]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
igb: Fix code comment
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2014 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/bitops.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/netdevice.h>
36 #include <linux/ipv6.h>
37 #include <linux/slab.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #include <linux/net_tstamp.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if.h>
44 #include <linux/if_vlan.h>
45 #include <linux/pci.h>
46 #include <linux/pci-aspm.h>
47 #include <linux/delay.h>
48 #include <linux/interrupt.h>
49 #include <linux/ip.h>
50 #include <linux/tcp.h>
51 #include <linux/sctp.h>
52 #include <linux/if_ether.h>
53 #include <linux/aer.h>
54 #include <linux/prefetch.h>
55 #include <linux/pm_runtime.h>
56 #ifdef CONFIG_IGB_DCA
57 #include <linux/dca.h>
58 #endif
59 #include <linux/i2c.h>
60 #include "igb.h"
61
62 #define MAJ 5
63 #define MIN 0
64 #define BUILD 5
65 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
66 __stringify(BUILD) "-k"
67 char igb_driver_name[] = "igb";
68 char igb_driver_version[] = DRV_VERSION;
69 static const char igb_driver_string[] =
70 "Intel(R) Gigabit Ethernet Network Driver";
71 static const char igb_copyright[] =
72 "Copyright (c) 2007-2014 Intel Corporation.";
73
74 static const struct e1000_info *igb_info_tbl[] = {
75 [board_82575] = &e1000_82575_info,
76 };
77
78 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
113 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
114 /* required last entry */
115 {0, }
116 };
117
118 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
119
120 void igb_reset(struct igb_adapter *);
121 static int igb_setup_all_tx_resources(struct igb_adapter *);
122 static int igb_setup_all_rx_resources(struct igb_adapter *);
123 static void igb_free_all_tx_resources(struct igb_adapter *);
124 static void igb_free_all_rx_resources(struct igb_adapter *);
125 static void igb_setup_mrqc(struct igb_adapter *);
126 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
127 static void igb_remove(struct pci_dev *pdev);
128 static int igb_sw_init(struct igb_adapter *);
129 static int igb_open(struct net_device *);
130 static int igb_close(struct net_device *);
131 static void igb_configure(struct igb_adapter *);
132 static void igb_configure_tx(struct igb_adapter *);
133 static void igb_configure_rx(struct igb_adapter *);
134 static void igb_clean_all_tx_rings(struct igb_adapter *);
135 static void igb_clean_all_rx_rings(struct igb_adapter *);
136 static void igb_clean_tx_ring(struct igb_ring *);
137 static void igb_clean_rx_ring(struct igb_ring *);
138 static void igb_set_rx_mode(struct net_device *);
139 static void igb_update_phy_info(unsigned long);
140 static void igb_watchdog(unsigned long);
141 static void igb_watchdog_task(struct work_struct *);
142 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
143 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
144 struct rtnl_link_stats64 *stats);
145 static int igb_change_mtu(struct net_device *, int);
146 static int igb_set_mac(struct net_device *, void *);
147 static void igb_set_uta(struct igb_adapter *adapter);
148 static irqreturn_t igb_intr(int irq, void *);
149 static irqreturn_t igb_intr_msi(int irq, void *);
150 static irqreturn_t igb_msix_other(int irq, void *);
151 static irqreturn_t igb_msix_ring(int irq, void *);
152 #ifdef CONFIG_IGB_DCA
153 static void igb_update_dca(struct igb_q_vector *);
154 static void igb_setup_dca(struct igb_adapter *);
155 #endif /* CONFIG_IGB_DCA */
156 static int igb_poll(struct napi_struct *, int);
157 static bool igb_clean_tx_irq(struct igb_q_vector *);
158 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
159 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
160 static void igb_tx_timeout(struct net_device *);
161 static void igb_reset_task(struct work_struct *);
162 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
163 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
164 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
165 static void igb_restore_vlan(struct igb_adapter *);
166 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
167 static void igb_ping_all_vfs(struct igb_adapter *);
168 static void igb_msg_task(struct igb_adapter *);
169 static void igb_vmm_control(struct igb_adapter *);
170 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
171 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
172 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
173 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
174 int vf, u16 vlan, u8 qos);
175 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
176 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
177 bool setting);
178 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
179 struct ifla_vf_info *ivi);
180 static void igb_check_vf_rate_limit(struct igb_adapter *);
181
182 #ifdef CONFIG_PCI_IOV
183 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
184 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
185 #endif
186
187 #ifdef CONFIG_PM
188 #ifdef CONFIG_PM_SLEEP
189 static int igb_suspend(struct device *);
190 #endif
191 static int igb_resume(struct device *);
192 #ifdef CONFIG_PM_RUNTIME
193 static int igb_runtime_suspend(struct device *dev);
194 static int igb_runtime_resume(struct device *dev);
195 static int igb_runtime_idle(struct device *dev);
196 #endif
197 static const struct dev_pm_ops igb_pm_ops = {
198 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
199 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
200 igb_runtime_idle)
201 };
202 #endif
203 static void igb_shutdown(struct pci_dev *);
204 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
205 #ifdef CONFIG_IGB_DCA
206 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
207 static struct notifier_block dca_notifier = {
208 .notifier_call = igb_notify_dca,
209 .next = NULL,
210 .priority = 0
211 };
212 #endif
213 #ifdef CONFIG_NET_POLL_CONTROLLER
214 /* for netdump / net console */
215 static void igb_netpoll(struct net_device *);
216 #endif
217 #ifdef CONFIG_PCI_IOV
218 static unsigned int max_vfs = 0;
219 module_param(max_vfs, uint, 0);
220 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
221 "per physical function");
222 #endif /* CONFIG_PCI_IOV */
223
224 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
225 pci_channel_state_t);
226 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
227 static void igb_io_resume(struct pci_dev *);
228
229 static const struct pci_error_handlers igb_err_handler = {
230 .error_detected = igb_io_error_detected,
231 .slot_reset = igb_io_slot_reset,
232 .resume = igb_io_resume,
233 };
234
235 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
236
237 static struct pci_driver igb_driver = {
238 .name = igb_driver_name,
239 .id_table = igb_pci_tbl,
240 .probe = igb_probe,
241 .remove = igb_remove,
242 #ifdef CONFIG_PM
243 .driver.pm = &igb_pm_ops,
244 #endif
245 .shutdown = igb_shutdown,
246 .sriov_configure = igb_pci_sriov_configure,
247 .err_handler = &igb_err_handler
248 };
249
250 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
251 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
252 MODULE_LICENSE("GPL");
253 MODULE_VERSION(DRV_VERSION);
254
255 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
256 static int debug = -1;
257 module_param(debug, int, 0);
258 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
259
260 struct igb_reg_info {
261 u32 ofs;
262 char *name;
263 };
264
265 static const struct igb_reg_info igb_reg_info_tbl[] = {
266
267 /* General Registers */
268 {E1000_CTRL, "CTRL"},
269 {E1000_STATUS, "STATUS"},
270 {E1000_CTRL_EXT, "CTRL_EXT"},
271
272 /* Interrupt Registers */
273 {E1000_ICR, "ICR"},
274
275 /* RX Registers */
276 {E1000_RCTL, "RCTL"},
277 {E1000_RDLEN(0), "RDLEN"},
278 {E1000_RDH(0), "RDH"},
279 {E1000_RDT(0), "RDT"},
280 {E1000_RXDCTL(0), "RXDCTL"},
281 {E1000_RDBAL(0), "RDBAL"},
282 {E1000_RDBAH(0), "RDBAH"},
283
284 /* TX Registers */
285 {E1000_TCTL, "TCTL"},
286 {E1000_TDBAL(0), "TDBAL"},
287 {E1000_TDBAH(0), "TDBAH"},
288 {E1000_TDLEN(0), "TDLEN"},
289 {E1000_TDH(0), "TDH"},
290 {E1000_TDT(0), "TDT"},
291 {E1000_TXDCTL(0), "TXDCTL"},
292 {E1000_TDFH, "TDFH"},
293 {E1000_TDFT, "TDFT"},
294 {E1000_TDFHS, "TDFHS"},
295 {E1000_TDFPC, "TDFPC"},
296
297 /* List Terminator */
298 {}
299 };
300
301 /* igb_regdump - register printout routine */
302 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
303 {
304 int n = 0;
305 char rname[16];
306 u32 regs[8];
307
308 switch (reginfo->ofs) {
309 case E1000_RDLEN(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDLEN(n));
312 break;
313 case E1000_RDH(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDH(n));
316 break;
317 case E1000_RDT(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RDT(n));
320 break;
321 case E1000_RXDCTL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RXDCTL(n));
324 break;
325 case E1000_RDBAL(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAL(n));
328 break;
329 case E1000_RDBAH(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAH(n));
332 break;
333 case E1000_TDBAL(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_RDBAL(n));
336 break;
337 case E1000_TDBAH(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDBAH(n));
340 break;
341 case E1000_TDLEN(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDLEN(n));
344 break;
345 case E1000_TDH(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDH(n));
348 break;
349 case E1000_TDT(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TDT(n));
352 break;
353 case E1000_TXDCTL(0):
354 for (n = 0; n < 4; n++)
355 regs[n] = rd32(E1000_TXDCTL(n));
356 break;
357 default:
358 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
359 return;
360 }
361
362 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
363 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
364 regs[2], regs[3]);
365 }
366
367 /* igb_dump - Print registers, Tx-rings and Rx-rings */
368 static void igb_dump(struct igb_adapter *adapter)
369 {
370 struct net_device *netdev = adapter->netdev;
371 struct e1000_hw *hw = &adapter->hw;
372 struct igb_reg_info *reginfo;
373 struct igb_ring *tx_ring;
374 union e1000_adv_tx_desc *tx_desc;
375 struct my_u0 { u64 a; u64 b; } *u0;
376 struct igb_ring *rx_ring;
377 union e1000_adv_rx_desc *rx_desc;
378 u32 staterr;
379 u16 i, n;
380
381 if (!netif_msg_hw(adapter))
382 return;
383
384 /* Print netdevice Info */
385 if (netdev) {
386 dev_info(&adapter->pdev->dev, "Net device Info\n");
387 pr_info("Device Name state trans_start "
388 "last_rx\n");
389 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
390 netdev->state, netdev->trans_start, netdev->last_rx);
391 }
392
393 /* Print Registers */
394 dev_info(&adapter->pdev->dev, "Register Dump\n");
395 pr_info(" Register Name Value\n");
396 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
397 reginfo->name; reginfo++) {
398 igb_regdump(hw, reginfo);
399 }
400
401 /* Print TX Ring Summary */
402 if (!netdev || !netif_running(netdev))
403 goto exit;
404
405 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
406 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
407 for (n = 0; n < adapter->num_tx_queues; n++) {
408 struct igb_tx_buffer *buffer_info;
409 tx_ring = adapter->tx_ring[n];
410 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
411 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
412 n, tx_ring->next_to_use, tx_ring->next_to_clean,
413 (u64)dma_unmap_addr(buffer_info, dma),
414 dma_unmap_len(buffer_info, len),
415 buffer_info->next_to_watch,
416 (u64)buffer_info->time_stamp);
417 }
418
419 /* Print TX Rings */
420 if (!netif_msg_tx_done(adapter))
421 goto rx_ring_summary;
422
423 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
424
425 /* Transmit Descriptor Formats
426 *
427 * Advanced Transmit Descriptor
428 * +--------------------------------------------------------------+
429 * 0 | Buffer Address [63:0] |
430 * +--------------------------------------------------------------+
431 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
432 * +--------------------------------------------------------------+
433 * 63 46 45 40 39 38 36 35 32 31 24 15 0
434 */
435
436 for (n = 0; n < adapter->num_tx_queues; n++) {
437 tx_ring = adapter->tx_ring[n];
438 pr_info("------------------------------------\n");
439 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
440 pr_info("------------------------------------\n");
441 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
442 "[bi->dma ] leng ntw timestamp "
443 "bi->skb\n");
444
445 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
446 const char *next_desc;
447 struct igb_tx_buffer *buffer_info;
448 tx_desc = IGB_TX_DESC(tx_ring, i);
449 buffer_info = &tx_ring->tx_buffer_info[i];
450 u0 = (struct my_u0 *)tx_desc;
451 if (i == tx_ring->next_to_use &&
452 i == tx_ring->next_to_clean)
453 next_desc = " NTC/U";
454 else if (i == tx_ring->next_to_use)
455 next_desc = " NTU";
456 else if (i == tx_ring->next_to_clean)
457 next_desc = " NTC";
458 else
459 next_desc = "";
460
461 pr_info("T [0x%03X] %016llX %016llX %016llX"
462 " %04X %p %016llX %p%s\n", i,
463 le64_to_cpu(u0->a),
464 le64_to_cpu(u0->b),
465 (u64)dma_unmap_addr(buffer_info, dma),
466 dma_unmap_len(buffer_info, len),
467 buffer_info->next_to_watch,
468 (u64)buffer_info->time_stamp,
469 buffer_info->skb, next_desc);
470
471 if (netif_msg_pktdata(adapter) && buffer_info->skb)
472 print_hex_dump(KERN_INFO, "",
473 DUMP_PREFIX_ADDRESS,
474 16, 1, buffer_info->skb->data,
475 dma_unmap_len(buffer_info, len),
476 true);
477 }
478 }
479
480 /* Print RX Rings Summary */
481 rx_ring_summary:
482 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
483 pr_info("Queue [NTU] [NTC]\n");
484 for (n = 0; n < adapter->num_rx_queues; n++) {
485 rx_ring = adapter->rx_ring[n];
486 pr_info(" %5d %5X %5X\n",
487 n, rx_ring->next_to_use, rx_ring->next_to_clean);
488 }
489
490 /* Print RX Rings */
491 if (!netif_msg_rx_status(adapter))
492 goto exit;
493
494 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
495
496 /* Advanced Receive Descriptor (Read) Format
497 * 63 1 0
498 * +-----------------------------------------------------+
499 * 0 | Packet Buffer Address [63:1] |A0/NSE|
500 * +----------------------------------------------+------+
501 * 8 | Header Buffer Address [63:1] | DD |
502 * +-----------------------------------------------------+
503 *
504 *
505 * Advanced Receive Descriptor (Write-Back) Format
506 *
507 * 63 48 47 32 31 30 21 20 17 16 4 3 0
508 * +------------------------------------------------------+
509 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
510 * | Checksum Ident | | | | Type | Type |
511 * +------------------------------------------------------+
512 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
513 * +------------------------------------------------------+
514 * 63 48 47 32 31 20 19 0
515 */
516
517 for (n = 0; n < adapter->num_rx_queues; n++) {
518 rx_ring = adapter->rx_ring[n];
519 pr_info("------------------------------------\n");
520 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
521 pr_info("------------------------------------\n");
522 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
523 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
524 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
525 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
526
527 for (i = 0; i < rx_ring->count; i++) {
528 const char *next_desc;
529 struct igb_rx_buffer *buffer_info;
530 buffer_info = &rx_ring->rx_buffer_info[i];
531 rx_desc = IGB_RX_DESC(rx_ring, i);
532 u0 = (struct my_u0 *)rx_desc;
533 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
534
535 if (i == rx_ring->next_to_use)
536 next_desc = " NTU";
537 else if (i == rx_ring->next_to_clean)
538 next_desc = " NTC";
539 else
540 next_desc = "";
541
542 if (staterr & E1000_RXD_STAT_DD) {
543 /* Descriptor Done */
544 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
545 "RWB", i,
546 le64_to_cpu(u0->a),
547 le64_to_cpu(u0->b),
548 next_desc);
549 } else {
550 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
551 "R ", i,
552 le64_to_cpu(u0->a),
553 le64_to_cpu(u0->b),
554 (u64)buffer_info->dma,
555 next_desc);
556
557 if (netif_msg_pktdata(adapter) &&
558 buffer_info->dma && buffer_info->page) {
559 print_hex_dump(KERN_INFO, "",
560 DUMP_PREFIX_ADDRESS,
561 16, 1,
562 page_address(buffer_info->page) +
563 buffer_info->page_offset,
564 IGB_RX_BUFSZ, true);
565 }
566 }
567 }
568 }
569
570 exit:
571 return;
572 }
573
574 /**
575 * igb_get_i2c_data - Reads the I2C SDA data bit
576 * @hw: pointer to hardware structure
577 * @i2cctl: Current value of I2CCTL register
578 *
579 * Returns the I2C data bit value
580 **/
581 static int igb_get_i2c_data(void *data)
582 {
583 struct igb_adapter *adapter = (struct igb_adapter *)data;
584 struct e1000_hw *hw = &adapter->hw;
585 s32 i2cctl = rd32(E1000_I2CPARAMS);
586
587 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
588 }
589
590 /**
591 * igb_set_i2c_data - Sets the I2C data bit
592 * @data: pointer to hardware structure
593 * @state: I2C data value (0 or 1) to set
594 *
595 * Sets the I2C data bit
596 **/
597 static void igb_set_i2c_data(void *data, int state)
598 {
599 struct igb_adapter *adapter = (struct igb_adapter *)data;
600 struct e1000_hw *hw = &adapter->hw;
601 s32 i2cctl = rd32(E1000_I2CPARAMS);
602
603 if (state)
604 i2cctl |= E1000_I2C_DATA_OUT;
605 else
606 i2cctl &= ~E1000_I2C_DATA_OUT;
607
608 i2cctl &= ~E1000_I2C_DATA_OE_N;
609 i2cctl |= E1000_I2C_CLK_OE_N;
610 wr32(E1000_I2CPARAMS, i2cctl);
611 wrfl();
612
613 }
614
615 /**
616 * igb_set_i2c_clk - Sets the I2C SCL clock
617 * @data: pointer to hardware structure
618 * @state: state to set clock
619 *
620 * Sets the I2C clock line to state
621 **/
622 static void igb_set_i2c_clk(void *data, int state)
623 {
624 struct igb_adapter *adapter = (struct igb_adapter *)data;
625 struct e1000_hw *hw = &adapter->hw;
626 s32 i2cctl = rd32(E1000_I2CPARAMS);
627
628 if (state) {
629 i2cctl |= E1000_I2C_CLK_OUT;
630 i2cctl &= ~E1000_I2C_CLK_OE_N;
631 } else {
632 i2cctl &= ~E1000_I2C_CLK_OUT;
633 i2cctl &= ~E1000_I2C_CLK_OE_N;
634 }
635 wr32(E1000_I2CPARAMS, i2cctl);
636 wrfl();
637 }
638
639 /**
640 * igb_get_i2c_clk - Gets the I2C SCL clock state
641 * @data: pointer to hardware structure
642 *
643 * Gets the I2C clock state
644 **/
645 static int igb_get_i2c_clk(void *data)
646 {
647 struct igb_adapter *adapter = (struct igb_adapter *)data;
648 struct e1000_hw *hw = &adapter->hw;
649 s32 i2cctl = rd32(E1000_I2CPARAMS);
650
651 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
652 }
653
654 static const struct i2c_algo_bit_data igb_i2c_algo = {
655 .setsda = igb_set_i2c_data,
656 .setscl = igb_set_i2c_clk,
657 .getsda = igb_get_i2c_data,
658 .getscl = igb_get_i2c_clk,
659 .udelay = 5,
660 .timeout = 20,
661 };
662
663 /**
664 * igb_get_hw_dev - return device
665 * @hw: pointer to hardware structure
666 *
667 * used by hardware layer to print debugging information
668 **/
669 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
670 {
671 struct igb_adapter *adapter = hw->back;
672 return adapter->netdev;
673 }
674
675 /**
676 * igb_init_module - Driver Registration Routine
677 *
678 * igb_init_module is the first routine called when the driver is
679 * loaded. All it does is register with the PCI subsystem.
680 **/
681 static int __init igb_init_module(void)
682 {
683 int ret;
684 pr_info("%s - version %s\n",
685 igb_driver_string, igb_driver_version);
686
687 pr_info("%s\n", igb_copyright);
688
689 #ifdef CONFIG_IGB_DCA
690 dca_register_notify(&dca_notifier);
691 #endif
692 ret = pci_register_driver(&igb_driver);
693 return ret;
694 }
695
696 module_init(igb_init_module);
697
698 /**
699 * igb_exit_module - Driver Exit Cleanup Routine
700 *
701 * igb_exit_module is called just before the driver is removed
702 * from memory.
703 **/
704 static void __exit igb_exit_module(void)
705 {
706 #ifdef CONFIG_IGB_DCA
707 dca_unregister_notify(&dca_notifier);
708 #endif
709 pci_unregister_driver(&igb_driver);
710 }
711
712 module_exit(igb_exit_module);
713
714 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
715 /**
716 * igb_cache_ring_register - Descriptor ring to register mapping
717 * @adapter: board private structure to initialize
718 *
719 * Once we know the feature-set enabled for the device, we'll cache
720 * the register offset the descriptor ring is assigned to.
721 **/
722 static void igb_cache_ring_register(struct igb_adapter *adapter)
723 {
724 int i = 0, j = 0;
725 u32 rbase_offset = adapter->vfs_allocated_count;
726
727 switch (adapter->hw.mac.type) {
728 case e1000_82576:
729 /* The queues are allocated for virtualization such that VF 0
730 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
731 * In order to avoid collision we start at the first free queue
732 * and continue consuming queues in the same sequence
733 */
734 if (adapter->vfs_allocated_count) {
735 for (; i < adapter->rss_queues; i++)
736 adapter->rx_ring[i]->reg_idx = rbase_offset +
737 Q_IDX_82576(i);
738 }
739 case e1000_82575:
740 case e1000_82580:
741 case e1000_i350:
742 case e1000_i354:
743 case e1000_i210:
744 case e1000_i211:
745 default:
746 for (; i < adapter->num_rx_queues; i++)
747 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
748 for (; j < adapter->num_tx_queues; j++)
749 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
750 break;
751 }
752 }
753
754 /**
755 * igb_write_ivar - configure ivar for given MSI-X vector
756 * @hw: pointer to the HW structure
757 * @msix_vector: vector number we are allocating to a given ring
758 * @index: row index of IVAR register to write within IVAR table
759 * @offset: column offset of in IVAR, should be multiple of 8
760 *
761 * This function is intended to handle the writing of the IVAR register
762 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
763 * each containing an cause allocation for an Rx and Tx ring, and a
764 * variable number of rows depending on the number of queues supported.
765 **/
766 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
767 int index, int offset)
768 {
769 u32 ivar = array_rd32(E1000_IVAR0, index);
770
771 /* clear any bits that are currently set */
772 ivar &= ~((u32)0xFF << offset);
773
774 /* write vector and valid bit */
775 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
776
777 array_wr32(E1000_IVAR0, index, ivar);
778 }
779
780 #define IGB_N0_QUEUE -1
781 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
782 {
783 struct igb_adapter *adapter = q_vector->adapter;
784 struct e1000_hw *hw = &adapter->hw;
785 int rx_queue = IGB_N0_QUEUE;
786 int tx_queue = IGB_N0_QUEUE;
787 u32 msixbm = 0;
788
789 if (q_vector->rx.ring)
790 rx_queue = q_vector->rx.ring->reg_idx;
791 if (q_vector->tx.ring)
792 tx_queue = q_vector->tx.ring->reg_idx;
793
794 switch (hw->mac.type) {
795 case e1000_82575:
796 /* The 82575 assigns vectors using a bitmask, which matches the
797 * bitmask for the EICR/EIMS/EIMC registers. To assign one
798 * or more queues to a vector, we write the appropriate bits
799 * into the MSIXBM register for that vector.
800 */
801 if (rx_queue > IGB_N0_QUEUE)
802 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
803 if (tx_queue > IGB_N0_QUEUE)
804 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
805 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
806 msixbm |= E1000_EIMS_OTHER;
807 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
808 q_vector->eims_value = msixbm;
809 break;
810 case e1000_82576:
811 /* 82576 uses a table that essentially consists of 2 columns
812 * with 8 rows. The ordering is column-major so we use the
813 * lower 3 bits as the row index, and the 4th bit as the
814 * column offset.
815 */
816 if (rx_queue > IGB_N0_QUEUE)
817 igb_write_ivar(hw, msix_vector,
818 rx_queue & 0x7,
819 (rx_queue & 0x8) << 1);
820 if (tx_queue > IGB_N0_QUEUE)
821 igb_write_ivar(hw, msix_vector,
822 tx_queue & 0x7,
823 ((tx_queue & 0x8) << 1) + 8);
824 q_vector->eims_value = 1 << msix_vector;
825 break;
826 case e1000_82580:
827 case e1000_i350:
828 case e1000_i354:
829 case e1000_i210:
830 case e1000_i211:
831 /* On 82580 and newer adapters the scheme is similar to 82576
832 * however instead of ordering column-major we have things
833 * ordered row-major. So we traverse the table by using
834 * bit 0 as the column offset, and the remaining bits as the
835 * row index.
836 */
837 if (rx_queue > IGB_N0_QUEUE)
838 igb_write_ivar(hw, msix_vector,
839 rx_queue >> 1,
840 (rx_queue & 0x1) << 4);
841 if (tx_queue > IGB_N0_QUEUE)
842 igb_write_ivar(hw, msix_vector,
843 tx_queue >> 1,
844 ((tx_queue & 0x1) << 4) + 8);
845 q_vector->eims_value = 1 << msix_vector;
846 break;
847 default:
848 BUG();
849 break;
850 }
851
852 /* add q_vector eims value to global eims_enable_mask */
853 adapter->eims_enable_mask |= q_vector->eims_value;
854
855 /* configure q_vector to set itr on first interrupt */
856 q_vector->set_itr = 1;
857 }
858
859 /**
860 * igb_configure_msix - Configure MSI-X hardware
861 * @adapter: board private structure to initialize
862 *
863 * igb_configure_msix sets up the hardware to properly
864 * generate MSI-X interrupts.
865 **/
866 static void igb_configure_msix(struct igb_adapter *adapter)
867 {
868 u32 tmp;
869 int i, vector = 0;
870 struct e1000_hw *hw = &adapter->hw;
871
872 adapter->eims_enable_mask = 0;
873
874 /* set vector for other causes, i.e. link changes */
875 switch (hw->mac.type) {
876 case e1000_82575:
877 tmp = rd32(E1000_CTRL_EXT);
878 /* enable MSI-X PBA support*/
879 tmp |= E1000_CTRL_EXT_PBA_CLR;
880
881 /* Auto-Mask interrupts upon ICR read. */
882 tmp |= E1000_CTRL_EXT_EIAME;
883 tmp |= E1000_CTRL_EXT_IRCA;
884
885 wr32(E1000_CTRL_EXT, tmp);
886
887 /* enable msix_other interrupt */
888 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
889 adapter->eims_other = E1000_EIMS_OTHER;
890
891 break;
892
893 case e1000_82576:
894 case e1000_82580:
895 case e1000_i350:
896 case e1000_i354:
897 case e1000_i210:
898 case e1000_i211:
899 /* Turn on MSI-X capability first, or our settings
900 * won't stick. And it will take days to debug.
901 */
902 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
903 E1000_GPIE_PBA | E1000_GPIE_EIAME |
904 E1000_GPIE_NSICR);
905
906 /* enable msix_other interrupt */
907 adapter->eims_other = 1 << vector;
908 tmp = (vector++ | E1000_IVAR_VALID) << 8;
909
910 wr32(E1000_IVAR_MISC, tmp);
911 break;
912 default:
913 /* do nothing, since nothing else supports MSI-X */
914 break;
915 } /* switch (hw->mac.type) */
916
917 adapter->eims_enable_mask |= adapter->eims_other;
918
919 for (i = 0; i < adapter->num_q_vectors; i++)
920 igb_assign_vector(adapter->q_vector[i], vector++);
921
922 wrfl();
923 }
924
925 /**
926 * igb_request_msix - Initialize MSI-X interrupts
927 * @adapter: board private structure to initialize
928 *
929 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
930 * kernel.
931 **/
932 static int igb_request_msix(struct igb_adapter *adapter)
933 {
934 struct net_device *netdev = adapter->netdev;
935 struct e1000_hw *hw = &adapter->hw;
936 int i, err = 0, vector = 0, free_vector = 0;
937
938 err = request_irq(adapter->msix_entries[vector].vector,
939 igb_msix_other, 0, netdev->name, adapter);
940 if (err)
941 goto err_out;
942
943 for (i = 0; i < adapter->num_q_vectors; i++) {
944 struct igb_q_vector *q_vector = adapter->q_vector[i];
945
946 vector++;
947
948 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
949
950 if (q_vector->rx.ring && q_vector->tx.ring)
951 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
952 q_vector->rx.ring->queue_index);
953 else if (q_vector->tx.ring)
954 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
955 q_vector->tx.ring->queue_index);
956 else if (q_vector->rx.ring)
957 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
958 q_vector->rx.ring->queue_index);
959 else
960 sprintf(q_vector->name, "%s-unused", netdev->name);
961
962 err = request_irq(adapter->msix_entries[vector].vector,
963 igb_msix_ring, 0, q_vector->name,
964 q_vector);
965 if (err)
966 goto err_free;
967 }
968
969 igb_configure_msix(adapter);
970 return 0;
971
972 err_free:
973 /* free already assigned IRQs */
974 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
975
976 vector--;
977 for (i = 0; i < vector; i++) {
978 free_irq(adapter->msix_entries[free_vector++].vector,
979 adapter->q_vector[i]);
980 }
981 err_out:
982 return err;
983 }
984
985 /**
986 * igb_free_q_vector - Free memory allocated for specific interrupt vector
987 * @adapter: board private structure to initialize
988 * @v_idx: Index of vector to be freed
989 *
990 * This function frees the memory allocated to the q_vector.
991 **/
992 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
993 {
994 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
995
996 adapter->q_vector[v_idx] = NULL;
997
998 /* igb_get_stats64() might access the rings on this vector,
999 * we must wait a grace period before freeing it.
1000 */
1001 kfree_rcu(q_vector, rcu);
1002 }
1003
1004 /**
1005 * igb_reset_q_vector - Reset config for interrupt vector
1006 * @adapter: board private structure to initialize
1007 * @v_idx: Index of vector to be reset
1008 *
1009 * If NAPI is enabled it will delete any references to the
1010 * NAPI struct. This is preparation for igb_free_q_vector.
1011 **/
1012 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1013 {
1014 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1015
1016 if (q_vector->tx.ring)
1017 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1018
1019 if (q_vector->rx.ring)
1020 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1021
1022 netif_napi_del(&q_vector->napi);
1023
1024 }
1025
1026 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1027 {
1028 int v_idx = adapter->num_q_vectors;
1029
1030 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1031 pci_disable_msix(adapter->pdev);
1032 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1033 pci_disable_msi(adapter->pdev);
1034
1035 while (v_idx--)
1036 igb_reset_q_vector(adapter, v_idx);
1037 }
1038
1039 /**
1040 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1041 * @adapter: board private structure to initialize
1042 *
1043 * This function frees the memory allocated to the q_vectors. In addition if
1044 * NAPI is enabled it will delete any references to the NAPI struct prior
1045 * to freeing the q_vector.
1046 **/
1047 static void igb_free_q_vectors(struct igb_adapter *adapter)
1048 {
1049 int v_idx = adapter->num_q_vectors;
1050
1051 adapter->num_tx_queues = 0;
1052 adapter->num_rx_queues = 0;
1053 adapter->num_q_vectors = 0;
1054
1055 while (v_idx--) {
1056 igb_reset_q_vector(adapter, v_idx);
1057 igb_free_q_vector(adapter, v_idx);
1058 }
1059 }
1060
1061 /**
1062 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1063 * @adapter: board private structure to initialize
1064 *
1065 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1066 * MSI-X interrupts allocated.
1067 */
1068 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1069 {
1070 igb_free_q_vectors(adapter);
1071 igb_reset_interrupt_capability(adapter);
1072 }
1073
1074 /**
1075 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1076 * @adapter: board private structure to initialize
1077 * @msix: boolean value of MSIX capability
1078 *
1079 * Attempt to configure interrupts using the best available
1080 * capabilities of the hardware and kernel.
1081 **/
1082 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1083 {
1084 int err;
1085 int numvecs, i;
1086
1087 if (!msix)
1088 goto msi_only;
1089 adapter->flags |= IGB_FLAG_HAS_MSIX;
1090
1091 /* Number of supported queues. */
1092 adapter->num_rx_queues = adapter->rss_queues;
1093 if (adapter->vfs_allocated_count)
1094 adapter->num_tx_queues = 1;
1095 else
1096 adapter->num_tx_queues = adapter->rss_queues;
1097
1098 /* start with one vector for every Rx queue */
1099 numvecs = adapter->num_rx_queues;
1100
1101 /* if Tx handler is separate add 1 for every Tx queue */
1102 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1103 numvecs += adapter->num_tx_queues;
1104
1105 /* store the number of vectors reserved for queues */
1106 adapter->num_q_vectors = numvecs;
1107
1108 /* add 1 vector for link status interrupts */
1109 numvecs++;
1110 for (i = 0; i < numvecs; i++)
1111 adapter->msix_entries[i].entry = i;
1112
1113 err = pci_enable_msix_range(adapter->pdev,
1114 adapter->msix_entries,
1115 numvecs,
1116 numvecs);
1117 if (err > 0)
1118 return;
1119
1120 igb_reset_interrupt_capability(adapter);
1121
1122 /* If we can't do MSI-X, try MSI */
1123 msi_only:
1124 #ifdef CONFIG_PCI_IOV
1125 /* disable SR-IOV for non MSI-X configurations */
1126 if (adapter->vf_data) {
1127 struct e1000_hw *hw = &adapter->hw;
1128 /* disable iov and allow time for transactions to clear */
1129 pci_disable_sriov(adapter->pdev);
1130 msleep(500);
1131
1132 kfree(adapter->vf_data);
1133 adapter->vf_data = NULL;
1134 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1135 wrfl();
1136 msleep(100);
1137 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1138 }
1139 #endif
1140 adapter->vfs_allocated_count = 0;
1141 adapter->rss_queues = 1;
1142 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1143 adapter->num_rx_queues = 1;
1144 adapter->num_tx_queues = 1;
1145 adapter->num_q_vectors = 1;
1146 if (!pci_enable_msi(adapter->pdev))
1147 adapter->flags |= IGB_FLAG_HAS_MSI;
1148 }
1149
1150 static void igb_add_ring(struct igb_ring *ring,
1151 struct igb_ring_container *head)
1152 {
1153 head->ring = ring;
1154 head->count++;
1155 }
1156
1157 /**
1158 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1159 * @adapter: board private structure to initialize
1160 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1161 * @v_idx: index of vector in adapter struct
1162 * @txr_count: total number of Tx rings to allocate
1163 * @txr_idx: index of first Tx ring to allocate
1164 * @rxr_count: total number of Rx rings to allocate
1165 * @rxr_idx: index of first Rx ring to allocate
1166 *
1167 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1168 **/
1169 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1170 int v_count, int v_idx,
1171 int txr_count, int txr_idx,
1172 int rxr_count, int rxr_idx)
1173 {
1174 struct igb_q_vector *q_vector;
1175 struct igb_ring *ring;
1176 int ring_count, size;
1177
1178 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1179 if (txr_count > 1 || rxr_count > 1)
1180 return -ENOMEM;
1181
1182 ring_count = txr_count + rxr_count;
1183 size = sizeof(struct igb_q_vector) +
1184 (sizeof(struct igb_ring) * ring_count);
1185
1186 /* allocate q_vector and rings */
1187 q_vector = adapter->q_vector[v_idx];
1188 if (!q_vector)
1189 q_vector = kzalloc(size, GFP_KERNEL);
1190 if (!q_vector)
1191 return -ENOMEM;
1192
1193 /* initialize NAPI */
1194 netif_napi_add(adapter->netdev, &q_vector->napi,
1195 igb_poll, 64);
1196
1197 /* tie q_vector and adapter together */
1198 adapter->q_vector[v_idx] = q_vector;
1199 q_vector->adapter = adapter;
1200
1201 /* initialize work limits */
1202 q_vector->tx.work_limit = adapter->tx_work_limit;
1203
1204 /* initialize ITR configuration */
1205 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1206 q_vector->itr_val = IGB_START_ITR;
1207
1208 /* initialize pointer to rings */
1209 ring = q_vector->ring;
1210
1211 /* intialize ITR */
1212 if (rxr_count) {
1213 /* rx or rx/tx vector */
1214 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1215 q_vector->itr_val = adapter->rx_itr_setting;
1216 } else {
1217 /* tx only vector */
1218 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1219 q_vector->itr_val = adapter->tx_itr_setting;
1220 }
1221
1222 if (txr_count) {
1223 /* assign generic ring traits */
1224 ring->dev = &adapter->pdev->dev;
1225 ring->netdev = adapter->netdev;
1226
1227 /* configure backlink on ring */
1228 ring->q_vector = q_vector;
1229
1230 /* update q_vector Tx values */
1231 igb_add_ring(ring, &q_vector->tx);
1232
1233 /* For 82575, context index must be unique per ring. */
1234 if (adapter->hw.mac.type == e1000_82575)
1235 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1236
1237 /* apply Tx specific ring traits */
1238 ring->count = adapter->tx_ring_count;
1239 ring->queue_index = txr_idx;
1240
1241 u64_stats_init(&ring->tx_syncp);
1242 u64_stats_init(&ring->tx_syncp2);
1243
1244 /* assign ring to adapter */
1245 adapter->tx_ring[txr_idx] = ring;
1246
1247 /* push pointer to next ring */
1248 ring++;
1249 }
1250
1251 if (rxr_count) {
1252 /* assign generic ring traits */
1253 ring->dev = &adapter->pdev->dev;
1254 ring->netdev = adapter->netdev;
1255
1256 /* configure backlink on ring */
1257 ring->q_vector = q_vector;
1258
1259 /* update q_vector Rx values */
1260 igb_add_ring(ring, &q_vector->rx);
1261
1262 /* set flag indicating ring supports SCTP checksum offload */
1263 if (adapter->hw.mac.type >= e1000_82576)
1264 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1265
1266 /*
1267 * On i350, i354, i210, and i211, loopback VLAN packets
1268 * have the tag byte-swapped.
1269 */
1270 if (adapter->hw.mac.type >= e1000_i350)
1271 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1272
1273 /* apply Rx specific ring traits */
1274 ring->count = adapter->rx_ring_count;
1275 ring->queue_index = rxr_idx;
1276
1277 u64_stats_init(&ring->rx_syncp);
1278
1279 /* assign ring to adapter */
1280 adapter->rx_ring[rxr_idx] = ring;
1281 }
1282
1283 return 0;
1284 }
1285
1286
1287 /**
1288 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1289 * @adapter: board private structure to initialize
1290 *
1291 * We allocate one q_vector per queue interrupt. If allocation fails we
1292 * return -ENOMEM.
1293 **/
1294 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1295 {
1296 int q_vectors = adapter->num_q_vectors;
1297 int rxr_remaining = adapter->num_rx_queues;
1298 int txr_remaining = adapter->num_tx_queues;
1299 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1300 int err;
1301
1302 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1303 for (; rxr_remaining; v_idx++) {
1304 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1305 0, 0, 1, rxr_idx);
1306
1307 if (err)
1308 goto err_out;
1309
1310 /* update counts and index */
1311 rxr_remaining--;
1312 rxr_idx++;
1313 }
1314 }
1315
1316 for (; v_idx < q_vectors; v_idx++) {
1317 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1318 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1319 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1320 tqpv, txr_idx, rqpv, rxr_idx);
1321
1322 if (err)
1323 goto err_out;
1324
1325 /* update counts and index */
1326 rxr_remaining -= rqpv;
1327 txr_remaining -= tqpv;
1328 rxr_idx++;
1329 txr_idx++;
1330 }
1331
1332 return 0;
1333
1334 err_out:
1335 adapter->num_tx_queues = 0;
1336 adapter->num_rx_queues = 0;
1337 adapter->num_q_vectors = 0;
1338
1339 while (v_idx--)
1340 igb_free_q_vector(adapter, v_idx);
1341
1342 return -ENOMEM;
1343 }
1344
1345 /**
1346 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1347 * @adapter: board private structure to initialize
1348 * @msix: boolean value of MSIX capability
1349 *
1350 * This function initializes the interrupts and allocates all of the queues.
1351 **/
1352 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1353 {
1354 struct pci_dev *pdev = adapter->pdev;
1355 int err;
1356
1357 igb_set_interrupt_capability(adapter, msix);
1358
1359 err = igb_alloc_q_vectors(adapter);
1360 if (err) {
1361 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1362 goto err_alloc_q_vectors;
1363 }
1364
1365 igb_cache_ring_register(adapter);
1366
1367 return 0;
1368
1369 err_alloc_q_vectors:
1370 igb_reset_interrupt_capability(adapter);
1371 return err;
1372 }
1373
1374 /**
1375 * igb_request_irq - initialize interrupts
1376 * @adapter: board private structure to initialize
1377 *
1378 * Attempts to configure interrupts using the best available
1379 * capabilities of the hardware and kernel.
1380 **/
1381 static int igb_request_irq(struct igb_adapter *adapter)
1382 {
1383 struct net_device *netdev = adapter->netdev;
1384 struct pci_dev *pdev = adapter->pdev;
1385 int err = 0;
1386
1387 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1388 err = igb_request_msix(adapter);
1389 if (!err)
1390 goto request_done;
1391 /* fall back to MSI */
1392 igb_free_all_tx_resources(adapter);
1393 igb_free_all_rx_resources(adapter);
1394
1395 igb_clear_interrupt_scheme(adapter);
1396 err = igb_init_interrupt_scheme(adapter, false);
1397 if (err)
1398 goto request_done;
1399
1400 igb_setup_all_tx_resources(adapter);
1401 igb_setup_all_rx_resources(adapter);
1402 igb_configure(adapter);
1403 }
1404
1405 igb_assign_vector(adapter->q_vector[0], 0);
1406
1407 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1408 err = request_irq(pdev->irq, igb_intr_msi, 0,
1409 netdev->name, adapter);
1410 if (!err)
1411 goto request_done;
1412
1413 /* fall back to legacy interrupts */
1414 igb_reset_interrupt_capability(adapter);
1415 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1416 }
1417
1418 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1419 netdev->name, adapter);
1420
1421 if (err)
1422 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1423 err);
1424
1425 request_done:
1426 return err;
1427 }
1428
1429 static void igb_free_irq(struct igb_adapter *adapter)
1430 {
1431 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1432 int vector = 0, i;
1433
1434 free_irq(adapter->msix_entries[vector++].vector, adapter);
1435
1436 for (i = 0; i < adapter->num_q_vectors; i++)
1437 free_irq(adapter->msix_entries[vector++].vector,
1438 adapter->q_vector[i]);
1439 } else {
1440 free_irq(adapter->pdev->irq, adapter);
1441 }
1442 }
1443
1444 /**
1445 * igb_irq_disable - Mask off interrupt generation on the NIC
1446 * @adapter: board private structure
1447 **/
1448 static void igb_irq_disable(struct igb_adapter *adapter)
1449 {
1450 struct e1000_hw *hw = &adapter->hw;
1451
1452 /* we need to be careful when disabling interrupts. The VFs are also
1453 * mapped into these registers and so clearing the bits can cause
1454 * issues on the VF drivers so we only need to clear what we set
1455 */
1456 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1457 u32 regval = rd32(E1000_EIAM);
1458 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1459 wr32(E1000_EIMC, adapter->eims_enable_mask);
1460 regval = rd32(E1000_EIAC);
1461 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1462 }
1463
1464 wr32(E1000_IAM, 0);
1465 wr32(E1000_IMC, ~0);
1466 wrfl();
1467 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1468 int i;
1469 for (i = 0; i < adapter->num_q_vectors; i++)
1470 synchronize_irq(adapter->msix_entries[i].vector);
1471 } else {
1472 synchronize_irq(adapter->pdev->irq);
1473 }
1474 }
1475
1476 /**
1477 * igb_irq_enable - Enable default interrupt generation settings
1478 * @adapter: board private structure
1479 **/
1480 static void igb_irq_enable(struct igb_adapter *adapter)
1481 {
1482 struct e1000_hw *hw = &adapter->hw;
1483
1484 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1485 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1486 u32 regval = rd32(E1000_EIAC);
1487 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1488 regval = rd32(E1000_EIAM);
1489 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1490 wr32(E1000_EIMS, adapter->eims_enable_mask);
1491 if (adapter->vfs_allocated_count) {
1492 wr32(E1000_MBVFIMR, 0xFF);
1493 ims |= E1000_IMS_VMMB;
1494 }
1495 wr32(E1000_IMS, ims);
1496 } else {
1497 wr32(E1000_IMS, IMS_ENABLE_MASK |
1498 E1000_IMS_DRSTA);
1499 wr32(E1000_IAM, IMS_ENABLE_MASK |
1500 E1000_IMS_DRSTA);
1501 }
1502 }
1503
1504 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1505 {
1506 struct e1000_hw *hw = &adapter->hw;
1507 u16 vid = adapter->hw.mng_cookie.vlan_id;
1508 u16 old_vid = adapter->mng_vlan_id;
1509
1510 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1511 /* add VID to filter table */
1512 igb_vfta_set(hw, vid, true);
1513 adapter->mng_vlan_id = vid;
1514 } else {
1515 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1516 }
1517
1518 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1519 (vid != old_vid) &&
1520 !test_bit(old_vid, adapter->active_vlans)) {
1521 /* remove VID from filter table */
1522 igb_vfta_set(hw, old_vid, false);
1523 }
1524 }
1525
1526 /**
1527 * igb_release_hw_control - release control of the h/w to f/w
1528 * @adapter: address of board private structure
1529 *
1530 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1531 * For ASF and Pass Through versions of f/w this means that the
1532 * driver is no longer loaded.
1533 **/
1534 static void igb_release_hw_control(struct igb_adapter *adapter)
1535 {
1536 struct e1000_hw *hw = &adapter->hw;
1537 u32 ctrl_ext;
1538
1539 /* Let firmware take over control of h/w */
1540 ctrl_ext = rd32(E1000_CTRL_EXT);
1541 wr32(E1000_CTRL_EXT,
1542 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1543 }
1544
1545 /**
1546 * igb_get_hw_control - get control of the h/w from f/w
1547 * @adapter: address of board private structure
1548 *
1549 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1550 * For ASF and Pass Through versions of f/w this means that
1551 * the driver is loaded.
1552 **/
1553 static void igb_get_hw_control(struct igb_adapter *adapter)
1554 {
1555 struct e1000_hw *hw = &adapter->hw;
1556 u32 ctrl_ext;
1557
1558 /* Let firmware know the driver has taken over */
1559 ctrl_ext = rd32(E1000_CTRL_EXT);
1560 wr32(E1000_CTRL_EXT,
1561 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1562 }
1563
1564 /**
1565 * igb_configure - configure the hardware for RX and TX
1566 * @adapter: private board structure
1567 **/
1568 static void igb_configure(struct igb_adapter *adapter)
1569 {
1570 struct net_device *netdev = adapter->netdev;
1571 int i;
1572
1573 igb_get_hw_control(adapter);
1574 igb_set_rx_mode(netdev);
1575
1576 igb_restore_vlan(adapter);
1577
1578 igb_setup_tctl(adapter);
1579 igb_setup_mrqc(adapter);
1580 igb_setup_rctl(adapter);
1581
1582 igb_configure_tx(adapter);
1583 igb_configure_rx(adapter);
1584
1585 igb_rx_fifo_flush_82575(&adapter->hw);
1586
1587 /* call igb_desc_unused which always leaves
1588 * at least 1 descriptor unused to make sure
1589 * next_to_use != next_to_clean
1590 */
1591 for (i = 0; i < adapter->num_rx_queues; i++) {
1592 struct igb_ring *ring = adapter->rx_ring[i];
1593 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1594 }
1595 }
1596
1597 /**
1598 * igb_power_up_link - Power up the phy/serdes link
1599 * @adapter: address of board private structure
1600 **/
1601 void igb_power_up_link(struct igb_adapter *adapter)
1602 {
1603 igb_reset_phy(&adapter->hw);
1604
1605 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1606 igb_power_up_phy_copper(&adapter->hw);
1607 else
1608 igb_power_up_serdes_link_82575(&adapter->hw);
1609 }
1610
1611 /**
1612 * igb_power_down_link - Power down the phy/serdes link
1613 * @adapter: address of board private structure
1614 */
1615 static void igb_power_down_link(struct igb_adapter *adapter)
1616 {
1617 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1618 igb_power_down_phy_copper_82575(&adapter->hw);
1619 else
1620 igb_shutdown_serdes_link_82575(&adapter->hw);
1621 }
1622
1623 /**
1624 * Detect and switch function for Media Auto Sense
1625 * @adapter: address of the board private structure
1626 **/
1627 static void igb_check_swap_media(struct igb_adapter *adapter)
1628 {
1629 struct e1000_hw *hw = &adapter->hw;
1630 u32 ctrl_ext, connsw;
1631 bool swap_now = false;
1632
1633 ctrl_ext = rd32(E1000_CTRL_EXT);
1634 connsw = rd32(E1000_CONNSW);
1635
1636 /* need to live swap if current media is copper and we have fiber/serdes
1637 * to go to.
1638 */
1639
1640 if ((hw->phy.media_type == e1000_media_type_copper) &&
1641 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1642 swap_now = true;
1643 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1644 /* copper signal takes time to appear */
1645 if (adapter->copper_tries < 4) {
1646 adapter->copper_tries++;
1647 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1648 wr32(E1000_CONNSW, connsw);
1649 return;
1650 } else {
1651 adapter->copper_tries = 0;
1652 if ((connsw & E1000_CONNSW_PHYSD) &&
1653 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1654 swap_now = true;
1655 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1656 wr32(E1000_CONNSW, connsw);
1657 }
1658 }
1659 }
1660
1661 if (!swap_now)
1662 return;
1663
1664 switch (hw->phy.media_type) {
1665 case e1000_media_type_copper:
1666 netdev_info(adapter->netdev,
1667 "MAS: changing media to fiber/serdes\n");
1668 ctrl_ext |=
1669 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1670 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1671 adapter->copper_tries = 0;
1672 break;
1673 case e1000_media_type_internal_serdes:
1674 case e1000_media_type_fiber:
1675 netdev_info(adapter->netdev,
1676 "MAS: changing media to copper\n");
1677 ctrl_ext &=
1678 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1679 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1680 break;
1681 default:
1682 /* shouldn't get here during regular operation */
1683 netdev_err(adapter->netdev,
1684 "AMS: Invalid media type found, returning\n");
1685 break;
1686 }
1687 wr32(E1000_CTRL_EXT, ctrl_ext);
1688 }
1689
1690 /**
1691 * igb_up - Open the interface and prepare it to handle traffic
1692 * @adapter: board private structure
1693 **/
1694 int igb_up(struct igb_adapter *adapter)
1695 {
1696 struct e1000_hw *hw = &adapter->hw;
1697 int i;
1698
1699 /* hardware has been reset, we need to reload some things */
1700 igb_configure(adapter);
1701
1702 clear_bit(__IGB_DOWN, &adapter->state);
1703
1704 for (i = 0; i < adapter->num_q_vectors; i++)
1705 napi_enable(&(adapter->q_vector[i]->napi));
1706
1707 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1708 igb_configure_msix(adapter);
1709 else
1710 igb_assign_vector(adapter->q_vector[0], 0);
1711
1712 /* Clear any pending interrupts. */
1713 rd32(E1000_ICR);
1714 igb_irq_enable(adapter);
1715
1716 /* notify VFs that reset has been completed */
1717 if (adapter->vfs_allocated_count) {
1718 u32 reg_data = rd32(E1000_CTRL_EXT);
1719 reg_data |= E1000_CTRL_EXT_PFRSTD;
1720 wr32(E1000_CTRL_EXT, reg_data);
1721 }
1722
1723 netif_tx_start_all_queues(adapter->netdev);
1724
1725 /* start the watchdog. */
1726 hw->mac.get_link_status = 1;
1727 schedule_work(&adapter->watchdog_task);
1728
1729 if ((adapter->flags & IGB_FLAG_EEE) &&
1730 (!hw->dev_spec._82575.eee_disable))
1731 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1732
1733 return 0;
1734 }
1735
1736 void igb_down(struct igb_adapter *adapter)
1737 {
1738 struct net_device *netdev = adapter->netdev;
1739 struct e1000_hw *hw = &adapter->hw;
1740 u32 tctl, rctl;
1741 int i;
1742
1743 /* signal that we're down so the interrupt handler does not
1744 * reschedule our watchdog timer
1745 */
1746 set_bit(__IGB_DOWN, &adapter->state);
1747
1748 /* disable receives in the hardware */
1749 rctl = rd32(E1000_RCTL);
1750 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1751 /* flush and sleep below */
1752
1753 netif_tx_stop_all_queues(netdev);
1754
1755 /* disable transmits in the hardware */
1756 tctl = rd32(E1000_TCTL);
1757 tctl &= ~E1000_TCTL_EN;
1758 wr32(E1000_TCTL, tctl);
1759 /* flush both disables and wait for them to finish */
1760 wrfl();
1761 msleep(10);
1762
1763 igb_irq_disable(adapter);
1764
1765 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1766
1767 for (i = 0; i < adapter->num_q_vectors; i++) {
1768 napi_synchronize(&(adapter->q_vector[i]->napi));
1769 napi_disable(&(adapter->q_vector[i]->napi));
1770 }
1771
1772
1773 del_timer_sync(&adapter->watchdog_timer);
1774 del_timer_sync(&adapter->phy_info_timer);
1775
1776 netif_carrier_off(netdev);
1777
1778 /* record the stats before reset*/
1779 spin_lock(&adapter->stats64_lock);
1780 igb_update_stats(adapter, &adapter->stats64);
1781 spin_unlock(&adapter->stats64_lock);
1782
1783 adapter->link_speed = 0;
1784 adapter->link_duplex = 0;
1785
1786 if (!pci_channel_offline(adapter->pdev))
1787 igb_reset(adapter);
1788 igb_clean_all_tx_rings(adapter);
1789 igb_clean_all_rx_rings(adapter);
1790 #ifdef CONFIG_IGB_DCA
1791
1792 /* since we reset the hardware DCA settings were cleared */
1793 igb_setup_dca(adapter);
1794 #endif
1795 }
1796
1797 void igb_reinit_locked(struct igb_adapter *adapter)
1798 {
1799 WARN_ON(in_interrupt());
1800 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1801 msleep(1);
1802 igb_down(adapter);
1803 igb_up(adapter);
1804 clear_bit(__IGB_RESETTING, &adapter->state);
1805 }
1806
1807 /** igb_enable_mas - Media Autosense re-enable after swap
1808 *
1809 * @adapter: adapter struct
1810 **/
1811 static s32 igb_enable_mas(struct igb_adapter *adapter)
1812 {
1813 struct e1000_hw *hw = &adapter->hw;
1814 u32 connsw;
1815 s32 ret_val = 0;
1816
1817 connsw = rd32(E1000_CONNSW);
1818 if (!(hw->phy.media_type == e1000_media_type_copper))
1819 return ret_val;
1820
1821 /* configure for SerDes media detect */
1822 if (!(connsw & E1000_CONNSW_SERDESD)) {
1823 connsw |= E1000_CONNSW_ENRGSRC;
1824 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1825 wr32(E1000_CONNSW, connsw);
1826 wrfl();
1827 } else if (connsw & E1000_CONNSW_SERDESD) {
1828 /* already SerDes, no need to enable anything */
1829 return ret_val;
1830 } else {
1831 netdev_info(adapter->netdev,
1832 "MAS: Unable to configure feature, disabling..\n");
1833 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1834 }
1835 return ret_val;
1836 }
1837
1838 void igb_reset(struct igb_adapter *adapter)
1839 {
1840 struct pci_dev *pdev = adapter->pdev;
1841 struct e1000_hw *hw = &adapter->hw;
1842 struct e1000_mac_info *mac = &hw->mac;
1843 struct e1000_fc_info *fc = &hw->fc;
1844 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1845
1846 /* Repartition Pba for greater than 9k mtu
1847 * To take effect CTRL.RST is required.
1848 */
1849 switch (mac->type) {
1850 case e1000_i350:
1851 case e1000_i354:
1852 case e1000_82580:
1853 pba = rd32(E1000_RXPBS);
1854 pba = igb_rxpbs_adjust_82580(pba);
1855 break;
1856 case e1000_82576:
1857 pba = rd32(E1000_RXPBS);
1858 pba &= E1000_RXPBS_SIZE_MASK_82576;
1859 break;
1860 case e1000_82575:
1861 case e1000_i210:
1862 case e1000_i211:
1863 default:
1864 pba = E1000_PBA_34K;
1865 break;
1866 }
1867
1868 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1869 (mac->type < e1000_82576)) {
1870 /* adjust PBA for jumbo frames */
1871 wr32(E1000_PBA, pba);
1872
1873 /* To maintain wire speed transmits, the Tx FIFO should be
1874 * large enough to accommodate two full transmit packets,
1875 * rounded up to the next 1KB and expressed in KB. Likewise,
1876 * the Rx FIFO should be large enough to accommodate at least
1877 * one full receive packet and is similarly rounded up and
1878 * expressed in KB.
1879 */
1880 pba = rd32(E1000_PBA);
1881 /* upper 16 bits has Tx packet buffer allocation size in KB */
1882 tx_space = pba >> 16;
1883 /* lower 16 bits has Rx packet buffer allocation size in KB */
1884 pba &= 0xffff;
1885 /* the Tx fifo also stores 16 bytes of information about the Tx
1886 * but don't include ethernet FCS because hardware appends it
1887 */
1888 min_tx_space = (adapter->max_frame_size +
1889 sizeof(union e1000_adv_tx_desc) -
1890 ETH_FCS_LEN) * 2;
1891 min_tx_space = ALIGN(min_tx_space, 1024);
1892 min_tx_space >>= 10;
1893 /* software strips receive CRC, so leave room for it */
1894 min_rx_space = adapter->max_frame_size;
1895 min_rx_space = ALIGN(min_rx_space, 1024);
1896 min_rx_space >>= 10;
1897
1898 /* If current Tx allocation is less than the min Tx FIFO size,
1899 * and the min Tx FIFO size is less than the current Rx FIFO
1900 * allocation, take space away from current Rx allocation
1901 */
1902 if (tx_space < min_tx_space &&
1903 ((min_tx_space - tx_space) < pba)) {
1904 pba = pba - (min_tx_space - tx_space);
1905
1906 /* if short on Rx space, Rx wins and must trump Tx
1907 * adjustment
1908 */
1909 if (pba < min_rx_space)
1910 pba = min_rx_space;
1911 }
1912 wr32(E1000_PBA, pba);
1913 }
1914
1915 /* flow control settings */
1916 /* The high water mark must be low enough to fit one full frame
1917 * (or the size used for early receive) above it in the Rx FIFO.
1918 * Set it to the lower of:
1919 * - 90% of the Rx FIFO size, or
1920 * - the full Rx FIFO size minus one full frame
1921 */
1922 hwm = min(((pba << 10) * 9 / 10),
1923 ((pba << 10) - 2 * adapter->max_frame_size));
1924
1925 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1926 fc->low_water = fc->high_water - 16;
1927 fc->pause_time = 0xFFFF;
1928 fc->send_xon = 1;
1929 fc->current_mode = fc->requested_mode;
1930
1931 /* disable receive for all VFs and wait one second */
1932 if (adapter->vfs_allocated_count) {
1933 int i;
1934 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1935 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1936
1937 /* ping all the active vfs to let them know we are going down */
1938 igb_ping_all_vfs(adapter);
1939
1940 /* disable transmits and receives */
1941 wr32(E1000_VFRE, 0);
1942 wr32(E1000_VFTE, 0);
1943 }
1944
1945 /* Allow time for pending master requests to run */
1946 hw->mac.ops.reset_hw(hw);
1947 wr32(E1000_WUC, 0);
1948
1949 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1950 /* need to resetup here after media swap */
1951 adapter->ei.get_invariants(hw);
1952 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1953 }
1954 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1955 if (igb_enable_mas(adapter))
1956 dev_err(&pdev->dev,
1957 "Error enabling Media Auto Sense\n");
1958 }
1959 if (hw->mac.ops.init_hw(hw))
1960 dev_err(&pdev->dev, "Hardware Error\n");
1961
1962 /* Flow control settings reset on hardware reset, so guarantee flow
1963 * control is off when forcing speed.
1964 */
1965 if (!hw->mac.autoneg)
1966 igb_force_mac_fc(hw);
1967
1968 igb_init_dmac(adapter, pba);
1969 #ifdef CONFIG_IGB_HWMON
1970 /* Re-initialize the thermal sensor on i350 devices. */
1971 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1972 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1973 /* If present, re-initialize the external thermal sensor
1974 * interface.
1975 */
1976 if (adapter->ets)
1977 mac->ops.init_thermal_sensor_thresh(hw);
1978 }
1979 }
1980 #endif
1981 /* Re-establish EEE setting */
1982 if (hw->phy.media_type == e1000_media_type_copper) {
1983 switch (mac->type) {
1984 case e1000_i350:
1985 case e1000_i210:
1986 case e1000_i211:
1987 igb_set_eee_i350(hw);
1988 break;
1989 case e1000_i354:
1990 igb_set_eee_i354(hw);
1991 break;
1992 default:
1993 break;
1994 }
1995 }
1996 if (!netif_running(adapter->netdev))
1997 igb_power_down_link(adapter);
1998
1999 igb_update_mng_vlan(adapter);
2000
2001 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2002 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2003
2004 /* Re-enable PTP, where applicable. */
2005 igb_ptp_reset(adapter);
2006
2007 igb_get_phy_info(hw);
2008 }
2009
2010 static netdev_features_t igb_fix_features(struct net_device *netdev,
2011 netdev_features_t features)
2012 {
2013 /* Since there is no support for separate Rx/Tx vlan accel
2014 * enable/disable make sure Tx flag is always in same state as Rx.
2015 */
2016 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2017 features |= NETIF_F_HW_VLAN_CTAG_TX;
2018 else
2019 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2020
2021 return features;
2022 }
2023
2024 static int igb_set_features(struct net_device *netdev,
2025 netdev_features_t features)
2026 {
2027 netdev_features_t changed = netdev->features ^ features;
2028 struct igb_adapter *adapter = netdev_priv(netdev);
2029
2030 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2031 igb_vlan_mode(netdev, features);
2032
2033 if (!(changed & NETIF_F_RXALL))
2034 return 0;
2035
2036 netdev->features = features;
2037
2038 if (netif_running(netdev))
2039 igb_reinit_locked(adapter);
2040 else
2041 igb_reset(adapter);
2042
2043 return 0;
2044 }
2045
2046 static const struct net_device_ops igb_netdev_ops = {
2047 .ndo_open = igb_open,
2048 .ndo_stop = igb_close,
2049 .ndo_start_xmit = igb_xmit_frame,
2050 .ndo_get_stats64 = igb_get_stats64,
2051 .ndo_set_rx_mode = igb_set_rx_mode,
2052 .ndo_set_mac_address = igb_set_mac,
2053 .ndo_change_mtu = igb_change_mtu,
2054 .ndo_do_ioctl = igb_ioctl,
2055 .ndo_tx_timeout = igb_tx_timeout,
2056 .ndo_validate_addr = eth_validate_addr,
2057 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2058 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2059 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2060 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2061 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
2062 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2063 .ndo_get_vf_config = igb_ndo_get_vf_config,
2064 #ifdef CONFIG_NET_POLL_CONTROLLER
2065 .ndo_poll_controller = igb_netpoll,
2066 #endif
2067 .ndo_fix_features = igb_fix_features,
2068 .ndo_set_features = igb_set_features,
2069 };
2070
2071 /**
2072 * igb_set_fw_version - Configure version string for ethtool
2073 * @adapter: adapter struct
2074 **/
2075 void igb_set_fw_version(struct igb_adapter *adapter)
2076 {
2077 struct e1000_hw *hw = &adapter->hw;
2078 struct e1000_fw_version fw;
2079
2080 igb_get_fw_version(hw, &fw);
2081
2082 switch (hw->mac.type) {
2083 case e1000_i210:
2084 case e1000_i211:
2085 if (!(igb_get_flash_presence_i210(hw))) {
2086 snprintf(adapter->fw_version,
2087 sizeof(adapter->fw_version),
2088 "%2d.%2d-%d",
2089 fw.invm_major, fw.invm_minor,
2090 fw.invm_img_type);
2091 break;
2092 }
2093 /* fall through */
2094 default:
2095 /* if option is rom valid, display its version too */
2096 if (fw.or_valid) {
2097 snprintf(adapter->fw_version,
2098 sizeof(adapter->fw_version),
2099 "%d.%d, 0x%08x, %d.%d.%d",
2100 fw.eep_major, fw.eep_minor, fw.etrack_id,
2101 fw.or_major, fw.or_build, fw.or_patch);
2102 /* no option rom */
2103 } else if (fw.etrack_id != 0X0000) {
2104 snprintf(adapter->fw_version,
2105 sizeof(adapter->fw_version),
2106 "%d.%d, 0x%08x",
2107 fw.eep_major, fw.eep_minor, fw.etrack_id);
2108 } else {
2109 snprintf(adapter->fw_version,
2110 sizeof(adapter->fw_version),
2111 "%d.%d.%d",
2112 fw.eep_major, fw.eep_minor, fw.eep_build);
2113 }
2114 break;
2115 }
2116 return;
2117 }
2118
2119 /**
2120 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2121 *
2122 * @adapter: adapter struct
2123 **/
2124 static void igb_init_mas(struct igb_adapter *adapter)
2125 {
2126 struct e1000_hw *hw = &adapter->hw;
2127 u16 eeprom_data;
2128
2129 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2130 switch (hw->bus.func) {
2131 case E1000_FUNC_0:
2132 if (eeprom_data & IGB_MAS_ENABLE_0) {
2133 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2134 netdev_info(adapter->netdev,
2135 "MAS: Enabling Media Autosense for port %d\n",
2136 hw->bus.func);
2137 }
2138 break;
2139 case E1000_FUNC_1:
2140 if (eeprom_data & IGB_MAS_ENABLE_1) {
2141 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2142 netdev_info(adapter->netdev,
2143 "MAS: Enabling Media Autosense for port %d\n",
2144 hw->bus.func);
2145 }
2146 break;
2147 case E1000_FUNC_2:
2148 if (eeprom_data & IGB_MAS_ENABLE_2) {
2149 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2150 netdev_info(adapter->netdev,
2151 "MAS: Enabling Media Autosense for port %d\n",
2152 hw->bus.func);
2153 }
2154 break;
2155 case E1000_FUNC_3:
2156 if (eeprom_data & IGB_MAS_ENABLE_3) {
2157 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2158 netdev_info(adapter->netdev,
2159 "MAS: Enabling Media Autosense for port %d\n",
2160 hw->bus.func);
2161 }
2162 break;
2163 default:
2164 /* Shouldn't get here */
2165 netdev_err(adapter->netdev,
2166 "MAS: Invalid port configuration, returning\n");
2167 break;
2168 }
2169 }
2170
2171 /**
2172 * igb_init_i2c - Init I2C interface
2173 * @adapter: pointer to adapter structure
2174 **/
2175 static s32 igb_init_i2c(struct igb_adapter *adapter)
2176 {
2177 s32 status = E1000_SUCCESS;
2178
2179 /* I2C interface supported on i350 devices */
2180 if (adapter->hw.mac.type != e1000_i350)
2181 return E1000_SUCCESS;
2182
2183 /* Initialize the i2c bus which is controlled by the registers.
2184 * This bus will use the i2c_algo_bit structue that implements
2185 * the protocol through toggling of the 4 bits in the register.
2186 */
2187 adapter->i2c_adap.owner = THIS_MODULE;
2188 adapter->i2c_algo = igb_i2c_algo;
2189 adapter->i2c_algo.data = adapter;
2190 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2191 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2192 strlcpy(adapter->i2c_adap.name, "igb BB",
2193 sizeof(adapter->i2c_adap.name));
2194 status = i2c_bit_add_bus(&adapter->i2c_adap);
2195 return status;
2196 }
2197
2198 /**
2199 * igb_probe - Device Initialization Routine
2200 * @pdev: PCI device information struct
2201 * @ent: entry in igb_pci_tbl
2202 *
2203 * Returns 0 on success, negative on failure
2204 *
2205 * igb_probe initializes an adapter identified by a pci_dev structure.
2206 * The OS initialization, configuring of the adapter private structure,
2207 * and a hardware reset occur.
2208 **/
2209 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2210 {
2211 struct net_device *netdev;
2212 struct igb_adapter *adapter;
2213 struct e1000_hw *hw;
2214 u16 eeprom_data = 0;
2215 s32 ret_val;
2216 static int global_quad_port_a; /* global quad port a indication */
2217 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2218 int err, pci_using_dac;
2219 u8 part_str[E1000_PBANUM_LENGTH];
2220
2221 /* Catch broken hardware that put the wrong VF device ID in
2222 * the PCIe SR-IOV capability.
2223 */
2224 if (pdev->is_virtfn) {
2225 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2226 pci_name(pdev), pdev->vendor, pdev->device);
2227 return -EINVAL;
2228 }
2229
2230 err = pci_enable_device_mem(pdev);
2231 if (err)
2232 return err;
2233
2234 pci_using_dac = 0;
2235 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2236 if (!err) {
2237 pci_using_dac = 1;
2238 } else {
2239 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2240 if (err) {
2241 dev_err(&pdev->dev,
2242 "No usable DMA configuration, aborting\n");
2243 goto err_dma;
2244 }
2245 }
2246
2247 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2248 IORESOURCE_MEM),
2249 igb_driver_name);
2250 if (err)
2251 goto err_pci_reg;
2252
2253 pci_enable_pcie_error_reporting(pdev);
2254
2255 pci_set_master(pdev);
2256 pci_save_state(pdev);
2257
2258 err = -ENOMEM;
2259 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2260 IGB_MAX_TX_QUEUES);
2261 if (!netdev)
2262 goto err_alloc_etherdev;
2263
2264 SET_NETDEV_DEV(netdev, &pdev->dev);
2265
2266 pci_set_drvdata(pdev, netdev);
2267 adapter = netdev_priv(netdev);
2268 adapter->netdev = netdev;
2269 adapter->pdev = pdev;
2270 hw = &adapter->hw;
2271 hw->back = adapter;
2272 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2273
2274 err = -EIO;
2275 hw->hw_addr = pci_iomap(pdev, 0, 0);
2276 if (!hw->hw_addr)
2277 goto err_ioremap;
2278
2279 netdev->netdev_ops = &igb_netdev_ops;
2280 igb_set_ethtool_ops(netdev);
2281 netdev->watchdog_timeo = 5 * HZ;
2282
2283 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2284
2285 netdev->mem_start = pci_resource_start(pdev, 0);
2286 netdev->mem_end = pci_resource_end(pdev, 0);
2287
2288 /* PCI config space info */
2289 hw->vendor_id = pdev->vendor;
2290 hw->device_id = pdev->device;
2291 hw->revision_id = pdev->revision;
2292 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2293 hw->subsystem_device_id = pdev->subsystem_device;
2294
2295 /* Copy the default MAC, PHY and NVM function pointers */
2296 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2297 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2298 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2299 /* Initialize skew-specific constants */
2300 err = ei->get_invariants(hw);
2301 if (err)
2302 goto err_sw_init;
2303
2304 /* setup the private structure */
2305 err = igb_sw_init(adapter);
2306 if (err)
2307 goto err_sw_init;
2308
2309 igb_get_bus_info_pcie(hw);
2310
2311 hw->phy.autoneg_wait_to_complete = false;
2312
2313 /* Copper options */
2314 if (hw->phy.media_type == e1000_media_type_copper) {
2315 hw->phy.mdix = AUTO_ALL_MODES;
2316 hw->phy.disable_polarity_correction = false;
2317 hw->phy.ms_type = e1000_ms_hw_default;
2318 }
2319
2320 if (igb_check_reset_block(hw))
2321 dev_info(&pdev->dev,
2322 "PHY reset is blocked due to SOL/IDER session.\n");
2323
2324 /* features is initialized to 0 in allocation, it might have bits
2325 * set by igb_sw_init so we should use an or instead of an
2326 * assignment.
2327 */
2328 netdev->features |= NETIF_F_SG |
2329 NETIF_F_IP_CSUM |
2330 NETIF_F_IPV6_CSUM |
2331 NETIF_F_TSO |
2332 NETIF_F_TSO6 |
2333 NETIF_F_RXHASH |
2334 NETIF_F_RXCSUM |
2335 NETIF_F_HW_VLAN_CTAG_RX |
2336 NETIF_F_HW_VLAN_CTAG_TX;
2337
2338 /* copy netdev features into list of user selectable features */
2339 netdev->hw_features |= netdev->features;
2340 netdev->hw_features |= NETIF_F_RXALL;
2341
2342 /* set this bit last since it cannot be part of hw_features */
2343 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2344
2345 netdev->vlan_features |= NETIF_F_TSO |
2346 NETIF_F_TSO6 |
2347 NETIF_F_IP_CSUM |
2348 NETIF_F_IPV6_CSUM |
2349 NETIF_F_SG;
2350
2351 netdev->priv_flags |= IFF_SUPP_NOFCS;
2352
2353 if (pci_using_dac) {
2354 netdev->features |= NETIF_F_HIGHDMA;
2355 netdev->vlan_features |= NETIF_F_HIGHDMA;
2356 }
2357
2358 if (hw->mac.type >= e1000_82576) {
2359 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2360 netdev->features |= NETIF_F_SCTP_CSUM;
2361 }
2362
2363 netdev->priv_flags |= IFF_UNICAST_FLT;
2364
2365 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2366
2367 /* before reading the NVM, reset the controller to put the device in a
2368 * known good starting state
2369 */
2370 hw->mac.ops.reset_hw(hw);
2371
2372 /* make sure the NVM is good , i211/i210 parts can have special NVM
2373 * that doesn't contain a checksum
2374 */
2375 switch (hw->mac.type) {
2376 case e1000_i210:
2377 case e1000_i211:
2378 if (igb_get_flash_presence_i210(hw)) {
2379 if (hw->nvm.ops.validate(hw) < 0) {
2380 dev_err(&pdev->dev,
2381 "The NVM Checksum Is Not Valid\n");
2382 err = -EIO;
2383 goto err_eeprom;
2384 }
2385 }
2386 break;
2387 default:
2388 if (hw->nvm.ops.validate(hw) < 0) {
2389 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2390 err = -EIO;
2391 goto err_eeprom;
2392 }
2393 break;
2394 }
2395
2396 /* copy the MAC address out of the NVM */
2397 if (hw->mac.ops.read_mac_addr(hw))
2398 dev_err(&pdev->dev, "NVM Read Error\n");
2399
2400 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2401
2402 if (!is_valid_ether_addr(netdev->dev_addr)) {
2403 dev_err(&pdev->dev, "Invalid MAC Address\n");
2404 err = -EIO;
2405 goto err_eeprom;
2406 }
2407
2408 /* get firmware version for ethtool -i */
2409 igb_set_fw_version(adapter);
2410
2411 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2412 (unsigned long) adapter);
2413 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2414 (unsigned long) adapter);
2415
2416 INIT_WORK(&adapter->reset_task, igb_reset_task);
2417 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2418
2419 /* Initialize link properties that are user-changeable */
2420 adapter->fc_autoneg = true;
2421 hw->mac.autoneg = true;
2422 hw->phy.autoneg_advertised = 0x2f;
2423
2424 hw->fc.requested_mode = e1000_fc_default;
2425 hw->fc.current_mode = e1000_fc_default;
2426
2427 igb_validate_mdi_setting(hw);
2428
2429 /* By default, support wake on port A */
2430 if (hw->bus.func == 0)
2431 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2432
2433 /* Check the NVM for wake support on non-port A ports */
2434 if (hw->mac.type >= e1000_82580)
2435 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2436 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2437 &eeprom_data);
2438 else if (hw->bus.func == 1)
2439 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2440
2441 if (eeprom_data & IGB_EEPROM_APME)
2442 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2443
2444 /* now that we have the eeprom settings, apply the special cases where
2445 * the eeprom may be wrong or the board simply won't support wake on
2446 * lan on a particular port
2447 */
2448 switch (pdev->device) {
2449 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2450 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2451 break;
2452 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2453 case E1000_DEV_ID_82576_FIBER:
2454 case E1000_DEV_ID_82576_SERDES:
2455 /* Wake events only supported on port A for dual fiber
2456 * regardless of eeprom setting
2457 */
2458 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2459 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2460 break;
2461 case E1000_DEV_ID_82576_QUAD_COPPER:
2462 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2463 /* if quad port adapter, disable WoL on all but port A */
2464 if (global_quad_port_a != 0)
2465 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2466 else
2467 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2468 /* Reset for multiple quad port adapters */
2469 if (++global_quad_port_a == 4)
2470 global_quad_port_a = 0;
2471 break;
2472 default:
2473 /* If the device can't wake, don't set software support */
2474 if (!device_can_wakeup(&adapter->pdev->dev))
2475 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2476 }
2477
2478 /* initialize the wol settings based on the eeprom settings */
2479 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2480 adapter->wol |= E1000_WUFC_MAG;
2481
2482 /* Some vendors want WoL disabled by default, but still supported */
2483 if ((hw->mac.type == e1000_i350) &&
2484 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2485 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2486 adapter->wol = 0;
2487 }
2488
2489 device_set_wakeup_enable(&adapter->pdev->dev,
2490 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2491
2492 /* reset the hardware with the new settings */
2493 igb_reset(adapter);
2494
2495 /* Init the I2C interface */
2496 err = igb_init_i2c(adapter);
2497 if (err) {
2498 dev_err(&pdev->dev, "failed to init i2c interface\n");
2499 goto err_eeprom;
2500 }
2501
2502 /* let the f/w know that the h/w is now under the control of the
2503 * driver. */
2504 igb_get_hw_control(adapter);
2505
2506 strcpy(netdev->name, "eth%d");
2507 err = register_netdev(netdev);
2508 if (err)
2509 goto err_register;
2510
2511 /* carrier off reporting is important to ethtool even BEFORE open */
2512 netif_carrier_off(netdev);
2513
2514 #ifdef CONFIG_IGB_DCA
2515 if (dca_add_requester(&pdev->dev) == 0) {
2516 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2517 dev_info(&pdev->dev, "DCA enabled\n");
2518 igb_setup_dca(adapter);
2519 }
2520
2521 #endif
2522 #ifdef CONFIG_IGB_HWMON
2523 /* Initialize the thermal sensor on i350 devices. */
2524 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2525 u16 ets_word;
2526
2527 /* Read the NVM to determine if this i350 device supports an
2528 * external thermal sensor.
2529 */
2530 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2531 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2532 adapter->ets = true;
2533 else
2534 adapter->ets = false;
2535 if (igb_sysfs_init(adapter))
2536 dev_err(&pdev->dev,
2537 "failed to allocate sysfs resources\n");
2538 } else {
2539 adapter->ets = false;
2540 }
2541 #endif
2542 /* Check if Media Autosense is enabled */
2543 adapter->ei = *ei;
2544 if (hw->dev_spec._82575.mas_capable)
2545 igb_init_mas(adapter);
2546
2547 /* do hw tstamp init after resetting */
2548 igb_ptp_init(adapter);
2549
2550 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2551 /* print bus type/speed/width info, not applicable to i354 */
2552 if (hw->mac.type != e1000_i354) {
2553 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2554 netdev->name,
2555 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2556 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2557 "unknown"),
2558 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2559 "Width x4" :
2560 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2561 "Width x2" :
2562 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2563 "Width x1" : "unknown"), netdev->dev_addr);
2564 }
2565
2566 if ((hw->mac.type >= e1000_i210 ||
2567 igb_get_flash_presence_i210(hw))) {
2568 ret_val = igb_read_part_string(hw, part_str,
2569 E1000_PBANUM_LENGTH);
2570 } else {
2571 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2572 }
2573
2574 if (ret_val)
2575 strcpy(part_str, "Unknown");
2576 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2577 dev_info(&pdev->dev,
2578 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2579 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2580 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2581 adapter->num_rx_queues, adapter->num_tx_queues);
2582 if (hw->phy.media_type == e1000_media_type_copper) {
2583 switch (hw->mac.type) {
2584 case e1000_i350:
2585 case e1000_i210:
2586 case e1000_i211:
2587 /* Enable EEE for internal copper PHY devices */
2588 err = igb_set_eee_i350(hw);
2589 if ((!err) &&
2590 (!hw->dev_spec._82575.eee_disable)) {
2591 adapter->eee_advert =
2592 MDIO_EEE_100TX | MDIO_EEE_1000T;
2593 adapter->flags |= IGB_FLAG_EEE;
2594 }
2595 break;
2596 case e1000_i354:
2597 if ((rd32(E1000_CTRL_EXT) &
2598 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2599 err = igb_set_eee_i354(hw);
2600 if ((!err) &&
2601 (!hw->dev_spec._82575.eee_disable)) {
2602 adapter->eee_advert =
2603 MDIO_EEE_100TX | MDIO_EEE_1000T;
2604 adapter->flags |= IGB_FLAG_EEE;
2605 }
2606 }
2607 break;
2608 default:
2609 break;
2610 }
2611 }
2612 pm_runtime_put_noidle(&pdev->dev);
2613 return 0;
2614
2615 err_register:
2616 igb_release_hw_control(adapter);
2617 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2618 err_eeprom:
2619 if (!igb_check_reset_block(hw))
2620 igb_reset_phy(hw);
2621
2622 if (hw->flash_address)
2623 iounmap(hw->flash_address);
2624 err_sw_init:
2625 igb_clear_interrupt_scheme(adapter);
2626 iounmap(hw->hw_addr);
2627 err_ioremap:
2628 free_netdev(netdev);
2629 err_alloc_etherdev:
2630 pci_release_selected_regions(pdev,
2631 pci_select_bars(pdev, IORESOURCE_MEM));
2632 err_pci_reg:
2633 err_dma:
2634 pci_disable_device(pdev);
2635 return err;
2636 }
2637
2638 #ifdef CONFIG_PCI_IOV
2639 static int igb_disable_sriov(struct pci_dev *pdev)
2640 {
2641 struct net_device *netdev = pci_get_drvdata(pdev);
2642 struct igb_adapter *adapter = netdev_priv(netdev);
2643 struct e1000_hw *hw = &adapter->hw;
2644
2645 /* reclaim resources allocated to VFs */
2646 if (adapter->vf_data) {
2647 /* disable iov and allow time for transactions to clear */
2648 if (pci_vfs_assigned(pdev)) {
2649 dev_warn(&pdev->dev,
2650 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2651 return -EPERM;
2652 } else {
2653 pci_disable_sriov(pdev);
2654 msleep(500);
2655 }
2656
2657 kfree(adapter->vf_data);
2658 adapter->vf_data = NULL;
2659 adapter->vfs_allocated_count = 0;
2660 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2661 wrfl();
2662 msleep(100);
2663 dev_info(&pdev->dev, "IOV Disabled\n");
2664
2665 /* Re-enable DMA Coalescing flag since IOV is turned off */
2666 adapter->flags |= IGB_FLAG_DMAC;
2667 }
2668
2669 return 0;
2670 }
2671
2672 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2673 {
2674 struct net_device *netdev = pci_get_drvdata(pdev);
2675 struct igb_adapter *adapter = netdev_priv(netdev);
2676 int old_vfs = pci_num_vf(pdev);
2677 int err = 0;
2678 int i;
2679
2680 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2681 err = -EPERM;
2682 goto out;
2683 }
2684 if (!num_vfs)
2685 goto out;
2686
2687 if (old_vfs) {
2688 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2689 old_vfs, max_vfs);
2690 adapter->vfs_allocated_count = old_vfs;
2691 } else
2692 adapter->vfs_allocated_count = num_vfs;
2693
2694 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2695 sizeof(struct vf_data_storage), GFP_KERNEL);
2696
2697 /* if allocation failed then we do not support SR-IOV */
2698 if (!adapter->vf_data) {
2699 adapter->vfs_allocated_count = 0;
2700 dev_err(&pdev->dev,
2701 "Unable to allocate memory for VF Data Storage\n");
2702 err = -ENOMEM;
2703 goto out;
2704 }
2705
2706 /* only call pci_enable_sriov() if no VFs are allocated already */
2707 if (!old_vfs) {
2708 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2709 if (err)
2710 goto err_out;
2711 }
2712 dev_info(&pdev->dev, "%d VFs allocated\n",
2713 adapter->vfs_allocated_count);
2714 for (i = 0; i < adapter->vfs_allocated_count; i++)
2715 igb_vf_configure(adapter, i);
2716
2717 /* DMA Coalescing is not supported in IOV mode. */
2718 adapter->flags &= ~IGB_FLAG_DMAC;
2719 goto out;
2720
2721 err_out:
2722 kfree(adapter->vf_data);
2723 adapter->vf_data = NULL;
2724 adapter->vfs_allocated_count = 0;
2725 out:
2726 return err;
2727 }
2728
2729 #endif
2730 /**
2731 * igb_remove_i2c - Cleanup I2C interface
2732 * @adapter: pointer to adapter structure
2733 **/
2734 static void igb_remove_i2c(struct igb_adapter *adapter)
2735 {
2736 /* free the adapter bus structure */
2737 i2c_del_adapter(&adapter->i2c_adap);
2738 }
2739
2740 /**
2741 * igb_remove - Device Removal Routine
2742 * @pdev: PCI device information struct
2743 *
2744 * igb_remove is called by the PCI subsystem to alert the driver
2745 * that it should release a PCI device. The could be caused by a
2746 * Hot-Plug event, or because the driver is going to be removed from
2747 * memory.
2748 **/
2749 static void igb_remove(struct pci_dev *pdev)
2750 {
2751 struct net_device *netdev = pci_get_drvdata(pdev);
2752 struct igb_adapter *adapter = netdev_priv(netdev);
2753 struct e1000_hw *hw = &adapter->hw;
2754
2755 pm_runtime_get_noresume(&pdev->dev);
2756 #ifdef CONFIG_IGB_HWMON
2757 igb_sysfs_exit(adapter);
2758 #endif
2759 igb_remove_i2c(adapter);
2760 igb_ptp_stop(adapter);
2761 /* The watchdog timer may be rescheduled, so explicitly
2762 * disable watchdog from being rescheduled.
2763 */
2764 set_bit(__IGB_DOWN, &adapter->state);
2765 del_timer_sync(&adapter->watchdog_timer);
2766 del_timer_sync(&adapter->phy_info_timer);
2767
2768 cancel_work_sync(&adapter->reset_task);
2769 cancel_work_sync(&adapter->watchdog_task);
2770
2771 #ifdef CONFIG_IGB_DCA
2772 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2773 dev_info(&pdev->dev, "DCA disabled\n");
2774 dca_remove_requester(&pdev->dev);
2775 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2776 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2777 }
2778 #endif
2779
2780 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2781 * would have already happened in close and is redundant.
2782 */
2783 igb_release_hw_control(adapter);
2784
2785 unregister_netdev(netdev);
2786
2787 igb_clear_interrupt_scheme(adapter);
2788
2789 #ifdef CONFIG_PCI_IOV
2790 igb_disable_sriov(pdev);
2791 #endif
2792
2793 iounmap(hw->hw_addr);
2794 if (hw->flash_address)
2795 iounmap(hw->flash_address);
2796 pci_release_selected_regions(pdev,
2797 pci_select_bars(pdev, IORESOURCE_MEM));
2798
2799 kfree(adapter->shadow_vfta);
2800 free_netdev(netdev);
2801
2802 pci_disable_pcie_error_reporting(pdev);
2803
2804 pci_disable_device(pdev);
2805 }
2806
2807 /**
2808 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2809 * @adapter: board private structure to initialize
2810 *
2811 * This function initializes the vf specific data storage and then attempts to
2812 * allocate the VFs. The reason for ordering it this way is because it is much
2813 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2814 * the memory for the VFs.
2815 **/
2816 static void igb_probe_vfs(struct igb_adapter *adapter)
2817 {
2818 #ifdef CONFIG_PCI_IOV
2819 struct pci_dev *pdev = adapter->pdev;
2820 struct e1000_hw *hw = &adapter->hw;
2821
2822 /* Virtualization features not supported on i210 family. */
2823 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2824 return;
2825
2826 pci_sriov_set_totalvfs(pdev, 7);
2827 igb_pci_enable_sriov(pdev, max_vfs);
2828
2829 #endif /* CONFIG_PCI_IOV */
2830 }
2831
2832 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2833 {
2834 struct e1000_hw *hw = &adapter->hw;
2835 u32 max_rss_queues;
2836
2837 /* Determine the maximum number of RSS queues supported. */
2838 switch (hw->mac.type) {
2839 case e1000_i211:
2840 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2841 break;
2842 case e1000_82575:
2843 case e1000_i210:
2844 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2845 break;
2846 case e1000_i350:
2847 /* I350 cannot do RSS and SR-IOV at the same time */
2848 if (!!adapter->vfs_allocated_count) {
2849 max_rss_queues = 1;
2850 break;
2851 }
2852 /* fall through */
2853 case e1000_82576:
2854 if (!!adapter->vfs_allocated_count) {
2855 max_rss_queues = 2;
2856 break;
2857 }
2858 /* fall through */
2859 case e1000_82580:
2860 case e1000_i354:
2861 default:
2862 max_rss_queues = IGB_MAX_RX_QUEUES;
2863 break;
2864 }
2865
2866 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2867
2868 /* Determine if we need to pair queues. */
2869 switch (hw->mac.type) {
2870 case e1000_82575:
2871 case e1000_i211:
2872 /* Device supports enough interrupts without queue pairing. */
2873 break;
2874 case e1000_82576:
2875 /* If VFs are going to be allocated with RSS queues then we
2876 * should pair the queues in order to conserve interrupts due
2877 * to limited supply.
2878 */
2879 if ((adapter->rss_queues > 1) &&
2880 (adapter->vfs_allocated_count > 6))
2881 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2882 /* fall through */
2883 case e1000_82580:
2884 case e1000_i350:
2885 case e1000_i354:
2886 case e1000_i210:
2887 default:
2888 /* If rss_queues > half of max_rss_queues, pair the queues in
2889 * order to conserve interrupts due to limited supply.
2890 */
2891 if (adapter->rss_queues > (max_rss_queues / 2))
2892 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2893 break;
2894 }
2895 }
2896
2897 /**
2898 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2899 * @adapter: board private structure to initialize
2900 *
2901 * igb_sw_init initializes the Adapter private data structure.
2902 * Fields are initialized based on PCI device information and
2903 * OS network device settings (MTU size).
2904 **/
2905 static int igb_sw_init(struct igb_adapter *adapter)
2906 {
2907 struct e1000_hw *hw = &adapter->hw;
2908 struct net_device *netdev = adapter->netdev;
2909 struct pci_dev *pdev = adapter->pdev;
2910
2911 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2912
2913 /* set default ring sizes */
2914 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2915 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2916
2917 /* set default ITR values */
2918 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2919 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2920
2921 /* set default work limits */
2922 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2923
2924 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2925 VLAN_HLEN;
2926 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2927
2928 spin_lock_init(&adapter->stats64_lock);
2929 #ifdef CONFIG_PCI_IOV
2930 switch (hw->mac.type) {
2931 case e1000_82576:
2932 case e1000_i350:
2933 if (max_vfs > 7) {
2934 dev_warn(&pdev->dev,
2935 "Maximum of 7 VFs per PF, using max\n");
2936 max_vfs = adapter->vfs_allocated_count = 7;
2937 } else
2938 adapter->vfs_allocated_count = max_vfs;
2939 if (adapter->vfs_allocated_count)
2940 dev_warn(&pdev->dev,
2941 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2942 break;
2943 default:
2944 break;
2945 }
2946 #endif /* CONFIG_PCI_IOV */
2947
2948 igb_init_queue_configuration(adapter);
2949
2950 /* Setup and initialize a copy of the hw vlan table array */
2951 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2952 GFP_ATOMIC);
2953
2954 /* This call may decrease the number of queues */
2955 if (igb_init_interrupt_scheme(adapter, true)) {
2956 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2957 return -ENOMEM;
2958 }
2959
2960 igb_probe_vfs(adapter);
2961
2962 /* Explicitly disable IRQ since the NIC can be in any state. */
2963 igb_irq_disable(adapter);
2964
2965 if (hw->mac.type >= e1000_i350)
2966 adapter->flags &= ~IGB_FLAG_DMAC;
2967
2968 set_bit(__IGB_DOWN, &adapter->state);
2969 return 0;
2970 }
2971
2972 /**
2973 * igb_open - Called when a network interface is made active
2974 * @netdev: network interface device structure
2975 *
2976 * Returns 0 on success, negative value on failure
2977 *
2978 * The open entry point is called when a network interface is made
2979 * active by the system (IFF_UP). At this point all resources needed
2980 * for transmit and receive operations are allocated, the interrupt
2981 * handler is registered with the OS, the watchdog timer is started,
2982 * and the stack is notified that the interface is ready.
2983 **/
2984 static int __igb_open(struct net_device *netdev, bool resuming)
2985 {
2986 struct igb_adapter *adapter = netdev_priv(netdev);
2987 struct e1000_hw *hw = &adapter->hw;
2988 struct pci_dev *pdev = adapter->pdev;
2989 int err;
2990 int i;
2991
2992 /* disallow open during test */
2993 if (test_bit(__IGB_TESTING, &adapter->state)) {
2994 WARN_ON(resuming);
2995 return -EBUSY;
2996 }
2997
2998 if (!resuming)
2999 pm_runtime_get_sync(&pdev->dev);
3000
3001 netif_carrier_off(netdev);
3002
3003 /* allocate transmit descriptors */
3004 err = igb_setup_all_tx_resources(adapter);
3005 if (err)
3006 goto err_setup_tx;
3007
3008 /* allocate receive descriptors */
3009 err = igb_setup_all_rx_resources(adapter);
3010 if (err)
3011 goto err_setup_rx;
3012
3013 igb_power_up_link(adapter);
3014
3015 /* before we allocate an interrupt, we must be ready to handle it.
3016 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3017 * as soon as we call pci_request_irq, so we have to setup our
3018 * clean_rx handler before we do so.
3019 */
3020 igb_configure(adapter);
3021
3022 err = igb_request_irq(adapter);
3023 if (err)
3024 goto err_req_irq;
3025
3026 /* Notify the stack of the actual queue counts. */
3027 err = netif_set_real_num_tx_queues(adapter->netdev,
3028 adapter->num_tx_queues);
3029 if (err)
3030 goto err_set_queues;
3031
3032 err = netif_set_real_num_rx_queues(adapter->netdev,
3033 adapter->num_rx_queues);
3034 if (err)
3035 goto err_set_queues;
3036
3037 /* From here on the code is the same as igb_up() */
3038 clear_bit(__IGB_DOWN, &adapter->state);
3039
3040 for (i = 0; i < adapter->num_q_vectors; i++)
3041 napi_enable(&(adapter->q_vector[i]->napi));
3042
3043 /* Clear any pending interrupts. */
3044 rd32(E1000_ICR);
3045
3046 igb_irq_enable(adapter);
3047
3048 /* notify VFs that reset has been completed */
3049 if (adapter->vfs_allocated_count) {
3050 u32 reg_data = rd32(E1000_CTRL_EXT);
3051 reg_data |= E1000_CTRL_EXT_PFRSTD;
3052 wr32(E1000_CTRL_EXT, reg_data);
3053 }
3054
3055 netif_tx_start_all_queues(netdev);
3056
3057 if (!resuming)
3058 pm_runtime_put(&pdev->dev);
3059
3060 /* start the watchdog. */
3061 hw->mac.get_link_status = 1;
3062 schedule_work(&adapter->watchdog_task);
3063
3064 return 0;
3065
3066 err_set_queues:
3067 igb_free_irq(adapter);
3068 err_req_irq:
3069 igb_release_hw_control(adapter);
3070 igb_power_down_link(adapter);
3071 igb_free_all_rx_resources(adapter);
3072 err_setup_rx:
3073 igb_free_all_tx_resources(adapter);
3074 err_setup_tx:
3075 igb_reset(adapter);
3076 if (!resuming)
3077 pm_runtime_put(&pdev->dev);
3078
3079 return err;
3080 }
3081
3082 static int igb_open(struct net_device *netdev)
3083 {
3084 return __igb_open(netdev, false);
3085 }
3086
3087 /**
3088 * igb_close - Disables a network interface
3089 * @netdev: network interface device structure
3090 *
3091 * Returns 0, this is not allowed to fail
3092 *
3093 * The close entry point is called when an interface is de-activated
3094 * by the OS. The hardware is still under the driver's control, but
3095 * needs to be disabled. A global MAC reset is issued to stop the
3096 * hardware, and all transmit and receive resources are freed.
3097 **/
3098 static int __igb_close(struct net_device *netdev, bool suspending)
3099 {
3100 struct igb_adapter *adapter = netdev_priv(netdev);
3101 struct pci_dev *pdev = adapter->pdev;
3102
3103 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3104
3105 if (!suspending)
3106 pm_runtime_get_sync(&pdev->dev);
3107
3108 igb_down(adapter);
3109 igb_free_irq(adapter);
3110
3111 igb_free_all_tx_resources(adapter);
3112 igb_free_all_rx_resources(adapter);
3113
3114 if (!suspending)
3115 pm_runtime_put_sync(&pdev->dev);
3116 return 0;
3117 }
3118
3119 static int igb_close(struct net_device *netdev)
3120 {
3121 return __igb_close(netdev, false);
3122 }
3123
3124 /**
3125 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3126 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3127 *
3128 * Return 0 on success, negative on failure
3129 **/
3130 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3131 {
3132 struct device *dev = tx_ring->dev;
3133 int size;
3134
3135 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3136
3137 tx_ring->tx_buffer_info = vzalloc(size);
3138 if (!tx_ring->tx_buffer_info)
3139 goto err;
3140
3141 /* round up to nearest 4K */
3142 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3143 tx_ring->size = ALIGN(tx_ring->size, 4096);
3144
3145 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3146 &tx_ring->dma, GFP_KERNEL);
3147 if (!tx_ring->desc)
3148 goto err;
3149
3150 tx_ring->next_to_use = 0;
3151 tx_ring->next_to_clean = 0;
3152
3153 return 0;
3154
3155 err:
3156 vfree(tx_ring->tx_buffer_info);
3157 tx_ring->tx_buffer_info = NULL;
3158 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3159 return -ENOMEM;
3160 }
3161
3162 /**
3163 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3164 * (Descriptors) for all queues
3165 * @adapter: board private structure
3166 *
3167 * Return 0 on success, negative on failure
3168 **/
3169 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3170 {
3171 struct pci_dev *pdev = adapter->pdev;
3172 int i, err = 0;
3173
3174 for (i = 0; i < adapter->num_tx_queues; i++) {
3175 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3176 if (err) {
3177 dev_err(&pdev->dev,
3178 "Allocation for Tx Queue %u failed\n", i);
3179 for (i--; i >= 0; i--)
3180 igb_free_tx_resources(adapter->tx_ring[i]);
3181 break;
3182 }
3183 }
3184
3185 return err;
3186 }
3187
3188 /**
3189 * igb_setup_tctl - configure the transmit control registers
3190 * @adapter: Board private structure
3191 **/
3192 void igb_setup_tctl(struct igb_adapter *adapter)
3193 {
3194 struct e1000_hw *hw = &adapter->hw;
3195 u32 tctl;
3196
3197 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3198 wr32(E1000_TXDCTL(0), 0);
3199
3200 /* Program the Transmit Control Register */
3201 tctl = rd32(E1000_TCTL);
3202 tctl &= ~E1000_TCTL_CT;
3203 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3204 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3205
3206 igb_config_collision_dist(hw);
3207
3208 /* Enable transmits */
3209 tctl |= E1000_TCTL_EN;
3210
3211 wr32(E1000_TCTL, tctl);
3212 }
3213
3214 /**
3215 * igb_configure_tx_ring - Configure transmit ring after Reset
3216 * @adapter: board private structure
3217 * @ring: tx ring to configure
3218 *
3219 * Configure a transmit ring after a reset.
3220 **/
3221 void igb_configure_tx_ring(struct igb_adapter *adapter,
3222 struct igb_ring *ring)
3223 {
3224 struct e1000_hw *hw = &adapter->hw;
3225 u32 txdctl = 0;
3226 u64 tdba = ring->dma;
3227 int reg_idx = ring->reg_idx;
3228
3229 /* disable the queue */
3230 wr32(E1000_TXDCTL(reg_idx), 0);
3231 wrfl();
3232 mdelay(10);
3233
3234 wr32(E1000_TDLEN(reg_idx),
3235 ring->count * sizeof(union e1000_adv_tx_desc));
3236 wr32(E1000_TDBAL(reg_idx),
3237 tdba & 0x00000000ffffffffULL);
3238 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3239
3240 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3241 wr32(E1000_TDH(reg_idx), 0);
3242 writel(0, ring->tail);
3243
3244 txdctl |= IGB_TX_PTHRESH;
3245 txdctl |= IGB_TX_HTHRESH << 8;
3246 txdctl |= IGB_TX_WTHRESH << 16;
3247
3248 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3249 wr32(E1000_TXDCTL(reg_idx), txdctl);
3250 }
3251
3252 /**
3253 * igb_configure_tx - Configure transmit Unit after Reset
3254 * @adapter: board private structure
3255 *
3256 * Configure the Tx unit of the MAC after a reset.
3257 **/
3258 static void igb_configure_tx(struct igb_adapter *adapter)
3259 {
3260 int i;
3261
3262 for (i = 0; i < adapter->num_tx_queues; i++)
3263 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3264 }
3265
3266 /**
3267 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3268 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3269 *
3270 * Returns 0 on success, negative on failure
3271 **/
3272 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3273 {
3274 struct device *dev = rx_ring->dev;
3275 int size;
3276
3277 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3278
3279 rx_ring->rx_buffer_info = vzalloc(size);
3280 if (!rx_ring->rx_buffer_info)
3281 goto err;
3282
3283 /* Round up to nearest 4K */
3284 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3285 rx_ring->size = ALIGN(rx_ring->size, 4096);
3286
3287 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3288 &rx_ring->dma, GFP_KERNEL);
3289 if (!rx_ring->desc)
3290 goto err;
3291
3292 rx_ring->next_to_alloc = 0;
3293 rx_ring->next_to_clean = 0;
3294 rx_ring->next_to_use = 0;
3295
3296 return 0;
3297
3298 err:
3299 vfree(rx_ring->rx_buffer_info);
3300 rx_ring->rx_buffer_info = NULL;
3301 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3302 return -ENOMEM;
3303 }
3304
3305 /**
3306 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3307 * (Descriptors) for all queues
3308 * @adapter: board private structure
3309 *
3310 * Return 0 on success, negative on failure
3311 **/
3312 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3313 {
3314 struct pci_dev *pdev = adapter->pdev;
3315 int i, err = 0;
3316
3317 for (i = 0; i < adapter->num_rx_queues; i++) {
3318 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3319 if (err) {
3320 dev_err(&pdev->dev,
3321 "Allocation for Rx Queue %u failed\n", i);
3322 for (i--; i >= 0; i--)
3323 igb_free_rx_resources(adapter->rx_ring[i]);
3324 break;
3325 }
3326 }
3327
3328 return err;
3329 }
3330
3331 /**
3332 * igb_setup_mrqc - configure the multiple receive queue control registers
3333 * @adapter: Board private structure
3334 **/
3335 static void igb_setup_mrqc(struct igb_adapter *adapter)
3336 {
3337 struct e1000_hw *hw = &adapter->hw;
3338 u32 mrqc, rxcsum;
3339 u32 j, num_rx_queues;
3340 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3341 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3342 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3343 0xFA01ACBE };
3344
3345 /* Fill out hash function seeds */
3346 for (j = 0; j < 10; j++)
3347 wr32(E1000_RSSRK(j), rsskey[j]);
3348
3349 num_rx_queues = adapter->rss_queues;
3350
3351 switch (hw->mac.type) {
3352 case e1000_82576:
3353 /* 82576 supports 2 RSS queues for SR-IOV */
3354 if (adapter->vfs_allocated_count)
3355 num_rx_queues = 2;
3356 break;
3357 default:
3358 break;
3359 }
3360
3361 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3362 for (j = 0; j < IGB_RETA_SIZE; j++)
3363 adapter->rss_indir_tbl[j] = (j * num_rx_queues) / IGB_RETA_SIZE;
3364 adapter->rss_indir_tbl_init = num_rx_queues;
3365 }
3366 igb_write_rss_indir_tbl(adapter);
3367
3368 /* Disable raw packet checksumming so that RSS hash is placed in
3369 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3370 * offloads as they are enabled by default
3371 */
3372 rxcsum = rd32(E1000_RXCSUM);
3373 rxcsum |= E1000_RXCSUM_PCSD;
3374
3375 if (adapter->hw.mac.type >= e1000_82576)
3376 /* Enable Receive Checksum Offload for SCTP */
3377 rxcsum |= E1000_RXCSUM_CRCOFL;
3378
3379 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3380 wr32(E1000_RXCSUM, rxcsum);
3381
3382 /* Generate RSS hash based on packet types, TCP/UDP
3383 * port numbers and/or IPv4/v6 src and dst addresses
3384 */
3385 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3386 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3387 E1000_MRQC_RSS_FIELD_IPV6 |
3388 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3389 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3390
3391 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3392 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3393 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3394 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3395
3396 /* If VMDq is enabled then we set the appropriate mode for that, else
3397 * we default to RSS so that an RSS hash is calculated per packet even
3398 * if we are only using one queue
3399 */
3400 if (adapter->vfs_allocated_count) {
3401 if (hw->mac.type > e1000_82575) {
3402 /* Set the default pool for the PF's first queue */
3403 u32 vtctl = rd32(E1000_VT_CTL);
3404 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3405 E1000_VT_CTL_DISABLE_DEF_POOL);
3406 vtctl |= adapter->vfs_allocated_count <<
3407 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3408 wr32(E1000_VT_CTL, vtctl);
3409 }
3410 if (adapter->rss_queues > 1)
3411 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3412 else
3413 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3414 } else {
3415 if (hw->mac.type != e1000_i211)
3416 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3417 }
3418 igb_vmm_control(adapter);
3419
3420 wr32(E1000_MRQC, mrqc);
3421 }
3422
3423 /**
3424 * igb_setup_rctl - configure the receive control registers
3425 * @adapter: Board private structure
3426 **/
3427 void igb_setup_rctl(struct igb_adapter *adapter)
3428 {
3429 struct e1000_hw *hw = &adapter->hw;
3430 u32 rctl;
3431
3432 rctl = rd32(E1000_RCTL);
3433
3434 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3435 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3436
3437 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3438 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3439
3440 /* enable stripping of CRC. It's unlikely this will break BMC
3441 * redirection as it did with e1000. Newer features require
3442 * that the HW strips the CRC.
3443 */
3444 rctl |= E1000_RCTL_SECRC;
3445
3446 /* disable store bad packets and clear size bits. */
3447 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3448
3449 /* enable LPE to prevent packets larger than max_frame_size */
3450 rctl |= E1000_RCTL_LPE;
3451
3452 /* disable queue 0 to prevent tail write w/o re-config */
3453 wr32(E1000_RXDCTL(0), 0);
3454
3455 /* Attention!!! For SR-IOV PF driver operations you must enable
3456 * queue drop for all VF and PF queues to prevent head of line blocking
3457 * if an un-trusted VF does not provide descriptors to hardware.
3458 */
3459 if (adapter->vfs_allocated_count) {
3460 /* set all queue drop enable bits */
3461 wr32(E1000_QDE, ALL_QUEUES);
3462 }
3463
3464 /* This is useful for sniffing bad packets. */
3465 if (adapter->netdev->features & NETIF_F_RXALL) {
3466 /* UPE and MPE will be handled by normal PROMISC logic
3467 * in e1000e_set_rx_mode
3468 */
3469 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3470 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3471 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3472
3473 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3474 E1000_RCTL_DPF | /* Allow filtered pause */
3475 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3476 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3477 * and that breaks VLANs.
3478 */
3479 }
3480
3481 wr32(E1000_RCTL, rctl);
3482 }
3483
3484 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3485 int vfn)
3486 {
3487 struct e1000_hw *hw = &adapter->hw;
3488 u32 vmolr;
3489
3490 /* if it isn't the PF check to see if VFs are enabled and
3491 * increase the size to support vlan tags
3492 */
3493 if (vfn < adapter->vfs_allocated_count &&
3494 adapter->vf_data[vfn].vlans_enabled)
3495 size += VLAN_TAG_SIZE;
3496
3497 vmolr = rd32(E1000_VMOLR(vfn));
3498 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3499 vmolr |= size | E1000_VMOLR_LPE;
3500 wr32(E1000_VMOLR(vfn), vmolr);
3501
3502 return 0;
3503 }
3504
3505 /**
3506 * igb_rlpml_set - set maximum receive packet size
3507 * @adapter: board private structure
3508 *
3509 * Configure maximum receivable packet size.
3510 **/
3511 static void igb_rlpml_set(struct igb_adapter *adapter)
3512 {
3513 u32 max_frame_size = adapter->max_frame_size;
3514 struct e1000_hw *hw = &adapter->hw;
3515 u16 pf_id = adapter->vfs_allocated_count;
3516
3517 if (pf_id) {
3518 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3519 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3520 * to our max jumbo frame size, in case we need to enable
3521 * jumbo frames on one of the rings later.
3522 * This will not pass over-length frames into the default
3523 * queue because it's gated by the VMOLR.RLPML.
3524 */
3525 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3526 }
3527
3528 wr32(E1000_RLPML, max_frame_size);
3529 }
3530
3531 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3532 int vfn, bool aupe)
3533 {
3534 struct e1000_hw *hw = &adapter->hw;
3535 u32 vmolr;
3536
3537 /* This register exists only on 82576 and newer so if we are older then
3538 * we should exit and do nothing
3539 */
3540 if (hw->mac.type < e1000_82576)
3541 return;
3542
3543 vmolr = rd32(E1000_VMOLR(vfn));
3544 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3545 if (aupe)
3546 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3547 else
3548 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3549
3550 /* clear all bits that might not be set */
3551 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3552
3553 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3554 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3555 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3556 * multicast packets
3557 */
3558 if (vfn <= adapter->vfs_allocated_count)
3559 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3560
3561 wr32(E1000_VMOLR(vfn), vmolr);
3562 }
3563
3564 /**
3565 * igb_configure_rx_ring - Configure a receive ring after Reset
3566 * @adapter: board private structure
3567 * @ring: receive ring to be configured
3568 *
3569 * Configure the Rx unit of the MAC after a reset.
3570 **/
3571 void igb_configure_rx_ring(struct igb_adapter *adapter,
3572 struct igb_ring *ring)
3573 {
3574 struct e1000_hw *hw = &adapter->hw;
3575 u64 rdba = ring->dma;
3576 int reg_idx = ring->reg_idx;
3577 u32 srrctl = 0, rxdctl = 0;
3578
3579 /* disable the queue */
3580 wr32(E1000_RXDCTL(reg_idx), 0);
3581
3582 /* Set DMA base address registers */
3583 wr32(E1000_RDBAL(reg_idx),
3584 rdba & 0x00000000ffffffffULL);
3585 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3586 wr32(E1000_RDLEN(reg_idx),
3587 ring->count * sizeof(union e1000_adv_rx_desc));
3588
3589 /* initialize head and tail */
3590 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3591 wr32(E1000_RDH(reg_idx), 0);
3592 writel(0, ring->tail);
3593
3594 /* set descriptor configuration */
3595 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3596 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3597 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3598 if (hw->mac.type >= e1000_82580)
3599 srrctl |= E1000_SRRCTL_TIMESTAMP;
3600 /* Only set Drop Enable if we are supporting multiple queues */
3601 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3602 srrctl |= E1000_SRRCTL_DROP_EN;
3603
3604 wr32(E1000_SRRCTL(reg_idx), srrctl);
3605
3606 /* set filtering for VMDQ pools */
3607 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3608
3609 rxdctl |= IGB_RX_PTHRESH;
3610 rxdctl |= IGB_RX_HTHRESH << 8;
3611 rxdctl |= IGB_RX_WTHRESH << 16;
3612
3613 /* enable receive descriptor fetching */
3614 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3615 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3616 }
3617
3618 /**
3619 * igb_configure_rx - Configure receive Unit after Reset
3620 * @adapter: board private structure
3621 *
3622 * Configure the Rx unit of the MAC after a reset.
3623 **/
3624 static void igb_configure_rx(struct igb_adapter *adapter)
3625 {
3626 int i;
3627
3628 /* set UTA to appropriate mode */
3629 igb_set_uta(adapter);
3630
3631 /* set the correct pool for the PF default MAC address in entry 0 */
3632 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3633 adapter->vfs_allocated_count);
3634
3635 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3636 * the Base and Length of the Rx Descriptor Ring
3637 */
3638 for (i = 0; i < adapter->num_rx_queues; i++)
3639 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3640 }
3641
3642 /**
3643 * igb_free_tx_resources - Free Tx Resources per Queue
3644 * @tx_ring: Tx descriptor ring for a specific queue
3645 *
3646 * Free all transmit software resources
3647 **/
3648 void igb_free_tx_resources(struct igb_ring *tx_ring)
3649 {
3650 igb_clean_tx_ring(tx_ring);
3651
3652 vfree(tx_ring->tx_buffer_info);
3653 tx_ring->tx_buffer_info = NULL;
3654
3655 /* if not set, then don't free */
3656 if (!tx_ring->desc)
3657 return;
3658
3659 dma_free_coherent(tx_ring->dev, tx_ring->size,
3660 tx_ring->desc, tx_ring->dma);
3661
3662 tx_ring->desc = NULL;
3663 }
3664
3665 /**
3666 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3667 * @adapter: board private structure
3668 *
3669 * Free all transmit software resources
3670 **/
3671 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3672 {
3673 int i;
3674
3675 for (i = 0; i < adapter->num_tx_queues; i++)
3676 igb_free_tx_resources(adapter->tx_ring[i]);
3677 }
3678
3679 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3680 struct igb_tx_buffer *tx_buffer)
3681 {
3682 if (tx_buffer->skb) {
3683 dev_kfree_skb_any(tx_buffer->skb);
3684 if (dma_unmap_len(tx_buffer, len))
3685 dma_unmap_single(ring->dev,
3686 dma_unmap_addr(tx_buffer, dma),
3687 dma_unmap_len(tx_buffer, len),
3688 DMA_TO_DEVICE);
3689 } else if (dma_unmap_len(tx_buffer, len)) {
3690 dma_unmap_page(ring->dev,
3691 dma_unmap_addr(tx_buffer, dma),
3692 dma_unmap_len(tx_buffer, len),
3693 DMA_TO_DEVICE);
3694 }
3695 tx_buffer->next_to_watch = NULL;
3696 tx_buffer->skb = NULL;
3697 dma_unmap_len_set(tx_buffer, len, 0);
3698 /* buffer_info must be completely set up in the transmit path */
3699 }
3700
3701 /**
3702 * igb_clean_tx_ring - Free Tx Buffers
3703 * @tx_ring: ring to be cleaned
3704 **/
3705 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3706 {
3707 struct igb_tx_buffer *buffer_info;
3708 unsigned long size;
3709 u16 i;
3710
3711 if (!tx_ring->tx_buffer_info)
3712 return;
3713 /* Free all the Tx ring sk_buffs */
3714
3715 for (i = 0; i < tx_ring->count; i++) {
3716 buffer_info = &tx_ring->tx_buffer_info[i];
3717 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3718 }
3719
3720 netdev_tx_reset_queue(txring_txq(tx_ring));
3721
3722 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3723 memset(tx_ring->tx_buffer_info, 0, size);
3724
3725 /* Zero out the descriptor ring */
3726 memset(tx_ring->desc, 0, tx_ring->size);
3727
3728 tx_ring->next_to_use = 0;
3729 tx_ring->next_to_clean = 0;
3730 }
3731
3732 /**
3733 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3734 * @adapter: board private structure
3735 **/
3736 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3737 {
3738 int i;
3739
3740 for (i = 0; i < adapter->num_tx_queues; i++)
3741 igb_clean_tx_ring(adapter->tx_ring[i]);
3742 }
3743
3744 /**
3745 * igb_free_rx_resources - Free Rx Resources
3746 * @rx_ring: ring to clean the resources from
3747 *
3748 * Free all receive software resources
3749 **/
3750 void igb_free_rx_resources(struct igb_ring *rx_ring)
3751 {
3752 igb_clean_rx_ring(rx_ring);
3753
3754 vfree(rx_ring->rx_buffer_info);
3755 rx_ring->rx_buffer_info = NULL;
3756
3757 /* if not set, then don't free */
3758 if (!rx_ring->desc)
3759 return;
3760
3761 dma_free_coherent(rx_ring->dev, rx_ring->size,
3762 rx_ring->desc, rx_ring->dma);
3763
3764 rx_ring->desc = NULL;
3765 }
3766
3767 /**
3768 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3769 * @adapter: board private structure
3770 *
3771 * Free all receive software resources
3772 **/
3773 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3774 {
3775 int i;
3776
3777 for (i = 0; i < adapter->num_rx_queues; i++)
3778 igb_free_rx_resources(adapter->rx_ring[i]);
3779 }
3780
3781 /**
3782 * igb_clean_rx_ring - Free Rx Buffers per Queue
3783 * @rx_ring: ring to free buffers from
3784 **/
3785 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3786 {
3787 unsigned long size;
3788 u16 i;
3789
3790 if (rx_ring->skb)
3791 dev_kfree_skb(rx_ring->skb);
3792 rx_ring->skb = NULL;
3793
3794 if (!rx_ring->rx_buffer_info)
3795 return;
3796
3797 /* Free all the Rx ring sk_buffs */
3798 for (i = 0; i < rx_ring->count; i++) {
3799 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3800
3801 if (!buffer_info->page)
3802 continue;
3803
3804 dma_unmap_page(rx_ring->dev,
3805 buffer_info->dma,
3806 PAGE_SIZE,
3807 DMA_FROM_DEVICE);
3808 __free_page(buffer_info->page);
3809
3810 buffer_info->page = NULL;
3811 }
3812
3813 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3814 memset(rx_ring->rx_buffer_info, 0, size);
3815
3816 /* Zero out the descriptor ring */
3817 memset(rx_ring->desc, 0, rx_ring->size);
3818
3819 rx_ring->next_to_alloc = 0;
3820 rx_ring->next_to_clean = 0;
3821 rx_ring->next_to_use = 0;
3822 }
3823
3824 /**
3825 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3826 * @adapter: board private structure
3827 **/
3828 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3829 {
3830 int i;
3831
3832 for (i = 0; i < adapter->num_rx_queues; i++)
3833 igb_clean_rx_ring(adapter->rx_ring[i]);
3834 }
3835
3836 /**
3837 * igb_set_mac - Change the Ethernet Address of the NIC
3838 * @netdev: network interface device structure
3839 * @p: pointer to an address structure
3840 *
3841 * Returns 0 on success, negative on failure
3842 **/
3843 static int igb_set_mac(struct net_device *netdev, void *p)
3844 {
3845 struct igb_adapter *adapter = netdev_priv(netdev);
3846 struct e1000_hw *hw = &adapter->hw;
3847 struct sockaddr *addr = p;
3848
3849 if (!is_valid_ether_addr(addr->sa_data))
3850 return -EADDRNOTAVAIL;
3851
3852 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3853 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3854
3855 /* set the correct pool for the new PF MAC address in entry 0 */
3856 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3857 adapter->vfs_allocated_count);
3858
3859 return 0;
3860 }
3861
3862 /**
3863 * igb_write_mc_addr_list - write multicast addresses to MTA
3864 * @netdev: network interface device structure
3865 *
3866 * Writes multicast address list to the MTA hash table.
3867 * Returns: -ENOMEM on failure
3868 * 0 on no addresses written
3869 * X on writing X addresses to MTA
3870 **/
3871 static int igb_write_mc_addr_list(struct net_device *netdev)
3872 {
3873 struct igb_adapter *adapter = netdev_priv(netdev);
3874 struct e1000_hw *hw = &adapter->hw;
3875 struct netdev_hw_addr *ha;
3876 u8 *mta_list;
3877 int i;
3878
3879 if (netdev_mc_empty(netdev)) {
3880 /* nothing to program, so clear mc list */
3881 igb_update_mc_addr_list(hw, NULL, 0);
3882 igb_restore_vf_multicasts(adapter);
3883 return 0;
3884 }
3885
3886 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3887 if (!mta_list)
3888 return -ENOMEM;
3889
3890 /* The shared function expects a packed array of only addresses. */
3891 i = 0;
3892 netdev_for_each_mc_addr(ha, netdev)
3893 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3894
3895 igb_update_mc_addr_list(hw, mta_list, i);
3896 kfree(mta_list);
3897
3898 return netdev_mc_count(netdev);
3899 }
3900
3901 /**
3902 * igb_write_uc_addr_list - write unicast addresses to RAR table
3903 * @netdev: network interface device structure
3904 *
3905 * Writes unicast address list to the RAR table.
3906 * Returns: -ENOMEM on failure/insufficient address space
3907 * 0 on no addresses written
3908 * X on writing X addresses to the RAR table
3909 **/
3910 static int igb_write_uc_addr_list(struct net_device *netdev)
3911 {
3912 struct igb_adapter *adapter = netdev_priv(netdev);
3913 struct e1000_hw *hw = &adapter->hw;
3914 unsigned int vfn = adapter->vfs_allocated_count;
3915 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3916 int count = 0;
3917
3918 /* return ENOMEM indicating insufficient memory for addresses */
3919 if (netdev_uc_count(netdev) > rar_entries)
3920 return -ENOMEM;
3921
3922 if (!netdev_uc_empty(netdev) && rar_entries) {
3923 struct netdev_hw_addr *ha;
3924
3925 netdev_for_each_uc_addr(ha, netdev) {
3926 if (!rar_entries)
3927 break;
3928 igb_rar_set_qsel(adapter, ha->addr,
3929 rar_entries--,
3930 vfn);
3931 count++;
3932 }
3933 }
3934 /* write the addresses in reverse order to avoid write combining */
3935 for (; rar_entries > 0 ; rar_entries--) {
3936 wr32(E1000_RAH(rar_entries), 0);
3937 wr32(E1000_RAL(rar_entries), 0);
3938 }
3939 wrfl();
3940
3941 return count;
3942 }
3943
3944 /**
3945 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3946 * @netdev: network interface device structure
3947 *
3948 * The set_rx_mode entry point is called whenever the unicast or multicast
3949 * address lists or the network interface flags are updated. This routine is
3950 * responsible for configuring the hardware for proper unicast, multicast,
3951 * promiscuous mode, and all-multi behavior.
3952 **/
3953 static void igb_set_rx_mode(struct net_device *netdev)
3954 {
3955 struct igb_adapter *adapter = netdev_priv(netdev);
3956 struct e1000_hw *hw = &adapter->hw;
3957 unsigned int vfn = adapter->vfs_allocated_count;
3958 u32 rctl, vmolr = 0;
3959 int count;
3960
3961 /* Check for Promiscuous and All Multicast modes */
3962 rctl = rd32(E1000_RCTL);
3963
3964 /* clear the effected bits */
3965 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3966
3967 if (netdev->flags & IFF_PROMISC) {
3968 /* retain VLAN HW filtering if in VT mode */
3969 if (adapter->vfs_allocated_count)
3970 rctl |= E1000_RCTL_VFE;
3971 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3972 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3973 } else {
3974 if (netdev->flags & IFF_ALLMULTI) {
3975 rctl |= E1000_RCTL_MPE;
3976 vmolr |= E1000_VMOLR_MPME;
3977 } else {
3978 /* Write addresses to the MTA, if the attempt fails
3979 * then we should just turn on promiscuous mode so
3980 * that we can at least receive multicast traffic
3981 */
3982 count = igb_write_mc_addr_list(netdev);
3983 if (count < 0) {
3984 rctl |= E1000_RCTL_MPE;
3985 vmolr |= E1000_VMOLR_MPME;
3986 } else if (count) {
3987 vmolr |= E1000_VMOLR_ROMPE;
3988 }
3989 }
3990 /* Write addresses to available RAR registers, if there is not
3991 * sufficient space to store all the addresses then enable
3992 * unicast promiscuous mode
3993 */
3994 count = igb_write_uc_addr_list(netdev);
3995 if (count < 0) {
3996 rctl |= E1000_RCTL_UPE;
3997 vmolr |= E1000_VMOLR_ROPE;
3998 }
3999 rctl |= E1000_RCTL_VFE;
4000 }
4001 wr32(E1000_RCTL, rctl);
4002
4003 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4004 * the VMOLR to enable the appropriate modes. Without this workaround
4005 * we will have issues with VLAN tag stripping not being done for frames
4006 * that are only arriving because we are the default pool
4007 */
4008 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4009 return;
4010
4011 vmolr |= rd32(E1000_VMOLR(vfn)) &
4012 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4013 wr32(E1000_VMOLR(vfn), vmolr);
4014 igb_restore_vf_multicasts(adapter);
4015 }
4016
4017 static void igb_check_wvbr(struct igb_adapter *adapter)
4018 {
4019 struct e1000_hw *hw = &adapter->hw;
4020 u32 wvbr = 0;
4021
4022 switch (hw->mac.type) {
4023 case e1000_82576:
4024 case e1000_i350:
4025 if (!(wvbr = rd32(E1000_WVBR)))
4026 return;
4027 break;
4028 default:
4029 break;
4030 }
4031
4032 adapter->wvbr |= wvbr;
4033 }
4034
4035 #define IGB_STAGGERED_QUEUE_OFFSET 8
4036
4037 static void igb_spoof_check(struct igb_adapter *adapter)
4038 {
4039 int j;
4040
4041 if (!adapter->wvbr)
4042 return;
4043
4044 for(j = 0; j < adapter->vfs_allocated_count; j++) {
4045 if (adapter->wvbr & (1 << j) ||
4046 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4047 dev_warn(&adapter->pdev->dev,
4048 "Spoof event(s) detected on VF %d\n", j);
4049 adapter->wvbr &=
4050 ~((1 << j) |
4051 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4052 }
4053 }
4054 }
4055
4056 /* Need to wait a few seconds after link up to get diagnostic information from
4057 * the phy
4058 */
4059 static void igb_update_phy_info(unsigned long data)
4060 {
4061 struct igb_adapter *adapter = (struct igb_adapter *) data;
4062 igb_get_phy_info(&adapter->hw);
4063 }
4064
4065 /**
4066 * igb_has_link - check shared code for link and determine up/down
4067 * @adapter: pointer to driver private info
4068 **/
4069 bool igb_has_link(struct igb_adapter *adapter)
4070 {
4071 struct e1000_hw *hw = &adapter->hw;
4072 bool link_active = false;
4073
4074 /* get_link_status is set on LSC (link status) interrupt or
4075 * rx sequence error interrupt. get_link_status will stay
4076 * false until the e1000_check_for_link establishes link
4077 * for copper adapters ONLY
4078 */
4079 switch (hw->phy.media_type) {
4080 case e1000_media_type_copper:
4081 if (!hw->mac.get_link_status)
4082 return true;
4083 case e1000_media_type_internal_serdes:
4084 hw->mac.ops.check_for_link(hw);
4085 link_active = !hw->mac.get_link_status;
4086 break;
4087 default:
4088 case e1000_media_type_unknown:
4089 break;
4090 }
4091
4092 if (((hw->mac.type == e1000_i210) ||
4093 (hw->mac.type == e1000_i211)) &&
4094 (hw->phy.id == I210_I_PHY_ID)) {
4095 if (!netif_carrier_ok(adapter->netdev)) {
4096 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4097 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4098 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4099 adapter->link_check_timeout = jiffies;
4100 }
4101 }
4102
4103 return link_active;
4104 }
4105
4106 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4107 {
4108 bool ret = false;
4109 u32 ctrl_ext, thstat;
4110
4111 /* check for thermal sensor event on i350 copper only */
4112 if (hw->mac.type == e1000_i350) {
4113 thstat = rd32(E1000_THSTAT);
4114 ctrl_ext = rd32(E1000_CTRL_EXT);
4115
4116 if ((hw->phy.media_type == e1000_media_type_copper) &&
4117 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4118 ret = !!(thstat & event);
4119 }
4120
4121 return ret;
4122 }
4123
4124 /**
4125 * igb_watchdog - Timer Call-back
4126 * @data: pointer to adapter cast into an unsigned long
4127 **/
4128 static void igb_watchdog(unsigned long data)
4129 {
4130 struct igb_adapter *adapter = (struct igb_adapter *)data;
4131 /* Do the rest outside of interrupt context */
4132 schedule_work(&adapter->watchdog_task);
4133 }
4134
4135 static void igb_watchdog_task(struct work_struct *work)
4136 {
4137 struct igb_adapter *adapter = container_of(work,
4138 struct igb_adapter,
4139 watchdog_task);
4140 struct e1000_hw *hw = &adapter->hw;
4141 struct e1000_phy_info *phy = &hw->phy;
4142 struct net_device *netdev = adapter->netdev;
4143 u32 link;
4144 int i;
4145 u32 connsw;
4146
4147 link = igb_has_link(adapter);
4148
4149 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4150 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4151 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4152 else
4153 link = false;
4154 }
4155
4156 /* Force link down if we have fiber to swap to */
4157 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4158 if (hw->phy.media_type == e1000_media_type_copper) {
4159 connsw = rd32(E1000_CONNSW);
4160 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4161 link = 0;
4162 }
4163 }
4164 if (link) {
4165 /* Perform a reset if the media type changed. */
4166 if (hw->dev_spec._82575.media_changed) {
4167 hw->dev_spec._82575.media_changed = false;
4168 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4169 igb_reset(adapter);
4170 }
4171 /* Cancel scheduled suspend requests. */
4172 pm_runtime_resume(netdev->dev.parent);
4173
4174 if (!netif_carrier_ok(netdev)) {
4175 u32 ctrl;
4176 hw->mac.ops.get_speed_and_duplex(hw,
4177 &adapter->link_speed,
4178 &adapter->link_duplex);
4179
4180 ctrl = rd32(E1000_CTRL);
4181 /* Links status message must follow this format */
4182 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
4183 "Duplex, Flow Control: %s\n",
4184 netdev->name,
4185 adapter->link_speed,
4186 adapter->link_duplex == FULL_DUPLEX ?
4187 "Full" : "Half",
4188 (ctrl & E1000_CTRL_TFCE) &&
4189 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4190 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4191 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4192
4193 /* disable EEE if enabled */
4194 if ((adapter->flags & IGB_FLAG_EEE) &&
4195 (adapter->link_duplex == HALF_DUPLEX)) {
4196 dev_info(&adapter->pdev->dev,
4197 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4198 adapter->hw.dev_spec._82575.eee_disable = true;
4199 adapter->flags &= ~IGB_FLAG_EEE;
4200 }
4201
4202 /* check if SmartSpeed worked */
4203 igb_check_downshift(hw);
4204 if (phy->speed_downgraded)
4205 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4206
4207 /* check for thermal sensor event */
4208 if (igb_thermal_sensor_event(hw,
4209 E1000_THSTAT_LINK_THROTTLE)) {
4210 netdev_info(netdev, "The network adapter link "
4211 "speed was downshifted because it "
4212 "overheated\n");
4213 }
4214
4215 /* adjust timeout factor according to speed/duplex */
4216 adapter->tx_timeout_factor = 1;
4217 switch (adapter->link_speed) {
4218 case SPEED_10:
4219 adapter->tx_timeout_factor = 14;
4220 break;
4221 case SPEED_100:
4222 /* maybe add some timeout factor ? */
4223 break;
4224 }
4225
4226 netif_carrier_on(netdev);
4227
4228 igb_ping_all_vfs(adapter);
4229 igb_check_vf_rate_limit(adapter);
4230
4231 /* link state has changed, schedule phy info update */
4232 if (!test_bit(__IGB_DOWN, &adapter->state))
4233 mod_timer(&adapter->phy_info_timer,
4234 round_jiffies(jiffies + 2 * HZ));
4235 }
4236 } else {
4237 if (netif_carrier_ok(netdev)) {
4238 adapter->link_speed = 0;
4239 adapter->link_duplex = 0;
4240
4241 /* check for thermal sensor event */
4242 if (igb_thermal_sensor_event(hw,
4243 E1000_THSTAT_PWR_DOWN)) {
4244 netdev_err(netdev, "The network adapter was "
4245 "stopped because it overheated\n");
4246 }
4247
4248 /* Links status message must follow this format */
4249 printk(KERN_INFO "igb: %s NIC Link is Down\n",
4250 netdev->name);
4251 netif_carrier_off(netdev);
4252
4253 igb_ping_all_vfs(adapter);
4254
4255 /* link state has changed, schedule phy info update */
4256 if (!test_bit(__IGB_DOWN, &adapter->state))
4257 mod_timer(&adapter->phy_info_timer,
4258 round_jiffies(jiffies + 2 * HZ));
4259
4260 /* link is down, time to check for alternate media */
4261 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4262 igb_check_swap_media(adapter);
4263 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4264 schedule_work(&adapter->reset_task);
4265 /* return immediately */
4266 return;
4267 }
4268 }
4269 pm_schedule_suspend(netdev->dev.parent,
4270 MSEC_PER_SEC * 5);
4271
4272 /* also check for alternate media here */
4273 } else if (!netif_carrier_ok(netdev) &&
4274 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4275 igb_check_swap_media(adapter);
4276 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4277 schedule_work(&adapter->reset_task);
4278 /* return immediately */
4279 return;
4280 }
4281 }
4282 }
4283
4284 spin_lock(&adapter->stats64_lock);
4285 igb_update_stats(adapter, &adapter->stats64);
4286 spin_unlock(&adapter->stats64_lock);
4287
4288 for (i = 0; i < adapter->num_tx_queues; i++) {
4289 struct igb_ring *tx_ring = adapter->tx_ring[i];
4290 if (!netif_carrier_ok(netdev)) {
4291 /* We've lost link, so the controller stops DMA,
4292 * but we've got queued Tx work that's never going
4293 * to get done, so reset controller to flush Tx.
4294 * (Do the reset outside of interrupt context).
4295 */
4296 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4297 adapter->tx_timeout_count++;
4298 schedule_work(&adapter->reset_task);
4299 /* return immediately since reset is imminent */
4300 return;
4301 }
4302 }
4303
4304 /* Force detection of hung controller every watchdog period */
4305 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4306 }
4307
4308 /* Cause software interrupt to ensure Rx ring is cleaned */
4309 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4310 u32 eics = 0;
4311 for (i = 0; i < adapter->num_q_vectors; i++)
4312 eics |= adapter->q_vector[i]->eims_value;
4313 wr32(E1000_EICS, eics);
4314 } else {
4315 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4316 }
4317
4318 igb_spoof_check(adapter);
4319 igb_ptp_rx_hang(adapter);
4320
4321 /* Reset the timer */
4322 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4323 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4324 mod_timer(&adapter->watchdog_timer,
4325 round_jiffies(jiffies + HZ));
4326 else
4327 mod_timer(&adapter->watchdog_timer,
4328 round_jiffies(jiffies + 2 * HZ));
4329 }
4330 }
4331
4332 enum latency_range {
4333 lowest_latency = 0,
4334 low_latency = 1,
4335 bulk_latency = 2,
4336 latency_invalid = 255
4337 };
4338
4339 /**
4340 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4341 * @q_vector: pointer to q_vector
4342 *
4343 * Stores a new ITR value based on strictly on packet size. This
4344 * algorithm is less sophisticated than that used in igb_update_itr,
4345 * due to the difficulty of synchronizing statistics across multiple
4346 * receive rings. The divisors and thresholds used by this function
4347 * were determined based on theoretical maximum wire speed and testing
4348 * data, in order to minimize response time while increasing bulk
4349 * throughput.
4350 * This functionality is controlled by the InterruptThrottleRate module
4351 * parameter (see igb_param.c)
4352 * NOTE: This function is called only when operating in a multiqueue
4353 * receive environment.
4354 **/
4355 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4356 {
4357 int new_val = q_vector->itr_val;
4358 int avg_wire_size = 0;
4359 struct igb_adapter *adapter = q_vector->adapter;
4360 unsigned int packets;
4361
4362 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4363 * ints/sec - ITR timer value of 120 ticks.
4364 */
4365 if (adapter->link_speed != SPEED_1000) {
4366 new_val = IGB_4K_ITR;
4367 goto set_itr_val;
4368 }
4369
4370 packets = q_vector->rx.total_packets;
4371 if (packets)
4372 avg_wire_size = q_vector->rx.total_bytes / packets;
4373
4374 packets = q_vector->tx.total_packets;
4375 if (packets)
4376 avg_wire_size = max_t(u32, avg_wire_size,
4377 q_vector->tx.total_bytes / packets);
4378
4379 /* if avg_wire_size isn't set no work was done */
4380 if (!avg_wire_size)
4381 goto clear_counts;
4382
4383 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4384 avg_wire_size += 24;
4385
4386 /* Don't starve jumbo frames */
4387 avg_wire_size = min(avg_wire_size, 3000);
4388
4389 /* Give a little boost to mid-size frames */
4390 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4391 new_val = avg_wire_size / 3;
4392 else
4393 new_val = avg_wire_size / 2;
4394
4395 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4396 if (new_val < IGB_20K_ITR &&
4397 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4398 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4399 new_val = IGB_20K_ITR;
4400
4401 set_itr_val:
4402 if (new_val != q_vector->itr_val) {
4403 q_vector->itr_val = new_val;
4404 q_vector->set_itr = 1;
4405 }
4406 clear_counts:
4407 q_vector->rx.total_bytes = 0;
4408 q_vector->rx.total_packets = 0;
4409 q_vector->tx.total_bytes = 0;
4410 q_vector->tx.total_packets = 0;
4411 }
4412
4413 /**
4414 * igb_update_itr - update the dynamic ITR value based on statistics
4415 * @q_vector: pointer to q_vector
4416 * @ring_container: ring info to update the itr for
4417 *
4418 * Stores a new ITR value based on packets and byte
4419 * counts during the last interrupt. The advantage of per interrupt
4420 * computation is faster updates and more accurate ITR for the current
4421 * traffic pattern. Constants in this function were computed
4422 * based on theoretical maximum wire speed and thresholds were set based
4423 * on testing data as well as attempting to minimize response time
4424 * while increasing bulk throughput.
4425 * this functionality is controlled by the InterruptThrottleRate module
4426 * parameter (see igb_param.c)
4427 * NOTE: These calculations are only valid when operating in a single-
4428 * queue environment.
4429 **/
4430 static void igb_update_itr(struct igb_q_vector *q_vector,
4431 struct igb_ring_container *ring_container)
4432 {
4433 unsigned int packets = ring_container->total_packets;
4434 unsigned int bytes = ring_container->total_bytes;
4435 u8 itrval = ring_container->itr;
4436
4437 /* no packets, exit with status unchanged */
4438 if (packets == 0)
4439 return;
4440
4441 switch (itrval) {
4442 case lowest_latency:
4443 /* handle TSO and jumbo frames */
4444 if (bytes/packets > 8000)
4445 itrval = bulk_latency;
4446 else if ((packets < 5) && (bytes > 512))
4447 itrval = low_latency;
4448 break;
4449 case low_latency: /* 50 usec aka 20000 ints/s */
4450 if (bytes > 10000) {
4451 /* this if handles the TSO accounting */
4452 if (bytes/packets > 8000) {
4453 itrval = bulk_latency;
4454 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4455 itrval = bulk_latency;
4456 } else if ((packets > 35)) {
4457 itrval = lowest_latency;
4458 }
4459 } else if (bytes/packets > 2000) {
4460 itrval = bulk_latency;
4461 } else if (packets <= 2 && bytes < 512) {
4462 itrval = lowest_latency;
4463 }
4464 break;
4465 case bulk_latency: /* 250 usec aka 4000 ints/s */
4466 if (bytes > 25000) {
4467 if (packets > 35)
4468 itrval = low_latency;
4469 } else if (bytes < 1500) {
4470 itrval = low_latency;
4471 }
4472 break;
4473 }
4474
4475 /* clear work counters since we have the values we need */
4476 ring_container->total_bytes = 0;
4477 ring_container->total_packets = 0;
4478
4479 /* write updated itr to ring container */
4480 ring_container->itr = itrval;
4481 }
4482
4483 static void igb_set_itr(struct igb_q_vector *q_vector)
4484 {
4485 struct igb_adapter *adapter = q_vector->adapter;
4486 u32 new_itr = q_vector->itr_val;
4487 u8 current_itr = 0;
4488
4489 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4490 if (adapter->link_speed != SPEED_1000) {
4491 current_itr = 0;
4492 new_itr = IGB_4K_ITR;
4493 goto set_itr_now;
4494 }
4495
4496 igb_update_itr(q_vector, &q_vector->tx);
4497 igb_update_itr(q_vector, &q_vector->rx);
4498
4499 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4500
4501 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4502 if (current_itr == lowest_latency &&
4503 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4504 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4505 current_itr = low_latency;
4506
4507 switch (current_itr) {
4508 /* counts and packets in update_itr are dependent on these numbers */
4509 case lowest_latency:
4510 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4511 break;
4512 case low_latency:
4513 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4514 break;
4515 case bulk_latency:
4516 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4517 break;
4518 default:
4519 break;
4520 }
4521
4522 set_itr_now:
4523 if (new_itr != q_vector->itr_val) {
4524 /* this attempts to bias the interrupt rate towards Bulk
4525 * by adding intermediate steps when interrupt rate is
4526 * increasing
4527 */
4528 new_itr = new_itr > q_vector->itr_val ?
4529 max((new_itr * q_vector->itr_val) /
4530 (new_itr + (q_vector->itr_val >> 2)),
4531 new_itr) : new_itr;
4532 /* Don't write the value here; it resets the adapter's
4533 * internal timer, and causes us to delay far longer than
4534 * we should between interrupts. Instead, we write the ITR
4535 * value at the beginning of the next interrupt so the timing
4536 * ends up being correct.
4537 */
4538 q_vector->itr_val = new_itr;
4539 q_vector->set_itr = 1;
4540 }
4541 }
4542
4543 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4544 u32 type_tucmd, u32 mss_l4len_idx)
4545 {
4546 struct e1000_adv_tx_context_desc *context_desc;
4547 u16 i = tx_ring->next_to_use;
4548
4549 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4550
4551 i++;
4552 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4553
4554 /* set bits to identify this as an advanced context descriptor */
4555 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4556
4557 /* For 82575, context index must be unique per ring. */
4558 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4559 mss_l4len_idx |= tx_ring->reg_idx << 4;
4560
4561 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4562 context_desc->seqnum_seed = 0;
4563 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4564 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4565 }
4566
4567 static int igb_tso(struct igb_ring *tx_ring,
4568 struct igb_tx_buffer *first,
4569 u8 *hdr_len)
4570 {
4571 struct sk_buff *skb = first->skb;
4572 u32 vlan_macip_lens, type_tucmd;
4573 u32 mss_l4len_idx, l4len;
4574
4575 if (skb->ip_summed != CHECKSUM_PARTIAL)
4576 return 0;
4577
4578 if (!skb_is_gso(skb))
4579 return 0;
4580
4581 if (skb_header_cloned(skb)) {
4582 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4583 if (err)
4584 return err;
4585 }
4586
4587 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4588 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4589
4590 if (first->protocol == __constant_htons(ETH_P_IP)) {
4591 struct iphdr *iph = ip_hdr(skb);
4592 iph->tot_len = 0;
4593 iph->check = 0;
4594 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4595 iph->daddr, 0,
4596 IPPROTO_TCP,
4597 0);
4598 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4599 first->tx_flags |= IGB_TX_FLAGS_TSO |
4600 IGB_TX_FLAGS_CSUM |
4601 IGB_TX_FLAGS_IPV4;
4602 } else if (skb_is_gso_v6(skb)) {
4603 ipv6_hdr(skb)->payload_len = 0;
4604 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4605 &ipv6_hdr(skb)->daddr,
4606 0, IPPROTO_TCP, 0);
4607 first->tx_flags |= IGB_TX_FLAGS_TSO |
4608 IGB_TX_FLAGS_CSUM;
4609 }
4610
4611 /* compute header lengths */
4612 l4len = tcp_hdrlen(skb);
4613 *hdr_len = skb_transport_offset(skb) + l4len;
4614
4615 /* update gso size and bytecount with header size */
4616 first->gso_segs = skb_shinfo(skb)->gso_segs;
4617 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4618
4619 /* MSS L4LEN IDX */
4620 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4621 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4622
4623 /* VLAN MACLEN IPLEN */
4624 vlan_macip_lens = skb_network_header_len(skb);
4625 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4626 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4627
4628 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4629
4630 return 1;
4631 }
4632
4633 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4634 {
4635 struct sk_buff *skb = first->skb;
4636 u32 vlan_macip_lens = 0;
4637 u32 mss_l4len_idx = 0;
4638 u32 type_tucmd = 0;
4639
4640 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4641 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4642 return;
4643 } else {
4644 u8 l4_hdr = 0;
4645 switch (first->protocol) {
4646 case __constant_htons(ETH_P_IP):
4647 vlan_macip_lens |= skb_network_header_len(skb);
4648 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4649 l4_hdr = ip_hdr(skb)->protocol;
4650 break;
4651 case __constant_htons(ETH_P_IPV6):
4652 vlan_macip_lens |= skb_network_header_len(skb);
4653 l4_hdr = ipv6_hdr(skb)->nexthdr;
4654 break;
4655 default:
4656 if (unlikely(net_ratelimit())) {
4657 dev_warn(tx_ring->dev,
4658 "partial checksum but proto=%x!\n",
4659 first->protocol);
4660 }
4661 break;
4662 }
4663
4664 switch (l4_hdr) {
4665 case IPPROTO_TCP:
4666 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4667 mss_l4len_idx = tcp_hdrlen(skb) <<
4668 E1000_ADVTXD_L4LEN_SHIFT;
4669 break;
4670 case IPPROTO_SCTP:
4671 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4672 mss_l4len_idx = sizeof(struct sctphdr) <<
4673 E1000_ADVTXD_L4LEN_SHIFT;
4674 break;
4675 case IPPROTO_UDP:
4676 mss_l4len_idx = sizeof(struct udphdr) <<
4677 E1000_ADVTXD_L4LEN_SHIFT;
4678 break;
4679 default:
4680 if (unlikely(net_ratelimit())) {
4681 dev_warn(tx_ring->dev,
4682 "partial checksum but l4 proto=%x!\n",
4683 l4_hdr);
4684 }
4685 break;
4686 }
4687
4688 /* update TX checksum flag */
4689 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4690 }
4691
4692 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4693 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4694
4695 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4696 }
4697
4698 #define IGB_SET_FLAG(_input, _flag, _result) \
4699 ((_flag <= _result) ? \
4700 ((u32)(_input & _flag) * (_result / _flag)) : \
4701 ((u32)(_input & _flag) / (_flag / _result)))
4702
4703 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4704 {
4705 /* set type for advanced descriptor with frame checksum insertion */
4706 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4707 E1000_ADVTXD_DCMD_DEXT |
4708 E1000_ADVTXD_DCMD_IFCS;
4709
4710 /* set HW vlan bit if vlan is present */
4711 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4712 (E1000_ADVTXD_DCMD_VLE));
4713
4714 /* set segmentation bits for TSO */
4715 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4716 (E1000_ADVTXD_DCMD_TSE));
4717
4718 /* set timestamp bit if present */
4719 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4720 (E1000_ADVTXD_MAC_TSTAMP));
4721
4722 /* insert frame checksum */
4723 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4724
4725 return cmd_type;
4726 }
4727
4728 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4729 union e1000_adv_tx_desc *tx_desc,
4730 u32 tx_flags, unsigned int paylen)
4731 {
4732 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4733
4734 /* 82575 requires a unique index per ring */
4735 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4736 olinfo_status |= tx_ring->reg_idx << 4;
4737
4738 /* insert L4 checksum */
4739 olinfo_status |= IGB_SET_FLAG(tx_flags,
4740 IGB_TX_FLAGS_CSUM,
4741 (E1000_TXD_POPTS_TXSM << 8));
4742
4743 /* insert IPv4 checksum */
4744 olinfo_status |= IGB_SET_FLAG(tx_flags,
4745 IGB_TX_FLAGS_IPV4,
4746 (E1000_TXD_POPTS_IXSM << 8));
4747
4748 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4749 }
4750
4751 static void igb_tx_map(struct igb_ring *tx_ring,
4752 struct igb_tx_buffer *first,
4753 const u8 hdr_len)
4754 {
4755 struct sk_buff *skb = first->skb;
4756 struct igb_tx_buffer *tx_buffer;
4757 union e1000_adv_tx_desc *tx_desc;
4758 struct skb_frag_struct *frag;
4759 dma_addr_t dma;
4760 unsigned int data_len, size;
4761 u32 tx_flags = first->tx_flags;
4762 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4763 u16 i = tx_ring->next_to_use;
4764
4765 tx_desc = IGB_TX_DESC(tx_ring, i);
4766
4767 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4768
4769 size = skb_headlen(skb);
4770 data_len = skb->data_len;
4771
4772 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4773
4774 tx_buffer = first;
4775
4776 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4777 if (dma_mapping_error(tx_ring->dev, dma))
4778 goto dma_error;
4779
4780 /* record length, and DMA address */
4781 dma_unmap_len_set(tx_buffer, len, size);
4782 dma_unmap_addr_set(tx_buffer, dma, dma);
4783
4784 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4785
4786 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4787 tx_desc->read.cmd_type_len =
4788 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4789
4790 i++;
4791 tx_desc++;
4792 if (i == tx_ring->count) {
4793 tx_desc = IGB_TX_DESC(tx_ring, 0);
4794 i = 0;
4795 }
4796 tx_desc->read.olinfo_status = 0;
4797
4798 dma += IGB_MAX_DATA_PER_TXD;
4799 size -= IGB_MAX_DATA_PER_TXD;
4800
4801 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4802 }
4803
4804 if (likely(!data_len))
4805 break;
4806
4807 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4808
4809 i++;
4810 tx_desc++;
4811 if (i == tx_ring->count) {
4812 tx_desc = IGB_TX_DESC(tx_ring, 0);
4813 i = 0;
4814 }
4815 tx_desc->read.olinfo_status = 0;
4816
4817 size = skb_frag_size(frag);
4818 data_len -= size;
4819
4820 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4821 size, DMA_TO_DEVICE);
4822
4823 tx_buffer = &tx_ring->tx_buffer_info[i];
4824 }
4825
4826 /* write last descriptor with RS and EOP bits */
4827 cmd_type |= size | IGB_TXD_DCMD;
4828 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4829
4830 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4831
4832 /* set the timestamp */
4833 first->time_stamp = jiffies;
4834
4835 /* Force memory writes to complete before letting h/w know there
4836 * are new descriptors to fetch. (Only applicable for weak-ordered
4837 * memory model archs, such as IA-64).
4838 *
4839 * We also need this memory barrier to make certain all of the
4840 * status bits have been updated before next_to_watch is written.
4841 */
4842 wmb();
4843
4844 /* set next_to_watch value indicating a packet is present */
4845 first->next_to_watch = tx_desc;
4846
4847 i++;
4848 if (i == tx_ring->count)
4849 i = 0;
4850
4851 tx_ring->next_to_use = i;
4852
4853 writel(i, tx_ring->tail);
4854
4855 /* we need this if more than one processor can write to our tail
4856 * at a time, it synchronizes IO on IA64/Altix systems
4857 */
4858 mmiowb();
4859
4860 return;
4861
4862 dma_error:
4863 dev_err(tx_ring->dev, "TX DMA map failed\n");
4864
4865 /* clear dma mappings for failed tx_buffer_info map */
4866 for (;;) {
4867 tx_buffer = &tx_ring->tx_buffer_info[i];
4868 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4869 if (tx_buffer == first)
4870 break;
4871 if (i == 0)
4872 i = tx_ring->count;
4873 i--;
4874 }
4875
4876 tx_ring->next_to_use = i;
4877 }
4878
4879 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4880 {
4881 struct net_device *netdev = tx_ring->netdev;
4882
4883 netif_stop_subqueue(netdev, tx_ring->queue_index);
4884
4885 /* Herbert's original patch had:
4886 * smp_mb__after_netif_stop_queue();
4887 * but since that doesn't exist yet, just open code it.
4888 */
4889 smp_mb();
4890
4891 /* We need to check again in a case another CPU has just
4892 * made room available.
4893 */
4894 if (igb_desc_unused(tx_ring) < size)
4895 return -EBUSY;
4896
4897 /* A reprieve! */
4898 netif_wake_subqueue(netdev, tx_ring->queue_index);
4899
4900 u64_stats_update_begin(&tx_ring->tx_syncp2);
4901 tx_ring->tx_stats.restart_queue2++;
4902 u64_stats_update_end(&tx_ring->tx_syncp2);
4903
4904 return 0;
4905 }
4906
4907 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4908 {
4909 if (igb_desc_unused(tx_ring) >= size)
4910 return 0;
4911 return __igb_maybe_stop_tx(tx_ring, size);
4912 }
4913
4914 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4915 struct igb_ring *tx_ring)
4916 {
4917 struct igb_tx_buffer *first;
4918 int tso;
4919 u32 tx_flags = 0;
4920 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4921 __be16 protocol = vlan_get_protocol(skb);
4922 u8 hdr_len = 0;
4923
4924 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4925 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4926 * + 2 desc gap to keep tail from touching head,
4927 * + 1 desc for context descriptor,
4928 * otherwise try next time
4929 */
4930 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4931 unsigned short f;
4932 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4933 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4934 } else {
4935 count += skb_shinfo(skb)->nr_frags;
4936 }
4937
4938 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4939 /* this is a hard error */
4940 return NETDEV_TX_BUSY;
4941 }
4942
4943 /* record the location of the first descriptor for this packet */
4944 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4945 first->skb = skb;
4946 first->bytecount = skb->len;
4947 first->gso_segs = 1;
4948
4949 skb_tx_timestamp(skb);
4950
4951 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4952 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4953
4954 if (!(adapter->ptp_tx_skb)) {
4955 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4956 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4957
4958 adapter->ptp_tx_skb = skb_get(skb);
4959 adapter->ptp_tx_start = jiffies;
4960 if (adapter->hw.mac.type == e1000_82576)
4961 schedule_work(&adapter->ptp_tx_work);
4962 }
4963 }
4964
4965 if (vlan_tx_tag_present(skb)) {
4966 tx_flags |= IGB_TX_FLAGS_VLAN;
4967 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4968 }
4969
4970 /* record initial flags and protocol */
4971 first->tx_flags = tx_flags;
4972 first->protocol = protocol;
4973
4974 tso = igb_tso(tx_ring, first, &hdr_len);
4975 if (tso < 0)
4976 goto out_drop;
4977 else if (!tso)
4978 igb_tx_csum(tx_ring, first);
4979
4980 igb_tx_map(tx_ring, first, hdr_len);
4981
4982 /* Make sure there is space in the ring for the next send. */
4983 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4984
4985 return NETDEV_TX_OK;
4986
4987 out_drop:
4988 igb_unmap_and_free_tx_resource(tx_ring, first);
4989
4990 return NETDEV_TX_OK;
4991 }
4992
4993 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4994 struct sk_buff *skb)
4995 {
4996 unsigned int r_idx = skb->queue_mapping;
4997
4998 if (r_idx >= adapter->num_tx_queues)
4999 r_idx = r_idx % adapter->num_tx_queues;
5000
5001 return adapter->tx_ring[r_idx];
5002 }
5003
5004 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5005 struct net_device *netdev)
5006 {
5007 struct igb_adapter *adapter = netdev_priv(netdev);
5008
5009 if (test_bit(__IGB_DOWN, &adapter->state)) {
5010 dev_kfree_skb_any(skb);
5011 return NETDEV_TX_OK;
5012 }
5013
5014 if (skb->len <= 0) {
5015 dev_kfree_skb_any(skb);
5016 return NETDEV_TX_OK;
5017 }
5018
5019 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5020 * in order to meet this minimum size requirement.
5021 */
5022 if (unlikely(skb->len < 17)) {
5023 if (skb_pad(skb, 17 - skb->len))
5024 return NETDEV_TX_OK;
5025 skb->len = 17;
5026 skb_set_tail_pointer(skb, 17);
5027 }
5028
5029 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5030 }
5031
5032 /**
5033 * igb_tx_timeout - Respond to a Tx Hang
5034 * @netdev: network interface device structure
5035 **/
5036 static void igb_tx_timeout(struct net_device *netdev)
5037 {
5038 struct igb_adapter *adapter = netdev_priv(netdev);
5039 struct e1000_hw *hw = &adapter->hw;
5040
5041 /* Do the reset outside of interrupt context */
5042 adapter->tx_timeout_count++;
5043
5044 if (hw->mac.type >= e1000_82580)
5045 hw->dev_spec._82575.global_device_reset = true;
5046
5047 schedule_work(&adapter->reset_task);
5048 wr32(E1000_EICS,
5049 (adapter->eims_enable_mask & ~adapter->eims_other));
5050 }
5051
5052 static void igb_reset_task(struct work_struct *work)
5053 {
5054 struct igb_adapter *adapter;
5055 adapter = container_of(work, struct igb_adapter, reset_task);
5056
5057 igb_dump(adapter);
5058 netdev_err(adapter->netdev, "Reset adapter\n");
5059 igb_reinit_locked(adapter);
5060 }
5061
5062 /**
5063 * igb_get_stats64 - Get System Network Statistics
5064 * @netdev: network interface device structure
5065 * @stats: rtnl_link_stats64 pointer
5066 **/
5067 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5068 struct rtnl_link_stats64 *stats)
5069 {
5070 struct igb_adapter *adapter = netdev_priv(netdev);
5071
5072 spin_lock(&adapter->stats64_lock);
5073 igb_update_stats(adapter, &adapter->stats64);
5074 memcpy(stats, &adapter->stats64, sizeof(*stats));
5075 spin_unlock(&adapter->stats64_lock);
5076
5077 return stats;
5078 }
5079
5080 /**
5081 * igb_change_mtu - Change the Maximum Transfer Unit
5082 * @netdev: network interface device structure
5083 * @new_mtu: new value for maximum frame size
5084 *
5085 * Returns 0 on success, negative on failure
5086 **/
5087 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5088 {
5089 struct igb_adapter *adapter = netdev_priv(netdev);
5090 struct pci_dev *pdev = adapter->pdev;
5091 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5092
5093 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5094 dev_err(&pdev->dev, "Invalid MTU setting\n");
5095 return -EINVAL;
5096 }
5097
5098 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5099 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5100 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5101 return -EINVAL;
5102 }
5103
5104 /* adjust max frame to be at least the size of a standard frame */
5105 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5106 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5107
5108 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5109 msleep(1);
5110
5111 /* igb_down has a dependency on max_frame_size */
5112 adapter->max_frame_size = max_frame;
5113
5114 if (netif_running(netdev))
5115 igb_down(adapter);
5116
5117 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5118 netdev->mtu, new_mtu);
5119 netdev->mtu = new_mtu;
5120
5121 if (netif_running(netdev))
5122 igb_up(adapter);
5123 else
5124 igb_reset(adapter);
5125
5126 clear_bit(__IGB_RESETTING, &adapter->state);
5127
5128 return 0;
5129 }
5130
5131 /**
5132 * igb_update_stats - Update the board statistics counters
5133 * @adapter: board private structure
5134 **/
5135 void igb_update_stats(struct igb_adapter *adapter,
5136 struct rtnl_link_stats64 *net_stats)
5137 {
5138 struct e1000_hw *hw = &adapter->hw;
5139 struct pci_dev *pdev = adapter->pdev;
5140 u32 reg, mpc;
5141 u16 phy_tmp;
5142 int i;
5143 u64 bytes, packets;
5144 unsigned int start;
5145 u64 _bytes, _packets;
5146
5147 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
5148
5149 /* Prevent stats update while adapter is being reset, or if the pci
5150 * connection is down.
5151 */
5152 if (adapter->link_speed == 0)
5153 return;
5154 if (pci_channel_offline(pdev))
5155 return;
5156
5157 bytes = 0;
5158 packets = 0;
5159
5160 rcu_read_lock();
5161 for (i = 0; i < adapter->num_rx_queues; i++) {
5162 u32 rqdpc = rd32(E1000_RQDPC(i));
5163 struct igb_ring *ring = adapter->rx_ring[i];
5164
5165 if (rqdpc) {
5166 ring->rx_stats.drops += rqdpc;
5167 net_stats->rx_fifo_errors += rqdpc;
5168 }
5169
5170 do {
5171 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
5172 _bytes = ring->rx_stats.bytes;
5173 _packets = ring->rx_stats.packets;
5174 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
5175 bytes += _bytes;
5176 packets += _packets;
5177 }
5178
5179 net_stats->rx_bytes = bytes;
5180 net_stats->rx_packets = packets;
5181
5182 bytes = 0;
5183 packets = 0;
5184 for (i = 0; i < adapter->num_tx_queues; i++) {
5185 struct igb_ring *ring = adapter->tx_ring[i];
5186 do {
5187 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
5188 _bytes = ring->tx_stats.bytes;
5189 _packets = ring->tx_stats.packets;
5190 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
5191 bytes += _bytes;
5192 packets += _packets;
5193 }
5194 net_stats->tx_bytes = bytes;
5195 net_stats->tx_packets = packets;
5196 rcu_read_unlock();
5197
5198 /* read stats registers */
5199 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5200 adapter->stats.gprc += rd32(E1000_GPRC);
5201 adapter->stats.gorc += rd32(E1000_GORCL);
5202 rd32(E1000_GORCH); /* clear GORCL */
5203 adapter->stats.bprc += rd32(E1000_BPRC);
5204 adapter->stats.mprc += rd32(E1000_MPRC);
5205 adapter->stats.roc += rd32(E1000_ROC);
5206
5207 adapter->stats.prc64 += rd32(E1000_PRC64);
5208 adapter->stats.prc127 += rd32(E1000_PRC127);
5209 adapter->stats.prc255 += rd32(E1000_PRC255);
5210 adapter->stats.prc511 += rd32(E1000_PRC511);
5211 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5212 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5213 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5214 adapter->stats.sec += rd32(E1000_SEC);
5215
5216 mpc = rd32(E1000_MPC);
5217 adapter->stats.mpc += mpc;
5218 net_stats->rx_fifo_errors += mpc;
5219 adapter->stats.scc += rd32(E1000_SCC);
5220 adapter->stats.ecol += rd32(E1000_ECOL);
5221 adapter->stats.mcc += rd32(E1000_MCC);
5222 adapter->stats.latecol += rd32(E1000_LATECOL);
5223 adapter->stats.dc += rd32(E1000_DC);
5224 adapter->stats.rlec += rd32(E1000_RLEC);
5225 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5226 adapter->stats.xontxc += rd32(E1000_XONTXC);
5227 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5228 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5229 adapter->stats.fcruc += rd32(E1000_FCRUC);
5230 adapter->stats.gptc += rd32(E1000_GPTC);
5231 adapter->stats.gotc += rd32(E1000_GOTCL);
5232 rd32(E1000_GOTCH); /* clear GOTCL */
5233 adapter->stats.rnbc += rd32(E1000_RNBC);
5234 adapter->stats.ruc += rd32(E1000_RUC);
5235 adapter->stats.rfc += rd32(E1000_RFC);
5236 adapter->stats.rjc += rd32(E1000_RJC);
5237 adapter->stats.tor += rd32(E1000_TORH);
5238 adapter->stats.tot += rd32(E1000_TOTH);
5239 adapter->stats.tpr += rd32(E1000_TPR);
5240
5241 adapter->stats.ptc64 += rd32(E1000_PTC64);
5242 adapter->stats.ptc127 += rd32(E1000_PTC127);
5243 adapter->stats.ptc255 += rd32(E1000_PTC255);
5244 adapter->stats.ptc511 += rd32(E1000_PTC511);
5245 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5246 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5247
5248 adapter->stats.mptc += rd32(E1000_MPTC);
5249 adapter->stats.bptc += rd32(E1000_BPTC);
5250
5251 adapter->stats.tpt += rd32(E1000_TPT);
5252 adapter->stats.colc += rd32(E1000_COLC);
5253
5254 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5255 /* read internal phy specific stats */
5256 reg = rd32(E1000_CTRL_EXT);
5257 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5258 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5259
5260 /* this stat has invalid values on i210/i211 */
5261 if ((hw->mac.type != e1000_i210) &&
5262 (hw->mac.type != e1000_i211))
5263 adapter->stats.tncrs += rd32(E1000_TNCRS);
5264 }
5265
5266 adapter->stats.tsctc += rd32(E1000_TSCTC);
5267 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5268
5269 adapter->stats.iac += rd32(E1000_IAC);
5270 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5271 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5272 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5273 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5274 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5275 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5276 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5277 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5278
5279 /* Fill out the OS statistics structure */
5280 net_stats->multicast = adapter->stats.mprc;
5281 net_stats->collisions = adapter->stats.colc;
5282
5283 /* Rx Errors */
5284
5285 /* RLEC on some newer hardware can be incorrect so build
5286 * our own version based on RUC and ROC
5287 */
5288 net_stats->rx_errors = adapter->stats.rxerrc +
5289 adapter->stats.crcerrs + adapter->stats.algnerrc +
5290 adapter->stats.ruc + adapter->stats.roc +
5291 adapter->stats.cexterr;
5292 net_stats->rx_length_errors = adapter->stats.ruc +
5293 adapter->stats.roc;
5294 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5295 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5296 net_stats->rx_missed_errors = adapter->stats.mpc;
5297
5298 /* Tx Errors */
5299 net_stats->tx_errors = adapter->stats.ecol +
5300 adapter->stats.latecol;
5301 net_stats->tx_aborted_errors = adapter->stats.ecol;
5302 net_stats->tx_window_errors = adapter->stats.latecol;
5303 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5304
5305 /* Tx Dropped needs to be maintained elsewhere */
5306
5307 /* Phy Stats */
5308 if (hw->phy.media_type == e1000_media_type_copper) {
5309 if ((adapter->link_speed == SPEED_1000) &&
5310 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5311 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5312 adapter->phy_stats.idle_errors += phy_tmp;
5313 }
5314 }
5315
5316 /* Management Stats */
5317 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5318 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5319 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5320
5321 /* OS2BMC Stats */
5322 reg = rd32(E1000_MANC);
5323 if (reg & E1000_MANC_EN_BMC2OS) {
5324 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5325 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5326 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5327 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5328 }
5329 }
5330
5331 static irqreturn_t igb_msix_other(int irq, void *data)
5332 {
5333 struct igb_adapter *adapter = data;
5334 struct e1000_hw *hw = &adapter->hw;
5335 u32 icr = rd32(E1000_ICR);
5336 /* reading ICR causes bit 31 of EICR to be cleared */
5337
5338 if (icr & E1000_ICR_DRSTA)
5339 schedule_work(&adapter->reset_task);
5340
5341 if (icr & E1000_ICR_DOUTSYNC) {
5342 /* HW is reporting DMA is out of sync */
5343 adapter->stats.doosync++;
5344 /* The DMA Out of Sync is also indication of a spoof event
5345 * in IOV mode. Check the Wrong VM Behavior register to
5346 * see if it is really a spoof event.
5347 */
5348 igb_check_wvbr(adapter);
5349 }
5350
5351 /* Check for a mailbox event */
5352 if (icr & E1000_ICR_VMMB)
5353 igb_msg_task(adapter);
5354
5355 if (icr & E1000_ICR_LSC) {
5356 hw->mac.get_link_status = 1;
5357 /* guard against interrupt when we're going down */
5358 if (!test_bit(__IGB_DOWN, &adapter->state))
5359 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5360 }
5361
5362 if (icr & E1000_ICR_TS) {
5363 u32 tsicr = rd32(E1000_TSICR);
5364
5365 if (tsicr & E1000_TSICR_TXTS) {
5366 /* acknowledge the interrupt */
5367 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5368 /* retrieve hardware timestamp */
5369 schedule_work(&adapter->ptp_tx_work);
5370 }
5371 }
5372
5373 wr32(E1000_EIMS, adapter->eims_other);
5374
5375 return IRQ_HANDLED;
5376 }
5377
5378 static void igb_write_itr(struct igb_q_vector *q_vector)
5379 {
5380 struct igb_adapter *adapter = q_vector->adapter;
5381 u32 itr_val = q_vector->itr_val & 0x7FFC;
5382
5383 if (!q_vector->set_itr)
5384 return;
5385
5386 if (!itr_val)
5387 itr_val = 0x4;
5388
5389 if (adapter->hw.mac.type == e1000_82575)
5390 itr_val |= itr_val << 16;
5391 else
5392 itr_val |= E1000_EITR_CNT_IGNR;
5393
5394 writel(itr_val, q_vector->itr_register);
5395 q_vector->set_itr = 0;
5396 }
5397
5398 static irqreturn_t igb_msix_ring(int irq, void *data)
5399 {
5400 struct igb_q_vector *q_vector = data;
5401
5402 /* Write the ITR value calculated from the previous interrupt. */
5403 igb_write_itr(q_vector);
5404
5405 napi_schedule(&q_vector->napi);
5406
5407 return IRQ_HANDLED;
5408 }
5409
5410 #ifdef CONFIG_IGB_DCA
5411 static void igb_update_tx_dca(struct igb_adapter *adapter,
5412 struct igb_ring *tx_ring,
5413 int cpu)
5414 {
5415 struct e1000_hw *hw = &adapter->hw;
5416 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5417
5418 if (hw->mac.type != e1000_82575)
5419 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5420
5421 /* We can enable relaxed ordering for reads, but not writes when
5422 * DCA is enabled. This is due to a known issue in some chipsets
5423 * which will cause the DCA tag to be cleared.
5424 */
5425 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5426 E1000_DCA_TXCTRL_DATA_RRO_EN |
5427 E1000_DCA_TXCTRL_DESC_DCA_EN;
5428
5429 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5430 }
5431
5432 static void igb_update_rx_dca(struct igb_adapter *adapter,
5433 struct igb_ring *rx_ring,
5434 int cpu)
5435 {
5436 struct e1000_hw *hw = &adapter->hw;
5437 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5438
5439 if (hw->mac.type != e1000_82575)
5440 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5441
5442 /* We can enable relaxed ordering for reads, but not writes when
5443 * DCA is enabled. This is due to a known issue in some chipsets
5444 * which will cause the DCA tag to be cleared.
5445 */
5446 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5447 E1000_DCA_RXCTRL_DESC_DCA_EN;
5448
5449 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5450 }
5451
5452 static void igb_update_dca(struct igb_q_vector *q_vector)
5453 {
5454 struct igb_adapter *adapter = q_vector->adapter;
5455 int cpu = get_cpu();
5456
5457 if (q_vector->cpu == cpu)
5458 goto out_no_update;
5459
5460 if (q_vector->tx.ring)
5461 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5462
5463 if (q_vector->rx.ring)
5464 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5465
5466 q_vector->cpu = cpu;
5467 out_no_update:
5468 put_cpu();
5469 }
5470
5471 static void igb_setup_dca(struct igb_adapter *adapter)
5472 {
5473 struct e1000_hw *hw = &adapter->hw;
5474 int i;
5475
5476 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5477 return;
5478
5479 /* Always use CB2 mode, difference is masked in the CB driver. */
5480 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5481
5482 for (i = 0; i < adapter->num_q_vectors; i++) {
5483 adapter->q_vector[i]->cpu = -1;
5484 igb_update_dca(adapter->q_vector[i]);
5485 }
5486 }
5487
5488 static int __igb_notify_dca(struct device *dev, void *data)
5489 {
5490 struct net_device *netdev = dev_get_drvdata(dev);
5491 struct igb_adapter *adapter = netdev_priv(netdev);
5492 struct pci_dev *pdev = adapter->pdev;
5493 struct e1000_hw *hw = &adapter->hw;
5494 unsigned long event = *(unsigned long *)data;
5495
5496 switch (event) {
5497 case DCA_PROVIDER_ADD:
5498 /* if already enabled, don't do it again */
5499 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5500 break;
5501 if (dca_add_requester(dev) == 0) {
5502 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5503 dev_info(&pdev->dev, "DCA enabled\n");
5504 igb_setup_dca(adapter);
5505 break;
5506 }
5507 /* Fall Through since DCA is disabled. */
5508 case DCA_PROVIDER_REMOVE:
5509 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5510 /* without this a class_device is left
5511 * hanging around in the sysfs model
5512 */
5513 dca_remove_requester(dev);
5514 dev_info(&pdev->dev, "DCA disabled\n");
5515 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5516 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5517 }
5518 break;
5519 }
5520
5521 return 0;
5522 }
5523
5524 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5525 void *p)
5526 {
5527 int ret_val;
5528
5529 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5530 __igb_notify_dca);
5531
5532 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5533 }
5534 #endif /* CONFIG_IGB_DCA */
5535
5536 #ifdef CONFIG_PCI_IOV
5537 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5538 {
5539 unsigned char mac_addr[ETH_ALEN];
5540
5541 eth_zero_addr(mac_addr);
5542 igb_set_vf_mac(adapter, vf, mac_addr);
5543
5544 /* By default spoof check is enabled for all VFs */
5545 adapter->vf_data[vf].spoofchk_enabled = true;
5546
5547 return 0;
5548 }
5549
5550 #endif
5551 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5552 {
5553 struct e1000_hw *hw = &adapter->hw;
5554 u32 ping;
5555 int i;
5556
5557 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5558 ping = E1000_PF_CONTROL_MSG;
5559 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5560 ping |= E1000_VT_MSGTYPE_CTS;
5561 igb_write_mbx(hw, &ping, 1, i);
5562 }
5563 }
5564
5565 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5566 {
5567 struct e1000_hw *hw = &adapter->hw;
5568 u32 vmolr = rd32(E1000_VMOLR(vf));
5569 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5570
5571 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5572 IGB_VF_FLAG_MULTI_PROMISC);
5573 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5574
5575 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5576 vmolr |= E1000_VMOLR_MPME;
5577 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5578 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5579 } else {
5580 /* if we have hashes and we are clearing a multicast promisc
5581 * flag we need to write the hashes to the MTA as this step
5582 * was previously skipped
5583 */
5584 if (vf_data->num_vf_mc_hashes > 30) {
5585 vmolr |= E1000_VMOLR_MPME;
5586 } else if (vf_data->num_vf_mc_hashes) {
5587 int j;
5588 vmolr |= E1000_VMOLR_ROMPE;
5589 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5590 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5591 }
5592 }
5593
5594 wr32(E1000_VMOLR(vf), vmolr);
5595
5596 /* there are flags left unprocessed, likely not supported */
5597 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5598 return -EINVAL;
5599
5600 return 0;
5601 }
5602
5603 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5604 u32 *msgbuf, u32 vf)
5605 {
5606 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5607 u16 *hash_list = (u16 *)&msgbuf[1];
5608 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5609 int i;
5610
5611 /* salt away the number of multicast addresses assigned
5612 * to this VF for later use to restore when the PF multi cast
5613 * list changes
5614 */
5615 vf_data->num_vf_mc_hashes = n;
5616
5617 /* only up to 30 hash values supported */
5618 if (n > 30)
5619 n = 30;
5620
5621 /* store the hashes for later use */
5622 for (i = 0; i < n; i++)
5623 vf_data->vf_mc_hashes[i] = hash_list[i];
5624
5625 /* Flush and reset the mta with the new values */
5626 igb_set_rx_mode(adapter->netdev);
5627
5628 return 0;
5629 }
5630
5631 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5632 {
5633 struct e1000_hw *hw = &adapter->hw;
5634 struct vf_data_storage *vf_data;
5635 int i, j;
5636
5637 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5638 u32 vmolr = rd32(E1000_VMOLR(i));
5639 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5640
5641 vf_data = &adapter->vf_data[i];
5642
5643 if ((vf_data->num_vf_mc_hashes > 30) ||
5644 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5645 vmolr |= E1000_VMOLR_MPME;
5646 } else if (vf_data->num_vf_mc_hashes) {
5647 vmolr |= E1000_VMOLR_ROMPE;
5648 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5649 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5650 }
5651 wr32(E1000_VMOLR(i), vmolr);
5652 }
5653 }
5654
5655 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5656 {
5657 struct e1000_hw *hw = &adapter->hw;
5658 u32 pool_mask, reg, vid;
5659 int i;
5660
5661 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5662
5663 /* Find the vlan filter for this id */
5664 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5665 reg = rd32(E1000_VLVF(i));
5666
5667 /* remove the vf from the pool */
5668 reg &= ~pool_mask;
5669
5670 /* if pool is empty then remove entry from vfta */
5671 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5672 (reg & E1000_VLVF_VLANID_ENABLE)) {
5673 reg = 0;
5674 vid = reg & E1000_VLVF_VLANID_MASK;
5675 igb_vfta_set(hw, vid, false);
5676 }
5677
5678 wr32(E1000_VLVF(i), reg);
5679 }
5680
5681 adapter->vf_data[vf].vlans_enabled = 0;
5682 }
5683
5684 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5685 {
5686 struct e1000_hw *hw = &adapter->hw;
5687 u32 reg, i;
5688
5689 /* The vlvf table only exists on 82576 hardware and newer */
5690 if (hw->mac.type < e1000_82576)
5691 return -1;
5692
5693 /* we only need to do this if VMDq is enabled */
5694 if (!adapter->vfs_allocated_count)
5695 return -1;
5696
5697 /* Find the vlan filter for this id */
5698 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5699 reg = rd32(E1000_VLVF(i));
5700 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5701 vid == (reg & E1000_VLVF_VLANID_MASK))
5702 break;
5703 }
5704
5705 if (add) {
5706 if (i == E1000_VLVF_ARRAY_SIZE) {
5707 /* Did not find a matching VLAN ID entry that was
5708 * enabled. Search for a free filter entry, i.e.
5709 * one without the enable bit set
5710 */
5711 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5712 reg = rd32(E1000_VLVF(i));
5713 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5714 break;
5715 }
5716 }
5717 if (i < E1000_VLVF_ARRAY_SIZE) {
5718 /* Found an enabled/available entry */
5719 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5720
5721 /* if !enabled we need to set this up in vfta */
5722 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5723 /* add VID to filter table */
5724 igb_vfta_set(hw, vid, true);
5725 reg |= E1000_VLVF_VLANID_ENABLE;
5726 }
5727 reg &= ~E1000_VLVF_VLANID_MASK;
5728 reg |= vid;
5729 wr32(E1000_VLVF(i), reg);
5730
5731 /* do not modify RLPML for PF devices */
5732 if (vf >= adapter->vfs_allocated_count)
5733 return 0;
5734
5735 if (!adapter->vf_data[vf].vlans_enabled) {
5736 u32 size;
5737 reg = rd32(E1000_VMOLR(vf));
5738 size = reg & E1000_VMOLR_RLPML_MASK;
5739 size += 4;
5740 reg &= ~E1000_VMOLR_RLPML_MASK;
5741 reg |= size;
5742 wr32(E1000_VMOLR(vf), reg);
5743 }
5744
5745 adapter->vf_data[vf].vlans_enabled++;
5746 }
5747 } else {
5748 if (i < E1000_VLVF_ARRAY_SIZE) {
5749 /* remove vf from the pool */
5750 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5751 /* if pool is empty then remove entry from vfta */
5752 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5753 reg = 0;
5754 igb_vfta_set(hw, vid, false);
5755 }
5756 wr32(E1000_VLVF(i), reg);
5757
5758 /* do not modify RLPML for PF devices */
5759 if (vf >= adapter->vfs_allocated_count)
5760 return 0;
5761
5762 adapter->vf_data[vf].vlans_enabled--;
5763 if (!adapter->vf_data[vf].vlans_enabled) {
5764 u32 size;
5765 reg = rd32(E1000_VMOLR(vf));
5766 size = reg & E1000_VMOLR_RLPML_MASK;
5767 size -= 4;
5768 reg &= ~E1000_VMOLR_RLPML_MASK;
5769 reg |= size;
5770 wr32(E1000_VMOLR(vf), reg);
5771 }
5772 }
5773 }
5774 return 0;
5775 }
5776
5777 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5778 {
5779 struct e1000_hw *hw = &adapter->hw;
5780
5781 if (vid)
5782 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5783 else
5784 wr32(E1000_VMVIR(vf), 0);
5785 }
5786
5787 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5788 int vf, u16 vlan, u8 qos)
5789 {
5790 int err = 0;
5791 struct igb_adapter *adapter = netdev_priv(netdev);
5792
5793 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5794 return -EINVAL;
5795 if (vlan || qos) {
5796 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5797 if (err)
5798 goto out;
5799 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5800 igb_set_vmolr(adapter, vf, !vlan);
5801 adapter->vf_data[vf].pf_vlan = vlan;
5802 adapter->vf_data[vf].pf_qos = qos;
5803 dev_info(&adapter->pdev->dev,
5804 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5805 if (test_bit(__IGB_DOWN, &adapter->state)) {
5806 dev_warn(&adapter->pdev->dev,
5807 "The VF VLAN has been set, but the PF device is not up.\n");
5808 dev_warn(&adapter->pdev->dev,
5809 "Bring the PF device up before attempting to use the VF device.\n");
5810 }
5811 } else {
5812 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5813 false, vf);
5814 igb_set_vmvir(adapter, vlan, vf);
5815 igb_set_vmolr(adapter, vf, true);
5816 adapter->vf_data[vf].pf_vlan = 0;
5817 adapter->vf_data[vf].pf_qos = 0;
5818 }
5819 out:
5820 return err;
5821 }
5822
5823 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5824 {
5825 struct e1000_hw *hw = &adapter->hw;
5826 int i;
5827 u32 reg;
5828
5829 /* Find the vlan filter for this id */
5830 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5831 reg = rd32(E1000_VLVF(i));
5832 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5833 vid == (reg & E1000_VLVF_VLANID_MASK))
5834 break;
5835 }
5836
5837 if (i >= E1000_VLVF_ARRAY_SIZE)
5838 i = -1;
5839
5840 return i;
5841 }
5842
5843 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5844 {
5845 struct e1000_hw *hw = &adapter->hw;
5846 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5847 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5848 int err = 0;
5849
5850 /* If in promiscuous mode we need to make sure the PF also has
5851 * the VLAN filter set.
5852 */
5853 if (add && (adapter->netdev->flags & IFF_PROMISC))
5854 err = igb_vlvf_set(adapter, vid, add,
5855 adapter->vfs_allocated_count);
5856 if (err)
5857 goto out;
5858
5859 err = igb_vlvf_set(adapter, vid, add, vf);
5860
5861 if (err)
5862 goto out;
5863
5864 /* Go through all the checks to see if the VLAN filter should
5865 * be wiped completely.
5866 */
5867 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5868 u32 vlvf, bits;
5869
5870 int regndx = igb_find_vlvf_entry(adapter, vid);
5871 if (regndx < 0)
5872 goto out;
5873 /* See if any other pools are set for this VLAN filter
5874 * entry other than the PF.
5875 */
5876 vlvf = bits = rd32(E1000_VLVF(regndx));
5877 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5878 adapter->vfs_allocated_count);
5879 /* If the filter was removed then ensure PF pool bit
5880 * is cleared if the PF only added itself to the pool
5881 * because the PF is in promiscuous mode.
5882 */
5883 if ((vlvf & VLAN_VID_MASK) == vid &&
5884 !test_bit(vid, adapter->active_vlans) &&
5885 !bits)
5886 igb_vlvf_set(adapter, vid, add,
5887 adapter->vfs_allocated_count);
5888 }
5889
5890 out:
5891 return err;
5892 }
5893
5894 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5895 {
5896 /* clear flags - except flag that indicates PF has set the MAC */
5897 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5898 adapter->vf_data[vf].last_nack = jiffies;
5899
5900 /* reset offloads to defaults */
5901 igb_set_vmolr(adapter, vf, true);
5902
5903 /* reset vlans for device */
5904 igb_clear_vf_vfta(adapter, vf);
5905 if (adapter->vf_data[vf].pf_vlan)
5906 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5907 adapter->vf_data[vf].pf_vlan,
5908 adapter->vf_data[vf].pf_qos);
5909 else
5910 igb_clear_vf_vfta(adapter, vf);
5911
5912 /* reset multicast table array for vf */
5913 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5914
5915 /* Flush and reset the mta with the new values */
5916 igb_set_rx_mode(adapter->netdev);
5917 }
5918
5919 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5920 {
5921 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5922
5923 /* clear mac address as we were hotplug removed/added */
5924 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5925 eth_zero_addr(vf_mac);
5926
5927 /* process remaining reset events */
5928 igb_vf_reset(adapter, vf);
5929 }
5930
5931 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5932 {
5933 struct e1000_hw *hw = &adapter->hw;
5934 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5935 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5936 u32 reg, msgbuf[3];
5937 u8 *addr = (u8 *)(&msgbuf[1]);
5938
5939 /* process all the same items cleared in a function level reset */
5940 igb_vf_reset(adapter, vf);
5941
5942 /* set vf mac address */
5943 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5944
5945 /* enable transmit and receive for vf */
5946 reg = rd32(E1000_VFTE);
5947 wr32(E1000_VFTE, reg | (1 << vf));
5948 reg = rd32(E1000_VFRE);
5949 wr32(E1000_VFRE, reg | (1 << vf));
5950
5951 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5952
5953 /* reply to reset with ack and vf mac address */
5954 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5955 memcpy(addr, vf_mac, ETH_ALEN);
5956 igb_write_mbx(hw, msgbuf, 3, vf);
5957 }
5958
5959 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5960 {
5961 /* The VF MAC Address is stored in a packed array of bytes
5962 * starting at the second 32 bit word of the msg array
5963 */
5964 unsigned char *addr = (char *)&msg[1];
5965 int err = -1;
5966
5967 if (is_valid_ether_addr(addr))
5968 err = igb_set_vf_mac(adapter, vf, addr);
5969
5970 return err;
5971 }
5972
5973 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5974 {
5975 struct e1000_hw *hw = &adapter->hw;
5976 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5977 u32 msg = E1000_VT_MSGTYPE_NACK;
5978
5979 /* if device isn't clear to send it shouldn't be reading either */
5980 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5981 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5982 igb_write_mbx(hw, &msg, 1, vf);
5983 vf_data->last_nack = jiffies;
5984 }
5985 }
5986
5987 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5988 {
5989 struct pci_dev *pdev = adapter->pdev;
5990 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5991 struct e1000_hw *hw = &adapter->hw;
5992 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5993 s32 retval;
5994
5995 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5996
5997 if (retval) {
5998 /* if receive failed revoke VF CTS stats and restart init */
5999 dev_err(&pdev->dev, "Error receiving message from VF\n");
6000 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6001 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6002 return;
6003 goto out;
6004 }
6005
6006 /* this is a message we already processed, do nothing */
6007 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6008 return;
6009
6010 /* until the vf completes a reset it should not be
6011 * allowed to start any configuration.
6012 */
6013 if (msgbuf[0] == E1000_VF_RESET) {
6014 igb_vf_reset_msg(adapter, vf);
6015 return;
6016 }
6017
6018 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6019 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6020 return;
6021 retval = -1;
6022 goto out;
6023 }
6024
6025 switch ((msgbuf[0] & 0xFFFF)) {
6026 case E1000_VF_SET_MAC_ADDR:
6027 retval = -EINVAL;
6028 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6029 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6030 else
6031 dev_warn(&pdev->dev,
6032 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6033 vf);
6034 break;
6035 case E1000_VF_SET_PROMISC:
6036 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6037 break;
6038 case E1000_VF_SET_MULTICAST:
6039 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6040 break;
6041 case E1000_VF_SET_LPE:
6042 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6043 break;
6044 case E1000_VF_SET_VLAN:
6045 retval = -1;
6046 if (vf_data->pf_vlan)
6047 dev_warn(&pdev->dev,
6048 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6049 vf);
6050 else
6051 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6052 break;
6053 default:
6054 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6055 retval = -1;
6056 break;
6057 }
6058
6059 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6060 out:
6061 /* notify the VF of the results of what it sent us */
6062 if (retval)
6063 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6064 else
6065 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6066
6067 igb_write_mbx(hw, msgbuf, 1, vf);
6068 }
6069
6070 static void igb_msg_task(struct igb_adapter *adapter)
6071 {
6072 struct e1000_hw *hw = &adapter->hw;
6073 u32 vf;
6074
6075 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6076 /* process any reset requests */
6077 if (!igb_check_for_rst(hw, vf))
6078 igb_vf_reset_event(adapter, vf);
6079
6080 /* process any messages pending */
6081 if (!igb_check_for_msg(hw, vf))
6082 igb_rcv_msg_from_vf(adapter, vf);
6083
6084 /* process any acks */
6085 if (!igb_check_for_ack(hw, vf))
6086 igb_rcv_ack_from_vf(adapter, vf);
6087 }
6088 }
6089
6090 /**
6091 * igb_set_uta - Set unicast filter table address
6092 * @adapter: board private structure
6093 *
6094 * The unicast table address is a register array of 32-bit registers.
6095 * The table is meant to be used in a way similar to how the MTA is used
6096 * however due to certain limitations in the hardware it is necessary to
6097 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6098 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6099 **/
6100 static void igb_set_uta(struct igb_adapter *adapter)
6101 {
6102 struct e1000_hw *hw = &adapter->hw;
6103 int i;
6104
6105 /* The UTA table only exists on 82576 hardware and newer */
6106 if (hw->mac.type < e1000_82576)
6107 return;
6108
6109 /* we only need to do this if VMDq is enabled */
6110 if (!adapter->vfs_allocated_count)
6111 return;
6112
6113 for (i = 0; i < hw->mac.uta_reg_count; i++)
6114 array_wr32(E1000_UTA, i, ~0);
6115 }
6116
6117 /**
6118 * igb_intr_msi - Interrupt Handler
6119 * @irq: interrupt number
6120 * @data: pointer to a network interface device structure
6121 **/
6122 static irqreturn_t igb_intr_msi(int irq, void *data)
6123 {
6124 struct igb_adapter *adapter = data;
6125 struct igb_q_vector *q_vector = adapter->q_vector[0];
6126 struct e1000_hw *hw = &adapter->hw;
6127 /* read ICR disables interrupts using IAM */
6128 u32 icr = rd32(E1000_ICR);
6129
6130 igb_write_itr(q_vector);
6131
6132 if (icr & E1000_ICR_DRSTA)
6133 schedule_work(&adapter->reset_task);
6134
6135 if (icr & E1000_ICR_DOUTSYNC) {
6136 /* HW is reporting DMA is out of sync */
6137 adapter->stats.doosync++;
6138 }
6139
6140 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6141 hw->mac.get_link_status = 1;
6142 if (!test_bit(__IGB_DOWN, &adapter->state))
6143 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6144 }
6145
6146 if (icr & E1000_ICR_TS) {
6147 u32 tsicr = rd32(E1000_TSICR);
6148
6149 if (tsicr & E1000_TSICR_TXTS) {
6150 /* acknowledge the interrupt */
6151 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6152 /* retrieve hardware timestamp */
6153 schedule_work(&adapter->ptp_tx_work);
6154 }
6155 }
6156
6157 napi_schedule(&q_vector->napi);
6158
6159 return IRQ_HANDLED;
6160 }
6161
6162 /**
6163 * igb_intr - Legacy Interrupt Handler
6164 * @irq: interrupt number
6165 * @data: pointer to a network interface device structure
6166 **/
6167 static irqreturn_t igb_intr(int irq, void *data)
6168 {
6169 struct igb_adapter *adapter = data;
6170 struct igb_q_vector *q_vector = adapter->q_vector[0];
6171 struct e1000_hw *hw = &adapter->hw;
6172 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6173 * need for the IMC write
6174 */
6175 u32 icr = rd32(E1000_ICR);
6176
6177 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6178 * not set, then the adapter didn't send an interrupt
6179 */
6180 if (!(icr & E1000_ICR_INT_ASSERTED))
6181 return IRQ_NONE;
6182
6183 igb_write_itr(q_vector);
6184
6185 if (icr & E1000_ICR_DRSTA)
6186 schedule_work(&adapter->reset_task);
6187
6188 if (icr & E1000_ICR_DOUTSYNC) {
6189 /* HW is reporting DMA is out of sync */
6190 adapter->stats.doosync++;
6191 }
6192
6193 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6194 hw->mac.get_link_status = 1;
6195 /* guard against interrupt when we're going down */
6196 if (!test_bit(__IGB_DOWN, &adapter->state))
6197 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6198 }
6199
6200 if (icr & E1000_ICR_TS) {
6201 u32 tsicr = rd32(E1000_TSICR);
6202
6203 if (tsicr & E1000_TSICR_TXTS) {
6204 /* acknowledge the interrupt */
6205 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6206 /* retrieve hardware timestamp */
6207 schedule_work(&adapter->ptp_tx_work);
6208 }
6209 }
6210
6211 napi_schedule(&q_vector->napi);
6212
6213 return IRQ_HANDLED;
6214 }
6215
6216 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6217 {
6218 struct igb_adapter *adapter = q_vector->adapter;
6219 struct e1000_hw *hw = &adapter->hw;
6220
6221 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6222 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6223 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6224 igb_set_itr(q_vector);
6225 else
6226 igb_update_ring_itr(q_vector);
6227 }
6228
6229 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6230 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6231 wr32(E1000_EIMS, q_vector->eims_value);
6232 else
6233 igb_irq_enable(adapter);
6234 }
6235 }
6236
6237 /**
6238 * igb_poll - NAPI Rx polling callback
6239 * @napi: napi polling structure
6240 * @budget: count of how many packets we should handle
6241 **/
6242 static int igb_poll(struct napi_struct *napi, int budget)
6243 {
6244 struct igb_q_vector *q_vector = container_of(napi,
6245 struct igb_q_vector,
6246 napi);
6247 bool clean_complete = true;
6248
6249 #ifdef CONFIG_IGB_DCA
6250 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6251 igb_update_dca(q_vector);
6252 #endif
6253 if (q_vector->tx.ring)
6254 clean_complete = igb_clean_tx_irq(q_vector);
6255
6256 if (q_vector->rx.ring)
6257 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6258
6259 /* If all work not completed, return budget and keep polling */
6260 if (!clean_complete)
6261 return budget;
6262
6263 /* If not enough Rx work done, exit the polling mode */
6264 napi_complete(napi);
6265 igb_ring_irq_enable(q_vector);
6266
6267 return 0;
6268 }
6269
6270 /**
6271 * igb_clean_tx_irq - Reclaim resources after transmit completes
6272 * @q_vector: pointer to q_vector containing needed info
6273 *
6274 * returns true if ring is completely cleaned
6275 **/
6276 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6277 {
6278 struct igb_adapter *adapter = q_vector->adapter;
6279 struct igb_ring *tx_ring = q_vector->tx.ring;
6280 struct igb_tx_buffer *tx_buffer;
6281 union e1000_adv_tx_desc *tx_desc;
6282 unsigned int total_bytes = 0, total_packets = 0;
6283 unsigned int budget = q_vector->tx.work_limit;
6284 unsigned int i = tx_ring->next_to_clean;
6285
6286 if (test_bit(__IGB_DOWN, &adapter->state))
6287 return true;
6288
6289 tx_buffer = &tx_ring->tx_buffer_info[i];
6290 tx_desc = IGB_TX_DESC(tx_ring, i);
6291 i -= tx_ring->count;
6292
6293 do {
6294 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6295
6296 /* if next_to_watch is not set then there is no work pending */
6297 if (!eop_desc)
6298 break;
6299
6300 /* prevent any other reads prior to eop_desc */
6301 read_barrier_depends();
6302
6303 /* if DD is not set pending work has not been completed */
6304 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6305 break;
6306
6307 /* clear next_to_watch to prevent false hangs */
6308 tx_buffer->next_to_watch = NULL;
6309
6310 /* update the statistics for this packet */
6311 total_bytes += tx_buffer->bytecount;
6312 total_packets += tx_buffer->gso_segs;
6313
6314 /* free the skb */
6315 dev_kfree_skb_any(tx_buffer->skb);
6316
6317 /* unmap skb header data */
6318 dma_unmap_single(tx_ring->dev,
6319 dma_unmap_addr(tx_buffer, dma),
6320 dma_unmap_len(tx_buffer, len),
6321 DMA_TO_DEVICE);
6322
6323 /* clear tx_buffer data */
6324 tx_buffer->skb = NULL;
6325 dma_unmap_len_set(tx_buffer, len, 0);
6326
6327 /* clear last DMA location and unmap remaining buffers */
6328 while (tx_desc != eop_desc) {
6329 tx_buffer++;
6330 tx_desc++;
6331 i++;
6332 if (unlikely(!i)) {
6333 i -= tx_ring->count;
6334 tx_buffer = tx_ring->tx_buffer_info;
6335 tx_desc = IGB_TX_DESC(tx_ring, 0);
6336 }
6337
6338 /* unmap any remaining paged data */
6339 if (dma_unmap_len(tx_buffer, len)) {
6340 dma_unmap_page(tx_ring->dev,
6341 dma_unmap_addr(tx_buffer, dma),
6342 dma_unmap_len(tx_buffer, len),
6343 DMA_TO_DEVICE);
6344 dma_unmap_len_set(tx_buffer, len, 0);
6345 }
6346 }
6347
6348 /* move us one more past the eop_desc for start of next pkt */
6349 tx_buffer++;
6350 tx_desc++;
6351 i++;
6352 if (unlikely(!i)) {
6353 i -= tx_ring->count;
6354 tx_buffer = tx_ring->tx_buffer_info;
6355 tx_desc = IGB_TX_DESC(tx_ring, 0);
6356 }
6357
6358 /* issue prefetch for next Tx descriptor */
6359 prefetch(tx_desc);
6360
6361 /* update budget accounting */
6362 budget--;
6363 } while (likely(budget));
6364
6365 netdev_tx_completed_queue(txring_txq(tx_ring),
6366 total_packets, total_bytes);
6367 i += tx_ring->count;
6368 tx_ring->next_to_clean = i;
6369 u64_stats_update_begin(&tx_ring->tx_syncp);
6370 tx_ring->tx_stats.bytes += total_bytes;
6371 tx_ring->tx_stats.packets += total_packets;
6372 u64_stats_update_end(&tx_ring->tx_syncp);
6373 q_vector->tx.total_bytes += total_bytes;
6374 q_vector->tx.total_packets += total_packets;
6375
6376 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6377 struct e1000_hw *hw = &adapter->hw;
6378
6379 /* Detect a transmit hang in hardware, this serializes the
6380 * check with the clearing of time_stamp and movement of i
6381 */
6382 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6383 if (tx_buffer->next_to_watch &&
6384 time_after(jiffies, tx_buffer->time_stamp +
6385 (adapter->tx_timeout_factor * HZ)) &&
6386 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6387
6388 /* detected Tx unit hang */
6389 dev_err(tx_ring->dev,
6390 "Detected Tx Unit Hang\n"
6391 " Tx Queue <%d>\n"
6392 " TDH <%x>\n"
6393 " TDT <%x>\n"
6394 " next_to_use <%x>\n"
6395 " next_to_clean <%x>\n"
6396 "buffer_info[next_to_clean]\n"
6397 " time_stamp <%lx>\n"
6398 " next_to_watch <%p>\n"
6399 " jiffies <%lx>\n"
6400 " desc.status <%x>\n",
6401 tx_ring->queue_index,
6402 rd32(E1000_TDH(tx_ring->reg_idx)),
6403 readl(tx_ring->tail),
6404 tx_ring->next_to_use,
6405 tx_ring->next_to_clean,
6406 tx_buffer->time_stamp,
6407 tx_buffer->next_to_watch,
6408 jiffies,
6409 tx_buffer->next_to_watch->wb.status);
6410 netif_stop_subqueue(tx_ring->netdev,
6411 tx_ring->queue_index);
6412
6413 /* we are about to reset, no point in enabling stuff */
6414 return true;
6415 }
6416 }
6417
6418 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6419 if (unlikely(total_packets &&
6420 netif_carrier_ok(tx_ring->netdev) &&
6421 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6422 /* Make sure that anybody stopping the queue after this
6423 * sees the new next_to_clean.
6424 */
6425 smp_mb();
6426 if (__netif_subqueue_stopped(tx_ring->netdev,
6427 tx_ring->queue_index) &&
6428 !(test_bit(__IGB_DOWN, &adapter->state))) {
6429 netif_wake_subqueue(tx_ring->netdev,
6430 tx_ring->queue_index);
6431
6432 u64_stats_update_begin(&tx_ring->tx_syncp);
6433 tx_ring->tx_stats.restart_queue++;
6434 u64_stats_update_end(&tx_ring->tx_syncp);
6435 }
6436 }
6437
6438 return !!budget;
6439 }
6440
6441 /**
6442 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6443 * @rx_ring: rx descriptor ring to store buffers on
6444 * @old_buff: donor buffer to have page reused
6445 *
6446 * Synchronizes page for reuse by the adapter
6447 **/
6448 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6449 struct igb_rx_buffer *old_buff)
6450 {
6451 struct igb_rx_buffer *new_buff;
6452 u16 nta = rx_ring->next_to_alloc;
6453
6454 new_buff = &rx_ring->rx_buffer_info[nta];
6455
6456 /* update, and store next to alloc */
6457 nta++;
6458 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6459
6460 /* transfer page from old buffer to new buffer */
6461 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6462
6463 /* sync the buffer for use by the device */
6464 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6465 old_buff->page_offset,
6466 IGB_RX_BUFSZ,
6467 DMA_FROM_DEVICE);
6468 }
6469
6470 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6471 struct page *page,
6472 unsigned int truesize)
6473 {
6474 /* avoid re-using remote pages */
6475 if (unlikely(page_to_nid(page) != numa_node_id()))
6476 return false;
6477
6478 #if (PAGE_SIZE < 8192)
6479 /* if we are only owner of page we can reuse it */
6480 if (unlikely(page_count(page) != 1))
6481 return false;
6482
6483 /* flip page offset to other buffer */
6484 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6485
6486 /* since we are the only owner of the page and we need to
6487 * increment it, just set the value to 2 in order to avoid
6488 * an unnecessary locked operation
6489 */
6490 atomic_set(&page->_count, 2);
6491 #else
6492 /* move offset up to the next cache line */
6493 rx_buffer->page_offset += truesize;
6494
6495 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6496 return false;
6497
6498 /* bump ref count on page before it is given to the stack */
6499 get_page(page);
6500 #endif
6501
6502 return true;
6503 }
6504
6505 /**
6506 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6507 * @rx_ring: rx descriptor ring to transact packets on
6508 * @rx_buffer: buffer containing page to add
6509 * @rx_desc: descriptor containing length of buffer written by hardware
6510 * @skb: sk_buff to place the data into
6511 *
6512 * This function will add the data contained in rx_buffer->page to the skb.
6513 * This is done either through a direct copy if the data in the buffer is
6514 * less than the skb header size, otherwise it will just attach the page as
6515 * a frag to the skb.
6516 *
6517 * The function will then update the page offset if necessary and return
6518 * true if the buffer can be reused by the adapter.
6519 **/
6520 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6521 struct igb_rx_buffer *rx_buffer,
6522 union e1000_adv_rx_desc *rx_desc,
6523 struct sk_buff *skb)
6524 {
6525 struct page *page = rx_buffer->page;
6526 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6527 #if (PAGE_SIZE < 8192)
6528 unsigned int truesize = IGB_RX_BUFSZ;
6529 #else
6530 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6531 #endif
6532
6533 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6534 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6535
6536 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6537 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6538 va += IGB_TS_HDR_LEN;
6539 size -= IGB_TS_HDR_LEN;
6540 }
6541
6542 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6543
6544 /* we can reuse buffer as-is, just make sure it is local */
6545 if (likely(page_to_nid(page) == numa_node_id()))
6546 return true;
6547
6548 /* this page cannot be reused so discard it */
6549 put_page(page);
6550 return false;
6551 }
6552
6553 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6554 rx_buffer->page_offset, size, truesize);
6555
6556 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6557 }
6558
6559 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6560 union e1000_adv_rx_desc *rx_desc,
6561 struct sk_buff *skb)
6562 {
6563 struct igb_rx_buffer *rx_buffer;
6564 struct page *page;
6565
6566 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6567
6568 page = rx_buffer->page;
6569 prefetchw(page);
6570
6571 if (likely(!skb)) {
6572 void *page_addr = page_address(page) +
6573 rx_buffer->page_offset;
6574
6575 /* prefetch first cache line of first page */
6576 prefetch(page_addr);
6577 #if L1_CACHE_BYTES < 128
6578 prefetch(page_addr + L1_CACHE_BYTES);
6579 #endif
6580
6581 /* allocate a skb to store the frags */
6582 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6583 IGB_RX_HDR_LEN);
6584 if (unlikely(!skb)) {
6585 rx_ring->rx_stats.alloc_failed++;
6586 return NULL;
6587 }
6588
6589 /* we will be copying header into skb->data in
6590 * pskb_may_pull so it is in our interest to prefetch
6591 * it now to avoid a possible cache miss
6592 */
6593 prefetchw(skb->data);
6594 }
6595
6596 /* we are reusing so sync this buffer for CPU use */
6597 dma_sync_single_range_for_cpu(rx_ring->dev,
6598 rx_buffer->dma,
6599 rx_buffer->page_offset,
6600 IGB_RX_BUFSZ,
6601 DMA_FROM_DEVICE);
6602
6603 /* pull page into skb */
6604 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6605 /* hand second half of page back to the ring */
6606 igb_reuse_rx_page(rx_ring, rx_buffer);
6607 } else {
6608 /* we are not reusing the buffer so unmap it */
6609 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6610 PAGE_SIZE, DMA_FROM_DEVICE);
6611 }
6612
6613 /* clear contents of rx_buffer */
6614 rx_buffer->page = NULL;
6615
6616 return skb;
6617 }
6618
6619 static inline void igb_rx_checksum(struct igb_ring *ring,
6620 union e1000_adv_rx_desc *rx_desc,
6621 struct sk_buff *skb)
6622 {
6623 skb_checksum_none_assert(skb);
6624
6625 /* Ignore Checksum bit is set */
6626 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6627 return;
6628
6629 /* Rx checksum disabled via ethtool */
6630 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6631 return;
6632
6633 /* TCP/UDP checksum error bit is set */
6634 if (igb_test_staterr(rx_desc,
6635 E1000_RXDEXT_STATERR_TCPE |
6636 E1000_RXDEXT_STATERR_IPE)) {
6637 /* work around errata with sctp packets where the TCPE aka
6638 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6639 * packets, (aka let the stack check the crc32c)
6640 */
6641 if (!((skb->len == 60) &&
6642 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6643 u64_stats_update_begin(&ring->rx_syncp);
6644 ring->rx_stats.csum_err++;
6645 u64_stats_update_end(&ring->rx_syncp);
6646 }
6647 /* let the stack verify checksum errors */
6648 return;
6649 }
6650 /* It must be a TCP or UDP packet with a valid checksum */
6651 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6652 E1000_RXD_STAT_UDPCS))
6653 skb->ip_summed = CHECKSUM_UNNECESSARY;
6654
6655 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6656 le32_to_cpu(rx_desc->wb.upper.status_error));
6657 }
6658
6659 static inline void igb_rx_hash(struct igb_ring *ring,
6660 union e1000_adv_rx_desc *rx_desc,
6661 struct sk_buff *skb)
6662 {
6663 if (ring->netdev->features & NETIF_F_RXHASH)
6664 skb_set_hash(skb,
6665 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6666 PKT_HASH_TYPE_L3);
6667 }
6668
6669 /**
6670 * igb_is_non_eop - process handling of non-EOP buffers
6671 * @rx_ring: Rx ring being processed
6672 * @rx_desc: Rx descriptor for current buffer
6673 * @skb: current socket buffer containing buffer in progress
6674 *
6675 * This function updates next to clean. If the buffer is an EOP buffer
6676 * this function exits returning false, otherwise it will place the
6677 * sk_buff in the next buffer to be chained and return true indicating
6678 * that this is in fact a non-EOP buffer.
6679 **/
6680 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6681 union e1000_adv_rx_desc *rx_desc)
6682 {
6683 u32 ntc = rx_ring->next_to_clean + 1;
6684
6685 /* fetch, update, and store next to clean */
6686 ntc = (ntc < rx_ring->count) ? ntc : 0;
6687 rx_ring->next_to_clean = ntc;
6688
6689 prefetch(IGB_RX_DESC(rx_ring, ntc));
6690
6691 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6692 return false;
6693
6694 return true;
6695 }
6696
6697 /**
6698 * igb_get_headlen - determine size of header for LRO/GRO
6699 * @data: pointer to the start of the headers
6700 * @max_len: total length of section to find headers in
6701 *
6702 * This function is meant to determine the length of headers that will
6703 * be recognized by hardware for LRO, and GRO offloads. The main
6704 * motivation of doing this is to only perform one pull for IPv4 TCP
6705 * packets so that we can do basic things like calculating the gso_size
6706 * based on the average data per packet.
6707 **/
6708 static unsigned int igb_get_headlen(unsigned char *data,
6709 unsigned int max_len)
6710 {
6711 union {
6712 unsigned char *network;
6713 /* l2 headers */
6714 struct ethhdr *eth;
6715 struct vlan_hdr *vlan;
6716 /* l3 headers */
6717 struct iphdr *ipv4;
6718 struct ipv6hdr *ipv6;
6719 } hdr;
6720 __be16 protocol;
6721 u8 nexthdr = 0; /* default to not TCP */
6722 u8 hlen;
6723
6724 /* this should never happen, but better safe than sorry */
6725 if (max_len < ETH_HLEN)
6726 return max_len;
6727
6728 /* initialize network frame pointer */
6729 hdr.network = data;
6730
6731 /* set first protocol and move network header forward */
6732 protocol = hdr.eth->h_proto;
6733 hdr.network += ETH_HLEN;
6734
6735 /* handle any vlan tag if present */
6736 if (protocol == __constant_htons(ETH_P_8021Q)) {
6737 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6738 return max_len;
6739
6740 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6741 hdr.network += VLAN_HLEN;
6742 }
6743
6744 /* handle L3 protocols */
6745 if (protocol == __constant_htons(ETH_P_IP)) {
6746 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6747 return max_len;
6748
6749 /* access ihl as a u8 to avoid unaligned access on ia64 */
6750 hlen = (hdr.network[0] & 0x0F) << 2;
6751
6752 /* verify hlen meets minimum size requirements */
6753 if (hlen < sizeof(struct iphdr))
6754 return hdr.network - data;
6755
6756 /* record next protocol if header is present */
6757 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6758 nexthdr = hdr.ipv4->protocol;
6759 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6760 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6761 return max_len;
6762
6763 /* record next protocol */
6764 nexthdr = hdr.ipv6->nexthdr;
6765 hlen = sizeof(struct ipv6hdr);
6766 } else {
6767 return hdr.network - data;
6768 }
6769
6770 /* relocate pointer to start of L4 header */
6771 hdr.network += hlen;
6772
6773 /* finally sort out TCP */
6774 if (nexthdr == IPPROTO_TCP) {
6775 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6776 return max_len;
6777
6778 /* access doff as a u8 to avoid unaligned access on ia64 */
6779 hlen = (hdr.network[12] & 0xF0) >> 2;
6780
6781 /* verify hlen meets minimum size requirements */
6782 if (hlen < sizeof(struct tcphdr))
6783 return hdr.network - data;
6784
6785 hdr.network += hlen;
6786 } else if (nexthdr == IPPROTO_UDP) {
6787 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6788 return max_len;
6789
6790 hdr.network += sizeof(struct udphdr);
6791 }
6792
6793 /* If everything has gone correctly hdr.network should be the
6794 * data section of the packet and will be the end of the header.
6795 * If not then it probably represents the end of the last recognized
6796 * header.
6797 */
6798 if ((hdr.network - data) < max_len)
6799 return hdr.network - data;
6800 else
6801 return max_len;
6802 }
6803
6804 /**
6805 * igb_pull_tail - igb specific version of skb_pull_tail
6806 * @rx_ring: rx descriptor ring packet is being transacted on
6807 * @rx_desc: pointer to the EOP Rx descriptor
6808 * @skb: pointer to current skb being adjusted
6809 *
6810 * This function is an igb specific version of __pskb_pull_tail. The
6811 * main difference between this version and the original function is that
6812 * this function can make several assumptions about the state of things
6813 * that allow for significant optimizations versus the standard function.
6814 * As a result we can do things like drop a frag and maintain an accurate
6815 * truesize for the skb.
6816 */
6817 static void igb_pull_tail(struct igb_ring *rx_ring,
6818 union e1000_adv_rx_desc *rx_desc,
6819 struct sk_buff *skb)
6820 {
6821 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6822 unsigned char *va;
6823 unsigned int pull_len;
6824
6825 /* it is valid to use page_address instead of kmap since we are
6826 * working with pages allocated out of the lomem pool per
6827 * alloc_page(GFP_ATOMIC)
6828 */
6829 va = skb_frag_address(frag);
6830
6831 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6832 /* retrieve timestamp from buffer */
6833 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6834
6835 /* update pointers to remove timestamp header */
6836 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6837 frag->page_offset += IGB_TS_HDR_LEN;
6838 skb->data_len -= IGB_TS_HDR_LEN;
6839 skb->len -= IGB_TS_HDR_LEN;
6840
6841 /* move va to start of packet data */
6842 va += IGB_TS_HDR_LEN;
6843 }
6844
6845 /* we need the header to contain the greater of either ETH_HLEN or
6846 * 60 bytes if the skb->len is less than 60 for skb_pad.
6847 */
6848 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6849
6850 /* align pull length to size of long to optimize memcpy performance */
6851 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6852
6853 /* update all of the pointers */
6854 skb_frag_size_sub(frag, pull_len);
6855 frag->page_offset += pull_len;
6856 skb->data_len -= pull_len;
6857 skb->tail += pull_len;
6858 }
6859
6860 /**
6861 * igb_cleanup_headers - Correct corrupted or empty headers
6862 * @rx_ring: rx descriptor ring packet is being transacted on
6863 * @rx_desc: pointer to the EOP Rx descriptor
6864 * @skb: pointer to current skb being fixed
6865 *
6866 * Address the case where we are pulling data in on pages only
6867 * and as such no data is present in the skb header.
6868 *
6869 * In addition if skb is not at least 60 bytes we need to pad it so that
6870 * it is large enough to qualify as a valid Ethernet frame.
6871 *
6872 * Returns true if an error was encountered and skb was freed.
6873 **/
6874 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6875 union e1000_adv_rx_desc *rx_desc,
6876 struct sk_buff *skb)
6877 {
6878 if (unlikely((igb_test_staterr(rx_desc,
6879 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6880 struct net_device *netdev = rx_ring->netdev;
6881 if (!(netdev->features & NETIF_F_RXALL)) {
6882 dev_kfree_skb_any(skb);
6883 return true;
6884 }
6885 }
6886
6887 /* place header in linear portion of buffer */
6888 if (skb_is_nonlinear(skb))
6889 igb_pull_tail(rx_ring, rx_desc, skb);
6890
6891 /* if skb_pad returns an error the skb was freed */
6892 if (unlikely(skb->len < 60)) {
6893 int pad_len = 60 - skb->len;
6894
6895 if (skb_pad(skb, pad_len))
6896 return true;
6897 __skb_put(skb, pad_len);
6898 }
6899
6900 return false;
6901 }
6902
6903 /**
6904 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6905 * @rx_ring: rx descriptor ring packet is being transacted on
6906 * @rx_desc: pointer to the EOP Rx descriptor
6907 * @skb: pointer to current skb being populated
6908 *
6909 * This function checks the ring, descriptor, and packet information in
6910 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6911 * other fields within the skb.
6912 **/
6913 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6914 union e1000_adv_rx_desc *rx_desc,
6915 struct sk_buff *skb)
6916 {
6917 struct net_device *dev = rx_ring->netdev;
6918
6919 igb_rx_hash(rx_ring, rx_desc, skb);
6920
6921 igb_rx_checksum(rx_ring, rx_desc, skb);
6922
6923 igb_ptp_rx_hwtstamp(rx_ring, rx_desc, skb);
6924
6925 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6926 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6927 u16 vid;
6928 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6929 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6930 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6931 else
6932 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6933
6934 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6935 }
6936
6937 skb_record_rx_queue(skb, rx_ring->queue_index);
6938
6939 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6940 }
6941
6942 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6943 {
6944 struct igb_ring *rx_ring = q_vector->rx.ring;
6945 struct sk_buff *skb = rx_ring->skb;
6946 unsigned int total_bytes = 0, total_packets = 0;
6947 u16 cleaned_count = igb_desc_unused(rx_ring);
6948
6949 do {
6950 union e1000_adv_rx_desc *rx_desc;
6951
6952 /* return some buffers to hardware, one at a time is too slow */
6953 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6954 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6955 cleaned_count = 0;
6956 }
6957
6958 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6959
6960 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6961 break;
6962
6963 /* This memory barrier is needed to keep us from reading
6964 * any other fields out of the rx_desc until we know the
6965 * RXD_STAT_DD bit is set
6966 */
6967 rmb();
6968
6969 /* retrieve a buffer from the ring */
6970 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6971
6972 /* exit if we failed to retrieve a buffer */
6973 if (!skb)
6974 break;
6975
6976 cleaned_count++;
6977
6978 /* fetch next buffer in frame if non-eop */
6979 if (igb_is_non_eop(rx_ring, rx_desc))
6980 continue;
6981
6982 /* verify the packet layout is correct */
6983 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6984 skb = NULL;
6985 continue;
6986 }
6987
6988 /* probably a little skewed due to removing CRC */
6989 total_bytes += skb->len;
6990
6991 /* populate checksum, timestamp, VLAN, and protocol */
6992 igb_process_skb_fields(rx_ring, rx_desc, skb);
6993
6994 napi_gro_receive(&q_vector->napi, skb);
6995
6996 /* reset skb pointer */
6997 skb = NULL;
6998
6999 /* update budget accounting */
7000 total_packets++;
7001 } while (likely(total_packets < budget));
7002
7003 /* place incomplete frames back on ring for completion */
7004 rx_ring->skb = skb;
7005
7006 u64_stats_update_begin(&rx_ring->rx_syncp);
7007 rx_ring->rx_stats.packets += total_packets;
7008 rx_ring->rx_stats.bytes += total_bytes;
7009 u64_stats_update_end(&rx_ring->rx_syncp);
7010 q_vector->rx.total_packets += total_packets;
7011 q_vector->rx.total_bytes += total_bytes;
7012
7013 if (cleaned_count)
7014 igb_alloc_rx_buffers(rx_ring, cleaned_count);
7015
7016 return (total_packets < budget);
7017 }
7018
7019 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
7020 struct igb_rx_buffer *bi)
7021 {
7022 struct page *page = bi->page;
7023 dma_addr_t dma;
7024
7025 /* since we are recycling buffers we should seldom need to alloc */
7026 if (likely(page))
7027 return true;
7028
7029 /* alloc new page for storage */
7030 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
7031 if (unlikely(!page)) {
7032 rx_ring->rx_stats.alloc_failed++;
7033 return false;
7034 }
7035
7036 /* map page for use */
7037 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7038
7039 /* if mapping failed free memory back to system since
7040 * there isn't much point in holding memory we can't use
7041 */
7042 if (dma_mapping_error(rx_ring->dev, dma)) {
7043 __free_page(page);
7044
7045 rx_ring->rx_stats.alloc_failed++;
7046 return false;
7047 }
7048
7049 bi->dma = dma;
7050 bi->page = page;
7051 bi->page_offset = 0;
7052
7053 return true;
7054 }
7055
7056 /**
7057 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7058 * @adapter: address of board private structure
7059 **/
7060 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7061 {
7062 union e1000_adv_rx_desc *rx_desc;
7063 struct igb_rx_buffer *bi;
7064 u16 i = rx_ring->next_to_use;
7065
7066 /* nothing to do */
7067 if (!cleaned_count)
7068 return;
7069
7070 rx_desc = IGB_RX_DESC(rx_ring, i);
7071 bi = &rx_ring->rx_buffer_info[i];
7072 i -= rx_ring->count;
7073
7074 do {
7075 if (!igb_alloc_mapped_page(rx_ring, bi))
7076 break;
7077
7078 /* Refresh the desc even if buffer_addrs didn't change
7079 * because each write-back erases this info.
7080 */
7081 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7082
7083 rx_desc++;
7084 bi++;
7085 i++;
7086 if (unlikely(!i)) {
7087 rx_desc = IGB_RX_DESC(rx_ring, 0);
7088 bi = rx_ring->rx_buffer_info;
7089 i -= rx_ring->count;
7090 }
7091
7092 /* clear the hdr_addr for the next_to_use descriptor */
7093 rx_desc->read.hdr_addr = 0;
7094
7095 cleaned_count--;
7096 } while (cleaned_count);
7097
7098 i += rx_ring->count;
7099
7100 if (rx_ring->next_to_use != i) {
7101 /* record the next descriptor to use */
7102 rx_ring->next_to_use = i;
7103
7104 /* update next to alloc since we have filled the ring */
7105 rx_ring->next_to_alloc = i;
7106
7107 /* Force memory writes to complete before letting h/w
7108 * know there are new descriptors to fetch. (Only
7109 * applicable for weak-ordered memory model archs,
7110 * such as IA-64).
7111 */
7112 wmb();
7113 writel(i, rx_ring->tail);
7114 }
7115 }
7116
7117 /**
7118 * igb_mii_ioctl -
7119 * @netdev:
7120 * @ifreq:
7121 * @cmd:
7122 **/
7123 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7124 {
7125 struct igb_adapter *adapter = netdev_priv(netdev);
7126 struct mii_ioctl_data *data = if_mii(ifr);
7127
7128 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7129 return -EOPNOTSUPP;
7130
7131 switch (cmd) {
7132 case SIOCGMIIPHY:
7133 data->phy_id = adapter->hw.phy.addr;
7134 break;
7135 case SIOCGMIIREG:
7136 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7137 &data->val_out))
7138 return -EIO;
7139 break;
7140 case SIOCSMIIREG:
7141 default:
7142 return -EOPNOTSUPP;
7143 }
7144 return 0;
7145 }
7146
7147 /**
7148 * igb_ioctl -
7149 * @netdev:
7150 * @ifreq:
7151 * @cmd:
7152 **/
7153 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7154 {
7155 switch (cmd) {
7156 case SIOCGMIIPHY:
7157 case SIOCGMIIREG:
7158 case SIOCSMIIREG:
7159 return igb_mii_ioctl(netdev, ifr, cmd);
7160 case SIOCSHWTSTAMP:
7161 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
7162 default:
7163 return -EOPNOTSUPP;
7164 }
7165 }
7166
7167 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7168 {
7169 struct igb_adapter *adapter = hw->back;
7170
7171 if (pcie_capability_read_word(adapter->pdev, reg, value))
7172 return -E1000_ERR_CONFIG;
7173
7174 return 0;
7175 }
7176
7177 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7178 {
7179 struct igb_adapter *adapter = hw->back;
7180
7181 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7182 return -E1000_ERR_CONFIG;
7183
7184 return 0;
7185 }
7186
7187 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7188 {
7189 struct igb_adapter *adapter = netdev_priv(netdev);
7190 struct e1000_hw *hw = &adapter->hw;
7191 u32 ctrl, rctl;
7192 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7193
7194 if (enable) {
7195 /* enable VLAN tag insert/strip */
7196 ctrl = rd32(E1000_CTRL);
7197 ctrl |= E1000_CTRL_VME;
7198 wr32(E1000_CTRL, ctrl);
7199
7200 /* Disable CFI check */
7201 rctl = rd32(E1000_RCTL);
7202 rctl &= ~E1000_RCTL_CFIEN;
7203 wr32(E1000_RCTL, rctl);
7204 } else {
7205 /* disable VLAN tag insert/strip */
7206 ctrl = rd32(E1000_CTRL);
7207 ctrl &= ~E1000_CTRL_VME;
7208 wr32(E1000_CTRL, ctrl);
7209 }
7210
7211 igb_rlpml_set(adapter);
7212 }
7213
7214 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7215 __be16 proto, u16 vid)
7216 {
7217 struct igb_adapter *adapter = netdev_priv(netdev);
7218 struct e1000_hw *hw = &adapter->hw;
7219 int pf_id = adapter->vfs_allocated_count;
7220
7221 /* attempt to add filter to vlvf array */
7222 igb_vlvf_set(adapter, vid, true, pf_id);
7223
7224 /* add the filter since PF can receive vlans w/o entry in vlvf */
7225 igb_vfta_set(hw, vid, true);
7226
7227 set_bit(vid, adapter->active_vlans);
7228
7229 return 0;
7230 }
7231
7232 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7233 __be16 proto, u16 vid)
7234 {
7235 struct igb_adapter *adapter = netdev_priv(netdev);
7236 struct e1000_hw *hw = &adapter->hw;
7237 int pf_id = adapter->vfs_allocated_count;
7238 s32 err;
7239
7240 /* remove vlan from VLVF table array */
7241 err = igb_vlvf_set(adapter, vid, false, pf_id);
7242
7243 /* if vid was not present in VLVF just remove it from table */
7244 if (err)
7245 igb_vfta_set(hw, vid, false);
7246
7247 clear_bit(vid, adapter->active_vlans);
7248
7249 return 0;
7250 }
7251
7252 static void igb_restore_vlan(struct igb_adapter *adapter)
7253 {
7254 u16 vid;
7255
7256 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7257
7258 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7259 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7260 }
7261
7262 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7263 {
7264 struct pci_dev *pdev = adapter->pdev;
7265 struct e1000_mac_info *mac = &adapter->hw.mac;
7266
7267 mac->autoneg = 0;
7268
7269 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7270 * for the switch() below to work
7271 */
7272 if ((spd & 1) || (dplx & ~1))
7273 goto err_inval;
7274
7275 /* Fiber NIC's only allow 1000 gbps Full duplex
7276 * and 100Mbps Full duplex for 100baseFx sfp
7277 */
7278 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7279 switch (spd + dplx) {
7280 case SPEED_10 + DUPLEX_HALF:
7281 case SPEED_10 + DUPLEX_FULL:
7282 case SPEED_100 + DUPLEX_HALF:
7283 goto err_inval;
7284 default:
7285 break;
7286 }
7287 }
7288
7289 switch (spd + dplx) {
7290 case SPEED_10 + DUPLEX_HALF:
7291 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7292 break;
7293 case SPEED_10 + DUPLEX_FULL:
7294 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7295 break;
7296 case SPEED_100 + DUPLEX_HALF:
7297 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7298 break;
7299 case SPEED_100 + DUPLEX_FULL:
7300 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7301 break;
7302 case SPEED_1000 + DUPLEX_FULL:
7303 mac->autoneg = 1;
7304 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7305 break;
7306 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7307 default:
7308 goto err_inval;
7309 }
7310
7311 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7312 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7313
7314 return 0;
7315
7316 err_inval:
7317 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7318 return -EINVAL;
7319 }
7320
7321 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7322 bool runtime)
7323 {
7324 struct net_device *netdev = pci_get_drvdata(pdev);
7325 struct igb_adapter *adapter = netdev_priv(netdev);
7326 struct e1000_hw *hw = &adapter->hw;
7327 u32 ctrl, rctl, status;
7328 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7329 #ifdef CONFIG_PM
7330 int retval = 0;
7331 #endif
7332
7333 netif_device_detach(netdev);
7334
7335 if (netif_running(netdev))
7336 __igb_close(netdev, true);
7337
7338 igb_clear_interrupt_scheme(adapter);
7339
7340 #ifdef CONFIG_PM
7341 retval = pci_save_state(pdev);
7342 if (retval)
7343 return retval;
7344 #endif
7345
7346 status = rd32(E1000_STATUS);
7347 if (status & E1000_STATUS_LU)
7348 wufc &= ~E1000_WUFC_LNKC;
7349
7350 if (wufc) {
7351 igb_setup_rctl(adapter);
7352 igb_set_rx_mode(netdev);
7353
7354 /* turn on all-multi mode if wake on multicast is enabled */
7355 if (wufc & E1000_WUFC_MC) {
7356 rctl = rd32(E1000_RCTL);
7357 rctl |= E1000_RCTL_MPE;
7358 wr32(E1000_RCTL, rctl);
7359 }
7360
7361 ctrl = rd32(E1000_CTRL);
7362 /* advertise wake from D3Cold */
7363 #define E1000_CTRL_ADVD3WUC 0x00100000
7364 /* phy power management enable */
7365 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7366 ctrl |= E1000_CTRL_ADVD3WUC;
7367 wr32(E1000_CTRL, ctrl);
7368
7369 /* Allow time for pending master requests to run */
7370 igb_disable_pcie_master(hw);
7371
7372 wr32(E1000_WUC, E1000_WUC_PME_EN);
7373 wr32(E1000_WUFC, wufc);
7374 } else {
7375 wr32(E1000_WUC, 0);
7376 wr32(E1000_WUFC, 0);
7377 }
7378
7379 *enable_wake = wufc || adapter->en_mng_pt;
7380 if (!*enable_wake)
7381 igb_power_down_link(adapter);
7382 else
7383 igb_power_up_link(adapter);
7384
7385 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7386 * would have already happened in close and is redundant.
7387 */
7388 igb_release_hw_control(adapter);
7389
7390 pci_disable_device(pdev);
7391
7392 return 0;
7393 }
7394
7395 #ifdef CONFIG_PM
7396 #ifdef CONFIG_PM_SLEEP
7397 static int igb_suspend(struct device *dev)
7398 {
7399 int retval;
7400 bool wake;
7401 struct pci_dev *pdev = to_pci_dev(dev);
7402
7403 retval = __igb_shutdown(pdev, &wake, 0);
7404 if (retval)
7405 return retval;
7406
7407 if (wake) {
7408 pci_prepare_to_sleep(pdev);
7409 } else {
7410 pci_wake_from_d3(pdev, false);
7411 pci_set_power_state(pdev, PCI_D3hot);
7412 }
7413
7414 return 0;
7415 }
7416 #endif /* CONFIG_PM_SLEEP */
7417
7418 static int igb_resume(struct device *dev)
7419 {
7420 struct pci_dev *pdev = to_pci_dev(dev);
7421 struct net_device *netdev = pci_get_drvdata(pdev);
7422 struct igb_adapter *adapter = netdev_priv(netdev);
7423 struct e1000_hw *hw = &adapter->hw;
7424 u32 err;
7425
7426 pci_set_power_state(pdev, PCI_D0);
7427 pci_restore_state(pdev);
7428 pci_save_state(pdev);
7429
7430 err = pci_enable_device_mem(pdev);
7431 if (err) {
7432 dev_err(&pdev->dev,
7433 "igb: Cannot enable PCI device from suspend\n");
7434 return err;
7435 }
7436 pci_set_master(pdev);
7437
7438 pci_enable_wake(pdev, PCI_D3hot, 0);
7439 pci_enable_wake(pdev, PCI_D3cold, 0);
7440
7441 if (igb_init_interrupt_scheme(adapter, true)) {
7442 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7443 return -ENOMEM;
7444 }
7445
7446 igb_reset(adapter);
7447
7448 /* let the f/w know that the h/w is now under the control of the
7449 * driver.
7450 */
7451 igb_get_hw_control(adapter);
7452
7453 wr32(E1000_WUS, ~0);
7454
7455 if (netdev->flags & IFF_UP) {
7456 rtnl_lock();
7457 err = __igb_open(netdev, true);
7458 rtnl_unlock();
7459 if (err)
7460 return err;
7461 }
7462
7463 netif_device_attach(netdev);
7464 return 0;
7465 }
7466
7467 #ifdef CONFIG_PM_RUNTIME
7468 static int igb_runtime_idle(struct device *dev)
7469 {
7470 struct pci_dev *pdev = to_pci_dev(dev);
7471 struct net_device *netdev = pci_get_drvdata(pdev);
7472 struct igb_adapter *adapter = netdev_priv(netdev);
7473
7474 if (!igb_has_link(adapter))
7475 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7476
7477 return -EBUSY;
7478 }
7479
7480 static int igb_runtime_suspend(struct device *dev)
7481 {
7482 struct pci_dev *pdev = to_pci_dev(dev);
7483 int retval;
7484 bool wake;
7485
7486 retval = __igb_shutdown(pdev, &wake, 1);
7487 if (retval)
7488 return retval;
7489
7490 if (wake) {
7491 pci_prepare_to_sleep(pdev);
7492 } else {
7493 pci_wake_from_d3(pdev, false);
7494 pci_set_power_state(pdev, PCI_D3hot);
7495 }
7496
7497 return 0;
7498 }
7499
7500 static int igb_runtime_resume(struct device *dev)
7501 {
7502 return igb_resume(dev);
7503 }
7504 #endif /* CONFIG_PM_RUNTIME */
7505 #endif
7506
7507 static void igb_shutdown(struct pci_dev *pdev)
7508 {
7509 bool wake;
7510
7511 __igb_shutdown(pdev, &wake, 0);
7512
7513 if (system_state == SYSTEM_POWER_OFF) {
7514 pci_wake_from_d3(pdev, wake);
7515 pci_set_power_state(pdev, PCI_D3hot);
7516 }
7517 }
7518
7519 #ifdef CONFIG_PCI_IOV
7520 static int igb_sriov_reinit(struct pci_dev *dev)
7521 {
7522 struct net_device *netdev = pci_get_drvdata(dev);
7523 struct igb_adapter *adapter = netdev_priv(netdev);
7524 struct pci_dev *pdev = adapter->pdev;
7525
7526 rtnl_lock();
7527
7528 if (netif_running(netdev))
7529 igb_close(netdev);
7530
7531 igb_clear_interrupt_scheme(adapter);
7532
7533 igb_init_queue_configuration(adapter);
7534
7535 if (igb_init_interrupt_scheme(adapter, true)) {
7536 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7537 return -ENOMEM;
7538 }
7539
7540 if (netif_running(netdev))
7541 igb_open(netdev);
7542
7543 rtnl_unlock();
7544
7545 return 0;
7546 }
7547
7548 static int igb_pci_disable_sriov(struct pci_dev *dev)
7549 {
7550 int err = igb_disable_sriov(dev);
7551
7552 if (!err)
7553 err = igb_sriov_reinit(dev);
7554
7555 return err;
7556 }
7557
7558 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7559 {
7560 int err = igb_enable_sriov(dev, num_vfs);
7561
7562 if (err)
7563 goto out;
7564
7565 err = igb_sriov_reinit(dev);
7566 if (!err)
7567 return num_vfs;
7568
7569 out:
7570 return err;
7571 }
7572
7573 #endif
7574 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7575 {
7576 #ifdef CONFIG_PCI_IOV
7577 if (num_vfs == 0)
7578 return igb_pci_disable_sriov(dev);
7579 else
7580 return igb_pci_enable_sriov(dev, num_vfs);
7581 #endif
7582 return 0;
7583 }
7584
7585 #ifdef CONFIG_NET_POLL_CONTROLLER
7586 /* Polling 'interrupt' - used by things like netconsole to send skbs
7587 * without having to re-enable interrupts. It's not called while
7588 * the interrupt routine is executing.
7589 */
7590 static void igb_netpoll(struct net_device *netdev)
7591 {
7592 struct igb_adapter *adapter = netdev_priv(netdev);
7593 struct e1000_hw *hw = &adapter->hw;
7594 struct igb_q_vector *q_vector;
7595 int i;
7596
7597 for (i = 0; i < adapter->num_q_vectors; i++) {
7598 q_vector = adapter->q_vector[i];
7599 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7600 wr32(E1000_EIMC, q_vector->eims_value);
7601 else
7602 igb_irq_disable(adapter);
7603 napi_schedule(&q_vector->napi);
7604 }
7605 }
7606 #endif /* CONFIG_NET_POLL_CONTROLLER */
7607
7608 /**
7609 * igb_io_error_detected - called when PCI error is detected
7610 * @pdev: Pointer to PCI device
7611 * @state: The current pci connection state
7612 *
7613 * This function is called after a PCI bus error affecting
7614 * this device has been detected.
7615 **/
7616 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7617 pci_channel_state_t state)
7618 {
7619 struct net_device *netdev = pci_get_drvdata(pdev);
7620 struct igb_adapter *adapter = netdev_priv(netdev);
7621
7622 netif_device_detach(netdev);
7623
7624 if (state == pci_channel_io_perm_failure)
7625 return PCI_ERS_RESULT_DISCONNECT;
7626
7627 if (netif_running(netdev))
7628 igb_down(adapter);
7629 pci_disable_device(pdev);
7630
7631 /* Request a slot slot reset. */
7632 return PCI_ERS_RESULT_NEED_RESET;
7633 }
7634
7635 /**
7636 * igb_io_slot_reset - called after the pci bus has been reset.
7637 * @pdev: Pointer to PCI device
7638 *
7639 * Restart the card from scratch, as if from a cold-boot. Implementation
7640 * resembles the first-half of the igb_resume routine.
7641 **/
7642 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7643 {
7644 struct net_device *netdev = pci_get_drvdata(pdev);
7645 struct igb_adapter *adapter = netdev_priv(netdev);
7646 struct e1000_hw *hw = &adapter->hw;
7647 pci_ers_result_t result;
7648 int err;
7649
7650 if (pci_enable_device_mem(pdev)) {
7651 dev_err(&pdev->dev,
7652 "Cannot re-enable PCI device after reset.\n");
7653 result = PCI_ERS_RESULT_DISCONNECT;
7654 } else {
7655 pci_set_master(pdev);
7656 pci_restore_state(pdev);
7657 pci_save_state(pdev);
7658
7659 pci_enable_wake(pdev, PCI_D3hot, 0);
7660 pci_enable_wake(pdev, PCI_D3cold, 0);
7661
7662 igb_reset(adapter);
7663 wr32(E1000_WUS, ~0);
7664 result = PCI_ERS_RESULT_RECOVERED;
7665 }
7666
7667 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7668 if (err) {
7669 dev_err(&pdev->dev,
7670 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7671 err);
7672 /* non-fatal, continue */
7673 }
7674
7675 return result;
7676 }
7677
7678 /**
7679 * igb_io_resume - called when traffic can start flowing again.
7680 * @pdev: Pointer to PCI device
7681 *
7682 * This callback is called when the error recovery driver tells us that
7683 * its OK to resume normal operation. Implementation resembles the
7684 * second-half of the igb_resume routine.
7685 */
7686 static void igb_io_resume(struct pci_dev *pdev)
7687 {
7688 struct net_device *netdev = pci_get_drvdata(pdev);
7689 struct igb_adapter *adapter = netdev_priv(netdev);
7690
7691 if (netif_running(netdev)) {
7692 if (igb_up(adapter)) {
7693 dev_err(&pdev->dev, "igb_up failed after reset\n");
7694 return;
7695 }
7696 }
7697
7698 netif_device_attach(netdev);
7699
7700 /* let the f/w know that the h/w is now under the control of the
7701 * driver.
7702 */
7703 igb_get_hw_control(adapter);
7704 }
7705
7706 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7707 u8 qsel)
7708 {
7709 u32 rar_low, rar_high;
7710 struct e1000_hw *hw = &adapter->hw;
7711
7712 /* HW expects these in little endian so we reverse the byte order
7713 * from network order (big endian) to little endian
7714 */
7715 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7716 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7717 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7718
7719 /* Indicate to hardware the Address is Valid. */
7720 rar_high |= E1000_RAH_AV;
7721
7722 if (hw->mac.type == e1000_82575)
7723 rar_high |= E1000_RAH_POOL_1 * qsel;
7724 else
7725 rar_high |= E1000_RAH_POOL_1 << qsel;
7726
7727 wr32(E1000_RAL(index), rar_low);
7728 wrfl();
7729 wr32(E1000_RAH(index), rar_high);
7730 wrfl();
7731 }
7732
7733 static int igb_set_vf_mac(struct igb_adapter *adapter,
7734 int vf, unsigned char *mac_addr)
7735 {
7736 struct e1000_hw *hw = &adapter->hw;
7737 /* VF MAC addresses start at end of receive addresses and moves
7738 * towards the first, as a result a collision should not be possible
7739 */
7740 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7741
7742 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7743
7744 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7745
7746 return 0;
7747 }
7748
7749 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7750 {
7751 struct igb_adapter *adapter = netdev_priv(netdev);
7752 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7753 return -EINVAL;
7754 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7755 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7756 dev_info(&adapter->pdev->dev,
7757 "Reload the VF driver to make this change effective.");
7758 if (test_bit(__IGB_DOWN, &adapter->state)) {
7759 dev_warn(&adapter->pdev->dev,
7760 "The VF MAC address has been set, but the PF device is not up.\n");
7761 dev_warn(&adapter->pdev->dev,
7762 "Bring the PF device up before attempting to use the VF device.\n");
7763 }
7764 return igb_set_vf_mac(adapter, vf, mac);
7765 }
7766
7767 static int igb_link_mbps(int internal_link_speed)
7768 {
7769 switch (internal_link_speed) {
7770 case SPEED_100:
7771 return 100;
7772 case SPEED_1000:
7773 return 1000;
7774 default:
7775 return 0;
7776 }
7777 }
7778
7779 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7780 int link_speed)
7781 {
7782 int rf_dec, rf_int;
7783 u32 bcnrc_val;
7784
7785 if (tx_rate != 0) {
7786 /* Calculate the rate factor values to set */
7787 rf_int = link_speed / tx_rate;
7788 rf_dec = (link_speed - (rf_int * tx_rate));
7789 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7790 tx_rate;
7791
7792 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7793 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7794 E1000_RTTBCNRC_RF_INT_MASK);
7795 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7796 } else {
7797 bcnrc_val = 0;
7798 }
7799
7800 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7801 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7802 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7803 */
7804 wr32(E1000_RTTBCNRM, 0x14);
7805 wr32(E1000_RTTBCNRC, bcnrc_val);
7806 }
7807
7808 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7809 {
7810 int actual_link_speed, i;
7811 bool reset_rate = false;
7812
7813 /* VF TX rate limit was not set or not supported */
7814 if ((adapter->vf_rate_link_speed == 0) ||
7815 (adapter->hw.mac.type != e1000_82576))
7816 return;
7817
7818 actual_link_speed = igb_link_mbps(adapter->link_speed);
7819 if (actual_link_speed != adapter->vf_rate_link_speed) {
7820 reset_rate = true;
7821 adapter->vf_rate_link_speed = 0;
7822 dev_info(&adapter->pdev->dev,
7823 "Link speed has been changed. VF Transmit rate is disabled\n");
7824 }
7825
7826 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7827 if (reset_rate)
7828 adapter->vf_data[i].tx_rate = 0;
7829
7830 igb_set_vf_rate_limit(&adapter->hw, i,
7831 adapter->vf_data[i].tx_rate,
7832 actual_link_speed);
7833 }
7834 }
7835
7836 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7837 {
7838 struct igb_adapter *adapter = netdev_priv(netdev);
7839 struct e1000_hw *hw = &adapter->hw;
7840 int actual_link_speed;
7841
7842 if (hw->mac.type != e1000_82576)
7843 return -EOPNOTSUPP;
7844
7845 actual_link_speed = igb_link_mbps(adapter->link_speed);
7846 if ((vf >= adapter->vfs_allocated_count) ||
7847 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7848 (tx_rate < 0) || (tx_rate > actual_link_speed))
7849 return -EINVAL;
7850
7851 adapter->vf_rate_link_speed = actual_link_speed;
7852 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7853 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7854
7855 return 0;
7856 }
7857
7858 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7859 bool setting)
7860 {
7861 struct igb_adapter *adapter = netdev_priv(netdev);
7862 struct e1000_hw *hw = &adapter->hw;
7863 u32 reg_val, reg_offset;
7864
7865 if (!adapter->vfs_allocated_count)
7866 return -EOPNOTSUPP;
7867
7868 if (vf >= adapter->vfs_allocated_count)
7869 return -EINVAL;
7870
7871 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7872 reg_val = rd32(reg_offset);
7873 if (setting)
7874 reg_val |= ((1 << vf) |
7875 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7876 else
7877 reg_val &= ~((1 << vf) |
7878 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7879 wr32(reg_offset, reg_val);
7880
7881 adapter->vf_data[vf].spoofchk_enabled = setting;
7882 return E1000_SUCCESS;
7883 }
7884
7885 static int igb_ndo_get_vf_config(struct net_device *netdev,
7886 int vf, struct ifla_vf_info *ivi)
7887 {
7888 struct igb_adapter *adapter = netdev_priv(netdev);
7889 if (vf >= adapter->vfs_allocated_count)
7890 return -EINVAL;
7891 ivi->vf = vf;
7892 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7893 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7894 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7895 ivi->qos = adapter->vf_data[vf].pf_qos;
7896 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7897 return 0;
7898 }
7899
7900 static void igb_vmm_control(struct igb_adapter *adapter)
7901 {
7902 struct e1000_hw *hw = &adapter->hw;
7903 u32 reg;
7904
7905 switch (hw->mac.type) {
7906 case e1000_82575:
7907 case e1000_i210:
7908 case e1000_i211:
7909 case e1000_i354:
7910 default:
7911 /* replication is not supported for 82575 */
7912 return;
7913 case e1000_82576:
7914 /* notify HW that the MAC is adding vlan tags */
7915 reg = rd32(E1000_DTXCTL);
7916 reg |= E1000_DTXCTL_VLAN_ADDED;
7917 wr32(E1000_DTXCTL, reg);
7918 case e1000_82580:
7919 /* enable replication vlan tag stripping */
7920 reg = rd32(E1000_RPLOLR);
7921 reg |= E1000_RPLOLR_STRVLAN;
7922 wr32(E1000_RPLOLR, reg);
7923 case e1000_i350:
7924 /* none of the above registers are supported by i350 */
7925 break;
7926 }
7927
7928 if (adapter->vfs_allocated_count) {
7929 igb_vmdq_set_loopback_pf(hw, true);
7930 igb_vmdq_set_replication_pf(hw, true);
7931 igb_vmdq_set_anti_spoofing_pf(hw, true,
7932 adapter->vfs_allocated_count);
7933 } else {
7934 igb_vmdq_set_loopback_pf(hw, false);
7935 igb_vmdq_set_replication_pf(hw, false);
7936 }
7937 }
7938
7939 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7940 {
7941 struct e1000_hw *hw = &adapter->hw;
7942 u32 dmac_thr;
7943 u16 hwm;
7944
7945 if (hw->mac.type > e1000_82580) {
7946 if (adapter->flags & IGB_FLAG_DMAC) {
7947 u32 reg;
7948
7949 /* force threshold to 0. */
7950 wr32(E1000_DMCTXTH, 0);
7951
7952 /* DMA Coalescing high water mark needs to be greater
7953 * than the Rx threshold. Set hwm to PBA - max frame
7954 * size in 16B units, capping it at PBA - 6KB.
7955 */
7956 hwm = 64 * pba - adapter->max_frame_size / 16;
7957 if (hwm < 64 * (pba - 6))
7958 hwm = 64 * (pba - 6);
7959 reg = rd32(E1000_FCRTC);
7960 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7961 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7962 & E1000_FCRTC_RTH_COAL_MASK);
7963 wr32(E1000_FCRTC, reg);
7964
7965 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7966 * frame size, capping it at PBA - 10KB.
7967 */
7968 dmac_thr = pba - adapter->max_frame_size / 512;
7969 if (dmac_thr < pba - 10)
7970 dmac_thr = pba - 10;
7971 reg = rd32(E1000_DMACR);
7972 reg &= ~E1000_DMACR_DMACTHR_MASK;
7973 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7974 & E1000_DMACR_DMACTHR_MASK);
7975
7976 /* transition to L0x or L1 if available..*/
7977 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7978
7979 /* watchdog timer= +-1000 usec in 32usec intervals */
7980 reg |= (1000 >> 5);
7981
7982 /* Disable BMC-to-OS Watchdog Enable */
7983 if (hw->mac.type != e1000_i354)
7984 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7985
7986 wr32(E1000_DMACR, reg);
7987
7988 /* no lower threshold to disable
7989 * coalescing(smart fifb)-UTRESH=0
7990 */
7991 wr32(E1000_DMCRTRH, 0);
7992
7993 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7994
7995 wr32(E1000_DMCTLX, reg);
7996
7997 /* free space in tx packet buffer to wake from
7998 * DMA coal
7999 */
8000 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
8001 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
8002
8003 /* make low power state decision controlled
8004 * by DMA coal
8005 */
8006 reg = rd32(E1000_PCIEMISC);
8007 reg &= ~E1000_PCIEMISC_LX_DECISION;
8008 wr32(E1000_PCIEMISC, reg);
8009 } /* endif adapter->dmac is not disabled */
8010 } else if (hw->mac.type == e1000_82580) {
8011 u32 reg = rd32(E1000_PCIEMISC);
8012 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8013 wr32(E1000_DMACR, 0);
8014 }
8015 }
8016
8017 /**
8018 * igb_read_i2c_byte - Reads 8 bit word over I2C
8019 * @hw: pointer to hardware structure
8020 * @byte_offset: byte offset to read
8021 * @dev_addr: device address
8022 * @data: value read
8023 *
8024 * Performs byte read operation over I2C interface at
8025 * a specified device address.
8026 **/
8027 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8028 u8 dev_addr, u8 *data)
8029 {
8030 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8031 struct i2c_client *this_client = adapter->i2c_client;
8032 s32 status;
8033 u16 swfw_mask = 0;
8034
8035 if (!this_client)
8036 return E1000_ERR_I2C;
8037
8038 swfw_mask = E1000_SWFW_PHY0_SM;
8039
8040 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
8041 != E1000_SUCCESS)
8042 return E1000_ERR_SWFW_SYNC;
8043
8044 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8045 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8046
8047 if (status < 0)
8048 return E1000_ERR_I2C;
8049 else {
8050 *data = status;
8051 return E1000_SUCCESS;
8052 }
8053 }
8054
8055 /**
8056 * igb_write_i2c_byte - Writes 8 bit word over I2C
8057 * @hw: pointer to hardware structure
8058 * @byte_offset: byte offset to write
8059 * @dev_addr: device address
8060 * @data: value to write
8061 *
8062 * Performs byte write operation over I2C interface at
8063 * a specified device address.
8064 **/
8065 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8066 u8 dev_addr, u8 data)
8067 {
8068 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8069 struct i2c_client *this_client = adapter->i2c_client;
8070 s32 status;
8071 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8072
8073 if (!this_client)
8074 return E1000_ERR_I2C;
8075
8076 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
8077 return E1000_ERR_SWFW_SYNC;
8078 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8079 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8080
8081 if (status)
8082 return E1000_ERR_I2C;
8083 else
8084 return E1000_SUCCESS;
8085
8086 }
8087
8088 int igb_reinit_queues(struct igb_adapter *adapter)
8089 {
8090 struct net_device *netdev = adapter->netdev;
8091 struct pci_dev *pdev = adapter->pdev;
8092 int err = 0;
8093
8094 if (netif_running(netdev))
8095 igb_close(netdev);
8096
8097 igb_reset_interrupt_capability(adapter);
8098
8099 if (igb_init_interrupt_scheme(adapter, true)) {
8100 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8101 return -ENOMEM;
8102 }
8103
8104 if (netif_running(netdev))
8105 err = igb_open(netdev);
8106
8107 return err;
8108 }
8109 /* igb_main.c */