRCTL(reg_idx), srrctl);
3815
3816 /* set filtering for VMDQ pools */
3817 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3818
3819 rxdctl |= IGB_RX_PTHRESH;
3820 rxdctl |= IGB_RX_HTHRESH << 8;
3821 rxdctl |= IGB_RX_WTHRESH << 16;
3822
3823 /* initialize rx_buffer_info */
3824 memset(ring->rx_buffer_info, 0,
3825 sizeof(struct igb_rx_buffer) * ring->count);
3826
3827 /* initialize Rx descriptor 0 */
3828 rx_desc = IGB_RX_DESC(ring, 0);
3829 rx_desc->wb.upper.length = 0;
3830
3831 /* enable receive descriptor fetching */
3832 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3833 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3834 }
3835
3836 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3837 struct igb_ring *rx_ring)
3838 {
3839 /* set build_skb and buffer size flags */
3840 clear_ring_build_skb_enabled(rx_ring);
3841 clear_ring_uses_large_buffer(rx_ring);
3842
3843 if (adapter->flags & IGB_FLAG_RX_LEGACY)
3844 return;
3845
3846 set_ring_build_skb_enabled(rx_ring);
3847
3848 #if (PAGE_SIZE < 8192)
3849 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
3850 return;
3851
3852 set_ring_uses_large_buffer(rx_ring);
3853 #endif
3854 }
3855
3856 /**
3857 * igb_configure_rx - Configure receive Unit after Reset
3858 * @adapter: board private structure
3859 *
3860 * Configure the Rx unit of the MAC after a reset.
3861 **/
3862 static void igb_configure_rx(struct igb_adapter *adapter)
3863 {
3864 int i;
3865
3866 /* set the correct pool for the PF default MAC address in entry 0 */
3867 igb_set_default_mac_filter(adapter);
3868
3869 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3870 * the Base and Length of the Rx Descriptor Ring
3871 */
3872 for (i = 0; i < adapter->num_rx_queues; i++) {
3873 struct igb_ring *rx_ring = adapter->rx_ring[i];
3874
3875 igb_set_rx_buffer_len(adapter, rx_ring);
3876 igb_configure_rx_ring(adapter, rx_ring);
3877 }
3878 }
3879
3880 /**
3881 * igb_free_tx_resources - Free Tx Resources per Queue
3882 * @tx_ring: Tx descriptor ring for a specific queue
3883 *
3884 * Free all transmit software resources
3885 **/
3886 void igb_free_tx_resources(struct igb_ring *tx_ring)
3887 {
3888 igb_clean_tx_ring(tx_ring);
3889
3890 vfree(tx_ring->tx_buffer_info);
3891 tx_ring->tx_buffer_info = NULL;
3892
3893 /* if not set, then don't free */
3894 if (!tx_ring->desc)
3895 return;
3896
3897 dma_free_coherent(tx_ring->dev, tx_ring->size,
3898 tx_ring->desc, tx_ring->dma);
3899
3900 tx_ring->desc = NULL;
3901 }
3902
3903 /**
3904 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3905 * @adapter: board private structure
3906 *
3907 * Free all transmit software resources
3908 **/
3909 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3910 {
3911 int i;
3912
3913 for (i = 0; i < adapter->num_tx_queues; i++)
3914 if (adapter->tx_ring[i])
3915 igb_free_tx_resources(adapter->tx_ring[i]);
3916 }
3917
3918 /**
3919 * igb_clean_tx_ring - Free Tx Buffers
3920 * @tx_ring: ring to be cleaned
3921 **/
3922 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3923 {
3924 u16 i = tx_ring->next_to_clean;
3925 struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
3926
3927 while (i != tx_ring->next_to_use) {
3928 union e1000_adv_tx_desc *eop_desc, *tx_desc;
3929
3930 /* Free all the Tx ring sk_buffs */
3931 dev_kfree_skb_any(tx_buffer->skb);
3932
3933 /* unmap skb header data */
3934 dma_unmap_single(tx_ring->dev,
3935 dma_unmap_addr(tx_buffer, dma),
3936 dma_unmap_len(tx_buffer, len),
3937 DMA_TO_DEVICE);
3938
3939 /* check for eop_desc to determine the end of the packet */
3940 eop_desc = tx_buffer->next_to_watch;
3941 tx_desc = IGB_TX_DESC(tx_ring, i);
3942
3943 /* unmap remaining buffers */
3944 while (tx_desc != eop_desc) {
3945 tx_buffer++;
3946 tx_desc++;
3947 i++;
3948 if (unlikely(i == tx_ring->count)) {
3949 i = 0;
3950 tx_buffer = tx_ring->tx_buffer_info;
3951 tx_desc = IGB_TX_DESC(tx_ring, 0);
3952 }
3953
3954 /* unmap any remaining paged data */
3955 if (dma_unmap_len(tx_buffer, len))
3956 dma_unmap_page(tx_ring->dev,
3957 dma_unmap_addr(tx_buffer, dma),
3958 dma_unmap_len(tx_buffer, len),
3959 DMA_TO_DEVICE);
3960 }
3961
3962 /* move us one more past the eop_desc for start of next pkt */
3963 tx_buffer++;
3964 i++;
3965 if (unlikely(i == tx_ring->count)) {
3966 i = 0;
3967 tx_buffer = tx_ring->tx_buffer_info;
3968 }
3969 }
3970
3971 /* reset BQL for queue */
3972 netdev_tx_reset_queue(txring_txq(tx_ring));
3973
3974 /* reset next_to_use and next_to_clean */
3975 tx_ring->next_to_use = 0;
3976 tx_ring->next_to_clean = 0;
3977 }
3978
3979 /**
3980 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3981 * @adapter: board private structure
3982 **/
3983 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3984 {
3985 int i;
3986
3987 for (i = 0; i < adapter->num_tx_queues; i++)
3988 if (adapter->tx_ring[i])
3989 igb_clean_tx_ring(adapter->tx_ring[i]);
3990 }
3991
3992 /**
3993 * igb_free_rx_resources - Free Rx Resources
3994 * @rx_ring: ring to clean the resources from
3995 *
3996 * Free all receive software resources
3997 **/
3998 void igb_free_rx_resources(struct igb_ring *rx_ring)
3999 {
4000 igb_clean_rx_ring(rx_ring);
4001
4002 vfree(rx_ring->rx_buffer_info);
4003 rx_ring->rx_buffer_info = NULL;
4004
4005 /* if not set, then don't free */
4006 if (!rx_ring->desc)
4007 return;
4008
4009 dma_free_coherent(rx_ring->dev, rx_ring->size,
4010 rx_ring->desc, rx_ring->dma);
4011
4012 rx_ring->desc = NULL;
4013 }
4014
4015 /**
4016 * igb_free_all_rx_resources - Free Rx Resources for All Queues
4017 * @adapter: board private structure
4018 *
4019 * Free all receive software resources
4020 **/
4021 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
4022 {
4023 int i;
4024
4025 for (i = 0; i < adapter->num_rx_queues; i++)
4026 if (adapter->rx_ring[i])
4027 igb_free_rx_resources(adapter->rx_ring[i]);
4028 }
4029
4030 /**
4031 * igb_clean_rx_ring - Free Rx Buffers per Queue
4032 * @rx_ring: ring to free buffers from
4033 **/
4034 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
4035 {
4036 u16 i = rx_ring->next_to_clean;
4037
4038 if (rx_ring->skb)
4039 dev_kfree_skb(rx_ring->skb);
4040 rx_ring->skb = NULL;
4041
4042 /* Free all the Rx ring sk_buffs */
4043 while (i != rx_ring->next_to_alloc) {
4044 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
4045
4046 /* Invalidate cache lines that may have been written to by
4047 * device so that we avoid corrupting memory.
4048 */
4049 dma_sync_single_range_for_cpu(rx_ring->dev,
4050 buffer_info->dma,
4051 buffer_info->page_offset,
4052 igb_rx_bufsz(rx_ring),
4053 DMA_FROM_DEVICE);
4054
4055 /* free resources associated with mapping */
4056 dma_unmap_page_attrs(rx_ring->dev,
4057 buffer_info->dma,
4058 igb_rx_pg_size(rx_ring),
4059 DMA_FROM_DEVICE,
4060 IGB_RX_DMA_ATTR);
4061 __page_frag_cache_drain(buffer_info->page,
4062 buffer_info->pagecnt_bias);
4063
4064 i++;
4065 if (i == rx_ring->count)
4066 i = 0;
4067 }
4068
4069 rx_ring->next_to_alloc = 0;
4070 rx_ring->next_to_clean = 0;
4071 rx_ring->next_to_use = 0;
4072 }
4073
4074 /**
4075 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
4076 * @adapter: board private structure
4077 **/
4078 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
4079 {
4080 int i;
4081
4082 for (i = 0; i < adapter->num_rx_queues; i++)
4083 if (adapter->rx_ring[i])
4084 igb_clean_rx_ring(adapter->rx_ring[i]);
4085 }
4086
4087 /**
4088 * igb_set_mac - Change the Ethernet Address of the NIC
4089 * @netdev: network interface device structure
4090 * @p: pointer to an address structure
4091 *
4092 * Returns 0 on success, negative on failure
4093 **/
4094 static int igb_set_mac(struct net_device *netdev, void *p)
4095 {
4096 struct igb_adapter *adapter = netdev_priv(netdev);
4097 struct e1000_hw *hw = &adapter->hw;
4098 struct sockaddr *addr = p;
4099
4100 if (!is_valid_ether_addr(addr->sa_data))
4101 return -EADDRNOTAVAIL;
4102
4103 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4104 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
4105
4106 /* set the correct pool for the new PF MAC address in entry 0 */
4107 igb_set_default_mac_filter(adapter);
4108
4109 return 0;
4110 }
4111
4112 /**
4113 * igb_write_mc_addr_list - write multicast addresses to MTA
4114 * @netdev: network interface device structure
4115 *
4116 * Writes multicast address list to the MTA hash table.
4117 * Returns: -ENOMEM on failure
4118 * 0 on no addresses written
4119 * X on writing X addresses to MTA
4120 **/
4121 static int igb_write_mc_addr_list(struct net_device *netdev)
4122 {
4123 struct igb_adapter *adapter = netdev_priv(netdev);
4124 struct e1000_hw *hw = &adapter->hw;
4125 struct netdev_hw_addr *ha;
4126 u8 *mta_list;
4127 int i;
4128
4129 if (netdev_mc_empty(netdev)) {
4130 /* nothing to program, so clear mc list */
4131 igb_update_mc_addr_list(hw, NULL, 0);
4132 igb_restore_vf_multicasts(adapter);
4133 return 0;
4134 }
4135
4136 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
4137 if (!mta_list)
4138 return -ENOMEM;
4139
4140 /* The shared function expects a packed array of only addresses. */
4141 i = 0;
4142 netdev_for_each_mc_addr(ha, netdev)
4143 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
4144
4145 igb_update_mc_addr_list(hw, mta_list, i);
4146 kfree(mta_list);
4147
4148 return netdev_mc_count(netdev);
4149 }
4150
4151 static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
4152 {
4153 struct e1000_hw *hw = &adapter->hw;
4154 u32 i, pf_id;
4155
4156 switch (hw->mac.type) {
4157 case e1000_i210:
4158 case e1000_i211:
4159 case e1000_i350:
4160 /* VLAN filtering needed for VLAN prio filter */
4161 if (adapter->netdev->features & NETIF_F_NTUPLE)
4162 break;
4163 /* fall through */
4164 case e1000_82576:
4165 case e1000_82580:
4166 case e1000_i354:
4167 /* VLAN filtering needed for pool filtering */
4168 if (adapter->vfs_allocated_count)
4169 break;
4170 /* fall through */
4171 default:
4172 return 1;
4173 }
4174
4175 /* We are already in VLAN promisc, nothing to do */
4176 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
4177 return 0;
4178
4179 if (!adapter->vfs_allocated_count)
4180 goto set_vfta;
4181
4182 /* Add PF to all active pools */
4183 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4184
4185 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4186 u32 vlvf = rd32(E1000_VLVF(i));
4187
4188 vlvf |= BIT(pf_id);
4189 wr32(E1000_VLVF(i), vlvf);
4190 }
4191
4192 set_vfta:
4193 /* Set all bits in the VLAN filter table array */
4194 for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
4195 hw->mac.ops.write_vfta(hw, i, ~0U);
4196
4197 /* Set flag so we don't redo unnecessary work */
4198 adapter->flags |= IGB_FLAG_VLAN_PROMISC;
4199
4200 return 0;
4201 }
4202
4203 #define VFTA_BLOCK_SIZE 8
4204 static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
4205 {
4206 struct e1000_hw *hw = &adapter->hw;
4207 u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
4208 u32 vid_start = vfta_offset * 32;
4209 u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
4210 u32 i, vid, word, bits, pf_id;
4211
4212 /* guarantee that we don't scrub out management VLAN */
4213 vid = adapter->mng_vlan_id;
4214 if (vid >= vid_start && vid < vid_end)
4215 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4216
4217 if (!adapter->vfs_allocated_count)
4218 goto set_vfta;
4219
4220 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
4221
4222 for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
4223 u32 vlvf = rd32(E1000_VLVF(i));
4224
4225 /* pull VLAN ID from VLVF */
4226 vid = vlvf & VLAN_VID_MASK;
4227
4228 /* only concern ourselves with a certain range */
4229 if (vid < vid_start || vid >= vid_end)
4230 continue;
4231
4232 if (vlvf & E1000_VLVF_VLANID_ENABLE) {
4233 /* record VLAN ID in VFTA */
4234 vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
4235
4236 /* if PF is part of this then continue */
4237 if (test_bit(vid, adapter->active_vlans))
4238 continue;
4239 }
4240
4241 /* remove PF from the pool */
4242 bits = ~BIT(pf_id);
4243 bits &= rd32(E1000_VLVF(i));
4244 wr32(E1000_VLVF(i), bits);
4245 }
4246
4247 set_vfta:
4248 /* extract values from active_vlans and write back to VFTA */
4249 for (i = VFTA_BLOCK_SIZE; i--;) {
4250 vid = (vfta_offset + i) * 32;
4251 word = vid / BITS_PER_LONG;
4252 bits = vid % BITS_PER_LONG;
4253
4254 vfta[i] |= adapter->active_vlans[word] >> bits;
4255
4256 hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
4257 }
4258 }
4259
4260 static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
4261 {
4262 u32 i;
4263
4264 /* We are not in VLAN promisc, nothing to do */
4265 if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
4266 return;
4267
4268 /* Set flag so we don't redo unnecessary work */
4269 adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
4270
4271 for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
4272 igb_scrub_vfta(adapter, i);
4273 }
4274
4275 /**
4276 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
4277 * @netdev: network interface device structure
4278 *
4279 * The set_rx_mode entry point is called whenever the unicast or multicast
4280 * address lists or the network interface flags are updated. This routine is
4281 * responsible for configuring the hardware for proper unicast, multicast,
4282 * promiscuous mode, and all-multi behavior.
4283 **/
4284 static void igb_set_rx_mode(struct net_device *netdev)
4285 {
4286 struct igb_adapter *adapter = netdev_priv(netdev);
4287 struct e1000_hw *hw = &adapter->hw;
4288 unsigned int vfn = adapter->vfs_allocated_count;
4289 u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
4290 int count;
4291
4292 /* Check for Promiscuous and All Multicast modes */
4293 if (netdev->flags & IFF_PROMISC) {
4294 rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
4295 vmolr |= E1000_VMOLR_MPME;
4296
4297 /* enable use of UTA filter to force packets to default pool */
4298 if (hw->mac.type == e1000_82576)
4299 vmolr |= E1000_VMOLR_ROPE;
4300 } else {
4301 if (netdev->flags & IFF_ALLMULTI) {
4302 rctl |= E1000_RCTL_MPE;
4303 vmolr |= E1000_VMOLR_MPME;
4304 } else {
4305 /* Write addresses to the MTA, if the attempt fails
4306 * then we should just turn on promiscuous mode so
4307 * that we can at least receive multicast traffic
4308 */
4309 count = igb_write_mc_addr_list(netdev);
4310 if (count < 0) {
4311 rctl |= E1000_RCTL_MPE;
4312 vmolr |= E1000_VMOLR_MPME;
4313 } else if (count) {
4314 vmolr |= E1000_VMOLR_ROMPE;
4315 }
4316 }
4317 }
4318
4319 /* Write addresses to available RAR registers, if there is not
4320 * sufficient space to store all the addresses then enable
4321 * unicast promiscuous mode
4322 */
4323 if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
4324 rctl |= E1000_RCTL_UPE;
4325 vmolr |= E1000_VMOLR_ROPE;
4326 }
4327
4328 /* enable VLAN filtering by default */
4329 rctl |= E1000_RCTL_VFE;
4330
4331 /* disable VLAN filtering for modes that require it */
4332 if ((netdev->flags & IFF_PROMISC) ||
4333 (netdev->features & NETIF_F_RXALL)) {
4334 /* if we fail to set all rules then just clear VFE */
4335 if (igb_vlan_promisc_enable(adapter))
4336 rctl &= ~E1000_RCTL_VFE;
4337 } else {
4338 igb_vlan_promisc_disable(adapter);
4339 }
4340
4341 /* update state of unicast, multicast, and VLAN filtering modes */
4342 rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
4343 E1000_RCTL_VFE);
4344 wr32(E1000_RCTL, rctl);
4345
4346 #if (PAGE_SIZE < 8192)
4347 if (!adapter->vfs_allocated_count) {
4348 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4349 rlpml = IGB_MAX_FRAME_BUILD_SKB;
4350 }
4351 #endif
4352 wr32(E1000_RLPML, rlpml);
4353
4354 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4355 * the VMOLR to enable the appropriate modes. Without this workaround
4356 * we will have issues with VLAN tag stripping not being done for frames
4357 * that are only arriving because we are the default pool
4358 */
4359 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4360 return;
4361
4362 /* set UTA to appropriate mode */
4363 igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
4364
4365 vmolr |= rd32(E1000_VMOLR(vfn)) &
4366 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4367
4368 /* enable Rx jumbo frames, restrict as needed to support build_skb */
4369 vmolr &= ~E1000_VMOLR_RLPML_MASK;
4370 #if (PAGE_SIZE < 8192)
4371 if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
4372 vmolr |= IGB_MAX_FRAME_BUILD_SKB;
4373 else
4374 #endif
4375 vmolr |= MAX_JUMBO_FRAME_SIZE;
4376 vmolr |= E1000_VMOLR_LPE;
4377
4378 wr32(E1000_VMOLR(vfn), vmolr);
4379
4380 igb_restore_vf_multicasts(adapter);
4381 }
4382
4383 static void igb_check_wvbr(struct igb_adapter *adapter)
4384 {
4385 struct e1000_hw *hw = &adapter->hw;
4386 u32 wvbr = 0;
4387
4388 switch (hw->mac.type) {
4389 case e1000_82576:
4390 case e1000_i350:
4391 wvbr = rd32(E1000_WVBR);
4392 if (!wvbr)
4393 return;
4394 break;
4395 default:
4396 break;
4397 }
4398
4399 adapter->wvbr |= wvbr;
4400 }
4401
4402 #define IGB_STAGGERED_QUEUE_OFFSET 8
4403
4404 static void igb_spoof_check(struct igb_adapter *adapter)
4405 {
4406 int j;
4407
4408 if (!adapter->wvbr)
4409 return;
4410
4411 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4412 if (adapter->wvbr & BIT(j) ||
4413 adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
4414 dev_warn(&adapter->pdev->dev,
4415 "Spoof event(s) detected on VF %d\n", j);
4416 adapter->wvbr &=
4417 ~(BIT(j) |
4418 BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
4419 }
4420 }
4421 }
4422
4423 /* Need to wait a few seconds after link up to get diagnostic information from
4424 * the phy
4425 */
4426 static void igb_update_phy_info(unsigned long data)
4427 {
4428 struct igb_adapter *adapter = (struct igb_adapter *) data;
4429 igb_get_phy_info(&adapter->hw);
4430 }
4431
4432 /**
4433 * igb_has_link - check shared code for link and determine up/down
4434 * @adapter: pointer to driver private info
4435 **/
4436 bool igb_has_link(struct igb_adapter *adapter)
4437 {
4438 struct e1000_hw *hw = &adapter->hw;
4439 bool link_active = false;
4440
4441 /* get_link_status is set on LSC (link status) interrupt or
4442 * rx sequence error interrupt. get_link_status will stay
4443 * false until the e1000_check_for_link establishes link
4444 * for copper adapters ONLY
4445 */
4446 switch (hw->phy.media_type) {
4447 case e1000_media_type_copper:
4448 if (!hw->mac.get_link_status)
4449 return true;
4450 case e1000_media_type_internal_serdes:
4451 hw->mac.ops.check_for_link(hw);
4452 link_active = !hw->mac.get_link_status;
4453 break;
4454 default:
4455 case e1000_media_type_unknown:
4456 break;
4457 }
4458
4459 if (((hw->mac.type == e1000_i210) ||
4460 (hw->mac.type == e1000_i211)) &&
4461 (hw->phy.id == I210_I_PHY_ID)) {
4462 if (!netif_carrier_ok(adapter->netdev)) {
4463 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4464 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4465 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4466 adapter->link_check_timeout = jiffies;
4467 }
4468 }
4469
4470 return link_active;
4471 }
4472
4473 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4474 {
4475 bool ret = false;
4476 u32 ctrl_ext, thstat;
4477
4478 /* check for thermal sensor event on i350 copper only */
4479 if (hw->mac.type == e1000_i350) {
4480 thstat = rd32(E1000_THSTAT);
4481 ctrl_ext = rd32(E1000_CTRL_EXT);
4482
4483 if ((hw->phy.media_type == e1000_media_type_copper) &&
4484 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4485 ret = !!(thstat & event);
4486 }
4487
4488 return ret;
4489 }
4490
4491 /**
4492 * igb_check_lvmmc - check for malformed packets received
4493 * and indicated in LVMMC register
4494 * @adapter: pointer to adapter
4495 **/
4496 static void igb_check_lvmmc(struct igb_adapter *adapter)
4497 {
4498 struct e1000_hw *hw = &adapter->hw;
4499 u32 lvmmc;
4500
4501 lvmmc = rd32(E1000_LVMMC);
4502 if (lvmmc) {
4503 if (unlikely(net_ratelimit())) {
4504 netdev_warn(adapter->netdev,
4505 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4506 lvmmc);
4507 }
4508 }
4509 }
4510
4511 /**
4512 * igb_watchdog - Timer Call-back
4513 * @data: pointer to adapter cast into an unsigned long
4514 **/
4515 static void igb_watchdog(unsigned long data)
4516 {
4517 struct igb_adapter *adapter = (struct igb_adapter *)data;
4518 /* Do the rest outside of interrupt context */
4519 schedule_work(&adapter->watchdog_task);
4520 }
4521
4522 static void igb_watchdog_task(struct work_struct *work)
4523 {
4524 struct igb_adapter *adapter = container_of(work,
4525 struct igb_adapter,
4526 watchdog_task);
4527 struct e1000_hw *hw = &adapter->hw;
4528 struct e1000_phy_info *phy = &hw->phy;
4529 struct net_device *netdev = adapter->netdev;
4530 u32 link;
4531 int i;
4532 u32 connsw;
4533 u16 phy_data, retry_count = 20;
4534
4535 link = igb_has_link(adapter);
4536
4537 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4538 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4539 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4540 else
4541 link = false;
4542 }
4543
4544 /* Force link down if we have fiber to swap to */
4545 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4546 if (hw->phy.media_type == e1000_media_type_copper) {
4547 connsw = rd32(E1000_CONNSW);
4548 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4549 link = 0;
4550 }
4551 }
4552 if (link) {
4553 /* Perform a reset if the media type changed. */
4554 if (hw->dev_spec._82575.media_changed) {
4555 hw->dev_spec._82575.media_changed = false;
4556 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4557 igb_reset(adapter);
4558 }
4559 /* Cancel scheduled suspend requests. */
4560 pm_runtime_resume(netdev->dev.parent);
4561
4562 if (!netif_carrier_ok(netdev)) {
4563 u32 ctrl;
4564
4565 hw->mac.ops.get_speed_and_duplex(hw,
4566 &adapter->link_speed,
4567 &adapter->link_duplex);
4568
4569 ctrl = rd32(E1000_CTRL);
4570 /* Links status message must follow this format */
4571 netdev_info(netdev,
4572 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4573 netdev->name,
4574 adapter->link_speed,
4575 adapter->link_duplex == FULL_DUPLEX ?
4576 "Full" : "Half",
4577 (ctrl & E1000_CTRL_TFCE) &&
4578 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4579 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4580 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4581
4582 /* disable EEE if enabled */
4583 if ((adapter->flags & IGB_FLAG_EEE) &&
4584 (adapter->link_duplex == HALF_DUPLEX)) {
4585 dev_info(&adapter->pdev->dev,
4586 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4587 adapter->hw.dev_spec._82575.eee_disable = true;
4588 adapter->flags &= ~IGB_FLAG_EEE;
4589 }
4590
4591 /* check if SmartSpeed worked */
4592 igb_check_downshift(hw);
4593 if (phy->speed_downgraded)
4594 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4595
4596 /* check for thermal sensor event */
4597 if (igb_thermal_sensor_event(hw,
4598 E1000_THSTAT_LINK_THROTTLE))
4599 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4600
4601 /* adjust timeout factor according to speed/duplex */
4602 adapter->tx_timeout_factor = 1;
4603 switch (adapter->link_speed) {
4604 case SPEED_10:
4605 adapter->tx_timeout_factor = 14;
4606 break;
4607 case SPEED_100:
4608 /* maybe add some timeout factor ? */
4609 break;
4610 }
4611
4612 if (adapter->link_speed != SPEED_1000)
4613 goto no_wait;
4614
4615 /* wait for Remote receiver status OK */
4616 retry_read_status:
4617 if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
4618 &phy_data)) {
4619 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
4620 retry_count) {
4621 msleep(100);
4622 retry_count--;
4623 goto retry_read_status;
4624 } else if (!retry_count) {
4625 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
4626 }
4627 } else {
4628 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
4629 }
4630 no_wait:
4631 netif_carrier_on(netdev);
4632
4633 igb_ping_all_vfs(adapter);
4634 igb_check_vf_rate_limit(adapter);
4635
4636 /* link state has changed, schedule phy info update */
4637 if (!test_bit(__IGB_DOWN, &adapter->state))
4638 mod_timer(&adapter->phy_info_timer,
4639 round_jiffies(jiffies + 2 * HZ));
4640 }
4641 } else {
4642 if (netif_carrier_ok(netdev)) {
4643 adapter->link_speed = 0;
4644 adapter->link_duplex = 0;
4645
4646 /* check for thermal sensor event */
4647 if (igb_thermal_sensor_event(hw,
4648 E1000_THSTAT_PWR_DOWN)) {
4649 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4650 }
4651
4652 /* Links status message must follow this format */
4653 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4654 netdev->name);
4655 netif_carrier_off(netdev);
4656
4657 igb_ping_all_vfs(adapter);
4658
4659 /* link state has changed, schedule phy info update */
4660 if (!test_bit(__IGB_DOWN, &adapter->state))
4661 mod_timer(&adapter->phy_info_timer,
4662 round_jiffies(jiffies + 2 * HZ));
4663
4664 /* link is down, time to check for alternate media */
4665 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4666 igb_check_swap_media(adapter);
4667 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4668 schedule_work(&adapter->reset_task);
4669 /* return immediately */
4670 return;
4671 }
4672 }
4673 pm_schedule_suspend(netdev->dev.parent,
4674 MSEC_PER_SEC * 5);
4675
4676 /* also check for alternate media here */
4677 } else if (!netif_carrier_ok(netdev) &&
4678 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4679 igb_check_swap_media(adapter);
4680 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4681 schedule_work(&adapter->reset_task);
4682 /* return immediately */
4683 return;
4684 }
4685 }
4686 }
4687
4688 spin_lock(&adapter->stats64_lock);
4689 igb_update_stats(adapter);
4690 spin_unlock(&adapter->stats64_lock);
4691
4692 for (i = 0; i < adapter->num_tx_queues; i++) {
4693 struct igb_ring *tx_ring = adapter->tx_ring[i];
4694 if (!netif_carrier_ok(netdev)) {
4695 /* We've lost link, so the controller stops DMA,
4696 * but we've got queued Tx work that's never going
4697 * to get done, so reset controller to flush Tx.
4698 * (Do the reset outside of interrupt context).
4699 */
4700 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4701 adapter->tx_timeout_count++;
4702 schedule_work(&adapter->reset_task);
4703 /* return immediately since reset is imminent */
4704 return;
4705 }
4706 }
4707
4708 /* Force detection of hung controller every watchdog period */
4709 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4710 }
4711
4712 /* Cause software interrupt to ensure Rx ring is cleaned */
4713 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4714 u32 eics = 0;
4715
4716 for (i = 0; i < adapter->num_q_vectors; i++)
4717 eics |= adapter->q_vector[i]->eims_value;
4718 wr32(E1000_EICS, eics);
4719 } else {
4720 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4721 }
4722
4723 igb_spoof_check(adapter);
4724 igb_ptp_rx_hang(adapter);
4725 igb_ptp_tx_hang(adapter);
4726
4727 /* Check LVMMC register on i350/i354 only */
4728 if ((adapter->hw.mac.type == e1000_i350) ||
4729 (adapter->hw.mac.type == e1000_i354))
4730 igb_check_lvmmc(adapter);
4731
4732 /* Reset the timer */
4733 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4734 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4735 mod_timer(&adapter->watchdog_timer,
4736 round_jiffies(jiffies + HZ));
4737 else
4738 mod_timer(&adapter->watchdog_timer,
4739 round_jiffies(jiffies + 2 * HZ));
4740 }
4741 }
4742
4743 enum latency_range {
4744 lowest_latency = 0,
4745 low_latency = 1,
4746 bulk_latency = 2,
4747 latency_invalid = 255
4748 };
4749
4750 /**
4751 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4752 * @q_vector: pointer to q_vector
4753 *
4754 * Stores a new ITR value based on strictly on packet size. This
4755 * algorithm is less sophisticated than that used in igb_update_itr,
4756 * due to the difficulty of synchronizing statistics across multiple
4757 * receive rings. The divisors and thresholds used by this function
4758 * were determined based on theoretical maximum wire speed and testing
4759 * data, in order to minimize response time while increasing bulk
4760 * throughput.
4761 * This functionality is controlled by ethtool's coalescing settings.
4762 * NOTE: This function is called only when operating in a multiqueue
4763 * receive environment.
4764 **/
4765 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4766 {
4767 int new_val = q_vector->itr_val;
4768 int avg_wire_size = 0;
4769 struct igb_adapter *adapter = q_vector->adapter;
4770 unsigned int packets;
4771
4772 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4773 * ints/sec - ITR timer value of 120 ticks.
4774 */
4775 if (adapter->link_speed != SPEED_1000) {
4776 new_val = IGB_4K_ITR;
4777 goto set_itr_val;
4778 }
4779
4780 packets = q_vector->rx.total_packets;
4781 if (packets)
4782 avg_wire_size = q_vector->rx.total_bytes / packets;
4783
4784 packets = q_vector->tx.total_packets;
4785 if (packets)
4786 avg_wire_size = max_t(u32, avg_wire_size,
4787 q_vector->tx.total_bytes / packets);
4788
4789 /* if avg_wire_size isn't set no work was done */
4790 if (!avg_wire_size)
4791 goto clear_counts;
4792
4793 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4794 avg_wire_size += 24;
4795
4796 /* Don't starve jumbo frames */
4797 avg_wire_size = min(avg_wire_size, 3000);
4798
4799 /* Give a little boost to mid-size frames */
4800 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4801 new_val = avg_wire_size / 3;
4802 else
4803 new_val = avg_wire_size / 2;
4804
4805 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4806 if (new_val < IGB_20K_ITR &&
4807 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4808 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4809 new_val = IGB_20K_ITR;
4810
4811 set_itr_val:
4812 if (new_val != q_vector->itr_val) {
4813 q_vector->itr_val = new_val;
4814 q_vector->set_itr = 1;
4815 }
4816 clear_counts:
4817 q_vector->rx.total_bytes = 0;
4818 q_vector->rx.total_packets = 0;
4819 q_vector->tx.total_bytes = 0;
4820 q_vector->tx.total_packets = 0;
4821 }
4822
4823 /**
4824 * igb_update_itr - update the dynamic ITR value based on statistics
4825 * @q_vector: pointer to q_vector
4826 * @ring_container: ring info to update the itr for
4827 *
4828 * Stores a new ITR value based on packets and byte
4829 * counts during the last interrupt. The advantage of per interrupt
4830 * computation is faster updates and more accurate ITR for the current
4831 * traffic pattern. Constants in this function were computed
4832 * based on theoretical maximum wire speed and thresholds were set based
4833 * on testing data as well as attempting to minimize response time
4834 * while increasing bulk throughput.
4835 * This functionality is controlled by ethtool's coalescing settings.
4836 * NOTE: These calculations are only valid when operating in a single-
4837 * queue environment.
4838 **/
4839 static void igb_update_itr(struct igb_q_vector *q_vector,
4840 struct igb_ring_container *ring_container)
4841 {
4842 unsigned int packets = ring_container->total_packets;
4843 unsigned int bytes = ring_container->total_bytes;
4844 u8 itrval = ring_container->itr;
4845
4846 /* no packets, exit with status unchanged */
4847 if (packets == 0)
4848 return;
4849
4850 switch (itrval) {
4851 case lowest_latency:
4852 /* handle TSO and jumbo frames */
4853 if (bytes/packets > 8000)
4854 itrval = bulk_latency;
4855 else if ((packets < 5) && (bytes > 512))
4856 itrval = low_latency;
4857 break;
4858 case low_latency: /* 50 usec aka 20000 ints/s */
4859 if (bytes > 10000) {
4860 /* this if handles the TSO accounting */
4861 if (bytes/packets > 8000)
4862 itrval = bulk_latency;
4863 else if ((packets < 10) || ((bytes/packets) > 1200))
4864 itrval = bulk_latency;
4865 else if ((packets > 35))
4866 itrval = lowest_latency;
4867 } else if (bytes/packets > 2000) {
4868 itrval = bulk_latency;
4869 } else if (packets <= 2 && bytes < 512) {
4870 itrval = lowest_latency;
4871 }
4872 break;
4873 case bulk_latency: /* 250 usec aka 4000 ints/s */
4874 if (bytes > 25000) {
4875 if (packets > 35)
4876 itrval = low_latency;
4877 } else if (bytes < 1500) {
4878 itrval = low_latency;
4879 }
4880 break;
4881 }
4882
4883 /* clear work counters since we have the values we need */
4884 ring_container->total_bytes = 0;
4885 ring_container->total_packets = 0;
4886
4887 /* write updated itr to ring container */
4888 ring_container->itr = itrval;
4889 }
4890
4891 static void igb_set_itr(struct igb_q_vector *q_vector)
4892 {
4893 struct igb_adapter *adapter = q_vector->adapter;
4894 u32 new_itr = q_vector->itr_val;
4895 u8 current_itr = 0;
4896
4897 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4898 if (adapter->link_speed != SPEED_1000) {
4899 current_itr = 0;
4900 new_itr = IGB_4K_ITR;
4901 goto set_itr_now;
4902 }
4903
4904 igb_update_itr(q_vector, &q_vector->tx);
4905 igb_update_itr(q_vector, &q_vector->rx);
4906
4907 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4908
4909 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4910 if (current_itr == lowest_latency &&
4911 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4912 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4913 current_itr = low_latency;
4914
4915 switch (current_itr) {
4916 /* counts and packets in update_itr are dependent on these numbers */
4917 case lowest_latency:
4918 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4919 break;
4920 case low_latency:
4921 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4922 break;
4923 case bulk_latency:
4924 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4925 break;
4926 default:
4927 break;
4928 }
4929
4930 set_itr_now:
4931 if (new_itr != q_vector->itr_val) {
4932 /* this attempts to bias the interrupt rate towards Bulk
4933 * by adding intermediate steps when interrupt rate is
4934 * increasing
4935 */
4936 new_itr = new_itr > q_vector->itr_val ?
4937 max((new_itr * q_vector->itr_val) /
4938 (new_itr + (q_vector->itr_val >> 2)),
4939 new_itr) : new_itr;
4940 /* Don't write the value here; it resets the adapter's
4941 * internal timer, and causes us to delay far longer than
4942 * we should between interrupts. Instead, we write the ITR
4943 * value at the beginning of the next interrupt so the timing
4944 * ends up being correct.
4945 */
4946 q_vector->itr_val = new_itr;
4947 q_vector->set_itr = 1;
4948 }
4949 }
4950
4951 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4952 u32 type_tucmd, u32 mss_l4len_idx)
4953 {
4954 struct e1000_adv_tx_context_desc *context_desc;
4955 u16 i = tx_ring->next_to_use;
4956
4957 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4958
4959 i++;
4960 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4961
4962 /* set bits to identify this as an advanced context descriptor */
4963 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4964
4965 /* For 82575, context index must be unique per ring. */
4966 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4967 mss_l4len_idx |= tx_ring->reg_idx << 4;
4968
4969 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4970 context_desc->seqnum_seed = 0;
4971 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4972 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4973 }
4974
4975 static int igb_tso(struct igb_ring *tx_ring,
4976 struct igb_tx_buffer *first,
4977 u8 *hdr_len)
4978 {
4979 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
4980 struct sk_buff *skb = first->skb;
4981 union {
4982 struct iphdr *v4;
4983 struct ipv6hdr *v6;
4984 unsigned char *hdr;
4985 } ip;
4986 union {
4987 struct tcphdr *tcp;
4988 unsigned char *hdr;
4989 } l4;
4990 u32 paylen, l4_offset;
4991 int err;
4992
4993 if (skb->ip_summed != CHECKSUM_PARTIAL)
4994 return 0;
4995
4996 if (!skb_is_gso(skb))
4997 return 0;
4998
4999 err = skb_cow_head(skb, 0);
5000 if (err < 0)
5001 return err;
5002
5003 ip.hdr = skb_network_header(skb);
5004 l4.hdr = skb_checksum_start(skb);
5005
5006 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
5007 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5008
5009 /* initialize outer IP header fields */
5010 if (ip.v4->version == 4) {
5011 unsigned char *csum_start = skb_checksum_start(skb);
5012 unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
5013
5014 /* IP header will have to cancel out any data that
5015 * is not a part of the outer IP header
5016 */
5017 ip.v4->check = csum_fold(csum_partial(trans_start,
5018 csum_start - trans_start,
5019 0));
5020 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
5021
5022 ip.v4->tot_len = 0;
5023 first->tx_flags |= IGB_TX_FLAGS_TSO |
5024 IGB_TX_FLAGS_CSUM |
5025 IGB_TX_FLAGS_IPV4;
5026 } else {
5027 ip.v6->payload_len = 0;
5028 first->tx_flags |= IGB_TX_FLAGS_TSO |
5029 IGB_TX_FLAGS_CSUM;
5030 }
5031
5032 /* determine offset of inner transport header */
5033 l4_offset = l4.hdr - skb->data;
5034
5035 /* compute length of segmentation header */
5036 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
5037
5038 /* remove payload length from inner checksum */
5039 paylen = skb->len - l4_offset;
5040 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
5041
5042 /* update gso size and bytecount with header size */
5043 first->gso_segs = skb_shinfo(skb)->gso_segs;
5044 first->bytecount += (first->gso_segs - 1) * *hdr_len;
5045
5046 /* MSS L4LEN IDX */
5047 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
5048 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
5049
5050 /* VLAN MACLEN IPLEN */
5051 vlan_macip_lens = l4.hdr - ip.hdr;
5052 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
5053 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5054
5055 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
5056
5057 return 1;
5058 }
5059
5060 static inline bool igb_ipv6_csum_is_sctp(struct sk_buff *skb)
5061 {
5062 unsigned int offset = 0;
5063
5064 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
5065
5066 return offset == skb_checksum_start_offset(skb);
5067 }
5068
5069 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
5070 {
5071 struct sk_buff *skb = first->skb;
5072 u32 vlan_macip_lens = 0;
5073 u32 type_tucmd = 0;
5074
5075 if (skb->ip_summed != CHECKSUM_PARTIAL) {
5076 csum_failed:
5077 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
5078 return;
5079 goto no_csum;
5080 }
5081
5082 switch (skb->csum_offset) {
5083 case offsetof(struct tcphdr, check):
5084 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
5085 /* fall through */
5086 case offsetof(struct udphdr, check):
5087 break;
5088 case offsetof(struct sctphdr, checksum):
5089 /* validate that this is actually an SCTP request */
5090 if (((first->protocol == htons(ETH_P_IP)) &&
5091 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
5092 ((first->protocol == htons(ETH_P_IPV6)) &&
5093 igb_ipv6_csum_is_sctp(skb))) {
5094 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
5095 break;
5096 }
5097 default:
5098 skb_checksum_help(skb);
5099 goto csum_failed;
5100 }
5101
5102 /* update TX checksum flag */
5103 first->tx_flags |= IGB_TX_FLAGS_CSUM;
5104 vlan_macip_lens = skb_checksum_start_offset(skb) -
5105 skb_network_offset(skb);
5106 no_csum:
5107 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
5108 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
5109
5110 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
5111 }
5112
5113 #define IGB_SET_FLAG(_input, _flag, _result) \
5114 ((_flag <= _result) ? \
5115 ((u32)(_input & _flag) * (_result / _flag)) : \
5116 ((u32)(_input & _flag) / (_flag / _result)))
5117
5118 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
5119 {
5120 /* set type for advanced descriptor with frame checksum insertion */
5121 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
5122 E1000_ADVTXD_DCMD_DEXT |
5123 E1000_ADVTXD_DCMD_IFCS;
5124
5125 /* set HW vlan bit if vlan is present */
5126 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
5127 (E1000_ADVTXD_DCMD_VLE));
5128
5129 /* set segmentation bits for TSO */
5130 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
5131 (E1000_ADVTXD_DCMD_TSE));
5132
5133 /* set timestamp bit if present */
5134 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
5135 (E1000_ADVTXD_MAC_TSTAMP));
5136
5137 /* insert frame checksum */
5138 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
5139
5140 return cmd_type;
5141 }
5142
5143 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
5144 union e1000_adv_tx_desc *tx_desc,
5145 u32 tx_flags, unsigned int paylen)
5146 {
5147 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
5148
5149 /* 82575 requires a unique index per ring */
5150 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
5151 olinfo_status |= tx_ring->reg_idx << 4;
5152
5153 /* insert L4 checksum */
5154 olinfo_status |= IGB_SET_FLAG(tx_flags,
5155 IGB_TX_FLAGS_CSUM,
5156 (E1000_TXD_POPTS_TXSM << 8));
5157
5158 /* insert IPv4 checksum */
5159 olinfo_status |= IGB_SET_FLAG(tx_flags,
5160 IGB_TX_FLAGS_IPV4,
5161 (E1000_TXD_POPTS_IXSM << 8));
5162
5163 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
5164 }
5165
5166 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5167 {
5168 struct net_device *netdev = tx_ring->netdev;
5169
5170 netif_stop_subqueue(netdev, tx_ring->queue_index);
5171
5172 /* Herbert's original patch had:
5173 * smp_mb__after_netif_stop_queue();
5174 * but since that doesn't exist yet, just open code it.
5175 */
5176 smp_mb();
5177
5178 /* We need to check again in a case another CPU has just
5179 * made room available.
5180 */
5181 if (igb_desc_unused(tx_ring) < size)
5182 return -EBUSY;
5183
5184 /* A reprieve! */
5185 netif_wake_subqueue(netdev, tx_ring->queue_index);
5186
5187 u64_stats_update_begin(&tx_ring->tx_syncp2);
5188 tx_ring->tx_stats.restart_queue2++;
5189 u64_stats_update_end(&tx_ring->tx_syncp2);
5190
5191 return 0;
5192 }
5193
5194 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
5195 {
5196 if (igb_desc_unused(tx_ring) >= size)
5197 return 0;
5198 return __igb_maybe_stop_tx(tx_ring, size);
5199 }
5200
5201 static int igb_tx_map(struct igb_ring *tx_ring,
5202 struct igb_tx_buffer *first,
5203 const u8 hdr_len)
5204 {
5205 struct sk_buff *skb = first->skb;
5206 struct igb_tx_buffer *tx_buffer;
5207 union e1000_adv_tx_desc *tx_desc;
5208 struct skb_frag_struct *frag;
5209 dma_addr_t dma;
5210 unsigned int data_len, size;
5211 u32 tx_flags = first->tx_flags;
5212 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
5213 u16 i = tx_ring->next_to_use;
5214
5215 tx_desc = IGB_TX_DESC(tx_ring, i);
5216
5217 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
5218
5219 size = skb_headlen(skb);
5220 data_len = skb->data_len;
5221
5222 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
5223
5224 tx_buffer = first;
5225
5226 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
5227 if (dma_mapping_error(tx_ring->dev, dma))
5228 goto dma_error;
5229
5230 /* record length, and DMA address */
5231 dma_unmap_len_set(tx_buffer, len, size);
5232 dma_unmap_addr_set(tx_buffer, dma, dma);
5233
5234 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5235
5236 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
5237 tx_desc->read.cmd_type_len =
5238 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
5239
5240 i++;
5241 tx_desc++;
5242 if (i == tx_ring->count) {
5243 tx_desc = IGB_TX_DESC(tx_ring, 0);
5244 i = 0;
5245 }
5246 tx_desc->read.olinfo_status = 0;
5247
5248 dma += IGB_MAX_DATA_PER_TXD;
5249 size -= IGB_MAX_DATA_PER_TXD;
5250
5251 tx_desc->read.buffer_addr = cpu_to_le64(dma);
5252 }
5253
5254 if (likely(!data_len))
5255 break;
5256
5257 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
5258
5259 i++;
5260 tx_desc++;
5261 if (i == tx_ring->count) {
5262 tx_desc = IGB_TX_DESC(tx_ring, 0);
5263 i = 0;
5264 }
5265 tx_desc->read.olinfo_status = 0;
5266
5267 size = skb_frag_size(frag);
5268 data_len -= size;
5269
5270 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
5271 size, DMA_TO_DEVICE);
5272
5273 tx_buffer = &tx_ring->tx_buffer_info[i];
5274 }
5275
5276 /* write last descriptor with RS and EOP bits */
5277 cmd_type |= size | IGB_TXD_DCMD;
5278 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
5279
5280 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
5281
5282 /* set the timestamp */
5283 first->time_stamp = jiffies;
5284
5285 /* Force memory writes to complete before letting h/w know there
5286 * are new descriptors to fetch. (Only applicable for weak-ordered
5287 * memory model archs, such as IA-64).
5288 *
5289 * We also need this memory barrier to make certain all of the
5290 * status bits have been updated before next_to_watch is written.
5291 */
5292 wmb();
5293
5294 /* set next_to_watch value indicating a packet is present */
5295 first->next_to_watch = tx_desc;
5296
5297 i++;
5298 if (i == tx_ring->count)
5299 i = 0;
5300
5301 tx_ring->next_to_use = i;
5302
5303 /* Make sure there is space in the ring for the next send. */
5304 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
5305
5306 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
5307 writel(i, tx_ring->tail);
5308
5309 /* we need this if more than one processor can write to our tail
5310 * at a time, it synchronizes IO on IA64/Altix systems
5311 */
5312 mmiowb();
5313 }
5314 return 0;
5315
5316 dma_error:
5317 dev_err(tx_ring->dev, "TX DMA map failed\n");
5318 tx_buffer = &tx_ring->tx_buffer_info[i];
5319
5320 /* clear dma mappings for failed tx_buffer_info map */
5321 while (tx_buffer != first) {
5322 if (dma_unmap_len(tx_buffer, len))
5323 dma_unmap_page(tx_ring->dev,
5324 dma_unmap_addr(tx_buffer, dma),
5325 dma_unmap_len(tx_buffer, len),
5326 DMA_TO_DEVICE);
5327 dma_unmap_len_set(tx_buffer, len, 0);
5328
5329 if (i-- == 0)
5330 i += tx_ring->count;
5331 tx_buffer = &tx_ring->tx_buffer_info[i];
5332 }
5333
5334 if (dma_unmap_len(tx_buffer, len))
5335 dma_unmap_single(tx_ring->dev,
5336 dma_unmap_addr(tx_buffer, dma),
5337 dma_unmap_len(tx_buffer, len),
5338 DMA_TO_DEVICE);
5339 dma_unmap_len_set(tx_buffer, len, 0);
5340
5341 dev_kfree_skb_any(tx_buffer->skb);
5342 tx_buffer->skb = NULL;
5343
5344 tx_ring->next_to_use = i;
5345
5346 return -1;
5347 }
5348
5349 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
5350 struct igb_ring *tx_ring)
5351 {
5352 struct igb_tx_buffer *first;
5353 int tso;
5354 u32 tx_flags = 0;
5355 unsigned short f;
5356 u16 count = TXD_USE_COUNT(skb_headlen(skb));
5357 __be16 protocol = vlan_get_protocol(skb);
5358 u8 hdr_len = 0;
5359
5360 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5361 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5362 * + 2 desc gap to keep tail from touching head,
5363 * + 1 desc for context descriptor,
5364 * otherwise try next time
5365 */
5366 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5367 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5368
5369 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5370 /* this is a hard error */
5371 return NETDEV_TX_BUSY;
5372 }
5373
5374 /* record the location of the first descriptor for this packet */
5375 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5376 first->skb = skb;
5377 first->bytecount = skb->len;
5378 first->gso_segs = 1;
5379
5380 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5381 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5382
5383 if (adapter->tstamp_config.tx_type & HWTSTAMP_TX_ON &&
5384 !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5385 &adapter->state)) {
5386 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5387 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5388
5389 adapter->ptp_tx_skb = skb_get(skb);
5390 adapter->ptp_tx_start = jiffies;
5391 if (adapter->hw.mac.type == e1000_82576)
5392 schedule_work(&adapter->ptp_tx_work);
5393 } else {
5394 adapter->tx_hwtstamp_skipped++;
5395 }
5396 }
5397
5398 skb_tx_timestamp(skb);
5399
5400 if (skb_vlan_tag_present(skb)) {
5401 tx_flags |= IGB_TX_FLAGS_VLAN;
5402 tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5403 }
5404
5405 /* record initial flags and protocol */
5406 first->tx_flags = tx_flags;
5407 first->protocol = protocol;
5408
5409 tso = igb_tso(tx_ring, first, &hdr_len);
5410 if (tso < 0)
5411 goto out_drop;
5412 else if (!tso)
5413 igb_tx_csum(tx_ring, first);
5414
5415 if (igb_tx_map(tx_ring, first, hdr_len))
5416 goto cleanup_tx_tstamp;
5417
5418 return NETDEV_TX_OK;
5419
5420 out_drop:
5421 dev_kfree_skb_any(first->skb);
5422 first->skb = NULL;
5423 cleanup_tx_tstamp:
5424 if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
5425 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5426
5427 dev_kfree_skb_any(adapter->ptp_tx_skb);
5428 adapter->ptp_tx_skb = NULL;
5429 if (adapter->hw.mac.type == e1000_82576)
5430 cancel_work_sync(&adapter->ptp_tx_work);
5431 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
5432 }
5433
5434 return NETDEV_TX_OK;
5435 }
5436
5437 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5438 struct sk_buff *skb)
5439 {
5440 unsigned int r_idx = skb->queue_mapping;
5441
5442 if (r_idx >= adapter->num_tx_queues)
5443 r_idx = r_idx % adapter->num_tx_queues;
5444
5445 return adapter->tx_ring[r_idx];
5446 }
5447
5448 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5449 struct net_device *netdev)
5450 {
5451 struct igb_adapter *adapter = netdev_priv(netdev);
5452
5453 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5454 * in order to meet this minimum size requirement.
5455 */
5456 if (skb_put_padto(skb, 17))
5457 return NETDEV_TX_OK;
5458
5459 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5460 }
5461
5462 /**
5463 * igb_tx_timeout - Respond to a Tx Hang
5464 * @netdev: network interface device structure
5465 **/
5466 static void igb_tx_timeout(struct net_device *netdev)
5467 {
5468 struct igb_adapter *adapter = netdev_priv(netdev);
5469 struct e1000_hw *hw = &adapter->hw;
5470
5471 /* Do the reset outside of interrupt context */
5472 adapter->tx_timeout_count++;
5473
5474 if (hw->mac.type >= e1000_82580)
5475 hw->dev_spec._82575.global_device_reset = true;
5476
5477 schedule_work(&adapter->reset_task);
5478 wr32(E1000_EICS,
5479 (adapter->eims_enable_mask & ~adapter->eims_other));
5480 }
5481
5482 static void igb_reset_task(struct work_struct *work)
5483 {
5484 struct igb_adapter *adapter;
5485 adapter = container_of(work, struct igb_adapter, reset_task);
5486
5487 igb_dump(adapter);
5488 netdev_err(adapter->netdev, "Reset adapter\n");
5489 igb_reinit_locked(adapter);
5490 }
5491
5492 /**
5493 * igb_get_stats64 - Get System Network Statistics
5494 * @netdev: network interface device structure
5495 * @stats: rtnl_link_stats64 pointer
5496 **/
5497 static void igb_get_stats64(struct net_device *netdev,
5498 struct rtnl_link_stats64 *stats)
5499 {
5500 struct igb_adapter *adapter = netdev_priv(netdev);
5501
5502 spin_lock(&adapter->stats64_lock);
5503 igb_update_stats(adapter);
5504 memcpy(stats, &adapter->stats64, sizeof(*stats));
5505 spin_unlock(&adapter->stats64_lock);
5506 }
5507
5508 /**
5509 * igb_change_mtu - Change the Maximum Transfer Unit
5510 * @netdev: network interface device structure
5511 * @new_mtu: new value for maximum frame size
5512 *
5513 * Returns 0 on success, negative on failure
5514 **/
5515 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5516 {
5517 struct igb_adapter *adapter = netdev_priv(netdev);
5518 struct pci_dev *pdev = adapter->pdev;
5519 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5520
5521 /* adjust max frame to be at least the size of a standard frame */
5522 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5523 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5524
5525 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5526 usleep_range(1000, 2000);
5527
5528 /* igb_down has a dependency on max_frame_size */
5529 adapter->max_frame_size = max_frame;
5530
5531 if (netif_running(netdev))
5532 igb_down(adapter);
5533
5534 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5535 netdev->mtu, new_mtu);
5536 netdev->mtu = new_mtu;
5537
5538 if (netif_running(netdev))
5539 igb_up(adapter);
5540 else
5541 igb_reset(adapter);
5542
5543 clear_bit(__IGB_RESETTING, &adapter->state);
5544
5545 return 0;
5546 }
5547
5548 /**
5549 * igb_update_stats - Update the board statistics counters
5550 * @adapter: board private structure
5551 **/
5552 void igb_update_stats(struct igb_adapter *adapter)
5553 {
5554 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
5555 struct e1000_hw *hw = &adapter->hw;
5556 struct pci_dev *pdev = adapter->pdev;
5557 u32 reg, mpc;
5558 int i;
5559 u64 bytes, packets;
5560 unsigned int start;
5561 u64 _bytes, _packets;
5562
5563 /* Prevent stats update while adapter is being reset, or if the pci
5564 * connection is down.
5565 */
5566 if (adapter->link_speed == 0)
5567 return;
5568 if (pci_channel_offline(pdev))
5569 return;
5570
5571 bytes = 0;
5572 packets = 0;
5573
5574 rcu_read_lock();
5575 for (i = 0; i < adapter->num_rx_queues; i++) {
5576 struct igb_ring *ring = adapter->rx_ring[i];
5577 u32 rqdpc = rd32(E1000_RQDPC(i));
5578 if (hw->mac.type >= e1000_i210)
5579 wr32(E1000_RQDPC(i), 0);
5580
5581 if (rqdpc) {
5582 ring->rx_stats.drops += rqdpc;
5583 net_stats->rx_fifo_errors += rqdpc;
5584 }
5585
5586 do {
5587 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5588 _bytes = ring->rx_stats.bytes;
5589 _packets = ring->rx_stats.packets;
5590 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5591 bytes += _bytes;
5592 packets += _packets;
5593 }
5594
5595 net_stats->rx_bytes = bytes;
5596 net_stats->rx_packets = packets;
5597
5598 bytes = 0;
5599 packets = 0;
5600 for (i = 0; i < adapter->num_tx_queues; i++) {
5601 struct igb_ring *ring = adapter->tx_ring[i];
5602 do {
5603 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5604 _bytes = ring->tx_stats.bytes;
5605 _packets = ring->tx_stats.packets;
5606 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5607 bytes += _bytes;
5608 packets += _packets;
5609 }
5610 net_stats->tx_bytes = bytes;
5611 net_stats->tx_packets = packets;
5612 rcu_read_unlock();
5613
5614 /* read stats registers */
5615 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5616 adapter->stats.gprc += rd32(E1000_GPRC);
5617 adapter->stats.gorc += rd32(E1000_GORCL);
5618 rd32(E1000_GORCH); /* clear GORCL */
5619 adapter->stats.bprc += rd32(E1000_BPRC);
5620 adapter->stats.mprc += rd32(E1000_MPRC);
5621 adapter->stats.roc += rd32(E1000_ROC);
5622
5623 adapter->stats.prc64 += rd32(E1000_PRC64);
5624 adapter->stats.prc127 += rd32(E1000_PRC127);
5625 adapter->stats.prc255 += rd32(E1000_PRC255);
5626 adapter->stats.prc511 += rd32(E1000_PRC511);
5627 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5628 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5629 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5630 adapter->stats.sec += rd32(E1000_SEC);
5631
5632 mpc = rd32(E1000_MPC);
5633 adapter->stats.mpc += mpc;
5634 net_stats->rx_fifo_errors += mpc;
5635 adapter->stats.scc += rd32(E1000_SCC);
5636 adapter->stats.ecol += rd32(E1000_ECOL);
5637 adapter->stats.mcc += rd32(E1000_MCC);
5638 adapter->stats.latecol += rd32(E1000_LATECOL);
5639 adapter->stats.dc += rd32(E1000_DC);
5640 adapter->stats.rlec += rd32(E1000_RLEC);
5641 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5642 adapter->stats.xontxc += rd32(E1000_XONTXC);
5643 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5644 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5645 adapter->stats.fcruc += rd32(E1000_FCRUC);
5646 adapter->stats.gptc += rd32(E1000_GPTC);
5647 adapter->stats.gotc += rd32(E1000_GOTCL);
5648 rd32(E1000_GOTCH); /* clear GOTCL */
5649 adapter->stats.rnbc += rd32(E1000_RNBC);
5650 adapter->stats.ruc += rd32(E1000_RUC);
5651 adapter->stats.rfc += rd32(E1000_RFC);
5652 adapter->stats.rjc += rd32(E1000_RJC);
5653 adapter->stats.tor += rd32(E1000_TORH);
5654 adapter->stats.tot += rd32(E1000_TOTH);
5655 adapter->stats.tpr += rd32(E1000_TPR);
5656
5657 adapter->stats.ptc64 += rd32(E1000_PTC64);
5658 adapter->stats.ptc127 += rd32(E1000_PTC127);
5659 adapter->stats.ptc255 += rd32(E1000_PTC255);
5660 adapter->stats.ptc511 += rd32(E1000_PTC511);
5661 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5662 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5663
5664 adapter->stats.mptc += rd32(E1000_MPTC);
5665 adapter->stats.bptc += rd32(E1000_BPTC);
5666
5667 adapter->stats.tpt += rd32(E1000_TPT);
5668 adapter->stats.colc += rd32(E1000_COLC);
5669
5670 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5671 /* read internal phy specific stats */
5672 reg = rd32(E1000_CTRL_EXT);
5673 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5674 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5675
5676 /* this stat has invalid values on i210/i211 */
5677 if ((hw->mac.type != e1000_i210) &&
5678 (hw->mac.type != e1000_i211))
5679 adapter->stats.tncrs += rd32(E1000_TNCRS);
5680 }
5681
5682 adapter->stats.tsctc += rd32(E1000_TSCTC);
5683 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5684
5685 adapter->stats.iac += rd32(E1000_IAC);
5686 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5687 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5688 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5689 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5690 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5691 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5692 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5693 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5694
5695 /* Fill out the OS statistics structure */
5696 net_stats->multicast = adapter->stats.mprc;
5697 net_stats->collisions = adapter->stats.colc;
5698
5699 /* Rx Errors */
5700
5701 /* RLEC on some newer hardware can be incorrect so build
5702 * our own version based on RUC and ROC
5703 */
5704 net_stats->rx_errors = adapter->stats.rxerrc +
5705 adapter->stats.crcerrs + adapter->stats.algnerrc +
5706 adapter->stats.ruc + adapter->stats.roc +
5707 adapter->stats.cexterr;
5708 net_stats->rx_length_errors = adapter->stats.ruc +
5709 adapter->stats.roc;
5710 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5711 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5712 net_stats->rx_missed_errors = adapter->stats.mpc;
5713
5714 /* Tx Errors */
5715 net_stats->tx_errors = adapter->stats.ecol +
5716 adapter->stats.latecol;
5717 net_stats->tx_aborted_errors = adapter->stats.ecol;
5718 net_stats->tx_window_errors = adapter->stats.latecol;
5719 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5720
5721 /* Tx Dropped needs to be maintained elsewhere */
5722
5723 /* Management Stats */
5724 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5725 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5726 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5727
5728 /* OS2BMC Stats */
5729 reg = rd32(E1000_MANC);
5730 if (reg & E1000_MANC_EN_BMC2OS) {
5731 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5732 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5733 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5734 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5735 }
5736 }
5737
5738 static void igb_tsync_interrupt(struct igb_adapter *adapter)
5739 {
5740 struct e1000_hw *hw = &adapter->hw;
5741 struct ptp_clock_event event;
5742 struct timespec64 ts;
5743 u32 ack = 0, tsauxc, sec, nsec, tsicr = rd32(E1000_TSICR);
5744
5745 if (tsicr & TSINTR_SYS_WRAP) {
5746 event.type = PTP_CLOCK_PPS;
5747 if (adapter->ptp_caps.pps)
5748 ptp_clock_event(adapter->ptp_clock, &event);
5749 ack |= TSINTR_SYS_WRAP;
5750 }
5751
5752 if (tsicr & E1000_TSICR_TXTS) {
5753 /* retrieve hardware timestamp */
5754 schedule_work(&adapter->ptp_tx_work);
5755 ack |= E1000_TSICR_TXTS;
5756 }
5757
5758 if (tsicr & TSINTR_TT0) {
5759 spin_lock(&adapter->tmreg_lock);
5760 ts = timespec64_add(adapter->perout[0].start,
5761 adapter->perout[0].period);
5762 /* u32 conversion of tv_sec is safe until y2106 */
5763 wr32(E1000_TRGTTIML0, ts.tv_nsec);
5764 wr32(E1000_TRGTTIMH0, (u32)ts.tv_sec);
5765 tsauxc = rd32(E1000_TSAUXC);
5766 tsauxc |= TSAUXC_EN_TT0;
5767 wr32(E1000_TSAUXC, tsauxc);
5768 adapter->perout[0].start = ts;
5769 spin_unlock(&adapter->tmreg_lock);
5770 ack |= TSINTR_TT0;
5771 }
5772
5773 if (tsicr & TSINTR_TT1) {
5774 spin_lock(&adapter->tmreg_lock);
5775 ts = timespec64_add(adapter->perout[1].start,
5776 adapter->perout[1].period);
5777 wr32(E1000_TRGTTIML1, ts.tv_nsec);
5778 wr32(E1000_TRGTTIMH1, (u32)ts.tv_sec);
5779 tsauxc = rd32(E1000_TSAUXC);
5780 tsauxc |= TSAUXC_EN_TT1;
5781 wr32(E1000_TSAUXC, tsauxc);
5782 adapter->perout[1].start = ts;
5783 spin_unlock(&adapter->tmreg_lock);
5784 ack |= TSINTR_TT1;
5785 }
5786
5787 if (tsicr & TSINTR_AUTT0) {
5788 nsec = rd32(E1000_AUXSTMPL0);
5789 sec = rd32(E1000_AUXSTMPH0);
5790 event.type = PTP_CLOCK_EXTTS;
5791 event.index = 0;
5792 event.timestamp = sec * 1000000000ULL + nsec;
5793 ptp_clock_event(adapter->ptp_clock, &event);
5794 ack |= TSINTR_AUTT0;
5795 }
5796
5797 if (tsicr & TSINTR_AUTT1) {
5798 nsec = rd32(E1000_AUXSTMPL1);
5799 sec = rd32(E1000_AUXSTMPH1);
5800 event.type = PTP_CLOCK_EXTTS;
5801 event.index = 1;
5802 event.timestamp = sec * 1000000000ULL + nsec;
5803 ptp_clock_event(adapter->ptp_clock, &event);
5804 ack |= TSINTR_AUTT1;
5805 }
5806
5807 /* acknowledge the interrupts */
5808 wr32(E1000_TSICR, ack);
5809 }
5810
5811 static irqreturn_t igb_msix_other(int irq, void *data)
5812 {
5813 struct igb_adapter *adapter = data;
5814 struct e1000_hw *hw = &adapter->hw;
5815 u32 icr = rd32(E1000_ICR);
5816 /* reading ICR causes bit 31 of EICR to be cleared */
5817
5818 if (icr & E1000_ICR_DRSTA)
5819 schedule_work(&adapter->reset_task);
5820
5821 if (icr & E1000_ICR_DOUTSYNC) {
5822 /* HW is reporting DMA is out of sync */
5823 adapter->stats.doosync++;
5824 /* The DMA Out of Sync is also indication of a spoof event
5825 * in IOV mode. Check the Wrong VM Behavior register to
5826 * see if it is really a spoof event.
5827 */
5828 igb_check_wvbr(adapter);
5829 }
5830
5831 /* Check for a mailbox event */
5832 if (icr & E1000_ICR_VMMB)
5833 igb_msg_task(adapter);
5834
5835 if (icr & E1000_ICR_LSC) {
5836 hw->mac.get_link_status = 1;
5837 /* guard against interrupt when we're going down */
5838 if (!test_bit(__IGB_DOWN, &adapter->state))
5839 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5840 }
5841
5842 if (icr & E1000_ICR_TS)
5843 igb_tsync_interrupt(adapter);
5844
5845 wr32(E1000_EIMS, adapter->eims_other);
5846
5847 return IRQ_HANDLED;
5848 }
5849
5850 static void igb_write_itr(struct igb_q_vector *q_vector)
5851 {
5852 struct igb_adapter *adapter = q_vector->adapter;
5853 u32 itr_val = q_vector->itr_val & 0x7FFC;
5854
5855 if (!q_vector->set_itr)
5856 return;
5857
5858 if (!itr_val)
5859 itr_val = 0x4;
5860
5861 if (adapter->hw.mac.type == e1000_82575)
5862 itr_val |= itr_val << 16;
5863 else
5864 itr_val |= E1000_EITR_CNT_IGNR;
5865
5866 writel(itr_val, q_vector->itr_register);
5867 q_vector->set_itr = 0;
5868 }
5869
5870 static irqreturn_t igb_msix_ring(int irq, void *data)
5871 {
5872 struct igb_q_vector *q_vector = data;
5873
5874 /* Write the ITR value calculated from the previous interrupt. */
5875 igb_write_itr(q_vector);
5876
5877 napi_schedule(&q_vector->napi);
5878
5879 return IRQ_HANDLED;
5880 }
5881
5882 #ifdef CONFIG_IGB_DCA
5883 static void igb_update_tx_dca(struct igb_adapter *adapter,
5884 struct igb_ring *tx_ring,
5885 int cpu)
5886 {
5887 struct e1000_hw *hw = &adapter->hw;
5888 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5889
5890 if (hw->mac.type != e1000_82575)
5891 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5892
5893 /* We can enable relaxed ordering for reads, but not writes when
5894 * DCA is enabled. This is due to a known issue in some chipsets
5895 * which will cause the DCA tag to be cleared.
5896 */
5897 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5898 E1000_DCA_TXCTRL_DATA_RRO_EN |
5899 E1000_DCA_TXCTRL_DESC_DCA_EN;
5900
5901 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5902 }
5903
5904 static void igb_update_rx_dca(struct igb_adapter *adapter,
5905 struct igb_ring *rx_ring,
5906 int cpu)
5907 {
5908 struct e1000_hw *hw = &adapter->hw;
5909 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5910
5911 if (hw->mac.type != e1000_82575)
5912 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5913
5914 /* We can enable relaxed ordering for reads, but not writes when
5915 * DCA is enabled. This is due to a known issue in some chipsets
5916 * which will cause the DCA tag to be cleared.
5917 */
5918 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5919 E1000_DCA_RXCTRL_DESC_DCA_EN;
5920
5921 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5922 }
5923
5924 static void igb_update_dca(struct igb_q_vector *q_vector)
5925 {
5926 struct igb_adapter *adapter = q_vector->adapter;
5927 int cpu = get_cpu();
5928
5929 if (q_vector->cpu == cpu)
5930 goto out_no_update;
5931
5932 if (q_vector->tx.ring)
5933 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5934
5935 if (q_vector->rx.ring)
5936 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5937
5938 q_vector->cpu = cpu;
5939 out_no_update:
5940 put_cpu();
5941 }
5942
5943 static void igb_setup_dca(struct igb_adapter *adapter)
5944 {
5945 struct e1000_hw *hw = &adapter->hw;
5946 int i;
5947
5948 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5949 return;
5950
5951 /* Always use CB2 mode, difference is masked in the CB driver. */
5952 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5953
5954 for (i = 0; i < adapter->num_q_vectors; i++) {
5955 adapter->q_vector[i]->cpu = -1;
5956 igb_update_dca(adapter->q_vector[i]);
5957 }
5958 }
5959
5960 static int __igb_notify_dca(struct device *dev, void *data)
5961 {
5962 struct net_device *netdev = dev_get_drvdata(dev);
5963 struct igb_adapter *adapter = netdev_priv(netdev);
5964 struct pci_dev *pdev = adapter->pdev;
5965 struct e1000_hw *hw = &adapter->hw;
5966 unsigned long event = *(unsigned long *)data;
5967
5968 switch (event) {
5969 case DCA_PROVIDER_ADD:
5970 /* if already enabled, don't do it again */
5971 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5972 break;
5973 if (dca_add_requester(dev) == 0) {
5974 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5975 dev_info(&pdev->dev, "DCA enabled\n");
5976 igb_setup_dca(adapter);
5977 break;
5978 }
5979 /* Fall Through since DCA is disabled. */
5980 case DCA_PROVIDER_REMOVE:
5981 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5982 /* without this a class_device is left
5983 * hanging around in the sysfs model
5984 */
5985 dca_remove_requester(dev);
5986 dev_info(&pdev->dev, "DCA disabled\n");
5987 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5988 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5989 }
5990 break;
5991 }
5992
5993 return 0;
5994 }
5995
5996 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5997 void *p)
5998 {
5999 int ret_val;
6000
6001 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
6002 __igb_notify_dca);
6003
6004 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
6005 }
6006 #endif /* CONFIG_IGB_DCA */
6007
6008 #ifdef CONFIG_PCI_IOV
6009 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
6010 {
6011 unsigned char mac_addr[ETH_ALEN];
6012
6013 eth_zero_addr(mac_addr);
6014 igb_set_vf_mac(adapter, vf, mac_addr);
6015
6016 /* By default spoof check is enabled for all VFs */
6017 adapter->vf_data[vf].spoofchk_enabled = true;
6018
6019 return 0;
6020 }
6021
6022 #endif
6023 static void igb_ping_all_vfs(struct igb_adapter *adapter)
6024 {
6025 struct e1000_hw *hw = &adapter->hw;
6026 u32 ping;
6027 int i;
6028
6029 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
6030 ping = E1000_PF_CONTROL_MSG;
6031 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
6032 ping |= E1000_VT_MSGTYPE_CTS;
6033 igb_write_mbx(hw, &ping, 1, i);
6034 }
6035 }
6036
6037 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6038 {
6039 struct e1000_hw *hw = &adapter->hw;
6040 u32 vmolr = rd32(E1000_VMOLR(vf));
6041 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6042
6043 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
6044 IGB_VF_FLAG_MULTI_PROMISC);
6045 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6046
6047 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
6048 vmolr |= E1000_VMOLR_MPME;
6049 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
6050 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
6051 } else {
6052 /* if we have hashes and we are clearing a multicast promisc
6053 * flag we need to write the hashes to the MTA as this step
6054 * was previously skipped
6055 */
6056 if (vf_data->num_vf_mc_hashes > 30) {
6057 vmolr |= E1000_VMOLR_MPME;
6058 } else if (vf_data->num_vf_mc_hashes) {
6059 int j;
6060
6061 vmolr |= E1000_VMOLR_ROMPE;
6062 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6063 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6064 }
6065 }
6066
6067 wr32(E1000_VMOLR(vf), vmolr);
6068
6069 /* there are flags left unprocessed, likely not supported */
6070 if (*msgbuf & E1000_VT_MSGINFO_MASK)
6071 return -EINVAL;
6072
6073 return 0;
6074 }
6075
6076 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
6077 u32 *msgbuf, u32 vf)
6078 {
6079 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6080 u16 *hash_list = (u16 *)&msgbuf[1];
6081 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6082 int i;
6083
6084 /* salt away the number of multicast addresses assigned
6085 * to this VF for later use to restore when the PF multi cast
6086 * list changes
6087 */
6088 vf_data->num_vf_mc_hashes = n;
6089
6090 /* only up to 30 hash values supported */
6091 if (n > 30)
6092 n = 30;
6093
6094 /* store the hashes for later use */
6095 for (i = 0; i < n; i++)
6096 vf_data->vf_mc_hashes[i] = hash_list[i];
6097
6098 /* Flush and reset the mta with the new values */
6099 igb_set_rx_mode(adapter->netdev);
6100
6101 return 0;
6102 }
6103
6104 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
6105 {
6106 struct e1000_hw *hw = &adapter->hw;
6107 struct vf_data_storage *vf_data;
6108 int i, j;
6109
6110 for (i = 0; i < adapter->vfs_allocated_count; i++) {
6111 u32 vmolr = rd32(E1000_VMOLR(i));
6112
6113 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
6114
6115 vf_data = &adapter->vf_data[i];
6116
6117 if ((vf_data->num_vf_mc_hashes > 30) ||
6118 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
6119 vmolr |= E1000_VMOLR_MPME;
6120 } else if (vf_data->num_vf_mc_hashes) {
6121 vmolr |= E1000_VMOLR_ROMPE;
6122 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
6123 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
6124 }
6125 wr32(E1000_VMOLR(i), vmolr);
6126 }
6127 }
6128
6129 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
6130 {
6131 struct e1000_hw *hw = &adapter->hw;
6132 u32 pool_mask, vlvf_mask, i;
6133
6134 /* create mask for VF and other pools */
6135 pool_mask = E1000_VLVF_POOLSEL_MASK;
6136 vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
6137
6138 /* drop PF from pool bits */
6139 pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
6140 adapter->vfs_allocated_count);
6141
6142 /* Find the vlan filter for this id */
6143 for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
6144 u32 vlvf = rd32(E1000_VLVF(i));
6145 u32 vfta_mask, vid, vfta;
6146
6147 /* remove the vf from the pool */
6148 if (!(vlvf & vlvf_mask))
6149 continue;
6150
6151 /* clear out bit from VLVF */
6152 vlvf ^= vlvf_mask;
6153
6154 /* if other pools are present, just remove ourselves */
6155 if (vlvf & pool_mask)
6156 goto update_vlvfb;
6157
6158 /* if PF is present, leave VFTA */
6159 if (vlvf & E1000_VLVF_POOLSEL_MASK)
6160 goto update_vlvf;
6161
6162 vid = vlvf & E1000_VLVF_VLANID_MASK;
6163 vfta_mask = BIT(vid % 32);
6164
6165 /* clear bit from VFTA */
6166 vfta = adapter->shadow_vfta[vid / 32];
6167 if (vfta & vfta_mask)
6168 hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
6169 update_vlvf:
6170 /* clear pool selection enable */
6171 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6172 vlvf &= E1000_VLVF_POOLSEL_MASK;
6173 else
6174 vlvf = 0;
6175 update_vlvfb:
6176 /* clear pool bits */
6177 wr32(E1000_VLVF(i), vlvf);
6178 }
6179 }
6180
6181 static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
6182 {
6183 u32 vlvf;
6184 int idx;
6185
6186 /* short cut the special case */
6187 if (vlan == 0)
6188 return 0;
6189
6190 /* Search for the VLAN id in the VLVF entries */
6191 for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
6192 vlvf = rd32(E1000_VLVF(idx));
6193 if ((vlvf & VLAN_VID_MASK) == vlan)
6194 break;
6195 }
6196
6197 return idx;
6198 }
6199
6200 static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
6201 {
6202 struct e1000_hw *hw = &adapter->hw;
6203 u32 bits, pf_id;
6204 int idx;
6205
6206 idx = igb_find_vlvf_entry(hw, vid);
6207 if (!idx)
6208 return;
6209
6210 /* See if any other pools are set for this VLAN filter
6211 * entry other than the PF.
6212 */
6213 pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
6214 bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
6215 bits &= rd32(E1000_VLVF(idx));
6216
6217 /* Disable the filter so this falls into the default pool. */
6218 if (!bits) {
6219 if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
6220 wr32(E1000_VLVF(idx), BIT(pf_id));
6221 else
6222 wr32(E1000_VLVF(idx), 0);
6223 }
6224 }
6225
6226 static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
6227 bool add, u32 vf)
6228 {
6229 int pf_id = adapter->vfs_allocated_count;
6230 struct e1000_hw *hw = &adapter->hw;
6231 int err;
6232
6233 /* If VLAN overlaps with one the PF is currently monitoring make
6234 * sure that we are able to allocate a VLVF entry. This may be
6235 * redundant but it guarantees PF will maintain visibility to
6236 * the VLAN.
6237 */
6238 if (add && test_bit(vid, adapter->active_vlans)) {
6239 err = igb_vfta_set(hw, vid, pf_id, true, false);
6240 if (err)
6241 return err;
6242 }
6243
6244 err = igb_vfta_set(hw, vid, vf, add, false);
6245
6246 if (add && !err)
6247 return err;
6248
6249 /* If we failed to add the VF VLAN or we are removing the VF VLAN
6250 * we may need to drop the PF pool bit in order to allow us to free
6251 * up the VLVF resources.
6252 */
6253 if (test_bit(vid, adapter->active_vlans) ||
6254 (adapter->flags & IGB_FLAG_VLAN_PROMISC))
6255 igb_update_pf_vlvf(adapter, vid);
6256
6257 return err;
6258 }
6259
6260 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
6261 {
6262 struct e1000_hw *hw = &adapter->hw;
6263
6264 if (vid)
6265 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
6266 else
6267 wr32(E1000_VMVIR(vf), 0);
6268 }
6269
6270 static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
6271 u16 vlan, u8 qos)
6272 {
6273 int err;
6274
6275 err = igb_set_vf_vlan(adapter, vlan, true, vf);
6276 if (err)
6277 return err;
6278
6279 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
6280 igb_set_vmolr(adapter, vf, !vlan);
6281
6282 /* revoke access to previous VLAN */
6283 if (vlan != adapter->vf_data[vf].pf_vlan)
6284 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6285 false, vf);
6286
6287 adapter->vf_data[vf].pf_vlan = vlan;
6288 adapter->vf_data[vf].pf_qos = qos;
6289 igb_set_vf_vlan_strip(adapter, vf, true);
6290 dev_info(&adapter->pdev->dev,
6291 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
6292 if (test_bit(__IGB_DOWN, &adapter->state)) {
6293 dev_warn(&adapter->pdev->dev,
6294 "The VF VLAN has been set, but the PF device is not up.\n");
6295 dev_warn(&adapter->pdev->dev,
6296 "Bring the PF device up before attempting to use the VF device.\n");
6297 }
6298
6299 return err;
6300 }
6301
6302 static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
6303 {
6304 /* Restore tagless access via VLAN 0 */
6305 igb_set_vf_vlan(adapter, 0, true, vf);
6306
6307 igb_set_vmvir(adapter, 0, vf);
6308 igb_set_vmolr(adapter, vf, true);
6309
6310 /* Remove any PF assigned VLAN */
6311 if (adapter->vf_data[vf].pf_vlan)
6312 igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
6313 false, vf);
6314
6315 adapter->vf_data[vf].pf_vlan = 0;
6316 adapter->vf_data[vf].pf_qos = 0;
6317 igb_set_vf_vlan_strip(adapter, vf, false);
6318
6319 return 0;
6320 }
6321
6322 static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
6323 u16 vlan, u8 qos, __be16 vlan_proto)
6324 {
6325 struct igb_adapter *adapter = netdev_priv(netdev);
6326
6327 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
6328 return -EINVAL;
6329
6330 if (vlan_proto != htons(ETH_P_8021Q))
6331 return -EPROTONOSUPPORT;
6332
6333 return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
6334 igb_disable_port_vlan(adapter, vf);
6335 }
6336
6337 static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
6338 {
6339 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
6340 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
6341 int ret;
6342
6343 if (adapter->vf_data[vf].pf_vlan)
6344 return -1;
6345
6346 /* VLAN 0 is a special case, don't allow it to be removed */
6347 if (!vid && !add)
6348 return 0;
6349
6350 ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
6351 if (!ret)
6352 igb_set_vf_vlan_strip(adapter, vf, !!vid);
6353 return ret;
6354 }
6355
6356 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
6357 {
6358 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6359
6360 /* clear flags - except flag that indicates PF has set the MAC */
6361 vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
6362 vf_data->last_nack = jiffies;
6363
6364 /* reset vlans for device */
6365 igb_clear_vf_vfta(adapter, vf);
6366 igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
6367 igb_set_vmvir(adapter, vf_data->pf_vlan |
6368 (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
6369 igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
6370 igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
6371
6372 /* reset multicast table array for vf */
6373 adapter->vf_data[vf].num_vf_mc_hashes = 0;
6374
6375 /* Flush and reset the mta with the new values */
6376 igb_set_rx_mode(adapter->netdev);
6377 }
6378
6379 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
6380 {
6381 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6382
6383 /* clear mac address as we were hotplug removed/added */
6384 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
6385 eth_zero_addr(vf_mac);
6386
6387 /* process remaining reset events */
6388 igb_vf_reset(adapter, vf);
6389 }
6390
6391 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6392 {
6393 struct e1000_hw *hw = &adapter->hw;
6394 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6395 u32 reg, msgbuf[3];
6396 u8 *addr = (u8 *)(&msgbuf[1]);
6397
6398 /* process all the same items cleared in a function level reset */
6399 igb_vf_reset(adapter, vf);
6400
6401 /* set vf mac address */
6402 igb_set_vf_mac(adapter, vf, vf_mac);
6403
6404 /* enable transmit and receive for vf */
6405 reg = rd32(E1000_VFTE);
6406 wr32(E1000_VFTE, reg | BIT(vf));
6407 reg = rd32(E1000_VFRE);
6408 wr32(E1000_VFRE, reg | BIT(vf));
6409
6410 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6411
6412 /* reply to reset with ack and vf mac address */
6413 if (!is_zero_ether_addr(vf_mac)) {
6414 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6415 memcpy(addr, vf_mac, ETH_ALEN);
6416 } else {
6417 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
6418 }
6419 igb_write_mbx(hw, msgbuf, 3, vf);
6420 }
6421
6422 static void igb_flush_mac_table(struct igb_adapter *adapter)
6423 {
6424 struct e1000_hw *hw = &adapter->hw;
6425 int i;
6426
6427 for (i = 0; i < hw->mac.rar_entry_count; i++) {
6428 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6429 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6430 adapter->mac_table[i].queue = 0;
6431 igb_rar_set_index(adapter, i);
6432 }
6433 }
6434
6435 static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
6436 {
6437 struct e1000_hw *hw = &adapter->hw;
6438 /* do not count rar entries reserved for VFs MAC addresses */
6439 int rar_entries = hw->mac.rar_entry_count -
6440 adapter->vfs_allocated_count;
6441 int i, count = 0;
6442
6443 for (i = 0; i < rar_entries; i++) {
6444 /* do not count default entries */
6445 if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
6446 continue;
6447
6448 /* do not count "in use" entries for different queues */
6449 if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
6450 (adapter->mac_table[i].queue != queue))
6451 continue;
6452
6453 count++;
6454 }
6455
6456 return count;
6457 }
6458
6459 /* Set default MAC address for the PF in the first RAR entry */
6460 static void igb_set_default_mac_filter(struct igb_adapter *adapter)
6461 {
6462 struct igb_mac_addr *mac_table = &adapter->mac_table[0];
6463
6464 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
6465 mac_table->queue = adapter->vfs_allocated_count;
6466 mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
6467
6468 igb_rar_set_index(adapter, 0);
6469 }
6470
6471 static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6472 const u8 queue)
6473 {
6474 struct e1000_hw *hw = &adapter->hw;
6475 int rar_entries = hw->mac.rar_entry_count -
6476 adapter->vfs_allocated_count;
6477 int i;
6478
6479 if (is_zero_ether_addr(addr))
6480 return -EINVAL;
6481
6482 /* Search for the first empty entry in the MAC table.
6483 * Do not touch entries at the end of the table reserved for the VF MAC
6484 * addresses.
6485 */
6486 for (i = 0; i < rar_entries; i++) {
6487 if (adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE)
6488 continue;
6489
6490 ether_addr_copy(adapter->mac_table[i].addr, addr);
6491 adapter->mac_table[i].queue = queue;
6492 adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE;
6493
6494 igb_rar_set_index(adapter, i);
6495 return i;
6496 }
6497
6498 return -ENOSPC;
6499 }
6500
6501 static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
6502 const u8 queue)
6503 {
6504 struct e1000_hw *hw = &adapter->hw;
6505 int rar_entries = hw->mac.rar_entry_count -
6506 adapter->vfs_allocated_count;
6507 int i;
6508
6509 if (is_zero_ether_addr(addr))
6510 return -EINVAL;
6511
6512 /* Search for matching entry in the MAC table based on given address
6513 * and queue. Do not touch entries at the end of the table reserved
6514 * for the VF MAC addresses.
6515 */
6516 for (i = 0; i < rar_entries; i++) {
6517 if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
6518 continue;
6519 if (adapter->mac_table[i].queue != queue)
6520 continue;
6521 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
6522 continue;
6523
6524 adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
6525 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
6526 adapter->mac_table[i].queue = 0;
6527
6528 igb_rar_set_index(adapter, i);
6529 return 0;
6530 }
6531
6532 return -ENOENT;
6533 }
6534
6535 static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
6536 {
6537 struct igb_adapter *adapter = netdev_priv(netdev);
6538 int ret;
6539
6540 ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6541
6542 return min_t(int, ret, 0);
6543 }
6544
6545 static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
6546 {
6547 struct igb_adapter *adapter = netdev_priv(netdev);
6548
6549 igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
6550
6551 return 0;
6552 }
6553
6554 static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
6555 const u32 info, const u8 *addr)
6556 {
6557 struct pci_dev *pdev = adapter->pdev;
6558 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6559 struct list_head *pos;
6560 struct vf_mac_filter *entry = NULL;
6561 int ret = 0;
6562
6563 switch (info) {
6564 case E1000_VF_MAC_FILTER_CLR:
6565 /* remove all unicast MAC filters related to the current VF */
6566 list_for_each(pos, &adapter->vf_macs.l) {
6567 entry = list_entry(pos, struct vf_mac_filter, l);
6568 if (entry->vf == vf) {
6569 entry->vf = -1;
6570 entry->free = true;
6571 igb_del_mac_filter(adapter, entry->vf_mac, vf);
6572 }
6573 }
6574 break;
6575 case E1000_VF_MAC_FILTER_ADD:
6576 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6577 dev_warn(&pdev->dev,
6578 "VF %d requested MAC filter but is administratively denied\n",
6579 vf);
6580 return -EINVAL;
6581 }
6582
6583 if (!is_valid_ether_addr(addr)) {
6584 dev_warn(&pdev->dev,
6585 "VF %d attempted to set invalid MAC filter\n",
6586 vf);
6587 return -EINVAL;
6588 }
6589
6590 /* try to find empty slot in the list */
6591 list_for_each(pos, &adapter->vf_macs.l) {
6592 entry = list_entry(pos, struct vf_mac_filter, l);
6593 if (entry->free)
6594 break;
6595 }
6596
6597 if (entry && entry->free) {
6598 entry->free = false;
6599 entry->vf = vf;
6600 ether_addr_copy(entry->vf_mac, addr);
6601
6602 ret = igb_add_mac_filter(adapter, addr, vf);
6603 ret = min_t(int, ret, 0);
6604 } else {
6605 ret = -ENOSPC;
6606 }
6607
6608 if (ret == -ENOSPC)
6609 dev_warn(&pdev->dev,
6610 "VF %d has requested MAC filter but there is no space for it\n",
6611 vf);
6612 break;
6613 default:
6614 ret = -EINVAL;
6615 break;
6616 }
6617
6618 return ret;
6619 }
6620
6621 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6622 {
6623 struct pci_dev *pdev = adapter->pdev;
6624 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6625 u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
6626
6627 /* The VF MAC Address is stored in a packed array of bytes
6628 * starting at the second 32 bit word of the msg array
6629 */
6630 unsigned char *addr = (unsigned char *)&msg[1];
6631 int ret = 0;
6632
6633 if (!info) {
6634 if (vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) {
6635 dev_warn(&pdev->dev,
6636 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6637 vf);
6638 return -EINVAL;
6639 }
6640
6641 if (!is_valid_ether_addr(addr)) {
6642 dev_warn(&pdev->dev,
6643 "VF %d attempted to set invalid MAC\n",
6644 vf);
6645 return -EINVAL;
6646 }
6647
6648 ret = igb_set_vf_mac(adapter, vf, addr);
6649 } else {
6650 ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
6651 }
6652
6653 return ret;
6654 }
6655
6656 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6657 {
6658 struct e1000_hw *hw = &adapter->hw;
6659 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6660 u32 msg = E1000_VT_MSGTYPE_NACK;
6661
6662 /* if device isn't clear to send it shouldn't be reading either */
6663 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6664 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6665 igb_write_mbx(hw, &msg, 1, vf);
6666 vf_data->last_nack = jiffies;
6667 }
6668 }
6669
6670 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6671 {
6672 struct pci_dev *pdev = adapter->pdev;
6673 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6674 struct e1000_hw *hw = &adapter->hw;
6675 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6676 s32 retval;
6677
6678 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
6679
6680 if (retval) {
6681 /* if receive failed revoke VF CTS stats and restart init */
6682 dev_err(&pdev->dev, "Error receiving message from VF\n");
6683 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6684 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6685 goto unlock;
6686 goto out;
6687 }
6688
6689 /* this is a message we already processed, do nothing */
6690 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6691 goto unlock;
6692
6693 /* until the vf completes a reset it should not be
6694 * allowed to start any configuration.
6695 */
6696 if (msgbuf[0] == E1000_VF_RESET) {
6697 /* unlocks mailbox */
6698 igb_vf_reset_msg(adapter, vf);
6699 return;
6700 }
6701
6702 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6703 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6704 goto unlock;
6705 retval = -1;
6706 goto out;
6707 }
6708
6709 switch ((msgbuf[0] & 0xFFFF)) {
6710 case E1000_VF_SET_MAC_ADDR:
6711 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6712 break;
6713 case E1000_VF_SET_PROMISC:
6714 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6715 break;
6716 case E1000_VF_SET_MULTICAST:
6717 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6718 break;
6719 case E1000_VF_SET_LPE:
6720 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6721 break;
6722 case E1000_VF_SET_VLAN:
6723 retval = -1;
6724 if (vf_data->pf_vlan)
6725 dev_warn(&pdev->dev,
6726 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6727 vf);
6728 else
6729 retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
6730 break;
6731 default:
6732 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6733 retval = -1;
6734 break;
6735 }
6736
6737 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6738 out:
6739 /* notify the VF of the results of what it sent us */
6740 if (retval)
6741 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6742 else
6743 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6744
6745 /* unlocks mailbox */
6746 igb_write_mbx(hw, msgbuf, 1, vf);
6747 return;
6748
6749 unlock:
6750 igb_unlock_mbx(hw, vf);
6751 }
6752
6753 static void igb_msg_task(struct igb_adapter *adapter)
6754 {
6755 struct e1000_hw *hw = &adapter->hw;
6756 u32 vf;
6757
6758 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6759 /* process any reset requests */
6760 if (!igb_check_for_rst(hw, vf))
6761 igb_vf_reset_event(adapter, vf);
6762
6763 /* process any messages pending */
6764 if (!igb_check_for_msg(hw, vf))
6765 igb_rcv_msg_from_vf(adapter, vf);
6766
6767 /* process any acks */
6768 if (!igb_check_for_ack(hw, vf))
6769 igb_rcv_ack_from_vf(adapter, vf);
6770 }
6771 }
6772
6773 /**
6774 * igb_set_uta - Set unicast filter table address
6775 * @adapter: board private structure
6776 * @set: boolean indicating if we are setting or clearing bits
6777 *
6778 * The unicast table address is a register array of 32-bit registers.
6779 * The table is meant to be used in a way similar to how the MTA is used
6780 * however due to certain limitations in the hardware it is necessary to
6781 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6782 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6783 **/
6784 static void igb_set_uta(struct igb_adapter *adapter, bool set)
6785 {
6786 struct e1000_hw *hw = &adapter->hw;
6787 u32 uta = set ? ~0 : 0;
6788 int i;
6789
6790 /* we only need to do this if VMDq is enabled */
6791 if (!adapter->vfs_allocated_count)
6792 return;
6793
6794 for (i = hw->mac.uta_reg_count; i--;)
6795 array_wr32(E1000_UTA, i, uta);
6796 }
6797
6798 /**
6799 * igb_intr_msi - Interrupt Handler
6800 * @irq: interrupt number
6801 * @data: pointer to a network interface device structure
6802 **/
6803 static irqreturn_t igb_intr_msi(int irq, void *data)
6804 {
6805 struct igb_adapter *adapter = data;
6806 struct igb_q_vector *q_vector = adapter->q_vector[0];
6807 struct e1000_hw *hw = &adapter->hw;
6808 /* read ICR disables interrupts using IAM */
6809 u32 icr = rd32(E1000_ICR);
6810
6811 igb_write_itr(q_vector);
6812
6813 if (icr & E1000_ICR_DRSTA)
6814 schedule_work(&adapter->reset_task);
6815
6816 if (icr & E1000_ICR_DOUTSYNC) {
6817 /* HW is reporting DMA is out of sync */
6818 adapter->stats.doosync++;
6819 }
6820
6821 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6822 hw->mac.get_link_status = 1;
6823 if (!test_bit(__IGB_DOWN, &adapter->state))
6824 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6825 }
6826
6827 if (icr & E1000_ICR_TS)
6828 igb_tsync_interrupt(adapter);
6829
6830 napi_schedule(&q_vector->napi);
6831
6832 return IRQ_HANDLED;
6833 }
6834
6835 /**
6836 * igb_intr - Legacy Interrupt Handler
6837 * @irq: interrupt number
6838 * @data: pointer to a network interface device structure
6839 **/
6840 static irqreturn_t igb_intr(int irq, void *data)
6841 {
6842 struct igb_adapter *adapter = data;
6843 struct igb_q_vector *q_vector = adapter->q_vector[0];
6844 struct e1000_hw *hw = &adapter->hw;
6845 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6846 * need for the IMC write
6847 */
6848 u32 icr = rd32(E1000_ICR);
6849
6850 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6851 * not set, then the adapter didn't send an interrupt
6852 */
6853 if (!(icr & E1000_ICR_INT_ASSERTED))
6854 return IRQ_NONE;
6855
6856 igb_write_itr(q_vector);
6857
6858 if (icr & E1000_ICR_DRSTA)
6859 schedule_work(&adapter->reset_task);
6860
6861 if (icr & E1000_ICR_DOUTSYNC) {
6862 /* HW is reporting DMA is out of sync */
6863 adapter->stats.doosync++;
6864 }
6865
6866 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6867 hw->mac.get_link_status = 1;
6868 /* guard against interrupt when we're going down */
6869 if (!test_bit(__IGB_DOWN, &adapter->state))
6870 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6871 }
6872
6873 if (icr & E1000_ICR_TS)
6874 igb_tsync_interrupt(adapter);
6875
6876 napi_schedule(&q_vector->napi);
6877
6878 return IRQ_HANDLED;
6879 }
6880
6881 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6882 {
6883 struct igb_adapter *adapter = q_vector->adapter;
6884 struct e1000_hw *hw = &adapter->hw;
6885
6886 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6887 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6888 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6889 igb_set_itr(q_vector);
6890 else
6891 igb_update_ring_itr(q_vector);
6892 }
6893
6894 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6895 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6896 wr32(E1000_EIMS, q_vector->eims_value);
6897 else
6898 igb_irq_enable(adapter);
6899 }
6900 }
6901
6902 /**
6903 * igb_poll - NAPI Rx polling callback
6904 * @napi: napi polling structure
6905 * @budget: count of how many packets we should handle
6906 **/
6907 static int igb_poll(struct napi_struct *napi, int budget)
6908 {
6909 struct igb_q_vector *q_vector = container_of(napi,
6910 struct igb_q_vector,
6911 napi);
6912 bool clean_complete = true;
6913 int work_done = 0;
6914
6915 #ifdef CONFIG_IGB_DCA
6916 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6917 igb_update_dca(q_vector);
6918 #endif
6919 if (q_vector->tx.ring)
6920 clean_complete = igb_clean_tx_irq(q_vector, budget);
6921
6922 if (q_vector->rx.ring) {
6923 int cleaned = igb_clean_rx_irq(q_vector, budget);
6924
6925 work_done += cleaned;
6926 if (cleaned >= budget)
6927 clean_complete = false;
6928 }
6929
6930 /* If all work not completed, return budget and keep polling */
6931 if (!clean_complete)
6932 return budget;
6933
6934 /* If not enough Rx work done, exit the polling mode */
6935 napi_complete_done(napi, work_done);
6936 igb_ring_irq_enable(q_vector);
6937
6938 return 0;
6939 }
6940
6941 /**
6942 * igb_clean_tx_irq - Reclaim resources after transmit completes
6943 * @q_vector: pointer to q_vector containing needed info
6944 * @napi_budget: Used to determine if we are in netpoll
6945 *
6946 * returns true if ring is completely cleaned
6947 **/
6948 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
6949 {
6950 struct igb_adapter *adapter = q_vector->adapter;
6951 struct igb_ring *tx_ring = q_vector->tx.ring;
6952 struct igb_tx_buffer *tx_buffer;
6953 union e1000_adv_tx_desc *tx_desc;
6954 unsigned int total_bytes = 0, total_packets = 0;
6955 unsigned int budget = q_vector->tx.work_limit;
6956 unsigned int i = tx_ring->next_to_clean;
6957
6958 if (test_bit(__IGB_DOWN, &adapter->state))
6959 return true;
6960
6961 tx_buffer = &tx_ring->tx_buffer_info[i];
6962 tx_desc = IGB_TX_DESC(tx_ring, i);
6963 i -= tx_ring->count;
6964
6965 do {
6966 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6967
6968 /* if next_to_watch is not set then there is no work pending */
6969 if (!eop_desc)
6970 break;
6971
6972 /* prevent any other reads prior to eop_desc */
6973 read_barrier_depends();
6974
6975 /* if DD is not set pending work has not been completed */
6976 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6977 break;
6978
6979 /* clear next_to_watch to prevent false hangs */
6980 tx_buffer->next_to_watch = NULL;
6981
6982 /* update the statistics for this packet */
6983 total_bytes += tx_buffer->bytecount;
6984 total_packets += tx_buffer->gso_segs;
6985
6986 /* free the skb */
6987 napi_consume_skb(tx_buffer->skb, napi_budget);
6988
6989 /* unmap skb header data */
6990 dma_unmap_single(tx_ring->dev,
6991 dma_unmap_addr(tx_buffer, dma),
6992 dma_unmap_len(tx_buffer, len),
6993 DMA_TO_DEVICE);
6994
6995 /* clear tx_buffer data */
6996 dma_unmap_len_set(tx_buffer, len, 0);
6997
6998 /* clear last DMA location and unmap remaining buffers */
6999 while (tx_desc != eop_desc) {
7000 tx_buffer++;
7001 tx_desc++;
7002 i++;
7003 if (unlikely(!i)) {
7004 i -= tx_ring->count;
7005 tx_buffer = tx_ring->tx_buffer_info;
7006 tx_desc = IGB_TX_DESC(tx_ring, 0);
7007 }
7008
7009 /* unmap any remaining paged data */
7010 if (dma_unmap_len(tx_buffer, len)) {
7011 dma_unmap_page(tx_ring->dev,
7012 dma_unmap_addr(tx_buffer, dma),
7013 dma_unmap_len(tx_buffer, len),
7014 DMA_TO_DEVICE);
7015 dma_unmap_len_set(tx_buffer, len, 0);
7016 }
7017 }
7018
7019 /* move us one more past the eop_desc for start of next pkt */
7020 tx_buffer++;
7021 tx_desc++;
7022 i++;
7023 if (unlikely(!i)) {
7024 i -= tx_ring->count;
7025 tx_buffer = tx_ring->tx_buffer_info;
7026 tx_desc = IGB_TX_DESC(tx_ring, 0);
7027 }
7028
7029 /* issue prefetch for next Tx descriptor */
7030 prefetch(tx_desc);
7031
7032 /* update budget accounting */
7033 budget--;
7034 } while (likely(budget));
7035
7036 netdev_tx_completed_queue(txring_txq(tx_ring),
7037 total_packets, total_bytes);
7038 i += tx_ring->count;
7039 tx_ring->next_to_clean = i;
7040 u64_stats_update_begin(&tx_ring->tx_syncp);
7041 tx_ring->tx_stats.bytes += total_bytes;
7042 tx_ring->tx_stats.packets += total_packets;
7043 u64_stats_update_end(&tx_ring->tx_syncp);
7044 q_vector->tx.total_bytes += total_bytes;
7045 q_vector->tx.total_packets += total_packets;
7046
7047 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
7048 struct e1000_hw *hw = &adapter->hw;
7049
7050 /* Detect a transmit hang in hardware, this serializes the
7051 * check with the clearing of time_stamp and movement of i
7052 */
7053 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
7054 if (tx_buffer->next_to_watch &&
7055 time_after(jiffies, tx_buffer->time_stamp +
7056 (adapter->tx_timeout_factor * HZ)) &&
7057 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
7058
7059 /* detected Tx unit hang */
7060 dev_err(tx_ring->dev,
7061 "Detected Tx Unit Hang\n"
7062 " Tx Queue <%d>\n"
7063 " TDH <%x>\n"
7064 " TDT <%x>\n"
7065 " next_to_use <%x>\n"
7066 " next_to_clean <%x>\n"
7067 "buffer_info[next_to_clean]\n"
7068 " time_stamp <%lx>\n"
7069 " next_to_watch <%p>\n"
7070 " jiffies <%lx>\n"
7071 " desc.status <%x>\n",
7072 tx_ring->queue_index,
7073 rd32(E1000_TDH(tx_ring->reg_idx)),
7074 readl(tx_ring->tail),
7075 tx_ring->next_to_use,
7076 tx_ring->next_to_clean,
7077 tx_buffer->time_stamp,
7078 tx_buffer->next_to_watch,
7079 jiffies,
7080 tx_buffer->next_to_watch->wb.status);
7081 netif_stop_subqueue(tx_ring->netdev,
7082 tx_ring->queue_index);
7083
7084 /* we are about to reset, no point in enabling stuff */
7085 return true;
7086 }
7087 }
7088
7089 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
7090 if (unlikely(total_packets &&
7091 netif_carrier_ok(tx_ring->netdev) &&
7092 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
7093 /* Make sure that anybody stopping the queue after this
7094 * sees the new next_to_clean.
7095 */
7096 smp_mb();
7097 if (__netif_subqueue_stopped(tx_ring->netdev,
7098 tx_ring->queue_index) &&
7099 !(test_bit(__IGB_DOWN, &adapter->state))) {
7100 netif_wake_subqueue(tx_ring->netdev,
7101 tx_ring->queue_index);
7102
7103 u64_stats_update_begin(&tx_ring->tx_syncp);
7104 tx_ring->tx_stats.restart_queue++;
7105 u64_stats_update_end(&tx_ring->tx_syncp);
7106 }
7107 }
7108
7109 return !!budget;
7110 }
7111
7112 /**
7113 * igb_reuse_rx_page - page flip buffer and store it back on the ring
7114 * @rx_ring: rx descriptor ring to store buffers on
7115 * @old_buff: donor buffer to have page reused
7116 *
7117 * Synchronizes page for reuse by the adapter
7118 **/
7119 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
7120 struct igb_rx_buffer *old_buff)
7121 {
7122 struct igb_rx_buffer *new_buff;
7123 u16 nta = rx_ring->next_to_alloc;
7124
7125 new_buff = &rx_ring->rx_buffer_info[nta];
7126
7127 /* update, and store next to alloc */
7128 nta++;
7129 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
7130
7131 /* Transfer page from old buffer to new buffer.
7132 * Move each member individually to avoid possible store
7133 * forwarding stalls.
7134 */
7135 new_buff->dma = old_buff->dma;
7136 new_buff->page = old_buff->page;
7137 new_buff->page_offset = old_buff->page_offset;
7138 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
7139 }
7140
7141 static inline bool igb_page_is_reserved(struct page *page)
7142 {
7143 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
7144 }
7145
7146 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer)
7147 {
7148 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
7149 struct page *page = rx_buffer->page;
7150
7151 /* avoid re-using remote pages */
7152 if (unlikely(igb_page_is_reserved(page)))
7153 return false;
7154
7155 #if (PAGE_SIZE < 8192)
7156 /* if we are only owner of page we can reuse it */
7157 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
7158 return false;
7159 #else
7160 #define IGB_LAST_OFFSET \
7161 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
7162
7163 if (rx_buffer->page_offset > IGB_LAST_OFFSET)
7164 return false;
7165 #endif
7166
7167 /* If we have drained the page fragment pool we need to update
7168 * the pagecnt_bias and page count so that we fully restock the
7169 * number of references the driver holds.
7170 */
7171 if (unlikely(!pagecnt_bias)) {
7172 page_ref_add(page, USHRT_MAX);
7173 rx_buffer->pagecnt_bias = USHRT_MAX;
7174 }
7175
7176 return true;
7177 }
7178
7179 /**
7180 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
7181 * @rx_ring: rx descriptor ring to transact packets on
7182 * @rx_buffer: buffer containing page to add
7183 * @skb: sk_buff to place the data into
7184 * @size: size of buffer to be added
7185 *
7186 * This function will add the data contained in rx_buffer->page to the skb.
7187 **/
7188 static void igb_add_rx_frag(struct igb_ring *rx_ring,
7189 struct igb_rx_buffer *rx_buffer,
7190 struct sk_buff *skb,
7191 unsigned int size)
7192 {
7193 #if (PAGE_SIZE < 8192)
7194 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7195 #else
7196 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
7197 SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
7198 SKB_DATA_ALIGN(size);
7199 #endif
7200 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
7201 rx_buffer->page_offset, size, truesize);
7202 #if (PAGE_SIZE < 8192)
7203 rx_buffer->page_offset ^= truesize;
7204 #else
7205 rx_buffer->page_offset += truesize;
7206 #endif
7207 }
7208
7209 static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
7210 struct igb_rx_buffer *rx_buffer,
7211 union e1000_adv_rx_desc *rx_desc,
7212 unsigned int size)
7213 {
7214 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7215 #if (PAGE_SIZE < 8192)
7216 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7217 #else
7218 unsigned int truesize = SKB_DATA_ALIGN(size);
7219 #endif
7220 unsigned int headlen;
7221 struct sk_buff *skb;
7222
7223 /* prefetch first cache line of first page */
7224 prefetch(va);
7225 #if L1_CACHE_BYTES < 128
7226 prefetch(va + L1_CACHE_BYTES);
7227 #endif
7228
7229 /* allocate a skb to store the frags */
7230 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
7231 if (unlikely(!skb))
7232 return NULL;
7233
7234 if (unlikely(igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))) {
7235 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
7236 va += IGB_TS_HDR_LEN;
7237 size -= IGB_TS_HDR_LEN;
7238 }
7239
7240 /* Determine available headroom for copy */
7241 headlen = size;
7242 if (headlen > IGB_RX_HDR_LEN)
7243 headlen = eth_get_headlen(va, IGB_RX_HDR_LEN);
7244
7245 /* align pull length to size of long to optimize memcpy performance */
7246 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
7247
7248 /* update all of the pointers */
7249 size -= headlen;
7250 if (size) {
7251 skb_add_rx_frag(skb, 0, rx_buffer->page,
7252 (va + headlen) - page_address(rx_buffer->page),
7253 size, truesize);
7254 #if (PAGE_SIZE < 8192)
7255 rx_buffer->page_offset ^= truesize;
7256 #else
7257 rx_buffer->page_offset += truesize;
7258 #endif
7259 } else {
7260 rx_buffer->pagecnt_bias++;
7261 }
7262
7263 return skb;
7264 }
7265
7266 static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
7267 struct igb_rx_buffer *rx_buffer,
7268 union e1000_adv_rx_desc *rx_desc,
7269 unsigned int size)
7270 {
7271 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
7272 #if (PAGE_SIZE < 8192)
7273 unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
7274 #else
7275 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
7276 SKB_DATA_ALIGN(IGB_SKB_PAD + size);
7277 #endif
7278 struct sk_buff *skb;
7279
7280 /* prefetch first cache line of first page */
7281 prefetch(va);
7282 #if L1_CACHE_BYTES < 128
7283 prefetch(va + L1_CACHE_BYTES);
7284 #endif
7285
7286 /* build an skb around the page buffer */
7287 skb = build_skb(va - IGB_SKB_PAD, truesize);
7288 if (unlikely(!skb))
7289 return NULL;
7290
7291 /* update pointers within the skb to store the data */
7292 skb_reserve(skb, IGB_SKB_PAD);
7293 __skb_put(skb, size);
7294
7295 /* pull timestamp out of packet data */
7296 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
7297 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
7298 __skb_pull(skb, IGB_TS_HDR_LEN);
7299 }
7300
7301 /* update buffer offset */
7302 #if (PAGE_SIZE < 8192)
7303 rx_buffer->page_offset ^= truesize;
7304 #else
7305 rx_buffer->page_offset += truesize;
7306 #endif
7307
7308 return skb;
7309 }
7310
7311 static inline void igb_rx_checksum(struct igb_ring *ring,
7312 union e1000_adv_rx_desc *rx_desc,
7313 struct sk_buff *skb)
7314 {
7315 skb_checksum_none_assert(skb);
7316
7317 /* Ignore Checksum bit is set */
7318 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
7319 return;
7320
7321 /* Rx checksum disabled via ethtool */
7322 if (!(ring->netdev->features & NETIF_F_RXCSUM))
7323 return;
7324
7325 /* TCP/UDP checksum error bit is set */
7326 if (igb_test_staterr(rx_desc,
7327 E1000_RXDEXT_STATERR_TCPE |
7328 E1000_RXDEXT_STATERR_IPE)) {
7329 /* work around errata with sctp packets where the TCPE aka
7330 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
7331 * packets, (aka let the stack check the crc32c)
7332 */
7333 if (!((skb->len == 60) &&
7334 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
7335 u64_stats_update_begin(&ring->rx_syncp);
7336 ring->rx_stats.csum_err++;
7337 u64_stats_update_end(&ring->rx_syncp);
7338 }
7339 /* let the stack verify checksum errors */
7340 return;
7341 }
7342 /* It must be a TCP or UDP packet with a valid checksum */
7343 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
7344 E1000_RXD_STAT_UDPCS))
7345 skb->ip_summed = CHECKSUM_UNNECESSARY;
7346
7347 dev_dbg(ring->dev, "cksum success: bits %08X\n",
7348 le32_to_cpu(rx_desc->wb.upper.status_error));
7349 }
7350
7351 static inline void igb_rx_hash(struct igb_ring *ring,
7352 union e1000_adv_rx_desc *rx_desc,
7353 struct sk_buff *skb)
7354 {
7355 if (ring->netdev->features & NETIF_F_RXHASH)
7356 skb_set_hash(skb,
7357 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
7358 PKT_HASH_TYPE_L3);
7359 }
7360
7361 /**
7362 * igb_is_non_eop - process handling of non-EOP buffers
7363 * @rx_ring: Rx ring being processed
7364 * @rx_desc: Rx descriptor for current buffer
7365 * @skb: current socket buffer containing buffer in progress
7366 *
7367 * This function updates next to clean. If the buffer is an EOP buffer
7368 * this function exits returning false, otherwise it will place the
7369 * sk_buff in the next buffer to be chained and return true indicating
7370 * that this is in fact a non-EOP buffer.
7371 **/
7372 static bool igb_is_non_eop(struct igb_ring *rx_ring,
7373 union e1000_adv_rx_desc *rx_desc)
7374 {
7375 u32 ntc = rx_ring->next_to_clean + 1;
7376
7377 /* fetch, update, and store next to clean */
7378 ntc = (ntc < rx_ring->count) ? ntc : 0;
7379 rx_ring->next_to_clean = ntc;
7380
7381 prefetch(IGB_RX_DESC(rx_ring, ntc));
7382
7383 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
7384 return false;
7385
7386 return true;
7387 }
7388
7389 /**
7390 * igb_cleanup_headers - Correct corrupted or empty headers
7391 * @rx_ring: rx descriptor ring packet is being transacted on
7392 * @rx_desc: pointer to the EOP Rx descriptor
7393 * @skb: pointer to current skb being fixed
7394 *
7395 * Address the case where we are pulling data in on pages only
7396 * and as such no data is present in the skb header.
7397 *
7398 * In addition if skb is not at least 60 bytes we need to pad it so that
7399 * it is large enough to qualify as a valid Ethernet frame.
7400 *
7401 * Returns true if an error was encountered and skb was freed.
7402 **/
7403 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
7404 union e1000_adv_rx_desc *rx_desc,
7405 struct sk_buff *skb)
7406 {
7407 if (unlikely((igb_test_staterr(rx_desc,
7408 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
7409 struct net_device *netdev = rx_ring->netdev;
7410 if (!(netdev->features & NETIF_F_RXALL)) {
7411 dev_kfree_skb_any(skb);
7412 return true;
7413 }
7414 }
7415
7416 /* if eth_skb_pad returns an error the skb was freed */
7417 if (eth_skb_pad(skb))
7418 return true;
7419
7420 return false;
7421 }
7422
7423 /**
7424 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
7425 * @rx_ring: rx descriptor ring packet is being transacted on
7426 * @rx_desc: pointer to the EOP Rx descriptor
7427 * @skb: pointer to current skb being populated
7428 *
7429 * This function checks the ring, descriptor, and packet information in
7430 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
7431 * other fields within the skb.
7432 **/
7433 static void igb_process_skb_fields(struct igb_ring *rx_ring,
7434 union e1000_adv_rx_desc *rx_desc,
7435 struct sk_buff *skb)
7436 {
7437 struct net_device *dev = rx_ring->netdev;
7438
7439 igb_rx_hash(rx_ring, rx_desc, skb);
7440
7441 igb_rx_checksum(rx_ring, rx_desc, skb);
7442
7443 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
7444 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
7445 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
7446
7447 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
7448 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
7449 u16 vid;
7450
7451 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
7452 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
7453 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
7454 else
7455 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
7456
7457 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
7458 }
7459
7460 skb_record_rx_queue(skb, rx_ring->queue_index);
7461
7462 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
7463 }
7464
7465 static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
7466 const unsigned int size)
7467 {
7468 struct igb_rx_buffer *rx_buffer;
7469
7470 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
7471 prefetchw(rx_buffer->page);
7472
7473 /* we are reusing so sync this buffer for CPU use */
7474 dma_sync_single_range_for_cpu(rx_ring->dev,
7475 rx_buffer->dma,
7476 rx_buffer->page_offset,
7477 size,
7478 DMA_FROM_DEVICE);
7479
7480 rx_buffer->pagecnt_bias--;
7481
7482 return rx_buffer;
7483 }
7484
7485 static void igb_put_rx_buffer(struct igb_ring *rx_ring,
7486 struct igb_rx_buffer *rx_buffer)
7487 {
7488 if (igb_can_reuse_rx_page(rx_buffer)) {
7489 /* hand second half of page back to the ring */
7490 igb_reuse_rx_page(rx_ring, rx_buffer);
7491 } else {
7492 /* We are not reusing the buffer so unmap it and free
7493 * any references we are holding to it
7494 */
7495 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
7496 igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
7497 IGB_RX_DMA_ATTR);
7498 __page_frag_cache_drain(rx_buffer->page,
7499 rx_buffer->pagecnt_bias);
7500 }
7501
7502 /* clear contents of rx_buffer */
7503 rx_buffer->page = NULL;
7504 }
7505
7506 static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
7507 {
7508 struct igb_ring *rx_ring = q_vector->rx.ring;
7509 struct sk_buff *skb = rx_ring->skb;
7510 unsigned int total_bytes = 0, total_packets = 0;
7511 u16 cleaned_count = igb_desc_unused(rx_ring);
7512
7513 while (likely(total_packets < budget)) {
7514 union e1000_adv_rx_desc *rx_desc;
7515 struct igb_rx_buffer *rx_buffer;
7516 unsigned int size;
7517
7518 /* return some buffers to hardware, one at a time is too slow */
7519 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
7520 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7521 cleaned_count = 0;
7522 }
7523
7524 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
7525 size = le16_to_cpu(rx_desc->wb.upper.length);
7526 if (!size)
7527 break;
7528
7529 /* This memory barrier is needed to keep us from reading
7530 * any other fields out of the rx_desc until we know the
7531 * descriptor has been written back
7532 */
7533 dma_rmb();
7534
7535 rx_buffer = igb_get_rx_buffer(rx_ring, size);
7536
7537 /* retrieve a buffer from the ring */
7538 if (skb)
7539 igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
7540 else if (ring_uses_build_skb(rx_ring))
7541 skb = igb_build_skb(rx_ring, rx_buffer, rx_desc, size);
7542 else
7543 skb = igb_construct_skb(rx_ring, rx_buffer,
7544 rx_desc, size);
7545
7546 /* exit if we failed to retrieve a buffer */
7547 if (!skb) {
7548 rx_ring->rx_stats.alloc_failed++;
7549 rx_buffer->pagecnt_bias++;
7550 break;
7551 }
7552
7553 igb_put_rx_buffer(rx_ring, rx_buffer);
7554 cleaned_count++;
7555
7556 /* fetch next buffer in frame if non-eop */
7557 if (igb_is_non_eop(rx_ring, rx_desc))
7558 continue;
7559
7560 /* verify the packet layout is correct */
7561 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
7562 skb = NULL;
7563 continue;
7564 }
7565
7566 /* probably a little skewed due to removing CRC */
7567 total_bytes += skb->len;
7568
7569 /* populate checksum, timestamp, VLAN, and protocol */
7570 igb_process_skb_fields(rx_ring, rx_desc, skb);
7571
7572 napi_gro_receive(&q_vector->napi, skb);
7573
7574 /* reset skb pointer */
7575 skb = NULL;
7576
7577 /* update budget accounting */
7578 total_packets++;
7579 }
7580
7581 /* place incomplete frames back on ring for completion */
7582 rx_ring->skb = skb;
7583
7584 u64_stats_update_begin(&rx_ring->rx_syncp);
7585 rx_ring->rx_stats.packets += total_packets;
7586 rx_ring->rx_stats.bytes += total_bytes;
7587 u64_stats_update_end(&rx_ring->rx_syncp);
7588 q_vector->rx.total_packets += total_packets;
7589 q_vector->rx.total_bytes += total_bytes;
7590
7591 if (cleaned_count)
7592 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7593
7594 return total_packets;
7595 }
7596
7597 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
7598 {
7599 return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
7600 }
7601
7602 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7603 struct igb_rx_buffer *bi)
7604 {
7605 struct page *page = bi->page;
7606 dma_addr_t dma;
7607
7608 /* since we are recycling buffers we should seldom need to alloc */
7609 if (likely(page))
7610 return true;
7611
7612 /* alloc new page for storage */
7613 page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
7614 if (unlikely(!page)) {
7615 rx_ring->rx_stats.alloc_failed++;
7616 return false;
7617 }
7618
7619 /* map page for use */
7620 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
7621 igb_rx_pg_size(rx_ring),
7622 DMA_FROM_DEVICE,
7623 IGB_RX_DMA_ATTR);
7624
7625 /* if mapping failed free memory back to system since
7626 * there isn't much point in holding memory we can't use
7627 */
7628 if (dma_mapping_error(rx_ring->dev, dma)) {
7629 __free_pages(page, igb_rx_pg_order(rx_ring));
7630
7631 rx_ring->rx_stats.alloc_failed++;
7632 return false;
7633 }
7634
7635 bi->dma = dma;
7636 bi->page = page;
7637 bi->page_offset = igb_rx_offset(rx_ring);
7638 bi->pagecnt_bias = 1;
7639
7640 return true;
7641 }
7642
7643 /**
7644 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7645 * @adapter: address of board private structure
7646 **/
7647 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7648 {
7649 union e1000_adv_rx_desc *rx_desc;
7650 struct igb_rx_buffer *bi;
7651 u16 i = rx_ring->next_to_use;
7652 u16 bufsz;
7653
7654 /* nothing to do */
7655 if (!cleaned_count)
7656 return;
7657
7658 rx_desc = IGB_RX_DESC(rx_ring, i);
7659 bi = &rx_ring->rx_buffer_info[i];
7660 i -= rx_ring->count;
7661
7662 bufsz = igb_rx_bufsz(rx_ring);
7663
7664 do {
7665 if (!igb_alloc_mapped_page(rx_ring, bi))
7666 break;
7667
7668 /* sync the buffer for use by the device */
7669 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
7670 bi->page_offset, bufsz,
7671 DMA_FROM_DEVICE);
7672
7673 /* Refresh the desc even if buffer_addrs didn't change
7674 * because each write-back erases this info.
7675 */
7676 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7677
7678 rx_desc++;
7679 bi++;
7680 i++;
7681 if (unlikely(!i)) {
7682 rx_desc = IGB_RX_DESC(rx_ring, 0);
7683 bi = rx_ring->rx_buffer_info;
7684 i -= rx_ring->count;
7685 }
7686
7687 /* clear the length for the next_to_use descriptor */
7688 rx_desc->wb.upper.length = 0;
7689
7690 cleaned_count--;
7691 } while (cleaned_count);
7692
7693 i += rx_ring->count;
7694
7695 if (rx_ring->next_to_use != i) {
7696 /* record the next descriptor to use */
7697 rx_ring->next_to_use = i;
7698
7699 /* update next to alloc since we have filled the ring */
7700 rx_ring->next_to_alloc = i;
7701
7702 /* Force memory writes to complete before letting h/w
7703 * know there are new descriptors to fetch. (Only
7704 * applicable for weak-ordered memory model archs,
7705 * such as IA-64).
7706 */
7707 wmb();
7708 writel(i, rx_ring->tail);
7709 }
7710 }
7711
7712 /**
7713 * igb_mii_ioctl -
7714 * @netdev:
7715 * @ifreq:
7716 * @cmd:
7717 **/
7718 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7719 {
7720 struct igb_adapter *adapter = netdev_priv(netdev);
7721 struct mii_ioctl_data *data = if_mii(ifr);
7722
7723 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7724 return -EOPNOTSUPP;
7725
7726 switch (cmd) {
7727 case SIOCGMIIPHY:
7728 data->phy_id = adapter->hw.phy.addr;
7729 break;
7730 case SIOCGMIIREG:
7731 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7732 &data->val_out))
7733 return -EIO;
7734 break;
7735 case SIOCSMIIREG:
7736 default:
7737 return -EOPNOTSUPP;
7738 }
7739 return 0;
7740 }
7741
7742 /**
7743 * igb_ioctl -
7744 * @netdev:
7745 * @ifreq:
7746 * @cmd:
7747 **/
7748 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7749 {
7750 switch (cmd) {
7751 case SIOCGMIIPHY:
7752 case SIOCGMIIREG:
7753 case SIOCSMIIREG:
7754 return igb_mii_ioctl(netdev, ifr, cmd);
7755 case SIOCGHWTSTAMP:
7756 return igb_ptp_get_ts_config(netdev, ifr);
7757 case SIOCSHWTSTAMP:
7758 return igb_ptp_set_ts_config(netdev, ifr);
7759 default:
7760 return -EOPNOTSUPP;
7761 }
7762 }
7763
7764 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7765 {
7766 struct igb_adapter *adapter = hw->back;
7767
7768 pci_read_config_word(adapter->pdev, reg, value);
7769 }
7770
7771 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7772 {
7773 struct igb_adapter *adapter = hw->back;
7774
7775 pci_write_config_word(adapter->pdev, reg, *value);
7776 }
7777
7778 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7779 {
7780 struct igb_adapter *adapter = hw->back;
7781
7782 if (pcie_capability_read_word(adapter->pdev, reg, value))
7783 return -E1000_ERR_CONFIG;
7784
7785 return 0;
7786 }
7787
7788 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7789 {
7790 struct igb_adapter *adapter = hw->back;
7791
7792 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7793 return -E1000_ERR_CONFIG;
7794
7795 return 0;
7796 }
7797
7798 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7799 {
7800 struct igb_adapter *adapter = netdev_priv(netdev);
7801 struct e1000_hw *hw = &adapter->hw;
7802 u32 ctrl, rctl;
7803 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7804
7805 if (enable) {
7806 /* enable VLAN tag insert/strip */
7807 ctrl = rd32(E1000_CTRL);
7808 ctrl |= E1000_CTRL_VME;
7809 wr32(E1000_CTRL, ctrl);
7810
7811 /* Disable CFI check */
7812 rctl = rd32(E1000_RCTL);
7813 rctl &= ~E1000_RCTL_CFIEN;
7814 wr32(E1000_RCTL, rctl);
7815 } else {
7816 /* disable VLAN tag insert/strip */
7817 ctrl = rd32(E1000_CTRL);
7818 ctrl &= ~E1000_CTRL_VME;
7819 wr32(E1000_CTRL, ctrl);
7820 }
7821
7822 igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
7823 }
7824
7825 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7826 __be16 proto, u16 vid)
7827 {
7828 struct igb_adapter *adapter = netdev_priv(netdev);
7829 struct e1000_hw *hw = &adapter->hw;
7830 int pf_id = adapter->vfs_allocated_count;
7831
7832 /* add the filter since PF can receive vlans w/o entry in vlvf */
7833 if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7834 igb_vfta_set(hw, vid, pf_id, true, !!vid);
7835
7836 set_bit(vid, adapter->active_vlans);
7837
7838 return 0;
7839 }
7840
7841 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7842 __be16 proto, u16 vid)
7843 {
7844 struct igb_adapter *adapter = netdev_priv(netdev);
7845 int pf_id = adapter->vfs_allocated_count;
7846 struct e1000_hw *hw = &adapter->hw;
7847
7848 /* remove VID from filter table */
7849 if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
7850 igb_vfta_set(hw, vid, pf_id, false, true);
7851
7852 clear_bit(vid, adapter->active_vlans);
7853
7854 return 0;
7855 }
7856
7857 static void igb_restore_vlan(struct igb_adapter *adapter)
7858 {
7859 u16 vid = 1;
7860
7861 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7862 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
7863
7864 for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
7865 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7866 }
7867
7868 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7869 {
7870 struct pci_dev *pdev = adapter->pdev;
7871 struct e1000_mac_info *mac = &adapter->hw.mac;
7872
7873 mac->autoneg = 0;
7874
7875 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7876 * for the switch() below to work
7877 */
7878 if ((spd & 1) || (dplx & ~1))
7879 goto err_inval;
7880
7881 /* Fiber NIC's only allow 1000 gbps Full duplex
7882 * and 100Mbps Full duplex for 100baseFx sfp
7883 */
7884 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7885 switch (spd + dplx) {
7886 case SPEED_10 + DUPLEX_HALF:
7887 case SPEED_10 + DUPLEX_FULL:
7888 case SPEED_100 + DUPLEX_HALF:
7889 goto err_inval;
7890 default:
7891 break;
7892 }
7893 }
7894
7895 switch (spd + dplx) {
7896 case SPEED_10 + DUPLEX_HALF:
7897 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7898 break;
7899 case SPEED_10 + DUPLEX_FULL:
7900 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7901 break;
7902 case SPEED_100 + DUPLEX_HALF:
7903 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7904 break;
7905 case SPEED_100 + DUPLEX_FULL:
7906 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7907 break;
7908 case SPEED_1000 + DUPLEX_FULL:
7909 mac->autoneg = 1;
7910 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7911 break;
7912 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7913 default:
7914 goto err_inval;
7915 }
7916
7917 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7918 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7919
7920 return 0;
7921
7922 err_inval:
7923 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7924 return -EINVAL;
7925 }
7926
7927 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7928 bool runtime)
7929 {
7930 struct net_device *netdev = pci_get_drvdata(pdev);
7931 struct igb_adapter *adapter = netdev_priv(netdev);
7932 struct e1000_hw *hw = &adapter->hw;
7933 u32 ctrl, rctl, status;
7934 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7935 #ifdef CONFIG_PM
7936 int retval = 0;
7937 #endif
7938
7939 rtnl_lock();
7940 netif_device_detach(netdev);
7941
7942 if (netif_running(netdev))
7943 __igb_close(netdev, true);
7944
7945 igb_ptp_suspend(adapter);
7946
7947 igb_clear_interrupt_scheme(adapter);
7948 rtnl_unlock();
7949
7950 #ifdef CONFIG_PM
7951 retval = pci_save_state(pdev);
7952 if (retval)
7953 return retval;
7954 #endif
7955
7956 status = rd32(E1000_STATUS);
7957 if (status & E1000_STATUS_LU)
7958 wufc &= ~E1000_WUFC_LNKC;
7959
7960 if (wufc) {
7961 igb_setup_rctl(adapter);
7962 igb_set_rx_mode(netdev);
7963
7964 /* turn on all-multi mode if wake on multicast is enabled */
7965 if (wufc & E1000_WUFC_MC) {
7966 rctl = rd32(E1000_RCTL);
7967 rctl |= E1000_RCTL_MPE;
7968 wr32(E1000_RCTL, rctl);
7969 }
7970
7971 ctrl = rd32(E1000_CTRL);
7972 /* advertise wake from D3Cold */
7973 #define E1000_CTRL_ADVD3WUC 0x00100000
7974 /* phy power management enable */
7975 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7976 ctrl |= E1000_CTRL_ADVD3WUC;
7977 wr32(E1000_CTRL, ctrl);
7978
7979 /* Allow time for pending master requests to run */
7980 igb_disable_pcie_master(hw);
7981
7982 wr32(E1000_WUC, E1000_WUC_PME_EN);
7983 wr32(E1000_WUFC, wufc);
7984 } else {
7985 wr32(E1000_WUC, 0);
7986 wr32(E1000_WUFC, 0);
7987 }
7988
7989 *enable_wake = wufc || adapter->en_mng_pt;
7990 if (!*enable_wake)
7991 igb_power_down_link(adapter);
7992 else
7993 igb_power_up_link(adapter);
7994
7995 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7996 * would have already happened in close and is redundant.
7997 */
7998 igb_release_hw_control(adapter);
7999
8000 pci_disable_device(pdev);
8001
8002 return 0;
8003 }
8004
8005 static void igb_deliver_wake_packet(struct net_device *netdev)
8006 {
8007 struct igb_adapter *adapter = netdev_priv(netdev);
8008 struct e1000_hw *hw = &adapter->hw;
8009 struct sk_buff *skb;
8010 u32 wupl;
8011
8012 wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
8013
8014 /* WUPM stores only the first 128 bytes of the wake packet.
8015 * Read the packet only if we have the whole thing.
8016 */
8017 if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
8018 return;
8019
8020 skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
8021 if (!skb)
8022 return;
8023
8024 skb_put(skb, wupl);
8025
8026 /* Ensure reads are 32-bit aligned */
8027 wupl = roundup(wupl, 4);
8028
8029 memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
8030
8031 skb->protocol = eth_type_trans(skb, netdev);
8032 netif_rx(skb);
8033 }
8034
8035 static int __maybe_unused igb_suspend(struct device *dev)
8036 {
8037 int retval;
8038 bool wake;
8039 struct pci_dev *pdev = to_pci_dev(dev);
8040
8041 retval = __igb_shutdown(pdev, &wake, 0);
8042 if (retval)
8043 return retval;
8044
8045 if (wake) {
8046 pci_prepare_to_sleep(pdev);
8047 } else {
8048 pci_wake_from_d3(pdev, false);
8049 pci_set_power_state(pdev, PCI_D3hot);
8050 }
8051
8052 return 0;
8053 }
8054
8055 static int __maybe_unused igb_resume(struct device *dev)
8056 {
8057 struct pci_dev *pdev = to_pci_dev(dev);
8058 struct net_device *netdev = pci_get_drvdata(pdev);
8059 struct igb_adapter *adapter = netdev_priv(netdev);
8060 struct e1000_hw *hw = &adapter->hw;
8061 u32 err, val;
8062
8063 pci_set_power_state(pdev, PCI_D0);
8064 pci_restore_state(pdev);
8065 pci_save_state(pdev);
8066
8067 if (!pci_device_is_present(pdev))
8068 return -ENODEV;
8069 err = pci_enable_device_mem(pdev);
8070 if (err) {
8071 dev_err(&pdev->dev,
8072 "igb: Cannot enable PCI device from suspend\n");
8073 return err;
8074 }
8075 pci_set_master(pdev);
8076
8077 pci_enable_wake(pdev, PCI_D3hot, 0);
8078 pci_enable_wake(pdev, PCI_D3cold, 0);
8079
8080 if (igb_init_interrupt_scheme(adapter, true)) {
8081 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8082 return -ENOMEM;
8083 }
8084
8085 igb_reset(adapter);
8086
8087 /* let the f/w know that the h/w is now under the control of the
8088 * driver.
8089 */
8090 igb_get_hw_control(adapter);
8091
8092 val = rd32(E1000_WUS);
8093 if (val & WAKE_PKT_WUS)
8094 igb_deliver_wake_packet(netdev);
8095
8096 wr32(E1000_WUS, ~0);
8097
8098 rtnl_lock();
8099 if (!err && netif_running(netdev))
8100 err = __igb_open(netdev, true);
8101
8102 if (!err)
8103 netif_device_attach(netdev);
8104 rtnl_unlock();
8105
8106 return err;
8107 }
8108
8109 static int __maybe_unused igb_runtime_idle(struct device *dev)
8110 {
8111 struct pci_dev *pdev = to_pci_dev(dev);
8112 struct net_device *netdev = pci_get_drvdata(pdev);
8113 struct igb_adapter *adapter = netdev_priv(netdev);
8114
8115 if (!igb_has_link(adapter))
8116 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
8117
8118 return -EBUSY;
8119 }
8120
8121 static int __maybe_unused igb_runtime_suspend(struct device *dev)
8122 {
8123 struct pci_dev *pdev = to_pci_dev(dev);
8124 int retval;
8125 bool wake;
8126
8127 retval = __igb_shutdown(pdev, &wake, 1);
8128 if (retval)
8129 return retval;
8130
8131 if (wake) {
8132 pci_prepare_to_sleep(pdev);
8133 } else {
8134 pci_wake_from_d3(pdev, false);
8135 pci_set_power_state(pdev, PCI_D3hot);
8136 }
8137
8138 return 0;
8139 }
8140
8141 static int __maybe_unused igb_runtime_resume(struct device *dev)
8142 {
8143 return igb_resume(dev);
8144 }
8145
8146 static void igb_shutdown(struct pci_dev *pdev)
8147 {
8148 bool wake;
8149
8150 __igb_shutdown(pdev, &wake, 0);
8151
8152 if (system_state == SYSTEM_POWER_OFF) {
8153 pci_wake_from_d3(pdev, wake);
8154 pci_set_power_state(pdev, PCI_D3hot);
8155 }
8156 }
8157
8158 #ifdef CONFIG_PCI_IOV
8159 static int igb_sriov_reinit(struct pci_dev *dev)
8160 {
8161 struct net_device *netdev = pci_get_drvdata(dev);
8162 struct igb_adapter *adapter = netdev_priv(netdev);
8163 struct pci_dev *pdev = adapter->pdev;
8164
8165 rtnl_lock();
8166
8167 if (netif_running(netdev))
8168 igb_close(netdev);
8169 else
8170 igb_reset(adapter);
8171
8172 igb_clear_interrupt_scheme(adapter);
8173
8174 igb_init_queue_configuration(adapter);
8175
8176 if (igb_init_interrupt_scheme(adapter, true)) {
8177 rtnl_unlock();
8178 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8179 return -ENOMEM;
8180 }
8181
8182 if (netif_running(netdev))
8183 igb_open(netdev);
8184
8185 rtnl_unlock();
8186
8187 return 0;
8188 }
8189
8190 static int igb_pci_disable_sriov(struct pci_dev *dev)
8191 {
8192 int err = igb_disable_sriov(dev);
8193
8194 if (!err)
8195 err = igb_sriov_reinit(dev);
8196
8197 return err;
8198 }
8199
8200 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
8201 {
8202 int err = igb_enable_sriov(dev, num_vfs);
8203
8204 if (err)
8205 goto out;
8206
8207 err = igb_sriov_reinit(dev);
8208 if (!err)
8209 return num_vfs;
8210
8211 out:
8212 return err;
8213 }
8214
8215 #endif
8216 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
8217 {
8218 #ifdef CONFIG_PCI_IOV
8219 if (num_vfs == 0)
8220 return igb_pci_disable_sriov(dev);
8221 else
8222 return igb_pci_enable_sriov(dev, num_vfs);
8223 #endif
8224 return 0;
8225 }
8226
8227 #ifdef CONFIG_NET_POLL_CONTROLLER
8228 /* Polling 'interrupt' - used by things like netconsole to send skbs
8229 * without having to re-enable interrupts. It's not called while
8230 * the interrupt routine is executing.
8231 */
8232 static void igb_netpoll(struct net_device *netdev)
8233 {
8234 struct igb_adapter *adapter = netdev_priv(netdev);
8235 struct e1000_hw *hw = &adapter->hw;
8236 struct igb_q_vector *q_vector;
8237 int i;
8238
8239 for (i = 0; i < adapter->num_q_vectors; i++) {
8240 q_vector = adapter->q_vector[i];
8241 if (adapter->flags & IGB_FLAG_HAS_MSIX)
8242 wr32(E1000_EIMC, q_vector->eims_value);
8243 else
8244 igb_irq_disable(adapter);
8245 napi_schedule(&q_vector->napi);
8246 }
8247 }
8248 #endif /* CONFIG_NET_POLL_CONTROLLER */
8249
8250 /**
8251 * igb_io_error_detected - called when PCI error is detected
8252 * @pdev: Pointer to PCI device
8253 * @state: The current pci connection state
8254 *
8255 * This function is called after a PCI bus error affecting
8256 * this device has been detected.
8257 **/
8258 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
8259 pci_channel_state_t state)
8260 {
8261 struct net_device *netdev = pci_get_drvdata(pdev);
8262 struct igb_adapter *adapter = netdev_priv(netdev);
8263
8264 netif_device_detach(netdev);
8265
8266 if (state == pci_channel_io_perm_failure)
8267 return PCI_ERS_RESULT_DISCONNECT;
8268
8269 if (netif_running(netdev))
8270 igb_down(adapter);
8271 pci_disable_device(pdev);
8272
8273 /* Request a slot slot reset. */
8274 return PCI_ERS_RESULT_NEED_RESET;
8275 }
8276
8277 /**
8278 * igb_io_slot_reset - called after the pci bus has been reset.
8279 * @pdev: Pointer to PCI device
8280 *
8281 * Restart the card from scratch, as if from a cold-boot. Implementation
8282 * resembles the first-half of the igb_resume routine.
8283 **/
8284 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
8285 {
8286 struct net_device *netdev = pci_get_drvdata(pdev);
8287 struct igb_adapter *adapter = netdev_priv(netdev);
8288 struct e1000_hw *hw = &adapter->hw;
8289 pci_ers_result_t result;
8290 int err;
8291
8292 if (pci_enable_device_mem(pdev)) {
8293 dev_err(&pdev->dev,
8294 "Cannot re-enable PCI device after reset.\n");
8295 result = PCI_ERS_RESULT_DISCONNECT;
8296 } else {
8297 pci_set_master(pdev);
8298 pci_restore_state(pdev);
8299 pci_save_state(pdev);
8300
8301 pci_enable_wake(pdev, PCI_D3hot, 0);
8302 pci_enable_wake(pdev, PCI_D3cold, 0);
8303
8304 /* In case of PCI error, adapter lose its HW address
8305 * so we should re-assign it here.
8306 */
8307 hw->hw_addr = adapter->io_addr;
8308
8309 igb_reset(adapter);
8310 wr32(E1000_WUS, ~0);
8311 result = PCI_ERS_RESULT_RECOVERED;
8312 }
8313
8314 err = pci_cleanup_aer_uncorrect_error_status(pdev);
8315 if (err) {
8316 dev_err(&pdev->dev,
8317 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
8318 err);
8319 /* non-fatal, continue */
8320 }
8321
8322 return result;
8323 }
8324
8325 /**
8326 * igb_io_resume - called when traffic can start flowing again.
8327 * @pdev: Pointer to PCI device
8328 *
8329 * This callback is called when the error recovery driver tells us that
8330 * its OK to resume normal operation. Implementation resembles the
8331 * second-half of the igb_resume routine.
8332 */
8333 static void igb_io_resume(struct pci_dev *pdev)
8334 {
8335 struct net_device *netdev = pci_get_drvdata(pdev);
8336 struct igb_adapter *adapter = netdev_priv(netdev);
8337
8338 if (netif_running(netdev)) {
8339 if (igb_up(adapter)) {
8340 dev_err(&pdev->dev, "igb_up failed after reset\n");
8341 return;
8342 }
8343 }
8344
8345 netif_device_attach(netdev);
8346
8347 /* let the f/w know that the h/w is now under the control of the
8348 * driver.
8349 */
8350 igb_get_hw_control(adapter);
8351 }
8352
8353 /**
8354 * igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
8355 * @adapter: Pointer to adapter structure
8356 * @index: Index of the RAR entry which need to be synced with MAC table
8357 **/
8358 static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
8359 {
8360 struct e1000_hw *hw = &adapter->hw;
8361 u32 rar_low, rar_high;
8362 u8 *addr = adapter->mac_table[index].addr;
8363
8364 /* HW expects these to be in network order when they are plugged
8365 * into the registers which are little endian. In order to guarantee
8366 * that ordering we need to do an leXX_to_cpup here in order to be
8367 * ready for the byteswap that occurs with writel
8368 */
8369 rar_low = le32_to_cpup((__le32 *)(addr));
8370 rar_high = le16_to_cpup((__le16 *)(addr + 4));
8371
8372 /* Indicate to hardware the Address is Valid. */
8373 if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
8374 rar_high |= E1000_RAH_AV;
8375
8376 if (hw->mac.type == e1000_82575)
8377 rar_high |= E1000_RAH_POOL_1 *
8378 adapter->mac_table[index].queue;
8379 else
8380 rar_high |= E1000_RAH_POOL_1 <<
8381 adapter->mac_table[index].queue;
8382 }
8383
8384 wr32(E1000_RAL(index), rar_low);
8385 wrfl();
8386 wr32(E1000_RAH(index), rar_high);
8387 wrfl();
8388 }
8389
8390 static int igb_set_vf_mac(struct igb_adapter *adapter,
8391 int vf, unsigned char *mac_addr)
8392 {
8393 struct e1000_hw *hw = &adapter->hw;
8394 /* VF MAC addresses start at end of receive addresses and moves
8395 * towards the first, as a result a collision should not be possible
8396 */
8397 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
8398 unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
8399
8400 ether_addr_copy(vf_mac_addr, mac_addr);
8401 ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
8402 adapter->mac_table[rar_entry].queue = vf;
8403 adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
8404 igb_rar_set_index(adapter, rar_entry);
8405
8406 return 0;
8407 }
8408
8409 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
8410 {
8411 struct igb_adapter *adapter = netdev_priv(netdev);
8412 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
8413 return -EINVAL;
8414 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
8415 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
8416 dev_info(&adapter->pdev->dev,
8417 "Reload the VF driver to make this change effective.");
8418 if (test_bit(__IGB_DOWN, &adapter->state)) {
8419 dev_warn(&adapter->pdev->dev,
8420 "The VF MAC address has been set, but the PF device is not up.\n");
8421 dev_warn(&adapter->pdev->dev,
8422 "Bring the PF device up before attempting to use the VF device.\n");
8423 }
8424 return igb_set_vf_mac(adapter, vf, mac);
8425 }
8426
8427 static int igb_link_mbps(int internal_link_speed)
8428 {
8429 switch (internal_link_speed) {
8430 case SPEED_100:
8431 return 100;
8432 case SPEED_1000:
8433 return 1000;
8434 default:
8435 return 0;
8436 }
8437 }
8438
8439 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
8440 int link_speed)
8441 {
8442 int rf_dec, rf_int;
8443 u32 bcnrc_val;
8444
8445 if (tx_rate != 0) {
8446 /* Calculate the rate factor values to set */
8447 rf_int = link_speed / tx_rate;
8448 rf_dec = (link_speed - (rf_int * tx_rate));
8449 rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
8450 tx_rate;
8451
8452 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
8453 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
8454 E1000_RTTBCNRC_RF_INT_MASK);
8455 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
8456 } else {
8457 bcnrc_val = 0;
8458 }
8459
8460 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
8461 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
8462 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
8463 */
8464 wr32(E1000_RTTBCNRM, 0x14);
8465 wr32(E1000_RTTBCNRC, bcnrc_val);
8466 }
8467
8468 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
8469 {
8470 int actual_link_speed, i;
8471 bool reset_rate = false;
8472
8473 /* VF TX rate limit was not set or not supported */
8474 if ((adapter->vf_rate_link_speed == 0) ||
8475 (adapter->hw.mac.type != e1000_82576))
8476 return;
8477
8478 actual_link_speed = igb_link_mbps(adapter->link_speed);
8479 if (actual_link_speed != adapter->vf_rate_link_speed) {
8480 reset_rate = true;
8481 adapter->vf_rate_link_speed = 0;
8482 dev_info(&adapter->pdev->dev,
8483 "Link speed has been changed. VF Transmit rate is disabled\n");
8484 }
8485
8486 for (i = 0; i < adapter->vfs_allocated_count; i++) {
8487 if (reset_rate)
8488 adapter->vf_data[i].tx_rate = 0;
8489
8490 igb_set_vf_rate_limit(&adapter->hw, i,
8491 adapter->vf_data[i].tx_rate,
8492 actual_link_speed);
8493 }
8494 }
8495
8496 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
8497 int min_tx_rate, int max_tx_rate)
8498 {
8499 struct igb_adapter *adapter = netdev_priv(netdev);
8500 struct e1000_hw *hw = &adapter->hw;
8501 int actual_link_speed;
8502
8503 if (hw->mac.type != e1000_82576)
8504 return -EOPNOTSUPP;
8505
8506 if (min_tx_rate)
8507 return -EINVAL;
8508
8509 actual_link_speed = igb_link_mbps(adapter->link_speed);
8510 if ((vf >= adapter->vfs_allocated_count) ||
8511 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
8512 (max_tx_rate < 0) ||
8513 (max_tx_rate > actual_link_speed))
8514 return -EINVAL;
8515
8516 adapter->vf_rate_link_speed = actual_link_speed;
8517 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
8518 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
8519
8520 return 0;
8521 }
8522
8523 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
8524 bool setting)
8525 {
8526 struct igb_adapter *adapter = netdev_priv(netdev);
8527 struct e1000_hw *hw = &adapter->hw;
8528 u32 reg_val, reg_offset;
8529
8530 if (!adapter->vfs_allocated_count)
8531 return -EOPNOTSUPP;
8532
8533 if (vf >= adapter->vfs_allocated_count)
8534 return -EINVAL;
8535
8536 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
8537 reg_val = rd32(reg_offset);
8538 if (setting)
8539 reg_val |= (BIT(vf) |
8540 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8541 else
8542 reg_val &= ~(BIT(vf) |
8543 BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
8544 wr32(reg_offset, reg_val);
8545
8546 adapter->vf_data[vf].spoofchk_enabled = setting;
8547 return 0;
8548 }
8549
8550 static int igb_ndo_get_vf_config(struct net_device *netdev,
8551 int vf, struct ifla_vf_info *ivi)
8552 {
8553 struct igb_adapter *adapter = netdev_priv(netdev);
8554 if (vf >= adapter->vfs_allocated_count)
8555 return -EINVAL;
8556 ivi->vf = vf;
8557 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
8558 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
8559 ivi->min_tx_rate = 0;
8560 ivi->vlan = adapter->vf_data[vf].pf_vlan;
8561 ivi->qos = adapter->vf_data[vf].pf_qos;
8562 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8563 return 0;
8564 }
8565
8566 static void igb_vmm_control(struct igb_adapter *adapter)
8567 {
8568 struct e1000_hw *hw = &adapter->hw;
8569 u32 reg;
8570
8571 switch (hw->mac.type) {
8572 case e1000_82575:
8573 case e1000_i210:
8574 case e1000_i211:
8575 case e1000_i354:
8576 default:
8577 /* replication is not supported for 82575 */
8578 return;
8579 case e1000_82576:
8580 /* notify HW that the MAC is adding vlan tags */
8581 reg = rd32(E1000_DTXCTL);
8582 reg |= E1000_DTXCTL_VLAN_ADDED;
8583 wr32(E1000_DTXCTL, reg);
8584 /* Fall through */
8585 case e1000_82580:
8586 /* enable replication vlan tag stripping */
8587 reg = rd32(E1000_RPLOLR);
8588 reg |= E1000_RPLOLR_STRVLAN;
8589 wr32(E1000_RPLOLR, reg);
8590 /* Fall through */
8591 case e1000_i350:
8592 /* none of the above registers are supported by i350 */
8593 break;
8594 }
8595
8596 if (adapter->vfs_allocated_count) {
8597 igb_vmdq_set_loopback_pf(hw, true);
8598 igb_vmdq_set_replication_pf(hw, true);
8599 igb_vmdq_set_anti_spoofing_pf(hw, true,
8600 adapter->vfs_allocated_count);
8601 } else {
8602 igb_vmdq_set_loopback_pf(hw, false);
8603 igb_vmdq_set_replication_pf(hw, false);
8604 }
8605 }
8606
8607 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
8608 {
8609 struct e1000_hw *hw = &adapter->hw;
8610 u32 dmac_thr;
8611 u16 hwm;
8612
8613 if (hw->mac.type > e1000_82580) {
8614 if (adapter->flags & IGB_FLAG_DMAC) {
8615 u32 reg;
8616
8617 /* force threshold to 0. */
8618 wr32(E1000_DMCTXTH, 0);
8619
8620 /* DMA Coalescing high water mark needs to be greater
8621 * than the Rx threshold. Set hwm to PBA - max frame
8622 * size in 16B units, capping it at PBA - 6KB.
8623 */
8624 hwm = 64 * (pba - 6);
8625 reg = rd32(E1000_FCRTC);
8626 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
8627 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
8628 & E1000_FCRTC_RTH_COAL_MASK);
8629 wr32(E1000_FCRTC, reg);
8630
8631 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
8632 * frame size, capping it at PBA - 10KB.
8633 */
8634 dmac_thr = pba - 10;
8635 reg = rd32(E1000_DMACR);
8636 reg &= ~E1000_DMACR_DMACTHR_MASK;
8637 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
8638 & E1000_DMACR_DMACTHR_MASK);
8639
8640 /* transition to L0x or L1 if available..*/
8641 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
8642
8643 /* watchdog timer= +-1000 usec in 32usec intervals */
8644 reg |= (1000 >> 5);
8645
8646 /* Disable BMC-to-OS Watchdog Enable */
8647 if (hw->mac.type != e1000_i354)
8648 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
8649
8650 wr32(E1000_DMACR, reg);
8651
8652 /* no lower threshold to disable
8653 * coalescing(smart fifb)-UTRESH=0
8654 */
8655 wr32(E1000_DMCRTRH, 0);
8656
8657 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
8658
8659 wr32(E1000_DMCTLX, reg);
8660
8661 /* free space in tx packet buffer to wake from
8662 * DMA coal
8663 */
8664 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8665 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8666
8667 /* make low power state decision controlled
8668 * by DMA coal
8669 */
8670 reg = rd32(E1000_PCIEMISC);
8671 reg &= ~E1000_PCIEMISC_LX_DECISION;
8672 wr32(E1000_PCIEMISC, reg);
8673 } /* endif adapter->dmac is not disabled */
8674 } else if (hw->mac.type == e1000_82580) {
8675 u32 reg = rd32(E1000_PCIEMISC);
8676
8677 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8678 wr32(E1000_DMACR, 0);
8679 }
8680 }
8681
8682 /**
8683 * igb_read_i2c_byte - Reads 8 bit word over I2C
8684 * @hw: pointer to hardware structure
8685 * @byte_offset: byte offset to read
8686 * @dev_addr: device address
8687 * @data: value read
8688 *
8689 * Performs byte read operation over I2C interface at
8690 * a specified device address.
8691 **/
8692 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8693 u8 dev_addr, u8 *data)
8694 {
8695 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8696 struct i2c_client *this_client = adapter->i2c_client;
8697 s32 status;
8698 u16 swfw_mask = 0;
8699
8700 if (!this_client)
8701 return E1000_ERR_I2C;
8702
8703 swfw_mask = E1000_SWFW_PHY0_SM;
8704
8705 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8706 return E1000_ERR_SWFW_SYNC;
8707
8708 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8709 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8710
8711 if (status < 0)
8712 return E1000_ERR_I2C;
8713 else {
8714 *data = status;
8715 return 0;
8716 }
8717 }
8718
8719 /**
8720 * igb_write_i2c_byte - Writes 8 bit word over I2C
8721 * @hw: pointer to hardware structure
8722 * @byte_offset: byte offset to write
8723 * @dev_addr: device address
8724 * @data: value to write
8725 *
8726 * Performs byte write operation over I2C interface at
8727 * a specified device address.
8728 **/
8729 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8730 u8 dev_addr, u8 data)
8731 {
8732 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8733 struct i2c_client *this_client = adapter->i2c_client;
8734 s32 status;
8735 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8736
8737 if (!this_client)
8738 return E1000_ERR_I2C;
8739
8740 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8741 return E1000_ERR_SWFW_SYNC;
8742 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8743 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8744
8745 if (status)
8746 return E1000_ERR_I2C;
8747 else
8748 return 0;
8749
8750 }
8751
8752 int igb_reinit_queues(struct igb_adapter *adapter)
8753 {
8754 struct net_device *netdev = adapter->netdev;
8755 struct pci_dev *pdev = adapter->pdev;
8756 int err = 0;
8757
8758 if (netif_running(netdev))
8759 igb_close(netdev);
8760
8761 igb_reset_interrupt_capability(adapter);
8762
8763 if (igb_init_interrupt_scheme(adapter, true)) {
8764 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8765 return -ENOMEM;
8766 }
8767
8768 if (netif_running(netdev))
8769 err = igb_open(netdev);
8770
8771 return err;
8772 }
8773
8774 static void igb_nfc_filter_exit(struct igb_adapter *adapter)
8775 {
8776 struct igb_nfc_filter *rule;
8777
8778 spin_lock(&adapter->nfc_lock);
8779
8780 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8781 igb_erase_filter(adapter, rule);
8782
8783 spin_unlock(&adapter->nfc_lock);
8784 }
8785
8786 static void igb_nfc_filter_restore(struct igb_adapter *adapter)
8787 {
8788 struct igb_nfc_filter *rule;
8789
8790 spin_lock(&adapter->nfc_lock);
8791
8792 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
8793 igb_add_filter(adapter, rule);
8794
8795 spin_unlock(&adapter->nfc_lock);
8796 }
8797 /* igb_main.c */