]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
Merge remote-tracking branches 'asoc/topic/hdmi', 'asoc/topic/intel', 'asoc/topic...
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72 [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111 /* required last entry */
112 {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140 struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159 netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171 int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174 bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176 struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 #ifdef CONFIG_PM_RUNTIME
190 static int igb_runtime_suspend(struct device *dev);
191 static int igb_runtime_resume(struct device *dev);
192 static int igb_runtime_idle(struct device *dev);
193 #endif
194 static const struct dev_pm_ops igb_pm_ops = {
195 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
196 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
197 igb_runtime_idle)
198 };
199 #endif
200 static void igb_shutdown(struct pci_dev *);
201 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
202 #ifdef CONFIG_IGB_DCA
203 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
204 static struct notifier_block dca_notifier = {
205 .notifier_call = igb_notify_dca,
206 .next = NULL,
207 .priority = 0
208 };
209 #endif
210 #ifdef CONFIG_NET_POLL_CONTROLLER
211 /* for netdump / net console */
212 static void igb_netpoll(struct net_device *);
213 #endif
214 #ifdef CONFIG_PCI_IOV
215 static unsigned int max_vfs;
216 module_param(max_vfs, uint, 0);
217 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
218 #endif /* CONFIG_PCI_IOV */
219
220 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
221 pci_channel_state_t);
222 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
223 static void igb_io_resume(struct pci_dev *);
224
225 static const struct pci_error_handlers igb_err_handler = {
226 .error_detected = igb_io_error_detected,
227 .slot_reset = igb_io_slot_reset,
228 .resume = igb_io_resume,
229 };
230
231 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
232
233 static struct pci_driver igb_driver = {
234 .name = igb_driver_name,
235 .id_table = igb_pci_tbl,
236 .probe = igb_probe,
237 .remove = igb_remove,
238 #ifdef CONFIG_PM
239 .driver.pm = &igb_pm_ops,
240 #endif
241 .shutdown = igb_shutdown,
242 .sriov_configure = igb_pci_sriov_configure,
243 .err_handler = &igb_err_handler
244 };
245
246 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
247 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
248 MODULE_LICENSE("GPL");
249 MODULE_VERSION(DRV_VERSION);
250
251 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
252 static int debug = -1;
253 module_param(debug, int, 0);
254 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
255
256 struct igb_reg_info {
257 u32 ofs;
258 char *name;
259 };
260
261 static const struct igb_reg_info igb_reg_info_tbl[] = {
262
263 /* General Registers */
264 {E1000_CTRL, "CTRL"},
265 {E1000_STATUS, "STATUS"},
266 {E1000_CTRL_EXT, "CTRL_EXT"},
267
268 /* Interrupt Registers */
269 {E1000_ICR, "ICR"},
270
271 /* RX Registers */
272 {E1000_RCTL, "RCTL"},
273 {E1000_RDLEN(0), "RDLEN"},
274 {E1000_RDH(0), "RDH"},
275 {E1000_RDT(0), "RDT"},
276 {E1000_RXDCTL(0), "RXDCTL"},
277 {E1000_RDBAL(0), "RDBAL"},
278 {E1000_RDBAH(0), "RDBAH"},
279
280 /* TX Registers */
281 {E1000_TCTL, "TCTL"},
282 {E1000_TDBAL(0), "TDBAL"},
283 {E1000_TDBAH(0), "TDBAH"},
284 {E1000_TDLEN(0), "TDLEN"},
285 {E1000_TDH(0), "TDH"},
286 {E1000_TDT(0), "TDT"},
287 {E1000_TXDCTL(0), "TXDCTL"},
288 {E1000_TDFH, "TDFH"},
289 {E1000_TDFT, "TDFT"},
290 {E1000_TDFHS, "TDFHS"},
291 {E1000_TDFPC, "TDFPC"},
292
293 /* List Terminator */
294 {}
295 };
296
297 /* igb_regdump - register printout routine */
298 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
299 {
300 int n = 0;
301 char rname[16];
302 u32 regs[8];
303
304 switch (reginfo->ofs) {
305 case E1000_RDLEN(0):
306 for (n = 0; n < 4; n++)
307 regs[n] = rd32(E1000_RDLEN(n));
308 break;
309 case E1000_RDH(0):
310 for (n = 0; n < 4; n++)
311 regs[n] = rd32(E1000_RDH(n));
312 break;
313 case E1000_RDT(0):
314 for (n = 0; n < 4; n++)
315 regs[n] = rd32(E1000_RDT(n));
316 break;
317 case E1000_RXDCTL(0):
318 for (n = 0; n < 4; n++)
319 regs[n] = rd32(E1000_RXDCTL(n));
320 break;
321 case E1000_RDBAL(0):
322 for (n = 0; n < 4; n++)
323 regs[n] = rd32(E1000_RDBAL(n));
324 break;
325 case E1000_RDBAH(0):
326 for (n = 0; n < 4; n++)
327 regs[n] = rd32(E1000_RDBAH(n));
328 break;
329 case E1000_TDBAL(0):
330 for (n = 0; n < 4; n++)
331 regs[n] = rd32(E1000_RDBAL(n));
332 break;
333 case E1000_TDBAH(0):
334 for (n = 0; n < 4; n++)
335 regs[n] = rd32(E1000_TDBAH(n));
336 break;
337 case E1000_TDLEN(0):
338 for (n = 0; n < 4; n++)
339 regs[n] = rd32(E1000_TDLEN(n));
340 break;
341 case E1000_TDH(0):
342 for (n = 0; n < 4; n++)
343 regs[n] = rd32(E1000_TDH(n));
344 break;
345 case E1000_TDT(0):
346 for (n = 0; n < 4; n++)
347 regs[n] = rd32(E1000_TDT(n));
348 break;
349 case E1000_TXDCTL(0):
350 for (n = 0; n < 4; n++)
351 regs[n] = rd32(E1000_TXDCTL(n));
352 break;
353 default:
354 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
355 return;
356 }
357
358 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
359 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
360 regs[2], regs[3]);
361 }
362
363 /* igb_dump - Print registers, Tx-rings and Rx-rings */
364 static void igb_dump(struct igb_adapter *adapter)
365 {
366 struct net_device *netdev = adapter->netdev;
367 struct e1000_hw *hw = &adapter->hw;
368 struct igb_reg_info *reginfo;
369 struct igb_ring *tx_ring;
370 union e1000_adv_tx_desc *tx_desc;
371 struct my_u0 { u64 a; u64 b; } *u0;
372 struct igb_ring *rx_ring;
373 union e1000_adv_rx_desc *rx_desc;
374 u32 staterr;
375 u16 i, n;
376
377 if (!netif_msg_hw(adapter))
378 return;
379
380 /* Print netdevice Info */
381 if (netdev) {
382 dev_info(&adapter->pdev->dev, "Net device Info\n");
383 pr_info("Device Name state trans_start last_rx\n");
384 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
385 netdev->state, netdev->trans_start, netdev->last_rx);
386 }
387
388 /* Print Registers */
389 dev_info(&adapter->pdev->dev, "Register Dump\n");
390 pr_info(" Register Name Value\n");
391 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
392 reginfo->name; reginfo++) {
393 igb_regdump(hw, reginfo);
394 }
395
396 /* Print TX Ring Summary */
397 if (!netdev || !netif_running(netdev))
398 goto exit;
399
400 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
401 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
402 for (n = 0; n < adapter->num_tx_queues; n++) {
403 struct igb_tx_buffer *buffer_info;
404 tx_ring = adapter->tx_ring[n];
405 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
406 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
407 n, tx_ring->next_to_use, tx_ring->next_to_clean,
408 (u64)dma_unmap_addr(buffer_info, dma),
409 dma_unmap_len(buffer_info, len),
410 buffer_info->next_to_watch,
411 (u64)buffer_info->time_stamp);
412 }
413
414 /* Print TX Rings */
415 if (!netif_msg_tx_done(adapter))
416 goto rx_ring_summary;
417
418 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
419
420 /* Transmit Descriptor Formats
421 *
422 * Advanced Transmit Descriptor
423 * +--------------------------------------------------------------+
424 * 0 | Buffer Address [63:0] |
425 * +--------------------------------------------------------------+
426 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
427 * +--------------------------------------------------------------+
428 * 63 46 45 40 39 38 36 35 32 31 24 15 0
429 */
430
431 for (n = 0; n < adapter->num_tx_queues; n++) {
432 tx_ring = adapter->tx_ring[n];
433 pr_info("------------------------------------\n");
434 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
435 pr_info("------------------------------------\n");
436 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] [bi->dma ] leng ntw timestamp bi->skb\n");
437
438 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
439 const char *next_desc;
440 struct igb_tx_buffer *buffer_info;
441 tx_desc = IGB_TX_DESC(tx_ring, i);
442 buffer_info = &tx_ring->tx_buffer_info[i];
443 u0 = (struct my_u0 *)tx_desc;
444 if (i == tx_ring->next_to_use &&
445 i == tx_ring->next_to_clean)
446 next_desc = " NTC/U";
447 else if (i == tx_ring->next_to_use)
448 next_desc = " NTU";
449 else if (i == tx_ring->next_to_clean)
450 next_desc = " NTC";
451 else
452 next_desc = "";
453
454 pr_info("T [0x%03X] %016llX %016llX %016llX %04X %p %016llX %p%s\n",
455 i, le64_to_cpu(u0->a),
456 le64_to_cpu(u0->b),
457 (u64)dma_unmap_addr(buffer_info, dma),
458 dma_unmap_len(buffer_info, len),
459 buffer_info->next_to_watch,
460 (u64)buffer_info->time_stamp,
461 buffer_info->skb, next_desc);
462
463 if (netif_msg_pktdata(adapter) && buffer_info->skb)
464 print_hex_dump(KERN_INFO, "",
465 DUMP_PREFIX_ADDRESS,
466 16, 1, buffer_info->skb->data,
467 dma_unmap_len(buffer_info, len),
468 true);
469 }
470 }
471
472 /* Print RX Rings Summary */
473 rx_ring_summary:
474 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
475 pr_info("Queue [NTU] [NTC]\n");
476 for (n = 0; n < adapter->num_rx_queues; n++) {
477 rx_ring = adapter->rx_ring[n];
478 pr_info(" %5d %5X %5X\n",
479 n, rx_ring->next_to_use, rx_ring->next_to_clean);
480 }
481
482 /* Print RX Rings */
483 if (!netif_msg_rx_status(adapter))
484 goto exit;
485
486 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
487
488 /* Advanced Receive Descriptor (Read) Format
489 * 63 1 0
490 * +-----------------------------------------------------+
491 * 0 | Packet Buffer Address [63:1] |A0/NSE|
492 * +----------------------------------------------+------+
493 * 8 | Header Buffer Address [63:1] | DD |
494 * +-----------------------------------------------------+
495 *
496 *
497 * Advanced Receive Descriptor (Write-Back) Format
498 *
499 * 63 48 47 32 31 30 21 20 17 16 4 3 0
500 * +------------------------------------------------------+
501 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
502 * | Checksum Ident | | | | Type | Type |
503 * +------------------------------------------------------+
504 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
505 * +------------------------------------------------------+
506 * 63 48 47 32 31 20 19 0
507 */
508
509 for (n = 0; n < adapter->num_rx_queues; n++) {
510 rx_ring = adapter->rx_ring[n];
511 pr_info("------------------------------------\n");
512 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
513 pr_info("------------------------------------\n");
514 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] [bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
515 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
516
517 for (i = 0; i < rx_ring->count; i++) {
518 const char *next_desc;
519 struct igb_rx_buffer *buffer_info;
520 buffer_info = &rx_ring->rx_buffer_info[i];
521 rx_desc = IGB_RX_DESC(rx_ring, i);
522 u0 = (struct my_u0 *)rx_desc;
523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
524
525 if (i == rx_ring->next_to_use)
526 next_desc = " NTU";
527 else if (i == rx_ring->next_to_clean)
528 next_desc = " NTC";
529 else
530 next_desc = "";
531
532 if (staterr & E1000_RXD_STAT_DD) {
533 /* Descriptor Done */
534 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
535 "RWB", i,
536 le64_to_cpu(u0->a),
537 le64_to_cpu(u0->b),
538 next_desc);
539 } else {
540 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
541 "R ", i,
542 le64_to_cpu(u0->a),
543 le64_to_cpu(u0->b),
544 (u64)buffer_info->dma,
545 next_desc);
546
547 if (netif_msg_pktdata(adapter) &&
548 buffer_info->dma && buffer_info->page) {
549 print_hex_dump(KERN_INFO, "",
550 DUMP_PREFIX_ADDRESS,
551 16, 1,
552 page_address(buffer_info->page) +
553 buffer_info->page_offset,
554 IGB_RX_BUFSZ, true);
555 }
556 }
557 }
558 }
559
560 exit:
561 return;
562 }
563
564 /**
565 * igb_get_i2c_data - Reads the I2C SDA data bit
566 * @hw: pointer to hardware structure
567 * @i2cctl: Current value of I2CCTL register
568 *
569 * Returns the I2C data bit value
570 **/
571 static int igb_get_i2c_data(void *data)
572 {
573 struct igb_adapter *adapter = (struct igb_adapter *)data;
574 struct e1000_hw *hw = &adapter->hw;
575 s32 i2cctl = rd32(E1000_I2CPARAMS);
576
577 return !!(i2cctl & E1000_I2C_DATA_IN);
578 }
579
580 /**
581 * igb_set_i2c_data - Sets the I2C data bit
582 * @data: pointer to hardware structure
583 * @state: I2C data value (0 or 1) to set
584 *
585 * Sets the I2C data bit
586 **/
587 static void igb_set_i2c_data(void *data, int state)
588 {
589 struct igb_adapter *adapter = (struct igb_adapter *)data;
590 struct e1000_hw *hw = &adapter->hw;
591 s32 i2cctl = rd32(E1000_I2CPARAMS);
592
593 if (state)
594 i2cctl |= E1000_I2C_DATA_OUT;
595 else
596 i2cctl &= ~E1000_I2C_DATA_OUT;
597
598 i2cctl &= ~E1000_I2C_DATA_OE_N;
599 i2cctl |= E1000_I2C_CLK_OE_N;
600 wr32(E1000_I2CPARAMS, i2cctl);
601 wrfl();
602
603 }
604
605 /**
606 * igb_set_i2c_clk - Sets the I2C SCL clock
607 * @data: pointer to hardware structure
608 * @state: state to set clock
609 *
610 * Sets the I2C clock line to state
611 **/
612 static void igb_set_i2c_clk(void *data, int state)
613 {
614 struct igb_adapter *adapter = (struct igb_adapter *)data;
615 struct e1000_hw *hw = &adapter->hw;
616 s32 i2cctl = rd32(E1000_I2CPARAMS);
617
618 if (state) {
619 i2cctl |= E1000_I2C_CLK_OUT;
620 i2cctl &= ~E1000_I2C_CLK_OE_N;
621 } else {
622 i2cctl &= ~E1000_I2C_CLK_OUT;
623 i2cctl &= ~E1000_I2C_CLK_OE_N;
624 }
625 wr32(E1000_I2CPARAMS, i2cctl);
626 wrfl();
627 }
628
629 /**
630 * igb_get_i2c_clk - Gets the I2C SCL clock state
631 * @data: pointer to hardware structure
632 *
633 * Gets the I2C clock state
634 **/
635 static int igb_get_i2c_clk(void *data)
636 {
637 struct igb_adapter *adapter = (struct igb_adapter *)data;
638 struct e1000_hw *hw = &adapter->hw;
639 s32 i2cctl = rd32(E1000_I2CPARAMS);
640
641 return !!(i2cctl & E1000_I2C_CLK_IN);
642 }
643
644 static const struct i2c_algo_bit_data igb_i2c_algo = {
645 .setsda = igb_set_i2c_data,
646 .setscl = igb_set_i2c_clk,
647 .getsda = igb_get_i2c_data,
648 .getscl = igb_get_i2c_clk,
649 .udelay = 5,
650 .timeout = 20,
651 };
652
653 /**
654 * igb_get_hw_dev - return device
655 * @hw: pointer to hardware structure
656 *
657 * used by hardware layer to print debugging information
658 **/
659 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
660 {
661 struct igb_adapter *adapter = hw->back;
662 return adapter->netdev;
663 }
664
665 /**
666 * igb_init_module - Driver Registration Routine
667 *
668 * igb_init_module is the first routine called when the driver is
669 * loaded. All it does is register with the PCI subsystem.
670 **/
671 static int __init igb_init_module(void)
672 {
673 int ret;
674
675 pr_info("%s - version %s\n",
676 igb_driver_string, igb_driver_version);
677 pr_info("%s\n", igb_copyright);
678
679 #ifdef CONFIG_IGB_DCA
680 dca_register_notify(&dca_notifier);
681 #endif
682 ret = pci_register_driver(&igb_driver);
683 return ret;
684 }
685
686 module_init(igb_init_module);
687
688 /**
689 * igb_exit_module - Driver Exit Cleanup Routine
690 *
691 * igb_exit_module is called just before the driver is removed
692 * from memory.
693 **/
694 static void __exit igb_exit_module(void)
695 {
696 #ifdef CONFIG_IGB_DCA
697 dca_unregister_notify(&dca_notifier);
698 #endif
699 pci_unregister_driver(&igb_driver);
700 }
701
702 module_exit(igb_exit_module);
703
704 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
705 /**
706 * igb_cache_ring_register - Descriptor ring to register mapping
707 * @adapter: board private structure to initialize
708 *
709 * Once we know the feature-set enabled for the device, we'll cache
710 * the register offset the descriptor ring is assigned to.
711 **/
712 static void igb_cache_ring_register(struct igb_adapter *adapter)
713 {
714 int i = 0, j = 0;
715 u32 rbase_offset = adapter->vfs_allocated_count;
716
717 switch (adapter->hw.mac.type) {
718 case e1000_82576:
719 /* The queues are allocated for virtualization such that VF 0
720 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
721 * In order to avoid collision we start at the first free queue
722 * and continue consuming queues in the same sequence
723 */
724 if (adapter->vfs_allocated_count) {
725 for (; i < adapter->rss_queues; i++)
726 adapter->rx_ring[i]->reg_idx = rbase_offset +
727 Q_IDX_82576(i);
728 }
729 /* Fall through */
730 case e1000_82575:
731 case e1000_82580:
732 case e1000_i350:
733 case e1000_i354:
734 case e1000_i210:
735 case e1000_i211:
736 /* Fall through */
737 default:
738 for (; i < adapter->num_rx_queues; i++)
739 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
740 for (; j < adapter->num_tx_queues; j++)
741 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
742 break;
743 }
744 }
745
746 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
747 {
748 struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
749 u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
750 u32 value = 0;
751
752 if (E1000_REMOVED(hw_addr))
753 return ~value;
754
755 value = readl(&hw_addr[reg]);
756
757 /* reads should not return all F's */
758 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
759 struct net_device *netdev = igb->netdev;
760 hw->hw_addr = NULL;
761 netif_device_detach(netdev);
762 netdev_err(netdev, "PCIe link lost, device now detached\n");
763 }
764
765 return value;
766 }
767
768 /**
769 * igb_write_ivar - configure ivar for given MSI-X vector
770 * @hw: pointer to the HW structure
771 * @msix_vector: vector number we are allocating to a given ring
772 * @index: row index of IVAR register to write within IVAR table
773 * @offset: column offset of in IVAR, should be multiple of 8
774 *
775 * This function is intended to handle the writing of the IVAR register
776 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
777 * each containing an cause allocation for an Rx and Tx ring, and a
778 * variable number of rows depending on the number of queues supported.
779 **/
780 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
781 int index, int offset)
782 {
783 u32 ivar = array_rd32(E1000_IVAR0, index);
784
785 /* clear any bits that are currently set */
786 ivar &= ~((u32)0xFF << offset);
787
788 /* write vector and valid bit */
789 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
790
791 array_wr32(E1000_IVAR0, index, ivar);
792 }
793
794 #define IGB_N0_QUEUE -1
795 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
796 {
797 struct igb_adapter *adapter = q_vector->adapter;
798 struct e1000_hw *hw = &adapter->hw;
799 int rx_queue = IGB_N0_QUEUE;
800 int tx_queue = IGB_N0_QUEUE;
801 u32 msixbm = 0;
802
803 if (q_vector->rx.ring)
804 rx_queue = q_vector->rx.ring->reg_idx;
805 if (q_vector->tx.ring)
806 tx_queue = q_vector->tx.ring->reg_idx;
807
808 switch (hw->mac.type) {
809 case e1000_82575:
810 /* The 82575 assigns vectors using a bitmask, which matches the
811 * bitmask for the EICR/EIMS/EIMC registers. To assign one
812 * or more queues to a vector, we write the appropriate bits
813 * into the MSIXBM register for that vector.
814 */
815 if (rx_queue > IGB_N0_QUEUE)
816 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
817 if (tx_queue > IGB_N0_QUEUE)
818 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
819 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
820 msixbm |= E1000_EIMS_OTHER;
821 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
822 q_vector->eims_value = msixbm;
823 break;
824 case e1000_82576:
825 /* 82576 uses a table that essentially consists of 2 columns
826 * with 8 rows. The ordering is column-major so we use the
827 * lower 3 bits as the row index, and the 4th bit as the
828 * column offset.
829 */
830 if (rx_queue > IGB_N0_QUEUE)
831 igb_write_ivar(hw, msix_vector,
832 rx_queue & 0x7,
833 (rx_queue & 0x8) << 1);
834 if (tx_queue > IGB_N0_QUEUE)
835 igb_write_ivar(hw, msix_vector,
836 tx_queue & 0x7,
837 ((tx_queue & 0x8) << 1) + 8);
838 q_vector->eims_value = 1 << msix_vector;
839 break;
840 case e1000_82580:
841 case e1000_i350:
842 case e1000_i354:
843 case e1000_i210:
844 case e1000_i211:
845 /* On 82580 and newer adapters the scheme is similar to 82576
846 * however instead of ordering column-major we have things
847 * ordered row-major. So we traverse the table by using
848 * bit 0 as the column offset, and the remaining bits as the
849 * row index.
850 */
851 if (rx_queue > IGB_N0_QUEUE)
852 igb_write_ivar(hw, msix_vector,
853 rx_queue >> 1,
854 (rx_queue & 0x1) << 4);
855 if (tx_queue > IGB_N0_QUEUE)
856 igb_write_ivar(hw, msix_vector,
857 tx_queue >> 1,
858 ((tx_queue & 0x1) << 4) + 8);
859 q_vector->eims_value = 1 << msix_vector;
860 break;
861 default:
862 BUG();
863 break;
864 }
865
866 /* add q_vector eims value to global eims_enable_mask */
867 adapter->eims_enable_mask |= q_vector->eims_value;
868
869 /* configure q_vector to set itr on first interrupt */
870 q_vector->set_itr = 1;
871 }
872
873 /**
874 * igb_configure_msix - Configure MSI-X hardware
875 * @adapter: board private structure to initialize
876 *
877 * igb_configure_msix sets up the hardware to properly
878 * generate MSI-X interrupts.
879 **/
880 static void igb_configure_msix(struct igb_adapter *adapter)
881 {
882 u32 tmp;
883 int i, vector = 0;
884 struct e1000_hw *hw = &adapter->hw;
885
886 adapter->eims_enable_mask = 0;
887
888 /* set vector for other causes, i.e. link changes */
889 switch (hw->mac.type) {
890 case e1000_82575:
891 tmp = rd32(E1000_CTRL_EXT);
892 /* enable MSI-X PBA support*/
893 tmp |= E1000_CTRL_EXT_PBA_CLR;
894
895 /* Auto-Mask interrupts upon ICR read. */
896 tmp |= E1000_CTRL_EXT_EIAME;
897 tmp |= E1000_CTRL_EXT_IRCA;
898
899 wr32(E1000_CTRL_EXT, tmp);
900
901 /* enable msix_other interrupt */
902 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
903 adapter->eims_other = E1000_EIMS_OTHER;
904
905 break;
906
907 case e1000_82576:
908 case e1000_82580:
909 case e1000_i350:
910 case e1000_i354:
911 case e1000_i210:
912 case e1000_i211:
913 /* Turn on MSI-X capability first, or our settings
914 * won't stick. And it will take days to debug.
915 */
916 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
917 E1000_GPIE_PBA | E1000_GPIE_EIAME |
918 E1000_GPIE_NSICR);
919
920 /* enable msix_other interrupt */
921 adapter->eims_other = 1 << vector;
922 tmp = (vector++ | E1000_IVAR_VALID) << 8;
923
924 wr32(E1000_IVAR_MISC, tmp);
925 break;
926 default:
927 /* do nothing, since nothing else supports MSI-X */
928 break;
929 } /* switch (hw->mac.type) */
930
931 adapter->eims_enable_mask |= adapter->eims_other;
932
933 for (i = 0; i < adapter->num_q_vectors; i++)
934 igb_assign_vector(adapter->q_vector[i], vector++);
935
936 wrfl();
937 }
938
939 /**
940 * igb_request_msix - Initialize MSI-X interrupts
941 * @adapter: board private structure to initialize
942 *
943 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
944 * kernel.
945 **/
946 static int igb_request_msix(struct igb_adapter *adapter)
947 {
948 struct net_device *netdev = adapter->netdev;
949 struct e1000_hw *hw = &adapter->hw;
950 int i, err = 0, vector = 0, free_vector = 0;
951
952 err = request_irq(adapter->msix_entries[vector].vector,
953 igb_msix_other, 0, netdev->name, adapter);
954 if (err)
955 goto err_out;
956
957 for (i = 0; i < adapter->num_q_vectors; i++) {
958 struct igb_q_vector *q_vector = adapter->q_vector[i];
959
960 vector++;
961
962 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
963
964 if (q_vector->rx.ring && q_vector->tx.ring)
965 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
966 q_vector->rx.ring->queue_index);
967 else if (q_vector->tx.ring)
968 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
969 q_vector->tx.ring->queue_index);
970 else if (q_vector->rx.ring)
971 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
972 q_vector->rx.ring->queue_index);
973 else
974 sprintf(q_vector->name, "%s-unused", netdev->name);
975
976 err = request_irq(adapter->msix_entries[vector].vector,
977 igb_msix_ring, 0, q_vector->name,
978 q_vector);
979 if (err)
980 goto err_free;
981 }
982
983 igb_configure_msix(adapter);
984 return 0;
985
986 err_free:
987 /* free already assigned IRQs */
988 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
989
990 vector--;
991 for (i = 0; i < vector; i++) {
992 free_irq(adapter->msix_entries[free_vector++].vector,
993 adapter->q_vector[i]);
994 }
995 err_out:
996 return err;
997 }
998
999 /**
1000 * igb_free_q_vector - Free memory allocated for specific interrupt vector
1001 * @adapter: board private structure to initialize
1002 * @v_idx: Index of vector to be freed
1003 *
1004 * This function frees the memory allocated to the q_vector.
1005 **/
1006 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1007 {
1008 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1009
1010 adapter->q_vector[v_idx] = NULL;
1011
1012 /* igb_get_stats64() might access the rings on this vector,
1013 * we must wait a grace period before freeing it.
1014 */
1015 if (q_vector)
1016 kfree_rcu(q_vector, rcu);
1017 }
1018
1019 /**
1020 * igb_reset_q_vector - Reset config for interrupt vector
1021 * @adapter: board private structure to initialize
1022 * @v_idx: Index of vector to be reset
1023 *
1024 * If NAPI is enabled it will delete any references to the
1025 * NAPI struct. This is preparation for igb_free_q_vector.
1026 **/
1027 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1028 {
1029 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1030
1031 /* Coming from igb_set_interrupt_capability, the vectors are not yet
1032 * allocated. So, q_vector is NULL so we should stop here.
1033 */
1034 if (!q_vector)
1035 return;
1036
1037 if (q_vector->tx.ring)
1038 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1039
1040 if (q_vector->rx.ring)
1041 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1042
1043 netif_napi_del(&q_vector->napi);
1044
1045 }
1046
1047 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1048 {
1049 int v_idx = adapter->num_q_vectors;
1050
1051 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1052 pci_disable_msix(adapter->pdev);
1053 else if (adapter->flags & IGB_FLAG_HAS_MSI)
1054 pci_disable_msi(adapter->pdev);
1055
1056 while (v_idx--)
1057 igb_reset_q_vector(adapter, v_idx);
1058 }
1059
1060 /**
1061 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1062 * @adapter: board private structure to initialize
1063 *
1064 * This function frees the memory allocated to the q_vectors. In addition if
1065 * NAPI is enabled it will delete any references to the NAPI struct prior
1066 * to freeing the q_vector.
1067 **/
1068 static void igb_free_q_vectors(struct igb_adapter *adapter)
1069 {
1070 int v_idx = adapter->num_q_vectors;
1071
1072 adapter->num_tx_queues = 0;
1073 adapter->num_rx_queues = 0;
1074 adapter->num_q_vectors = 0;
1075
1076 while (v_idx--) {
1077 igb_reset_q_vector(adapter, v_idx);
1078 igb_free_q_vector(adapter, v_idx);
1079 }
1080 }
1081
1082 /**
1083 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1084 * @adapter: board private structure to initialize
1085 *
1086 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1087 * MSI-X interrupts allocated.
1088 */
1089 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1090 {
1091 igb_free_q_vectors(adapter);
1092 igb_reset_interrupt_capability(adapter);
1093 }
1094
1095 /**
1096 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1097 * @adapter: board private structure to initialize
1098 * @msix: boolean value of MSIX capability
1099 *
1100 * Attempt to configure interrupts using the best available
1101 * capabilities of the hardware and kernel.
1102 **/
1103 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1104 {
1105 int err;
1106 int numvecs, i;
1107
1108 if (!msix)
1109 goto msi_only;
1110 adapter->flags |= IGB_FLAG_HAS_MSIX;
1111
1112 /* Number of supported queues. */
1113 adapter->num_rx_queues = adapter->rss_queues;
1114 if (adapter->vfs_allocated_count)
1115 adapter->num_tx_queues = 1;
1116 else
1117 adapter->num_tx_queues = adapter->rss_queues;
1118
1119 /* start with one vector for every Rx queue */
1120 numvecs = adapter->num_rx_queues;
1121
1122 /* if Tx handler is separate add 1 for every Tx queue */
1123 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1124 numvecs += adapter->num_tx_queues;
1125
1126 /* store the number of vectors reserved for queues */
1127 adapter->num_q_vectors = numvecs;
1128
1129 /* add 1 vector for link status interrupts */
1130 numvecs++;
1131 for (i = 0; i < numvecs; i++)
1132 adapter->msix_entries[i].entry = i;
1133
1134 err = pci_enable_msix_range(adapter->pdev,
1135 adapter->msix_entries,
1136 numvecs,
1137 numvecs);
1138 if (err > 0)
1139 return;
1140
1141 igb_reset_interrupt_capability(adapter);
1142
1143 /* If we can't do MSI-X, try MSI */
1144 msi_only:
1145 adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1146 #ifdef CONFIG_PCI_IOV
1147 /* disable SR-IOV for non MSI-X configurations */
1148 if (adapter->vf_data) {
1149 struct e1000_hw *hw = &adapter->hw;
1150 /* disable iov and allow time for transactions to clear */
1151 pci_disable_sriov(adapter->pdev);
1152 msleep(500);
1153
1154 kfree(adapter->vf_data);
1155 adapter->vf_data = NULL;
1156 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1157 wrfl();
1158 msleep(100);
1159 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1160 }
1161 #endif
1162 adapter->vfs_allocated_count = 0;
1163 adapter->rss_queues = 1;
1164 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1165 adapter->num_rx_queues = 1;
1166 adapter->num_tx_queues = 1;
1167 adapter->num_q_vectors = 1;
1168 if (!pci_enable_msi(adapter->pdev))
1169 adapter->flags |= IGB_FLAG_HAS_MSI;
1170 }
1171
1172 static void igb_add_ring(struct igb_ring *ring,
1173 struct igb_ring_container *head)
1174 {
1175 head->ring = ring;
1176 head->count++;
1177 }
1178
1179 /**
1180 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1181 * @adapter: board private structure to initialize
1182 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1183 * @v_idx: index of vector in adapter struct
1184 * @txr_count: total number of Tx rings to allocate
1185 * @txr_idx: index of first Tx ring to allocate
1186 * @rxr_count: total number of Rx rings to allocate
1187 * @rxr_idx: index of first Rx ring to allocate
1188 *
1189 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1190 **/
1191 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1192 int v_count, int v_idx,
1193 int txr_count, int txr_idx,
1194 int rxr_count, int rxr_idx)
1195 {
1196 struct igb_q_vector *q_vector;
1197 struct igb_ring *ring;
1198 int ring_count, size;
1199
1200 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1201 if (txr_count > 1 || rxr_count > 1)
1202 return -ENOMEM;
1203
1204 ring_count = txr_count + rxr_count;
1205 size = sizeof(struct igb_q_vector) +
1206 (sizeof(struct igb_ring) * ring_count);
1207
1208 /* allocate q_vector and rings */
1209 q_vector = adapter->q_vector[v_idx];
1210 if (!q_vector)
1211 q_vector = kzalloc(size, GFP_KERNEL);
1212 if (!q_vector)
1213 return -ENOMEM;
1214
1215 /* initialize NAPI */
1216 netif_napi_add(adapter->netdev, &q_vector->napi,
1217 igb_poll, 64);
1218
1219 /* tie q_vector and adapter together */
1220 adapter->q_vector[v_idx] = q_vector;
1221 q_vector->adapter = adapter;
1222
1223 /* initialize work limits */
1224 q_vector->tx.work_limit = adapter->tx_work_limit;
1225
1226 /* initialize ITR configuration */
1227 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1228 q_vector->itr_val = IGB_START_ITR;
1229
1230 /* initialize pointer to rings */
1231 ring = q_vector->ring;
1232
1233 /* intialize ITR */
1234 if (rxr_count) {
1235 /* rx or rx/tx vector */
1236 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1237 q_vector->itr_val = adapter->rx_itr_setting;
1238 } else {
1239 /* tx only vector */
1240 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1241 q_vector->itr_val = adapter->tx_itr_setting;
1242 }
1243
1244 if (txr_count) {
1245 /* assign generic ring traits */
1246 ring->dev = &adapter->pdev->dev;
1247 ring->netdev = adapter->netdev;
1248
1249 /* configure backlink on ring */
1250 ring->q_vector = q_vector;
1251
1252 /* update q_vector Tx values */
1253 igb_add_ring(ring, &q_vector->tx);
1254
1255 /* For 82575, context index must be unique per ring. */
1256 if (adapter->hw.mac.type == e1000_82575)
1257 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1258
1259 /* apply Tx specific ring traits */
1260 ring->count = adapter->tx_ring_count;
1261 ring->queue_index = txr_idx;
1262
1263 u64_stats_init(&ring->tx_syncp);
1264 u64_stats_init(&ring->tx_syncp2);
1265
1266 /* assign ring to adapter */
1267 adapter->tx_ring[txr_idx] = ring;
1268
1269 /* push pointer to next ring */
1270 ring++;
1271 }
1272
1273 if (rxr_count) {
1274 /* assign generic ring traits */
1275 ring->dev = &adapter->pdev->dev;
1276 ring->netdev = adapter->netdev;
1277
1278 /* configure backlink on ring */
1279 ring->q_vector = q_vector;
1280
1281 /* update q_vector Rx values */
1282 igb_add_ring(ring, &q_vector->rx);
1283
1284 /* set flag indicating ring supports SCTP checksum offload */
1285 if (adapter->hw.mac.type >= e1000_82576)
1286 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1287
1288 /* On i350, i354, i210, and i211, loopback VLAN packets
1289 * have the tag byte-swapped.
1290 */
1291 if (adapter->hw.mac.type >= e1000_i350)
1292 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1293
1294 /* apply Rx specific ring traits */
1295 ring->count = adapter->rx_ring_count;
1296 ring->queue_index = rxr_idx;
1297
1298 u64_stats_init(&ring->rx_syncp);
1299
1300 /* assign ring to adapter */
1301 adapter->rx_ring[rxr_idx] = ring;
1302 }
1303
1304 return 0;
1305 }
1306
1307
1308 /**
1309 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1310 * @adapter: board private structure to initialize
1311 *
1312 * We allocate one q_vector per queue interrupt. If allocation fails we
1313 * return -ENOMEM.
1314 **/
1315 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1316 {
1317 int q_vectors = adapter->num_q_vectors;
1318 int rxr_remaining = adapter->num_rx_queues;
1319 int txr_remaining = adapter->num_tx_queues;
1320 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1321 int err;
1322
1323 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1324 for (; rxr_remaining; v_idx++) {
1325 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1326 0, 0, 1, rxr_idx);
1327
1328 if (err)
1329 goto err_out;
1330
1331 /* update counts and index */
1332 rxr_remaining--;
1333 rxr_idx++;
1334 }
1335 }
1336
1337 for (; v_idx < q_vectors; v_idx++) {
1338 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1339 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1340
1341 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1342 tqpv, txr_idx, rqpv, rxr_idx);
1343
1344 if (err)
1345 goto err_out;
1346
1347 /* update counts and index */
1348 rxr_remaining -= rqpv;
1349 txr_remaining -= tqpv;
1350 rxr_idx++;
1351 txr_idx++;
1352 }
1353
1354 return 0;
1355
1356 err_out:
1357 adapter->num_tx_queues = 0;
1358 adapter->num_rx_queues = 0;
1359 adapter->num_q_vectors = 0;
1360
1361 while (v_idx--)
1362 igb_free_q_vector(adapter, v_idx);
1363
1364 return -ENOMEM;
1365 }
1366
1367 /**
1368 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1369 * @adapter: board private structure to initialize
1370 * @msix: boolean value of MSIX capability
1371 *
1372 * This function initializes the interrupts and allocates all of the queues.
1373 **/
1374 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1375 {
1376 struct pci_dev *pdev = adapter->pdev;
1377 int err;
1378
1379 igb_set_interrupt_capability(adapter, msix);
1380
1381 err = igb_alloc_q_vectors(adapter);
1382 if (err) {
1383 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1384 goto err_alloc_q_vectors;
1385 }
1386
1387 igb_cache_ring_register(adapter);
1388
1389 return 0;
1390
1391 err_alloc_q_vectors:
1392 igb_reset_interrupt_capability(adapter);
1393 return err;
1394 }
1395
1396 /**
1397 * igb_request_irq - initialize interrupts
1398 * @adapter: board private structure to initialize
1399 *
1400 * Attempts to configure interrupts using the best available
1401 * capabilities of the hardware and kernel.
1402 **/
1403 static int igb_request_irq(struct igb_adapter *adapter)
1404 {
1405 struct net_device *netdev = adapter->netdev;
1406 struct pci_dev *pdev = adapter->pdev;
1407 int err = 0;
1408
1409 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1410 err = igb_request_msix(adapter);
1411 if (!err)
1412 goto request_done;
1413 /* fall back to MSI */
1414 igb_free_all_tx_resources(adapter);
1415 igb_free_all_rx_resources(adapter);
1416
1417 igb_clear_interrupt_scheme(adapter);
1418 err = igb_init_interrupt_scheme(adapter, false);
1419 if (err)
1420 goto request_done;
1421
1422 igb_setup_all_tx_resources(adapter);
1423 igb_setup_all_rx_resources(adapter);
1424 igb_configure(adapter);
1425 }
1426
1427 igb_assign_vector(adapter->q_vector[0], 0);
1428
1429 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1430 err = request_irq(pdev->irq, igb_intr_msi, 0,
1431 netdev->name, adapter);
1432 if (!err)
1433 goto request_done;
1434
1435 /* fall back to legacy interrupts */
1436 igb_reset_interrupt_capability(adapter);
1437 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1438 }
1439
1440 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1441 netdev->name, adapter);
1442
1443 if (err)
1444 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1445 err);
1446
1447 request_done:
1448 return err;
1449 }
1450
1451 static void igb_free_irq(struct igb_adapter *adapter)
1452 {
1453 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1454 int vector = 0, i;
1455
1456 free_irq(adapter->msix_entries[vector++].vector, adapter);
1457
1458 for (i = 0; i < adapter->num_q_vectors; i++)
1459 free_irq(adapter->msix_entries[vector++].vector,
1460 adapter->q_vector[i]);
1461 } else {
1462 free_irq(adapter->pdev->irq, adapter);
1463 }
1464 }
1465
1466 /**
1467 * igb_irq_disable - Mask off interrupt generation on the NIC
1468 * @adapter: board private structure
1469 **/
1470 static void igb_irq_disable(struct igb_adapter *adapter)
1471 {
1472 struct e1000_hw *hw = &adapter->hw;
1473
1474 /* we need to be careful when disabling interrupts. The VFs are also
1475 * mapped into these registers and so clearing the bits can cause
1476 * issues on the VF drivers so we only need to clear what we set
1477 */
1478 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1479 u32 regval = rd32(E1000_EIAM);
1480
1481 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1482 wr32(E1000_EIMC, adapter->eims_enable_mask);
1483 regval = rd32(E1000_EIAC);
1484 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1485 }
1486
1487 wr32(E1000_IAM, 0);
1488 wr32(E1000_IMC, ~0);
1489 wrfl();
1490 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1491 int i;
1492
1493 for (i = 0; i < adapter->num_q_vectors; i++)
1494 synchronize_irq(adapter->msix_entries[i].vector);
1495 } else {
1496 synchronize_irq(adapter->pdev->irq);
1497 }
1498 }
1499
1500 /**
1501 * igb_irq_enable - Enable default interrupt generation settings
1502 * @adapter: board private structure
1503 **/
1504 static void igb_irq_enable(struct igb_adapter *adapter)
1505 {
1506 struct e1000_hw *hw = &adapter->hw;
1507
1508 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1509 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1510 u32 regval = rd32(E1000_EIAC);
1511
1512 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1513 regval = rd32(E1000_EIAM);
1514 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1515 wr32(E1000_EIMS, adapter->eims_enable_mask);
1516 if (adapter->vfs_allocated_count) {
1517 wr32(E1000_MBVFIMR, 0xFF);
1518 ims |= E1000_IMS_VMMB;
1519 }
1520 wr32(E1000_IMS, ims);
1521 } else {
1522 wr32(E1000_IMS, IMS_ENABLE_MASK |
1523 E1000_IMS_DRSTA);
1524 wr32(E1000_IAM, IMS_ENABLE_MASK |
1525 E1000_IMS_DRSTA);
1526 }
1527 }
1528
1529 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1530 {
1531 struct e1000_hw *hw = &adapter->hw;
1532 u16 vid = adapter->hw.mng_cookie.vlan_id;
1533 u16 old_vid = adapter->mng_vlan_id;
1534
1535 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1536 /* add VID to filter table */
1537 igb_vfta_set(hw, vid, true);
1538 adapter->mng_vlan_id = vid;
1539 } else {
1540 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1541 }
1542
1543 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1544 (vid != old_vid) &&
1545 !test_bit(old_vid, adapter->active_vlans)) {
1546 /* remove VID from filter table */
1547 igb_vfta_set(hw, old_vid, false);
1548 }
1549 }
1550
1551 /**
1552 * igb_release_hw_control - release control of the h/w to f/w
1553 * @adapter: address of board private structure
1554 *
1555 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1556 * For ASF and Pass Through versions of f/w this means that the
1557 * driver is no longer loaded.
1558 **/
1559 static void igb_release_hw_control(struct igb_adapter *adapter)
1560 {
1561 struct e1000_hw *hw = &adapter->hw;
1562 u32 ctrl_ext;
1563
1564 /* Let firmware take over control of h/w */
1565 ctrl_ext = rd32(E1000_CTRL_EXT);
1566 wr32(E1000_CTRL_EXT,
1567 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1568 }
1569
1570 /**
1571 * igb_get_hw_control - get control of the h/w from f/w
1572 * @adapter: address of board private structure
1573 *
1574 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1575 * For ASF and Pass Through versions of f/w this means that
1576 * the driver is loaded.
1577 **/
1578 static void igb_get_hw_control(struct igb_adapter *adapter)
1579 {
1580 struct e1000_hw *hw = &adapter->hw;
1581 u32 ctrl_ext;
1582
1583 /* Let firmware know the driver has taken over */
1584 ctrl_ext = rd32(E1000_CTRL_EXT);
1585 wr32(E1000_CTRL_EXT,
1586 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1587 }
1588
1589 /**
1590 * igb_configure - configure the hardware for RX and TX
1591 * @adapter: private board structure
1592 **/
1593 static void igb_configure(struct igb_adapter *adapter)
1594 {
1595 struct net_device *netdev = adapter->netdev;
1596 int i;
1597
1598 igb_get_hw_control(adapter);
1599 igb_set_rx_mode(netdev);
1600
1601 igb_restore_vlan(adapter);
1602
1603 igb_setup_tctl(adapter);
1604 igb_setup_mrqc(adapter);
1605 igb_setup_rctl(adapter);
1606
1607 igb_configure_tx(adapter);
1608 igb_configure_rx(adapter);
1609
1610 igb_rx_fifo_flush_82575(&adapter->hw);
1611
1612 /* call igb_desc_unused which always leaves
1613 * at least 1 descriptor unused to make sure
1614 * next_to_use != next_to_clean
1615 */
1616 for (i = 0; i < adapter->num_rx_queues; i++) {
1617 struct igb_ring *ring = adapter->rx_ring[i];
1618 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1619 }
1620 }
1621
1622 /**
1623 * igb_power_up_link - Power up the phy/serdes link
1624 * @adapter: address of board private structure
1625 **/
1626 void igb_power_up_link(struct igb_adapter *adapter)
1627 {
1628 igb_reset_phy(&adapter->hw);
1629
1630 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1631 igb_power_up_phy_copper(&adapter->hw);
1632 else
1633 igb_power_up_serdes_link_82575(&adapter->hw);
1634
1635 igb_setup_link(&adapter->hw);
1636 }
1637
1638 /**
1639 * igb_power_down_link - Power down the phy/serdes link
1640 * @adapter: address of board private structure
1641 */
1642 static void igb_power_down_link(struct igb_adapter *adapter)
1643 {
1644 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1645 igb_power_down_phy_copper_82575(&adapter->hw);
1646 else
1647 igb_shutdown_serdes_link_82575(&adapter->hw);
1648 }
1649
1650 /**
1651 * Detect and switch function for Media Auto Sense
1652 * @adapter: address of the board private structure
1653 **/
1654 static void igb_check_swap_media(struct igb_adapter *adapter)
1655 {
1656 struct e1000_hw *hw = &adapter->hw;
1657 u32 ctrl_ext, connsw;
1658 bool swap_now = false;
1659
1660 ctrl_ext = rd32(E1000_CTRL_EXT);
1661 connsw = rd32(E1000_CONNSW);
1662
1663 /* need to live swap if current media is copper and we have fiber/serdes
1664 * to go to.
1665 */
1666
1667 if ((hw->phy.media_type == e1000_media_type_copper) &&
1668 (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1669 swap_now = true;
1670 } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1671 /* copper signal takes time to appear */
1672 if (adapter->copper_tries < 4) {
1673 adapter->copper_tries++;
1674 connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1675 wr32(E1000_CONNSW, connsw);
1676 return;
1677 } else {
1678 adapter->copper_tries = 0;
1679 if ((connsw & E1000_CONNSW_PHYSD) &&
1680 (!(connsw & E1000_CONNSW_PHY_PDN))) {
1681 swap_now = true;
1682 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1683 wr32(E1000_CONNSW, connsw);
1684 }
1685 }
1686 }
1687
1688 if (!swap_now)
1689 return;
1690
1691 switch (hw->phy.media_type) {
1692 case e1000_media_type_copper:
1693 netdev_info(adapter->netdev,
1694 "MAS: changing media to fiber/serdes\n");
1695 ctrl_ext |=
1696 E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1697 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1698 adapter->copper_tries = 0;
1699 break;
1700 case e1000_media_type_internal_serdes:
1701 case e1000_media_type_fiber:
1702 netdev_info(adapter->netdev,
1703 "MAS: changing media to copper\n");
1704 ctrl_ext &=
1705 ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1706 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1707 break;
1708 default:
1709 /* shouldn't get here during regular operation */
1710 netdev_err(adapter->netdev,
1711 "AMS: Invalid media type found, returning\n");
1712 break;
1713 }
1714 wr32(E1000_CTRL_EXT, ctrl_ext);
1715 }
1716
1717 /**
1718 * igb_up - Open the interface and prepare it to handle traffic
1719 * @adapter: board private structure
1720 **/
1721 int igb_up(struct igb_adapter *adapter)
1722 {
1723 struct e1000_hw *hw = &adapter->hw;
1724 int i;
1725
1726 /* hardware has been reset, we need to reload some things */
1727 igb_configure(adapter);
1728
1729 clear_bit(__IGB_DOWN, &adapter->state);
1730
1731 for (i = 0; i < adapter->num_q_vectors; i++)
1732 napi_enable(&(adapter->q_vector[i]->napi));
1733
1734 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1735 igb_configure_msix(adapter);
1736 else
1737 igb_assign_vector(adapter->q_vector[0], 0);
1738
1739 /* Clear any pending interrupts. */
1740 rd32(E1000_ICR);
1741 igb_irq_enable(adapter);
1742
1743 /* notify VFs that reset has been completed */
1744 if (adapter->vfs_allocated_count) {
1745 u32 reg_data = rd32(E1000_CTRL_EXT);
1746
1747 reg_data |= E1000_CTRL_EXT_PFRSTD;
1748 wr32(E1000_CTRL_EXT, reg_data);
1749 }
1750
1751 netif_tx_start_all_queues(adapter->netdev);
1752
1753 /* start the watchdog. */
1754 hw->mac.get_link_status = 1;
1755 schedule_work(&adapter->watchdog_task);
1756
1757 if ((adapter->flags & IGB_FLAG_EEE) &&
1758 (!hw->dev_spec._82575.eee_disable))
1759 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1760
1761 return 0;
1762 }
1763
1764 void igb_down(struct igb_adapter *adapter)
1765 {
1766 struct net_device *netdev = adapter->netdev;
1767 struct e1000_hw *hw = &adapter->hw;
1768 u32 tctl, rctl;
1769 int i;
1770
1771 /* signal that we're down so the interrupt handler does not
1772 * reschedule our watchdog timer
1773 */
1774 set_bit(__IGB_DOWN, &adapter->state);
1775
1776 /* disable receives in the hardware */
1777 rctl = rd32(E1000_RCTL);
1778 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1779 /* flush and sleep below */
1780
1781 netif_tx_stop_all_queues(netdev);
1782
1783 /* disable transmits in the hardware */
1784 tctl = rd32(E1000_TCTL);
1785 tctl &= ~E1000_TCTL_EN;
1786 wr32(E1000_TCTL, tctl);
1787 /* flush both disables and wait for them to finish */
1788 wrfl();
1789 usleep_range(10000, 11000);
1790
1791 igb_irq_disable(adapter);
1792
1793 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1794
1795 for (i = 0; i < adapter->num_q_vectors; i++) {
1796 if (adapter->q_vector[i]) {
1797 napi_synchronize(&adapter->q_vector[i]->napi);
1798 napi_disable(&adapter->q_vector[i]->napi);
1799 }
1800 }
1801
1802
1803 del_timer_sync(&adapter->watchdog_timer);
1804 del_timer_sync(&adapter->phy_info_timer);
1805
1806 netif_carrier_off(netdev);
1807
1808 /* record the stats before reset*/
1809 spin_lock(&adapter->stats64_lock);
1810 igb_update_stats(adapter, &adapter->stats64);
1811 spin_unlock(&adapter->stats64_lock);
1812
1813 adapter->link_speed = 0;
1814 adapter->link_duplex = 0;
1815
1816 if (!pci_channel_offline(adapter->pdev))
1817 igb_reset(adapter);
1818 igb_clean_all_tx_rings(adapter);
1819 igb_clean_all_rx_rings(adapter);
1820 #ifdef CONFIG_IGB_DCA
1821
1822 /* since we reset the hardware DCA settings were cleared */
1823 igb_setup_dca(adapter);
1824 #endif
1825 }
1826
1827 void igb_reinit_locked(struct igb_adapter *adapter)
1828 {
1829 WARN_ON(in_interrupt());
1830 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1831 usleep_range(1000, 2000);
1832 igb_down(adapter);
1833 igb_up(adapter);
1834 clear_bit(__IGB_RESETTING, &adapter->state);
1835 }
1836
1837 /** igb_enable_mas - Media Autosense re-enable after swap
1838 *
1839 * @adapter: adapter struct
1840 **/
1841 static s32 igb_enable_mas(struct igb_adapter *adapter)
1842 {
1843 struct e1000_hw *hw = &adapter->hw;
1844 u32 connsw;
1845 s32 ret_val = 0;
1846
1847 connsw = rd32(E1000_CONNSW);
1848 if (!(hw->phy.media_type == e1000_media_type_copper))
1849 return ret_val;
1850
1851 /* configure for SerDes media detect */
1852 if (!(connsw & E1000_CONNSW_SERDESD)) {
1853 connsw |= E1000_CONNSW_ENRGSRC;
1854 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1855 wr32(E1000_CONNSW, connsw);
1856 wrfl();
1857 } else if (connsw & E1000_CONNSW_SERDESD) {
1858 /* already SerDes, no need to enable anything */
1859 return ret_val;
1860 } else {
1861 netdev_info(adapter->netdev,
1862 "MAS: Unable to configure feature, disabling..\n");
1863 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1864 }
1865 return ret_val;
1866 }
1867
1868 void igb_reset(struct igb_adapter *adapter)
1869 {
1870 struct pci_dev *pdev = adapter->pdev;
1871 struct e1000_hw *hw = &adapter->hw;
1872 struct e1000_mac_info *mac = &hw->mac;
1873 struct e1000_fc_info *fc = &hw->fc;
1874 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1875
1876 /* Repartition Pba for greater than 9k mtu
1877 * To take effect CTRL.RST is required.
1878 */
1879 switch (mac->type) {
1880 case e1000_i350:
1881 case e1000_i354:
1882 case e1000_82580:
1883 pba = rd32(E1000_RXPBS);
1884 pba = igb_rxpbs_adjust_82580(pba);
1885 break;
1886 case e1000_82576:
1887 pba = rd32(E1000_RXPBS);
1888 pba &= E1000_RXPBS_SIZE_MASK_82576;
1889 break;
1890 case e1000_82575:
1891 case e1000_i210:
1892 case e1000_i211:
1893 default:
1894 pba = E1000_PBA_34K;
1895 break;
1896 }
1897
1898 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1899 (mac->type < e1000_82576)) {
1900 /* adjust PBA for jumbo frames */
1901 wr32(E1000_PBA, pba);
1902
1903 /* To maintain wire speed transmits, the Tx FIFO should be
1904 * large enough to accommodate two full transmit packets,
1905 * rounded up to the next 1KB and expressed in KB. Likewise,
1906 * the Rx FIFO should be large enough to accommodate at least
1907 * one full receive packet and is similarly rounded up and
1908 * expressed in KB.
1909 */
1910 pba = rd32(E1000_PBA);
1911 /* upper 16 bits has Tx packet buffer allocation size in KB */
1912 tx_space = pba >> 16;
1913 /* lower 16 bits has Rx packet buffer allocation size in KB */
1914 pba &= 0xffff;
1915 /* the Tx fifo also stores 16 bytes of information about the Tx
1916 * but don't include ethernet FCS because hardware appends it
1917 */
1918 min_tx_space = (adapter->max_frame_size +
1919 sizeof(union e1000_adv_tx_desc) -
1920 ETH_FCS_LEN) * 2;
1921 min_tx_space = ALIGN(min_tx_space, 1024);
1922 min_tx_space >>= 10;
1923 /* software strips receive CRC, so leave room for it */
1924 min_rx_space = adapter->max_frame_size;
1925 min_rx_space = ALIGN(min_rx_space, 1024);
1926 min_rx_space >>= 10;
1927
1928 /* If current Tx allocation is less than the min Tx FIFO size,
1929 * and the min Tx FIFO size is less than the current Rx FIFO
1930 * allocation, take space away from current Rx allocation
1931 */
1932 if (tx_space < min_tx_space &&
1933 ((min_tx_space - tx_space) < pba)) {
1934 pba = pba - (min_tx_space - tx_space);
1935
1936 /* if short on Rx space, Rx wins and must trump Tx
1937 * adjustment
1938 */
1939 if (pba < min_rx_space)
1940 pba = min_rx_space;
1941 }
1942 wr32(E1000_PBA, pba);
1943 }
1944
1945 /* flow control settings */
1946 /* The high water mark must be low enough to fit one full frame
1947 * (or the size used for early receive) above it in the Rx FIFO.
1948 * Set it to the lower of:
1949 * - 90% of the Rx FIFO size, or
1950 * - the full Rx FIFO size minus one full frame
1951 */
1952 hwm = min(((pba << 10) * 9 / 10),
1953 ((pba << 10) - 2 * adapter->max_frame_size));
1954
1955 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1956 fc->low_water = fc->high_water - 16;
1957 fc->pause_time = 0xFFFF;
1958 fc->send_xon = 1;
1959 fc->current_mode = fc->requested_mode;
1960
1961 /* disable receive for all VFs and wait one second */
1962 if (adapter->vfs_allocated_count) {
1963 int i;
1964
1965 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1966 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1967
1968 /* ping all the active vfs to let them know we are going down */
1969 igb_ping_all_vfs(adapter);
1970
1971 /* disable transmits and receives */
1972 wr32(E1000_VFRE, 0);
1973 wr32(E1000_VFTE, 0);
1974 }
1975
1976 /* Allow time for pending master requests to run */
1977 hw->mac.ops.reset_hw(hw);
1978 wr32(E1000_WUC, 0);
1979
1980 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1981 /* need to resetup here after media swap */
1982 adapter->ei.get_invariants(hw);
1983 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1984 }
1985 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1986 if (igb_enable_mas(adapter))
1987 dev_err(&pdev->dev,
1988 "Error enabling Media Auto Sense\n");
1989 }
1990 if (hw->mac.ops.init_hw(hw))
1991 dev_err(&pdev->dev, "Hardware Error\n");
1992
1993 /* Flow control settings reset on hardware reset, so guarantee flow
1994 * control is off when forcing speed.
1995 */
1996 if (!hw->mac.autoneg)
1997 igb_force_mac_fc(hw);
1998
1999 igb_init_dmac(adapter, pba);
2000 #ifdef CONFIG_IGB_HWMON
2001 /* Re-initialize the thermal sensor on i350 devices. */
2002 if (!test_bit(__IGB_DOWN, &adapter->state)) {
2003 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2004 /* If present, re-initialize the external thermal sensor
2005 * interface.
2006 */
2007 if (adapter->ets)
2008 mac->ops.init_thermal_sensor_thresh(hw);
2009 }
2010 }
2011 #endif
2012 /* Re-establish EEE setting */
2013 if (hw->phy.media_type == e1000_media_type_copper) {
2014 switch (mac->type) {
2015 case e1000_i350:
2016 case e1000_i210:
2017 case e1000_i211:
2018 igb_set_eee_i350(hw, true, true);
2019 break;
2020 case e1000_i354:
2021 igb_set_eee_i354(hw, true, true);
2022 break;
2023 default:
2024 break;
2025 }
2026 }
2027 if (!netif_running(adapter->netdev))
2028 igb_power_down_link(adapter);
2029
2030 igb_update_mng_vlan(adapter);
2031
2032 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2033 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2034
2035 /* Re-enable PTP, where applicable. */
2036 igb_ptp_reset(adapter);
2037
2038 igb_get_phy_info(hw);
2039 }
2040
2041 static netdev_features_t igb_fix_features(struct net_device *netdev,
2042 netdev_features_t features)
2043 {
2044 /* Since there is no support for separate Rx/Tx vlan accel
2045 * enable/disable make sure Tx flag is always in same state as Rx.
2046 */
2047 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2048 features |= NETIF_F_HW_VLAN_CTAG_TX;
2049 else
2050 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2051
2052 return features;
2053 }
2054
2055 static int igb_set_features(struct net_device *netdev,
2056 netdev_features_t features)
2057 {
2058 netdev_features_t changed = netdev->features ^ features;
2059 struct igb_adapter *adapter = netdev_priv(netdev);
2060
2061 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2062 igb_vlan_mode(netdev, features);
2063
2064 if (!(changed & NETIF_F_RXALL))
2065 return 0;
2066
2067 netdev->features = features;
2068
2069 if (netif_running(netdev))
2070 igb_reinit_locked(adapter);
2071 else
2072 igb_reset(adapter);
2073
2074 return 0;
2075 }
2076
2077 static const struct net_device_ops igb_netdev_ops = {
2078 .ndo_open = igb_open,
2079 .ndo_stop = igb_close,
2080 .ndo_start_xmit = igb_xmit_frame,
2081 .ndo_get_stats64 = igb_get_stats64,
2082 .ndo_set_rx_mode = igb_set_rx_mode,
2083 .ndo_set_mac_address = igb_set_mac,
2084 .ndo_change_mtu = igb_change_mtu,
2085 .ndo_do_ioctl = igb_ioctl,
2086 .ndo_tx_timeout = igb_tx_timeout,
2087 .ndo_validate_addr = eth_validate_addr,
2088 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
2089 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
2090 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
2091 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
2092 .ndo_set_vf_rate = igb_ndo_set_vf_bw,
2093 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
2094 .ndo_get_vf_config = igb_ndo_get_vf_config,
2095 #ifdef CONFIG_NET_POLL_CONTROLLER
2096 .ndo_poll_controller = igb_netpoll,
2097 #endif
2098 .ndo_fix_features = igb_fix_features,
2099 .ndo_set_features = igb_set_features,
2100 };
2101
2102 /**
2103 * igb_set_fw_version - Configure version string for ethtool
2104 * @adapter: adapter struct
2105 **/
2106 void igb_set_fw_version(struct igb_adapter *adapter)
2107 {
2108 struct e1000_hw *hw = &adapter->hw;
2109 struct e1000_fw_version fw;
2110
2111 igb_get_fw_version(hw, &fw);
2112
2113 switch (hw->mac.type) {
2114 case e1000_i210:
2115 case e1000_i211:
2116 if (!(igb_get_flash_presence_i210(hw))) {
2117 snprintf(adapter->fw_version,
2118 sizeof(adapter->fw_version),
2119 "%2d.%2d-%d",
2120 fw.invm_major, fw.invm_minor,
2121 fw.invm_img_type);
2122 break;
2123 }
2124 /* fall through */
2125 default:
2126 /* if option is rom valid, display its version too */
2127 if (fw.or_valid) {
2128 snprintf(adapter->fw_version,
2129 sizeof(adapter->fw_version),
2130 "%d.%d, 0x%08x, %d.%d.%d",
2131 fw.eep_major, fw.eep_minor, fw.etrack_id,
2132 fw.or_major, fw.or_build, fw.or_patch);
2133 /* no option rom */
2134 } else if (fw.etrack_id != 0X0000) {
2135 snprintf(adapter->fw_version,
2136 sizeof(adapter->fw_version),
2137 "%d.%d, 0x%08x",
2138 fw.eep_major, fw.eep_minor, fw.etrack_id);
2139 } else {
2140 snprintf(adapter->fw_version,
2141 sizeof(adapter->fw_version),
2142 "%d.%d.%d",
2143 fw.eep_major, fw.eep_minor, fw.eep_build);
2144 }
2145 break;
2146 }
2147 }
2148
2149 /**
2150 * igb_init_mas - init Media Autosense feature if enabled in the NVM
2151 *
2152 * @adapter: adapter struct
2153 **/
2154 static void igb_init_mas(struct igb_adapter *adapter)
2155 {
2156 struct e1000_hw *hw = &adapter->hw;
2157 u16 eeprom_data;
2158
2159 hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2160 switch (hw->bus.func) {
2161 case E1000_FUNC_0:
2162 if (eeprom_data & IGB_MAS_ENABLE_0) {
2163 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2164 netdev_info(adapter->netdev,
2165 "MAS: Enabling Media Autosense for port %d\n",
2166 hw->bus.func);
2167 }
2168 break;
2169 case E1000_FUNC_1:
2170 if (eeprom_data & IGB_MAS_ENABLE_1) {
2171 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2172 netdev_info(adapter->netdev,
2173 "MAS: Enabling Media Autosense for port %d\n",
2174 hw->bus.func);
2175 }
2176 break;
2177 case E1000_FUNC_2:
2178 if (eeprom_data & IGB_MAS_ENABLE_2) {
2179 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2180 netdev_info(adapter->netdev,
2181 "MAS: Enabling Media Autosense for port %d\n",
2182 hw->bus.func);
2183 }
2184 break;
2185 case E1000_FUNC_3:
2186 if (eeprom_data & IGB_MAS_ENABLE_3) {
2187 adapter->flags |= IGB_FLAG_MAS_ENABLE;
2188 netdev_info(adapter->netdev,
2189 "MAS: Enabling Media Autosense for port %d\n",
2190 hw->bus.func);
2191 }
2192 break;
2193 default:
2194 /* Shouldn't get here */
2195 netdev_err(adapter->netdev,
2196 "MAS: Invalid port configuration, returning\n");
2197 break;
2198 }
2199 }
2200
2201 /**
2202 * igb_init_i2c - Init I2C interface
2203 * @adapter: pointer to adapter structure
2204 **/
2205 static s32 igb_init_i2c(struct igb_adapter *adapter)
2206 {
2207 s32 status = 0;
2208
2209 /* I2C interface supported on i350 devices */
2210 if (adapter->hw.mac.type != e1000_i350)
2211 return 0;
2212
2213 /* Initialize the i2c bus which is controlled by the registers.
2214 * This bus will use the i2c_algo_bit structue that implements
2215 * the protocol through toggling of the 4 bits in the register.
2216 */
2217 adapter->i2c_adap.owner = THIS_MODULE;
2218 adapter->i2c_algo = igb_i2c_algo;
2219 adapter->i2c_algo.data = adapter;
2220 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2221 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2222 strlcpy(adapter->i2c_adap.name, "igb BB",
2223 sizeof(adapter->i2c_adap.name));
2224 status = i2c_bit_add_bus(&adapter->i2c_adap);
2225 return status;
2226 }
2227
2228 /**
2229 * igb_probe - Device Initialization Routine
2230 * @pdev: PCI device information struct
2231 * @ent: entry in igb_pci_tbl
2232 *
2233 * Returns 0 on success, negative on failure
2234 *
2235 * igb_probe initializes an adapter identified by a pci_dev structure.
2236 * The OS initialization, configuring of the adapter private structure,
2237 * and a hardware reset occur.
2238 **/
2239 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2240 {
2241 struct net_device *netdev;
2242 struct igb_adapter *adapter;
2243 struct e1000_hw *hw;
2244 u16 eeprom_data = 0;
2245 s32 ret_val;
2246 static int global_quad_port_a; /* global quad port a indication */
2247 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2248 int err, pci_using_dac;
2249 u8 part_str[E1000_PBANUM_LENGTH];
2250
2251 /* Catch broken hardware that put the wrong VF device ID in
2252 * the PCIe SR-IOV capability.
2253 */
2254 if (pdev->is_virtfn) {
2255 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2256 pci_name(pdev), pdev->vendor, pdev->device);
2257 return -EINVAL;
2258 }
2259
2260 err = pci_enable_device_mem(pdev);
2261 if (err)
2262 return err;
2263
2264 pci_using_dac = 0;
2265 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2266 if (!err) {
2267 pci_using_dac = 1;
2268 } else {
2269 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2270 if (err) {
2271 dev_err(&pdev->dev,
2272 "No usable DMA configuration, aborting\n");
2273 goto err_dma;
2274 }
2275 }
2276
2277 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2278 IORESOURCE_MEM),
2279 igb_driver_name);
2280 if (err)
2281 goto err_pci_reg;
2282
2283 pci_enable_pcie_error_reporting(pdev);
2284
2285 pci_set_master(pdev);
2286 pci_save_state(pdev);
2287
2288 err = -ENOMEM;
2289 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2290 IGB_MAX_TX_QUEUES);
2291 if (!netdev)
2292 goto err_alloc_etherdev;
2293
2294 SET_NETDEV_DEV(netdev, &pdev->dev);
2295
2296 pci_set_drvdata(pdev, netdev);
2297 adapter = netdev_priv(netdev);
2298 adapter->netdev = netdev;
2299 adapter->pdev = pdev;
2300 hw = &adapter->hw;
2301 hw->back = adapter;
2302 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2303
2304 err = -EIO;
2305 hw->hw_addr = pci_iomap(pdev, 0, 0);
2306 if (!hw->hw_addr)
2307 goto err_ioremap;
2308
2309 netdev->netdev_ops = &igb_netdev_ops;
2310 igb_set_ethtool_ops(netdev);
2311 netdev->watchdog_timeo = 5 * HZ;
2312
2313 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2314
2315 netdev->mem_start = pci_resource_start(pdev, 0);
2316 netdev->mem_end = pci_resource_end(pdev, 0);
2317
2318 /* PCI config space info */
2319 hw->vendor_id = pdev->vendor;
2320 hw->device_id = pdev->device;
2321 hw->revision_id = pdev->revision;
2322 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2323 hw->subsystem_device_id = pdev->subsystem_device;
2324
2325 /* Copy the default MAC, PHY and NVM function pointers */
2326 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2327 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2328 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2329 /* Initialize skew-specific constants */
2330 err = ei->get_invariants(hw);
2331 if (err)
2332 goto err_sw_init;
2333
2334 /* setup the private structure */
2335 err = igb_sw_init(adapter);
2336 if (err)
2337 goto err_sw_init;
2338
2339 igb_get_bus_info_pcie(hw);
2340
2341 hw->phy.autoneg_wait_to_complete = false;
2342
2343 /* Copper options */
2344 if (hw->phy.media_type == e1000_media_type_copper) {
2345 hw->phy.mdix = AUTO_ALL_MODES;
2346 hw->phy.disable_polarity_correction = false;
2347 hw->phy.ms_type = e1000_ms_hw_default;
2348 }
2349
2350 if (igb_check_reset_block(hw))
2351 dev_info(&pdev->dev,
2352 "PHY reset is blocked due to SOL/IDER session.\n");
2353
2354 /* features is initialized to 0 in allocation, it might have bits
2355 * set by igb_sw_init so we should use an or instead of an
2356 * assignment.
2357 */
2358 netdev->features |= NETIF_F_SG |
2359 NETIF_F_IP_CSUM |
2360 NETIF_F_IPV6_CSUM |
2361 NETIF_F_TSO |
2362 NETIF_F_TSO6 |
2363 NETIF_F_RXHASH |
2364 NETIF_F_RXCSUM |
2365 NETIF_F_HW_VLAN_CTAG_RX |
2366 NETIF_F_HW_VLAN_CTAG_TX;
2367
2368 /* copy netdev features into list of user selectable features */
2369 netdev->hw_features |= netdev->features;
2370 netdev->hw_features |= NETIF_F_RXALL;
2371
2372 /* set this bit last since it cannot be part of hw_features */
2373 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2374
2375 netdev->vlan_features |= NETIF_F_TSO |
2376 NETIF_F_TSO6 |
2377 NETIF_F_IP_CSUM |
2378 NETIF_F_IPV6_CSUM |
2379 NETIF_F_SG;
2380
2381 netdev->priv_flags |= IFF_SUPP_NOFCS;
2382
2383 if (pci_using_dac) {
2384 netdev->features |= NETIF_F_HIGHDMA;
2385 netdev->vlan_features |= NETIF_F_HIGHDMA;
2386 }
2387
2388 if (hw->mac.type >= e1000_82576) {
2389 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2390 netdev->features |= NETIF_F_SCTP_CSUM;
2391 }
2392
2393 netdev->priv_flags |= IFF_UNICAST_FLT;
2394
2395 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2396
2397 /* before reading the NVM, reset the controller to put the device in a
2398 * known good starting state
2399 */
2400 hw->mac.ops.reset_hw(hw);
2401
2402 /* make sure the NVM is good , i211/i210 parts can have special NVM
2403 * that doesn't contain a checksum
2404 */
2405 switch (hw->mac.type) {
2406 case e1000_i210:
2407 case e1000_i211:
2408 if (igb_get_flash_presence_i210(hw)) {
2409 if (hw->nvm.ops.validate(hw) < 0) {
2410 dev_err(&pdev->dev,
2411 "The NVM Checksum Is Not Valid\n");
2412 err = -EIO;
2413 goto err_eeprom;
2414 }
2415 }
2416 break;
2417 default:
2418 if (hw->nvm.ops.validate(hw) < 0) {
2419 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2420 err = -EIO;
2421 goto err_eeprom;
2422 }
2423 break;
2424 }
2425
2426 /* copy the MAC address out of the NVM */
2427 if (hw->mac.ops.read_mac_addr(hw))
2428 dev_err(&pdev->dev, "NVM Read Error\n");
2429
2430 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2431
2432 if (!is_valid_ether_addr(netdev->dev_addr)) {
2433 dev_err(&pdev->dev, "Invalid MAC Address\n");
2434 err = -EIO;
2435 goto err_eeprom;
2436 }
2437
2438 /* get firmware version for ethtool -i */
2439 igb_set_fw_version(adapter);
2440
2441 /* configure RXPBSIZE and TXPBSIZE */
2442 if (hw->mac.type == e1000_i210) {
2443 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2444 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2445 }
2446
2447 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2448 (unsigned long) adapter);
2449 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2450 (unsigned long) adapter);
2451
2452 INIT_WORK(&adapter->reset_task, igb_reset_task);
2453 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2454
2455 /* Initialize link properties that are user-changeable */
2456 adapter->fc_autoneg = true;
2457 hw->mac.autoneg = true;
2458 hw->phy.autoneg_advertised = 0x2f;
2459
2460 hw->fc.requested_mode = e1000_fc_default;
2461 hw->fc.current_mode = e1000_fc_default;
2462
2463 igb_validate_mdi_setting(hw);
2464
2465 /* By default, support wake on port A */
2466 if (hw->bus.func == 0)
2467 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2468
2469 /* Check the NVM for wake support on non-port A ports */
2470 if (hw->mac.type >= e1000_82580)
2471 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2472 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2473 &eeprom_data);
2474 else if (hw->bus.func == 1)
2475 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2476
2477 if (eeprom_data & IGB_EEPROM_APME)
2478 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2479
2480 /* now that we have the eeprom settings, apply the special cases where
2481 * the eeprom may be wrong or the board simply won't support wake on
2482 * lan on a particular port
2483 */
2484 switch (pdev->device) {
2485 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2486 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2487 break;
2488 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2489 case E1000_DEV_ID_82576_FIBER:
2490 case E1000_DEV_ID_82576_SERDES:
2491 /* Wake events only supported on port A for dual fiber
2492 * regardless of eeprom setting
2493 */
2494 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2495 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2496 break;
2497 case E1000_DEV_ID_82576_QUAD_COPPER:
2498 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2499 /* if quad port adapter, disable WoL on all but port A */
2500 if (global_quad_port_a != 0)
2501 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2502 else
2503 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2504 /* Reset for multiple quad port adapters */
2505 if (++global_quad_port_a == 4)
2506 global_quad_port_a = 0;
2507 break;
2508 default:
2509 /* If the device can't wake, don't set software support */
2510 if (!device_can_wakeup(&adapter->pdev->dev))
2511 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2512 }
2513
2514 /* initialize the wol settings based on the eeprom settings */
2515 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2516 adapter->wol |= E1000_WUFC_MAG;
2517
2518 /* Some vendors want WoL disabled by default, but still supported */
2519 if ((hw->mac.type == e1000_i350) &&
2520 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2521 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2522 adapter->wol = 0;
2523 }
2524
2525 device_set_wakeup_enable(&adapter->pdev->dev,
2526 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2527
2528 /* reset the hardware with the new settings */
2529 igb_reset(adapter);
2530
2531 /* Init the I2C interface */
2532 err = igb_init_i2c(adapter);
2533 if (err) {
2534 dev_err(&pdev->dev, "failed to init i2c interface\n");
2535 goto err_eeprom;
2536 }
2537
2538 /* let the f/w know that the h/w is now under the control of the
2539 * driver.
2540 */
2541 igb_get_hw_control(adapter);
2542
2543 strcpy(netdev->name, "eth%d");
2544 err = register_netdev(netdev);
2545 if (err)
2546 goto err_register;
2547
2548 /* carrier off reporting is important to ethtool even BEFORE open */
2549 netif_carrier_off(netdev);
2550
2551 #ifdef CONFIG_IGB_DCA
2552 if (dca_add_requester(&pdev->dev) == 0) {
2553 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2554 dev_info(&pdev->dev, "DCA enabled\n");
2555 igb_setup_dca(adapter);
2556 }
2557
2558 #endif
2559 #ifdef CONFIG_IGB_HWMON
2560 /* Initialize the thermal sensor on i350 devices. */
2561 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2562 u16 ets_word;
2563
2564 /* Read the NVM to determine if this i350 device supports an
2565 * external thermal sensor.
2566 */
2567 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2568 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2569 adapter->ets = true;
2570 else
2571 adapter->ets = false;
2572 if (igb_sysfs_init(adapter))
2573 dev_err(&pdev->dev,
2574 "failed to allocate sysfs resources\n");
2575 } else {
2576 adapter->ets = false;
2577 }
2578 #endif
2579 /* Check if Media Autosense is enabled */
2580 adapter->ei = *ei;
2581 if (hw->dev_spec._82575.mas_capable)
2582 igb_init_mas(adapter);
2583
2584 /* do hw tstamp init after resetting */
2585 igb_ptp_init(adapter);
2586
2587 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2588 /* print bus type/speed/width info, not applicable to i354 */
2589 if (hw->mac.type != e1000_i354) {
2590 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2591 netdev->name,
2592 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2593 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2594 "unknown"),
2595 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2596 "Width x4" :
2597 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2598 "Width x2" :
2599 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2600 "Width x1" : "unknown"), netdev->dev_addr);
2601 }
2602
2603 if ((hw->mac.type >= e1000_i210 ||
2604 igb_get_flash_presence_i210(hw))) {
2605 ret_val = igb_read_part_string(hw, part_str,
2606 E1000_PBANUM_LENGTH);
2607 } else {
2608 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2609 }
2610
2611 if (ret_val)
2612 strcpy(part_str, "Unknown");
2613 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2614 dev_info(&pdev->dev,
2615 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2616 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2617 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2618 adapter->num_rx_queues, adapter->num_tx_queues);
2619 if (hw->phy.media_type == e1000_media_type_copper) {
2620 switch (hw->mac.type) {
2621 case e1000_i350:
2622 case e1000_i210:
2623 case e1000_i211:
2624 /* Enable EEE for internal copper PHY devices */
2625 err = igb_set_eee_i350(hw, true, true);
2626 if ((!err) &&
2627 (!hw->dev_spec._82575.eee_disable)) {
2628 adapter->eee_advert =
2629 MDIO_EEE_100TX | MDIO_EEE_1000T;
2630 adapter->flags |= IGB_FLAG_EEE;
2631 }
2632 break;
2633 case e1000_i354:
2634 if ((rd32(E1000_CTRL_EXT) &
2635 E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2636 err = igb_set_eee_i354(hw, true, true);
2637 if ((!err) &&
2638 (!hw->dev_spec._82575.eee_disable)) {
2639 adapter->eee_advert =
2640 MDIO_EEE_100TX | MDIO_EEE_1000T;
2641 adapter->flags |= IGB_FLAG_EEE;
2642 }
2643 }
2644 break;
2645 default:
2646 break;
2647 }
2648 }
2649 pm_runtime_put_noidle(&pdev->dev);
2650 return 0;
2651
2652 err_register:
2653 igb_release_hw_control(adapter);
2654 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2655 err_eeprom:
2656 if (!igb_check_reset_block(hw))
2657 igb_reset_phy(hw);
2658
2659 if (hw->flash_address)
2660 iounmap(hw->flash_address);
2661 err_sw_init:
2662 igb_clear_interrupt_scheme(adapter);
2663 pci_iounmap(pdev, hw->hw_addr);
2664 err_ioremap:
2665 free_netdev(netdev);
2666 err_alloc_etherdev:
2667 pci_release_selected_regions(pdev,
2668 pci_select_bars(pdev, IORESOURCE_MEM));
2669 err_pci_reg:
2670 err_dma:
2671 pci_disable_device(pdev);
2672 return err;
2673 }
2674
2675 #ifdef CONFIG_PCI_IOV
2676 static int igb_disable_sriov(struct pci_dev *pdev)
2677 {
2678 struct net_device *netdev = pci_get_drvdata(pdev);
2679 struct igb_adapter *adapter = netdev_priv(netdev);
2680 struct e1000_hw *hw = &adapter->hw;
2681
2682 /* reclaim resources allocated to VFs */
2683 if (adapter->vf_data) {
2684 /* disable iov and allow time for transactions to clear */
2685 if (pci_vfs_assigned(pdev)) {
2686 dev_warn(&pdev->dev,
2687 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2688 return -EPERM;
2689 } else {
2690 pci_disable_sriov(pdev);
2691 msleep(500);
2692 }
2693
2694 kfree(adapter->vf_data);
2695 adapter->vf_data = NULL;
2696 adapter->vfs_allocated_count = 0;
2697 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2698 wrfl();
2699 msleep(100);
2700 dev_info(&pdev->dev, "IOV Disabled\n");
2701
2702 /* Re-enable DMA Coalescing flag since IOV is turned off */
2703 adapter->flags |= IGB_FLAG_DMAC;
2704 }
2705
2706 return 0;
2707 }
2708
2709 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2710 {
2711 struct net_device *netdev = pci_get_drvdata(pdev);
2712 struct igb_adapter *adapter = netdev_priv(netdev);
2713 int old_vfs = pci_num_vf(pdev);
2714 int err = 0;
2715 int i;
2716
2717 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2718 err = -EPERM;
2719 goto out;
2720 }
2721 if (!num_vfs)
2722 goto out;
2723
2724 if (old_vfs) {
2725 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2726 old_vfs, max_vfs);
2727 adapter->vfs_allocated_count = old_vfs;
2728 } else
2729 adapter->vfs_allocated_count = num_vfs;
2730
2731 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2732 sizeof(struct vf_data_storage), GFP_KERNEL);
2733
2734 /* if allocation failed then we do not support SR-IOV */
2735 if (!adapter->vf_data) {
2736 adapter->vfs_allocated_count = 0;
2737 dev_err(&pdev->dev,
2738 "Unable to allocate memory for VF Data Storage\n");
2739 err = -ENOMEM;
2740 goto out;
2741 }
2742
2743 /* only call pci_enable_sriov() if no VFs are allocated already */
2744 if (!old_vfs) {
2745 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2746 if (err)
2747 goto err_out;
2748 }
2749 dev_info(&pdev->dev, "%d VFs allocated\n",
2750 adapter->vfs_allocated_count);
2751 for (i = 0; i < adapter->vfs_allocated_count; i++)
2752 igb_vf_configure(adapter, i);
2753
2754 /* DMA Coalescing is not supported in IOV mode. */
2755 adapter->flags &= ~IGB_FLAG_DMAC;
2756 goto out;
2757
2758 err_out:
2759 kfree(adapter->vf_data);
2760 adapter->vf_data = NULL;
2761 adapter->vfs_allocated_count = 0;
2762 out:
2763 return err;
2764 }
2765
2766 #endif
2767 /**
2768 * igb_remove_i2c - Cleanup I2C interface
2769 * @adapter: pointer to adapter structure
2770 **/
2771 static void igb_remove_i2c(struct igb_adapter *adapter)
2772 {
2773 /* free the adapter bus structure */
2774 i2c_del_adapter(&adapter->i2c_adap);
2775 }
2776
2777 /**
2778 * igb_remove - Device Removal Routine
2779 * @pdev: PCI device information struct
2780 *
2781 * igb_remove is called by the PCI subsystem to alert the driver
2782 * that it should release a PCI device. The could be caused by a
2783 * Hot-Plug event, or because the driver is going to be removed from
2784 * memory.
2785 **/
2786 static void igb_remove(struct pci_dev *pdev)
2787 {
2788 struct net_device *netdev = pci_get_drvdata(pdev);
2789 struct igb_adapter *adapter = netdev_priv(netdev);
2790 struct e1000_hw *hw = &adapter->hw;
2791
2792 pm_runtime_get_noresume(&pdev->dev);
2793 #ifdef CONFIG_IGB_HWMON
2794 igb_sysfs_exit(adapter);
2795 #endif
2796 igb_remove_i2c(adapter);
2797 igb_ptp_stop(adapter);
2798 /* The watchdog timer may be rescheduled, so explicitly
2799 * disable watchdog from being rescheduled.
2800 */
2801 set_bit(__IGB_DOWN, &adapter->state);
2802 del_timer_sync(&adapter->watchdog_timer);
2803 del_timer_sync(&adapter->phy_info_timer);
2804
2805 cancel_work_sync(&adapter->reset_task);
2806 cancel_work_sync(&adapter->watchdog_task);
2807
2808 #ifdef CONFIG_IGB_DCA
2809 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2810 dev_info(&pdev->dev, "DCA disabled\n");
2811 dca_remove_requester(&pdev->dev);
2812 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2813 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2814 }
2815 #endif
2816
2817 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2818 * would have already happened in close and is redundant.
2819 */
2820 igb_release_hw_control(adapter);
2821
2822 unregister_netdev(netdev);
2823
2824 igb_clear_interrupt_scheme(adapter);
2825
2826 #ifdef CONFIG_PCI_IOV
2827 igb_disable_sriov(pdev);
2828 #endif
2829
2830 pci_iounmap(pdev, hw->hw_addr);
2831 if (hw->flash_address)
2832 iounmap(hw->flash_address);
2833 pci_release_selected_regions(pdev,
2834 pci_select_bars(pdev, IORESOURCE_MEM));
2835
2836 kfree(adapter->shadow_vfta);
2837 free_netdev(netdev);
2838
2839 pci_disable_pcie_error_reporting(pdev);
2840
2841 pci_disable_device(pdev);
2842 }
2843
2844 /**
2845 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2846 * @adapter: board private structure to initialize
2847 *
2848 * This function initializes the vf specific data storage and then attempts to
2849 * allocate the VFs. The reason for ordering it this way is because it is much
2850 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2851 * the memory for the VFs.
2852 **/
2853 static void igb_probe_vfs(struct igb_adapter *adapter)
2854 {
2855 #ifdef CONFIG_PCI_IOV
2856 struct pci_dev *pdev = adapter->pdev;
2857 struct e1000_hw *hw = &adapter->hw;
2858
2859 /* Virtualization features not supported on i210 family. */
2860 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2861 return;
2862
2863 pci_sriov_set_totalvfs(pdev, 7);
2864 igb_pci_enable_sriov(pdev, max_vfs);
2865
2866 #endif /* CONFIG_PCI_IOV */
2867 }
2868
2869 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2870 {
2871 struct e1000_hw *hw = &adapter->hw;
2872 u32 max_rss_queues;
2873
2874 /* Determine the maximum number of RSS queues supported. */
2875 switch (hw->mac.type) {
2876 case e1000_i211:
2877 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2878 break;
2879 case e1000_82575:
2880 case e1000_i210:
2881 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2882 break;
2883 case e1000_i350:
2884 /* I350 cannot do RSS and SR-IOV at the same time */
2885 if (!!adapter->vfs_allocated_count) {
2886 max_rss_queues = 1;
2887 break;
2888 }
2889 /* fall through */
2890 case e1000_82576:
2891 if (!!adapter->vfs_allocated_count) {
2892 max_rss_queues = 2;
2893 break;
2894 }
2895 /* fall through */
2896 case e1000_82580:
2897 case e1000_i354:
2898 default:
2899 max_rss_queues = IGB_MAX_RX_QUEUES;
2900 break;
2901 }
2902
2903 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2904
2905 /* Determine if we need to pair queues. */
2906 switch (hw->mac.type) {
2907 case e1000_82575:
2908 case e1000_i211:
2909 /* Device supports enough interrupts without queue pairing. */
2910 break;
2911 case e1000_82576:
2912 /* If VFs are going to be allocated with RSS queues then we
2913 * should pair the queues in order to conserve interrupts due
2914 * to limited supply.
2915 */
2916 if ((adapter->rss_queues > 1) &&
2917 (adapter->vfs_allocated_count > 6))
2918 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2919 /* fall through */
2920 case e1000_82580:
2921 case e1000_i350:
2922 case e1000_i354:
2923 case e1000_i210:
2924 default:
2925 /* If rss_queues > half of max_rss_queues, pair the queues in
2926 * order to conserve interrupts due to limited supply.
2927 */
2928 if (adapter->rss_queues > (max_rss_queues / 2))
2929 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2930 break;
2931 }
2932 }
2933
2934 /**
2935 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2936 * @adapter: board private structure to initialize
2937 *
2938 * igb_sw_init initializes the Adapter private data structure.
2939 * Fields are initialized based on PCI device information and
2940 * OS network device settings (MTU size).
2941 **/
2942 static int igb_sw_init(struct igb_adapter *adapter)
2943 {
2944 struct e1000_hw *hw = &adapter->hw;
2945 struct net_device *netdev = adapter->netdev;
2946 struct pci_dev *pdev = adapter->pdev;
2947
2948 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2949
2950 /* set default ring sizes */
2951 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2952 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2953
2954 /* set default ITR values */
2955 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2956 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2957
2958 /* set default work limits */
2959 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2960
2961 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2962 VLAN_HLEN;
2963 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2964
2965 spin_lock_init(&adapter->stats64_lock);
2966 #ifdef CONFIG_PCI_IOV
2967 switch (hw->mac.type) {
2968 case e1000_82576:
2969 case e1000_i350:
2970 if (max_vfs > 7) {
2971 dev_warn(&pdev->dev,
2972 "Maximum of 7 VFs per PF, using max\n");
2973 max_vfs = adapter->vfs_allocated_count = 7;
2974 } else
2975 adapter->vfs_allocated_count = max_vfs;
2976 if (adapter->vfs_allocated_count)
2977 dev_warn(&pdev->dev,
2978 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2979 break;
2980 default:
2981 break;
2982 }
2983 #endif /* CONFIG_PCI_IOV */
2984
2985 igb_init_queue_configuration(adapter);
2986
2987 /* Setup and initialize a copy of the hw vlan table array */
2988 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2989 GFP_ATOMIC);
2990
2991 /* This call may decrease the number of queues */
2992 if (igb_init_interrupt_scheme(adapter, true)) {
2993 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2994 return -ENOMEM;
2995 }
2996
2997 igb_probe_vfs(adapter);
2998
2999 /* Explicitly disable IRQ since the NIC can be in any state. */
3000 igb_irq_disable(adapter);
3001
3002 if (hw->mac.type >= e1000_i350)
3003 adapter->flags &= ~IGB_FLAG_DMAC;
3004
3005 set_bit(__IGB_DOWN, &adapter->state);
3006 return 0;
3007 }
3008
3009 /**
3010 * igb_open - Called when a network interface is made active
3011 * @netdev: network interface device structure
3012 *
3013 * Returns 0 on success, negative value on failure
3014 *
3015 * The open entry point is called when a network interface is made
3016 * active by the system (IFF_UP). At this point all resources needed
3017 * for transmit and receive operations are allocated, the interrupt
3018 * handler is registered with the OS, the watchdog timer is started,
3019 * and the stack is notified that the interface is ready.
3020 **/
3021 static int __igb_open(struct net_device *netdev, bool resuming)
3022 {
3023 struct igb_adapter *adapter = netdev_priv(netdev);
3024 struct e1000_hw *hw = &adapter->hw;
3025 struct pci_dev *pdev = adapter->pdev;
3026 int err;
3027 int i;
3028
3029 /* disallow open during test */
3030 if (test_bit(__IGB_TESTING, &adapter->state)) {
3031 WARN_ON(resuming);
3032 return -EBUSY;
3033 }
3034
3035 if (!resuming)
3036 pm_runtime_get_sync(&pdev->dev);
3037
3038 netif_carrier_off(netdev);
3039
3040 /* allocate transmit descriptors */
3041 err = igb_setup_all_tx_resources(adapter);
3042 if (err)
3043 goto err_setup_tx;
3044
3045 /* allocate receive descriptors */
3046 err = igb_setup_all_rx_resources(adapter);
3047 if (err)
3048 goto err_setup_rx;
3049
3050 igb_power_up_link(adapter);
3051
3052 /* before we allocate an interrupt, we must be ready to handle it.
3053 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3054 * as soon as we call pci_request_irq, so we have to setup our
3055 * clean_rx handler before we do so.
3056 */
3057 igb_configure(adapter);
3058
3059 err = igb_request_irq(adapter);
3060 if (err)
3061 goto err_req_irq;
3062
3063 /* Notify the stack of the actual queue counts. */
3064 err = netif_set_real_num_tx_queues(adapter->netdev,
3065 adapter->num_tx_queues);
3066 if (err)
3067 goto err_set_queues;
3068
3069 err = netif_set_real_num_rx_queues(adapter->netdev,
3070 adapter->num_rx_queues);
3071 if (err)
3072 goto err_set_queues;
3073
3074 /* From here on the code is the same as igb_up() */
3075 clear_bit(__IGB_DOWN, &adapter->state);
3076
3077 for (i = 0; i < adapter->num_q_vectors; i++)
3078 napi_enable(&(adapter->q_vector[i]->napi));
3079
3080 /* Clear any pending interrupts. */
3081 rd32(E1000_ICR);
3082
3083 igb_irq_enable(adapter);
3084
3085 /* notify VFs that reset has been completed */
3086 if (adapter->vfs_allocated_count) {
3087 u32 reg_data = rd32(E1000_CTRL_EXT);
3088
3089 reg_data |= E1000_CTRL_EXT_PFRSTD;
3090 wr32(E1000_CTRL_EXT, reg_data);
3091 }
3092
3093 netif_tx_start_all_queues(netdev);
3094
3095 if (!resuming)
3096 pm_runtime_put(&pdev->dev);
3097
3098 /* start the watchdog. */
3099 hw->mac.get_link_status = 1;
3100 schedule_work(&adapter->watchdog_task);
3101
3102 return 0;
3103
3104 err_set_queues:
3105 igb_free_irq(adapter);
3106 err_req_irq:
3107 igb_release_hw_control(adapter);
3108 igb_power_down_link(adapter);
3109 igb_free_all_rx_resources(adapter);
3110 err_setup_rx:
3111 igb_free_all_tx_resources(adapter);
3112 err_setup_tx:
3113 igb_reset(adapter);
3114 if (!resuming)
3115 pm_runtime_put(&pdev->dev);
3116
3117 return err;
3118 }
3119
3120 static int igb_open(struct net_device *netdev)
3121 {
3122 return __igb_open(netdev, false);
3123 }
3124
3125 /**
3126 * igb_close - Disables a network interface
3127 * @netdev: network interface device structure
3128 *
3129 * Returns 0, this is not allowed to fail
3130 *
3131 * The close entry point is called when an interface is de-activated
3132 * by the OS. The hardware is still under the driver's control, but
3133 * needs to be disabled. A global MAC reset is issued to stop the
3134 * hardware, and all transmit and receive resources are freed.
3135 **/
3136 static int __igb_close(struct net_device *netdev, bool suspending)
3137 {
3138 struct igb_adapter *adapter = netdev_priv(netdev);
3139 struct pci_dev *pdev = adapter->pdev;
3140
3141 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3142
3143 if (!suspending)
3144 pm_runtime_get_sync(&pdev->dev);
3145
3146 igb_down(adapter);
3147 igb_free_irq(adapter);
3148
3149 igb_free_all_tx_resources(adapter);
3150 igb_free_all_rx_resources(adapter);
3151
3152 if (!suspending)
3153 pm_runtime_put_sync(&pdev->dev);
3154 return 0;
3155 }
3156
3157 static int igb_close(struct net_device *netdev)
3158 {
3159 return __igb_close(netdev, false);
3160 }
3161
3162 /**
3163 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
3164 * @tx_ring: tx descriptor ring (for a specific queue) to setup
3165 *
3166 * Return 0 on success, negative on failure
3167 **/
3168 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3169 {
3170 struct device *dev = tx_ring->dev;
3171 int size;
3172
3173 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3174
3175 tx_ring->tx_buffer_info = vzalloc(size);
3176 if (!tx_ring->tx_buffer_info)
3177 goto err;
3178
3179 /* round up to nearest 4K */
3180 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3181 tx_ring->size = ALIGN(tx_ring->size, 4096);
3182
3183 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3184 &tx_ring->dma, GFP_KERNEL);
3185 if (!tx_ring->desc)
3186 goto err;
3187
3188 tx_ring->next_to_use = 0;
3189 tx_ring->next_to_clean = 0;
3190
3191 return 0;
3192
3193 err:
3194 vfree(tx_ring->tx_buffer_info);
3195 tx_ring->tx_buffer_info = NULL;
3196 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3197 return -ENOMEM;
3198 }
3199
3200 /**
3201 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
3202 * (Descriptors) for all queues
3203 * @adapter: board private structure
3204 *
3205 * Return 0 on success, negative on failure
3206 **/
3207 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3208 {
3209 struct pci_dev *pdev = adapter->pdev;
3210 int i, err = 0;
3211
3212 for (i = 0; i < adapter->num_tx_queues; i++) {
3213 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3214 if (err) {
3215 dev_err(&pdev->dev,
3216 "Allocation for Tx Queue %u failed\n", i);
3217 for (i--; i >= 0; i--)
3218 igb_free_tx_resources(adapter->tx_ring[i]);
3219 break;
3220 }
3221 }
3222
3223 return err;
3224 }
3225
3226 /**
3227 * igb_setup_tctl - configure the transmit control registers
3228 * @adapter: Board private structure
3229 **/
3230 void igb_setup_tctl(struct igb_adapter *adapter)
3231 {
3232 struct e1000_hw *hw = &adapter->hw;
3233 u32 tctl;
3234
3235 /* disable queue 0 which is enabled by default on 82575 and 82576 */
3236 wr32(E1000_TXDCTL(0), 0);
3237
3238 /* Program the Transmit Control Register */
3239 tctl = rd32(E1000_TCTL);
3240 tctl &= ~E1000_TCTL_CT;
3241 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3242 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3243
3244 igb_config_collision_dist(hw);
3245
3246 /* Enable transmits */
3247 tctl |= E1000_TCTL_EN;
3248
3249 wr32(E1000_TCTL, tctl);
3250 }
3251
3252 /**
3253 * igb_configure_tx_ring - Configure transmit ring after Reset
3254 * @adapter: board private structure
3255 * @ring: tx ring to configure
3256 *
3257 * Configure a transmit ring after a reset.
3258 **/
3259 void igb_configure_tx_ring(struct igb_adapter *adapter,
3260 struct igb_ring *ring)
3261 {
3262 struct e1000_hw *hw = &adapter->hw;
3263 u32 txdctl = 0;
3264 u64 tdba = ring->dma;
3265 int reg_idx = ring->reg_idx;
3266
3267 /* disable the queue */
3268 wr32(E1000_TXDCTL(reg_idx), 0);
3269 wrfl();
3270 mdelay(10);
3271
3272 wr32(E1000_TDLEN(reg_idx),
3273 ring->count * sizeof(union e1000_adv_tx_desc));
3274 wr32(E1000_TDBAL(reg_idx),
3275 tdba & 0x00000000ffffffffULL);
3276 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3277
3278 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3279 wr32(E1000_TDH(reg_idx), 0);
3280 writel(0, ring->tail);
3281
3282 txdctl |= IGB_TX_PTHRESH;
3283 txdctl |= IGB_TX_HTHRESH << 8;
3284 txdctl |= IGB_TX_WTHRESH << 16;
3285
3286 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3287 wr32(E1000_TXDCTL(reg_idx), txdctl);
3288 }
3289
3290 /**
3291 * igb_configure_tx - Configure transmit Unit after Reset
3292 * @adapter: board private structure
3293 *
3294 * Configure the Tx unit of the MAC after a reset.
3295 **/
3296 static void igb_configure_tx(struct igb_adapter *adapter)
3297 {
3298 int i;
3299
3300 for (i = 0; i < adapter->num_tx_queues; i++)
3301 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3302 }
3303
3304 /**
3305 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3306 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3307 *
3308 * Returns 0 on success, negative on failure
3309 **/
3310 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3311 {
3312 struct device *dev = rx_ring->dev;
3313 int size;
3314
3315 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3316
3317 rx_ring->rx_buffer_info = vzalloc(size);
3318 if (!rx_ring->rx_buffer_info)
3319 goto err;
3320
3321 /* Round up to nearest 4K */
3322 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3323 rx_ring->size = ALIGN(rx_ring->size, 4096);
3324
3325 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3326 &rx_ring->dma, GFP_KERNEL);
3327 if (!rx_ring->desc)
3328 goto err;
3329
3330 rx_ring->next_to_alloc = 0;
3331 rx_ring->next_to_clean = 0;
3332 rx_ring->next_to_use = 0;
3333
3334 return 0;
3335
3336 err:
3337 vfree(rx_ring->rx_buffer_info);
3338 rx_ring->rx_buffer_info = NULL;
3339 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3340 return -ENOMEM;
3341 }
3342
3343 /**
3344 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3345 * (Descriptors) for all queues
3346 * @adapter: board private structure
3347 *
3348 * Return 0 on success, negative on failure
3349 **/
3350 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3351 {
3352 struct pci_dev *pdev = adapter->pdev;
3353 int i, err = 0;
3354
3355 for (i = 0; i < adapter->num_rx_queues; i++) {
3356 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3357 if (err) {
3358 dev_err(&pdev->dev,
3359 "Allocation for Rx Queue %u failed\n", i);
3360 for (i--; i >= 0; i--)
3361 igb_free_rx_resources(adapter->rx_ring[i]);
3362 break;
3363 }
3364 }
3365
3366 return err;
3367 }
3368
3369 /**
3370 * igb_setup_mrqc - configure the multiple receive queue control registers
3371 * @adapter: Board private structure
3372 **/
3373 static void igb_setup_mrqc(struct igb_adapter *adapter)
3374 {
3375 struct e1000_hw *hw = &adapter->hw;
3376 u32 mrqc, rxcsum;
3377 u32 j, num_rx_queues;
3378 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3379 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3380 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3381 0xFA01ACBE };
3382
3383 /* Fill out hash function seeds */
3384 for (j = 0; j < 10; j++)
3385 wr32(E1000_RSSRK(j), rsskey[j]);
3386
3387 num_rx_queues = adapter->rss_queues;
3388
3389 switch (hw->mac.type) {
3390 case e1000_82576:
3391 /* 82576 supports 2 RSS queues for SR-IOV */
3392 if (adapter->vfs_allocated_count)
3393 num_rx_queues = 2;
3394 break;
3395 default:
3396 break;
3397 }
3398
3399 if (adapter->rss_indir_tbl_init != num_rx_queues) {
3400 for (j = 0; j < IGB_RETA_SIZE; j++)
3401 adapter->rss_indir_tbl[j] =
3402 (j * num_rx_queues) / IGB_RETA_SIZE;
3403 adapter->rss_indir_tbl_init = num_rx_queues;
3404 }
3405 igb_write_rss_indir_tbl(adapter);
3406
3407 /* Disable raw packet checksumming so that RSS hash is placed in
3408 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3409 * offloads as they are enabled by default
3410 */
3411 rxcsum = rd32(E1000_RXCSUM);
3412 rxcsum |= E1000_RXCSUM_PCSD;
3413
3414 if (adapter->hw.mac.type >= e1000_82576)
3415 /* Enable Receive Checksum Offload for SCTP */
3416 rxcsum |= E1000_RXCSUM_CRCOFL;
3417
3418 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3419 wr32(E1000_RXCSUM, rxcsum);
3420
3421 /* Generate RSS hash based on packet types, TCP/UDP
3422 * port numbers and/or IPv4/v6 src and dst addresses
3423 */
3424 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3425 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3426 E1000_MRQC_RSS_FIELD_IPV6 |
3427 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3428 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3429
3430 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3431 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3432 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3433 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3434
3435 /* If VMDq is enabled then we set the appropriate mode for that, else
3436 * we default to RSS so that an RSS hash is calculated per packet even
3437 * if we are only using one queue
3438 */
3439 if (adapter->vfs_allocated_count) {
3440 if (hw->mac.type > e1000_82575) {
3441 /* Set the default pool for the PF's first queue */
3442 u32 vtctl = rd32(E1000_VT_CTL);
3443
3444 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3445 E1000_VT_CTL_DISABLE_DEF_POOL);
3446 vtctl |= adapter->vfs_allocated_count <<
3447 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3448 wr32(E1000_VT_CTL, vtctl);
3449 }
3450 if (adapter->rss_queues > 1)
3451 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3452 else
3453 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3454 } else {
3455 if (hw->mac.type != e1000_i211)
3456 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3457 }
3458 igb_vmm_control(adapter);
3459
3460 wr32(E1000_MRQC, mrqc);
3461 }
3462
3463 /**
3464 * igb_setup_rctl - configure the receive control registers
3465 * @adapter: Board private structure
3466 **/
3467 void igb_setup_rctl(struct igb_adapter *adapter)
3468 {
3469 struct e1000_hw *hw = &adapter->hw;
3470 u32 rctl;
3471
3472 rctl = rd32(E1000_RCTL);
3473
3474 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3475 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3476
3477 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3478 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3479
3480 /* enable stripping of CRC. It's unlikely this will break BMC
3481 * redirection as it did with e1000. Newer features require
3482 * that the HW strips the CRC.
3483 */
3484 rctl |= E1000_RCTL_SECRC;
3485
3486 /* disable store bad packets and clear size bits. */
3487 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3488
3489 /* enable LPE to prevent packets larger than max_frame_size */
3490 rctl |= E1000_RCTL_LPE;
3491
3492 /* disable queue 0 to prevent tail write w/o re-config */
3493 wr32(E1000_RXDCTL(0), 0);
3494
3495 /* Attention!!! For SR-IOV PF driver operations you must enable
3496 * queue drop for all VF and PF queues to prevent head of line blocking
3497 * if an un-trusted VF does not provide descriptors to hardware.
3498 */
3499 if (adapter->vfs_allocated_count) {
3500 /* set all queue drop enable bits */
3501 wr32(E1000_QDE, ALL_QUEUES);
3502 }
3503
3504 /* This is useful for sniffing bad packets. */
3505 if (adapter->netdev->features & NETIF_F_RXALL) {
3506 /* UPE and MPE will be handled by normal PROMISC logic
3507 * in e1000e_set_rx_mode
3508 */
3509 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3510 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3511 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3512
3513 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3514 E1000_RCTL_DPF | /* Allow filtered pause */
3515 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3516 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3517 * and that breaks VLANs.
3518 */
3519 }
3520
3521 wr32(E1000_RCTL, rctl);
3522 }
3523
3524 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3525 int vfn)
3526 {
3527 struct e1000_hw *hw = &adapter->hw;
3528 u32 vmolr;
3529
3530 /* if it isn't the PF check to see if VFs are enabled and
3531 * increase the size to support vlan tags
3532 */
3533 if (vfn < adapter->vfs_allocated_count &&
3534 adapter->vf_data[vfn].vlans_enabled)
3535 size += VLAN_TAG_SIZE;
3536
3537 vmolr = rd32(E1000_VMOLR(vfn));
3538 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3539 vmolr |= size | E1000_VMOLR_LPE;
3540 wr32(E1000_VMOLR(vfn), vmolr);
3541
3542 return 0;
3543 }
3544
3545 /**
3546 * igb_rlpml_set - set maximum receive packet size
3547 * @adapter: board private structure
3548 *
3549 * Configure maximum receivable packet size.
3550 **/
3551 static void igb_rlpml_set(struct igb_adapter *adapter)
3552 {
3553 u32 max_frame_size = adapter->max_frame_size;
3554 struct e1000_hw *hw = &adapter->hw;
3555 u16 pf_id = adapter->vfs_allocated_count;
3556
3557 if (pf_id) {
3558 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3559 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3560 * to our max jumbo frame size, in case we need to enable
3561 * jumbo frames on one of the rings later.
3562 * This will not pass over-length frames into the default
3563 * queue because it's gated by the VMOLR.RLPML.
3564 */
3565 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3566 }
3567
3568 wr32(E1000_RLPML, max_frame_size);
3569 }
3570
3571 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3572 int vfn, bool aupe)
3573 {
3574 struct e1000_hw *hw = &adapter->hw;
3575 u32 vmolr;
3576
3577 /* This register exists only on 82576 and newer so if we are older then
3578 * we should exit and do nothing
3579 */
3580 if (hw->mac.type < e1000_82576)
3581 return;
3582
3583 vmolr = rd32(E1000_VMOLR(vfn));
3584 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3585 if (hw->mac.type == e1000_i350) {
3586 u32 dvmolr;
3587
3588 dvmolr = rd32(E1000_DVMOLR(vfn));
3589 dvmolr |= E1000_DVMOLR_STRVLAN;
3590 wr32(E1000_DVMOLR(vfn), dvmolr);
3591 }
3592 if (aupe)
3593 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3594 else
3595 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3596
3597 /* clear all bits that might not be set */
3598 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3599
3600 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3601 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3602 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3603 * multicast packets
3604 */
3605 if (vfn <= adapter->vfs_allocated_count)
3606 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3607
3608 wr32(E1000_VMOLR(vfn), vmolr);
3609 }
3610
3611 /**
3612 * igb_configure_rx_ring - Configure a receive ring after Reset
3613 * @adapter: board private structure
3614 * @ring: receive ring to be configured
3615 *
3616 * Configure the Rx unit of the MAC after a reset.
3617 **/
3618 void igb_configure_rx_ring(struct igb_adapter *adapter,
3619 struct igb_ring *ring)
3620 {
3621 struct e1000_hw *hw = &adapter->hw;
3622 u64 rdba = ring->dma;
3623 int reg_idx = ring->reg_idx;
3624 u32 srrctl = 0, rxdctl = 0;
3625
3626 /* disable the queue */
3627 wr32(E1000_RXDCTL(reg_idx), 0);
3628
3629 /* Set DMA base address registers */
3630 wr32(E1000_RDBAL(reg_idx),
3631 rdba & 0x00000000ffffffffULL);
3632 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3633 wr32(E1000_RDLEN(reg_idx),
3634 ring->count * sizeof(union e1000_adv_rx_desc));
3635
3636 /* initialize head and tail */
3637 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3638 wr32(E1000_RDH(reg_idx), 0);
3639 writel(0, ring->tail);
3640
3641 /* set descriptor configuration */
3642 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3643 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3644 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3645 if (hw->mac.type >= e1000_82580)
3646 srrctl |= E1000_SRRCTL_TIMESTAMP;
3647 /* Only set Drop Enable if we are supporting multiple queues */
3648 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3649 srrctl |= E1000_SRRCTL_DROP_EN;
3650
3651 wr32(E1000_SRRCTL(reg_idx), srrctl);
3652
3653 /* set filtering for VMDQ pools */
3654 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3655
3656 rxdctl |= IGB_RX_PTHRESH;
3657 rxdctl |= IGB_RX_HTHRESH << 8;
3658 rxdctl |= IGB_RX_WTHRESH << 16;
3659
3660 /* enable receive descriptor fetching */
3661 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3662 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3663 }
3664
3665 /**
3666 * igb_configure_rx - Configure receive Unit after Reset
3667 * @adapter: board private structure
3668 *
3669 * Configure the Rx unit of the MAC after a reset.
3670 **/
3671 static void igb_configure_rx(struct igb_adapter *adapter)
3672 {
3673 int i;
3674
3675 /* set UTA to appropriate mode */
3676 igb_set_uta(adapter);
3677
3678 /* set the correct pool for the PF default MAC address in entry 0 */
3679 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3680 adapter->vfs_allocated_count);
3681
3682 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3683 * the Base and Length of the Rx Descriptor Ring
3684 */
3685 for (i = 0; i < adapter->num_rx_queues; i++)
3686 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3687 }
3688
3689 /**
3690 * igb_free_tx_resources - Free Tx Resources per Queue
3691 * @tx_ring: Tx descriptor ring for a specific queue
3692 *
3693 * Free all transmit software resources
3694 **/
3695 void igb_free_tx_resources(struct igb_ring *tx_ring)
3696 {
3697 igb_clean_tx_ring(tx_ring);
3698
3699 vfree(tx_ring->tx_buffer_info);
3700 tx_ring->tx_buffer_info = NULL;
3701
3702 /* if not set, then don't free */
3703 if (!tx_ring->desc)
3704 return;
3705
3706 dma_free_coherent(tx_ring->dev, tx_ring->size,
3707 tx_ring->desc, tx_ring->dma);
3708
3709 tx_ring->desc = NULL;
3710 }
3711
3712 /**
3713 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3714 * @adapter: board private structure
3715 *
3716 * Free all transmit software resources
3717 **/
3718 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3719 {
3720 int i;
3721
3722 for (i = 0; i < adapter->num_tx_queues; i++)
3723 if (adapter->tx_ring[i])
3724 igb_free_tx_resources(adapter->tx_ring[i]);
3725 }
3726
3727 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3728 struct igb_tx_buffer *tx_buffer)
3729 {
3730 if (tx_buffer->skb) {
3731 dev_kfree_skb_any(tx_buffer->skb);
3732 if (dma_unmap_len(tx_buffer, len))
3733 dma_unmap_single(ring->dev,
3734 dma_unmap_addr(tx_buffer, dma),
3735 dma_unmap_len(tx_buffer, len),
3736 DMA_TO_DEVICE);
3737 } else if (dma_unmap_len(tx_buffer, len)) {
3738 dma_unmap_page(ring->dev,
3739 dma_unmap_addr(tx_buffer, dma),
3740 dma_unmap_len(tx_buffer, len),
3741 DMA_TO_DEVICE);
3742 }
3743 tx_buffer->next_to_watch = NULL;
3744 tx_buffer->skb = NULL;
3745 dma_unmap_len_set(tx_buffer, len, 0);
3746 /* buffer_info must be completely set up in the transmit path */
3747 }
3748
3749 /**
3750 * igb_clean_tx_ring - Free Tx Buffers
3751 * @tx_ring: ring to be cleaned
3752 **/
3753 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3754 {
3755 struct igb_tx_buffer *buffer_info;
3756 unsigned long size;
3757 u16 i;
3758
3759 if (!tx_ring->tx_buffer_info)
3760 return;
3761 /* Free all the Tx ring sk_buffs */
3762
3763 for (i = 0; i < tx_ring->count; i++) {
3764 buffer_info = &tx_ring->tx_buffer_info[i];
3765 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3766 }
3767
3768 netdev_tx_reset_queue(txring_txq(tx_ring));
3769
3770 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3771 memset(tx_ring->tx_buffer_info, 0, size);
3772
3773 /* Zero out the descriptor ring */
3774 memset(tx_ring->desc, 0, tx_ring->size);
3775
3776 tx_ring->next_to_use = 0;
3777 tx_ring->next_to_clean = 0;
3778 }
3779
3780 /**
3781 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3782 * @adapter: board private structure
3783 **/
3784 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3785 {
3786 int i;
3787
3788 for (i = 0; i < adapter->num_tx_queues; i++)
3789 if (adapter->tx_ring[i])
3790 igb_clean_tx_ring(adapter->tx_ring[i]);
3791 }
3792
3793 /**
3794 * igb_free_rx_resources - Free Rx Resources
3795 * @rx_ring: ring to clean the resources from
3796 *
3797 * Free all receive software resources
3798 **/
3799 void igb_free_rx_resources(struct igb_ring *rx_ring)
3800 {
3801 igb_clean_rx_ring(rx_ring);
3802
3803 vfree(rx_ring->rx_buffer_info);
3804 rx_ring->rx_buffer_info = NULL;
3805
3806 /* if not set, then don't free */
3807 if (!rx_ring->desc)
3808 return;
3809
3810 dma_free_coherent(rx_ring->dev, rx_ring->size,
3811 rx_ring->desc, rx_ring->dma);
3812
3813 rx_ring->desc = NULL;
3814 }
3815
3816 /**
3817 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3818 * @adapter: board private structure
3819 *
3820 * Free all receive software resources
3821 **/
3822 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3823 {
3824 int i;
3825
3826 for (i = 0; i < adapter->num_rx_queues; i++)
3827 if (adapter->rx_ring[i])
3828 igb_free_rx_resources(adapter->rx_ring[i]);
3829 }
3830
3831 /**
3832 * igb_clean_rx_ring - Free Rx Buffers per Queue
3833 * @rx_ring: ring to free buffers from
3834 **/
3835 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3836 {
3837 unsigned long size;
3838 u16 i;
3839
3840 if (rx_ring->skb)
3841 dev_kfree_skb(rx_ring->skb);
3842 rx_ring->skb = NULL;
3843
3844 if (!rx_ring->rx_buffer_info)
3845 return;
3846
3847 /* Free all the Rx ring sk_buffs */
3848 for (i = 0; i < rx_ring->count; i++) {
3849 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3850
3851 if (!buffer_info->page)
3852 continue;
3853
3854 dma_unmap_page(rx_ring->dev,
3855 buffer_info->dma,
3856 PAGE_SIZE,
3857 DMA_FROM_DEVICE);
3858 __free_page(buffer_info->page);
3859
3860 buffer_info->page = NULL;
3861 }
3862
3863 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3864 memset(rx_ring->rx_buffer_info, 0, size);
3865
3866 /* Zero out the descriptor ring */
3867 memset(rx_ring->desc, 0, rx_ring->size);
3868
3869 rx_ring->next_to_alloc = 0;
3870 rx_ring->next_to_clean = 0;
3871 rx_ring->next_to_use = 0;
3872 }
3873
3874 /**
3875 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3876 * @adapter: board private structure
3877 **/
3878 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3879 {
3880 int i;
3881
3882 for (i = 0; i < adapter->num_rx_queues; i++)
3883 if (adapter->rx_ring[i])
3884 igb_clean_rx_ring(adapter->rx_ring[i]);
3885 }
3886
3887 /**
3888 * igb_set_mac - Change the Ethernet Address of the NIC
3889 * @netdev: network interface device structure
3890 * @p: pointer to an address structure
3891 *
3892 * Returns 0 on success, negative on failure
3893 **/
3894 static int igb_set_mac(struct net_device *netdev, void *p)
3895 {
3896 struct igb_adapter *adapter = netdev_priv(netdev);
3897 struct e1000_hw *hw = &adapter->hw;
3898 struct sockaddr *addr = p;
3899
3900 if (!is_valid_ether_addr(addr->sa_data))
3901 return -EADDRNOTAVAIL;
3902
3903 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3904 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3905
3906 /* set the correct pool for the new PF MAC address in entry 0 */
3907 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3908 adapter->vfs_allocated_count);
3909
3910 return 0;
3911 }
3912
3913 /**
3914 * igb_write_mc_addr_list - write multicast addresses to MTA
3915 * @netdev: network interface device structure
3916 *
3917 * Writes multicast address list to the MTA hash table.
3918 * Returns: -ENOMEM on failure
3919 * 0 on no addresses written
3920 * X on writing X addresses to MTA
3921 **/
3922 static int igb_write_mc_addr_list(struct net_device *netdev)
3923 {
3924 struct igb_adapter *adapter = netdev_priv(netdev);
3925 struct e1000_hw *hw = &adapter->hw;
3926 struct netdev_hw_addr *ha;
3927 u8 *mta_list;
3928 int i;
3929
3930 if (netdev_mc_empty(netdev)) {
3931 /* nothing to program, so clear mc list */
3932 igb_update_mc_addr_list(hw, NULL, 0);
3933 igb_restore_vf_multicasts(adapter);
3934 return 0;
3935 }
3936
3937 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3938 if (!mta_list)
3939 return -ENOMEM;
3940
3941 /* The shared function expects a packed array of only addresses. */
3942 i = 0;
3943 netdev_for_each_mc_addr(ha, netdev)
3944 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3945
3946 igb_update_mc_addr_list(hw, mta_list, i);
3947 kfree(mta_list);
3948
3949 return netdev_mc_count(netdev);
3950 }
3951
3952 /**
3953 * igb_write_uc_addr_list - write unicast addresses to RAR table
3954 * @netdev: network interface device structure
3955 *
3956 * Writes unicast address list to the RAR table.
3957 * Returns: -ENOMEM on failure/insufficient address space
3958 * 0 on no addresses written
3959 * X on writing X addresses to the RAR table
3960 **/
3961 static int igb_write_uc_addr_list(struct net_device *netdev)
3962 {
3963 struct igb_adapter *adapter = netdev_priv(netdev);
3964 struct e1000_hw *hw = &adapter->hw;
3965 unsigned int vfn = adapter->vfs_allocated_count;
3966 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3967 int count = 0;
3968
3969 /* return ENOMEM indicating insufficient memory for addresses */
3970 if (netdev_uc_count(netdev) > rar_entries)
3971 return -ENOMEM;
3972
3973 if (!netdev_uc_empty(netdev) && rar_entries) {
3974 struct netdev_hw_addr *ha;
3975
3976 netdev_for_each_uc_addr(ha, netdev) {
3977 if (!rar_entries)
3978 break;
3979 igb_rar_set_qsel(adapter, ha->addr,
3980 rar_entries--,
3981 vfn);
3982 count++;
3983 }
3984 }
3985 /* write the addresses in reverse order to avoid write combining */
3986 for (; rar_entries > 0 ; rar_entries--) {
3987 wr32(E1000_RAH(rar_entries), 0);
3988 wr32(E1000_RAL(rar_entries), 0);
3989 }
3990 wrfl();
3991
3992 return count;
3993 }
3994
3995 /**
3996 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3997 * @netdev: network interface device structure
3998 *
3999 * The set_rx_mode entry point is called whenever the unicast or multicast
4000 * address lists or the network interface flags are updated. This routine is
4001 * responsible for configuring the hardware for proper unicast, multicast,
4002 * promiscuous mode, and all-multi behavior.
4003 **/
4004 static void igb_set_rx_mode(struct net_device *netdev)
4005 {
4006 struct igb_adapter *adapter = netdev_priv(netdev);
4007 struct e1000_hw *hw = &adapter->hw;
4008 unsigned int vfn = adapter->vfs_allocated_count;
4009 u32 rctl, vmolr = 0;
4010 int count;
4011
4012 /* Check for Promiscuous and All Multicast modes */
4013 rctl = rd32(E1000_RCTL);
4014
4015 /* clear the effected bits */
4016 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4017
4018 if (netdev->flags & IFF_PROMISC) {
4019 /* retain VLAN HW filtering if in VT mode */
4020 if (adapter->vfs_allocated_count)
4021 rctl |= E1000_RCTL_VFE;
4022 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4023 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4024 } else {
4025 if (netdev->flags & IFF_ALLMULTI) {
4026 rctl |= E1000_RCTL_MPE;
4027 vmolr |= E1000_VMOLR_MPME;
4028 } else {
4029 /* Write addresses to the MTA, if the attempt fails
4030 * then we should just turn on promiscuous mode so
4031 * that we can at least receive multicast traffic
4032 */
4033 count = igb_write_mc_addr_list(netdev);
4034 if (count < 0) {
4035 rctl |= E1000_RCTL_MPE;
4036 vmolr |= E1000_VMOLR_MPME;
4037 } else if (count) {
4038 vmolr |= E1000_VMOLR_ROMPE;
4039 }
4040 }
4041 /* Write addresses to available RAR registers, if there is not
4042 * sufficient space to store all the addresses then enable
4043 * unicast promiscuous mode
4044 */
4045 count = igb_write_uc_addr_list(netdev);
4046 if (count < 0) {
4047 rctl |= E1000_RCTL_UPE;
4048 vmolr |= E1000_VMOLR_ROPE;
4049 }
4050 rctl |= E1000_RCTL_VFE;
4051 }
4052 wr32(E1000_RCTL, rctl);
4053
4054 /* In order to support SR-IOV and eventually VMDq it is necessary to set
4055 * the VMOLR to enable the appropriate modes. Without this workaround
4056 * we will have issues with VLAN tag stripping not being done for frames
4057 * that are only arriving because we are the default pool
4058 */
4059 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4060 return;
4061
4062 vmolr |= rd32(E1000_VMOLR(vfn)) &
4063 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4064 wr32(E1000_VMOLR(vfn), vmolr);
4065 igb_restore_vf_multicasts(adapter);
4066 }
4067
4068 static void igb_check_wvbr(struct igb_adapter *adapter)
4069 {
4070 struct e1000_hw *hw = &adapter->hw;
4071 u32 wvbr = 0;
4072
4073 switch (hw->mac.type) {
4074 case e1000_82576:
4075 case e1000_i350:
4076 wvbr = rd32(E1000_WVBR);
4077 if (!wvbr)
4078 return;
4079 break;
4080 default:
4081 break;
4082 }
4083
4084 adapter->wvbr |= wvbr;
4085 }
4086
4087 #define IGB_STAGGERED_QUEUE_OFFSET 8
4088
4089 static void igb_spoof_check(struct igb_adapter *adapter)
4090 {
4091 int j;
4092
4093 if (!adapter->wvbr)
4094 return;
4095
4096 for (j = 0; j < adapter->vfs_allocated_count; j++) {
4097 if (adapter->wvbr & (1 << j) ||
4098 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4099 dev_warn(&adapter->pdev->dev,
4100 "Spoof event(s) detected on VF %d\n", j);
4101 adapter->wvbr &=
4102 ~((1 << j) |
4103 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4104 }
4105 }
4106 }
4107
4108 /* Need to wait a few seconds after link up to get diagnostic information from
4109 * the phy
4110 */
4111 static void igb_update_phy_info(unsigned long data)
4112 {
4113 struct igb_adapter *adapter = (struct igb_adapter *) data;
4114 igb_get_phy_info(&adapter->hw);
4115 }
4116
4117 /**
4118 * igb_has_link - check shared code for link and determine up/down
4119 * @adapter: pointer to driver private info
4120 **/
4121 bool igb_has_link(struct igb_adapter *adapter)
4122 {
4123 struct e1000_hw *hw = &adapter->hw;
4124 bool link_active = false;
4125
4126 /* get_link_status is set on LSC (link status) interrupt or
4127 * rx sequence error interrupt. get_link_status will stay
4128 * false until the e1000_check_for_link establishes link
4129 * for copper adapters ONLY
4130 */
4131 switch (hw->phy.media_type) {
4132 case e1000_media_type_copper:
4133 if (!hw->mac.get_link_status)
4134 return true;
4135 case e1000_media_type_internal_serdes:
4136 hw->mac.ops.check_for_link(hw);
4137 link_active = !hw->mac.get_link_status;
4138 break;
4139 default:
4140 case e1000_media_type_unknown:
4141 break;
4142 }
4143
4144 if (((hw->mac.type == e1000_i210) ||
4145 (hw->mac.type == e1000_i211)) &&
4146 (hw->phy.id == I210_I_PHY_ID)) {
4147 if (!netif_carrier_ok(adapter->netdev)) {
4148 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4149 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4150 adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4151 adapter->link_check_timeout = jiffies;
4152 }
4153 }
4154
4155 return link_active;
4156 }
4157
4158 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4159 {
4160 bool ret = false;
4161 u32 ctrl_ext, thstat;
4162
4163 /* check for thermal sensor event on i350 copper only */
4164 if (hw->mac.type == e1000_i350) {
4165 thstat = rd32(E1000_THSTAT);
4166 ctrl_ext = rd32(E1000_CTRL_EXT);
4167
4168 if ((hw->phy.media_type == e1000_media_type_copper) &&
4169 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4170 ret = !!(thstat & event);
4171 }
4172
4173 return ret;
4174 }
4175
4176 /**
4177 * igb_check_lvmmc - check for malformed packets received
4178 * and indicated in LVMMC register
4179 * @adapter: pointer to adapter
4180 **/
4181 static void igb_check_lvmmc(struct igb_adapter *adapter)
4182 {
4183 struct e1000_hw *hw = &adapter->hw;
4184 u32 lvmmc;
4185
4186 lvmmc = rd32(E1000_LVMMC);
4187 if (lvmmc) {
4188 if (unlikely(net_ratelimit())) {
4189 netdev_warn(adapter->netdev,
4190 "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4191 lvmmc);
4192 }
4193 }
4194 }
4195
4196 /**
4197 * igb_watchdog - Timer Call-back
4198 * @data: pointer to adapter cast into an unsigned long
4199 **/
4200 static void igb_watchdog(unsigned long data)
4201 {
4202 struct igb_adapter *adapter = (struct igb_adapter *)data;
4203 /* Do the rest outside of interrupt context */
4204 schedule_work(&adapter->watchdog_task);
4205 }
4206
4207 static void igb_watchdog_task(struct work_struct *work)
4208 {
4209 struct igb_adapter *adapter = container_of(work,
4210 struct igb_adapter,
4211 watchdog_task);
4212 struct e1000_hw *hw = &adapter->hw;
4213 struct e1000_phy_info *phy = &hw->phy;
4214 struct net_device *netdev = adapter->netdev;
4215 u32 link;
4216 int i;
4217 u32 connsw;
4218
4219 link = igb_has_link(adapter);
4220
4221 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4222 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4223 adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4224 else
4225 link = false;
4226 }
4227
4228 /* Force link down if we have fiber to swap to */
4229 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4230 if (hw->phy.media_type == e1000_media_type_copper) {
4231 connsw = rd32(E1000_CONNSW);
4232 if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4233 link = 0;
4234 }
4235 }
4236 if (link) {
4237 /* Perform a reset if the media type changed. */
4238 if (hw->dev_spec._82575.media_changed) {
4239 hw->dev_spec._82575.media_changed = false;
4240 adapter->flags |= IGB_FLAG_MEDIA_RESET;
4241 igb_reset(adapter);
4242 }
4243 /* Cancel scheduled suspend requests. */
4244 pm_runtime_resume(netdev->dev.parent);
4245
4246 if (!netif_carrier_ok(netdev)) {
4247 u32 ctrl;
4248
4249 hw->mac.ops.get_speed_and_duplex(hw,
4250 &adapter->link_speed,
4251 &adapter->link_duplex);
4252
4253 ctrl = rd32(E1000_CTRL);
4254 /* Links status message must follow this format */
4255 netdev_info(netdev,
4256 "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4257 netdev->name,
4258 adapter->link_speed,
4259 adapter->link_duplex == FULL_DUPLEX ?
4260 "Full" : "Half",
4261 (ctrl & E1000_CTRL_TFCE) &&
4262 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4263 (ctrl & E1000_CTRL_RFCE) ? "RX" :
4264 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
4265
4266 /* disable EEE if enabled */
4267 if ((adapter->flags & IGB_FLAG_EEE) &&
4268 (adapter->link_duplex == HALF_DUPLEX)) {
4269 dev_info(&adapter->pdev->dev,
4270 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4271 adapter->hw.dev_spec._82575.eee_disable = true;
4272 adapter->flags &= ~IGB_FLAG_EEE;
4273 }
4274
4275 /* check if SmartSpeed worked */
4276 igb_check_downshift(hw);
4277 if (phy->speed_downgraded)
4278 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4279
4280 /* check for thermal sensor event */
4281 if (igb_thermal_sensor_event(hw,
4282 E1000_THSTAT_LINK_THROTTLE))
4283 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4284
4285 /* adjust timeout factor according to speed/duplex */
4286 adapter->tx_timeout_factor = 1;
4287 switch (adapter->link_speed) {
4288 case SPEED_10:
4289 adapter->tx_timeout_factor = 14;
4290 break;
4291 case SPEED_100:
4292 /* maybe add some timeout factor ? */
4293 break;
4294 }
4295
4296 netif_carrier_on(netdev);
4297
4298 igb_ping_all_vfs(adapter);
4299 igb_check_vf_rate_limit(adapter);
4300
4301 /* link state has changed, schedule phy info update */
4302 if (!test_bit(__IGB_DOWN, &adapter->state))
4303 mod_timer(&adapter->phy_info_timer,
4304 round_jiffies(jiffies + 2 * HZ));
4305 }
4306 } else {
4307 if (netif_carrier_ok(netdev)) {
4308 adapter->link_speed = 0;
4309 adapter->link_duplex = 0;
4310
4311 /* check for thermal sensor event */
4312 if (igb_thermal_sensor_event(hw,
4313 E1000_THSTAT_PWR_DOWN)) {
4314 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4315 }
4316
4317 /* Links status message must follow this format */
4318 netdev_info(netdev, "igb: %s NIC Link is Down\n",
4319 netdev->name);
4320 netif_carrier_off(netdev);
4321
4322 igb_ping_all_vfs(adapter);
4323
4324 /* link state has changed, schedule phy info update */
4325 if (!test_bit(__IGB_DOWN, &adapter->state))
4326 mod_timer(&adapter->phy_info_timer,
4327 round_jiffies(jiffies + 2 * HZ));
4328
4329 /* link is down, time to check for alternate media */
4330 if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4331 igb_check_swap_media(adapter);
4332 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4333 schedule_work(&adapter->reset_task);
4334 /* return immediately */
4335 return;
4336 }
4337 }
4338 pm_schedule_suspend(netdev->dev.parent,
4339 MSEC_PER_SEC * 5);
4340
4341 /* also check for alternate media here */
4342 } else if (!netif_carrier_ok(netdev) &&
4343 (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4344 igb_check_swap_media(adapter);
4345 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4346 schedule_work(&adapter->reset_task);
4347 /* return immediately */
4348 return;
4349 }
4350 }
4351 }
4352
4353 spin_lock(&adapter->stats64_lock);
4354 igb_update_stats(adapter, &adapter->stats64);
4355 spin_unlock(&adapter->stats64_lock);
4356
4357 for (i = 0; i < adapter->num_tx_queues; i++) {
4358 struct igb_ring *tx_ring = adapter->tx_ring[i];
4359 if (!netif_carrier_ok(netdev)) {
4360 /* We've lost link, so the controller stops DMA,
4361 * but we've got queued Tx work that's never going
4362 * to get done, so reset controller to flush Tx.
4363 * (Do the reset outside of interrupt context).
4364 */
4365 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4366 adapter->tx_timeout_count++;
4367 schedule_work(&adapter->reset_task);
4368 /* return immediately since reset is imminent */
4369 return;
4370 }
4371 }
4372
4373 /* Force detection of hung controller every watchdog period */
4374 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4375 }
4376
4377 /* Cause software interrupt to ensure Rx ring is cleaned */
4378 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4379 u32 eics = 0;
4380
4381 for (i = 0; i < adapter->num_q_vectors; i++)
4382 eics |= adapter->q_vector[i]->eims_value;
4383 wr32(E1000_EICS, eics);
4384 } else {
4385 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4386 }
4387
4388 igb_spoof_check(adapter);
4389 igb_ptp_rx_hang(adapter);
4390
4391 /* Check LVMMC register on i350/i354 only */
4392 if ((adapter->hw.mac.type == e1000_i350) ||
4393 (adapter->hw.mac.type == e1000_i354))
4394 igb_check_lvmmc(adapter);
4395
4396 /* Reset the timer */
4397 if (!test_bit(__IGB_DOWN, &adapter->state)) {
4398 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4399 mod_timer(&adapter->watchdog_timer,
4400 round_jiffies(jiffies + HZ));
4401 else
4402 mod_timer(&adapter->watchdog_timer,
4403 round_jiffies(jiffies + 2 * HZ));
4404 }
4405 }
4406
4407 enum latency_range {
4408 lowest_latency = 0,
4409 low_latency = 1,
4410 bulk_latency = 2,
4411 latency_invalid = 255
4412 };
4413
4414 /**
4415 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4416 * @q_vector: pointer to q_vector
4417 *
4418 * Stores a new ITR value based on strictly on packet size. This
4419 * algorithm is less sophisticated than that used in igb_update_itr,
4420 * due to the difficulty of synchronizing statistics across multiple
4421 * receive rings. The divisors and thresholds used by this function
4422 * were determined based on theoretical maximum wire speed and testing
4423 * data, in order to minimize response time while increasing bulk
4424 * throughput.
4425 * This functionality is controlled by ethtool's coalescing settings.
4426 * NOTE: This function is called only when operating in a multiqueue
4427 * receive environment.
4428 **/
4429 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4430 {
4431 int new_val = q_vector->itr_val;
4432 int avg_wire_size = 0;
4433 struct igb_adapter *adapter = q_vector->adapter;
4434 unsigned int packets;
4435
4436 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4437 * ints/sec - ITR timer value of 120 ticks.
4438 */
4439 if (adapter->link_speed != SPEED_1000) {
4440 new_val = IGB_4K_ITR;
4441 goto set_itr_val;
4442 }
4443
4444 packets = q_vector->rx.total_packets;
4445 if (packets)
4446 avg_wire_size = q_vector->rx.total_bytes / packets;
4447
4448 packets = q_vector->tx.total_packets;
4449 if (packets)
4450 avg_wire_size = max_t(u32, avg_wire_size,
4451 q_vector->tx.total_bytes / packets);
4452
4453 /* if avg_wire_size isn't set no work was done */
4454 if (!avg_wire_size)
4455 goto clear_counts;
4456
4457 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4458 avg_wire_size += 24;
4459
4460 /* Don't starve jumbo frames */
4461 avg_wire_size = min(avg_wire_size, 3000);
4462
4463 /* Give a little boost to mid-size frames */
4464 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4465 new_val = avg_wire_size / 3;
4466 else
4467 new_val = avg_wire_size / 2;
4468
4469 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4470 if (new_val < IGB_20K_ITR &&
4471 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4472 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4473 new_val = IGB_20K_ITR;
4474
4475 set_itr_val:
4476 if (new_val != q_vector->itr_val) {
4477 q_vector->itr_val = new_val;
4478 q_vector->set_itr = 1;
4479 }
4480 clear_counts:
4481 q_vector->rx.total_bytes = 0;
4482 q_vector->rx.total_packets = 0;
4483 q_vector->tx.total_bytes = 0;
4484 q_vector->tx.total_packets = 0;
4485 }
4486
4487 /**
4488 * igb_update_itr - update the dynamic ITR value based on statistics
4489 * @q_vector: pointer to q_vector
4490 * @ring_container: ring info to update the itr for
4491 *
4492 * Stores a new ITR value based on packets and byte
4493 * counts during the last interrupt. The advantage of per interrupt
4494 * computation is faster updates and more accurate ITR for the current
4495 * traffic pattern. Constants in this function were computed
4496 * based on theoretical maximum wire speed and thresholds were set based
4497 * on testing data as well as attempting to minimize response time
4498 * while increasing bulk throughput.
4499 * This functionality is controlled by ethtool's coalescing settings.
4500 * NOTE: These calculations are only valid when operating in a single-
4501 * queue environment.
4502 **/
4503 static void igb_update_itr(struct igb_q_vector *q_vector,
4504 struct igb_ring_container *ring_container)
4505 {
4506 unsigned int packets = ring_container->total_packets;
4507 unsigned int bytes = ring_container->total_bytes;
4508 u8 itrval = ring_container->itr;
4509
4510 /* no packets, exit with status unchanged */
4511 if (packets == 0)
4512 return;
4513
4514 switch (itrval) {
4515 case lowest_latency:
4516 /* handle TSO and jumbo frames */
4517 if (bytes/packets > 8000)
4518 itrval = bulk_latency;
4519 else if ((packets < 5) && (bytes > 512))
4520 itrval = low_latency;
4521 break;
4522 case low_latency: /* 50 usec aka 20000 ints/s */
4523 if (bytes > 10000) {
4524 /* this if handles the TSO accounting */
4525 if (bytes/packets > 8000)
4526 itrval = bulk_latency;
4527 else if ((packets < 10) || ((bytes/packets) > 1200))
4528 itrval = bulk_latency;
4529 else if ((packets > 35))
4530 itrval = lowest_latency;
4531 } else if (bytes/packets > 2000) {
4532 itrval = bulk_latency;
4533 } else if (packets <= 2 && bytes < 512) {
4534 itrval = lowest_latency;
4535 }
4536 break;
4537 case bulk_latency: /* 250 usec aka 4000 ints/s */
4538 if (bytes > 25000) {
4539 if (packets > 35)
4540 itrval = low_latency;
4541 } else if (bytes < 1500) {
4542 itrval = low_latency;
4543 }
4544 break;
4545 }
4546
4547 /* clear work counters since we have the values we need */
4548 ring_container->total_bytes = 0;
4549 ring_container->total_packets = 0;
4550
4551 /* write updated itr to ring container */
4552 ring_container->itr = itrval;
4553 }
4554
4555 static void igb_set_itr(struct igb_q_vector *q_vector)
4556 {
4557 struct igb_adapter *adapter = q_vector->adapter;
4558 u32 new_itr = q_vector->itr_val;
4559 u8 current_itr = 0;
4560
4561 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4562 if (adapter->link_speed != SPEED_1000) {
4563 current_itr = 0;
4564 new_itr = IGB_4K_ITR;
4565 goto set_itr_now;
4566 }
4567
4568 igb_update_itr(q_vector, &q_vector->tx);
4569 igb_update_itr(q_vector, &q_vector->rx);
4570
4571 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4572
4573 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4574 if (current_itr == lowest_latency &&
4575 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4576 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4577 current_itr = low_latency;
4578
4579 switch (current_itr) {
4580 /* counts and packets in update_itr are dependent on these numbers */
4581 case lowest_latency:
4582 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4583 break;
4584 case low_latency:
4585 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4586 break;
4587 case bulk_latency:
4588 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4589 break;
4590 default:
4591 break;
4592 }
4593
4594 set_itr_now:
4595 if (new_itr != q_vector->itr_val) {
4596 /* this attempts to bias the interrupt rate towards Bulk
4597 * by adding intermediate steps when interrupt rate is
4598 * increasing
4599 */
4600 new_itr = new_itr > q_vector->itr_val ?
4601 max((new_itr * q_vector->itr_val) /
4602 (new_itr + (q_vector->itr_val >> 2)),
4603 new_itr) : new_itr;
4604 /* Don't write the value here; it resets the adapter's
4605 * internal timer, and causes us to delay far longer than
4606 * we should between interrupts. Instead, we write the ITR
4607 * value at the beginning of the next interrupt so the timing
4608 * ends up being correct.
4609 */
4610 q_vector->itr_val = new_itr;
4611 q_vector->set_itr = 1;
4612 }
4613 }
4614
4615 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4616 u32 type_tucmd, u32 mss_l4len_idx)
4617 {
4618 struct e1000_adv_tx_context_desc *context_desc;
4619 u16 i = tx_ring->next_to_use;
4620
4621 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4622
4623 i++;
4624 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4625
4626 /* set bits to identify this as an advanced context descriptor */
4627 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4628
4629 /* For 82575, context index must be unique per ring. */
4630 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4631 mss_l4len_idx |= tx_ring->reg_idx << 4;
4632
4633 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4634 context_desc->seqnum_seed = 0;
4635 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4636 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4637 }
4638
4639 static int igb_tso(struct igb_ring *tx_ring,
4640 struct igb_tx_buffer *first,
4641 u8 *hdr_len)
4642 {
4643 struct sk_buff *skb = first->skb;
4644 u32 vlan_macip_lens, type_tucmd;
4645 u32 mss_l4len_idx, l4len;
4646 int err;
4647
4648 if (skb->ip_summed != CHECKSUM_PARTIAL)
4649 return 0;
4650
4651 if (!skb_is_gso(skb))
4652 return 0;
4653
4654 err = skb_cow_head(skb, 0);
4655 if (err < 0)
4656 return err;
4657
4658 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4659 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4660
4661 if (first->protocol == htons(ETH_P_IP)) {
4662 struct iphdr *iph = ip_hdr(skb);
4663 iph->tot_len = 0;
4664 iph->check = 0;
4665 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4666 iph->daddr, 0,
4667 IPPROTO_TCP,
4668 0);
4669 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4670 first->tx_flags |= IGB_TX_FLAGS_TSO |
4671 IGB_TX_FLAGS_CSUM |
4672 IGB_TX_FLAGS_IPV4;
4673 } else if (skb_is_gso_v6(skb)) {
4674 ipv6_hdr(skb)->payload_len = 0;
4675 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4676 &ipv6_hdr(skb)->daddr,
4677 0, IPPROTO_TCP, 0);
4678 first->tx_flags |= IGB_TX_FLAGS_TSO |
4679 IGB_TX_FLAGS_CSUM;
4680 }
4681
4682 /* compute header lengths */
4683 l4len = tcp_hdrlen(skb);
4684 *hdr_len = skb_transport_offset(skb) + l4len;
4685
4686 /* update gso size and bytecount with header size */
4687 first->gso_segs = skb_shinfo(skb)->gso_segs;
4688 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4689
4690 /* MSS L4LEN IDX */
4691 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4692 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4693
4694 /* VLAN MACLEN IPLEN */
4695 vlan_macip_lens = skb_network_header_len(skb);
4696 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4697 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4698
4699 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4700
4701 return 1;
4702 }
4703
4704 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4705 {
4706 struct sk_buff *skb = first->skb;
4707 u32 vlan_macip_lens = 0;
4708 u32 mss_l4len_idx = 0;
4709 u32 type_tucmd = 0;
4710
4711 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4712 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4713 return;
4714 } else {
4715 u8 l4_hdr = 0;
4716
4717 switch (first->protocol) {
4718 case htons(ETH_P_IP):
4719 vlan_macip_lens |= skb_network_header_len(skb);
4720 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4721 l4_hdr = ip_hdr(skb)->protocol;
4722 break;
4723 case htons(ETH_P_IPV6):
4724 vlan_macip_lens |= skb_network_header_len(skb);
4725 l4_hdr = ipv6_hdr(skb)->nexthdr;
4726 break;
4727 default:
4728 if (unlikely(net_ratelimit())) {
4729 dev_warn(tx_ring->dev,
4730 "partial checksum but proto=%x!\n",
4731 first->protocol);
4732 }
4733 break;
4734 }
4735
4736 switch (l4_hdr) {
4737 case IPPROTO_TCP:
4738 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4739 mss_l4len_idx = tcp_hdrlen(skb) <<
4740 E1000_ADVTXD_L4LEN_SHIFT;
4741 break;
4742 case IPPROTO_SCTP:
4743 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4744 mss_l4len_idx = sizeof(struct sctphdr) <<
4745 E1000_ADVTXD_L4LEN_SHIFT;
4746 break;
4747 case IPPROTO_UDP:
4748 mss_l4len_idx = sizeof(struct udphdr) <<
4749 E1000_ADVTXD_L4LEN_SHIFT;
4750 break;
4751 default:
4752 if (unlikely(net_ratelimit())) {
4753 dev_warn(tx_ring->dev,
4754 "partial checksum but l4 proto=%x!\n",
4755 l4_hdr);
4756 }
4757 break;
4758 }
4759
4760 /* update TX checksum flag */
4761 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4762 }
4763
4764 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4765 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4766
4767 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4768 }
4769
4770 #define IGB_SET_FLAG(_input, _flag, _result) \
4771 ((_flag <= _result) ? \
4772 ((u32)(_input & _flag) * (_result / _flag)) : \
4773 ((u32)(_input & _flag) / (_flag / _result)))
4774
4775 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4776 {
4777 /* set type for advanced descriptor with frame checksum insertion */
4778 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4779 E1000_ADVTXD_DCMD_DEXT |
4780 E1000_ADVTXD_DCMD_IFCS;
4781
4782 /* set HW vlan bit if vlan is present */
4783 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4784 (E1000_ADVTXD_DCMD_VLE));
4785
4786 /* set segmentation bits for TSO */
4787 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4788 (E1000_ADVTXD_DCMD_TSE));
4789
4790 /* set timestamp bit if present */
4791 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4792 (E1000_ADVTXD_MAC_TSTAMP));
4793
4794 /* insert frame checksum */
4795 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4796
4797 return cmd_type;
4798 }
4799
4800 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4801 union e1000_adv_tx_desc *tx_desc,
4802 u32 tx_flags, unsigned int paylen)
4803 {
4804 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4805
4806 /* 82575 requires a unique index per ring */
4807 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4808 olinfo_status |= tx_ring->reg_idx << 4;
4809
4810 /* insert L4 checksum */
4811 olinfo_status |= IGB_SET_FLAG(tx_flags,
4812 IGB_TX_FLAGS_CSUM,
4813 (E1000_TXD_POPTS_TXSM << 8));
4814
4815 /* insert IPv4 checksum */
4816 olinfo_status |= IGB_SET_FLAG(tx_flags,
4817 IGB_TX_FLAGS_IPV4,
4818 (E1000_TXD_POPTS_IXSM << 8));
4819
4820 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4821 }
4822
4823 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4824 {
4825 struct net_device *netdev = tx_ring->netdev;
4826
4827 netif_stop_subqueue(netdev, tx_ring->queue_index);
4828
4829 /* Herbert's original patch had:
4830 * smp_mb__after_netif_stop_queue();
4831 * but since that doesn't exist yet, just open code it.
4832 */
4833 smp_mb();
4834
4835 /* We need to check again in a case another CPU has just
4836 * made room available.
4837 */
4838 if (igb_desc_unused(tx_ring) < size)
4839 return -EBUSY;
4840
4841 /* A reprieve! */
4842 netif_wake_subqueue(netdev, tx_ring->queue_index);
4843
4844 u64_stats_update_begin(&tx_ring->tx_syncp2);
4845 tx_ring->tx_stats.restart_queue2++;
4846 u64_stats_update_end(&tx_ring->tx_syncp2);
4847
4848 return 0;
4849 }
4850
4851 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4852 {
4853 if (igb_desc_unused(tx_ring) >= size)
4854 return 0;
4855 return __igb_maybe_stop_tx(tx_ring, size);
4856 }
4857
4858 static void igb_tx_map(struct igb_ring *tx_ring,
4859 struct igb_tx_buffer *first,
4860 const u8 hdr_len)
4861 {
4862 struct sk_buff *skb = first->skb;
4863 struct igb_tx_buffer *tx_buffer;
4864 union e1000_adv_tx_desc *tx_desc;
4865 struct skb_frag_struct *frag;
4866 dma_addr_t dma;
4867 unsigned int data_len, size;
4868 u32 tx_flags = first->tx_flags;
4869 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4870 u16 i = tx_ring->next_to_use;
4871
4872 tx_desc = IGB_TX_DESC(tx_ring, i);
4873
4874 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4875
4876 size = skb_headlen(skb);
4877 data_len = skb->data_len;
4878
4879 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4880
4881 tx_buffer = first;
4882
4883 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4884 if (dma_mapping_error(tx_ring->dev, dma))
4885 goto dma_error;
4886
4887 /* record length, and DMA address */
4888 dma_unmap_len_set(tx_buffer, len, size);
4889 dma_unmap_addr_set(tx_buffer, dma, dma);
4890
4891 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4892
4893 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4894 tx_desc->read.cmd_type_len =
4895 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4896
4897 i++;
4898 tx_desc++;
4899 if (i == tx_ring->count) {
4900 tx_desc = IGB_TX_DESC(tx_ring, 0);
4901 i = 0;
4902 }
4903 tx_desc->read.olinfo_status = 0;
4904
4905 dma += IGB_MAX_DATA_PER_TXD;
4906 size -= IGB_MAX_DATA_PER_TXD;
4907
4908 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4909 }
4910
4911 if (likely(!data_len))
4912 break;
4913
4914 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4915
4916 i++;
4917 tx_desc++;
4918 if (i == tx_ring->count) {
4919 tx_desc = IGB_TX_DESC(tx_ring, 0);
4920 i = 0;
4921 }
4922 tx_desc->read.olinfo_status = 0;
4923
4924 size = skb_frag_size(frag);
4925 data_len -= size;
4926
4927 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4928 size, DMA_TO_DEVICE);
4929
4930 tx_buffer = &tx_ring->tx_buffer_info[i];
4931 }
4932
4933 /* write last descriptor with RS and EOP bits */
4934 cmd_type |= size | IGB_TXD_DCMD;
4935 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4936
4937 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4938
4939 /* set the timestamp */
4940 first->time_stamp = jiffies;
4941
4942 /* Force memory writes to complete before letting h/w know there
4943 * are new descriptors to fetch. (Only applicable for weak-ordered
4944 * memory model archs, such as IA-64).
4945 *
4946 * We also need this memory barrier to make certain all of the
4947 * status bits have been updated before next_to_watch is written.
4948 */
4949 wmb();
4950
4951 /* set next_to_watch value indicating a packet is present */
4952 first->next_to_watch = tx_desc;
4953
4954 i++;
4955 if (i == tx_ring->count)
4956 i = 0;
4957
4958 tx_ring->next_to_use = i;
4959
4960 /* Make sure there is space in the ring for the next send. */
4961 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4962
4963 if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4964 writel(i, tx_ring->tail);
4965
4966 /* we need this if more than one processor can write to our tail
4967 * at a time, it synchronizes IO on IA64/Altix systems
4968 */
4969 mmiowb();
4970 }
4971 return;
4972
4973 dma_error:
4974 dev_err(tx_ring->dev, "TX DMA map failed\n");
4975
4976 /* clear dma mappings for failed tx_buffer_info map */
4977 for (;;) {
4978 tx_buffer = &tx_ring->tx_buffer_info[i];
4979 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4980 if (tx_buffer == first)
4981 break;
4982 if (i == 0)
4983 i = tx_ring->count;
4984 i--;
4985 }
4986
4987 tx_ring->next_to_use = i;
4988 }
4989
4990 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4991 struct igb_ring *tx_ring)
4992 {
4993 struct igb_tx_buffer *first;
4994 int tso;
4995 u32 tx_flags = 0;
4996 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4997 __be16 protocol = vlan_get_protocol(skb);
4998 u8 hdr_len = 0;
4999
5000 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
5001 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
5002 * + 2 desc gap to keep tail from touching head,
5003 * + 1 desc for context descriptor,
5004 * otherwise try next time
5005 */
5006 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5007 unsigned short f;
5008
5009 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5010 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5011 } else {
5012 count += skb_shinfo(skb)->nr_frags;
5013 }
5014
5015 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5016 /* this is a hard error */
5017 return NETDEV_TX_BUSY;
5018 }
5019
5020 /* record the location of the first descriptor for this packet */
5021 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5022 first->skb = skb;
5023 first->bytecount = skb->len;
5024 first->gso_segs = 1;
5025
5026 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5027 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5028
5029 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5030 &adapter->state)) {
5031 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5032 tx_flags |= IGB_TX_FLAGS_TSTAMP;
5033
5034 adapter->ptp_tx_skb = skb_get(skb);
5035 adapter->ptp_tx_start = jiffies;
5036 if (adapter->hw.mac.type == e1000_82576)
5037 schedule_work(&adapter->ptp_tx_work);
5038 }
5039 }
5040
5041 skb_tx_timestamp(skb);
5042
5043 if (vlan_tx_tag_present(skb)) {
5044 tx_flags |= IGB_TX_FLAGS_VLAN;
5045 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5046 }
5047
5048 /* record initial flags and protocol */
5049 first->tx_flags = tx_flags;
5050 first->protocol = protocol;
5051
5052 tso = igb_tso(tx_ring, first, &hdr_len);
5053 if (tso < 0)
5054 goto out_drop;
5055 else if (!tso)
5056 igb_tx_csum(tx_ring, first);
5057
5058 igb_tx_map(tx_ring, first, hdr_len);
5059
5060 return NETDEV_TX_OK;
5061
5062 out_drop:
5063 igb_unmap_and_free_tx_resource(tx_ring, first);
5064
5065 return NETDEV_TX_OK;
5066 }
5067
5068 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5069 struct sk_buff *skb)
5070 {
5071 unsigned int r_idx = skb->queue_mapping;
5072
5073 if (r_idx >= adapter->num_tx_queues)
5074 r_idx = r_idx % adapter->num_tx_queues;
5075
5076 return adapter->tx_ring[r_idx];
5077 }
5078
5079 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5080 struct net_device *netdev)
5081 {
5082 struct igb_adapter *adapter = netdev_priv(netdev);
5083
5084 if (test_bit(__IGB_DOWN, &adapter->state)) {
5085 dev_kfree_skb_any(skb);
5086 return NETDEV_TX_OK;
5087 }
5088
5089 if (skb->len <= 0) {
5090 dev_kfree_skb_any(skb);
5091 return NETDEV_TX_OK;
5092 }
5093
5094 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5095 * in order to meet this minimum size requirement.
5096 */
5097 if (unlikely(skb->len < 17)) {
5098 if (skb_pad(skb, 17 - skb->len))
5099 return NETDEV_TX_OK;
5100 skb->len = 17;
5101 skb_set_tail_pointer(skb, 17);
5102 }
5103
5104 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5105 }
5106
5107 /**
5108 * igb_tx_timeout - Respond to a Tx Hang
5109 * @netdev: network interface device structure
5110 **/
5111 static void igb_tx_timeout(struct net_device *netdev)
5112 {
5113 struct igb_adapter *adapter = netdev_priv(netdev);
5114 struct e1000_hw *hw = &adapter->hw;
5115
5116 /* Do the reset outside of interrupt context */
5117 adapter->tx_timeout_count++;
5118
5119 if (hw->mac.type >= e1000_82580)
5120 hw->dev_spec._82575.global_device_reset = true;
5121
5122 schedule_work(&adapter->reset_task);
5123 wr32(E1000_EICS,
5124 (adapter->eims_enable_mask & ~adapter->eims_other));
5125 }
5126
5127 static void igb_reset_task(struct work_struct *work)
5128 {
5129 struct igb_adapter *adapter;
5130 adapter = container_of(work, struct igb_adapter, reset_task);
5131
5132 igb_dump(adapter);
5133 netdev_err(adapter->netdev, "Reset adapter\n");
5134 igb_reinit_locked(adapter);
5135 }
5136
5137 /**
5138 * igb_get_stats64 - Get System Network Statistics
5139 * @netdev: network interface device structure
5140 * @stats: rtnl_link_stats64 pointer
5141 **/
5142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5143 struct rtnl_link_stats64 *stats)
5144 {
5145 struct igb_adapter *adapter = netdev_priv(netdev);
5146
5147 spin_lock(&adapter->stats64_lock);
5148 igb_update_stats(adapter, &adapter->stats64);
5149 memcpy(stats, &adapter->stats64, sizeof(*stats));
5150 spin_unlock(&adapter->stats64_lock);
5151
5152 return stats;
5153 }
5154
5155 /**
5156 * igb_change_mtu - Change the Maximum Transfer Unit
5157 * @netdev: network interface device structure
5158 * @new_mtu: new value for maximum frame size
5159 *
5160 * Returns 0 on success, negative on failure
5161 **/
5162 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5163 {
5164 struct igb_adapter *adapter = netdev_priv(netdev);
5165 struct pci_dev *pdev = adapter->pdev;
5166 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5167
5168 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5169 dev_err(&pdev->dev, "Invalid MTU setting\n");
5170 return -EINVAL;
5171 }
5172
5173 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5174 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5175 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5176 return -EINVAL;
5177 }
5178
5179 /* adjust max frame to be at least the size of a standard frame */
5180 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5181 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5182
5183 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5184 usleep_range(1000, 2000);
5185
5186 /* igb_down has a dependency on max_frame_size */
5187 adapter->max_frame_size = max_frame;
5188
5189 if (netif_running(netdev))
5190 igb_down(adapter);
5191
5192 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5193 netdev->mtu, new_mtu);
5194 netdev->mtu = new_mtu;
5195
5196 if (netif_running(netdev))
5197 igb_up(adapter);
5198 else
5199 igb_reset(adapter);
5200
5201 clear_bit(__IGB_RESETTING, &adapter->state);
5202
5203 return 0;
5204 }
5205
5206 /**
5207 * igb_update_stats - Update the board statistics counters
5208 * @adapter: board private structure
5209 **/
5210 void igb_update_stats(struct igb_adapter *adapter,
5211 struct rtnl_link_stats64 *net_stats)
5212 {
5213 struct e1000_hw *hw = &adapter->hw;
5214 struct pci_dev *pdev = adapter->pdev;
5215 u32 reg, mpc;
5216 int i;
5217 u64 bytes, packets;
5218 unsigned int start;
5219 u64 _bytes, _packets;
5220
5221 /* Prevent stats update while adapter is being reset, or if the pci
5222 * connection is down.
5223 */
5224 if (adapter->link_speed == 0)
5225 return;
5226 if (pci_channel_offline(pdev))
5227 return;
5228
5229 bytes = 0;
5230 packets = 0;
5231
5232 rcu_read_lock();
5233 for (i = 0; i < adapter->num_rx_queues; i++) {
5234 struct igb_ring *ring = adapter->rx_ring[i];
5235 u32 rqdpc = rd32(E1000_RQDPC(i));
5236 if (hw->mac.type >= e1000_i210)
5237 wr32(E1000_RQDPC(i), 0);
5238
5239 if (rqdpc) {
5240 ring->rx_stats.drops += rqdpc;
5241 net_stats->rx_fifo_errors += rqdpc;
5242 }
5243
5244 do {
5245 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5246 _bytes = ring->rx_stats.bytes;
5247 _packets = ring->rx_stats.packets;
5248 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5249 bytes += _bytes;
5250 packets += _packets;
5251 }
5252
5253 net_stats->rx_bytes = bytes;
5254 net_stats->rx_packets = packets;
5255
5256 bytes = 0;
5257 packets = 0;
5258 for (i = 0; i < adapter->num_tx_queues; i++) {
5259 struct igb_ring *ring = adapter->tx_ring[i];
5260 do {
5261 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5262 _bytes = ring->tx_stats.bytes;
5263 _packets = ring->tx_stats.packets;
5264 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5265 bytes += _bytes;
5266 packets += _packets;
5267 }
5268 net_stats->tx_bytes = bytes;
5269 net_stats->tx_packets = packets;
5270 rcu_read_unlock();
5271
5272 /* read stats registers */
5273 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5274 adapter->stats.gprc += rd32(E1000_GPRC);
5275 adapter->stats.gorc += rd32(E1000_GORCL);
5276 rd32(E1000_GORCH); /* clear GORCL */
5277 adapter->stats.bprc += rd32(E1000_BPRC);
5278 adapter->stats.mprc += rd32(E1000_MPRC);
5279 adapter->stats.roc += rd32(E1000_ROC);
5280
5281 adapter->stats.prc64 += rd32(E1000_PRC64);
5282 adapter->stats.prc127 += rd32(E1000_PRC127);
5283 adapter->stats.prc255 += rd32(E1000_PRC255);
5284 adapter->stats.prc511 += rd32(E1000_PRC511);
5285 adapter->stats.prc1023 += rd32(E1000_PRC1023);
5286 adapter->stats.prc1522 += rd32(E1000_PRC1522);
5287 adapter->stats.symerrs += rd32(E1000_SYMERRS);
5288 adapter->stats.sec += rd32(E1000_SEC);
5289
5290 mpc = rd32(E1000_MPC);
5291 adapter->stats.mpc += mpc;
5292 net_stats->rx_fifo_errors += mpc;
5293 adapter->stats.scc += rd32(E1000_SCC);
5294 adapter->stats.ecol += rd32(E1000_ECOL);
5295 adapter->stats.mcc += rd32(E1000_MCC);
5296 adapter->stats.latecol += rd32(E1000_LATECOL);
5297 adapter->stats.dc += rd32(E1000_DC);
5298 adapter->stats.rlec += rd32(E1000_RLEC);
5299 adapter->stats.xonrxc += rd32(E1000_XONRXC);
5300 adapter->stats.xontxc += rd32(E1000_XONTXC);
5301 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5302 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5303 adapter->stats.fcruc += rd32(E1000_FCRUC);
5304 adapter->stats.gptc += rd32(E1000_GPTC);
5305 adapter->stats.gotc += rd32(E1000_GOTCL);
5306 rd32(E1000_GOTCH); /* clear GOTCL */
5307 adapter->stats.rnbc += rd32(E1000_RNBC);
5308 adapter->stats.ruc += rd32(E1000_RUC);
5309 adapter->stats.rfc += rd32(E1000_RFC);
5310 adapter->stats.rjc += rd32(E1000_RJC);
5311 adapter->stats.tor += rd32(E1000_TORH);
5312 adapter->stats.tot += rd32(E1000_TOTH);
5313 adapter->stats.tpr += rd32(E1000_TPR);
5314
5315 adapter->stats.ptc64 += rd32(E1000_PTC64);
5316 adapter->stats.ptc127 += rd32(E1000_PTC127);
5317 adapter->stats.ptc255 += rd32(E1000_PTC255);
5318 adapter->stats.ptc511 += rd32(E1000_PTC511);
5319 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5320 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5321
5322 adapter->stats.mptc += rd32(E1000_MPTC);
5323 adapter->stats.bptc += rd32(E1000_BPTC);
5324
5325 adapter->stats.tpt += rd32(E1000_TPT);
5326 adapter->stats.colc += rd32(E1000_COLC);
5327
5328 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5329 /* read internal phy specific stats */
5330 reg = rd32(E1000_CTRL_EXT);
5331 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5332 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5333
5334 /* this stat has invalid values on i210/i211 */
5335 if ((hw->mac.type != e1000_i210) &&
5336 (hw->mac.type != e1000_i211))
5337 adapter->stats.tncrs += rd32(E1000_TNCRS);
5338 }
5339
5340 adapter->stats.tsctc += rd32(E1000_TSCTC);
5341 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5342
5343 adapter->stats.iac += rd32(E1000_IAC);
5344 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5345 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5346 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5347 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5348 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5349 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5350 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5351 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5352
5353 /* Fill out the OS statistics structure */
5354 net_stats->multicast = adapter->stats.mprc;
5355 net_stats->collisions = adapter->stats.colc;
5356
5357 /* Rx Errors */
5358
5359 /* RLEC on some newer hardware can be incorrect so build
5360 * our own version based on RUC and ROC
5361 */
5362 net_stats->rx_errors = adapter->stats.rxerrc +
5363 adapter->stats.crcerrs + adapter->stats.algnerrc +
5364 adapter->stats.ruc + adapter->stats.roc +
5365 adapter->stats.cexterr;
5366 net_stats->rx_length_errors = adapter->stats.ruc +
5367 adapter->stats.roc;
5368 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5369 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5370 net_stats->rx_missed_errors = adapter->stats.mpc;
5371
5372 /* Tx Errors */
5373 net_stats->tx_errors = adapter->stats.ecol +
5374 adapter->stats.latecol;
5375 net_stats->tx_aborted_errors = adapter->stats.ecol;
5376 net_stats->tx_window_errors = adapter->stats.latecol;
5377 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5378
5379 /* Tx Dropped needs to be maintained elsewhere */
5380
5381 /* Management Stats */
5382 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5383 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5384 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5385
5386 /* OS2BMC Stats */
5387 reg = rd32(E1000_MANC);
5388 if (reg & E1000_MANC_EN_BMC2OS) {
5389 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5390 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5391 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5392 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5393 }
5394 }
5395
5396 static irqreturn_t igb_msix_other(int irq, void *data)
5397 {
5398 struct igb_adapter *adapter = data;
5399 struct e1000_hw *hw = &adapter->hw;
5400 u32 icr = rd32(E1000_ICR);
5401 /* reading ICR causes bit 31 of EICR to be cleared */
5402
5403 if (icr & E1000_ICR_DRSTA)
5404 schedule_work(&adapter->reset_task);
5405
5406 if (icr & E1000_ICR_DOUTSYNC) {
5407 /* HW is reporting DMA is out of sync */
5408 adapter->stats.doosync++;
5409 /* The DMA Out of Sync is also indication of a spoof event
5410 * in IOV mode. Check the Wrong VM Behavior register to
5411 * see if it is really a spoof event.
5412 */
5413 igb_check_wvbr(adapter);
5414 }
5415
5416 /* Check for a mailbox event */
5417 if (icr & E1000_ICR_VMMB)
5418 igb_msg_task(adapter);
5419
5420 if (icr & E1000_ICR_LSC) {
5421 hw->mac.get_link_status = 1;
5422 /* guard against interrupt when we're going down */
5423 if (!test_bit(__IGB_DOWN, &adapter->state))
5424 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5425 }
5426
5427 if (icr & E1000_ICR_TS) {
5428 u32 tsicr = rd32(E1000_TSICR);
5429
5430 if (tsicr & E1000_TSICR_TXTS) {
5431 /* acknowledge the interrupt */
5432 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5433 /* retrieve hardware timestamp */
5434 schedule_work(&adapter->ptp_tx_work);
5435 }
5436 }
5437
5438 wr32(E1000_EIMS, adapter->eims_other);
5439
5440 return IRQ_HANDLED;
5441 }
5442
5443 static void igb_write_itr(struct igb_q_vector *q_vector)
5444 {
5445 struct igb_adapter *adapter = q_vector->adapter;
5446 u32 itr_val = q_vector->itr_val & 0x7FFC;
5447
5448 if (!q_vector->set_itr)
5449 return;
5450
5451 if (!itr_val)
5452 itr_val = 0x4;
5453
5454 if (adapter->hw.mac.type == e1000_82575)
5455 itr_val |= itr_val << 16;
5456 else
5457 itr_val |= E1000_EITR_CNT_IGNR;
5458
5459 writel(itr_val, q_vector->itr_register);
5460 q_vector->set_itr = 0;
5461 }
5462
5463 static irqreturn_t igb_msix_ring(int irq, void *data)
5464 {
5465 struct igb_q_vector *q_vector = data;
5466
5467 /* Write the ITR value calculated from the previous interrupt. */
5468 igb_write_itr(q_vector);
5469
5470 napi_schedule(&q_vector->napi);
5471
5472 return IRQ_HANDLED;
5473 }
5474
5475 #ifdef CONFIG_IGB_DCA
5476 static void igb_update_tx_dca(struct igb_adapter *adapter,
5477 struct igb_ring *tx_ring,
5478 int cpu)
5479 {
5480 struct e1000_hw *hw = &adapter->hw;
5481 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5482
5483 if (hw->mac.type != e1000_82575)
5484 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5485
5486 /* We can enable relaxed ordering for reads, but not writes when
5487 * DCA is enabled. This is due to a known issue in some chipsets
5488 * which will cause the DCA tag to be cleared.
5489 */
5490 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5491 E1000_DCA_TXCTRL_DATA_RRO_EN |
5492 E1000_DCA_TXCTRL_DESC_DCA_EN;
5493
5494 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5495 }
5496
5497 static void igb_update_rx_dca(struct igb_adapter *adapter,
5498 struct igb_ring *rx_ring,
5499 int cpu)
5500 {
5501 struct e1000_hw *hw = &adapter->hw;
5502 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5503
5504 if (hw->mac.type != e1000_82575)
5505 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5506
5507 /* We can enable relaxed ordering for reads, but not writes when
5508 * DCA is enabled. This is due to a known issue in some chipsets
5509 * which will cause the DCA tag to be cleared.
5510 */
5511 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5512 E1000_DCA_RXCTRL_DESC_DCA_EN;
5513
5514 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5515 }
5516
5517 static void igb_update_dca(struct igb_q_vector *q_vector)
5518 {
5519 struct igb_adapter *adapter = q_vector->adapter;
5520 int cpu = get_cpu();
5521
5522 if (q_vector->cpu == cpu)
5523 goto out_no_update;
5524
5525 if (q_vector->tx.ring)
5526 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5527
5528 if (q_vector->rx.ring)
5529 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5530
5531 q_vector->cpu = cpu;
5532 out_no_update:
5533 put_cpu();
5534 }
5535
5536 static void igb_setup_dca(struct igb_adapter *adapter)
5537 {
5538 struct e1000_hw *hw = &adapter->hw;
5539 int i;
5540
5541 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5542 return;
5543
5544 /* Always use CB2 mode, difference is masked in the CB driver. */
5545 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5546
5547 for (i = 0; i < adapter->num_q_vectors; i++) {
5548 adapter->q_vector[i]->cpu = -1;
5549 igb_update_dca(adapter->q_vector[i]);
5550 }
5551 }
5552
5553 static int __igb_notify_dca(struct device *dev, void *data)
5554 {
5555 struct net_device *netdev = dev_get_drvdata(dev);
5556 struct igb_adapter *adapter = netdev_priv(netdev);
5557 struct pci_dev *pdev = adapter->pdev;
5558 struct e1000_hw *hw = &adapter->hw;
5559 unsigned long event = *(unsigned long *)data;
5560
5561 switch (event) {
5562 case DCA_PROVIDER_ADD:
5563 /* if already enabled, don't do it again */
5564 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5565 break;
5566 if (dca_add_requester(dev) == 0) {
5567 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5568 dev_info(&pdev->dev, "DCA enabled\n");
5569 igb_setup_dca(adapter);
5570 break;
5571 }
5572 /* Fall Through since DCA is disabled. */
5573 case DCA_PROVIDER_REMOVE:
5574 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5575 /* without this a class_device is left
5576 * hanging around in the sysfs model
5577 */
5578 dca_remove_requester(dev);
5579 dev_info(&pdev->dev, "DCA disabled\n");
5580 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5581 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5582 }
5583 break;
5584 }
5585
5586 return 0;
5587 }
5588
5589 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5590 void *p)
5591 {
5592 int ret_val;
5593
5594 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5595 __igb_notify_dca);
5596
5597 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5598 }
5599 #endif /* CONFIG_IGB_DCA */
5600
5601 #ifdef CONFIG_PCI_IOV
5602 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5603 {
5604 unsigned char mac_addr[ETH_ALEN];
5605
5606 eth_zero_addr(mac_addr);
5607 igb_set_vf_mac(adapter, vf, mac_addr);
5608
5609 /* By default spoof check is enabled for all VFs */
5610 adapter->vf_data[vf].spoofchk_enabled = true;
5611
5612 return 0;
5613 }
5614
5615 #endif
5616 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5617 {
5618 struct e1000_hw *hw = &adapter->hw;
5619 u32 ping;
5620 int i;
5621
5622 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5623 ping = E1000_PF_CONTROL_MSG;
5624 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5625 ping |= E1000_VT_MSGTYPE_CTS;
5626 igb_write_mbx(hw, &ping, 1, i);
5627 }
5628 }
5629
5630 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5631 {
5632 struct e1000_hw *hw = &adapter->hw;
5633 u32 vmolr = rd32(E1000_VMOLR(vf));
5634 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5635
5636 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5637 IGB_VF_FLAG_MULTI_PROMISC);
5638 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5639
5640 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5641 vmolr |= E1000_VMOLR_MPME;
5642 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5643 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5644 } else {
5645 /* if we have hashes and we are clearing a multicast promisc
5646 * flag we need to write the hashes to the MTA as this step
5647 * was previously skipped
5648 */
5649 if (vf_data->num_vf_mc_hashes > 30) {
5650 vmolr |= E1000_VMOLR_MPME;
5651 } else if (vf_data->num_vf_mc_hashes) {
5652 int j;
5653
5654 vmolr |= E1000_VMOLR_ROMPE;
5655 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5656 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5657 }
5658 }
5659
5660 wr32(E1000_VMOLR(vf), vmolr);
5661
5662 /* there are flags left unprocessed, likely not supported */
5663 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5664 return -EINVAL;
5665
5666 return 0;
5667 }
5668
5669 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5670 u32 *msgbuf, u32 vf)
5671 {
5672 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5673 u16 *hash_list = (u16 *)&msgbuf[1];
5674 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675 int i;
5676
5677 /* salt away the number of multicast addresses assigned
5678 * to this VF for later use to restore when the PF multi cast
5679 * list changes
5680 */
5681 vf_data->num_vf_mc_hashes = n;
5682
5683 /* only up to 30 hash values supported */
5684 if (n > 30)
5685 n = 30;
5686
5687 /* store the hashes for later use */
5688 for (i = 0; i < n; i++)
5689 vf_data->vf_mc_hashes[i] = hash_list[i];
5690
5691 /* Flush and reset the mta with the new values */
5692 igb_set_rx_mode(adapter->netdev);
5693
5694 return 0;
5695 }
5696
5697 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5698 {
5699 struct e1000_hw *hw = &adapter->hw;
5700 struct vf_data_storage *vf_data;
5701 int i, j;
5702
5703 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5704 u32 vmolr = rd32(E1000_VMOLR(i));
5705
5706 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5707
5708 vf_data = &adapter->vf_data[i];
5709
5710 if ((vf_data->num_vf_mc_hashes > 30) ||
5711 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5712 vmolr |= E1000_VMOLR_MPME;
5713 } else if (vf_data->num_vf_mc_hashes) {
5714 vmolr |= E1000_VMOLR_ROMPE;
5715 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5716 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5717 }
5718 wr32(E1000_VMOLR(i), vmolr);
5719 }
5720 }
5721
5722 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5723 {
5724 struct e1000_hw *hw = &adapter->hw;
5725 u32 pool_mask, reg, vid;
5726 int i;
5727
5728 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5729
5730 /* Find the vlan filter for this id */
5731 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5732 reg = rd32(E1000_VLVF(i));
5733
5734 /* remove the vf from the pool */
5735 reg &= ~pool_mask;
5736
5737 /* if pool is empty then remove entry from vfta */
5738 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5739 (reg & E1000_VLVF_VLANID_ENABLE)) {
5740 reg = 0;
5741 vid = reg & E1000_VLVF_VLANID_MASK;
5742 igb_vfta_set(hw, vid, false);
5743 }
5744
5745 wr32(E1000_VLVF(i), reg);
5746 }
5747
5748 adapter->vf_data[vf].vlans_enabled = 0;
5749 }
5750
5751 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5752 {
5753 struct e1000_hw *hw = &adapter->hw;
5754 u32 reg, i;
5755
5756 /* The vlvf table only exists on 82576 hardware and newer */
5757 if (hw->mac.type < e1000_82576)
5758 return -1;
5759
5760 /* we only need to do this if VMDq is enabled */
5761 if (!adapter->vfs_allocated_count)
5762 return -1;
5763
5764 /* Find the vlan filter for this id */
5765 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5766 reg = rd32(E1000_VLVF(i));
5767 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5768 vid == (reg & E1000_VLVF_VLANID_MASK))
5769 break;
5770 }
5771
5772 if (add) {
5773 if (i == E1000_VLVF_ARRAY_SIZE) {
5774 /* Did not find a matching VLAN ID entry that was
5775 * enabled. Search for a free filter entry, i.e.
5776 * one without the enable bit set
5777 */
5778 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5779 reg = rd32(E1000_VLVF(i));
5780 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5781 break;
5782 }
5783 }
5784 if (i < E1000_VLVF_ARRAY_SIZE) {
5785 /* Found an enabled/available entry */
5786 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5787
5788 /* if !enabled we need to set this up in vfta */
5789 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5790 /* add VID to filter table */
5791 igb_vfta_set(hw, vid, true);
5792 reg |= E1000_VLVF_VLANID_ENABLE;
5793 }
5794 reg &= ~E1000_VLVF_VLANID_MASK;
5795 reg |= vid;
5796 wr32(E1000_VLVF(i), reg);
5797
5798 /* do not modify RLPML for PF devices */
5799 if (vf >= adapter->vfs_allocated_count)
5800 return 0;
5801
5802 if (!adapter->vf_data[vf].vlans_enabled) {
5803 u32 size;
5804
5805 reg = rd32(E1000_VMOLR(vf));
5806 size = reg & E1000_VMOLR_RLPML_MASK;
5807 size += 4;
5808 reg &= ~E1000_VMOLR_RLPML_MASK;
5809 reg |= size;
5810 wr32(E1000_VMOLR(vf), reg);
5811 }
5812
5813 adapter->vf_data[vf].vlans_enabled++;
5814 }
5815 } else {
5816 if (i < E1000_VLVF_ARRAY_SIZE) {
5817 /* remove vf from the pool */
5818 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5819 /* if pool is empty then remove entry from vfta */
5820 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5821 reg = 0;
5822 igb_vfta_set(hw, vid, false);
5823 }
5824 wr32(E1000_VLVF(i), reg);
5825
5826 /* do not modify RLPML for PF devices */
5827 if (vf >= adapter->vfs_allocated_count)
5828 return 0;
5829
5830 adapter->vf_data[vf].vlans_enabled--;
5831 if (!adapter->vf_data[vf].vlans_enabled) {
5832 u32 size;
5833
5834 reg = rd32(E1000_VMOLR(vf));
5835 size = reg & E1000_VMOLR_RLPML_MASK;
5836 size -= 4;
5837 reg &= ~E1000_VMOLR_RLPML_MASK;
5838 reg |= size;
5839 wr32(E1000_VMOLR(vf), reg);
5840 }
5841 }
5842 }
5843 return 0;
5844 }
5845
5846 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5847 {
5848 struct e1000_hw *hw = &adapter->hw;
5849
5850 if (vid)
5851 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5852 else
5853 wr32(E1000_VMVIR(vf), 0);
5854 }
5855
5856 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5857 int vf, u16 vlan, u8 qos)
5858 {
5859 int err = 0;
5860 struct igb_adapter *adapter = netdev_priv(netdev);
5861
5862 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5863 return -EINVAL;
5864 if (vlan || qos) {
5865 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5866 if (err)
5867 goto out;
5868 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5869 igb_set_vmolr(adapter, vf, !vlan);
5870 adapter->vf_data[vf].pf_vlan = vlan;
5871 adapter->vf_data[vf].pf_qos = qos;
5872 dev_info(&adapter->pdev->dev,
5873 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5874 if (test_bit(__IGB_DOWN, &adapter->state)) {
5875 dev_warn(&adapter->pdev->dev,
5876 "The VF VLAN has been set, but the PF device is not up.\n");
5877 dev_warn(&adapter->pdev->dev,
5878 "Bring the PF device up before attempting to use the VF device.\n");
5879 }
5880 } else {
5881 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5882 false, vf);
5883 igb_set_vmvir(adapter, vlan, vf);
5884 igb_set_vmolr(adapter, vf, true);
5885 adapter->vf_data[vf].pf_vlan = 0;
5886 adapter->vf_data[vf].pf_qos = 0;
5887 }
5888 out:
5889 return err;
5890 }
5891
5892 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5893 {
5894 struct e1000_hw *hw = &adapter->hw;
5895 int i;
5896 u32 reg;
5897
5898 /* Find the vlan filter for this id */
5899 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5900 reg = rd32(E1000_VLVF(i));
5901 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5902 vid == (reg & E1000_VLVF_VLANID_MASK))
5903 break;
5904 }
5905
5906 if (i >= E1000_VLVF_ARRAY_SIZE)
5907 i = -1;
5908
5909 return i;
5910 }
5911
5912 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5913 {
5914 struct e1000_hw *hw = &adapter->hw;
5915 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5916 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5917 int err = 0;
5918
5919 /* If in promiscuous mode we need to make sure the PF also has
5920 * the VLAN filter set.
5921 */
5922 if (add && (adapter->netdev->flags & IFF_PROMISC))
5923 err = igb_vlvf_set(adapter, vid, add,
5924 adapter->vfs_allocated_count);
5925 if (err)
5926 goto out;
5927
5928 err = igb_vlvf_set(adapter, vid, add, vf);
5929
5930 if (err)
5931 goto out;
5932
5933 /* Go through all the checks to see if the VLAN filter should
5934 * be wiped completely.
5935 */
5936 if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5937 u32 vlvf, bits;
5938 int regndx = igb_find_vlvf_entry(adapter, vid);
5939
5940 if (regndx < 0)
5941 goto out;
5942 /* See if any other pools are set for this VLAN filter
5943 * entry other than the PF.
5944 */
5945 vlvf = bits = rd32(E1000_VLVF(regndx));
5946 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5947 adapter->vfs_allocated_count);
5948 /* If the filter was removed then ensure PF pool bit
5949 * is cleared if the PF only added itself to the pool
5950 * because the PF is in promiscuous mode.
5951 */
5952 if ((vlvf & VLAN_VID_MASK) == vid &&
5953 !test_bit(vid, adapter->active_vlans) &&
5954 !bits)
5955 igb_vlvf_set(adapter, vid, add,
5956 adapter->vfs_allocated_count);
5957 }
5958
5959 out:
5960 return err;
5961 }
5962
5963 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5964 {
5965 /* clear flags - except flag that indicates PF has set the MAC */
5966 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5967 adapter->vf_data[vf].last_nack = jiffies;
5968
5969 /* reset offloads to defaults */
5970 igb_set_vmolr(adapter, vf, true);
5971
5972 /* reset vlans for device */
5973 igb_clear_vf_vfta(adapter, vf);
5974 if (adapter->vf_data[vf].pf_vlan)
5975 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5976 adapter->vf_data[vf].pf_vlan,
5977 adapter->vf_data[vf].pf_qos);
5978 else
5979 igb_clear_vf_vfta(adapter, vf);
5980
5981 /* reset multicast table array for vf */
5982 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5983
5984 /* Flush and reset the mta with the new values */
5985 igb_set_rx_mode(adapter->netdev);
5986 }
5987
5988 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5989 {
5990 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5991
5992 /* clear mac address as we were hotplug removed/added */
5993 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5994 eth_zero_addr(vf_mac);
5995
5996 /* process remaining reset events */
5997 igb_vf_reset(adapter, vf);
5998 }
5999
6000 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
6001 {
6002 struct e1000_hw *hw = &adapter->hw;
6003 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
6004 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
6005 u32 reg, msgbuf[3];
6006 u8 *addr = (u8 *)(&msgbuf[1]);
6007
6008 /* process all the same items cleared in a function level reset */
6009 igb_vf_reset(adapter, vf);
6010
6011 /* set vf mac address */
6012 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6013
6014 /* enable transmit and receive for vf */
6015 reg = rd32(E1000_VFTE);
6016 wr32(E1000_VFTE, reg | (1 << vf));
6017 reg = rd32(E1000_VFRE);
6018 wr32(E1000_VFRE, reg | (1 << vf));
6019
6020 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6021
6022 /* reply to reset with ack and vf mac address */
6023 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6024 memcpy(addr, vf_mac, ETH_ALEN);
6025 igb_write_mbx(hw, msgbuf, 3, vf);
6026 }
6027
6028 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6029 {
6030 /* The VF MAC Address is stored in a packed array of bytes
6031 * starting at the second 32 bit word of the msg array
6032 */
6033 unsigned char *addr = (char *)&msg[1];
6034 int err = -1;
6035
6036 if (is_valid_ether_addr(addr))
6037 err = igb_set_vf_mac(adapter, vf, addr);
6038
6039 return err;
6040 }
6041
6042 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6043 {
6044 struct e1000_hw *hw = &adapter->hw;
6045 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6046 u32 msg = E1000_VT_MSGTYPE_NACK;
6047
6048 /* if device isn't clear to send it shouldn't be reading either */
6049 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6050 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6051 igb_write_mbx(hw, &msg, 1, vf);
6052 vf_data->last_nack = jiffies;
6053 }
6054 }
6055
6056 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6057 {
6058 struct pci_dev *pdev = adapter->pdev;
6059 u32 msgbuf[E1000_VFMAILBOX_SIZE];
6060 struct e1000_hw *hw = &adapter->hw;
6061 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6062 s32 retval;
6063
6064 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6065
6066 if (retval) {
6067 /* if receive failed revoke VF CTS stats and restart init */
6068 dev_err(&pdev->dev, "Error receiving message from VF\n");
6069 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6070 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6071 return;
6072 goto out;
6073 }
6074
6075 /* this is a message we already processed, do nothing */
6076 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6077 return;
6078
6079 /* until the vf completes a reset it should not be
6080 * allowed to start any configuration.
6081 */
6082 if (msgbuf[0] == E1000_VF_RESET) {
6083 igb_vf_reset_msg(adapter, vf);
6084 return;
6085 }
6086
6087 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6088 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6089 return;
6090 retval = -1;
6091 goto out;
6092 }
6093
6094 switch ((msgbuf[0] & 0xFFFF)) {
6095 case E1000_VF_SET_MAC_ADDR:
6096 retval = -EINVAL;
6097 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6098 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6099 else
6100 dev_warn(&pdev->dev,
6101 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6102 vf);
6103 break;
6104 case E1000_VF_SET_PROMISC:
6105 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6106 break;
6107 case E1000_VF_SET_MULTICAST:
6108 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6109 break;
6110 case E1000_VF_SET_LPE:
6111 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6112 break;
6113 case E1000_VF_SET_VLAN:
6114 retval = -1;
6115 if (vf_data->pf_vlan)
6116 dev_warn(&pdev->dev,
6117 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6118 vf);
6119 else
6120 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6121 break;
6122 default:
6123 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6124 retval = -1;
6125 break;
6126 }
6127
6128 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6129 out:
6130 /* notify the VF of the results of what it sent us */
6131 if (retval)
6132 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6133 else
6134 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6135
6136 igb_write_mbx(hw, msgbuf, 1, vf);
6137 }
6138
6139 static void igb_msg_task(struct igb_adapter *adapter)
6140 {
6141 struct e1000_hw *hw = &adapter->hw;
6142 u32 vf;
6143
6144 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6145 /* process any reset requests */
6146 if (!igb_check_for_rst(hw, vf))
6147 igb_vf_reset_event(adapter, vf);
6148
6149 /* process any messages pending */
6150 if (!igb_check_for_msg(hw, vf))
6151 igb_rcv_msg_from_vf(adapter, vf);
6152
6153 /* process any acks */
6154 if (!igb_check_for_ack(hw, vf))
6155 igb_rcv_ack_from_vf(adapter, vf);
6156 }
6157 }
6158
6159 /**
6160 * igb_set_uta - Set unicast filter table address
6161 * @adapter: board private structure
6162 *
6163 * The unicast table address is a register array of 32-bit registers.
6164 * The table is meant to be used in a way similar to how the MTA is used
6165 * however due to certain limitations in the hardware it is necessary to
6166 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6167 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
6168 **/
6169 static void igb_set_uta(struct igb_adapter *adapter)
6170 {
6171 struct e1000_hw *hw = &adapter->hw;
6172 int i;
6173
6174 /* The UTA table only exists on 82576 hardware and newer */
6175 if (hw->mac.type < e1000_82576)
6176 return;
6177
6178 /* we only need to do this if VMDq is enabled */
6179 if (!adapter->vfs_allocated_count)
6180 return;
6181
6182 for (i = 0; i < hw->mac.uta_reg_count; i++)
6183 array_wr32(E1000_UTA, i, ~0);
6184 }
6185
6186 /**
6187 * igb_intr_msi - Interrupt Handler
6188 * @irq: interrupt number
6189 * @data: pointer to a network interface device structure
6190 **/
6191 static irqreturn_t igb_intr_msi(int irq, void *data)
6192 {
6193 struct igb_adapter *adapter = data;
6194 struct igb_q_vector *q_vector = adapter->q_vector[0];
6195 struct e1000_hw *hw = &adapter->hw;
6196 /* read ICR disables interrupts using IAM */
6197 u32 icr = rd32(E1000_ICR);
6198
6199 igb_write_itr(q_vector);
6200
6201 if (icr & E1000_ICR_DRSTA)
6202 schedule_work(&adapter->reset_task);
6203
6204 if (icr & E1000_ICR_DOUTSYNC) {
6205 /* HW is reporting DMA is out of sync */
6206 adapter->stats.doosync++;
6207 }
6208
6209 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6210 hw->mac.get_link_status = 1;
6211 if (!test_bit(__IGB_DOWN, &adapter->state))
6212 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6213 }
6214
6215 if (icr & E1000_ICR_TS) {
6216 u32 tsicr = rd32(E1000_TSICR);
6217
6218 if (tsicr & E1000_TSICR_TXTS) {
6219 /* acknowledge the interrupt */
6220 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6221 /* retrieve hardware timestamp */
6222 schedule_work(&adapter->ptp_tx_work);
6223 }
6224 }
6225
6226 napi_schedule(&q_vector->napi);
6227
6228 return IRQ_HANDLED;
6229 }
6230
6231 /**
6232 * igb_intr - Legacy Interrupt Handler
6233 * @irq: interrupt number
6234 * @data: pointer to a network interface device structure
6235 **/
6236 static irqreturn_t igb_intr(int irq, void *data)
6237 {
6238 struct igb_adapter *adapter = data;
6239 struct igb_q_vector *q_vector = adapter->q_vector[0];
6240 struct e1000_hw *hw = &adapter->hw;
6241 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
6242 * need for the IMC write
6243 */
6244 u32 icr = rd32(E1000_ICR);
6245
6246 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6247 * not set, then the adapter didn't send an interrupt
6248 */
6249 if (!(icr & E1000_ICR_INT_ASSERTED))
6250 return IRQ_NONE;
6251
6252 igb_write_itr(q_vector);
6253
6254 if (icr & E1000_ICR_DRSTA)
6255 schedule_work(&adapter->reset_task);
6256
6257 if (icr & E1000_ICR_DOUTSYNC) {
6258 /* HW is reporting DMA is out of sync */
6259 adapter->stats.doosync++;
6260 }
6261
6262 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6263 hw->mac.get_link_status = 1;
6264 /* guard against interrupt when we're going down */
6265 if (!test_bit(__IGB_DOWN, &adapter->state))
6266 mod_timer(&adapter->watchdog_timer, jiffies + 1);
6267 }
6268
6269 if (icr & E1000_ICR_TS) {
6270 u32 tsicr = rd32(E1000_TSICR);
6271
6272 if (tsicr & E1000_TSICR_TXTS) {
6273 /* acknowledge the interrupt */
6274 wr32(E1000_TSICR, E1000_TSICR_TXTS);
6275 /* retrieve hardware timestamp */
6276 schedule_work(&adapter->ptp_tx_work);
6277 }
6278 }
6279
6280 napi_schedule(&q_vector->napi);
6281
6282 return IRQ_HANDLED;
6283 }
6284
6285 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6286 {
6287 struct igb_adapter *adapter = q_vector->adapter;
6288 struct e1000_hw *hw = &adapter->hw;
6289
6290 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6291 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6292 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6293 igb_set_itr(q_vector);
6294 else
6295 igb_update_ring_itr(q_vector);
6296 }
6297
6298 if (!test_bit(__IGB_DOWN, &adapter->state)) {
6299 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6300 wr32(E1000_EIMS, q_vector->eims_value);
6301 else
6302 igb_irq_enable(adapter);
6303 }
6304 }
6305
6306 /**
6307 * igb_poll - NAPI Rx polling callback
6308 * @napi: napi polling structure
6309 * @budget: count of how many packets we should handle
6310 **/
6311 static int igb_poll(struct napi_struct *napi, int budget)
6312 {
6313 struct igb_q_vector *q_vector = container_of(napi,
6314 struct igb_q_vector,
6315 napi);
6316 bool clean_complete = true;
6317
6318 #ifdef CONFIG_IGB_DCA
6319 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6320 igb_update_dca(q_vector);
6321 #endif
6322 if (q_vector->tx.ring)
6323 clean_complete = igb_clean_tx_irq(q_vector);
6324
6325 if (q_vector->rx.ring)
6326 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6327
6328 /* If all work not completed, return budget and keep polling */
6329 if (!clean_complete)
6330 return budget;
6331
6332 /* If not enough Rx work done, exit the polling mode */
6333 napi_complete(napi);
6334 igb_ring_irq_enable(q_vector);
6335
6336 return 0;
6337 }
6338
6339 /**
6340 * igb_clean_tx_irq - Reclaim resources after transmit completes
6341 * @q_vector: pointer to q_vector containing needed info
6342 *
6343 * returns true if ring is completely cleaned
6344 **/
6345 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6346 {
6347 struct igb_adapter *adapter = q_vector->adapter;
6348 struct igb_ring *tx_ring = q_vector->tx.ring;
6349 struct igb_tx_buffer *tx_buffer;
6350 union e1000_adv_tx_desc *tx_desc;
6351 unsigned int total_bytes = 0, total_packets = 0;
6352 unsigned int budget = q_vector->tx.work_limit;
6353 unsigned int i = tx_ring->next_to_clean;
6354
6355 if (test_bit(__IGB_DOWN, &adapter->state))
6356 return true;
6357
6358 tx_buffer = &tx_ring->tx_buffer_info[i];
6359 tx_desc = IGB_TX_DESC(tx_ring, i);
6360 i -= tx_ring->count;
6361
6362 do {
6363 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6364
6365 /* if next_to_watch is not set then there is no work pending */
6366 if (!eop_desc)
6367 break;
6368
6369 /* prevent any other reads prior to eop_desc */
6370 read_barrier_depends();
6371
6372 /* if DD is not set pending work has not been completed */
6373 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6374 break;
6375
6376 /* clear next_to_watch to prevent false hangs */
6377 tx_buffer->next_to_watch = NULL;
6378
6379 /* update the statistics for this packet */
6380 total_bytes += tx_buffer->bytecount;
6381 total_packets += tx_buffer->gso_segs;
6382
6383 /* free the skb */
6384 dev_consume_skb_any(tx_buffer->skb);
6385
6386 /* unmap skb header data */
6387 dma_unmap_single(tx_ring->dev,
6388 dma_unmap_addr(tx_buffer, dma),
6389 dma_unmap_len(tx_buffer, len),
6390 DMA_TO_DEVICE);
6391
6392 /* clear tx_buffer data */
6393 tx_buffer->skb = NULL;
6394 dma_unmap_len_set(tx_buffer, len, 0);
6395
6396 /* clear last DMA location and unmap remaining buffers */
6397 while (tx_desc != eop_desc) {
6398 tx_buffer++;
6399 tx_desc++;
6400 i++;
6401 if (unlikely(!i)) {
6402 i -= tx_ring->count;
6403 tx_buffer = tx_ring->tx_buffer_info;
6404 tx_desc = IGB_TX_DESC(tx_ring, 0);
6405 }
6406
6407 /* unmap any remaining paged data */
6408 if (dma_unmap_len(tx_buffer, len)) {
6409 dma_unmap_page(tx_ring->dev,
6410 dma_unmap_addr(tx_buffer, dma),
6411 dma_unmap_len(tx_buffer, len),
6412 DMA_TO_DEVICE);
6413 dma_unmap_len_set(tx_buffer, len, 0);
6414 }
6415 }
6416
6417 /* move us one more past the eop_desc for start of next pkt */
6418 tx_buffer++;
6419 tx_desc++;
6420 i++;
6421 if (unlikely(!i)) {
6422 i -= tx_ring->count;
6423 tx_buffer = tx_ring->tx_buffer_info;
6424 tx_desc = IGB_TX_DESC(tx_ring, 0);
6425 }
6426
6427 /* issue prefetch for next Tx descriptor */
6428 prefetch(tx_desc);
6429
6430 /* update budget accounting */
6431 budget--;
6432 } while (likely(budget));
6433
6434 netdev_tx_completed_queue(txring_txq(tx_ring),
6435 total_packets, total_bytes);
6436 i += tx_ring->count;
6437 tx_ring->next_to_clean = i;
6438 u64_stats_update_begin(&tx_ring->tx_syncp);
6439 tx_ring->tx_stats.bytes += total_bytes;
6440 tx_ring->tx_stats.packets += total_packets;
6441 u64_stats_update_end(&tx_ring->tx_syncp);
6442 q_vector->tx.total_bytes += total_bytes;
6443 q_vector->tx.total_packets += total_packets;
6444
6445 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6446 struct e1000_hw *hw = &adapter->hw;
6447
6448 /* Detect a transmit hang in hardware, this serializes the
6449 * check with the clearing of time_stamp and movement of i
6450 */
6451 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6452 if (tx_buffer->next_to_watch &&
6453 time_after(jiffies, tx_buffer->time_stamp +
6454 (adapter->tx_timeout_factor * HZ)) &&
6455 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6456
6457 /* detected Tx unit hang */
6458 dev_err(tx_ring->dev,
6459 "Detected Tx Unit Hang\n"
6460 " Tx Queue <%d>\n"
6461 " TDH <%x>\n"
6462 " TDT <%x>\n"
6463 " next_to_use <%x>\n"
6464 " next_to_clean <%x>\n"
6465 "buffer_info[next_to_clean]\n"
6466 " time_stamp <%lx>\n"
6467 " next_to_watch <%p>\n"
6468 " jiffies <%lx>\n"
6469 " desc.status <%x>\n",
6470 tx_ring->queue_index,
6471 rd32(E1000_TDH(tx_ring->reg_idx)),
6472 readl(tx_ring->tail),
6473 tx_ring->next_to_use,
6474 tx_ring->next_to_clean,
6475 tx_buffer->time_stamp,
6476 tx_buffer->next_to_watch,
6477 jiffies,
6478 tx_buffer->next_to_watch->wb.status);
6479 netif_stop_subqueue(tx_ring->netdev,
6480 tx_ring->queue_index);
6481
6482 /* we are about to reset, no point in enabling stuff */
6483 return true;
6484 }
6485 }
6486
6487 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6488 if (unlikely(total_packets &&
6489 netif_carrier_ok(tx_ring->netdev) &&
6490 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6491 /* Make sure that anybody stopping the queue after this
6492 * sees the new next_to_clean.
6493 */
6494 smp_mb();
6495 if (__netif_subqueue_stopped(tx_ring->netdev,
6496 tx_ring->queue_index) &&
6497 !(test_bit(__IGB_DOWN, &adapter->state))) {
6498 netif_wake_subqueue(tx_ring->netdev,
6499 tx_ring->queue_index);
6500
6501 u64_stats_update_begin(&tx_ring->tx_syncp);
6502 tx_ring->tx_stats.restart_queue++;
6503 u64_stats_update_end(&tx_ring->tx_syncp);
6504 }
6505 }
6506
6507 return !!budget;
6508 }
6509
6510 /**
6511 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6512 * @rx_ring: rx descriptor ring to store buffers on
6513 * @old_buff: donor buffer to have page reused
6514 *
6515 * Synchronizes page for reuse by the adapter
6516 **/
6517 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6518 struct igb_rx_buffer *old_buff)
6519 {
6520 struct igb_rx_buffer *new_buff;
6521 u16 nta = rx_ring->next_to_alloc;
6522
6523 new_buff = &rx_ring->rx_buffer_info[nta];
6524
6525 /* update, and store next to alloc */
6526 nta++;
6527 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6528
6529 /* transfer page from old buffer to new buffer */
6530 *new_buff = *old_buff;
6531
6532 /* sync the buffer for use by the device */
6533 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6534 old_buff->page_offset,
6535 IGB_RX_BUFSZ,
6536 DMA_FROM_DEVICE);
6537 }
6538
6539 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6540 struct page *page,
6541 unsigned int truesize)
6542 {
6543 /* avoid re-using remote pages */
6544 if (unlikely(page_to_nid(page) != numa_node_id()))
6545 return false;
6546
6547 if (unlikely(page->pfmemalloc))
6548 return false;
6549
6550 #if (PAGE_SIZE < 8192)
6551 /* if we are only owner of page we can reuse it */
6552 if (unlikely(page_count(page) != 1))
6553 return false;
6554
6555 /* flip page offset to other buffer */
6556 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6557
6558 /* Even if we own the page, we are not allowed to use atomic_set()
6559 * This would break get_page_unless_zero() users.
6560 */
6561 atomic_inc(&page->_count);
6562 #else
6563 /* move offset up to the next cache line */
6564 rx_buffer->page_offset += truesize;
6565
6566 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6567 return false;
6568
6569 /* bump ref count on page before it is given to the stack */
6570 get_page(page);
6571 #endif
6572
6573 return true;
6574 }
6575
6576 /**
6577 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6578 * @rx_ring: rx descriptor ring to transact packets on
6579 * @rx_buffer: buffer containing page to add
6580 * @rx_desc: descriptor containing length of buffer written by hardware
6581 * @skb: sk_buff to place the data into
6582 *
6583 * This function will add the data contained in rx_buffer->page to the skb.
6584 * This is done either through a direct copy if the data in the buffer is
6585 * less than the skb header size, otherwise it will just attach the page as
6586 * a frag to the skb.
6587 *
6588 * The function will then update the page offset if necessary and return
6589 * true if the buffer can be reused by the adapter.
6590 **/
6591 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6592 struct igb_rx_buffer *rx_buffer,
6593 union e1000_adv_rx_desc *rx_desc,
6594 struct sk_buff *skb)
6595 {
6596 struct page *page = rx_buffer->page;
6597 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6598 #if (PAGE_SIZE < 8192)
6599 unsigned int truesize = IGB_RX_BUFSZ;
6600 #else
6601 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6602 #endif
6603
6604 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6605 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6606
6607 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6608 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6609 va += IGB_TS_HDR_LEN;
6610 size -= IGB_TS_HDR_LEN;
6611 }
6612
6613 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6614
6615 /* we can reuse buffer as-is, just make sure it is local */
6616 if (likely((page_to_nid(page) == numa_node_id()) &&
6617 !page->pfmemalloc))
6618 return true;
6619
6620 /* this page cannot be reused so discard it */
6621 put_page(page);
6622 return false;
6623 }
6624
6625 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6626 rx_buffer->page_offset, size, truesize);
6627
6628 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6629 }
6630
6631 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6632 union e1000_adv_rx_desc *rx_desc,
6633 struct sk_buff *skb)
6634 {
6635 struct igb_rx_buffer *rx_buffer;
6636 struct page *page;
6637
6638 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6639
6640 page = rx_buffer->page;
6641 prefetchw(page);
6642
6643 if (likely(!skb)) {
6644 void *page_addr = page_address(page) +
6645 rx_buffer->page_offset;
6646
6647 /* prefetch first cache line of first page */
6648 prefetch(page_addr);
6649 #if L1_CACHE_BYTES < 128
6650 prefetch(page_addr + L1_CACHE_BYTES);
6651 #endif
6652
6653 /* allocate a skb to store the frags */
6654 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6655 IGB_RX_HDR_LEN);
6656 if (unlikely(!skb)) {
6657 rx_ring->rx_stats.alloc_failed++;
6658 return NULL;
6659 }
6660
6661 /* we will be copying header into skb->data in
6662 * pskb_may_pull so it is in our interest to prefetch
6663 * it now to avoid a possible cache miss
6664 */
6665 prefetchw(skb->data);
6666 }
6667
6668 /* we are reusing so sync this buffer for CPU use */
6669 dma_sync_single_range_for_cpu(rx_ring->dev,
6670 rx_buffer->dma,
6671 rx_buffer->page_offset,
6672 IGB_RX_BUFSZ,
6673 DMA_FROM_DEVICE);
6674
6675 /* pull page into skb */
6676 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6677 /* hand second half of page back to the ring */
6678 igb_reuse_rx_page(rx_ring, rx_buffer);
6679 } else {
6680 /* we are not reusing the buffer so unmap it */
6681 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6682 PAGE_SIZE, DMA_FROM_DEVICE);
6683 }
6684
6685 /* clear contents of rx_buffer */
6686 rx_buffer->page = NULL;
6687
6688 return skb;
6689 }
6690
6691 static inline void igb_rx_checksum(struct igb_ring *ring,
6692 union e1000_adv_rx_desc *rx_desc,
6693 struct sk_buff *skb)
6694 {
6695 skb_checksum_none_assert(skb);
6696
6697 /* Ignore Checksum bit is set */
6698 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6699 return;
6700
6701 /* Rx checksum disabled via ethtool */
6702 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6703 return;
6704
6705 /* TCP/UDP checksum error bit is set */
6706 if (igb_test_staterr(rx_desc,
6707 E1000_RXDEXT_STATERR_TCPE |
6708 E1000_RXDEXT_STATERR_IPE)) {
6709 /* work around errata with sctp packets where the TCPE aka
6710 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6711 * packets, (aka let the stack check the crc32c)
6712 */
6713 if (!((skb->len == 60) &&
6714 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6715 u64_stats_update_begin(&ring->rx_syncp);
6716 ring->rx_stats.csum_err++;
6717 u64_stats_update_end(&ring->rx_syncp);
6718 }
6719 /* let the stack verify checksum errors */
6720 return;
6721 }
6722 /* It must be a TCP or UDP packet with a valid checksum */
6723 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6724 E1000_RXD_STAT_UDPCS))
6725 skb->ip_summed = CHECKSUM_UNNECESSARY;
6726
6727 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6728 le32_to_cpu(rx_desc->wb.upper.status_error));
6729 }
6730
6731 static inline void igb_rx_hash(struct igb_ring *ring,
6732 union e1000_adv_rx_desc *rx_desc,
6733 struct sk_buff *skb)
6734 {
6735 if (ring->netdev->features & NETIF_F_RXHASH)
6736 skb_set_hash(skb,
6737 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6738 PKT_HASH_TYPE_L3);
6739 }
6740
6741 /**
6742 * igb_is_non_eop - process handling of non-EOP buffers
6743 * @rx_ring: Rx ring being processed
6744 * @rx_desc: Rx descriptor for current buffer
6745 * @skb: current socket buffer containing buffer in progress
6746 *
6747 * This function updates next to clean. If the buffer is an EOP buffer
6748 * this function exits returning false, otherwise it will place the
6749 * sk_buff in the next buffer to be chained and return true indicating
6750 * that this is in fact a non-EOP buffer.
6751 **/
6752 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6753 union e1000_adv_rx_desc *rx_desc)
6754 {
6755 u32 ntc = rx_ring->next_to_clean + 1;
6756
6757 /* fetch, update, and store next to clean */
6758 ntc = (ntc < rx_ring->count) ? ntc : 0;
6759 rx_ring->next_to_clean = ntc;
6760
6761 prefetch(IGB_RX_DESC(rx_ring, ntc));
6762
6763 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6764 return false;
6765
6766 return true;
6767 }
6768
6769 /**
6770 * igb_pull_tail - igb specific version of skb_pull_tail
6771 * @rx_ring: rx descriptor ring packet is being transacted on
6772 * @rx_desc: pointer to the EOP Rx descriptor
6773 * @skb: pointer to current skb being adjusted
6774 *
6775 * This function is an igb specific version of __pskb_pull_tail. The
6776 * main difference between this version and the original function is that
6777 * this function can make several assumptions about the state of things
6778 * that allow for significant optimizations versus the standard function.
6779 * As a result we can do things like drop a frag and maintain an accurate
6780 * truesize for the skb.
6781 */
6782 static void igb_pull_tail(struct igb_ring *rx_ring,
6783 union e1000_adv_rx_desc *rx_desc,
6784 struct sk_buff *skb)
6785 {
6786 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6787 unsigned char *va;
6788 unsigned int pull_len;
6789
6790 /* it is valid to use page_address instead of kmap since we are
6791 * working with pages allocated out of the lomem pool per
6792 * alloc_page(GFP_ATOMIC)
6793 */
6794 va = skb_frag_address(frag);
6795
6796 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6797 /* retrieve timestamp from buffer */
6798 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6799
6800 /* update pointers to remove timestamp header */
6801 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6802 frag->page_offset += IGB_TS_HDR_LEN;
6803 skb->data_len -= IGB_TS_HDR_LEN;
6804 skb->len -= IGB_TS_HDR_LEN;
6805
6806 /* move va to start of packet data */
6807 va += IGB_TS_HDR_LEN;
6808 }
6809
6810 /* we need the header to contain the greater of either ETH_HLEN or
6811 * 60 bytes if the skb->len is less than 60 for skb_pad.
6812 */
6813 pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6814
6815 /* align pull length to size of long to optimize memcpy performance */
6816 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6817
6818 /* update all of the pointers */
6819 skb_frag_size_sub(frag, pull_len);
6820 frag->page_offset += pull_len;
6821 skb->data_len -= pull_len;
6822 skb->tail += pull_len;
6823 }
6824
6825 /**
6826 * igb_cleanup_headers - Correct corrupted or empty headers
6827 * @rx_ring: rx descriptor ring packet is being transacted on
6828 * @rx_desc: pointer to the EOP Rx descriptor
6829 * @skb: pointer to current skb being fixed
6830 *
6831 * Address the case where we are pulling data in on pages only
6832 * and as such no data is present in the skb header.
6833 *
6834 * In addition if skb is not at least 60 bytes we need to pad it so that
6835 * it is large enough to qualify as a valid Ethernet frame.
6836 *
6837 * Returns true if an error was encountered and skb was freed.
6838 **/
6839 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6840 union e1000_adv_rx_desc *rx_desc,
6841 struct sk_buff *skb)
6842 {
6843 if (unlikely((igb_test_staterr(rx_desc,
6844 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6845 struct net_device *netdev = rx_ring->netdev;
6846 if (!(netdev->features & NETIF_F_RXALL)) {
6847 dev_kfree_skb_any(skb);
6848 return true;
6849 }
6850 }
6851
6852 /* place header in linear portion of buffer */
6853 if (skb_is_nonlinear(skb))
6854 igb_pull_tail(rx_ring, rx_desc, skb);
6855
6856 /* if skb_pad returns an error the skb was freed */
6857 if (unlikely(skb->len < 60)) {
6858 int pad_len = 60 - skb->len;
6859
6860 if (skb_pad(skb, pad_len))
6861 return true;
6862 __skb_put(skb, pad_len);
6863 }
6864
6865 return false;
6866 }
6867
6868 /**
6869 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6870 * @rx_ring: rx descriptor ring packet is being transacted on
6871 * @rx_desc: pointer to the EOP Rx descriptor
6872 * @skb: pointer to current skb being populated
6873 *
6874 * This function checks the ring, descriptor, and packet information in
6875 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6876 * other fields within the skb.
6877 **/
6878 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6879 union e1000_adv_rx_desc *rx_desc,
6880 struct sk_buff *skb)
6881 {
6882 struct net_device *dev = rx_ring->netdev;
6883
6884 igb_rx_hash(rx_ring, rx_desc, skb);
6885
6886 igb_rx_checksum(rx_ring, rx_desc, skb);
6887
6888 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6889 !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6890 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6891
6892 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6893 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6894 u16 vid;
6895
6896 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6897 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6898 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6899 else
6900 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6901
6902 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6903 }
6904
6905 skb_record_rx_queue(skb, rx_ring->queue_index);
6906
6907 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6908 }
6909
6910 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6911 {
6912 struct igb_ring *rx_ring = q_vector->rx.ring;
6913 struct sk_buff *skb = rx_ring->skb;
6914 unsigned int total_bytes = 0, total_packets = 0;
6915 u16 cleaned_count = igb_desc_unused(rx_ring);
6916
6917 while (likely(total_packets < budget)) {
6918 union e1000_adv_rx_desc *rx_desc;
6919
6920 /* return some buffers to hardware, one at a time is too slow */
6921 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6922 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6923 cleaned_count = 0;
6924 }
6925
6926 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6927
6928 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6929 break;
6930
6931 /* This memory barrier is needed to keep us from reading
6932 * any other fields out of the rx_desc until we know the
6933 * RXD_STAT_DD bit is set
6934 */
6935 rmb();
6936
6937 /* retrieve a buffer from the ring */
6938 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6939
6940 /* exit if we failed to retrieve a buffer */
6941 if (!skb)
6942 break;
6943
6944 cleaned_count++;
6945
6946 /* fetch next buffer in frame if non-eop */
6947 if (igb_is_non_eop(rx_ring, rx_desc))
6948 continue;
6949
6950 /* verify the packet layout is correct */
6951 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6952 skb = NULL;
6953 continue;
6954 }
6955
6956 /* probably a little skewed due to removing CRC */
6957 total_bytes += skb->len;
6958
6959 /* populate checksum, timestamp, VLAN, and protocol */
6960 igb_process_skb_fields(rx_ring, rx_desc, skb);
6961
6962 napi_gro_receive(&q_vector->napi, skb);
6963
6964 /* reset skb pointer */
6965 skb = NULL;
6966
6967 /* update budget accounting */
6968 total_packets++;
6969 }
6970
6971 /* place incomplete frames back on ring for completion */
6972 rx_ring->skb = skb;
6973
6974 u64_stats_update_begin(&rx_ring->rx_syncp);
6975 rx_ring->rx_stats.packets += total_packets;
6976 rx_ring->rx_stats.bytes += total_bytes;
6977 u64_stats_update_end(&rx_ring->rx_syncp);
6978 q_vector->rx.total_packets += total_packets;
6979 q_vector->rx.total_bytes += total_bytes;
6980
6981 if (cleaned_count)
6982 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6983
6984 return total_packets < budget;
6985 }
6986
6987 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6988 struct igb_rx_buffer *bi)
6989 {
6990 struct page *page = bi->page;
6991 dma_addr_t dma;
6992
6993 /* since we are recycling buffers we should seldom need to alloc */
6994 if (likely(page))
6995 return true;
6996
6997 /* alloc new page for storage */
6998 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6999 if (unlikely(!page)) {
7000 rx_ring->rx_stats.alloc_failed++;
7001 return false;
7002 }
7003
7004 /* map page for use */
7005 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
7006
7007 /* if mapping failed free memory back to system since
7008 * there isn't much point in holding memory we can't use
7009 */
7010 if (dma_mapping_error(rx_ring->dev, dma)) {
7011 __free_page(page);
7012
7013 rx_ring->rx_stats.alloc_failed++;
7014 return false;
7015 }
7016
7017 bi->dma = dma;
7018 bi->page = page;
7019 bi->page_offset = 0;
7020
7021 return true;
7022 }
7023
7024 /**
7025 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
7026 * @adapter: address of board private structure
7027 **/
7028 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7029 {
7030 union e1000_adv_rx_desc *rx_desc;
7031 struct igb_rx_buffer *bi;
7032 u16 i = rx_ring->next_to_use;
7033
7034 /* nothing to do */
7035 if (!cleaned_count)
7036 return;
7037
7038 rx_desc = IGB_RX_DESC(rx_ring, i);
7039 bi = &rx_ring->rx_buffer_info[i];
7040 i -= rx_ring->count;
7041
7042 do {
7043 if (!igb_alloc_mapped_page(rx_ring, bi))
7044 break;
7045
7046 /* Refresh the desc even if buffer_addrs didn't change
7047 * because each write-back erases this info.
7048 */
7049 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7050
7051 rx_desc++;
7052 bi++;
7053 i++;
7054 if (unlikely(!i)) {
7055 rx_desc = IGB_RX_DESC(rx_ring, 0);
7056 bi = rx_ring->rx_buffer_info;
7057 i -= rx_ring->count;
7058 }
7059
7060 /* clear the hdr_addr for the next_to_use descriptor */
7061 rx_desc->read.hdr_addr = 0;
7062
7063 cleaned_count--;
7064 } while (cleaned_count);
7065
7066 i += rx_ring->count;
7067
7068 if (rx_ring->next_to_use != i) {
7069 /* record the next descriptor to use */
7070 rx_ring->next_to_use = i;
7071
7072 /* update next to alloc since we have filled the ring */
7073 rx_ring->next_to_alloc = i;
7074
7075 /* Force memory writes to complete before letting h/w
7076 * know there are new descriptors to fetch. (Only
7077 * applicable for weak-ordered memory model archs,
7078 * such as IA-64).
7079 */
7080 wmb();
7081 writel(i, rx_ring->tail);
7082 }
7083 }
7084
7085 /**
7086 * igb_mii_ioctl -
7087 * @netdev:
7088 * @ifreq:
7089 * @cmd:
7090 **/
7091 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7092 {
7093 struct igb_adapter *adapter = netdev_priv(netdev);
7094 struct mii_ioctl_data *data = if_mii(ifr);
7095
7096 if (adapter->hw.phy.media_type != e1000_media_type_copper)
7097 return -EOPNOTSUPP;
7098
7099 switch (cmd) {
7100 case SIOCGMIIPHY:
7101 data->phy_id = adapter->hw.phy.addr;
7102 break;
7103 case SIOCGMIIREG:
7104 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7105 &data->val_out))
7106 return -EIO;
7107 break;
7108 case SIOCSMIIREG:
7109 default:
7110 return -EOPNOTSUPP;
7111 }
7112 return 0;
7113 }
7114
7115 /**
7116 * igb_ioctl -
7117 * @netdev:
7118 * @ifreq:
7119 * @cmd:
7120 **/
7121 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7122 {
7123 switch (cmd) {
7124 case SIOCGMIIPHY:
7125 case SIOCGMIIREG:
7126 case SIOCSMIIREG:
7127 return igb_mii_ioctl(netdev, ifr, cmd);
7128 case SIOCGHWTSTAMP:
7129 return igb_ptp_get_ts_config(netdev, ifr);
7130 case SIOCSHWTSTAMP:
7131 return igb_ptp_set_ts_config(netdev, ifr);
7132 default:
7133 return -EOPNOTSUPP;
7134 }
7135 }
7136
7137 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7138 {
7139 struct igb_adapter *adapter = hw->back;
7140
7141 pci_read_config_word(adapter->pdev, reg, value);
7142 }
7143
7144 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7145 {
7146 struct igb_adapter *adapter = hw->back;
7147
7148 pci_write_config_word(adapter->pdev, reg, *value);
7149 }
7150
7151 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7152 {
7153 struct igb_adapter *adapter = hw->back;
7154
7155 if (pcie_capability_read_word(adapter->pdev, reg, value))
7156 return -E1000_ERR_CONFIG;
7157
7158 return 0;
7159 }
7160
7161 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7162 {
7163 struct igb_adapter *adapter = hw->back;
7164
7165 if (pcie_capability_write_word(adapter->pdev, reg, *value))
7166 return -E1000_ERR_CONFIG;
7167
7168 return 0;
7169 }
7170
7171 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7172 {
7173 struct igb_adapter *adapter = netdev_priv(netdev);
7174 struct e1000_hw *hw = &adapter->hw;
7175 u32 ctrl, rctl;
7176 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7177
7178 if (enable) {
7179 /* enable VLAN tag insert/strip */
7180 ctrl = rd32(E1000_CTRL);
7181 ctrl |= E1000_CTRL_VME;
7182 wr32(E1000_CTRL, ctrl);
7183
7184 /* Disable CFI check */
7185 rctl = rd32(E1000_RCTL);
7186 rctl &= ~E1000_RCTL_CFIEN;
7187 wr32(E1000_RCTL, rctl);
7188 } else {
7189 /* disable VLAN tag insert/strip */
7190 ctrl = rd32(E1000_CTRL);
7191 ctrl &= ~E1000_CTRL_VME;
7192 wr32(E1000_CTRL, ctrl);
7193 }
7194
7195 igb_rlpml_set(adapter);
7196 }
7197
7198 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7199 __be16 proto, u16 vid)
7200 {
7201 struct igb_adapter *adapter = netdev_priv(netdev);
7202 struct e1000_hw *hw = &adapter->hw;
7203 int pf_id = adapter->vfs_allocated_count;
7204
7205 /* attempt to add filter to vlvf array */
7206 igb_vlvf_set(adapter, vid, true, pf_id);
7207
7208 /* add the filter since PF can receive vlans w/o entry in vlvf */
7209 igb_vfta_set(hw, vid, true);
7210
7211 set_bit(vid, adapter->active_vlans);
7212
7213 return 0;
7214 }
7215
7216 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7217 __be16 proto, u16 vid)
7218 {
7219 struct igb_adapter *adapter = netdev_priv(netdev);
7220 struct e1000_hw *hw = &adapter->hw;
7221 int pf_id = adapter->vfs_allocated_count;
7222 s32 err;
7223
7224 /* remove vlan from VLVF table array */
7225 err = igb_vlvf_set(adapter, vid, false, pf_id);
7226
7227 /* if vid was not present in VLVF just remove it from table */
7228 if (err)
7229 igb_vfta_set(hw, vid, false);
7230
7231 clear_bit(vid, adapter->active_vlans);
7232
7233 return 0;
7234 }
7235
7236 static void igb_restore_vlan(struct igb_adapter *adapter)
7237 {
7238 u16 vid;
7239
7240 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7241
7242 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7243 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7244 }
7245
7246 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7247 {
7248 struct pci_dev *pdev = adapter->pdev;
7249 struct e1000_mac_info *mac = &adapter->hw.mac;
7250
7251 mac->autoneg = 0;
7252
7253 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7254 * for the switch() below to work
7255 */
7256 if ((spd & 1) || (dplx & ~1))
7257 goto err_inval;
7258
7259 /* Fiber NIC's only allow 1000 gbps Full duplex
7260 * and 100Mbps Full duplex for 100baseFx sfp
7261 */
7262 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7263 switch (spd + dplx) {
7264 case SPEED_10 + DUPLEX_HALF:
7265 case SPEED_10 + DUPLEX_FULL:
7266 case SPEED_100 + DUPLEX_HALF:
7267 goto err_inval;
7268 default:
7269 break;
7270 }
7271 }
7272
7273 switch (spd + dplx) {
7274 case SPEED_10 + DUPLEX_HALF:
7275 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7276 break;
7277 case SPEED_10 + DUPLEX_FULL:
7278 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7279 break;
7280 case SPEED_100 + DUPLEX_HALF:
7281 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7282 break;
7283 case SPEED_100 + DUPLEX_FULL:
7284 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7285 break;
7286 case SPEED_1000 + DUPLEX_FULL:
7287 mac->autoneg = 1;
7288 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7289 break;
7290 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7291 default:
7292 goto err_inval;
7293 }
7294
7295 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7296 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7297
7298 return 0;
7299
7300 err_inval:
7301 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7302 return -EINVAL;
7303 }
7304
7305 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7306 bool runtime)
7307 {
7308 struct net_device *netdev = pci_get_drvdata(pdev);
7309 struct igb_adapter *adapter = netdev_priv(netdev);
7310 struct e1000_hw *hw = &adapter->hw;
7311 u32 ctrl, rctl, status;
7312 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7313 #ifdef CONFIG_PM
7314 int retval = 0;
7315 #endif
7316
7317 netif_device_detach(netdev);
7318
7319 if (netif_running(netdev))
7320 __igb_close(netdev, true);
7321
7322 igb_clear_interrupt_scheme(adapter);
7323
7324 #ifdef CONFIG_PM
7325 retval = pci_save_state(pdev);
7326 if (retval)
7327 return retval;
7328 #endif
7329
7330 status = rd32(E1000_STATUS);
7331 if (status & E1000_STATUS_LU)
7332 wufc &= ~E1000_WUFC_LNKC;
7333
7334 if (wufc) {
7335 igb_setup_rctl(adapter);
7336 igb_set_rx_mode(netdev);
7337
7338 /* turn on all-multi mode if wake on multicast is enabled */
7339 if (wufc & E1000_WUFC_MC) {
7340 rctl = rd32(E1000_RCTL);
7341 rctl |= E1000_RCTL_MPE;
7342 wr32(E1000_RCTL, rctl);
7343 }
7344
7345 ctrl = rd32(E1000_CTRL);
7346 /* advertise wake from D3Cold */
7347 #define E1000_CTRL_ADVD3WUC 0x00100000
7348 /* phy power management enable */
7349 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7350 ctrl |= E1000_CTRL_ADVD3WUC;
7351 wr32(E1000_CTRL, ctrl);
7352
7353 /* Allow time for pending master requests to run */
7354 igb_disable_pcie_master(hw);
7355
7356 wr32(E1000_WUC, E1000_WUC_PME_EN);
7357 wr32(E1000_WUFC, wufc);
7358 } else {
7359 wr32(E1000_WUC, 0);
7360 wr32(E1000_WUFC, 0);
7361 }
7362
7363 *enable_wake = wufc || adapter->en_mng_pt;
7364 if (!*enable_wake)
7365 igb_power_down_link(adapter);
7366 else
7367 igb_power_up_link(adapter);
7368
7369 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7370 * would have already happened in close and is redundant.
7371 */
7372 igb_release_hw_control(adapter);
7373
7374 pci_disable_device(pdev);
7375
7376 return 0;
7377 }
7378
7379 #ifdef CONFIG_PM
7380 #ifdef CONFIG_PM_SLEEP
7381 static int igb_suspend(struct device *dev)
7382 {
7383 int retval;
7384 bool wake;
7385 struct pci_dev *pdev = to_pci_dev(dev);
7386
7387 retval = __igb_shutdown(pdev, &wake, 0);
7388 if (retval)
7389 return retval;
7390
7391 if (wake) {
7392 pci_prepare_to_sleep(pdev);
7393 } else {
7394 pci_wake_from_d3(pdev, false);
7395 pci_set_power_state(pdev, PCI_D3hot);
7396 }
7397
7398 return 0;
7399 }
7400 #endif /* CONFIG_PM_SLEEP */
7401
7402 static int igb_resume(struct device *dev)
7403 {
7404 struct pci_dev *pdev = to_pci_dev(dev);
7405 struct net_device *netdev = pci_get_drvdata(pdev);
7406 struct igb_adapter *adapter = netdev_priv(netdev);
7407 struct e1000_hw *hw = &adapter->hw;
7408 u32 err;
7409
7410 pci_set_power_state(pdev, PCI_D0);
7411 pci_restore_state(pdev);
7412 pci_save_state(pdev);
7413
7414 if (!pci_device_is_present(pdev))
7415 return -ENODEV;
7416 err = pci_enable_device_mem(pdev);
7417 if (err) {
7418 dev_err(&pdev->dev,
7419 "igb: Cannot enable PCI device from suspend\n");
7420 return err;
7421 }
7422 pci_set_master(pdev);
7423
7424 pci_enable_wake(pdev, PCI_D3hot, 0);
7425 pci_enable_wake(pdev, PCI_D3cold, 0);
7426
7427 if (igb_init_interrupt_scheme(adapter, true)) {
7428 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7429 return -ENOMEM;
7430 }
7431
7432 igb_reset(adapter);
7433
7434 /* let the f/w know that the h/w is now under the control of the
7435 * driver.
7436 */
7437 igb_get_hw_control(adapter);
7438
7439 wr32(E1000_WUS, ~0);
7440
7441 if (netdev->flags & IFF_UP) {
7442 rtnl_lock();
7443 err = __igb_open(netdev, true);
7444 rtnl_unlock();
7445 if (err)
7446 return err;
7447 }
7448
7449 netif_device_attach(netdev);
7450 return 0;
7451 }
7452
7453 #ifdef CONFIG_PM_RUNTIME
7454 static int igb_runtime_idle(struct device *dev)
7455 {
7456 struct pci_dev *pdev = to_pci_dev(dev);
7457 struct net_device *netdev = pci_get_drvdata(pdev);
7458 struct igb_adapter *adapter = netdev_priv(netdev);
7459
7460 if (!igb_has_link(adapter))
7461 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7462
7463 return -EBUSY;
7464 }
7465
7466 static int igb_runtime_suspend(struct device *dev)
7467 {
7468 struct pci_dev *pdev = to_pci_dev(dev);
7469 int retval;
7470 bool wake;
7471
7472 retval = __igb_shutdown(pdev, &wake, 1);
7473 if (retval)
7474 return retval;
7475
7476 if (wake) {
7477 pci_prepare_to_sleep(pdev);
7478 } else {
7479 pci_wake_from_d3(pdev, false);
7480 pci_set_power_state(pdev, PCI_D3hot);
7481 }
7482
7483 return 0;
7484 }
7485
7486 static int igb_runtime_resume(struct device *dev)
7487 {
7488 return igb_resume(dev);
7489 }
7490 #endif /* CONFIG_PM_RUNTIME */
7491 #endif
7492
7493 static void igb_shutdown(struct pci_dev *pdev)
7494 {
7495 bool wake;
7496
7497 __igb_shutdown(pdev, &wake, 0);
7498
7499 if (system_state == SYSTEM_POWER_OFF) {
7500 pci_wake_from_d3(pdev, wake);
7501 pci_set_power_state(pdev, PCI_D3hot);
7502 }
7503 }
7504
7505 #ifdef CONFIG_PCI_IOV
7506 static int igb_sriov_reinit(struct pci_dev *dev)
7507 {
7508 struct net_device *netdev = pci_get_drvdata(dev);
7509 struct igb_adapter *adapter = netdev_priv(netdev);
7510 struct pci_dev *pdev = adapter->pdev;
7511
7512 rtnl_lock();
7513
7514 if (netif_running(netdev))
7515 igb_close(netdev);
7516 else
7517 igb_reset(adapter);
7518
7519 igb_clear_interrupt_scheme(adapter);
7520
7521 igb_init_queue_configuration(adapter);
7522
7523 if (igb_init_interrupt_scheme(adapter, true)) {
7524 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7525 return -ENOMEM;
7526 }
7527
7528 if (netif_running(netdev))
7529 igb_open(netdev);
7530
7531 rtnl_unlock();
7532
7533 return 0;
7534 }
7535
7536 static int igb_pci_disable_sriov(struct pci_dev *dev)
7537 {
7538 int err = igb_disable_sriov(dev);
7539
7540 if (!err)
7541 err = igb_sriov_reinit(dev);
7542
7543 return err;
7544 }
7545
7546 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7547 {
7548 int err = igb_enable_sriov(dev, num_vfs);
7549
7550 if (err)
7551 goto out;
7552
7553 err = igb_sriov_reinit(dev);
7554 if (!err)
7555 return num_vfs;
7556
7557 out:
7558 return err;
7559 }
7560
7561 #endif
7562 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7563 {
7564 #ifdef CONFIG_PCI_IOV
7565 if (num_vfs == 0)
7566 return igb_pci_disable_sriov(dev);
7567 else
7568 return igb_pci_enable_sriov(dev, num_vfs);
7569 #endif
7570 return 0;
7571 }
7572
7573 #ifdef CONFIG_NET_POLL_CONTROLLER
7574 /* Polling 'interrupt' - used by things like netconsole to send skbs
7575 * without having to re-enable interrupts. It's not called while
7576 * the interrupt routine is executing.
7577 */
7578 static void igb_netpoll(struct net_device *netdev)
7579 {
7580 struct igb_adapter *adapter = netdev_priv(netdev);
7581 struct e1000_hw *hw = &adapter->hw;
7582 struct igb_q_vector *q_vector;
7583 int i;
7584
7585 for (i = 0; i < adapter->num_q_vectors; i++) {
7586 q_vector = adapter->q_vector[i];
7587 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7588 wr32(E1000_EIMC, q_vector->eims_value);
7589 else
7590 igb_irq_disable(adapter);
7591 napi_schedule(&q_vector->napi);
7592 }
7593 }
7594 #endif /* CONFIG_NET_POLL_CONTROLLER */
7595
7596 /**
7597 * igb_io_error_detected - called when PCI error is detected
7598 * @pdev: Pointer to PCI device
7599 * @state: The current pci connection state
7600 *
7601 * This function is called after a PCI bus error affecting
7602 * this device has been detected.
7603 **/
7604 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7605 pci_channel_state_t state)
7606 {
7607 struct net_device *netdev = pci_get_drvdata(pdev);
7608 struct igb_adapter *adapter = netdev_priv(netdev);
7609
7610 netif_device_detach(netdev);
7611
7612 if (state == pci_channel_io_perm_failure)
7613 return PCI_ERS_RESULT_DISCONNECT;
7614
7615 if (netif_running(netdev))
7616 igb_down(adapter);
7617 pci_disable_device(pdev);
7618
7619 /* Request a slot slot reset. */
7620 return PCI_ERS_RESULT_NEED_RESET;
7621 }
7622
7623 /**
7624 * igb_io_slot_reset - called after the pci bus has been reset.
7625 * @pdev: Pointer to PCI device
7626 *
7627 * Restart the card from scratch, as if from a cold-boot. Implementation
7628 * resembles the first-half of the igb_resume routine.
7629 **/
7630 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7631 {
7632 struct net_device *netdev = pci_get_drvdata(pdev);
7633 struct igb_adapter *adapter = netdev_priv(netdev);
7634 struct e1000_hw *hw = &adapter->hw;
7635 pci_ers_result_t result;
7636 int err;
7637
7638 if (pci_enable_device_mem(pdev)) {
7639 dev_err(&pdev->dev,
7640 "Cannot re-enable PCI device after reset.\n");
7641 result = PCI_ERS_RESULT_DISCONNECT;
7642 } else {
7643 pci_set_master(pdev);
7644 pci_restore_state(pdev);
7645 pci_save_state(pdev);
7646
7647 pci_enable_wake(pdev, PCI_D3hot, 0);
7648 pci_enable_wake(pdev, PCI_D3cold, 0);
7649
7650 igb_reset(adapter);
7651 wr32(E1000_WUS, ~0);
7652 result = PCI_ERS_RESULT_RECOVERED;
7653 }
7654
7655 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7656 if (err) {
7657 dev_err(&pdev->dev,
7658 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7659 err);
7660 /* non-fatal, continue */
7661 }
7662
7663 return result;
7664 }
7665
7666 /**
7667 * igb_io_resume - called when traffic can start flowing again.
7668 * @pdev: Pointer to PCI device
7669 *
7670 * This callback is called when the error recovery driver tells us that
7671 * its OK to resume normal operation. Implementation resembles the
7672 * second-half of the igb_resume routine.
7673 */
7674 static void igb_io_resume(struct pci_dev *pdev)
7675 {
7676 struct net_device *netdev = pci_get_drvdata(pdev);
7677 struct igb_adapter *adapter = netdev_priv(netdev);
7678
7679 if (netif_running(netdev)) {
7680 if (igb_up(adapter)) {
7681 dev_err(&pdev->dev, "igb_up failed after reset\n");
7682 return;
7683 }
7684 }
7685
7686 netif_device_attach(netdev);
7687
7688 /* let the f/w know that the h/w is now under the control of the
7689 * driver.
7690 */
7691 igb_get_hw_control(adapter);
7692 }
7693
7694 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7695 u8 qsel)
7696 {
7697 u32 rar_low, rar_high;
7698 struct e1000_hw *hw = &adapter->hw;
7699
7700 /* HW expects these in little endian so we reverse the byte order
7701 * from network order (big endian) to little endian
7702 */
7703 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7704 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7705 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7706
7707 /* Indicate to hardware the Address is Valid. */
7708 rar_high |= E1000_RAH_AV;
7709
7710 if (hw->mac.type == e1000_82575)
7711 rar_high |= E1000_RAH_POOL_1 * qsel;
7712 else
7713 rar_high |= E1000_RAH_POOL_1 << qsel;
7714
7715 wr32(E1000_RAL(index), rar_low);
7716 wrfl();
7717 wr32(E1000_RAH(index), rar_high);
7718 wrfl();
7719 }
7720
7721 static int igb_set_vf_mac(struct igb_adapter *adapter,
7722 int vf, unsigned char *mac_addr)
7723 {
7724 struct e1000_hw *hw = &adapter->hw;
7725 /* VF MAC addresses start at end of receive addresses and moves
7726 * towards the first, as a result a collision should not be possible
7727 */
7728 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7729
7730 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7731
7732 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7733
7734 return 0;
7735 }
7736
7737 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7738 {
7739 struct igb_adapter *adapter = netdev_priv(netdev);
7740 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7741 return -EINVAL;
7742 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7743 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7744 dev_info(&adapter->pdev->dev,
7745 "Reload the VF driver to make this change effective.");
7746 if (test_bit(__IGB_DOWN, &adapter->state)) {
7747 dev_warn(&adapter->pdev->dev,
7748 "The VF MAC address has been set, but the PF device is not up.\n");
7749 dev_warn(&adapter->pdev->dev,
7750 "Bring the PF device up before attempting to use the VF device.\n");
7751 }
7752 return igb_set_vf_mac(adapter, vf, mac);
7753 }
7754
7755 static int igb_link_mbps(int internal_link_speed)
7756 {
7757 switch (internal_link_speed) {
7758 case SPEED_100:
7759 return 100;
7760 case SPEED_1000:
7761 return 1000;
7762 default:
7763 return 0;
7764 }
7765 }
7766
7767 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7768 int link_speed)
7769 {
7770 int rf_dec, rf_int;
7771 u32 bcnrc_val;
7772
7773 if (tx_rate != 0) {
7774 /* Calculate the rate factor values to set */
7775 rf_int = link_speed / tx_rate;
7776 rf_dec = (link_speed - (rf_int * tx_rate));
7777 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7778 tx_rate;
7779
7780 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7781 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7782 E1000_RTTBCNRC_RF_INT_MASK);
7783 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7784 } else {
7785 bcnrc_val = 0;
7786 }
7787
7788 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7789 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7790 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7791 */
7792 wr32(E1000_RTTBCNRM, 0x14);
7793 wr32(E1000_RTTBCNRC, bcnrc_val);
7794 }
7795
7796 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7797 {
7798 int actual_link_speed, i;
7799 bool reset_rate = false;
7800
7801 /* VF TX rate limit was not set or not supported */
7802 if ((adapter->vf_rate_link_speed == 0) ||
7803 (adapter->hw.mac.type != e1000_82576))
7804 return;
7805
7806 actual_link_speed = igb_link_mbps(adapter->link_speed);
7807 if (actual_link_speed != adapter->vf_rate_link_speed) {
7808 reset_rate = true;
7809 adapter->vf_rate_link_speed = 0;
7810 dev_info(&adapter->pdev->dev,
7811 "Link speed has been changed. VF Transmit rate is disabled\n");
7812 }
7813
7814 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7815 if (reset_rate)
7816 adapter->vf_data[i].tx_rate = 0;
7817
7818 igb_set_vf_rate_limit(&adapter->hw, i,
7819 adapter->vf_data[i].tx_rate,
7820 actual_link_speed);
7821 }
7822 }
7823
7824 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7825 int min_tx_rate, int max_tx_rate)
7826 {
7827 struct igb_adapter *adapter = netdev_priv(netdev);
7828 struct e1000_hw *hw = &adapter->hw;
7829 int actual_link_speed;
7830
7831 if (hw->mac.type != e1000_82576)
7832 return -EOPNOTSUPP;
7833
7834 if (min_tx_rate)
7835 return -EINVAL;
7836
7837 actual_link_speed = igb_link_mbps(adapter->link_speed);
7838 if ((vf >= adapter->vfs_allocated_count) ||
7839 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7840 (max_tx_rate < 0) ||
7841 (max_tx_rate > actual_link_speed))
7842 return -EINVAL;
7843
7844 adapter->vf_rate_link_speed = actual_link_speed;
7845 adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7846 igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7847
7848 return 0;
7849 }
7850
7851 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7852 bool setting)
7853 {
7854 struct igb_adapter *adapter = netdev_priv(netdev);
7855 struct e1000_hw *hw = &adapter->hw;
7856 u32 reg_val, reg_offset;
7857
7858 if (!adapter->vfs_allocated_count)
7859 return -EOPNOTSUPP;
7860
7861 if (vf >= adapter->vfs_allocated_count)
7862 return -EINVAL;
7863
7864 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7865 reg_val = rd32(reg_offset);
7866 if (setting)
7867 reg_val |= ((1 << vf) |
7868 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7869 else
7870 reg_val &= ~((1 << vf) |
7871 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7872 wr32(reg_offset, reg_val);
7873
7874 adapter->vf_data[vf].spoofchk_enabled = setting;
7875 return 0;
7876 }
7877
7878 static int igb_ndo_get_vf_config(struct net_device *netdev,
7879 int vf, struct ifla_vf_info *ivi)
7880 {
7881 struct igb_adapter *adapter = netdev_priv(netdev);
7882 if (vf >= adapter->vfs_allocated_count)
7883 return -EINVAL;
7884 ivi->vf = vf;
7885 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7886 ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7887 ivi->min_tx_rate = 0;
7888 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7889 ivi->qos = adapter->vf_data[vf].pf_qos;
7890 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7891 return 0;
7892 }
7893
7894 static void igb_vmm_control(struct igb_adapter *adapter)
7895 {
7896 struct e1000_hw *hw = &adapter->hw;
7897 u32 reg;
7898
7899 switch (hw->mac.type) {
7900 case e1000_82575:
7901 case e1000_i210:
7902 case e1000_i211:
7903 case e1000_i354:
7904 default:
7905 /* replication is not supported for 82575 */
7906 return;
7907 case e1000_82576:
7908 /* notify HW that the MAC is adding vlan tags */
7909 reg = rd32(E1000_DTXCTL);
7910 reg |= E1000_DTXCTL_VLAN_ADDED;
7911 wr32(E1000_DTXCTL, reg);
7912 /* Fall through */
7913 case e1000_82580:
7914 /* enable replication vlan tag stripping */
7915 reg = rd32(E1000_RPLOLR);
7916 reg |= E1000_RPLOLR_STRVLAN;
7917 wr32(E1000_RPLOLR, reg);
7918 /* Fall through */
7919 case e1000_i350:
7920 /* none of the above registers are supported by i350 */
7921 break;
7922 }
7923
7924 if (adapter->vfs_allocated_count) {
7925 igb_vmdq_set_loopback_pf(hw, true);
7926 igb_vmdq_set_replication_pf(hw, true);
7927 igb_vmdq_set_anti_spoofing_pf(hw, true,
7928 adapter->vfs_allocated_count);
7929 } else {
7930 igb_vmdq_set_loopback_pf(hw, false);
7931 igb_vmdq_set_replication_pf(hw, false);
7932 }
7933 }
7934
7935 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7936 {
7937 struct e1000_hw *hw = &adapter->hw;
7938 u32 dmac_thr;
7939 u16 hwm;
7940
7941 if (hw->mac.type > e1000_82580) {
7942 if (adapter->flags & IGB_FLAG_DMAC) {
7943 u32 reg;
7944
7945 /* force threshold to 0. */
7946 wr32(E1000_DMCTXTH, 0);
7947
7948 /* DMA Coalescing high water mark needs to be greater
7949 * than the Rx threshold. Set hwm to PBA - max frame
7950 * size in 16B units, capping it at PBA - 6KB.
7951 */
7952 hwm = 64 * pba - adapter->max_frame_size / 16;
7953 if (hwm < 64 * (pba - 6))
7954 hwm = 64 * (pba - 6);
7955 reg = rd32(E1000_FCRTC);
7956 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7957 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7958 & E1000_FCRTC_RTH_COAL_MASK);
7959 wr32(E1000_FCRTC, reg);
7960
7961 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7962 * frame size, capping it at PBA - 10KB.
7963 */
7964 dmac_thr = pba - adapter->max_frame_size / 512;
7965 if (dmac_thr < pba - 10)
7966 dmac_thr = pba - 10;
7967 reg = rd32(E1000_DMACR);
7968 reg &= ~E1000_DMACR_DMACTHR_MASK;
7969 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7970 & E1000_DMACR_DMACTHR_MASK);
7971
7972 /* transition to L0x or L1 if available..*/
7973 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7974
7975 /* watchdog timer= +-1000 usec in 32usec intervals */
7976 reg |= (1000 >> 5);
7977
7978 /* Disable BMC-to-OS Watchdog Enable */
7979 if (hw->mac.type != e1000_i354)
7980 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7981
7982 wr32(E1000_DMACR, reg);
7983
7984 /* no lower threshold to disable
7985 * coalescing(smart fifb)-UTRESH=0
7986 */
7987 wr32(E1000_DMCRTRH, 0);
7988
7989 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7990
7991 wr32(E1000_DMCTLX, reg);
7992
7993 /* free space in tx packet buffer to wake from
7994 * DMA coal
7995 */
7996 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7997 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7998
7999 /* make low power state decision controlled
8000 * by DMA coal
8001 */
8002 reg = rd32(E1000_PCIEMISC);
8003 reg &= ~E1000_PCIEMISC_LX_DECISION;
8004 wr32(E1000_PCIEMISC, reg);
8005 } /* endif adapter->dmac is not disabled */
8006 } else if (hw->mac.type == e1000_82580) {
8007 u32 reg = rd32(E1000_PCIEMISC);
8008
8009 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
8010 wr32(E1000_DMACR, 0);
8011 }
8012 }
8013
8014 /**
8015 * igb_read_i2c_byte - Reads 8 bit word over I2C
8016 * @hw: pointer to hardware structure
8017 * @byte_offset: byte offset to read
8018 * @dev_addr: device address
8019 * @data: value read
8020 *
8021 * Performs byte read operation over I2C interface at
8022 * a specified device address.
8023 **/
8024 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8025 u8 dev_addr, u8 *data)
8026 {
8027 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8028 struct i2c_client *this_client = adapter->i2c_client;
8029 s32 status;
8030 u16 swfw_mask = 0;
8031
8032 if (!this_client)
8033 return E1000_ERR_I2C;
8034
8035 swfw_mask = E1000_SWFW_PHY0_SM;
8036
8037 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8038 return E1000_ERR_SWFW_SYNC;
8039
8040 status = i2c_smbus_read_byte_data(this_client, byte_offset);
8041 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8042
8043 if (status < 0)
8044 return E1000_ERR_I2C;
8045 else {
8046 *data = status;
8047 return 0;
8048 }
8049 }
8050
8051 /**
8052 * igb_write_i2c_byte - Writes 8 bit word over I2C
8053 * @hw: pointer to hardware structure
8054 * @byte_offset: byte offset to write
8055 * @dev_addr: device address
8056 * @data: value to write
8057 *
8058 * Performs byte write operation over I2C interface at
8059 * a specified device address.
8060 **/
8061 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8062 u8 dev_addr, u8 data)
8063 {
8064 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8065 struct i2c_client *this_client = adapter->i2c_client;
8066 s32 status;
8067 u16 swfw_mask = E1000_SWFW_PHY0_SM;
8068
8069 if (!this_client)
8070 return E1000_ERR_I2C;
8071
8072 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8073 return E1000_ERR_SWFW_SYNC;
8074 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8075 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8076
8077 if (status)
8078 return E1000_ERR_I2C;
8079 else
8080 return 0;
8081
8082 }
8083
8084 int igb_reinit_queues(struct igb_adapter *adapter)
8085 {
8086 struct net_device *netdev = adapter->netdev;
8087 struct pci_dev *pdev = adapter->pdev;
8088 int err = 0;
8089
8090 if (netif_running(netdev))
8091 igb_close(netdev);
8092
8093 igb_reset_interrupt_capability(adapter);
8094
8095 if (igb_init_interrupt_scheme(adapter, true)) {
8096 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8097 return -ENOMEM;
8098 }
8099
8100 if (netif_running(netdev))
8101 err = igb_open(netdev);
8102
8103 return err;
8104 }
8105 /* igb_main.c */