]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_main.c
igb: Add support for i354 devices
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2013 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/bitops.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/netdevice.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/pci.h>
47 #include <linux/pci-aspm.h>
48 #include <linux/delay.h>
49 #include <linux/interrupt.h>
50 #include <linux/ip.h>
51 #include <linux/tcp.h>
52 #include <linux/sctp.h>
53 #include <linux/if_ether.h>
54 #include <linux/aer.h>
55 #include <linux/prefetch.h>
56 #include <linux/pm_runtime.h>
57 #ifdef CONFIG_IGB_DCA
58 #include <linux/dca.h>
59 #endif
60 #include <linux/i2c.h>
61 #include "igb.h"
62
63 #define MAJ 4
64 #define MIN 1
65 #define BUILD 2
66 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
67 __stringify(BUILD) "-k"
68 char igb_driver_name[] = "igb";
69 char igb_driver_version[] = DRV_VERSION;
70 static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
72 static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
74
75 static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77 };
78
79 static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 /* required last entry */
114 {0, }
115 };
116
117 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119 void igb_reset(struct igb_adapter *);
120 static int igb_setup_all_tx_resources(struct igb_adapter *);
121 static int igb_setup_all_rx_resources(struct igb_adapter *);
122 static void igb_free_all_tx_resources(struct igb_adapter *);
123 static void igb_free_all_rx_resources(struct igb_adapter *);
124 static void igb_setup_mrqc(struct igb_adapter *);
125 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
126 static void igb_remove(struct pci_dev *pdev);
127 static int igb_sw_init(struct igb_adapter *);
128 static int igb_open(struct net_device *);
129 static int igb_close(struct net_device *);
130 static void igb_configure(struct igb_adapter *);
131 static void igb_configure_tx(struct igb_adapter *);
132 static void igb_configure_rx(struct igb_adapter *);
133 static void igb_clean_all_tx_rings(struct igb_adapter *);
134 static void igb_clean_all_rx_rings(struct igb_adapter *);
135 static void igb_clean_tx_ring(struct igb_ring *);
136 static void igb_clean_rx_ring(struct igb_ring *);
137 static void igb_set_rx_mode(struct net_device *);
138 static void igb_update_phy_info(unsigned long);
139 static void igb_watchdog(unsigned long);
140 static void igb_watchdog_task(struct work_struct *);
141 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
142 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 struct rtnl_link_stats64 *stats);
144 static int igb_change_mtu(struct net_device *, int);
145 static int igb_set_mac(struct net_device *, void *);
146 static void igb_set_uta(struct igb_adapter *adapter);
147 static irqreturn_t igb_intr(int irq, void *);
148 static irqreturn_t igb_intr_msi(int irq, void *);
149 static irqreturn_t igb_msix_other(int irq, void *);
150 static irqreturn_t igb_msix_ring(int irq, void *);
151 #ifdef CONFIG_IGB_DCA
152 static void igb_update_dca(struct igb_q_vector *);
153 static void igb_setup_dca(struct igb_adapter *);
154 #endif /* CONFIG_IGB_DCA */
155 static int igb_poll(struct napi_struct *, int);
156 static bool igb_clean_tx_irq(struct igb_q_vector *);
157 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
158 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159 static void igb_tx_timeout(struct net_device *);
160 static void igb_reset_task(struct work_struct *);
161 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
162 static int igb_vlan_rx_add_vid(struct net_device *, u16);
163 static int igb_vlan_rx_kill_vid(struct net_device *, u16);
164 static void igb_restore_vlan(struct igb_adapter *);
165 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
166 static void igb_ping_all_vfs(struct igb_adapter *);
167 static void igb_msg_task(struct igb_adapter *);
168 static void igb_vmm_control(struct igb_adapter *);
169 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
170 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
171 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 int vf, u16 vlan, u8 qos);
174 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
175 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 bool setting);
177 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 struct ifla_vf_info *ivi);
179 static void igb_check_vf_rate_limit(struct igb_adapter *);
180
181 #ifdef CONFIG_PCI_IOV
182 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
183 static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
184 #endif
185
186 #ifdef CONFIG_PM
187 #ifdef CONFIG_PM_SLEEP
188 static int igb_suspend(struct device *);
189 #endif
190 static int igb_resume(struct device *);
191 #ifdef CONFIG_PM_RUNTIME
192 static int igb_runtime_suspend(struct device *dev);
193 static int igb_runtime_resume(struct device *dev);
194 static int igb_runtime_idle(struct device *dev);
195 #endif
196 static const struct dev_pm_ops igb_pm_ops = {
197 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
198 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
199 igb_runtime_idle)
200 };
201 #endif
202 static void igb_shutdown(struct pci_dev *);
203 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
204 #ifdef CONFIG_IGB_DCA
205 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
206 static struct notifier_block dca_notifier = {
207 .notifier_call = igb_notify_dca,
208 .next = NULL,
209 .priority = 0
210 };
211 #endif
212 #ifdef CONFIG_NET_POLL_CONTROLLER
213 /* for netdump / net console */
214 static void igb_netpoll(struct net_device *);
215 #endif
216 #ifdef CONFIG_PCI_IOV
217 static unsigned int max_vfs = 0;
218 module_param(max_vfs, uint, 0);
219 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
220 "per physical function");
221 #endif /* CONFIG_PCI_IOV */
222
223 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 pci_channel_state_t);
225 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226 static void igb_io_resume(struct pci_dev *);
227
228 static const struct pci_error_handlers igb_err_handler = {
229 .error_detected = igb_io_error_detected,
230 .slot_reset = igb_io_slot_reset,
231 .resume = igb_io_resume,
232 };
233
234 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
235
236 static struct pci_driver igb_driver = {
237 .name = igb_driver_name,
238 .id_table = igb_pci_tbl,
239 .probe = igb_probe,
240 .remove = igb_remove,
241 #ifdef CONFIG_PM
242 .driver.pm = &igb_pm_ops,
243 #endif
244 .shutdown = igb_shutdown,
245 .sriov_configure = igb_pci_sriov_configure,
246 .err_handler = &igb_err_handler
247 };
248
249 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251 MODULE_LICENSE("GPL");
252 MODULE_VERSION(DRV_VERSION);
253
254 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255 static int debug = -1;
256 module_param(debug, int, 0);
257 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
259 struct igb_reg_info {
260 u32 ofs;
261 char *name;
262 };
263
264 static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266 /* General Registers */
267 {E1000_CTRL, "CTRL"},
268 {E1000_STATUS, "STATUS"},
269 {E1000_CTRL_EXT, "CTRL_EXT"},
270
271 /* Interrupt Registers */
272 {E1000_ICR, "ICR"},
273
274 /* RX Registers */
275 {E1000_RCTL, "RCTL"},
276 {E1000_RDLEN(0), "RDLEN"},
277 {E1000_RDH(0), "RDH"},
278 {E1000_RDT(0), "RDT"},
279 {E1000_RXDCTL(0), "RXDCTL"},
280 {E1000_RDBAL(0), "RDBAL"},
281 {E1000_RDBAH(0), "RDBAH"},
282
283 /* TX Registers */
284 {E1000_TCTL, "TCTL"},
285 {E1000_TDBAL(0), "TDBAL"},
286 {E1000_TDBAH(0), "TDBAH"},
287 {E1000_TDLEN(0), "TDLEN"},
288 {E1000_TDH(0), "TDH"},
289 {E1000_TDT(0), "TDT"},
290 {E1000_TXDCTL(0), "TXDCTL"},
291 {E1000_TDFH, "TDFH"},
292 {E1000_TDFT, "TDFT"},
293 {E1000_TDFHS, "TDFHS"},
294 {E1000_TDFPC, "TDFPC"},
295
296 /* List Terminator */
297 {}
298 };
299
300 /* igb_regdump - register printout routine */
301 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302 {
303 int n = 0;
304 char rname[16];
305 u32 regs[8];
306
307 switch (reginfo->ofs) {
308 case E1000_RDLEN(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDLEN(n));
311 break;
312 case E1000_RDH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDH(n));
315 break;
316 case E1000_RDT(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDT(n));
319 break;
320 case E1000_RXDCTL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RXDCTL(n));
323 break;
324 case E1000_RDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_RDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAH(n));
331 break;
332 case E1000_TDBAL(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDBAL(n));
335 break;
336 case E1000_TDBAH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDBAH(n));
339 break;
340 case E1000_TDLEN(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDLEN(n));
343 break;
344 case E1000_TDH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDH(n));
347 break;
348 case E1000_TDT(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TDT(n));
351 break;
352 case E1000_TXDCTL(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TXDCTL(n));
355 break;
356 default:
357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
358 return;
359 }
360
361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 regs[2], regs[3]);
364 }
365
366 /* igb_dump - Print registers, Tx-rings and Rx-rings */
367 static void igb_dump(struct igb_adapter *adapter)
368 {
369 struct net_device *netdev = adapter->netdev;
370 struct e1000_hw *hw = &adapter->hw;
371 struct igb_reg_info *reginfo;
372 struct igb_ring *tx_ring;
373 union e1000_adv_tx_desc *tx_desc;
374 struct my_u0 { u64 a; u64 b; } *u0;
375 struct igb_ring *rx_ring;
376 union e1000_adv_rx_desc *rx_desc;
377 u32 staterr;
378 u16 i, n;
379
380 if (!netif_msg_hw(adapter))
381 return;
382
383 /* Print netdevice Info */
384 if (netdev) {
385 dev_info(&adapter->pdev->dev, "Net device Info\n");
386 pr_info("Device Name state trans_start "
387 "last_rx\n");
388 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
389 netdev->state, netdev->trans_start, netdev->last_rx);
390 }
391
392 /* Print Registers */
393 dev_info(&adapter->pdev->dev, "Register Dump\n");
394 pr_info(" Register Name Value\n");
395 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
396 reginfo->name; reginfo++) {
397 igb_regdump(hw, reginfo);
398 }
399
400 /* Print TX Ring Summary */
401 if (!netdev || !netif_running(netdev))
402 goto exit;
403
404 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
405 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
406 for (n = 0; n < adapter->num_tx_queues; n++) {
407 struct igb_tx_buffer *buffer_info;
408 tx_ring = adapter->tx_ring[n];
409 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
410 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
411 n, tx_ring->next_to_use, tx_ring->next_to_clean,
412 (u64)dma_unmap_addr(buffer_info, dma),
413 dma_unmap_len(buffer_info, len),
414 buffer_info->next_to_watch,
415 (u64)buffer_info->time_stamp);
416 }
417
418 /* Print TX Rings */
419 if (!netif_msg_tx_done(adapter))
420 goto rx_ring_summary;
421
422 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
423
424 /* Transmit Descriptor Formats
425 *
426 * Advanced Transmit Descriptor
427 * +--------------------------------------------------------------+
428 * 0 | Buffer Address [63:0] |
429 * +--------------------------------------------------------------+
430 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
431 * +--------------------------------------------------------------+
432 * 63 46 45 40 39 38 36 35 32 31 24 15 0
433 */
434
435 for (n = 0; n < adapter->num_tx_queues; n++) {
436 tx_ring = adapter->tx_ring[n];
437 pr_info("------------------------------------\n");
438 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
439 pr_info("------------------------------------\n");
440 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
441 "[bi->dma ] leng ntw timestamp "
442 "bi->skb\n");
443
444 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
445 const char *next_desc;
446 struct igb_tx_buffer *buffer_info;
447 tx_desc = IGB_TX_DESC(tx_ring, i);
448 buffer_info = &tx_ring->tx_buffer_info[i];
449 u0 = (struct my_u0 *)tx_desc;
450 if (i == tx_ring->next_to_use &&
451 i == tx_ring->next_to_clean)
452 next_desc = " NTC/U";
453 else if (i == tx_ring->next_to_use)
454 next_desc = " NTU";
455 else if (i == tx_ring->next_to_clean)
456 next_desc = " NTC";
457 else
458 next_desc = "";
459
460 pr_info("T [0x%03X] %016llX %016llX %016llX"
461 " %04X %p %016llX %p%s\n", i,
462 le64_to_cpu(u0->a),
463 le64_to_cpu(u0->b),
464 (u64)dma_unmap_addr(buffer_info, dma),
465 dma_unmap_len(buffer_info, len),
466 buffer_info->next_to_watch,
467 (u64)buffer_info->time_stamp,
468 buffer_info->skb, next_desc);
469
470 if (netif_msg_pktdata(adapter) && buffer_info->skb)
471 print_hex_dump(KERN_INFO, "",
472 DUMP_PREFIX_ADDRESS,
473 16, 1, buffer_info->skb->data,
474 dma_unmap_len(buffer_info, len),
475 true);
476 }
477 }
478
479 /* Print RX Rings Summary */
480 rx_ring_summary:
481 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
482 pr_info("Queue [NTU] [NTC]\n");
483 for (n = 0; n < adapter->num_rx_queues; n++) {
484 rx_ring = adapter->rx_ring[n];
485 pr_info(" %5d %5X %5X\n",
486 n, rx_ring->next_to_use, rx_ring->next_to_clean);
487 }
488
489 /* Print RX Rings */
490 if (!netif_msg_rx_status(adapter))
491 goto exit;
492
493 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
494
495 /* Advanced Receive Descriptor (Read) Format
496 * 63 1 0
497 * +-----------------------------------------------------+
498 * 0 | Packet Buffer Address [63:1] |A0/NSE|
499 * +----------------------------------------------+------+
500 * 8 | Header Buffer Address [63:1] | DD |
501 * +-----------------------------------------------------+
502 *
503 *
504 * Advanced Receive Descriptor (Write-Back) Format
505 *
506 * 63 48 47 32 31 30 21 20 17 16 4 3 0
507 * +------------------------------------------------------+
508 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
509 * | Checksum Ident | | | | Type | Type |
510 * +------------------------------------------------------+
511 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
512 * +------------------------------------------------------+
513 * 63 48 47 32 31 20 19 0
514 */
515
516 for (n = 0; n < adapter->num_rx_queues; n++) {
517 rx_ring = adapter->rx_ring[n];
518 pr_info("------------------------------------\n");
519 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
520 pr_info("------------------------------------\n");
521 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
522 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
523 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
524 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
525
526 for (i = 0; i < rx_ring->count; i++) {
527 const char *next_desc;
528 struct igb_rx_buffer *buffer_info;
529 buffer_info = &rx_ring->rx_buffer_info[i];
530 rx_desc = IGB_RX_DESC(rx_ring, i);
531 u0 = (struct my_u0 *)rx_desc;
532 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
533
534 if (i == rx_ring->next_to_use)
535 next_desc = " NTU";
536 else if (i == rx_ring->next_to_clean)
537 next_desc = " NTC";
538 else
539 next_desc = "";
540
541 if (staterr & E1000_RXD_STAT_DD) {
542 /* Descriptor Done */
543 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
544 "RWB", i,
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
547 next_desc);
548 } else {
549 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
550 "R ", i,
551 le64_to_cpu(u0->a),
552 le64_to_cpu(u0->b),
553 (u64)buffer_info->dma,
554 next_desc);
555
556 if (netif_msg_pktdata(adapter) &&
557 buffer_info->dma && buffer_info->page) {
558 print_hex_dump(KERN_INFO, "",
559 DUMP_PREFIX_ADDRESS,
560 16, 1,
561 page_address(buffer_info->page) +
562 buffer_info->page_offset,
563 IGB_RX_BUFSZ, true);
564 }
565 }
566 }
567 }
568
569 exit:
570 return;
571 }
572
573 /**
574 * igb_get_i2c_data - Reads the I2C SDA data bit
575 * @hw: pointer to hardware structure
576 * @i2cctl: Current value of I2CCTL register
577 *
578 * Returns the I2C data bit value
579 **/
580 static int igb_get_i2c_data(void *data)
581 {
582 struct igb_adapter *adapter = (struct igb_adapter *)data;
583 struct e1000_hw *hw = &adapter->hw;
584 s32 i2cctl = rd32(E1000_I2CPARAMS);
585
586 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
587 }
588
589 /**
590 * igb_set_i2c_data - Sets the I2C data bit
591 * @data: pointer to hardware structure
592 * @state: I2C data value (0 or 1) to set
593 *
594 * Sets the I2C data bit
595 **/
596 static void igb_set_i2c_data(void *data, int state)
597 {
598 struct igb_adapter *adapter = (struct igb_adapter *)data;
599 struct e1000_hw *hw = &adapter->hw;
600 s32 i2cctl = rd32(E1000_I2CPARAMS);
601
602 if (state)
603 i2cctl |= E1000_I2C_DATA_OUT;
604 else
605 i2cctl &= ~E1000_I2C_DATA_OUT;
606
607 i2cctl &= ~E1000_I2C_DATA_OE_N;
608 i2cctl |= E1000_I2C_CLK_OE_N;
609 wr32(E1000_I2CPARAMS, i2cctl);
610 wrfl();
611
612 }
613
614 /**
615 * igb_set_i2c_clk - Sets the I2C SCL clock
616 * @data: pointer to hardware structure
617 * @state: state to set clock
618 *
619 * Sets the I2C clock line to state
620 **/
621 static void igb_set_i2c_clk(void *data, int state)
622 {
623 struct igb_adapter *adapter = (struct igb_adapter *)data;
624 struct e1000_hw *hw = &adapter->hw;
625 s32 i2cctl = rd32(E1000_I2CPARAMS);
626
627 if (state) {
628 i2cctl |= E1000_I2C_CLK_OUT;
629 i2cctl &= ~E1000_I2C_CLK_OE_N;
630 } else {
631 i2cctl &= ~E1000_I2C_CLK_OUT;
632 i2cctl &= ~E1000_I2C_CLK_OE_N;
633 }
634 wr32(E1000_I2CPARAMS, i2cctl);
635 wrfl();
636 }
637
638 /**
639 * igb_get_i2c_clk - Gets the I2C SCL clock state
640 * @data: pointer to hardware structure
641 *
642 * Gets the I2C clock state
643 **/
644 static int igb_get_i2c_clk(void *data)
645 {
646 struct igb_adapter *adapter = (struct igb_adapter *)data;
647 struct e1000_hw *hw = &adapter->hw;
648 s32 i2cctl = rd32(E1000_I2CPARAMS);
649
650 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
651 }
652
653 static const struct i2c_algo_bit_data igb_i2c_algo = {
654 .setsda = igb_set_i2c_data,
655 .setscl = igb_set_i2c_clk,
656 .getsda = igb_get_i2c_data,
657 .getscl = igb_get_i2c_clk,
658 .udelay = 5,
659 .timeout = 20,
660 };
661
662 /**
663 * igb_get_hw_dev - return device
664 * @hw: pointer to hardware structure
665 *
666 * used by hardware layer to print debugging information
667 **/
668 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
669 {
670 struct igb_adapter *adapter = hw->back;
671 return adapter->netdev;
672 }
673
674 /**
675 * igb_init_module - Driver Registration Routine
676 *
677 * igb_init_module is the first routine called when the driver is
678 * loaded. All it does is register with the PCI subsystem.
679 **/
680 static int __init igb_init_module(void)
681 {
682 int ret;
683 pr_info("%s - version %s\n",
684 igb_driver_string, igb_driver_version);
685
686 pr_info("%s\n", igb_copyright);
687
688 #ifdef CONFIG_IGB_DCA
689 dca_register_notify(&dca_notifier);
690 #endif
691 ret = pci_register_driver(&igb_driver);
692 return ret;
693 }
694
695 module_init(igb_init_module);
696
697 /**
698 * igb_exit_module - Driver Exit Cleanup Routine
699 *
700 * igb_exit_module is called just before the driver is removed
701 * from memory.
702 **/
703 static void __exit igb_exit_module(void)
704 {
705 #ifdef CONFIG_IGB_DCA
706 dca_unregister_notify(&dca_notifier);
707 #endif
708 pci_unregister_driver(&igb_driver);
709 }
710
711 module_exit(igb_exit_module);
712
713 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
714 /**
715 * igb_cache_ring_register - Descriptor ring to register mapping
716 * @adapter: board private structure to initialize
717 *
718 * Once we know the feature-set enabled for the device, we'll cache
719 * the register offset the descriptor ring is assigned to.
720 **/
721 static void igb_cache_ring_register(struct igb_adapter *adapter)
722 {
723 int i = 0, j = 0;
724 u32 rbase_offset = adapter->vfs_allocated_count;
725
726 switch (adapter->hw.mac.type) {
727 case e1000_82576:
728 /* The queues are allocated for virtualization such that VF 0
729 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
730 * In order to avoid collision we start at the first free queue
731 * and continue consuming queues in the same sequence
732 */
733 if (adapter->vfs_allocated_count) {
734 for (; i < adapter->rss_queues; i++)
735 adapter->rx_ring[i]->reg_idx = rbase_offset +
736 Q_IDX_82576(i);
737 }
738 case e1000_82575:
739 case e1000_82580:
740 case e1000_i350:
741 case e1000_i354:
742 case e1000_i210:
743 case e1000_i211:
744 default:
745 for (; i < adapter->num_rx_queues; i++)
746 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
747 for (; j < adapter->num_tx_queues; j++)
748 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
749 break;
750 }
751 }
752
753 /**
754 * igb_write_ivar - configure ivar for given MSI-X vector
755 * @hw: pointer to the HW structure
756 * @msix_vector: vector number we are allocating to a given ring
757 * @index: row index of IVAR register to write within IVAR table
758 * @offset: column offset of in IVAR, should be multiple of 8
759 *
760 * This function is intended to handle the writing of the IVAR register
761 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
762 * each containing an cause allocation for an Rx and Tx ring, and a
763 * variable number of rows depending on the number of queues supported.
764 **/
765 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
766 int index, int offset)
767 {
768 u32 ivar = array_rd32(E1000_IVAR0, index);
769
770 /* clear any bits that are currently set */
771 ivar &= ~((u32)0xFF << offset);
772
773 /* write vector and valid bit */
774 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
775
776 array_wr32(E1000_IVAR0, index, ivar);
777 }
778
779 #define IGB_N0_QUEUE -1
780 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
781 {
782 struct igb_adapter *adapter = q_vector->adapter;
783 struct e1000_hw *hw = &adapter->hw;
784 int rx_queue = IGB_N0_QUEUE;
785 int tx_queue = IGB_N0_QUEUE;
786 u32 msixbm = 0;
787
788 if (q_vector->rx.ring)
789 rx_queue = q_vector->rx.ring->reg_idx;
790 if (q_vector->tx.ring)
791 tx_queue = q_vector->tx.ring->reg_idx;
792
793 switch (hw->mac.type) {
794 case e1000_82575:
795 /* The 82575 assigns vectors using a bitmask, which matches the
796 * bitmask for the EICR/EIMS/EIMC registers. To assign one
797 * or more queues to a vector, we write the appropriate bits
798 * into the MSIXBM register for that vector.
799 */
800 if (rx_queue > IGB_N0_QUEUE)
801 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
802 if (tx_queue > IGB_N0_QUEUE)
803 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
804 if (!adapter->msix_entries && msix_vector == 0)
805 msixbm |= E1000_EIMS_OTHER;
806 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
807 q_vector->eims_value = msixbm;
808 break;
809 case e1000_82576:
810 /* 82576 uses a table that essentially consists of 2 columns
811 * with 8 rows. The ordering is column-major so we use the
812 * lower 3 bits as the row index, and the 4th bit as the
813 * column offset.
814 */
815 if (rx_queue > IGB_N0_QUEUE)
816 igb_write_ivar(hw, msix_vector,
817 rx_queue & 0x7,
818 (rx_queue & 0x8) << 1);
819 if (tx_queue > IGB_N0_QUEUE)
820 igb_write_ivar(hw, msix_vector,
821 tx_queue & 0x7,
822 ((tx_queue & 0x8) << 1) + 8);
823 q_vector->eims_value = 1 << msix_vector;
824 break;
825 case e1000_82580:
826 case e1000_i350:
827 case e1000_i354:
828 case e1000_i210:
829 case e1000_i211:
830 /* On 82580 and newer adapters the scheme is similar to 82576
831 * however instead of ordering column-major we have things
832 * ordered row-major. So we traverse the table by using
833 * bit 0 as the column offset, and the remaining bits as the
834 * row index.
835 */
836 if (rx_queue > IGB_N0_QUEUE)
837 igb_write_ivar(hw, msix_vector,
838 rx_queue >> 1,
839 (rx_queue & 0x1) << 4);
840 if (tx_queue > IGB_N0_QUEUE)
841 igb_write_ivar(hw, msix_vector,
842 tx_queue >> 1,
843 ((tx_queue & 0x1) << 4) + 8);
844 q_vector->eims_value = 1 << msix_vector;
845 break;
846 default:
847 BUG();
848 break;
849 }
850
851 /* add q_vector eims value to global eims_enable_mask */
852 adapter->eims_enable_mask |= q_vector->eims_value;
853
854 /* configure q_vector to set itr on first interrupt */
855 q_vector->set_itr = 1;
856 }
857
858 /**
859 * igb_configure_msix - Configure MSI-X hardware
860 * @adapter: board private structure to initialize
861 *
862 * igb_configure_msix sets up the hardware to properly
863 * generate MSI-X interrupts.
864 **/
865 static void igb_configure_msix(struct igb_adapter *adapter)
866 {
867 u32 tmp;
868 int i, vector = 0;
869 struct e1000_hw *hw = &adapter->hw;
870
871 adapter->eims_enable_mask = 0;
872
873 /* set vector for other causes, i.e. link changes */
874 switch (hw->mac.type) {
875 case e1000_82575:
876 tmp = rd32(E1000_CTRL_EXT);
877 /* enable MSI-X PBA support*/
878 tmp |= E1000_CTRL_EXT_PBA_CLR;
879
880 /* Auto-Mask interrupts upon ICR read. */
881 tmp |= E1000_CTRL_EXT_EIAME;
882 tmp |= E1000_CTRL_EXT_IRCA;
883
884 wr32(E1000_CTRL_EXT, tmp);
885
886 /* enable msix_other interrupt */
887 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
888 adapter->eims_other = E1000_EIMS_OTHER;
889
890 break;
891
892 case e1000_82576:
893 case e1000_82580:
894 case e1000_i350:
895 case e1000_i354:
896 case e1000_i210:
897 case e1000_i211:
898 /* Turn on MSI-X capability first, or our settings
899 * won't stick. And it will take days to debug.
900 */
901 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
902 E1000_GPIE_PBA | E1000_GPIE_EIAME |
903 E1000_GPIE_NSICR);
904
905 /* enable msix_other interrupt */
906 adapter->eims_other = 1 << vector;
907 tmp = (vector++ | E1000_IVAR_VALID) << 8;
908
909 wr32(E1000_IVAR_MISC, tmp);
910 break;
911 default:
912 /* do nothing, since nothing else supports MSI-X */
913 break;
914 } /* switch (hw->mac.type) */
915
916 adapter->eims_enable_mask |= adapter->eims_other;
917
918 for (i = 0; i < adapter->num_q_vectors; i++)
919 igb_assign_vector(adapter->q_vector[i], vector++);
920
921 wrfl();
922 }
923
924 /**
925 * igb_request_msix - Initialize MSI-X interrupts
926 * @adapter: board private structure to initialize
927 *
928 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
929 * kernel.
930 **/
931 static int igb_request_msix(struct igb_adapter *adapter)
932 {
933 struct net_device *netdev = adapter->netdev;
934 struct e1000_hw *hw = &adapter->hw;
935 int i, err = 0, vector = 0, free_vector = 0;
936
937 err = request_irq(adapter->msix_entries[vector].vector,
938 igb_msix_other, 0, netdev->name, adapter);
939 if (err)
940 goto err_out;
941
942 for (i = 0; i < adapter->num_q_vectors; i++) {
943 struct igb_q_vector *q_vector = adapter->q_vector[i];
944
945 vector++;
946
947 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
948
949 if (q_vector->rx.ring && q_vector->tx.ring)
950 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
951 q_vector->rx.ring->queue_index);
952 else if (q_vector->tx.ring)
953 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
954 q_vector->tx.ring->queue_index);
955 else if (q_vector->rx.ring)
956 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
957 q_vector->rx.ring->queue_index);
958 else
959 sprintf(q_vector->name, "%s-unused", netdev->name);
960
961 err = request_irq(adapter->msix_entries[vector].vector,
962 igb_msix_ring, 0, q_vector->name,
963 q_vector);
964 if (err)
965 goto err_free;
966 }
967
968 igb_configure_msix(adapter);
969 return 0;
970
971 err_free:
972 /* free already assigned IRQs */
973 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974
975 vector--;
976 for (i = 0; i < vector; i++) {
977 free_irq(adapter->msix_entries[free_vector++].vector,
978 adapter->q_vector[i]);
979 }
980 err_out:
981 return err;
982 }
983
984 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
985 {
986 if (adapter->msix_entries) {
987 pci_disable_msix(adapter->pdev);
988 kfree(adapter->msix_entries);
989 adapter->msix_entries = NULL;
990 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
991 pci_disable_msi(adapter->pdev);
992 }
993 }
994
995 /**
996 * igb_free_q_vector - Free memory allocated for specific interrupt vector
997 * @adapter: board private structure to initialize
998 * @v_idx: Index of vector to be freed
999 *
1000 * This function frees the memory allocated to the q_vector. In addition if
1001 * NAPI is enabled it will delete any references to the NAPI struct prior
1002 * to freeing the q_vector.
1003 **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008 if (q_vector->tx.ring)
1009 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1010
1011 if (q_vector->rx.ring)
1012 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1013
1014 adapter->q_vector[v_idx] = NULL;
1015 netif_napi_del(&q_vector->napi);
1016
1017 /* ixgbe_get_stats64() might access the rings on this vector,
1018 * we must wait a grace period before freeing it.
1019 */
1020 kfree_rcu(q_vector, rcu);
1021 }
1022
1023 /**
1024 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1025 * @adapter: board private structure to initialize
1026 *
1027 * This function frees the memory allocated to the q_vectors. In addition if
1028 * NAPI is enabled it will delete any references to the NAPI struct prior
1029 * to freeing the q_vector.
1030 **/
1031 static void igb_free_q_vectors(struct igb_adapter *adapter)
1032 {
1033 int v_idx = adapter->num_q_vectors;
1034
1035 adapter->num_tx_queues = 0;
1036 adapter->num_rx_queues = 0;
1037 adapter->num_q_vectors = 0;
1038
1039 while (v_idx--)
1040 igb_free_q_vector(adapter, v_idx);
1041 }
1042
1043 /**
1044 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1045 * @adapter: board private structure to initialize
1046 *
1047 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1048 * MSI-X interrupts allocated.
1049 */
1050 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1051 {
1052 igb_free_q_vectors(adapter);
1053 igb_reset_interrupt_capability(adapter);
1054 }
1055
1056 /**
1057 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1058 * @adapter: board private structure to initialize
1059 * @msix: boolean value of MSIX capability
1060 *
1061 * Attempt to configure interrupts using the best available
1062 * capabilities of the hardware and kernel.
1063 **/
1064 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1065 {
1066 int err;
1067 int numvecs, i;
1068
1069 if (!msix)
1070 goto msi_only;
1071
1072 /* Number of supported queues. */
1073 adapter->num_rx_queues = adapter->rss_queues;
1074 if (adapter->vfs_allocated_count)
1075 adapter->num_tx_queues = 1;
1076 else
1077 adapter->num_tx_queues = adapter->rss_queues;
1078
1079 /* start with one vector for every Rx queue */
1080 numvecs = adapter->num_rx_queues;
1081
1082 /* if Tx handler is separate add 1 for every Tx queue */
1083 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1084 numvecs += adapter->num_tx_queues;
1085
1086 /* store the number of vectors reserved for queues */
1087 adapter->num_q_vectors = numvecs;
1088
1089 /* add 1 vector for link status interrupts */
1090 numvecs++;
1091 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1092 GFP_KERNEL);
1093
1094 if (!adapter->msix_entries)
1095 goto msi_only;
1096
1097 for (i = 0; i < numvecs; i++)
1098 adapter->msix_entries[i].entry = i;
1099
1100 err = pci_enable_msix(adapter->pdev,
1101 adapter->msix_entries,
1102 numvecs);
1103 if (err == 0)
1104 return;
1105
1106 igb_reset_interrupt_capability(adapter);
1107
1108 /* If we can't do MSI-X, try MSI */
1109 msi_only:
1110 #ifdef CONFIG_PCI_IOV
1111 /* disable SR-IOV for non MSI-X configurations */
1112 if (adapter->vf_data) {
1113 struct e1000_hw *hw = &adapter->hw;
1114 /* disable iov and allow time for transactions to clear */
1115 pci_disable_sriov(adapter->pdev);
1116 msleep(500);
1117
1118 kfree(adapter->vf_data);
1119 adapter->vf_data = NULL;
1120 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1121 wrfl();
1122 msleep(100);
1123 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1124 }
1125 #endif
1126 adapter->vfs_allocated_count = 0;
1127 adapter->rss_queues = 1;
1128 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1129 adapter->num_rx_queues = 1;
1130 adapter->num_tx_queues = 1;
1131 adapter->num_q_vectors = 1;
1132 if (!pci_enable_msi(adapter->pdev))
1133 adapter->flags |= IGB_FLAG_HAS_MSI;
1134 }
1135
1136 static void igb_add_ring(struct igb_ring *ring,
1137 struct igb_ring_container *head)
1138 {
1139 head->ring = ring;
1140 head->count++;
1141 }
1142
1143 /**
1144 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1145 * @adapter: board private structure to initialize
1146 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1147 * @v_idx: index of vector in adapter struct
1148 * @txr_count: total number of Tx rings to allocate
1149 * @txr_idx: index of first Tx ring to allocate
1150 * @rxr_count: total number of Rx rings to allocate
1151 * @rxr_idx: index of first Rx ring to allocate
1152 *
1153 * We allocate one q_vector. If allocation fails we return -ENOMEM.
1154 **/
1155 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1156 int v_count, int v_idx,
1157 int txr_count, int txr_idx,
1158 int rxr_count, int rxr_idx)
1159 {
1160 struct igb_q_vector *q_vector;
1161 struct igb_ring *ring;
1162 int ring_count, size;
1163
1164 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1165 if (txr_count > 1 || rxr_count > 1)
1166 return -ENOMEM;
1167
1168 ring_count = txr_count + rxr_count;
1169 size = sizeof(struct igb_q_vector) +
1170 (sizeof(struct igb_ring) * ring_count);
1171
1172 /* allocate q_vector and rings */
1173 q_vector = kzalloc(size, GFP_KERNEL);
1174 if (!q_vector)
1175 return -ENOMEM;
1176
1177 /* initialize NAPI */
1178 netif_napi_add(adapter->netdev, &q_vector->napi,
1179 igb_poll, 64);
1180
1181 /* tie q_vector and adapter together */
1182 adapter->q_vector[v_idx] = q_vector;
1183 q_vector->adapter = adapter;
1184
1185 /* initialize work limits */
1186 q_vector->tx.work_limit = adapter->tx_work_limit;
1187
1188 /* initialize ITR configuration */
1189 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1190 q_vector->itr_val = IGB_START_ITR;
1191
1192 /* initialize pointer to rings */
1193 ring = q_vector->ring;
1194
1195 /* intialize ITR */
1196 if (rxr_count) {
1197 /* rx or rx/tx vector */
1198 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1199 q_vector->itr_val = adapter->rx_itr_setting;
1200 } else {
1201 /* tx only vector */
1202 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1203 q_vector->itr_val = adapter->tx_itr_setting;
1204 }
1205
1206 if (txr_count) {
1207 /* assign generic ring traits */
1208 ring->dev = &adapter->pdev->dev;
1209 ring->netdev = adapter->netdev;
1210
1211 /* configure backlink on ring */
1212 ring->q_vector = q_vector;
1213
1214 /* update q_vector Tx values */
1215 igb_add_ring(ring, &q_vector->tx);
1216
1217 /* For 82575, context index must be unique per ring. */
1218 if (adapter->hw.mac.type == e1000_82575)
1219 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1220
1221 /* apply Tx specific ring traits */
1222 ring->count = adapter->tx_ring_count;
1223 ring->queue_index = txr_idx;
1224
1225 /* assign ring to adapter */
1226 adapter->tx_ring[txr_idx] = ring;
1227
1228 /* push pointer to next ring */
1229 ring++;
1230 }
1231
1232 if (rxr_count) {
1233 /* assign generic ring traits */
1234 ring->dev = &adapter->pdev->dev;
1235 ring->netdev = adapter->netdev;
1236
1237 /* configure backlink on ring */
1238 ring->q_vector = q_vector;
1239
1240 /* update q_vector Rx values */
1241 igb_add_ring(ring, &q_vector->rx);
1242
1243 /* set flag indicating ring supports SCTP checksum offload */
1244 if (adapter->hw.mac.type >= e1000_82576)
1245 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1246
1247 /*
1248 * On i350, i354, i210, and i211, loopback VLAN packets
1249 * have the tag byte-swapped.
1250 */
1251 if (adapter->hw.mac.type >= e1000_i350)
1252 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1253
1254 /* apply Rx specific ring traits */
1255 ring->count = adapter->rx_ring_count;
1256 ring->queue_index = rxr_idx;
1257
1258 /* assign ring to adapter */
1259 adapter->rx_ring[rxr_idx] = ring;
1260 }
1261
1262 return 0;
1263 }
1264
1265
1266 /**
1267 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1268 * @adapter: board private structure to initialize
1269 *
1270 * We allocate one q_vector per queue interrupt. If allocation fails we
1271 * return -ENOMEM.
1272 **/
1273 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1274 {
1275 int q_vectors = adapter->num_q_vectors;
1276 int rxr_remaining = adapter->num_rx_queues;
1277 int txr_remaining = adapter->num_tx_queues;
1278 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1279 int err;
1280
1281 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1282 for (; rxr_remaining; v_idx++) {
1283 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1284 0, 0, 1, rxr_idx);
1285
1286 if (err)
1287 goto err_out;
1288
1289 /* update counts and index */
1290 rxr_remaining--;
1291 rxr_idx++;
1292 }
1293 }
1294
1295 for (; v_idx < q_vectors; v_idx++) {
1296 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1297 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1298 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1299 tqpv, txr_idx, rqpv, rxr_idx);
1300
1301 if (err)
1302 goto err_out;
1303
1304 /* update counts and index */
1305 rxr_remaining -= rqpv;
1306 txr_remaining -= tqpv;
1307 rxr_idx++;
1308 txr_idx++;
1309 }
1310
1311 return 0;
1312
1313 err_out:
1314 adapter->num_tx_queues = 0;
1315 adapter->num_rx_queues = 0;
1316 adapter->num_q_vectors = 0;
1317
1318 while (v_idx--)
1319 igb_free_q_vector(adapter, v_idx);
1320
1321 return -ENOMEM;
1322 }
1323
1324 /**
1325 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1326 * @adapter: board private structure to initialize
1327 * @msix: boolean value of MSIX capability
1328 *
1329 * This function initializes the interrupts and allocates all of the queues.
1330 **/
1331 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1332 {
1333 struct pci_dev *pdev = adapter->pdev;
1334 int err;
1335
1336 igb_set_interrupt_capability(adapter, msix);
1337
1338 err = igb_alloc_q_vectors(adapter);
1339 if (err) {
1340 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1341 goto err_alloc_q_vectors;
1342 }
1343
1344 igb_cache_ring_register(adapter);
1345
1346 return 0;
1347
1348 err_alloc_q_vectors:
1349 igb_reset_interrupt_capability(adapter);
1350 return err;
1351 }
1352
1353 /**
1354 * igb_request_irq - initialize interrupts
1355 * @adapter: board private structure to initialize
1356 *
1357 * Attempts to configure interrupts using the best available
1358 * capabilities of the hardware and kernel.
1359 **/
1360 static int igb_request_irq(struct igb_adapter *adapter)
1361 {
1362 struct net_device *netdev = adapter->netdev;
1363 struct pci_dev *pdev = adapter->pdev;
1364 int err = 0;
1365
1366 if (adapter->msix_entries) {
1367 err = igb_request_msix(adapter);
1368 if (!err)
1369 goto request_done;
1370 /* fall back to MSI */
1371 igb_free_all_tx_resources(adapter);
1372 igb_free_all_rx_resources(adapter);
1373
1374 igb_clear_interrupt_scheme(adapter);
1375 err = igb_init_interrupt_scheme(adapter, false);
1376 if (err)
1377 goto request_done;
1378
1379 igb_setup_all_tx_resources(adapter);
1380 igb_setup_all_rx_resources(adapter);
1381 igb_configure(adapter);
1382 }
1383
1384 igb_assign_vector(adapter->q_vector[0], 0);
1385
1386 if (adapter->flags & IGB_FLAG_HAS_MSI) {
1387 err = request_irq(pdev->irq, igb_intr_msi, 0,
1388 netdev->name, adapter);
1389 if (!err)
1390 goto request_done;
1391
1392 /* fall back to legacy interrupts */
1393 igb_reset_interrupt_capability(adapter);
1394 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1395 }
1396
1397 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1398 netdev->name, adapter);
1399
1400 if (err)
1401 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1402 err);
1403
1404 request_done:
1405 return err;
1406 }
1407
1408 static void igb_free_irq(struct igb_adapter *adapter)
1409 {
1410 if (adapter->msix_entries) {
1411 int vector = 0, i;
1412
1413 free_irq(adapter->msix_entries[vector++].vector, adapter);
1414
1415 for (i = 0; i < adapter->num_q_vectors; i++)
1416 free_irq(adapter->msix_entries[vector++].vector,
1417 adapter->q_vector[i]);
1418 } else {
1419 free_irq(adapter->pdev->irq, adapter);
1420 }
1421 }
1422
1423 /**
1424 * igb_irq_disable - Mask off interrupt generation on the NIC
1425 * @adapter: board private structure
1426 **/
1427 static void igb_irq_disable(struct igb_adapter *adapter)
1428 {
1429 struct e1000_hw *hw = &adapter->hw;
1430
1431 /* we need to be careful when disabling interrupts. The VFs are also
1432 * mapped into these registers and so clearing the bits can cause
1433 * issues on the VF drivers so we only need to clear what we set
1434 */
1435 if (adapter->msix_entries) {
1436 u32 regval = rd32(E1000_EIAM);
1437 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1438 wr32(E1000_EIMC, adapter->eims_enable_mask);
1439 regval = rd32(E1000_EIAC);
1440 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1441 }
1442
1443 wr32(E1000_IAM, 0);
1444 wr32(E1000_IMC, ~0);
1445 wrfl();
1446 if (adapter->msix_entries) {
1447 int i;
1448 for (i = 0; i < adapter->num_q_vectors; i++)
1449 synchronize_irq(adapter->msix_entries[i].vector);
1450 } else {
1451 synchronize_irq(adapter->pdev->irq);
1452 }
1453 }
1454
1455 /**
1456 * igb_irq_enable - Enable default interrupt generation settings
1457 * @adapter: board private structure
1458 **/
1459 static void igb_irq_enable(struct igb_adapter *adapter)
1460 {
1461 struct e1000_hw *hw = &adapter->hw;
1462
1463 if (adapter->msix_entries) {
1464 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1465 u32 regval = rd32(E1000_EIAC);
1466 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1467 regval = rd32(E1000_EIAM);
1468 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1469 wr32(E1000_EIMS, adapter->eims_enable_mask);
1470 if (adapter->vfs_allocated_count) {
1471 wr32(E1000_MBVFIMR, 0xFF);
1472 ims |= E1000_IMS_VMMB;
1473 }
1474 wr32(E1000_IMS, ims);
1475 } else {
1476 wr32(E1000_IMS, IMS_ENABLE_MASK |
1477 E1000_IMS_DRSTA);
1478 wr32(E1000_IAM, IMS_ENABLE_MASK |
1479 E1000_IMS_DRSTA);
1480 }
1481 }
1482
1483 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1484 {
1485 struct e1000_hw *hw = &adapter->hw;
1486 u16 vid = adapter->hw.mng_cookie.vlan_id;
1487 u16 old_vid = adapter->mng_vlan_id;
1488
1489 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1490 /* add VID to filter table */
1491 igb_vfta_set(hw, vid, true);
1492 adapter->mng_vlan_id = vid;
1493 } else {
1494 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1495 }
1496
1497 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1498 (vid != old_vid) &&
1499 !test_bit(old_vid, adapter->active_vlans)) {
1500 /* remove VID from filter table */
1501 igb_vfta_set(hw, old_vid, false);
1502 }
1503 }
1504
1505 /**
1506 * igb_release_hw_control - release control of the h/w to f/w
1507 * @adapter: address of board private structure
1508 *
1509 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1510 * For ASF and Pass Through versions of f/w this means that the
1511 * driver is no longer loaded.
1512 **/
1513 static void igb_release_hw_control(struct igb_adapter *adapter)
1514 {
1515 struct e1000_hw *hw = &adapter->hw;
1516 u32 ctrl_ext;
1517
1518 /* Let firmware take over control of h/w */
1519 ctrl_ext = rd32(E1000_CTRL_EXT);
1520 wr32(E1000_CTRL_EXT,
1521 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1522 }
1523
1524 /**
1525 * igb_get_hw_control - get control of the h/w from f/w
1526 * @adapter: address of board private structure
1527 *
1528 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1529 * For ASF and Pass Through versions of f/w this means that
1530 * the driver is loaded.
1531 **/
1532 static void igb_get_hw_control(struct igb_adapter *adapter)
1533 {
1534 struct e1000_hw *hw = &adapter->hw;
1535 u32 ctrl_ext;
1536
1537 /* Let firmware know the driver has taken over */
1538 ctrl_ext = rd32(E1000_CTRL_EXT);
1539 wr32(E1000_CTRL_EXT,
1540 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1541 }
1542
1543 /**
1544 * igb_configure - configure the hardware for RX and TX
1545 * @adapter: private board structure
1546 **/
1547 static void igb_configure(struct igb_adapter *adapter)
1548 {
1549 struct net_device *netdev = adapter->netdev;
1550 int i;
1551
1552 igb_get_hw_control(adapter);
1553 igb_set_rx_mode(netdev);
1554
1555 igb_restore_vlan(adapter);
1556
1557 igb_setup_tctl(adapter);
1558 igb_setup_mrqc(adapter);
1559 igb_setup_rctl(adapter);
1560
1561 igb_configure_tx(adapter);
1562 igb_configure_rx(adapter);
1563
1564 igb_rx_fifo_flush_82575(&adapter->hw);
1565
1566 /* call igb_desc_unused which always leaves
1567 * at least 1 descriptor unused to make sure
1568 * next_to_use != next_to_clean
1569 */
1570 for (i = 0; i < adapter->num_rx_queues; i++) {
1571 struct igb_ring *ring = adapter->rx_ring[i];
1572 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1573 }
1574 }
1575
1576 /**
1577 * igb_power_up_link - Power up the phy/serdes link
1578 * @adapter: address of board private structure
1579 **/
1580 void igb_power_up_link(struct igb_adapter *adapter)
1581 {
1582 igb_reset_phy(&adapter->hw);
1583
1584 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1585 igb_power_up_phy_copper(&adapter->hw);
1586 else
1587 igb_power_up_serdes_link_82575(&adapter->hw);
1588 }
1589
1590 /**
1591 * igb_power_down_link - Power down the phy/serdes link
1592 * @adapter: address of board private structure
1593 */
1594 static void igb_power_down_link(struct igb_adapter *adapter)
1595 {
1596 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1597 igb_power_down_phy_copper_82575(&adapter->hw);
1598 else
1599 igb_shutdown_serdes_link_82575(&adapter->hw);
1600 }
1601
1602 /**
1603 * igb_up - Open the interface and prepare it to handle traffic
1604 * @adapter: board private structure
1605 **/
1606 int igb_up(struct igb_adapter *adapter)
1607 {
1608 struct e1000_hw *hw = &adapter->hw;
1609 int i;
1610
1611 /* hardware has been reset, we need to reload some things */
1612 igb_configure(adapter);
1613
1614 clear_bit(__IGB_DOWN, &adapter->state);
1615
1616 for (i = 0; i < adapter->num_q_vectors; i++)
1617 napi_enable(&(adapter->q_vector[i]->napi));
1618
1619 if (adapter->msix_entries)
1620 igb_configure_msix(adapter);
1621 else
1622 igb_assign_vector(adapter->q_vector[0], 0);
1623
1624 /* Clear any pending interrupts. */
1625 rd32(E1000_ICR);
1626 igb_irq_enable(adapter);
1627
1628 /* notify VFs that reset has been completed */
1629 if (adapter->vfs_allocated_count) {
1630 u32 reg_data = rd32(E1000_CTRL_EXT);
1631 reg_data |= E1000_CTRL_EXT_PFRSTD;
1632 wr32(E1000_CTRL_EXT, reg_data);
1633 }
1634
1635 netif_tx_start_all_queues(adapter->netdev);
1636
1637 /* start the watchdog. */
1638 hw->mac.get_link_status = 1;
1639 schedule_work(&adapter->watchdog_task);
1640
1641 return 0;
1642 }
1643
1644 void igb_down(struct igb_adapter *adapter)
1645 {
1646 struct net_device *netdev = adapter->netdev;
1647 struct e1000_hw *hw = &adapter->hw;
1648 u32 tctl, rctl;
1649 int i;
1650
1651 /* signal that we're down so the interrupt handler does not
1652 * reschedule our watchdog timer
1653 */
1654 set_bit(__IGB_DOWN, &adapter->state);
1655
1656 /* disable receives in the hardware */
1657 rctl = rd32(E1000_RCTL);
1658 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1659 /* flush and sleep below */
1660
1661 netif_tx_stop_all_queues(netdev);
1662
1663 /* disable transmits in the hardware */
1664 tctl = rd32(E1000_TCTL);
1665 tctl &= ~E1000_TCTL_EN;
1666 wr32(E1000_TCTL, tctl);
1667 /* flush both disables and wait for them to finish */
1668 wrfl();
1669 msleep(10);
1670
1671 for (i = 0; i < adapter->num_q_vectors; i++)
1672 napi_disable(&(adapter->q_vector[i]->napi));
1673
1674 igb_irq_disable(adapter);
1675
1676 del_timer_sync(&adapter->watchdog_timer);
1677 del_timer_sync(&adapter->phy_info_timer);
1678
1679 netif_carrier_off(netdev);
1680
1681 /* record the stats before reset*/
1682 spin_lock(&adapter->stats64_lock);
1683 igb_update_stats(adapter, &adapter->stats64);
1684 spin_unlock(&adapter->stats64_lock);
1685
1686 adapter->link_speed = 0;
1687 adapter->link_duplex = 0;
1688
1689 if (!pci_channel_offline(adapter->pdev))
1690 igb_reset(adapter);
1691 igb_clean_all_tx_rings(adapter);
1692 igb_clean_all_rx_rings(adapter);
1693 #ifdef CONFIG_IGB_DCA
1694
1695 /* since we reset the hardware DCA settings were cleared */
1696 igb_setup_dca(adapter);
1697 #endif
1698 }
1699
1700 void igb_reinit_locked(struct igb_adapter *adapter)
1701 {
1702 WARN_ON(in_interrupt());
1703 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1704 msleep(1);
1705 igb_down(adapter);
1706 igb_up(adapter);
1707 clear_bit(__IGB_RESETTING, &adapter->state);
1708 }
1709
1710 void igb_reset(struct igb_adapter *adapter)
1711 {
1712 struct pci_dev *pdev = adapter->pdev;
1713 struct e1000_hw *hw = &adapter->hw;
1714 struct e1000_mac_info *mac = &hw->mac;
1715 struct e1000_fc_info *fc = &hw->fc;
1716 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1717
1718 /* Repartition Pba for greater than 9k mtu
1719 * To take effect CTRL.RST is required.
1720 */
1721 switch (mac->type) {
1722 case e1000_i350:
1723 case e1000_i354:
1724 case e1000_82580:
1725 pba = rd32(E1000_RXPBS);
1726 pba = igb_rxpbs_adjust_82580(pba);
1727 break;
1728 case e1000_82576:
1729 pba = rd32(E1000_RXPBS);
1730 pba &= E1000_RXPBS_SIZE_MASK_82576;
1731 break;
1732 case e1000_82575:
1733 case e1000_i210:
1734 case e1000_i211:
1735 default:
1736 pba = E1000_PBA_34K;
1737 break;
1738 }
1739
1740 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1741 (mac->type < e1000_82576)) {
1742 /* adjust PBA for jumbo frames */
1743 wr32(E1000_PBA, pba);
1744
1745 /* To maintain wire speed transmits, the Tx FIFO should be
1746 * large enough to accommodate two full transmit packets,
1747 * rounded up to the next 1KB and expressed in KB. Likewise,
1748 * the Rx FIFO should be large enough to accommodate at least
1749 * one full receive packet and is similarly rounded up and
1750 * expressed in KB.
1751 */
1752 pba = rd32(E1000_PBA);
1753 /* upper 16 bits has Tx packet buffer allocation size in KB */
1754 tx_space = pba >> 16;
1755 /* lower 16 bits has Rx packet buffer allocation size in KB */
1756 pba &= 0xffff;
1757 /* the Tx fifo also stores 16 bytes of information about the Tx
1758 * but don't include ethernet FCS because hardware appends it
1759 */
1760 min_tx_space = (adapter->max_frame_size +
1761 sizeof(union e1000_adv_tx_desc) -
1762 ETH_FCS_LEN) * 2;
1763 min_tx_space = ALIGN(min_tx_space, 1024);
1764 min_tx_space >>= 10;
1765 /* software strips receive CRC, so leave room for it */
1766 min_rx_space = adapter->max_frame_size;
1767 min_rx_space = ALIGN(min_rx_space, 1024);
1768 min_rx_space >>= 10;
1769
1770 /* If current Tx allocation is less than the min Tx FIFO size,
1771 * and the min Tx FIFO size is less than the current Rx FIFO
1772 * allocation, take space away from current Rx allocation
1773 */
1774 if (tx_space < min_tx_space &&
1775 ((min_tx_space - tx_space) < pba)) {
1776 pba = pba - (min_tx_space - tx_space);
1777
1778 /* if short on Rx space, Rx wins and must trump Tx
1779 * adjustment
1780 */
1781 if (pba < min_rx_space)
1782 pba = min_rx_space;
1783 }
1784 wr32(E1000_PBA, pba);
1785 }
1786
1787 /* flow control settings */
1788 /* The high water mark must be low enough to fit one full frame
1789 * (or the size used for early receive) above it in the Rx FIFO.
1790 * Set it to the lower of:
1791 * - 90% of the Rx FIFO size, or
1792 * - the full Rx FIFO size minus one full frame
1793 */
1794 hwm = min(((pba << 10) * 9 / 10),
1795 ((pba << 10) - 2 * adapter->max_frame_size));
1796
1797 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
1798 fc->low_water = fc->high_water - 16;
1799 fc->pause_time = 0xFFFF;
1800 fc->send_xon = 1;
1801 fc->current_mode = fc->requested_mode;
1802
1803 /* disable receive for all VFs and wait one second */
1804 if (adapter->vfs_allocated_count) {
1805 int i;
1806 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1807 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1808
1809 /* ping all the active vfs to let them know we are going down */
1810 igb_ping_all_vfs(adapter);
1811
1812 /* disable transmits and receives */
1813 wr32(E1000_VFRE, 0);
1814 wr32(E1000_VFTE, 0);
1815 }
1816
1817 /* Allow time for pending master requests to run */
1818 hw->mac.ops.reset_hw(hw);
1819 wr32(E1000_WUC, 0);
1820
1821 if (hw->mac.ops.init_hw(hw))
1822 dev_err(&pdev->dev, "Hardware Error\n");
1823
1824 /* Flow control settings reset on hardware reset, so guarantee flow
1825 * control is off when forcing speed.
1826 */
1827 if (!hw->mac.autoneg)
1828 igb_force_mac_fc(hw);
1829
1830 igb_init_dmac(adapter, pba);
1831 #ifdef CONFIG_IGB_HWMON
1832 /* Re-initialize the thermal sensor on i350 devices. */
1833 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1834 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1835 /* If present, re-initialize the external thermal sensor
1836 * interface.
1837 */
1838 if (adapter->ets)
1839 mac->ops.init_thermal_sensor_thresh(hw);
1840 }
1841 }
1842 #endif
1843 if (!netif_running(adapter->netdev))
1844 igb_power_down_link(adapter);
1845
1846 igb_update_mng_vlan(adapter);
1847
1848 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1849 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1850
1851 /* Re-enable PTP, where applicable. */
1852 igb_ptp_reset(adapter);
1853
1854 igb_get_phy_info(hw);
1855 }
1856
1857 static netdev_features_t igb_fix_features(struct net_device *netdev,
1858 netdev_features_t features)
1859 {
1860 /* Since there is no support for separate Rx/Tx vlan accel
1861 * enable/disable make sure Tx flag is always in same state as Rx.
1862 */
1863 if (features & NETIF_F_HW_VLAN_RX)
1864 features |= NETIF_F_HW_VLAN_TX;
1865 else
1866 features &= ~NETIF_F_HW_VLAN_TX;
1867
1868 return features;
1869 }
1870
1871 static int igb_set_features(struct net_device *netdev,
1872 netdev_features_t features)
1873 {
1874 netdev_features_t changed = netdev->features ^ features;
1875 struct igb_adapter *adapter = netdev_priv(netdev);
1876
1877 if (changed & NETIF_F_HW_VLAN_RX)
1878 igb_vlan_mode(netdev, features);
1879
1880 if (!(changed & NETIF_F_RXALL))
1881 return 0;
1882
1883 netdev->features = features;
1884
1885 if (netif_running(netdev))
1886 igb_reinit_locked(adapter);
1887 else
1888 igb_reset(adapter);
1889
1890 return 0;
1891 }
1892
1893 static const struct net_device_ops igb_netdev_ops = {
1894 .ndo_open = igb_open,
1895 .ndo_stop = igb_close,
1896 .ndo_start_xmit = igb_xmit_frame,
1897 .ndo_get_stats64 = igb_get_stats64,
1898 .ndo_set_rx_mode = igb_set_rx_mode,
1899 .ndo_set_mac_address = igb_set_mac,
1900 .ndo_change_mtu = igb_change_mtu,
1901 .ndo_do_ioctl = igb_ioctl,
1902 .ndo_tx_timeout = igb_tx_timeout,
1903 .ndo_validate_addr = eth_validate_addr,
1904 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1905 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
1906 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1907 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1908 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
1909 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
1910 .ndo_get_vf_config = igb_ndo_get_vf_config,
1911 #ifdef CONFIG_NET_POLL_CONTROLLER
1912 .ndo_poll_controller = igb_netpoll,
1913 #endif
1914 .ndo_fix_features = igb_fix_features,
1915 .ndo_set_features = igb_set_features,
1916 };
1917
1918 /**
1919 * igb_set_fw_version - Configure version string for ethtool
1920 * @adapter: adapter struct
1921 **/
1922 void igb_set_fw_version(struct igb_adapter *adapter)
1923 {
1924 struct e1000_hw *hw = &adapter->hw;
1925 struct e1000_fw_version fw;
1926
1927 igb_get_fw_version(hw, &fw);
1928
1929 switch (hw->mac.type) {
1930 case e1000_i211:
1931 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
1932 "%2d.%2d-%d",
1933 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1934 break;
1935
1936 default:
1937 /* if option is rom valid, display its version too */
1938 if (fw.or_valid) {
1939 snprintf(adapter->fw_version,
1940 sizeof(adapter->fw_version),
1941 "%d.%d, 0x%08x, %d.%d.%d",
1942 fw.eep_major, fw.eep_minor, fw.etrack_id,
1943 fw.or_major, fw.or_build, fw.or_patch);
1944 /* no option rom */
1945 } else {
1946 snprintf(adapter->fw_version,
1947 sizeof(adapter->fw_version),
1948 "%d.%d, 0x%08x",
1949 fw.eep_major, fw.eep_minor, fw.etrack_id);
1950 }
1951 break;
1952 }
1953 return;
1954 }
1955
1956 /**
1957 * igb_init_i2c - Init I2C interface
1958 * @adapter: pointer to adapter structure
1959 **/
1960 static s32 igb_init_i2c(struct igb_adapter *adapter)
1961 {
1962 s32 status = E1000_SUCCESS;
1963
1964 /* I2C interface supported on i350 devices */
1965 if (adapter->hw.mac.type != e1000_i350)
1966 return E1000_SUCCESS;
1967
1968 /* Initialize the i2c bus which is controlled by the registers.
1969 * This bus will use the i2c_algo_bit structue that implements
1970 * the protocol through toggling of the 4 bits in the register.
1971 */
1972 adapter->i2c_adap.owner = THIS_MODULE;
1973 adapter->i2c_algo = igb_i2c_algo;
1974 adapter->i2c_algo.data = adapter;
1975 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1976 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1977 strlcpy(adapter->i2c_adap.name, "igb BB",
1978 sizeof(adapter->i2c_adap.name));
1979 status = i2c_bit_add_bus(&adapter->i2c_adap);
1980 return status;
1981 }
1982
1983 /**
1984 * igb_probe - Device Initialization Routine
1985 * @pdev: PCI device information struct
1986 * @ent: entry in igb_pci_tbl
1987 *
1988 * Returns 0 on success, negative on failure
1989 *
1990 * igb_probe initializes an adapter identified by a pci_dev structure.
1991 * The OS initialization, configuring of the adapter private structure,
1992 * and a hardware reset occur.
1993 **/
1994 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1995 {
1996 struct net_device *netdev;
1997 struct igb_adapter *adapter;
1998 struct e1000_hw *hw;
1999 u16 eeprom_data = 0;
2000 s32 ret_val;
2001 static int global_quad_port_a; /* global quad port a indication */
2002 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2003 unsigned long mmio_start, mmio_len;
2004 int err, pci_using_dac;
2005 u8 part_str[E1000_PBANUM_LENGTH];
2006
2007 /* Catch broken hardware that put the wrong VF device ID in
2008 * the PCIe SR-IOV capability.
2009 */
2010 if (pdev->is_virtfn) {
2011 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2012 pci_name(pdev), pdev->vendor, pdev->device);
2013 return -EINVAL;
2014 }
2015
2016 err = pci_enable_device_mem(pdev);
2017 if (err)
2018 return err;
2019
2020 pci_using_dac = 0;
2021 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2022 if (!err) {
2023 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2024 if (!err)
2025 pci_using_dac = 1;
2026 } else {
2027 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2028 if (err) {
2029 err = dma_set_coherent_mask(&pdev->dev,
2030 DMA_BIT_MASK(32));
2031 if (err) {
2032 dev_err(&pdev->dev,
2033 "No usable DMA configuration, aborting\n");
2034 goto err_dma;
2035 }
2036 }
2037 }
2038
2039 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2040 IORESOURCE_MEM),
2041 igb_driver_name);
2042 if (err)
2043 goto err_pci_reg;
2044
2045 pci_enable_pcie_error_reporting(pdev);
2046
2047 pci_set_master(pdev);
2048 pci_save_state(pdev);
2049
2050 err = -ENOMEM;
2051 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2052 IGB_MAX_TX_QUEUES);
2053 if (!netdev)
2054 goto err_alloc_etherdev;
2055
2056 SET_NETDEV_DEV(netdev, &pdev->dev);
2057
2058 pci_set_drvdata(pdev, netdev);
2059 adapter = netdev_priv(netdev);
2060 adapter->netdev = netdev;
2061 adapter->pdev = pdev;
2062 hw = &adapter->hw;
2063 hw->back = adapter;
2064 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2065
2066 mmio_start = pci_resource_start(pdev, 0);
2067 mmio_len = pci_resource_len(pdev, 0);
2068
2069 err = -EIO;
2070 hw->hw_addr = ioremap(mmio_start, mmio_len);
2071 if (!hw->hw_addr)
2072 goto err_ioremap;
2073
2074 netdev->netdev_ops = &igb_netdev_ops;
2075 igb_set_ethtool_ops(netdev);
2076 netdev->watchdog_timeo = 5 * HZ;
2077
2078 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2079
2080 netdev->mem_start = mmio_start;
2081 netdev->mem_end = mmio_start + mmio_len;
2082
2083 /* PCI config space info */
2084 hw->vendor_id = pdev->vendor;
2085 hw->device_id = pdev->device;
2086 hw->revision_id = pdev->revision;
2087 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2088 hw->subsystem_device_id = pdev->subsystem_device;
2089
2090 /* Copy the default MAC, PHY and NVM function pointers */
2091 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2092 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2093 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2094 /* Initialize skew-specific constants */
2095 err = ei->get_invariants(hw);
2096 if (err)
2097 goto err_sw_init;
2098
2099 /* setup the private structure */
2100 err = igb_sw_init(adapter);
2101 if (err)
2102 goto err_sw_init;
2103
2104 igb_get_bus_info_pcie(hw);
2105
2106 hw->phy.autoneg_wait_to_complete = false;
2107
2108 /* Copper options */
2109 if (hw->phy.media_type == e1000_media_type_copper) {
2110 hw->phy.mdix = AUTO_ALL_MODES;
2111 hw->phy.disable_polarity_correction = false;
2112 hw->phy.ms_type = e1000_ms_hw_default;
2113 }
2114
2115 if (igb_check_reset_block(hw))
2116 dev_info(&pdev->dev,
2117 "PHY reset is blocked due to SOL/IDER session.\n");
2118
2119 /* features is initialized to 0 in allocation, it might have bits
2120 * set by igb_sw_init so we should use an or instead of an
2121 * assignment.
2122 */
2123 netdev->features |= NETIF_F_SG |
2124 NETIF_F_IP_CSUM |
2125 NETIF_F_IPV6_CSUM |
2126 NETIF_F_TSO |
2127 NETIF_F_TSO6 |
2128 NETIF_F_RXHASH |
2129 NETIF_F_RXCSUM |
2130 NETIF_F_HW_VLAN_RX |
2131 NETIF_F_HW_VLAN_TX;
2132
2133 /* copy netdev features into list of user selectable features */
2134 netdev->hw_features |= netdev->features;
2135 netdev->hw_features |= NETIF_F_RXALL;
2136
2137 /* set this bit last since it cannot be part of hw_features */
2138 netdev->features |= NETIF_F_HW_VLAN_FILTER;
2139
2140 netdev->vlan_features |= NETIF_F_TSO |
2141 NETIF_F_TSO6 |
2142 NETIF_F_IP_CSUM |
2143 NETIF_F_IPV6_CSUM |
2144 NETIF_F_SG;
2145
2146 netdev->priv_flags |= IFF_SUPP_NOFCS;
2147
2148 if (pci_using_dac) {
2149 netdev->features |= NETIF_F_HIGHDMA;
2150 netdev->vlan_features |= NETIF_F_HIGHDMA;
2151 }
2152
2153 if (hw->mac.type >= e1000_82576) {
2154 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2155 netdev->features |= NETIF_F_SCTP_CSUM;
2156 }
2157
2158 netdev->priv_flags |= IFF_UNICAST_FLT;
2159
2160 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2161
2162 /* before reading the NVM, reset the controller to put the device in a
2163 * known good starting state
2164 */
2165 hw->mac.ops.reset_hw(hw);
2166
2167 /* make sure the NVM is good , i211 parts have special NVM that
2168 * doesn't contain a checksum
2169 */
2170 if (hw->mac.type != e1000_i211) {
2171 if (hw->nvm.ops.validate(hw) < 0) {
2172 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2173 err = -EIO;
2174 goto err_eeprom;
2175 }
2176 }
2177
2178 /* copy the MAC address out of the NVM */
2179 if (hw->mac.ops.read_mac_addr(hw))
2180 dev_err(&pdev->dev, "NVM Read Error\n");
2181
2182 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2183
2184 if (!is_valid_ether_addr(netdev->dev_addr)) {
2185 dev_err(&pdev->dev, "Invalid MAC Address\n");
2186 err = -EIO;
2187 goto err_eeprom;
2188 }
2189
2190 /* get firmware version for ethtool -i */
2191 igb_set_fw_version(adapter);
2192
2193 setup_timer(&adapter->watchdog_timer, igb_watchdog,
2194 (unsigned long) adapter);
2195 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2196 (unsigned long) adapter);
2197
2198 INIT_WORK(&adapter->reset_task, igb_reset_task);
2199 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2200
2201 /* Initialize link properties that are user-changeable */
2202 adapter->fc_autoneg = true;
2203 hw->mac.autoneg = true;
2204 hw->phy.autoneg_advertised = 0x2f;
2205
2206 hw->fc.requested_mode = e1000_fc_default;
2207 hw->fc.current_mode = e1000_fc_default;
2208
2209 igb_validate_mdi_setting(hw);
2210
2211 /* By default, support wake on port A */
2212 if (hw->bus.func == 0)
2213 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2214
2215 /* Check the NVM for wake support on non-port A ports */
2216 if (hw->mac.type >= e1000_82580)
2217 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2218 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2219 &eeprom_data);
2220 else if (hw->bus.func == 1)
2221 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2222
2223 if (eeprom_data & IGB_EEPROM_APME)
2224 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2225
2226 /* now that we have the eeprom settings, apply the special cases where
2227 * the eeprom may be wrong or the board simply won't support wake on
2228 * lan on a particular port
2229 */
2230 switch (pdev->device) {
2231 case E1000_DEV_ID_82575GB_QUAD_COPPER:
2232 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2233 break;
2234 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2235 case E1000_DEV_ID_82576_FIBER:
2236 case E1000_DEV_ID_82576_SERDES:
2237 /* Wake events only supported on port A for dual fiber
2238 * regardless of eeprom setting
2239 */
2240 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2241 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2242 break;
2243 case E1000_DEV_ID_82576_QUAD_COPPER:
2244 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2245 /* if quad port adapter, disable WoL on all but port A */
2246 if (global_quad_port_a != 0)
2247 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2248 else
2249 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2250 /* Reset for multiple quad port adapters */
2251 if (++global_quad_port_a == 4)
2252 global_quad_port_a = 0;
2253 break;
2254 default:
2255 /* If the device can't wake, don't set software support */
2256 if (!device_can_wakeup(&adapter->pdev->dev))
2257 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2258 }
2259
2260 /* initialize the wol settings based on the eeprom settings */
2261 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2262 adapter->wol |= E1000_WUFC_MAG;
2263
2264 /* Some vendors want WoL disabled by default, but still supported */
2265 if ((hw->mac.type == e1000_i350) &&
2266 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2267 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2268 adapter->wol = 0;
2269 }
2270
2271 device_set_wakeup_enable(&adapter->pdev->dev,
2272 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2273
2274 /* reset the hardware with the new settings */
2275 igb_reset(adapter);
2276
2277 /* Init the I2C interface */
2278 err = igb_init_i2c(adapter);
2279 if (err) {
2280 dev_err(&pdev->dev, "failed to init i2c interface\n");
2281 goto err_eeprom;
2282 }
2283
2284 /* let the f/w know that the h/w is now under the control of the
2285 * driver. */
2286 igb_get_hw_control(adapter);
2287
2288 strcpy(netdev->name, "eth%d");
2289 err = register_netdev(netdev);
2290 if (err)
2291 goto err_register;
2292
2293 /* carrier off reporting is important to ethtool even BEFORE open */
2294 netif_carrier_off(netdev);
2295
2296 #ifdef CONFIG_IGB_DCA
2297 if (dca_add_requester(&pdev->dev) == 0) {
2298 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2299 dev_info(&pdev->dev, "DCA enabled\n");
2300 igb_setup_dca(adapter);
2301 }
2302
2303 #endif
2304 #ifdef CONFIG_IGB_HWMON
2305 /* Initialize the thermal sensor on i350 devices. */
2306 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2307 u16 ets_word;
2308
2309 /* Read the NVM to determine if this i350 device supports an
2310 * external thermal sensor.
2311 */
2312 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2313 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2314 adapter->ets = true;
2315 else
2316 adapter->ets = false;
2317 if (igb_sysfs_init(adapter))
2318 dev_err(&pdev->dev,
2319 "failed to allocate sysfs resources\n");
2320 } else {
2321 adapter->ets = false;
2322 }
2323 #endif
2324 /* do hw tstamp init after resetting */
2325 igb_ptp_init(adapter);
2326
2327 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2328 /* print bus type/speed/width info, not applicable to i354 */
2329 if (hw->mac.type != e1000_i354) {
2330 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2331 netdev->name,
2332 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2333 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2334 "unknown"),
2335 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2336 "Width x4" :
2337 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2338 "Width x2" :
2339 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2340 "Width x1" : "unknown"), netdev->dev_addr);
2341 }
2342
2343 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2344 if (ret_val)
2345 strcpy(part_str, "Unknown");
2346 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2347 dev_info(&pdev->dev,
2348 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2349 adapter->msix_entries ? "MSI-X" :
2350 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2351 adapter->num_rx_queues, adapter->num_tx_queues);
2352 switch (hw->mac.type) {
2353 case e1000_i350:
2354 case e1000_i210:
2355 case e1000_i211:
2356 igb_set_eee_i350(hw);
2357 break;
2358 case e1000_i354:
2359 if (hw->phy.media_type == e1000_media_type_copper) {
2360 if ((rd32(E1000_CTRL_EXT) &
2361 E1000_CTRL_EXT_LINK_MODE_SGMII))
2362 igb_set_eee_i354(hw);
2363 }
2364 break;
2365 default:
2366 break;
2367 }
2368
2369 pm_runtime_put_noidle(&pdev->dev);
2370 return 0;
2371
2372 err_register:
2373 igb_release_hw_control(adapter);
2374 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2375 err_eeprom:
2376 if (!igb_check_reset_block(hw))
2377 igb_reset_phy(hw);
2378
2379 if (hw->flash_address)
2380 iounmap(hw->flash_address);
2381 err_sw_init:
2382 igb_clear_interrupt_scheme(adapter);
2383 iounmap(hw->hw_addr);
2384 err_ioremap:
2385 free_netdev(netdev);
2386 err_alloc_etherdev:
2387 pci_release_selected_regions(pdev,
2388 pci_select_bars(pdev, IORESOURCE_MEM));
2389 err_pci_reg:
2390 err_dma:
2391 pci_disable_device(pdev);
2392 return err;
2393 }
2394
2395 #ifdef CONFIG_PCI_IOV
2396 static int igb_disable_sriov(struct pci_dev *pdev)
2397 {
2398 struct net_device *netdev = pci_get_drvdata(pdev);
2399 struct igb_adapter *adapter = netdev_priv(netdev);
2400 struct e1000_hw *hw = &adapter->hw;
2401
2402 /* reclaim resources allocated to VFs */
2403 if (adapter->vf_data) {
2404 /* disable iov and allow time for transactions to clear */
2405 if (igb_vfs_are_assigned(adapter)) {
2406 dev_warn(&pdev->dev,
2407 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2408 return -EPERM;
2409 } else {
2410 pci_disable_sriov(pdev);
2411 msleep(500);
2412 }
2413
2414 kfree(adapter->vf_data);
2415 adapter->vf_data = NULL;
2416 adapter->vfs_allocated_count = 0;
2417 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2418 wrfl();
2419 msleep(100);
2420 dev_info(&pdev->dev, "IOV Disabled\n");
2421
2422 /* Re-enable DMA Coalescing flag since IOV is turned off */
2423 adapter->flags |= IGB_FLAG_DMAC;
2424 }
2425
2426 return 0;
2427 }
2428
2429 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2430 {
2431 struct net_device *netdev = pci_get_drvdata(pdev);
2432 struct igb_adapter *adapter = netdev_priv(netdev);
2433 int old_vfs = pci_num_vf(pdev);
2434 int err = 0;
2435 int i;
2436
2437 if (!num_vfs)
2438 goto out;
2439 else if (old_vfs && old_vfs == num_vfs)
2440 goto out;
2441 else if (old_vfs && old_vfs != num_vfs)
2442 err = igb_disable_sriov(pdev);
2443
2444 if (err)
2445 goto out;
2446
2447 if (num_vfs > 7) {
2448 err = -EPERM;
2449 goto out;
2450 }
2451
2452 adapter->vfs_allocated_count = num_vfs;
2453
2454 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2455 sizeof(struct vf_data_storage), GFP_KERNEL);
2456
2457 /* if allocation failed then we do not support SR-IOV */
2458 if (!adapter->vf_data) {
2459 adapter->vfs_allocated_count = 0;
2460 dev_err(&pdev->dev,
2461 "Unable to allocate memory for VF Data Storage\n");
2462 err = -ENOMEM;
2463 goto out;
2464 }
2465
2466 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2467 if (err)
2468 goto err_out;
2469
2470 dev_info(&pdev->dev, "%d VFs allocated\n",
2471 adapter->vfs_allocated_count);
2472 for (i = 0; i < adapter->vfs_allocated_count; i++)
2473 igb_vf_configure(adapter, i);
2474
2475 /* DMA Coalescing is not supported in IOV mode. */
2476 adapter->flags &= ~IGB_FLAG_DMAC;
2477 goto out;
2478
2479 err_out:
2480 kfree(adapter->vf_data);
2481 adapter->vf_data = NULL;
2482 adapter->vfs_allocated_count = 0;
2483 out:
2484 return err;
2485 }
2486
2487 #endif
2488 /**
2489 * igb_remove_i2c - Cleanup I2C interface
2490 * @adapter: pointer to adapter structure
2491 **/
2492 static void igb_remove_i2c(struct igb_adapter *adapter)
2493 {
2494 /* free the adapter bus structure */
2495 i2c_del_adapter(&adapter->i2c_adap);
2496 }
2497
2498 /**
2499 * igb_remove - Device Removal Routine
2500 * @pdev: PCI device information struct
2501 *
2502 * igb_remove is called by the PCI subsystem to alert the driver
2503 * that it should release a PCI device. The could be caused by a
2504 * Hot-Plug event, or because the driver is going to be removed from
2505 * memory.
2506 **/
2507 static void igb_remove(struct pci_dev *pdev)
2508 {
2509 struct net_device *netdev = pci_get_drvdata(pdev);
2510 struct igb_adapter *adapter = netdev_priv(netdev);
2511 struct e1000_hw *hw = &adapter->hw;
2512
2513 pm_runtime_get_noresume(&pdev->dev);
2514 #ifdef CONFIG_IGB_HWMON
2515 igb_sysfs_exit(adapter);
2516 #endif
2517 igb_remove_i2c(adapter);
2518 igb_ptp_stop(adapter);
2519 /* The watchdog timer may be rescheduled, so explicitly
2520 * disable watchdog from being rescheduled.
2521 */
2522 set_bit(__IGB_DOWN, &adapter->state);
2523 del_timer_sync(&adapter->watchdog_timer);
2524 del_timer_sync(&adapter->phy_info_timer);
2525
2526 cancel_work_sync(&adapter->reset_task);
2527 cancel_work_sync(&adapter->watchdog_task);
2528
2529 #ifdef CONFIG_IGB_DCA
2530 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2531 dev_info(&pdev->dev, "DCA disabled\n");
2532 dca_remove_requester(&pdev->dev);
2533 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2534 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2535 }
2536 #endif
2537
2538 /* Release control of h/w to f/w. If f/w is AMT enabled, this
2539 * would have already happened in close and is redundant.
2540 */
2541 igb_release_hw_control(adapter);
2542
2543 unregister_netdev(netdev);
2544
2545 igb_clear_interrupt_scheme(adapter);
2546
2547 #ifdef CONFIG_PCI_IOV
2548 igb_disable_sriov(pdev);
2549 #endif
2550
2551 iounmap(hw->hw_addr);
2552 if (hw->flash_address)
2553 iounmap(hw->flash_address);
2554 pci_release_selected_regions(pdev,
2555 pci_select_bars(pdev, IORESOURCE_MEM));
2556
2557 kfree(adapter->shadow_vfta);
2558 free_netdev(netdev);
2559
2560 pci_disable_pcie_error_reporting(pdev);
2561
2562 pci_disable_device(pdev);
2563 }
2564
2565 /**
2566 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2567 * @adapter: board private structure to initialize
2568 *
2569 * This function initializes the vf specific data storage and then attempts to
2570 * allocate the VFs. The reason for ordering it this way is because it is much
2571 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2572 * the memory for the VFs.
2573 **/
2574 static void igb_probe_vfs(struct igb_adapter *adapter)
2575 {
2576 #ifdef CONFIG_PCI_IOV
2577 struct pci_dev *pdev = adapter->pdev;
2578 struct e1000_hw *hw = &adapter->hw;
2579
2580 /* Virtualization features not supported on i210 family. */
2581 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2582 return;
2583
2584 pci_sriov_set_totalvfs(pdev, 7);
2585 igb_enable_sriov(pdev, max_vfs);
2586
2587 #endif /* CONFIG_PCI_IOV */
2588 }
2589
2590 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2591 {
2592 struct e1000_hw *hw = &adapter->hw;
2593 u32 max_rss_queues;
2594
2595 /* Determine the maximum number of RSS queues supported. */
2596 switch (hw->mac.type) {
2597 case e1000_i211:
2598 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2599 break;
2600 case e1000_82575:
2601 case e1000_i210:
2602 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2603 break;
2604 case e1000_i350:
2605 /* I350 cannot do RSS and SR-IOV at the same time */
2606 if (!!adapter->vfs_allocated_count) {
2607 max_rss_queues = 1;
2608 break;
2609 }
2610 /* fall through */
2611 case e1000_82576:
2612 if (!!adapter->vfs_allocated_count) {
2613 max_rss_queues = 2;
2614 break;
2615 }
2616 /* fall through */
2617 case e1000_82580:
2618 case e1000_i354:
2619 default:
2620 max_rss_queues = IGB_MAX_RX_QUEUES;
2621 break;
2622 }
2623
2624 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2625
2626 /* Determine if we need to pair queues. */
2627 switch (hw->mac.type) {
2628 case e1000_82575:
2629 case e1000_i211:
2630 /* Device supports enough interrupts without queue pairing. */
2631 break;
2632 case e1000_82576:
2633 /* If VFs are going to be allocated with RSS queues then we
2634 * should pair the queues in order to conserve interrupts due
2635 * to limited supply.
2636 */
2637 if ((adapter->rss_queues > 1) &&
2638 (adapter->vfs_allocated_count > 6))
2639 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2640 /* fall through */
2641 case e1000_82580:
2642 case e1000_i350:
2643 case e1000_i354:
2644 case e1000_i210:
2645 default:
2646 /* If rss_queues > half of max_rss_queues, pair the queues in
2647 * order to conserve interrupts due to limited supply.
2648 */
2649 if (adapter->rss_queues > (max_rss_queues / 2))
2650 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2651 break;
2652 }
2653 }
2654
2655 /**
2656 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2657 * @adapter: board private structure to initialize
2658 *
2659 * igb_sw_init initializes the Adapter private data structure.
2660 * Fields are initialized based on PCI device information and
2661 * OS network device settings (MTU size).
2662 **/
2663 static int igb_sw_init(struct igb_adapter *adapter)
2664 {
2665 struct e1000_hw *hw = &adapter->hw;
2666 struct net_device *netdev = adapter->netdev;
2667 struct pci_dev *pdev = adapter->pdev;
2668
2669 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2670
2671 /* set default ring sizes */
2672 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2673 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2674
2675 /* set default ITR values */
2676 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2677 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2678
2679 /* set default work limits */
2680 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2681
2682 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2683 VLAN_HLEN;
2684 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2685
2686 spin_lock_init(&adapter->stats64_lock);
2687 #ifdef CONFIG_PCI_IOV
2688 switch (hw->mac.type) {
2689 case e1000_82576:
2690 case e1000_i350:
2691 if (max_vfs > 7) {
2692 dev_warn(&pdev->dev,
2693 "Maximum of 7 VFs per PF, using max\n");
2694 max_vfs = adapter->vfs_allocated_count = 7;
2695 } else
2696 adapter->vfs_allocated_count = max_vfs;
2697 if (adapter->vfs_allocated_count)
2698 dev_warn(&pdev->dev,
2699 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2700 break;
2701 default:
2702 break;
2703 }
2704 #endif /* CONFIG_PCI_IOV */
2705
2706 igb_init_queue_configuration(adapter);
2707
2708 /* Setup and initialize a copy of the hw vlan table array */
2709 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2710 GFP_ATOMIC);
2711
2712 /* This call may decrease the number of queues */
2713 if (igb_init_interrupt_scheme(adapter, true)) {
2714 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2715 return -ENOMEM;
2716 }
2717
2718 igb_probe_vfs(adapter);
2719
2720 /* Explicitly disable IRQ since the NIC can be in any state. */
2721 igb_irq_disable(adapter);
2722
2723 if (hw->mac.type >= e1000_i350)
2724 adapter->flags &= ~IGB_FLAG_DMAC;
2725
2726 set_bit(__IGB_DOWN, &adapter->state);
2727 return 0;
2728 }
2729
2730 /**
2731 * igb_open - Called when a network interface is made active
2732 * @netdev: network interface device structure
2733 *
2734 * Returns 0 on success, negative value on failure
2735 *
2736 * The open entry point is called when a network interface is made
2737 * active by the system (IFF_UP). At this point all resources needed
2738 * for transmit and receive operations are allocated, the interrupt
2739 * handler is registered with the OS, the watchdog timer is started,
2740 * and the stack is notified that the interface is ready.
2741 **/
2742 static int __igb_open(struct net_device *netdev, bool resuming)
2743 {
2744 struct igb_adapter *adapter = netdev_priv(netdev);
2745 struct e1000_hw *hw = &adapter->hw;
2746 struct pci_dev *pdev = adapter->pdev;
2747 int err;
2748 int i;
2749
2750 /* disallow open during test */
2751 if (test_bit(__IGB_TESTING, &adapter->state)) {
2752 WARN_ON(resuming);
2753 return -EBUSY;
2754 }
2755
2756 if (!resuming)
2757 pm_runtime_get_sync(&pdev->dev);
2758
2759 netif_carrier_off(netdev);
2760
2761 /* allocate transmit descriptors */
2762 err = igb_setup_all_tx_resources(adapter);
2763 if (err)
2764 goto err_setup_tx;
2765
2766 /* allocate receive descriptors */
2767 err = igb_setup_all_rx_resources(adapter);
2768 if (err)
2769 goto err_setup_rx;
2770
2771 igb_power_up_link(adapter);
2772
2773 /* before we allocate an interrupt, we must be ready to handle it.
2774 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2775 * as soon as we call pci_request_irq, so we have to setup our
2776 * clean_rx handler before we do so.
2777 */
2778 igb_configure(adapter);
2779
2780 err = igb_request_irq(adapter);
2781 if (err)
2782 goto err_req_irq;
2783
2784 /* Notify the stack of the actual queue counts. */
2785 err = netif_set_real_num_tx_queues(adapter->netdev,
2786 adapter->num_tx_queues);
2787 if (err)
2788 goto err_set_queues;
2789
2790 err = netif_set_real_num_rx_queues(adapter->netdev,
2791 adapter->num_rx_queues);
2792 if (err)
2793 goto err_set_queues;
2794
2795 /* From here on the code is the same as igb_up() */
2796 clear_bit(__IGB_DOWN, &adapter->state);
2797
2798 for (i = 0; i < adapter->num_q_vectors; i++)
2799 napi_enable(&(adapter->q_vector[i]->napi));
2800
2801 /* Clear any pending interrupts. */
2802 rd32(E1000_ICR);
2803
2804 igb_irq_enable(adapter);
2805
2806 /* notify VFs that reset has been completed */
2807 if (adapter->vfs_allocated_count) {
2808 u32 reg_data = rd32(E1000_CTRL_EXT);
2809 reg_data |= E1000_CTRL_EXT_PFRSTD;
2810 wr32(E1000_CTRL_EXT, reg_data);
2811 }
2812
2813 netif_tx_start_all_queues(netdev);
2814
2815 if (!resuming)
2816 pm_runtime_put(&pdev->dev);
2817
2818 /* start the watchdog. */
2819 hw->mac.get_link_status = 1;
2820 schedule_work(&adapter->watchdog_task);
2821
2822 return 0;
2823
2824 err_set_queues:
2825 igb_free_irq(adapter);
2826 err_req_irq:
2827 igb_release_hw_control(adapter);
2828 igb_power_down_link(adapter);
2829 igb_free_all_rx_resources(adapter);
2830 err_setup_rx:
2831 igb_free_all_tx_resources(adapter);
2832 err_setup_tx:
2833 igb_reset(adapter);
2834 if (!resuming)
2835 pm_runtime_put(&pdev->dev);
2836
2837 return err;
2838 }
2839
2840 static int igb_open(struct net_device *netdev)
2841 {
2842 return __igb_open(netdev, false);
2843 }
2844
2845 /**
2846 * igb_close - Disables a network interface
2847 * @netdev: network interface device structure
2848 *
2849 * Returns 0, this is not allowed to fail
2850 *
2851 * The close entry point is called when an interface is de-activated
2852 * by the OS. The hardware is still under the driver's control, but
2853 * needs to be disabled. A global MAC reset is issued to stop the
2854 * hardware, and all transmit and receive resources are freed.
2855 **/
2856 static int __igb_close(struct net_device *netdev, bool suspending)
2857 {
2858 struct igb_adapter *adapter = netdev_priv(netdev);
2859 struct pci_dev *pdev = adapter->pdev;
2860
2861 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
2862
2863 if (!suspending)
2864 pm_runtime_get_sync(&pdev->dev);
2865
2866 igb_down(adapter);
2867 igb_free_irq(adapter);
2868
2869 igb_free_all_tx_resources(adapter);
2870 igb_free_all_rx_resources(adapter);
2871
2872 if (!suspending)
2873 pm_runtime_put_sync(&pdev->dev);
2874 return 0;
2875 }
2876
2877 static int igb_close(struct net_device *netdev)
2878 {
2879 return __igb_close(netdev, false);
2880 }
2881
2882 /**
2883 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2884 * @tx_ring: tx descriptor ring (for a specific queue) to setup
2885 *
2886 * Return 0 on success, negative on failure
2887 **/
2888 int igb_setup_tx_resources(struct igb_ring *tx_ring)
2889 {
2890 struct device *dev = tx_ring->dev;
2891 int size;
2892
2893 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
2894
2895 tx_ring->tx_buffer_info = vzalloc(size);
2896 if (!tx_ring->tx_buffer_info)
2897 goto err;
2898
2899 /* round up to nearest 4K */
2900 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
2901 tx_ring->size = ALIGN(tx_ring->size, 4096);
2902
2903 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2904 &tx_ring->dma, GFP_KERNEL);
2905 if (!tx_ring->desc)
2906 goto err;
2907
2908 tx_ring->next_to_use = 0;
2909 tx_ring->next_to_clean = 0;
2910
2911 return 0;
2912
2913 err:
2914 vfree(tx_ring->tx_buffer_info);
2915 tx_ring->tx_buffer_info = NULL;
2916 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2917 return -ENOMEM;
2918 }
2919
2920 /**
2921 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2922 * (Descriptors) for all queues
2923 * @adapter: board private structure
2924 *
2925 * Return 0 on success, negative on failure
2926 **/
2927 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2928 {
2929 struct pci_dev *pdev = adapter->pdev;
2930 int i, err = 0;
2931
2932 for (i = 0; i < adapter->num_tx_queues; i++) {
2933 err = igb_setup_tx_resources(adapter->tx_ring[i]);
2934 if (err) {
2935 dev_err(&pdev->dev,
2936 "Allocation for Tx Queue %u failed\n", i);
2937 for (i--; i >= 0; i--)
2938 igb_free_tx_resources(adapter->tx_ring[i]);
2939 break;
2940 }
2941 }
2942
2943 return err;
2944 }
2945
2946 /**
2947 * igb_setup_tctl - configure the transmit control registers
2948 * @adapter: Board private structure
2949 **/
2950 void igb_setup_tctl(struct igb_adapter *adapter)
2951 {
2952 struct e1000_hw *hw = &adapter->hw;
2953 u32 tctl;
2954
2955 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2956 wr32(E1000_TXDCTL(0), 0);
2957
2958 /* Program the Transmit Control Register */
2959 tctl = rd32(E1000_TCTL);
2960 tctl &= ~E1000_TCTL_CT;
2961 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2962 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2963
2964 igb_config_collision_dist(hw);
2965
2966 /* Enable transmits */
2967 tctl |= E1000_TCTL_EN;
2968
2969 wr32(E1000_TCTL, tctl);
2970 }
2971
2972 /**
2973 * igb_configure_tx_ring - Configure transmit ring after Reset
2974 * @adapter: board private structure
2975 * @ring: tx ring to configure
2976 *
2977 * Configure a transmit ring after a reset.
2978 **/
2979 void igb_configure_tx_ring(struct igb_adapter *adapter,
2980 struct igb_ring *ring)
2981 {
2982 struct e1000_hw *hw = &adapter->hw;
2983 u32 txdctl = 0;
2984 u64 tdba = ring->dma;
2985 int reg_idx = ring->reg_idx;
2986
2987 /* disable the queue */
2988 wr32(E1000_TXDCTL(reg_idx), 0);
2989 wrfl();
2990 mdelay(10);
2991
2992 wr32(E1000_TDLEN(reg_idx),
2993 ring->count * sizeof(union e1000_adv_tx_desc));
2994 wr32(E1000_TDBAL(reg_idx),
2995 tdba & 0x00000000ffffffffULL);
2996 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2997
2998 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
2999 wr32(E1000_TDH(reg_idx), 0);
3000 writel(0, ring->tail);
3001
3002 txdctl |= IGB_TX_PTHRESH;
3003 txdctl |= IGB_TX_HTHRESH << 8;
3004 txdctl |= IGB_TX_WTHRESH << 16;
3005
3006 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3007 wr32(E1000_TXDCTL(reg_idx), txdctl);
3008 }
3009
3010 /**
3011 * igb_configure_tx - Configure transmit Unit after Reset
3012 * @adapter: board private structure
3013 *
3014 * Configure the Tx unit of the MAC after a reset.
3015 **/
3016 static void igb_configure_tx(struct igb_adapter *adapter)
3017 {
3018 int i;
3019
3020 for (i = 0; i < adapter->num_tx_queues; i++)
3021 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3022 }
3023
3024 /**
3025 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3026 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
3027 *
3028 * Returns 0 on success, negative on failure
3029 **/
3030 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3031 {
3032 struct device *dev = rx_ring->dev;
3033 int size;
3034
3035 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3036
3037 rx_ring->rx_buffer_info = vzalloc(size);
3038 if (!rx_ring->rx_buffer_info)
3039 goto err;
3040
3041 /* Round up to nearest 4K */
3042 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3043 rx_ring->size = ALIGN(rx_ring->size, 4096);
3044
3045 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3046 &rx_ring->dma, GFP_KERNEL);
3047 if (!rx_ring->desc)
3048 goto err;
3049
3050 rx_ring->next_to_alloc = 0;
3051 rx_ring->next_to_clean = 0;
3052 rx_ring->next_to_use = 0;
3053
3054 return 0;
3055
3056 err:
3057 vfree(rx_ring->rx_buffer_info);
3058 rx_ring->rx_buffer_info = NULL;
3059 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3060 return -ENOMEM;
3061 }
3062
3063 /**
3064 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3065 * (Descriptors) for all queues
3066 * @adapter: board private structure
3067 *
3068 * Return 0 on success, negative on failure
3069 **/
3070 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3071 {
3072 struct pci_dev *pdev = adapter->pdev;
3073 int i, err = 0;
3074
3075 for (i = 0; i < adapter->num_rx_queues; i++) {
3076 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3077 if (err) {
3078 dev_err(&pdev->dev,
3079 "Allocation for Rx Queue %u failed\n", i);
3080 for (i--; i >= 0; i--)
3081 igb_free_rx_resources(adapter->rx_ring[i]);
3082 break;
3083 }
3084 }
3085
3086 return err;
3087 }
3088
3089 /**
3090 * igb_setup_mrqc - configure the multiple receive queue control registers
3091 * @adapter: Board private structure
3092 **/
3093 static void igb_setup_mrqc(struct igb_adapter *adapter)
3094 {
3095 struct e1000_hw *hw = &adapter->hw;
3096 u32 mrqc, rxcsum;
3097 u32 j, num_rx_queues, shift = 0;
3098 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3099 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3100 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3101 0xFA01ACBE };
3102
3103 /* Fill out hash function seeds */
3104 for (j = 0; j < 10; j++)
3105 wr32(E1000_RSSRK(j), rsskey[j]);
3106
3107 num_rx_queues = adapter->rss_queues;
3108
3109 switch (hw->mac.type) {
3110 case e1000_82575:
3111 shift = 6;
3112 break;
3113 case e1000_82576:
3114 /* 82576 supports 2 RSS queues for SR-IOV */
3115 if (adapter->vfs_allocated_count) {
3116 shift = 3;
3117 num_rx_queues = 2;
3118 }
3119 break;
3120 default:
3121 break;
3122 }
3123
3124 /* Populate the indirection table 4 entries at a time. To do this
3125 * we are generating the results for n and n+2 and then interleaving
3126 * those with the results with n+1 and n+3.
3127 */
3128 for (j = 0; j < 32; j++) {
3129 /* first pass generates n and n+2 */
3130 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3131 u32 reta = (base & 0x07800780) >> (7 - shift);
3132
3133 /* second pass generates n+1 and n+3 */
3134 base += 0x00010001 * num_rx_queues;
3135 reta |= (base & 0x07800780) << (1 + shift);
3136
3137 wr32(E1000_RETA(j), reta);
3138 }
3139
3140 /* Disable raw packet checksumming so that RSS hash is placed in
3141 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3142 * offloads as they are enabled by default
3143 */
3144 rxcsum = rd32(E1000_RXCSUM);
3145 rxcsum |= E1000_RXCSUM_PCSD;
3146
3147 if (adapter->hw.mac.type >= e1000_82576)
3148 /* Enable Receive Checksum Offload for SCTP */
3149 rxcsum |= E1000_RXCSUM_CRCOFL;
3150
3151 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3152 wr32(E1000_RXCSUM, rxcsum);
3153
3154 /* Generate RSS hash based on packet types, TCP/UDP
3155 * port numbers and/or IPv4/v6 src and dst addresses
3156 */
3157 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3158 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3159 E1000_MRQC_RSS_FIELD_IPV6 |
3160 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3161 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3162
3163 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3164 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3165 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3166 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3167
3168 /* If VMDq is enabled then we set the appropriate mode for that, else
3169 * we default to RSS so that an RSS hash is calculated per packet even
3170 * if we are only using one queue
3171 */
3172 if (adapter->vfs_allocated_count) {
3173 if (hw->mac.type > e1000_82575) {
3174 /* Set the default pool for the PF's first queue */
3175 u32 vtctl = rd32(E1000_VT_CTL);
3176 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3177 E1000_VT_CTL_DISABLE_DEF_POOL);
3178 vtctl |= adapter->vfs_allocated_count <<
3179 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3180 wr32(E1000_VT_CTL, vtctl);
3181 }
3182 if (adapter->rss_queues > 1)
3183 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3184 else
3185 mrqc |= E1000_MRQC_ENABLE_VMDQ;
3186 } else {
3187 if (hw->mac.type != e1000_i211)
3188 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3189 }
3190 igb_vmm_control(adapter);
3191
3192 wr32(E1000_MRQC, mrqc);
3193 }
3194
3195 /**
3196 * igb_setup_rctl - configure the receive control registers
3197 * @adapter: Board private structure
3198 **/
3199 void igb_setup_rctl(struct igb_adapter *adapter)
3200 {
3201 struct e1000_hw *hw = &adapter->hw;
3202 u32 rctl;
3203
3204 rctl = rd32(E1000_RCTL);
3205
3206 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3207 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3208
3209 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3210 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3211
3212 /* enable stripping of CRC. It's unlikely this will break BMC
3213 * redirection as it did with e1000. Newer features require
3214 * that the HW strips the CRC.
3215 */
3216 rctl |= E1000_RCTL_SECRC;
3217
3218 /* disable store bad packets and clear size bits. */
3219 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3220
3221 /* enable LPE to prevent packets larger than max_frame_size */
3222 rctl |= E1000_RCTL_LPE;
3223
3224 /* disable queue 0 to prevent tail write w/o re-config */
3225 wr32(E1000_RXDCTL(0), 0);
3226
3227 /* Attention!!! For SR-IOV PF driver operations you must enable
3228 * queue drop for all VF and PF queues to prevent head of line blocking
3229 * if an un-trusted VF does not provide descriptors to hardware.
3230 */
3231 if (adapter->vfs_allocated_count) {
3232 /* set all queue drop enable bits */
3233 wr32(E1000_QDE, ALL_QUEUES);
3234 }
3235
3236 /* This is useful for sniffing bad packets. */
3237 if (adapter->netdev->features & NETIF_F_RXALL) {
3238 /* UPE and MPE will be handled by normal PROMISC logic
3239 * in e1000e_set_rx_mode
3240 */
3241 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3242 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3243 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3244
3245 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3246 E1000_RCTL_DPF | /* Allow filtered pause */
3247 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3248 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3249 * and that breaks VLANs.
3250 */
3251 }
3252
3253 wr32(E1000_RCTL, rctl);
3254 }
3255
3256 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3257 int vfn)
3258 {
3259 struct e1000_hw *hw = &adapter->hw;
3260 u32 vmolr;
3261
3262 /* if it isn't the PF check to see if VFs are enabled and
3263 * increase the size to support vlan tags
3264 */
3265 if (vfn < adapter->vfs_allocated_count &&
3266 adapter->vf_data[vfn].vlans_enabled)
3267 size += VLAN_TAG_SIZE;
3268
3269 vmolr = rd32(E1000_VMOLR(vfn));
3270 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3271 vmolr |= size | E1000_VMOLR_LPE;
3272 wr32(E1000_VMOLR(vfn), vmolr);
3273
3274 return 0;
3275 }
3276
3277 /**
3278 * igb_rlpml_set - set maximum receive packet size
3279 * @adapter: board private structure
3280 *
3281 * Configure maximum receivable packet size.
3282 **/
3283 static void igb_rlpml_set(struct igb_adapter *adapter)
3284 {
3285 u32 max_frame_size = adapter->max_frame_size;
3286 struct e1000_hw *hw = &adapter->hw;
3287 u16 pf_id = adapter->vfs_allocated_count;
3288
3289 if (pf_id) {
3290 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3291 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3292 * to our max jumbo frame size, in case we need to enable
3293 * jumbo frames on one of the rings later.
3294 * This will not pass over-length frames into the default
3295 * queue because it's gated by the VMOLR.RLPML.
3296 */
3297 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3298 }
3299
3300 wr32(E1000_RLPML, max_frame_size);
3301 }
3302
3303 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3304 int vfn, bool aupe)
3305 {
3306 struct e1000_hw *hw = &adapter->hw;
3307 u32 vmolr;
3308
3309 /* This register exists only on 82576 and newer so if we are older then
3310 * we should exit and do nothing
3311 */
3312 if (hw->mac.type < e1000_82576)
3313 return;
3314
3315 vmolr = rd32(E1000_VMOLR(vfn));
3316 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3317 if (aupe)
3318 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3319 else
3320 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3321
3322 /* clear all bits that might not be set */
3323 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3324
3325 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3326 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3327 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3328 * multicast packets
3329 */
3330 if (vfn <= adapter->vfs_allocated_count)
3331 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3332
3333 wr32(E1000_VMOLR(vfn), vmolr);
3334 }
3335
3336 /**
3337 * igb_configure_rx_ring - Configure a receive ring after Reset
3338 * @adapter: board private structure
3339 * @ring: receive ring to be configured
3340 *
3341 * Configure the Rx unit of the MAC after a reset.
3342 **/
3343 void igb_configure_rx_ring(struct igb_adapter *adapter,
3344 struct igb_ring *ring)
3345 {
3346 struct e1000_hw *hw = &adapter->hw;
3347 u64 rdba = ring->dma;
3348 int reg_idx = ring->reg_idx;
3349 u32 srrctl = 0, rxdctl = 0;
3350
3351 /* disable the queue */
3352 wr32(E1000_RXDCTL(reg_idx), 0);
3353
3354 /* Set DMA base address registers */
3355 wr32(E1000_RDBAL(reg_idx),
3356 rdba & 0x00000000ffffffffULL);
3357 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3358 wr32(E1000_RDLEN(reg_idx),
3359 ring->count * sizeof(union e1000_adv_rx_desc));
3360
3361 /* initialize head and tail */
3362 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3363 wr32(E1000_RDH(reg_idx), 0);
3364 writel(0, ring->tail);
3365
3366 /* set descriptor configuration */
3367 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3368 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3369 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3370 if (hw->mac.type >= e1000_82580)
3371 srrctl |= E1000_SRRCTL_TIMESTAMP;
3372 /* Only set Drop Enable if we are supporting multiple queues */
3373 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3374 srrctl |= E1000_SRRCTL_DROP_EN;
3375
3376 wr32(E1000_SRRCTL(reg_idx), srrctl);
3377
3378 /* set filtering for VMDQ pools */
3379 igb_set_vmolr(adapter, reg_idx & 0x7, true);
3380
3381 rxdctl |= IGB_RX_PTHRESH;
3382 rxdctl |= IGB_RX_HTHRESH << 8;
3383 rxdctl |= IGB_RX_WTHRESH << 16;
3384
3385 /* enable receive descriptor fetching */
3386 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3387 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3388 }
3389
3390 static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
3391 struct igb_ring *rx_ring)
3392 {
3393 #define IGB_MAX_BUILD_SKB_SIZE \
3394 (SKB_WITH_OVERHEAD(IGB_RX_BUFSZ) - \
3395 (NET_SKB_PAD + NET_IP_ALIGN + IGB_TS_HDR_LEN))
3396
3397 /* set build_skb flag */
3398 if (adapter->max_frame_size <= IGB_MAX_BUILD_SKB_SIZE)
3399 set_ring_build_skb_enabled(rx_ring);
3400 else
3401 clear_ring_build_skb_enabled(rx_ring);
3402 }
3403
3404 /**
3405 * igb_configure_rx - Configure receive Unit after Reset
3406 * @adapter: board private structure
3407 *
3408 * Configure the Rx unit of the MAC after a reset.
3409 **/
3410 static void igb_configure_rx(struct igb_adapter *adapter)
3411 {
3412 int i;
3413
3414 /* set UTA to appropriate mode */
3415 igb_set_uta(adapter);
3416
3417 /* set the correct pool for the PF default MAC address in entry 0 */
3418 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3419 adapter->vfs_allocated_count);
3420
3421 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3422 * the Base and Length of the Rx Descriptor Ring
3423 */
3424 for (i = 0; i < adapter->num_rx_queues; i++) {
3425 struct igb_ring *rx_ring = adapter->rx_ring[i];
3426 igb_set_rx_buffer_len(adapter, rx_ring);
3427 igb_configure_rx_ring(adapter, rx_ring);
3428 }
3429 }
3430
3431 /**
3432 * igb_free_tx_resources - Free Tx Resources per Queue
3433 * @tx_ring: Tx descriptor ring for a specific queue
3434 *
3435 * Free all transmit software resources
3436 **/
3437 void igb_free_tx_resources(struct igb_ring *tx_ring)
3438 {
3439 igb_clean_tx_ring(tx_ring);
3440
3441 vfree(tx_ring->tx_buffer_info);
3442 tx_ring->tx_buffer_info = NULL;
3443
3444 /* if not set, then don't free */
3445 if (!tx_ring->desc)
3446 return;
3447
3448 dma_free_coherent(tx_ring->dev, tx_ring->size,
3449 tx_ring->desc, tx_ring->dma);
3450
3451 tx_ring->desc = NULL;
3452 }
3453
3454 /**
3455 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3456 * @adapter: board private structure
3457 *
3458 * Free all transmit software resources
3459 **/
3460 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3461 {
3462 int i;
3463
3464 for (i = 0; i < adapter->num_tx_queues; i++)
3465 igb_free_tx_resources(adapter->tx_ring[i]);
3466 }
3467
3468 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3469 struct igb_tx_buffer *tx_buffer)
3470 {
3471 if (tx_buffer->skb) {
3472 dev_kfree_skb_any(tx_buffer->skb);
3473 if (dma_unmap_len(tx_buffer, len))
3474 dma_unmap_single(ring->dev,
3475 dma_unmap_addr(tx_buffer, dma),
3476 dma_unmap_len(tx_buffer, len),
3477 DMA_TO_DEVICE);
3478 } else if (dma_unmap_len(tx_buffer, len)) {
3479 dma_unmap_page(ring->dev,
3480 dma_unmap_addr(tx_buffer, dma),
3481 dma_unmap_len(tx_buffer, len),
3482 DMA_TO_DEVICE);
3483 }
3484 tx_buffer->next_to_watch = NULL;
3485 tx_buffer->skb = NULL;
3486 dma_unmap_len_set(tx_buffer, len, 0);
3487 /* buffer_info must be completely set up in the transmit path */
3488 }
3489
3490 /**
3491 * igb_clean_tx_ring - Free Tx Buffers
3492 * @tx_ring: ring to be cleaned
3493 **/
3494 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3495 {
3496 struct igb_tx_buffer *buffer_info;
3497 unsigned long size;
3498 u16 i;
3499
3500 if (!tx_ring->tx_buffer_info)
3501 return;
3502 /* Free all the Tx ring sk_buffs */
3503
3504 for (i = 0; i < tx_ring->count; i++) {
3505 buffer_info = &tx_ring->tx_buffer_info[i];
3506 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3507 }
3508
3509 netdev_tx_reset_queue(txring_txq(tx_ring));
3510
3511 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3512 memset(tx_ring->tx_buffer_info, 0, size);
3513
3514 /* Zero out the descriptor ring */
3515 memset(tx_ring->desc, 0, tx_ring->size);
3516
3517 tx_ring->next_to_use = 0;
3518 tx_ring->next_to_clean = 0;
3519 }
3520
3521 /**
3522 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3523 * @adapter: board private structure
3524 **/
3525 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3526 {
3527 int i;
3528
3529 for (i = 0; i < adapter->num_tx_queues; i++)
3530 igb_clean_tx_ring(adapter->tx_ring[i]);
3531 }
3532
3533 /**
3534 * igb_free_rx_resources - Free Rx Resources
3535 * @rx_ring: ring to clean the resources from
3536 *
3537 * Free all receive software resources
3538 **/
3539 void igb_free_rx_resources(struct igb_ring *rx_ring)
3540 {
3541 igb_clean_rx_ring(rx_ring);
3542
3543 vfree(rx_ring->rx_buffer_info);
3544 rx_ring->rx_buffer_info = NULL;
3545
3546 /* if not set, then don't free */
3547 if (!rx_ring->desc)
3548 return;
3549
3550 dma_free_coherent(rx_ring->dev, rx_ring->size,
3551 rx_ring->desc, rx_ring->dma);
3552
3553 rx_ring->desc = NULL;
3554 }
3555
3556 /**
3557 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3558 * @adapter: board private structure
3559 *
3560 * Free all receive software resources
3561 **/
3562 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3563 {
3564 int i;
3565
3566 for (i = 0; i < adapter->num_rx_queues; i++)
3567 igb_free_rx_resources(adapter->rx_ring[i]);
3568 }
3569
3570 /**
3571 * igb_clean_rx_ring - Free Rx Buffers per Queue
3572 * @rx_ring: ring to free buffers from
3573 **/
3574 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3575 {
3576 unsigned long size;
3577 u16 i;
3578
3579 if (rx_ring->skb)
3580 dev_kfree_skb(rx_ring->skb);
3581 rx_ring->skb = NULL;
3582
3583 if (!rx_ring->rx_buffer_info)
3584 return;
3585
3586 /* Free all the Rx ring sk_buffs */
3587 for (i = 0; i < rx_ring->count; i++) {
3588 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3589
3590 if (!buffer_info->page)
3591 continue;
3592
3593 dma_unmap_page(rx_ring->dev,
3594 buffer_info->dma,
3595 PAGE_SIZE,
3596 DMA_FROM_DEVICE);
3597 __free_page(buffer_info->page);
3598
3599 buffer_info->page = NULL;
3600 }
3601
3602 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3603 memset(rx_ring->rx_buffer_info, 0, size);
3604
3605 /* Zero out the descriptor ring */
3606 memset(rx_ring->desc, 0, rx_ring->size);
3607
3608 rx_ring->next_to_alloc = 0;
3609 rx_ring->next_to_clean = 0;
3610 rx_ring->next_to_use = 0;
3611 }
3612
3613 /**
3614 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3615 * @adapter: board private structure
3616 **/
3617 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3618 {
3619 int i;
3620
3621 for (i = 0; i < adapter->num_rx_queues; i++)
3622 igb_clean_rx_ring(adapter->rx_ring[i]);
3623 }
3624
3625 /**
3626 * igb_set_mac - Change the Ethernet Address of the NIC
3627 * @netdev: network interface device structure
3628 * @p: pointer to an address structure
3629 *
3630 * Returns 0 on success, negative on failure
3631 **/
3632 static int igb_set_mac(struct net_device *netdev, void *p)
3633 {
3634 struct igb_adapter *adapter = netdev_priv(netdev);
3635 struct e1000_hw *hw = &adapter->hw;
3636 struct sockaddr *addr = p;
3637
3638 if (!is_valid_ether_addr(addr->sa_data))
3639 return -EADDRNOTAVAIL;
3640
3641 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3642 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3643
3644 /* set the correct pool for the new PF MAC address in entry 0 */
3645 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3646 adapter->vfs_allocated_count);
3647
3648 return 0;
3649 }
3650
3651 /**
3652 * igb_write_mc_addr_list - write multicast addresses to MTA
3653 * @netdev: network interface device structure
3654 *
3655 * Writes multicast address list to the MTA hash table.
3656 * Returns: -ENOMEM on failure
3657 * 0 on no addresses written
3658 * X on writing X addresses to MTA
3659 **/
3660 static int igb_write_mc_addr_list(struct net_device *netdev)
3661 {
3662 struct igb_adapter *adapter = netdev_priv(netdev);
3663 struct e1000_hw *hw = &adapter->hw;
3664 struct netdev_hw_addr *ha;
3665 u8 *mta_list;
3666 int i;
3667
3668 if (netdev_mc_empty(netdev)) {
3669 /* nothing to program, so clear mc list */
3670 igb_update_mc_addr_list(hw, NULL, 0);
3671 igb_restore_vf_multicasts(adapter);
3672 return 0;
3673 }
3674
3675 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3676 if (!mta_list)
3677 return -ENOMEM;
3678
3679 /* The shared function expects a packed array of only addresses. */
3680 i = 0;
3681 netdev_for_each_mc_addr(ha, netdev)
3682 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3683
3684 igb_update_mc_addr_list(hw, mta_list, i);
3685 kfree(mta_list);
3686
3687 return netdev_mc_count(netdev);
3688 }
3689
3690 /**
3691 * igb_write_uc_addr_list - write unicast addresses to RAR table
3692 * @netdev: network interface device structure
3693 *
3694 * Writes unicast address list to the RAR table.
3695 * Returns: -ENOMEM on failure/insufficient address space
3696 * 0 on no addresses written
3697 * X on writing X addresses to the RAR table
3698 **/
3699 static int igb_write_uc_addr_list(struct net_device *netdev)
3700 {
3701 struct igb_adapter *adapter = netdev_priv(netdev);
3702 struct e1000_hw *hw = &adapter->hw;
3703 unsigned int vfn = adapter->vfs_allocated_count;
3704 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3705 int count = 0;
3706
3707 /* return ENOMEM indicating insufficient memory for addresses */
3708 if (netdev_uc_count(netdev) > rar_entries)
3709 return -ENOMEM;
3710
3711 if (!netdev_uc_empty(netdev) && rar_entries) {
3712 struct netdev_hw_addr *ha;
3713
3714 netdev_for_each_uc_addr(ha, netdev) {
3715 if (!rar_entries)
3716 break;
3717 igb_rar_set_qsel(adapter, ha->addr,
3718 rar_entries--,
3719 vfn);
3720 count++;
3721 }
3722 }
3723 /* write the addresses in reverse order to avoid write combining */
3724 for (; rar_entries > 0 ; rar_entries--) {
3725 wr32(E1000_RAH(rar_entries), 0);
3726 wr32(E1000_RAL(rar_entries), 0);
3727 }
3728 wrfl();
3729
3730 return count;
3731 }
3732
3733 /**
3734 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3735 * @netdev: network interface device structure
3736 *
3737 * The set_rx_mode entry point is called whenever the unicast or multicast
3738 * address lists or the network interface flags are updated. This routine is
3739 * responsible for configuring the hardware for proper unicast, multicast,
3740 * promiscuous mode, and all-multi behavior.
3741 **/
3742 static void igb_set_rx_mode(struct net_device *netdev)
3743 {
3744 struct igb_adapter *adapter = netdev_priv(netdev);
3745 struct e1000_hw *hw = &adapter->hw;
3746 unsigned int vfn = adapter->vfs_allocated_count;
3747 u32 rctl, vmolr = 0;
3748 int count;
3749
3750 /* Check for Promiscuous and All Multicast modes */
3751 rctl = rd32(E1000_RCTL);
3752
3753 /* clear the effected bits */
3754 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3755
3756 if (netdev->flags & IFF_PROMISC) {
3757 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3758 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3759 } else {
3760 if (netdev->flags & IFF_ALLMULTI) {
3761 rctl |= E1000_RCTL_MPE;
3762 vmolr |= E1000_VMOLR_MPME;
3763 } else {
3764 /* Write addresses to the MTA, if the attempt fails
3765 * then we should just turn on promiscuous mode so
3766 * that we can at least receive multicast traffic
3767 */
3768 count = igb_write_mc_addr_list(netdev);
3769 if (count < 0) {
3770 rctl |= E1000_RCTL_MPE;
3771 vmolr |= E1000_VMOLR_MPME;
3772 } else if (count) {
3773 vmolr |= E1000_VMOLR_ROMPE;
3774 }
3775 }
3776 /* Write addresses to available RAR registers, if there is not
3777 * sufficient space to store all the addresses then enable
3778 * unicast promiscuous mode
3779 */
3780 count = igb_write_uc_addr_list(netdev);
3781 if (count < 0) {
3782 rctl |= E1000_RCTL_UPE;
3783 vmolr |= E1000_VMOLR_ROPE;
3784 }
3785 rctl |= E1000_RCTL_VFE;
3786 }
3787 wr32(E1000_RCTL, rctl);
3788
3789 /* In order to support SR-IOV and eventually VMDq it is necessary to set
3790 * the VMOLR to enable the appropriate modes. Without this workaround
3791 * we will have issues with VLAN tag stripping not being done for frames
3792 * that are only arriving because we are the default pool
3793 */
3794 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
3795 return;
3796
3797 vmolr |= rd32(E1000_VMOLR(vfn)) &
3798 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
3799 wr32(E1000_VMOLR(vfn), vmolr);
3800 igb_restore_vf_multicasts(adapter);
3801 }
3802
3803 static void igb_check_wvbr(struct igb_adapter *adapter)
3804 {
3805 struct e1000_hw *hw = &adapter->hw;
3806 u32 wvbr = 0;
3807
3808 switch (hw->mac.type) {
3809 case e1000_82576:
3810 case e1000_i350:
3811 if (!(wvbr = rd32(E1000_WVBR)))
3812 return;
3813 break;
3814 default:
3815 break;
3816 }
3817
3818 adapter->wvbr |= wvbr;
3819 }
3820
3821 #define IGB_STAGGERED_QUEUE_OFFSET 8
3822
3823 static void igb_spoof_check(struct igb_adapter *adapter)
3824 {
3825 int j;
3826
3827 if (!adapter->wvbr)
3828 return;
3829
3830 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3831 if (adapter->wvbr & (1 << j) ||
3832 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3833 dev_warn(&adapter->pdev->dev,
3834 "Spoof event(s) detected on VF %d\n", j);
3835 adapter->wvbr &=
3836 ~((1 << j) |
3837 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3838 }
3839 }
3840 }
3841
3842 /* Need to wait a few seconds after link up to get diagnostic information from
3843 * the phy
3844 */
3845 static void igb_update_phy_info(unsigned long data)
3846 {
3847 struct igb_adapter *adapter = (struct igb_adapter *) data;
3848 igb_get_phy_info(&adapter->hw);
3849 }
3850
3851 /**
3852 * igb_has_link - check shared code for link and determine up/down
3853 * @adapter: pointer to driver private info
3854 **/
3855 bool igb_has_link(struct igb_adapter *adapter)
3856 {
3857 struct e1000_hw *hw = &adapter->hw;
3858 bool link_active = false;
3859 s32 ret_val = 0;
3860
3861 /* get_link_status is set on LSC (link status) interrupt or
3862 * rx sequence error interrupt. get_link_status will stay
3863 * false until the e1000_check_for_link establishes link
3864 * for copper adapters ONLY
3865 */
3866 switch (hw->phy.media_type) {
3867 case e1000_media_type_copper:
3868 if (hw->mac.get_link_status) {
3869 ret_val = hw->mac.ops.check_for_link(hw);
3870 link_active = !hw->mac.get_link_status;
3871 } else {
3872 link_active = true;
3873 }
3874 break;
3875 case e1000_media_type_internal_serdes:
3876 ret_val = hw->mac.ops.check_for_link(hw);
3877 link_active = hw->mac.serdes_has_link;
3878 break;
3879 default:
3880 case e1000_media_type_unknown:
3881 break;
3882 }
3883
3884 return link_active;
3885 }
3886
3887 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3888 {
3889 bool ret = false;
3890 u32 ctrl_ext, thstat;
3891
3892 /* check for thermal sensor event on i350 copper only */
3893 if (hw->mac.type == e1000_i350) {
3894 thstat = rd32(E1000_THSTAT);
3895 ctrl_ext = rd32(E1000_CTRL_EXT);
3896
3897 if ((hw->phy.media_type == e1000_media_type_copper) &&
3898 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
3899 ret = !!(thstat & event);
3900 }
3901
3902 return ret;
3903 }
3904
3905 /**
3906 * igb_watchdog - Timer Call-back
3907 * @data: pointer to adapter cast into an unsigned long
3908 **/
3909 static void igb_watchdog(unsigned long data)
3910 {
3911 struct igb_adapter *adapter = (struct igb_adapter *)data;
3912 /* Do the rest outside of interrupt context */
3913 schedule_work(&adapter->watchdog_task);
3914 }
3915
3916 static void igb_watchdog_task(struct work_struct *work)
3917 {
3918 struct igb_adapter *adapter = container_of(work,
3919 struct igb_adapter,
3920 watchdog_task);
3921 struct e1000_hw *hw = &adapter->hw;
3922 struct net_device *netdev = adapter->netdev;
3923 u32 link;
3924 int i;
3925
3926 link = igb_has_link(adapter);
3927 if (link) {
3928 /* Cancel scheduled suspend requests. */
3929 pm_runtime_resume(netdev->dev.parent);
3930
3931 if (!netif_carrier_ok(netdev)) {
3932 u32 ctrl;
3933 hw->mac.ops.get_speed_and_duplex(hw,
3934 &adapter->link_speed,
3935 &adapter->link_duplex);
3936
3937 ctrl = rd32(E1000_CTRL);
3938 /* Links status message must follow this format */
3939 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3940 "Duplex, Flow Control: %s\n",
3941 netdev->name,
3942 adapter->link_speed,
3943 adapter->link_duplex == FULL_DUPLEX ?
3944 "Full" : "Half",
3945 (ctrl & E1000_CTRL_TFCE) &&
3946 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3947 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3948 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
3949
3950 /* check for thermal sensor event */
3951 if (igb_thermal_sensor_event(hw,
3952 E1000_THSTAT_LINK_THROTTLE)) {
3953 netdev_info(netdev, "The network adapter link "
3954 "speed was downshifted because it "
3955 "overheated\n");
3956 }
3957
3958 /* adjust timeout factor according to speed/duplex */
3959 adapter->tx_timeout_factor = 1;
3960 switch (adapter->link_speed) {
3961 case SPEED_10:
3962 adapter->tx_timeout_factor = 14;
3963 break;
3964 case SPEED_100:
3965 /* maybe add some timeout factor ? */
3966 break;
3967 }
3968
3969 netif_carrier_on(netdev);
3970
3971 igb_ping_all_vfs(adapter);
3972 igb_check_vf_rate_limit(adapter);
3973
3974 /* link state has changed, schedule phy info update */
3975 if (!test_bit(__IGB_DOWN, &adapter->state))
3976 mod_timer(&adapter->phy_info_timer,
3977 round_jiffies(jiffies + 2 * HZ));
3978 }
3979 } else {
3980 if (netif_carrier_ok(netdev)) {
3981 adapter->link_speed = 0;
3982 adapter->link_duplex = 0;
3983
3984 /* check for thermal sensor event */
3985 if (igb_thermal_sensor_event(hw,
3986 E1000_THSTAT_PWR_DOWN)) {
3987 netdev_err(netdev, "The network adapter was "
3988 "stopped because it overheated\n");
3989 }
3990
3991 /* Links status message must follow this format */
3992 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3993 netdev->name);
3994 netif_carrier_off(netdev);
3995
3996 igb_ping_all_vfs(adapter);
3997
3998 /* link state has changed, schedule phy info update */
3999 if (!test_bit(__IGB_DOWN, &adapter->state))
4000 mod_timer(&adapter->phy_info_timer,
4001 round_jiffies(jiffies + 2 * HZ));
4002
4003 pm_schedule_suspend(netdev->dev.parent,
4004 MSEC_PER_SEC * 5);
4005 }
4006 }
4007
4008 spin_lock(&adapter->stats64_lock);
4009 igb_update_stats(adapter, &adapter->stats64);
4010 spin_unlock(&adapter->stats64_lock);
4011
4012 for (i = 0; i < adapter->num_tx_queues; i++) {
4013 struct igb_ring *tx_ring = adapter->tx_ring[i];
4014 if (!netif_carrier_ok(netdev)) {
4015 /* We've lost link, so the controller stops DMA,
4016 * but we've got queued Tx work that's never going
4017 * to get done, so reset controller to flush Tx.
4018 * (Do the reset outside of interrupt context).
4019 */
4020 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4021 adapter->tx_timeout_count++;
4022 schedule_work(&adapter->reset_task);
4023 /* return immediately since reset is imminent */
4024 return;
4025 }
4026 }
4027
4028 /* Force detection of hung controller every watchdog period */
4029 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4030 }
4031
4032 /* Cause software interrupt to ensure Rx ring is cleaned */
4033 if (adapter->msix_entries) {
4034 u32 eics = 0;
4035 for (i = 0; i < adapter->num_q_vectors; i++)
4036 eics |= adapter->q_vector[i]->eims_value;
4037 wr32(E1000_EICS, eics);
4038 } else {
4039 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4040 }
4041
4042 igb_spoof_check(adapter);
4043 igb_ptp_rx_hang(adapter);
4044
4045 /* Reset the timer */
4046 if (!test_bit(__IGB_DOWN, &adapter->state))
4047 mod_timer(&adapter->watchdog_timer,
4048 round_jiffies(jiffies + 2 * HZ));
4049 }
4050
4051 enum latency_range {
4052 lowest_latency = 0,
4053 low_latency = 1,
4054 bulk_latency = 2,
4055 latency_invalid = 255
4056 };
4057
4058 /**
4059 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4060 * @q_vector: pointer to q_vector
4061 *
4062 * Stores a new ITR value based on strictly on packet size. This
4063 * algorithm is less sophisticated than that used in igb_update_itr,
4064 * due to the difficulty of synchronizing statistics across multiple
4065 * receive rings. The divisors and thresholds used by this function
4066 * were determined based on theoretical maximum wire speed and testing
4067 * data, in order to minimize response time while increasing bulk
4068 * throughput.
4069 * This functionality is controlled by the InterruptThrottleRate module
4070 * parameter (see igb_param.c)
4071 * NOTE: This function is called only when operating in a multiqueue
4072 * receive environment.
4073 **/
4074 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4075 {
4076 int new_val = q_vector->itr_val;
4077 int avg_wire_size = 0;
4078 struct igb_adapter *adapter = q_vector->adapter;
4079 unsigned int packets;
4080
4081 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4082 * ints/sec - ITR timer value of 120 ticks.
4083 */
4084 if (adapter->link_speed != SPEED_1000) {
4085 new_val = IGB_4K_ITR;
4086 goto set_itr_val;
4087 }
4088
4089 packets = q_vector->rx.total_packets;
4090 if (packets)
4091 avg_wire_size = q_vector->rx.total_bytes / packets;
4092
4093 packets = q_vector->tx.total_packets;
4094 if (packets)
4095 avg_wire_size = max_t(u32, avg_wire_size,
4096 q_vector->tx.total_bytes / packets);
4097
4098 /* if avg_wire_size isn't set no work was done */
4099 if (!avg_wire_size)
4100 goto clear_counts;
4101
4102 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4103 avg_wire_size += 24;
4104
4105 /* Don't starve jumbo frames */
4106 avg_wire_size = min(avg_wire_size, 3000);
4107
4108 /* Give a little boost to mid-size frames */
4109 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4110 new_val = avg_wire_size / 3;
4111 else
4112 new_val = avg_wire_size / 2;
4113
4114 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4115 if (new_val < IGB_20K_ITR &&
4116 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4117 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4118 new_val = IGB_20K_ITR;
4119
4120 set_itr_val:
4121 if (new_val != q_vector->itr_val) {
4122 q_vector->itr_val = new_val;
4123 q_vector->set_itr = 1;
4124 }
4125 clear_counts:
4126 q_vector->rx.total_bytes = 0;
4127 q_vector->rx.total_packets = 0;
4128 q_vector->tx.total_bytes = 0;
4129 q_vector->tx.total_packets = 0;
4130 }
4131
4132 /**
4133 * igb_update_itr - update the dynamic ITR value based on statistics
4134 * @q_vector: pointer to q_vector
4135 * @ring_container: ring info to update the itr for
4136 *
4137 * Stores a new ITR value based on packets and byte
4138 * counts during the last interrupt. The advantage of per interrupt
4139 * computation is faster updates and more accurate ITR for the current
4140 * traffic pattern. Constants in this function were computed
4141 * based on theoretical maximum wire speed and thresholds were set based
4142 * on testing data as well as attempting to minimize response time
4143 * while increasing bulk throughput.
4144 * this functionality is controlled by the InterruptThrottleRate module
4145 * parameter (see igb_param.c)
4146 * NOTE: These calculations are only valid when operating in a single-
4147 * queue environment.
4148 **/
4149 static void igb_update_itr(struct igb_q_vector *q_vector,
4150 struct igb_ring_container *ring_container)
4151 {
4152 unsigned int packets = ring_container->total_packets;
4153 unsigned int bytes = ring_container->total_bytes;
4154 u8 itrval = ring_container->itr;
4155
4156 /* no packets, exit with status unchanged */
4157 if (packets == 0)
4158 return;
4159
4160 switch (itrval) {
4161 case lowest_latency:
4162 /* handle TSO and jumbo frames */
4163 if (bytes/packets > 8000)
4164 itrval = bulk_latency;
4165 else if ((packets < 5) && (bytes > 512))
4166 itrval = low_latency;
4167 break;
4168 case low_latency: /* 50 usec aka 20000 ints/s */
4169 if (bytes > 10000) {
4170 /* this if handles the TSO accounting */
4171 if (bytes/packets > 8000) {
4172 itrval = bulk_latency;
4173 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
4174 itrval = bulk_latency;
4175 } else if ((packets > 35)) {
4176 itrval = lowest_latency;
4177 }
4178 } else if (bytes/packets > 2000) {
4179 itrval = bulk_latency;
4180 } else if (packets <= 2 && bytes < 512) {
4181 itrval = lowest_latency;
4182 }
4183 break;
4184 case bulk_latency: /* 250 usec aka 4000 ints/s */
4185 if (bytes > 25000) {
4186 if (packets > 35)
4187 itrval = low_latency;
4188 } else if (bytes < 1500) {
4189 itrval = low_latency;
4190 }
4191 break;
4192 }
4193
4194 /* clear work counters since we have the values we need */
4195 ring_container->total_bytes = 0;
4196 ring_container->total_packets = 0;
4197
4198 /* write updated itr to ring container */
4199 ring_container->itr = itrval;
4200 }
4201
4202 static void igb_set_itr(struct igb_q_vector *q_vector)
4203 {
4204 struct igb_adapter *adapter = q_vector->adapter;
4205 u32 new_itr = q_vector->itr_val;
4206 u8 current_itr = 0;
4207
4208 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4209 if (adapter->link_speed != SPEED_1000) {
4210 current_itr = 0;
4211 new_itr = IGB_4K_ITR;
4212 goto set_itr_now;
4213 }
4214
4215 igb_update_itr(q_vector, &q_vector->tx);
4216 igb_update_itr(q_vector, &q_vector->rx);
4217
4218 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4219
4220 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4221 if (current_itr == lowest_latency &&
4222 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4223 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4224 current_itr = low_latency;
4225
4226 switch (current_itr) {
4227 /* counts and packets in update_itr are dependent on these numbers */
4228 case lowest_latency:
4229 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4230 break;
4231 case low_latency:
4232 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4233 break;
4234 case bulk_latency:
4235 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
4236 break;
4237 default:
4238 break;
4239 }
4240
4241 set_itr_now:
4242 if (new_itr != q_vector->itr_val) {
4243 /* this attempts to bias the interrupt rate towards Bulk
4244 * by adding intermediate steps when interrupt rate is
4245 * increasing
4246 */
4247 new_itr = new_itr > q_vector->itr_val ?
4248 max((new_itr * q_vector->itr_val) /
4249 (new_itr + (q_vector->itr_val >> 2)),
4250 new_itr) : new_itr;
4251 /* Don't write the value here; it resets the adapter's
4252 * internal timer, and causes us to delay far longer than
4253 * we should between interrupts. Instead, we write the ITR
4254 * value at the beginning of the next interrupt so the timing
4255 * ends up being correct.
4256 */
4257 q_vector->itr_val = new_itr;
4258 q_vector->set_itr = 1;
4259 }
4260 }
4261
4262 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4263 u32 type_tucmd, u32 mss_l4len_idx)
4264 {
4265 struct e1000_adv_tx_context_desc *context_desc;
4266 u16 i = tx_ring->next_to_use;
4267
4268 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4269
4270 i++;
4271 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4272
4273 /* set bits to identify this as an advanced context descriptor */
4274 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4275
4276 /* For 82575, context index must be unique per ring. */
4277 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4278 mss_l4len_idx |= tx_ring->reg_idx << 4;
4279
4280 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4281 context_desc->seqnum_seed = 0;
4282 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4283 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4284 }
4285
4286 static int igb_tso(struct igb_ring *tx_ring,
4287 struct igb_tx_buffer *first,
4288 u8 *hdr_len)
4289 {
4290 struct sk_buff *skb = first->skb;
4291 u32 vlan_macip_lens, type_tucmd;
4292 u32 mss_l4len_idx, l4len;
4293
4294 if (skb->ip_summed != CHECKSUM_PARTIAL)
4295 return 0;
4296
4297 if (!skb_is_gso(skb))
4298 return 0;
4299
4300 if (skb_header_cloned(skb)) {
4301 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4302 if (err)
4303 return err;
4304 }
4305
4306 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4307 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4308
4309 if (first->protocol == __constant_htons(ETH_P_IP)) {
4310 struct iphdr *iph = ip_hdr(skb);
4311 iph->tot_len = 0;
4312 iph->check = 0;
4313 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4314 iph->daddr, 0,
4315 IPPROTO_TCP,
4316 0);
4317 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4318 first->tx_flags |= IGB_TX_FLAGS_TSO |
4319 IGB_TX_FLAGS_CSUM |
4320 IGB_TX_FLAGS_IPV4;
4321 } else if (skb_is_gso_v6(skb)) {
4322 ipv6_hdr(skb)->payload_len = 0;
4323 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4324 &ipv6_hdr(skb)->daddr,
4325 0, IPPROTO_TCP, 0);
4326 first->tx_flags |= IGB_TX_FLAGS_TSO |
4327 IGB_TX_FLAGS_CSUM;
4328 }
4329
4330 /* compute header lengths */
4331 l4len = tcp_hdrlen(skb);
4332 *hdr_len = skb_transport_offset(skb) + l4len;
4333
4334 /* update gso size and bytecount with header size */
4335 first->gso_segs = skb_shinfo(skb)->gso_segs;
4336 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4337
4338 /* MSS L4LEN IDX */
4339 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4340 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4341
4342 /* VLAN MACLEN IPLEN */
4343 vlan_macip_lens = skb_network_header_len(skb);
4344 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4345 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4346
4347 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4348
4349 return 1;
4350 }
4351
4352 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4353 {
4354 struct sk_buff *skb = first->skb;
4355 u32 vlan_macip_lens = 0;
4356 u32 mss_l4len_idx = 0;
4357 u32 type_tucmd = 0;
4358
4359 if (skb->ip_summed != CHECKSUM_PARTIAL) {
4360 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4361 return;
4362 } else {
4363 u8 l4_hdr = 0;
4364 switch (first->protocol) {
4365 case __constant_htons(ETH_P_IP):
4366 vlan_macip_lens |= skb_network_header_len(skb);
4367 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4368 l4_hdr = ip_hdr(skb)->protocol;
4369 break;
4370 case __constant_htons(ETH_P_IPV6):
4371 vlan_macip_lens |= skb_network_header_len(skb);
4372 l4_hdr = ipv6_hdr(skb)->nexthdr;
4373 break;
4374 default:
4375 if (unlikely(net_ratelimit())) {
4376 dev_warn(tx_ring->dev,
4377 "partial checksum but proto=%x!\n",
4378 first->protocol);
4379 }
4380 break;
4381 }
4382
4383 switch (l4_hdr) {
4384 case IPPROTO_TCP:
4385 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4386 mss_l4len_idx = tcp_hdrlen(skb) <<
4387 E1000_ADVTXD_L4LEN_SHIFT;
4388 break;
4389 case IPPROTO_SCTP:
4390 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4391 mss_l4len_idx = sizeof(struct sctphdr) <<
4392 E1000_ADVTXD_L4LEN_SHIFT;
4393 break;
4394 case IPPROTO_UDP:
4395 mss_l4len_idx = sizeof(struct udphdr) <<
4396 E1000_ADVTXD_L4LEN_SHIFT;
4397 break;
4398 default:
4399 if (unlikely(net_ratelimit())) {
4400 dev_warn(tx_ring->dev,
4401 "partial checksum but l4 proto=%x!\n",
4402 l4_hdr);
4403 }
4404 break;
4405 }
4406
4407 /* update TX checksum flag */
4408 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4409 }
4410
4411 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4412 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4413
4414 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4415 }
4416
4417 #define IGB_SET_FLAG(_input, _flag, _result) \
4418 ((_flag <= _result) ? \
4419 ((u32)(_input & _flag) * (_result / _flag)) : \
4420 ((u32)(_input & _flag) / (_flag / _result)))
4421
4422 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4423 {
4424 /* set type for advanced descriptor with frame checksum insertion */
4425 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4426 E1000_ADVTXD_DCMD_DEXT |
4427 E1000_ADVTXD_DCMD_IFCS;
4428
4429 /* set HW vlan bit if vlan is present */
4430 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4431 (E1000_ADVTXD_DCMD_VLE));
4432
4433 /* set segmentation bits for TSO */
4434 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4435 (E1000_ADVTXD_DCMD_TSE));
4436
4437 /* set timestamp bit if present */
4438 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4439 (E1000_ADVTXD_MAC_TSTAMP));
4440
4441 /* insert frame checksum */
4442 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4443
4444 return cmd_type;
4445 }
4446
4447 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4448 union e1000_adv_tx_desc *tx_desc,
4449 u32 tx_flags, unsigned int paylen)
4450 {
4451 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4452
4453 /* 82575 requires a unique index per ring */
4454 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4455 olinfo_status |= tx_ring->reg_idx << 4;
4456
4457 /* insert L4 checksum */
4458 olinfo_status |= IGB_SET_FLAG(tx_flags,
4459 IGB_TX_FLAGS_CSUM,
4460 (E1000_TXD_POPTS_TXSM << 8));
4461
4462 /* insert IPv4 checksum */
4463 olinfo_status |= IGB_SET_FLAG(tx_flags,
4464 IGB_TX_FLAGS_IPV4,
4465 (E1000_TXD_POPTS_IXSM << 8));
4466
4467 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4468 }
4469
4470 static void igb_tx_map(struct igb_ring *tx_ring,
4471 struct igb_tx_buffer *first,
4472 const u8 hdr_len)
4473 {
4474 struct sk_buff *skb = first->skb;
4475 struct igb_tx_buffer *tx_buffer;
4476 union e1000_adv_tx_desc *tx_desc;
4477 struct skb_frag_struct *frag;
4478 dma_addr_t dma;
4479 unsigned int data_len, size;
4480 u32 tx_flags = first->tx_flags;
4481 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4482 u16 i = tx_ring->next_to_use;
4483
4484 tx_desc = IGB_TX_DESC(tx_ring, i);
4485
4486 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4487
4488 size = skb_headlen(skb);
4489 data_len = skb->data_len;
4490
4491 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4492
4493 tx_buffer = first;
4494
4495 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4496 if (dma_mapping_error(tx_ring->dev, dma))
4497 goto dma_error;
4498
4499 /* record length, and DMA address */
4500 dma_unmap_len_set(tx_buffer, len, size);
4501 dma_unmap_addr_set(tx_buffer, dma, dma);
4502
4503 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4504
4505 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4506 tx_desc->read.cmd_type_len =
4507 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4508
4509 i++;
4510 tx_desc++;
4511 if (i == tx_ring->count) {
4512 tx_desc = IGB_TX_DESC(tx_ring, 0);
4513 i = 0;
4514 }
4515 tx_desc->read.olinfo_status = 0;
4516
4517 dma += IGB_MAX_DATA_PER_TXD;
4518 size -= IGB_MAX_DATA_PER_TXD;
4519
4520 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4521 }
4522
4523 if (likely(!data_len))
4524 break;
4525
4526 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4527
4528 i++;
4529 tx_desc++;
4530 if (i == tx_ring->count) {
4531 tx_desc = IGB_TX_DESC(tx_ring, 0);
4532 i = 0;
4533 }
4534 tx_desc->read.olinfo_status = 0;
4535
4536 size = skb_frag_size(frag);
4537 data_len -= size;
4538
4539 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4540 size, DMA_TO_DEVICE);
4541
4542 tx_buffer = &tx_ring->tx_buffer_info[i];
4543 }
4544
4545 /* write last descriptor with RS and EOP bits */
4546 cmd_type |= size | IGB_TXD_DCMD;
4547 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4548
4549 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4550
4551 /* set the timestamp */
4552 first->time_stamp = jiffies;
4553
4554 /* Force memory writes to complete before letting h/w know there
4555 * are new descriptors to fetch. (Only applicable for weak-ordered
4556 * memory model archs, such as IA-64).
4557 *
4558 * We also need this memory barrier to make certain all of the
4559 * status bits have been updated before next_to_watch is written.
4560 */
4561 wmb();
4562
4563 /* set next_to_watch value indicating a packet is present */
4564 first->next_to_watch = tx_desc;
4565
4566 i++;
4567 if (i == tx_ring->count)
4568 i = 0;
4569
4570 tx_ring->next_to_use = i;
4571
4572 writel(i, tx_ring->tail);
4573
4574 /* we need this if more than one processor can write to our tail
4575 * at a time, it synchronizes IO on IA64/Altix systems
4576 */
4577 mmiowb();
4578
4579 return;
4580
4581 dma_error:
4582 dev_err(tx_ring->dev, "TX DMA map failed\n");
4583
4584 /* clear dma mappings for failed tx_buffer_info map */
4585 for (;;) {
4586 tx_buffer = &tx_ring->tx_buffer_info[i];
4587 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4588 if (tx_buffer == first)
4589 break;
4590 if (i == 0)
4591 i = tx_ring->count;
4592 i--;
4593 }
4594
4595 tx_ring->next_to_use = i;
4596 }
4597
4598 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4599 {
4600 struct net_device *netdev = tx_ring->netdev;
4601
4602 netif_stop_subqueue(netdev, tx_ring->queue_index);
4603
4604 /* Herbert's original patch had:
4605 * smp_mb__after_netif_stop_queue();
4606 * but since that doesn't exist yet, just open code it.
4607 */
4608 smp_mb();
4609
4610 /* We need to check again in a case another CPU has just
4611 * made room available.
4612 */
4613 if (igb_desc_unused(tx_ring) < size)
4614 return -EBUSY;
4615
4616 /* A reprieve! */
4617 netif_wake_subqueue(netdev, tx_ring->queue_index);
4618
4619 u64_stats_update_begin(&tx_ring->tx_syncp2);
4620 tx_ring->tx_stats.restart_queue2++;
4621 u64_stats_update_end(&tx_ring->tx_syncp2);
4622
4623 return 0;
4624 }
4625
4626 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4627 {
4628 if (igb_desc_unused(tx_ring) >= size)
4629 return 0;
4630 return __igb_maybe_stop_tx(tx_ring, size);
4631 }
4632
4633 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4634 struct igb_ring *tx_ring)
4635 {
4636 struct igb_tx_buffer *first;
4637 int tso;
4638 u32 tx_flags = 0;
4639 u16 count = TXD_USE_COUNT(skb_headlen(skb));
4640 __be16 protocol = vlan_get_protocol(skb);
4641 u8 hdr_len = 0;
4642
4643 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4644 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4645 * + 2 desc gap to keep tail from touching head,
4646 * + 1 desc for context descriptor,
4647 * otherwise try next time
4648 */
4649 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4650 unsigned short f;
4651 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4652 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4653 } else {
4654 count += skb_shinfo(skb)->nr_frags;
4655 }
4656
4657 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
4658 /* this is a hard error */
4659 return NETDEV_TX_BUSY;
4660 }
4661
4662 /* record the location of the first descriptor for this packet */
4663 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4664 first->skb = skb;
4665 first->bytecount = skb->len;
4666 first->gso_segs = 1;
4667
4668 skb_tx_timestamp(skb);
4669
4670 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4671 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
4672
4673 if (!(adapter->ptp_tx_skb)) {
4674 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4675 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4676
4677 adapter->ptp_tx_skb = skb_get(skb);
4678 adapter->ptp_tx_start = jiffies;
4679 if (adapter->hw.mac.type == e1000_82576)
4680 schedule_work(&adapter->ptp_tx_work);
4681 }
4682 }
4683
4684 if (vlan_tx_tag_present(skb)) {
4685 tx_flags |= IGB_TX_FLAGS_VLAN;
4686 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4687 }
4688
4689 /* record initial flags and protocol */
4690 first->tx_flags = tx_flags;
4691 first->protocol = protocol;
4692
4693 tso = igb_tso(tx_ring, first, &hdr_len);
4694 if (tso < 0)
4695 goto out_drop;
4696 else if (!tso)
4697 igb_tx_csum(tx_ring, first);
4698
4699 igb_tx_map(tx_ring, first, hdr_len);
4700
4701 /* Make sure there is space in the ring for the next send. */
4702 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4703
4704 return NETDEV_TX_OK;
4705
4706 out_drop:
4707 igb_unmap_and_free_tx_resource(tx_ring, first);
4708
4709 return NETDEV_TX_OK;
4710 }
4711
4712 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4713 struct sk_buff *skb)
4714 {
4715 unsigned int r_idx = skb->queue_mapping;
4716
4717 if (r_idx >= adapter->num_tx_queues)
4718 r_idx = r_idx % adapter->num_tx_queues;
4719
4720 return adapter->tx_ring[r_idx];
4721 }
4722
4723 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4724 struct net_device *netdev)
4725 {
4726 struct igb_adapter *adapter = netdev_priv(netdev);
4727
4728 if (test_bit(__IGB_DOWN, &adapter->state)) {
4729 dev_kfree_skb_any(skb);
4730 return NETDEV_TX_OK;
4731 }
4732
4733 if (skb->len <= 0) {
4734 dev_kfree_skb_any(skb);
4735 return NETDEV_TX_OK;
4736 }
4737
4738 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
4739 * in order to meet this minimum size requirement.
4740 */
4741 if (unlikely(skb->len < 17)) {
4742 if (skb_pad(skb, 17 - skb->len))
4743 return NETDEV_TX_OK;
4744 skb->len = 17;
4745 skb_set_tail_pointer(skb, 17);
4746 }
4747
4748 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
4749 }
4750
4751 /**
4752 * igb_tx_timeout - Respond to a Tx Hang
4753 * @netdev: network interface device structure
4754 **/
4755 static void igb_tx_timeout(struct net_device *netdev)
4756 {
4757 struct igb_adapter *adapter = netdev_priv(netdev);
4758 struct e1000_hw *hw = &adapter->hw;
4759
4760 /* Do the reset outside of interrupt context */
4761 adapter->tx_timeout_count++;
4762
4763 if (hw->mac.type >= e1000_82580)
4764 hw->dev_spec._82575.global_device_reset = true;
4765
4766 schedule_work(&adapter->reset_task);
4767 wr32(E1000_EICS,
4768 (adapter->eims_enable_mask & ~adapter->eims_other));
4769 }
4770
4771 static void igb_reset_task(struct work_struct *work)
4772 {
4773 struct igb_adapter *adapter;
4774 adapter = container_of(work, struct igb_adapter, reset_task);
4775
4776 igb_dump(adapter);
4777 netdev_err(adapter->netdev, "Reset adapter\n");
4778 igb_reinit_locked(adapter);
4779 }
4780
4781 /**
4782 * igb_get_stats64 - Get System Network Statistics
4783 * @netdev: network interface device structure
4784 * @stats: rtnl_link_stats64 pointer
4785 **/
4786 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
4787 struct rtnl_link_stats64 *stats)
4788 {
4789 struct igb_adapter *adapter = netdev_priv(netdev);
4790
4791 spin_lock(&adapter->stats64_lock);
4792 igb_update_stats(adapter, &adapter->stats64);
4793 memcpy(stats, &adapter->stats64, sizeof(*stats));
4794 spin_unlock(&adapter->stats64_lock);
4795
4796 return stats;
4797 }
4798
4799 /**
4800 * igb_change_mtu - Change the Maximum Transfer Unit
4801 * @netdev: network interface device structure
4802 * @new_mtu: new value for maximum frame size
4803 *
4804 * Returns 0 on success, negative on failure
4805 **/
4806 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4807 {
4808 struct igb_adapter *adapter = netdev_priv(netdev);
4809 struct pci_dev *pdev = adapter->pdev;
4810 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4811
4812 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4813 dev_err(&pdev->dev, "Invalid MTU setting\n");
4814 return -EINVAL;
4815 }
4816
4817 #define MAX_STD_JUMBO_FRAME_SIZE 9238
4818 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4819 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
4820 return -EINVAL;
4821 }
4822
4823 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4824 msleep(1);
4825
4826 /* igb_down has a dependency on max_frame_size */
4827 adapter->max_frame_size = max_frame;
4828
4829 if (netif_running(netdev))
4830 igb_down(adapter);
4831
4832 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
4833 netdev->mtu, new_mtu);
4834 netdev->mtu = new_mtu;
4835
4836 if (netif_running(netdev))
4837 igb_up(adapter);
4838 else
4839 igb_reset(adapter);
4840
4841 clear_bit(__IGB_RESETTING, &adapter->state);
4842
4843 return 0;
4844 }
4845
4846 /**
4847 * igb_update_stats - Update the board statistics counters
4848 * @adapter: board private structure
4849 **/
4850 void igb_update_stats(struct igb_adapter *adapter,
4851 struct rtnl_link_stats64 *net_stats)
4852 {
4853 struct e1000_hw *hw = &adapter->hw;
4854 struct pci_dev *pdev = adapter->pdev;
4855 u32 reg, mpc;
4856 u16 phy_tmp;
4857 int i;
4858 u64 bytes, packets;
4859 unsigned int start;
4860 u64 _bytes, _packets;
4861
4862 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4863
4864 /* Prevent stats update while adapter is being reset, or if the pci
4865 * connection is down.
4866 */
4867 if (adapter->link_speed == 0)
4868 return;
4869 if (pci_channel_offline(pdev))
4870 return;
4871
4872 bytes = 0;
4873 packets = 0;
4874 for (i = 0; i < adapter->num_rx_queues; i++) {
4875 u32 rqdpc = rd32(E1000_RQDPC(i));
4876 struct igb_ring *ring = adapter->rx_ring[i];
4877
4878 if (rqdpc) {
4879 ring->rx_stats.drops += rqdpc;
4880 net_stats->rx_fifo_errors += rqdpc;
4881 }
4882
4883 do {
4884 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4885 _bytes = ring->rx_stats.bytes;
4886 _packets = ring->rx_stats.packets;
4887 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4888 bytes += _bytes;
4889 packets += _packets;
4890 }
4891
4892 net_stats->rx_bytes = bytes;
4893 net_stats->rx_packets = packets;
4894
4895 bytes = 0;
4896 packets = 0;
4897 for (i = 0; i < adapter->num_tx_queues; i++) {
4898 struct igb_ring *ring = adapter->tx_ring[i];
4899 do {
4900 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4901 _bytes = ring->tx_stats.bytes;
4902 _packets = ring->tx_stats.packets;
4903 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4904 bytes += _bytes;
4905 packets += _packets;
4906 }
4907 net_stats->tx_bytes = bytes;
4908 net_stats->tx_packets = packets;
4909
4910 /* read stats registers */
4911 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4912 adapter->stats.gprc += rd32(E1000_GPRC);
4913 adapter->stats.gorc += rd32(E1000_GORCL);
4914 rd32(E1000_GORCH); /* clear GORCL */
4915 adapter->stats.bprc += rd32(E1000_BPRC);
4916 adapter->stats.mprc += rd32(E1000_MPRC);
4917 adapter->stats.roc += rd32(E1000_ROC);
4918
4919 adapter->stats.prc64 += rd32(E1000_PRC64);
4920 adapter->stats.prc127 += rd32(E1000_PRC127);
4921 adapter->stats.prc255 += rd32(E1000_PRC255);
4922 adapter->stats.prc511 += rd32(E1000_PRC511);
4923 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4924 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4925 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4926 adapter->stats.sec += rd32(E1000_SEC);
4927
4928 mpc = rd32(E1000_MPC);
4929 adapter->stats.mpc += mpc;
4930 net_stats->rx_fifo_errors += mpc;
4931 adapter->stats.scc += rd32(E1000_SCC);
4932 adapter->stats.ecol += rd32(E1000_ECOL);
4933 adapter->stats.mcc += rd32(E1000_MCC);
4934 adapter->stats.latecol += rd32(E1000_LATECOL);
4935 adapter->stats.dc += rd32(E1000_DC);
4936 adapter->stats.rlec += rd32(E1000_RLEC);
4937 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4938 adapter->stats.xontxc += rd32(E1000_XONTXC);
4939 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4940 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4941 adapter->stats.fcruc += rd32(E1000_FCRUC);
4942 adapter->stats.gptc += rd32(E1000_GPTC);
4943 adapter->stats.gotc += rd32(E1000_GOTCL);
4944 rd32(E1000_GOTCH); /* clear GOTCL */
4945 adapter->stats.rnbc += rd32(E1000_RNBC);
4946 adapter->stats.ruc += rd32(E1000_RUC);
4947 adapter->stats.rfc += rd32(E1000_RFC);
4948 adapter->stats.rjc += rd32(E1000_RJC);
4949 adapter->stats.tor += rd32(E1000_TORH);
4950 adapter->stats.tot += rd32(E1000_TOTH);
4951 adapter->stats.tpr += rd32(E1000_TPR);
4952
4953 adapter->stats.ptc64 += rd32(E1000_PTC64);
4954 adapter->stats.ptc127 += rd32(E1000_PTC127);
4955 adapter->stats.ptc255 += rd32(E1000_PTC255);
4956 adapter->stats.ptc511 += rd32(E1000_PTC511);
4957 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4958 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4959
4960 adapter->stats.mptc += rd32(E1000_MPTC);
4961 adapter->stats.bptc += rd32(E1000_BPTC);
4962
4963 adapter->stats.tpt += rd32(E1000_TPT);
4964 adapter->stats.colc += rd32(E1000_COLC);
4965
4966 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
4967 /* read internal phy specific stats */
4968 reg = rd32(E1000_CTRL_EXT);
4969 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4970 adapter->stats.rxerrc += rd32(E1000_RXERRC);
4971
4972 /* this stat has invalid values on i210/i211 */
4973 if ((hw->mac.type != e1000_i210) &&
4974 (hw->mac.type != e1000_i211))
4975 adapter->stats.tncrs += rd32(E1000_TNCRS);
4976 }
4977
4978 adapter->stats.tsctc += rd32(E1000_TSCTC);
4979 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4980
4981 adapter->stats.iac += rd32(E1000_IAC);
4982 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4983 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4984 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4985 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4986 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4987 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4988 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4989 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4990
4991 /* Fill out the OS statistics structure */
4992 net_stats->multicast = adapter->stats.mprc;
4993 net_stats->collisions = adapter->stats.colc;
4994
4995 /* Rx Errors */
4996
4997 /* RLEC on some newer hardware can be incorrect so build
4998 * our own version based on RUC and ROC
4999 */
5000 net_stats->rx_errors = adapter->stats.rxerrc +
5001 adapter->stats.crcerrs + adapter->stats.algnerrc +
5002 adapter->stats.ruc + adapter->stats.roc +
5003 adapter->stats.cexterr;
5004 net_stats->rx_length_errors = adapter->stats.ruc +
5005 adapter->stats.roc;
5006 net_stats->rx_crc_errors = adapter->stats.crcerrs;
5007 net_stats->rx_frame_errors = adapter->stats.algnerrc;
5008 net_stats->rx_missed_errors = adapter->stats.mpc;
5009
5010 /* Tx Errors */
5011 net_stats->tx_errors = adapter->stats.ecol +
5012 adapter->stats.latecol;
5013 net_stats->tx_aborted_errors = adapter->stats.ecol;
5014 net_stats->tx_window_errors = adapter->stats.latecol;
5015 net_stats->tx_carrier_errors = adapter->stats.tncrs;
5016
5017 /* Tx Dropped needs to be maintained elsewhere */
5018
5019 /* Phy Stats */
5020 if (hw->phy.media_type == e1000_media_type_copper) {
5021 if ((adapter->link_speed == SPEED_1000) &&
5022 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
5023 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5024 adapter->phy_stats.idle_errors += phy_tmp;
5025 }
5026 }
5027
5028 /* Management Stats */
5029 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5030 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5031 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5032
5033 /* OS2BMC Stats */
5034 reg = rd32(E1000_MANC);
5035 if (reg & E1000_MANC_EN_BMC2OS) {
5036 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5037 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5038 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5039 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5040 }
5041 }
5042
5043 static irqreturn_t igb_msix_other(int irq, void *data)
5044 {
5045 struct igb_adapter *adapter = data;
5046 struct e1000_hw *hw = &adapter->hw;
5047 u32 icr = rd32(E1000_ICR);
5048 /* reading ICR causes bit 31 of EICR to be cleared */
5049
5050 if (icr & E1000_ICR_DRSTA)
5051 schedule_work(&adapter->reset_task);
5052
5053 if (icr & E1000_ICR_DOUTSYNC) {
5054 /* HW is reporting DMA is out of sync */
5055 adapter->stats.doosync++;
5056 /* The DMA Out of Sync is also indication of a spoof event
5057 * in IOV mode. Check the Wrong VM Behavior register to
5058 * see if it is really a spoof event.
5059 */
5060 igb_check_wvbr(adapter);
5061 }
5062
5063 /* Check for a mailbox event */
5064 if (icr & E1000_ICR_VMMB)
5065 igb_msg_task(adapter);
5066
5067 if (icr & E1000_ICR_LSC) {
5068 hw->mac.get_link_status = 1;
5069 /* guard against interrupt when we're going down */
5070 if (!test_bit(__IGB_DOWN, &adapter->state))
5071 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5072 }
5073
5074 if (icr & E1000_ICR_TS) {
5075 u32 tsicr = rd32(E1000_TSICR);
5076
5077 if (tsicr & E1000_TSICR_TXTS) {
5078 /* acknowledge the interrupt */
5079 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5080 /* retrieve hardware timestamp */
5081 schedule_work(&adapter->ptp_tx_work);
5082 }
5083 }
5084
5085 wr32(E1000_EIMS, adapter->eims_other);
5086
5087 return IRQ_HANDLED;
5088 }
5089
5090 static void igb_write_itr(struct igb_q_vector *q_vector)
5091 {
5092 struct igb_adapter *adapter = q_vector->adapter;
5093 u32 itr_val = q_vector->itr_val & 0x7FFC;
5094
5095 if (!q_vector->set_itr)
5096 return;
5097
5098 if (!itr_val)
5099 itr_val = 0x4;
5100
5101 if (adapter->hw.mac.type == e1000_82575)
5102 itr_val |= itr_val << 16;
5103 else
5104 itr_val |= E1000_EITR_CNT_IGNR;
5105
5106 writel(itr_val, q_vector->itr_register);
5107 q_vector->set_itr = 0;
5108 }
5109
5110 static irqreturn_t igb_msix_ring(int irq, void *data)
5111 {
5112 struct igb_q_vector *q_vector = data;
5113
5114 /* Write the ITR value calculated from the previous interrupt. */
5115 igb_write_itr(q_vector);
5116
5117 napi_schedule(&q_vector->napi);
5118
5119 return IRQ_HANDLED;
5120 }
5121
5122 #ifdef CONFIG_IGB_DCA
5123 static void igb_update_tx_dca(struct igb_adapter *adapter,
5124 struct igb_ring *tx_ring,
5125 int cpu)
5126 {
5127 struct e1000_hw *hw = &adapter->hw;
5128 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5129
5130 if (hw->mac.type != e1000_82575)
5131 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5132
5133 /* We can enable relaxed ordering for reads, but not writes when
5134 * DCA is enabled. This is due to a known issue in some chipsets
5135 * which will cause the DCA tag to be cleared.
5136 */
5137 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5138 E1000_DCA_TXCTRL_DATA_RRO_EN |
5139 E1000_DCA_TXCTRL_DESC_DCA_EN;
5140
5141 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5142 }
5143
5144 static void igb_update_rx_dca(struct igb_adapter *adapter,
5145 struct igb_ring *rx_ring,
5146 int cpu)
5147 {
5148 struct e1000_hw *hw = &adapter->hw;
5149 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5150
5151 if (hw->mac.type != e1000_82575)
5152 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5153
5154 /* We can enable relaxed ordering for reads, but not writes when
5155 * DCA is enabled. This is due to a known issue in some chipsets
5156 * which will cause the DCA tag to be cleared.
5157 */
5158 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5159 E1000_DCA_RXCTRL_DESC_DCA_EN;
5160
5161 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5162 }
5163
5164 static void igb_update_dca(struct igb_q_vector *q_vector)
5165 {
5166 struct igb_adapter *adapter = q_vector->adapter;
5167 int cpu = get_cpu();
5168
5169 if (q_vector->cpu == cpu)
5170 goto out_no_update;
5171
5172 if (q_vector->tx.ring)
5173 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5174
5175 if (q_vector->rx.ring)
5176 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5177
5178 q_vector->cpu = cpu;
5179 out_no_update:
5180 put_cpu();
5181 }
5182
5183 static void igb_setup_dca(struct igb_adapter *adapter)
5184 {
5185 struct e1000_hw *hw = &adapter->hw;
5186 int i;
5187
5188 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5189 return;
5190
5191 /* Always use CB2 mode, difference is masked in the CB driver. */
5192 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5193
5194 for (i = 0; i < adapter->num_q_vectors; i++) {
5195 adapter->q_vector[i]->cpu = -1;
5196 igb_update_dca(adapter->q_vector[i]);
5197 }
5198 }
5199
5200 static int __igb_notify_dca(struct device *dev, void *data)
5201 {
5202 struct net_device *netdev = dev_get_drvdata(dev);
5203 struct igb_adapter *adapter = netdev_priv(netdev);
5204 struct pci_dev *pdev = adapter->pdev;
5205 struct e1000_hw *hw = &adapter->hw;
5206 unsigned long event = *(unsigned long *)data;
5207
5208 switch (event) {
5209 case DCA_PROVIDER_ADD:
5210 /* if already enabled, don't do it again */
5211 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5212 break;
5213 if (dca_add_requester(dev) == 0) {
5214 adapter->flags |= IGB_FLAG_DCA_ENABLED;
5215 dev_info(&pdev->dev, "DCA enabled\n");
5216 igb_setup_dca(adapter);
5217 break;
5218 }
5219 /* Fall Through since DCA is disabled. */
5220 case DCA_PROVIDER_REMOVE:
5221 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5222 /* without this a class_device is left
5223 * hanging around in the sysfs model
5224 */
5225 dca_remove_requester(dev);
5226 dev_info(&pdev->dev, "DCA disabled\n");
5227 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5228 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5229 }
5230 break;
5231 }
5232
5233 return 0;
5234 }
5235
5236 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5237 void *p)
5238 {
5239 int ret_val;
5240
5241 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5242 __igb_notify_dca);
5243
5244 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5245 }
5246 #endif /* CONFIG_IGB_DCA */
5247
5248 #ifdef CONFIG_PCI_IOV
5249 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5250 {
5251 unsigned char mac_addr[ETH_ALEN];
5252
5253 eth_zero_addr(mac_addr);
5254 igb_set_vf_mac(adapter, vf, mac_addr);
5255
5256 /* By default spoof check is enabled for all VFs */
5257 adapter->vf_data[vf].spoofchk_enabled = true;
5258
5259 return 0;
5260 }
5261
5262 static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
5263 {
5264 struct pci_dev *pdev = adapter->pdev;
5265 struct pci_dev *vfdev;
5266 int dev_id;
5267
5268 switch (adapter->hw.mac.type) {
5269 case e1000_82576:
5270 dev_id = IGB_82576_VF_DEV_ID;
5271 break;
5272 case e1000_i350:
5273 dev_id = IGB_I350_VF_DEV_ID;
5274 break;
5275 default:
5276 return false;
5277 }
5278
5279 /* loop through all the VFs to see if we own any that are assigned */
5280 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5281 while (vfdev) {
5282 /* if we don't own it we don't care */
5283 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5284 /* if it is assigned we cannot release it */
5285 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
5286 return true;
5287 }
5288
5289 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
5290 }
5291
5292 return false;
5293 }
5294
5295 #endif
5296 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5297 {
5298 struct e1000_hw *hw = &adapter->hw;
5299 u32 ping;
5300 int i;
5301
5302 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5303 ping = E1000_PF_CONTROL_MSG;
5304 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5305 ping |= E1000_VT_MSGTYPE_CTS;
5306 igb_write_mbx(hw, &ping, 1, i);
5307 }
5308 }
5309
5310 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5311 {
5312 struct e1000_hw *hw = &adapter->hw;
5313 u32 vmolr = rd32(E1000_VMOLR(vf));
5314 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5315
5316 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5317 IGB_VF_FLAG_MULTI_PROMISC);
5318 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5319
5320 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5321 vmolr |= E1000_VMOLR_MPME;
5322 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5323 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5324 } else {
5325 /* if we have hashes and we are clearing a multicast promisc
5326 * flag we need to write the hashes to the MTA as this step
5327 * was previously skipped
5328 */
5329 if (vf_data->num_vf_mc_hashes > 30) {
5330 vmolr |= E1000_VMOLR_MPME;
5331 } else if (vf_data->num_vf_mc_hashes) {
5332 int j;
5333 vmolr |= E1000_VMOLR_ROMPE;
5334 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5335 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5336 }
5337 }
5338
5339 wr32(E1000_VMOLR(vf), vmolr);
5340
5341 /* there are flags left unprocessed, likely not supported */
5342 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5343 return -EINVAL;
5344
5345 return 0;
5346 }
5347
5348 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5349 u32 *msgbuf, u32 vf)
5350 {
5351 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5352 u16 *hash_list = (u16 *)&msgbuf[1];
5353 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5354 int i;
5355
5356 /* salt away the number of multicast addresses assigned
5357 * to this VF for later use to restore when the PF multi cast
5358 * list changes
5359 */
5360 vf_data->num_vf_mc_hashes = n;
5361
5362 /* only up to 30 hash values supported */
5363 if (n > 30)
5364 n = 30;
5365
5366 /* store the hashes for later use */
5367 for (i = 0; i < n; i++)
5368 vf_data->vf_mc_hashes[i] = hash_list[i];
5369
5370 /* Flush and reset the mta with the new values */
5371 igb_set_rx_mode(adapter->netdev);
5372
5373 return 0;
5374 }
5375
5376 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5377 {
5378 struct e1000_hw *hw = &adapter->hw;
5379 struct vf_data_storage *vf_data;
5380 int i, j;
5381
5382 for (i = 0; i < adapter->vfs_allocated_count; i++) {
5383 u32 vmolr = rd32(E1000_VMOLR(i));
5384 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5385
5386 vf_data = &adapter->vf_data[i];
5387
5388 if ((vf_data->num_vf_mc_hashes > 30) ||
5389 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5390 vmolr |= E1000_VMOLR_MPME;
5391 } else if (vf_data->num_vf_mc_hashes) {
5392 vmolr |= E1000_VMOLR_ROMPE;
5393 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5394 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5395 }
5396 wr32(E1000_VMOLR(i), vmolr);
5397 }
5398 }
5399
5400 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5401 {
5402 struct e1000_hw *hw = &adapter->hw;
5403 u32 pool_mask, reg, vid;
5404 int i;
5405
5406 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5407
5408 /* Find the vlan filter for this id */
5409 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5410 reg = rd32(E1000_VLVF(i));
5411
5412 /* remove the vf from the pool */
5413 reg &= ~pool_mask;
5414
5415 /* if pool is empty then remove entry from vfta */
5416 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5417 (reg & E1000_VLVF_VLANID_ENABLE)) {
5418 reg = 0;
5419 vid = reg & E1000_VLVF_VLANID_MASK;
5420 igb_vfta_set(hw, vid, false);
5421 }
5422
5423 wr32(E1000_VLVF(i), reg);
5424 }
5425
5426 adapter->vf_data[vf].vlans_enabled = 0;
5427 }
5428
5429 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5430 {
5431 struct e1000_hw *hw = &adapter->hw;
5432 u32 reg, i;
5433
5434 /* The vlvf table only exists on 82576 hardware and newer */
5435 if (hw->mac.type < e1000_82576)
5436 return -1;
5437
5438 /* we only need to do this if VMDq is enabled */
5439 if (!adapter->vfs_allocated_count)
5440 return -1;
5441
5442 /* Find the vlan filter for this id */
5443 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5444 reg = rd32(E1000_VLVF(i));
5445 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5446 vid == (reg & E1000_VLVF_VLANID_MASK))
5447 break;
5448 }
5449
5450 if (add) {
5451 if (i == E1000_VLVF_ARRAY_SIZE) {
5452 /* Did not find a matching VLAN ID entry that was
5453 * enabled. Search for a free filter entry, i.e.
5454 * one without the enable bit set
5455 */
5456 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5457 reg = rd32(E1000_VLVF(i));
5458 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5459 break;
5460 }
5461 }
5462 if (i < E1000_VLVF_ARRAY_SIZE) {
5463 /* Found an enabled/available entry */
5464 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5465
5466 /* if !enabled we need to set this up in vfta */
5467 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5468 /* add VID to filter table */
5469 igb_vfta_set(hw, vid, true);
5470 reg |= E1000_VLVF_VLANID_ENABLE;
5471 }
5472 reg &= ~E1000_VLVF_VLANID_MASK;
5473 reg |= vid;
5474 wr32(E1000_VLVF(i), reg);
5475
5476 /* do not modify RLPML for PF devices */
5477 if (vf >= adapter->vfs_allocated_count)
5478 return 0;
5479
5480 if (!adapter->vf_data[vf].vlans_enabled) {
5481 u32 size;
5482 reg = rd32(E1000_VMOLR(vf));
5483 size = reg & E1000_VMOLR_RLPML_MASK;
5484 size += 4;
5485 reg &= ~E1000_VMOLR_RLPML_MASK;
5486 reg |= size;
5487 wr32(E1000_VMOLR(vf), reg);
5488 }
5489
5490 adapter->vf_data[vf].vlans_enabled++;
5491 }
5492 } else {
5493 if (i < E1000_VLVF_ARRAY_SIZE) {
5494 /* remove vf from the pool */
5495 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5496 /* if pool is empty then remove entry from vfta */
5497 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5498 reg = 0;
5499 igb_vfta_set(hw, vid, false);
5500 }
5501 wr32(E1000_VLVF(i), reg);
5502
5503 /* do not modify RLPML for PF devices */
5504 if (vf >= adapter->vfs_allocated_count)
5505 return 0;
5506
5507 adapter->vf_data[vf].vlans_enabled--;
5508 if (!adapter->vf_data[vf].vlans_enabled) {
5509 u32 size;
5510 reg = rd32(E1000_VMOLR(vf));
5511 size = reg & E1000_VMOLR_RLPML_MASK;
5512 size -= 4;
5513 reg &= ~E1000_VMOLR_RLPML_MASK;
5514 reg |= size;
5515 wr32(E1000_VMOLR(vf), reg);
5516 }
5517 }
5518 }
5519 return 0;
5520 }
5521
5522 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5523 {
5524 struct e1000_hw *hw = &adapter->hw;
5525
5526 if (vid)
5527 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5528 else
5529 wr32(E1000_VMVIR(vf), 0);
5530 }
5531
5532 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5533 int vf, u16 vlan, u8 qos)
5534 {
5535 int err = 0;
5536 struct igb_adapter *adapter = netdev_priv(netdev);
5537
5538 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5539 return -EINVAL;
5540 if (vlan || qos) {
5541 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5542 if (err)
5543 goto out;
5544 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5545 igb_set_vmolr(adapter, vf, !vlan);
5546 adapter->vf_data[vf].pf_vlan = vlan;
5547 adapter->vf_data[vf].pf_qos = qos;
5548 dev_info(&adapter->pdev->dev,
5549 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5550 if (test_bit(__IGB_DOWN, &adapter->state)) {
5551 dev_warn(&adapter->pdev->dev,
5552 "The VF VLAN has been set, but the PF device is not up.\n");
5553 dev_warn(&adapter->pdev->dev,
5554 "Bring the PF device up before attempting to use the VF device.\n");
5555 }
5556 } else {
5557 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5558 false, vf);
5559 igb_set_vmvir(adapter, vlan, vf);
5560 igb_set_vmolr(adapter, vf, true);
5561 adapter->vf_data[vf].pf_vlan = 0;
5562 adapter->vf_data[vf].pf_qos = 0;
5563 }
5564 out:
5565 return err;
5566 }
5567
5568 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5569 {
5570 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5571 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5572
5573 return igb_vlvf_set(adapter, vid, add, vf);
5574 }
5575
5576 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5577 {
5578 /* clear flags - except flag that indicates PF has set the MAC */
5579 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5580 adapter->vf_data[vf].last_nack = jiffies;
5581
5582 /* reset offloads to defaults */
5583 igb_set_vmolr(adapter, vf, true);
5584
5585 /* reset vlans for device */
5586 igb_clear_vf_vfta(adapter, vf);
5587 if (adapter->vf_data[vf].pf_vlan)
5588 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5589 adapter->vf_data[vf].pf_vlan,
5590 adapter->vf_data[vf].pf_qos);
5591 else
5592 igb_clear_vf_vfta(adapter, vf);
5593
5594 /* reset multicast table array for vf */
5595 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5596
5597 /* Flush and reset the mta with the new values */
5598 igb_set_rx_mode(adapter->netdev);
5599 }
5600
5601 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5602 {
5603 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5604
5605 /* clear mac address as we were hotplug removed/added */
5606 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5607 eth_zero_addr(vf_mac);
5608
5609 /* process remaining reset events */
5610 igb_vf_reset(adapter, vf);
5611 }
5612
5613 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5614 {
5615 struct e1000_hw *hw = &adapter->hw;
5616 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5617 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5618 u32 reg, msgbuf[3];
5619 u8 *addr = (u8 *)(&msgbuf[1]);
5620
5621 /* process all the same items cleared in a function level reset */
5622 igb_vf_reset(adapter, vf);
5623
5624 /* set vf mac address */
5625 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
5626
5627 /* enable transmit and receive for vf */
5628 reg = rd32(E1000_VFTE);
5629 wr32(E1000_VFTE, reg | (1 << vf));
5630 reg = rd32(E1000_VFRE);
5631 wr32(E1000_VFRE, reg | (1 << vf));
5632
5633 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
5634
5635 /* reply to reset with ack and vf mac address */
5636 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5637 memcpy(addr, vf_mac, 6);
5638 igb_write_mbx(hw, msgbuf, 3, vf);
5639 }
5640
5641 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5642 {
5643 /* The VF MAC Address is stored in a packed array of bytes
5644 * starting at the second 32 bit word of the msg array
5645 */
5646 unsigned char *addr = (char *)&msg[1];
5647 int err = -1;
5648
5649 if (is_valid_ether_addr(addr))
5650 err = igb_set_vf_mac(adapter, vf, addr);
5651
5652 return err;
5653 }
5654
5655 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5656 {
5657 struct e1000_hw *hw = &adapter->hw;
5658 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5659 u32 msg = E1000_VT_MSGTYPE_NACK;
5660
5661 /* if device isn't clear to send it shouldn't be reading either */
5662 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5663 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
5664 igb_write_mbx(hw, &msg, 1, vf);
5665 vf_data->last_nack = jiffies;
5666 }
5667 }
5668
5669 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
5670 {
5671 struct pci_dev *pdev = adapter->pdev;
5672 u32 msgbuf[E1000_VFMAILBOX_SIZE];
5673 struct e1000_hw *hw = &adapter->hw;
5674 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5675 s32 retval;
5676
5677 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
5678
5679 if (retval) {
5680 /* if receive failed revoke VF CTS stats and restart init */
5681 dev_err(&pdev->dev, "Error receiving message from VF\n");
5682 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5683 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5684 return;
5685 goto out;
5686 }
5687
5688 /* this is a message we already processed, do nothing */
5689 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
5690 return;
5691
5692 /* until the vf completes a reset it should not be
5693 * allowed to start any configuration.
5694 */
5695 if (msgbuf[0] == E1000_VF_RESET) {
5696 igb_vf_reset_msg(adapter, vf);
5697 return;
5698 }
5699
5700 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
5701 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5702 return;
5703 retval = -1;
5704 goto out;
5705 }
5706
5707 switch ((msgbuf[0] & 0xFFFF)) {
5708 case E1000_VF_SET_MAC_ADDR:
5709 retval = -EINVAL;
5710 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5711 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5712 else
5713 dev_warn(&pdev->dev,
5714 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5715 vf);
5716 break;
5717 case E1000_VF_SET_PROMISC:
5718 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5719 break;
5720 case E1000_VF_SET_MULTICAST:
5721 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5722 break;
5723 case E1000_VF_SET_LPE:
5724 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5725 break;
5726 case E1000_VF_SET_VLAN:
5727 retval = -1;
5728 if (vf_data->pf_vlan)
5729 dev_warn(&pdev->dev,
5730 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5731 vf);
5732 else
5733 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
5734 break;
5735 default:
5736 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
5737 retval = -1;
5738 break;
5739 }
5740
5741 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5742 out:
5743 /* notify the VF of the results of what it sent us */
5744 if (retval)
5745 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5746 else
5747 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5748
5749 igb_write_mbx(hw, msgbuf, 1, vf);
5750 }
5751
5752 static void igb_msg_task(struct igb_adapter *adapter)
5753 {
5754 struct e1000_hw *hw = &adapter->hw;
5755 u32 vf;
5756
5757 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5758 /* process any reset requests */
5759 if (!igb_check_for_rst(hw, vf))
5760 igb_vf_reset_event(adapter, vf);
5761
5762 /* process any messages pending */
5763 if (!igb_check_for_msg(hw, vf))
5764 igb_rcv_msg_from_vf(adapter, vf);
5765
5766 /* process any acks */
5767 if (!igb_check_for_ack(hw, vf))
5768 igb_rcv_ack_from_vf(adapter, vf);
5769 }
5770 }
5771
5772 /**
5773 * igb_set_uta - Set unicast filter table address
5774 * @adapter: board private structure
5775 *
5776 * The unicast table address is a register array of 32-bit registers.
5777 * The table is meant to be used in a way similar to how the MTA is used
5778 * however due to certain limitations in the hardware it is necessary to
5779 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5780 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
5781 **/
5782 static void igb_set_uta(struct igb_adapter *adapter)
5783 {
5784 struct e1000_hw *hw = &adapter->hw;
5785 int i;
5786
5787 /* The UTA table only exists on 82576 hardware and newer */
5788 if (hw->mac.type < e1000_82576)
5789 return;
5790
5791 /* we only need to do this if VMDq is enabled */
5792 if (!adapter->vfs_allocated_count)
5793 return;
5794
5795 for (i = 0; i < hw->mac.uta_reg_count; i++)
5796 array_wr32(E1000_UTA, i, ~0);
5797 }
5798
5799 /**
5800 * igb_intr_msi - Interrupt Handler
5801 * @irq: interrupt number
5802 * @data: pointer to a network interface device structure
5803 **/
5804 static irqreturn_t igb_intr_msi(int irq, void *data)
5805 {
5806 struct igb_adapter *adapter = data;
5807 struct igb_q_vector *q_vector = adapter->q_vector[0];
5808 struct e1000_hw *hw = &adapter->hw;
5809 /* read ICR disables interrupts using IAM */
5810 u32 icr = rd32(E1000_ICR);
5811
5812 igb_write_itr(q_vector);
5813
5814 if (icr & E1000_ICR_DRSTA)
5815 schedule_work(&adapter->reset_task);
5816
5817 if (icr & E1000_ICR_DOUTSYNC) {
5818 /* HW is reporting DMA is out of sync */
5819 adapter->stats.doosync++;
5820 }
5821
5822 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5823 hw->mac.get_link_status = 1;
5824 if (!test_bit(__IGB_DOWN, &adapter->state))
5825 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5826 }
5827
5828 if (icr & E1000_ICR_TS) {
5829 u32 tsicr = rd32(E1000_TSICR);
5830
5831 if (tsicr & E1000_TSICR_TXTS) {
5832 /* acknowledge the interrupt */
5833 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5834 /* retrieve hardware timestamp */
5835 schedule_work(&adapter->ptp_tx_work);
5836 }
5837 }
5838
5839 napi_schedule(&q_vector->napi);
5840
5841 return IRQ_HANDLED;
5842 }
5843
5844 /**
5845 * igb_intr - Legacy Interrupt Handler
5846 * @irq: interrupt number
5847 * @data: pointer to a network interface device structure
5848 **/
5849 static irqreturn_t igb_intr(int irq, void *data)
5850 {
5851 struct igb_adapter *adapter = data;
5852 struct igb_q_vector *q_vector = adapter->q_vector[0];
5853 struct e1000_hw *hw = &adapter->hw;
5854 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
5855 * need for the IMC write
5856 */
5857 u32 icr = rd32(E1000_ICR);
5858
5859 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5860 * not set, then the adapter didn't send an interrupt
5861 */
5862 if (!(icr & E1000_ICR_INT_ASSERTED))
5863 return IRQ_NONE;
5864
5865 igb_write_itr(q_vector);
5866
5867 if (icr & E1000_ICR_DRSTA)
5868 schedule_work(&adapter->reset_task);
5869
5870 if (icr & E1000_ICR_DOUTSYNC) {
5871 /* HW is reporting DMA is out of sync */
5872 adapter->stats.doosync++;
5873 }
5874
5875 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5876 hw->mac.get_link_status = 1;
5877 /* guard against interrupt when we're going down */
5878 if (!test_bit(__IGB_DOWN, &adapter->state))
5879 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5880 }
5881
5882 if (icr & E1000_ICR_TS) {
5883 u32 tsicr = rd32(E1000_TSICR);
5884
5885 if (tsicr & E1000_TSICR_TXTS) {
5886 /* acknowledge the interrupt */
5887 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5888 /* retrieve hardware timestamp */
5889 schedule_work(&adapter->ptp_tx_work);
5890 }
5891 }
5892
5893 napi_schedule(&q_vector->napi);
5894
5895 return IRQ_HANDLED;
5896 }
5897
5898 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
5899 {
5900 struct igb_adapter *adapter = q_vector->adapter;
5901 struct e1000_hw *hw = &adapter->hw;
5902
5903 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5904 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5905 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5906 igb_set_itr(q_vector);
5907 else
5908 igb_update_ring_itr(q_vector);
5909 }
5910
5911 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5912 if (adapter->msix_entries)
5913 wr32(E1000_EIMS, q_vector->eims_value);
5914 else
5915 igb_irq_enable(adapter);
5916 }
5917 }
5918
5919 /**
5920 * igb_poll - NAPI Rx polling callback
5921 * @napi: napi polling structure
5922 * @budget: count of how many packets we should handle
5923 **/
5924 static int igb_poll(struct napi_struct *napi, int budget)
5925 {
5926 struct igb_q_vector *q_vector = container_of(napi,
5927 struct igb_q_vector,
5928 napi);
5929 bool clean_complete = true;
5930
5931 #ifdef CONFIG_IGB_DCA
5932 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5933 igb_update_dca(q_vector);
5934 #endif
5935 if (q_vector->tx.ring)
5936 clean_complete = igb_clean_tx_irq(q_vector);
5937
5938 if (q_vector->rx.ring)
5939 clean_complete &= igb_clean_rx_irq(q_vector, budget);
5940
5941 /* If all work not completed, return budget and keep polling */
5942 if (!clean_complete)
5943 return budget;
5944
5945 /* If not enough Rx work done, exit the polling mode */
5946 napi_complete(napi);
5947 igb_ring_irq_enable(q_vector);
5948
5949 return 0;
5950 }
5951
5952 /**
5953 * igb_clean_tx_irq - Reclaim resources after transmit completes
5954 * @q_vector: pointer to q_vector containing needed info
5955 *
5956 * returns true if ring is completely cleaned
5957 **/
5958 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
5959 {
5960 struct igb_adapter *adapter = q_vector->adapter;
5961 struct igb_ring *tx_ring = q_vector->tx.ring;
5962 struct igb_tx_buffer *tx_buffer;
5963 union e1000_adv_tx_desc *tx_desc;
5964 unsigned int total_bytes = 0, total_packets = 0;
5965 unsigned int budget = q_vector->tx.work_limit;
5966 unsigned int i = tx_ring->next_to_clean;
5967
5968 if (test_bit(__IGB_DOWN, &adapter->state))
5969 return true;
5970
5971 tx_buffer = &tx_ring->tx_buffer_info[i];
5972 tx_desc = IGB_TX_DESC(tx_ring, i);
5973 i -= tx_ring->count;
5974
5975 do {
5976 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
5977
5978 /* if next_to_watch is not set then there is no work pending */
5979 if (!eop_desc)
5980 break;
5981
5982 /* prevent any other reads prior to eop_desc */
5983 read_barrier_depends();
5984
5985 /* if DD is not set pending work has not been completed */
5986 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5987 break;
5988
5989 /* clear next_to_watch to prevent false hangs */
5990 tx_buffer->next_to_watch = NULL;
5991
5992 /* update the statistics for this packet */
5993 total_bytes += tx_buffer->bytecount;
5994 total_packets += tx_buffer->gso_segs;
5995
5996 /* free the skb */
5997 dev_kfree_skb_any(tx_buffer->skb);
5998
5999 /* unmap skb header data */
6000 dma_unmap_single(tx_ring->dev,
6001 dma_unmap_addr(tx_buffer, dma),
6002 dma_unmap_len(tx_buffer, len),
6003 DMA_TO_DEVICE);
6004
6005 /* clear tx_buffer data */
6006 tx_buffer->skb = NULL;
6007 dma_unmap_len_set(tx_buffer, len, 0);
6008
6009 /* clear last DMA location and unmap remaining buffers */
6010 while (tx_desc != eop_desc) {
6011 tx_buffer++;
6012 tx_desc++;
6013 i++;
6014 if (unlikely(!i)) {
6015 i -= tx_ring->count;
6016 tx_buffer = tx_ring->tx_buffer_info;
6017 tx_desc = IGB_TX_DESC(tx_ring, 0);
6018 }
6019
6020 /* unmap any remaining paged data */
6021 if (dma_unmap_len(tx_buffer, len)) {
6022 dma_unmap_page(tx_ring->dev,
6023 dma_unmap_addr(tx_buffer, dma),
6024 dma_unmap_len(tx_buffer, len),
6025 DMA_TO_DEVICE);
6026 dma_unmap_len_set(tx_buffer, len, 0);
6027 }
6028 }
6029
6030 /* move us one more past the eop_desc for start of next pkt */
6031 tx_buffer++;
6032 tx_desc++;
6033 i++;
6034 if (unlikely(!i)) {
6035 i -= tx_ring->count;
6036 tx_buffer = tx_ring->tx_buffer_info;
6037 tx_desc = IGB_TX_DESC(tx_ring, 0);
6038 }
6039
6040 /* issue prefetch for next Tx descriptor */
6041 prefetch(tx_desc);
6042
6043 /* update budget accounting */
6044 budget--;
6045 } while (likely(budget));
6046
6047 netdev_tx_completed_queue(txring_txq(tx_ring),
6048 total_packets, total_bytes);
6049 i += tx_ring->count;
6050 tx_ring->next_to_clean = i;
6051 u64_stats_update_begin(&tx_ring->tx_syncp);
6052 tx_ring->tx_stats.bytes += total_bytes;
6053 tx_ring->tx_stats.packets += total_packets;
6054 u64_stats_update_end(&tx_ring->tx_syncp);
6055 q_vector->tx.total_bytes += total_bytes;
6056 q_vector->tx.total_packets += total_packets;
6057
6058 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6059 struct e1000_hw *hw = &adapter->hw;
6060
6061 /* Detect a transmit hang in hardware, this serializes the
6062 * check with the clearing of time_stamp and movement of i
6063 */
6064 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6065 if (tx_buffer->next_to_watch &&
6066 time_after(jiffies, tx_buffer->time_stamp +
6067 (adapter->tx_timeout_factor * HZ)) &&
6068 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6069
6070 /* detected Tx unit hang */
6071 dev_err(tx_ring->dev,
6072 "Detected Tx Unit Hang\n"
6073 " Tx Queue <%d>\n"
6074 " TDH <%x>\n"
6075 " TDT <%x>\n"
6076 " next_to_use <%x>\n"
6077 " next_to_clean <%x>\n"
6078 "buffer_info[next_to_clean]\n"
6079 " time_stamp <%lx>\n"
6080 " next_to_watch <%p>\n"
6081 " jiffies <%lx>\n"
6082 " desc.status <%x>\n",
6083 tx_ring->queue_index,
6084 rd32(E1000_TDH(tx_ring->reg_idx)),
6085 readl(tx_ring->tail),
6086 tx_ring->next_to_use,
6087 tx_ring->next_to_clean,
6088 tx_buffer->time_stamp,
6089 tx_buffer->next_to_watch,
6090 jiffies,
6091 tx_buffer->next_to_watch->wb.status);
6092 netif_stop_subqueue(tx_ring->netdev,
6093 tx_ring->queue_index);
6094
6095 /* we are about to reset, no point in enabling stuff */
6096 return true;
6097 }
6098 }
6099
6100 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6101 if (unlikely(total_packets &&
6102 netif_carrier_ok(tx_ring->netdev) &&
6103 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6104 /* Make sure that anybody stopping the queue after this
6105 * sees the new next_to_clean.
6106 */
6107 smp_mb();
6108 if (__netif_subqueue_stopped(tx_ring->netdev,
6109 tx_ring->queue_index) &&
6110 !(test_bit(__IGB_DOWN, &adapter->state))) {
6111 netif_wake_subqueue(tx_ring->netdev,
6112 tx_ring->queue_index);
6113
6114 u64_stats_update_begin(&tx_ring->tx_syncp);
6115 tx_ring->tx_stats.restart_queue++;
6116 u64_stats_update_end(&tx_ring->tx_syncp);
6117 }
6118 }
6119
6120 return !!budget;
6121 }
6122
6123 /**
6124 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6125 * @rx_ring: rx descriptor ring to store buffers on
6126 * @old_buff: donor buffer to have page reused
6127 *
6128 * Synchronizes page for reuse by the adapter
6129 **/
6130 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6131 struct igb_rx_buffer *old_buff)
6132 {
6133 struct igb_rx_buffer *new_buff;
6134 u16 nta = rx_ring->next_to_alloc;
6135
6136 new_buff = &rx_ring->rx_buffer_info[nta];
6137
6138 /* update, and store next to alloc */
6139 nta++;
6140 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6141
6142 /* transfer page from old buffer to new buffer */
6143 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6144
6145 /* sync the buffer for use by the device */
6146 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6147 old_buff->page_offset,
6148 IGB_RX_BUFSZ,
6149 DMA_FROM_DEVICE);
6150 }
6151
6152 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6153 struct page *page,
6154 unsigned int truesize)
6155 {
6156 /* avoid re-using remote pages */
6157 if (unlikely(page_to_nid(page) != numa_node_id()))
6158 return false;
6159
6160 #if (PAGE_SIZE < 8192)
6161 /* if we are only owner of page we can reuse it */
6162 if (unlikely(page_count(page) != 1))
6163 return false;
6164
6165 /* flip page offset to other buffer */
6166 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6167
6168 /* since we are the only owner of the page and we need to
6169 * increment it, just set the value to 2 in order to avoid
6170 * an unnecessary locked operation
6171 */
6172 atomic_set(&page->_count, 2);
6173 #else
6174 /* move offset up to the next cache line */
6175 rx_buffer->page_offset += truesize;
6176
6177 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6178 return false;
6179
6180 /* bump ref count on page before it is given to the stack */
6181 get_page(page);
6182 #endif
6183
6184 return true;
6185 }
6186
6187 /**
6188 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6189 * @rx_ring: rx descriptor ring to transact packets on
6190 * @rx_buffer: buffer containing page to add
6191 * @rx_desc: descriptor containing length of buffer written by hardware
6192 * @skb: sk_buff to place the data into
6193 *
6194 * This function will add the data contained in rx_buffer->page to the skb.
6195 * This is done either through a direct copy if the data in the buffer is
6196 * less than the skb header size, otherwise it will just attach the page as
6197 * a frag to the skb.
6198 *
6199 * The function will then update the page offset if necessary and return
6200 * true if the buffer can be reused by the adapter.
6201 **/
6202 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6203 struct igb_rx_buffer *rx_buffer,
6204 union e1000_adv_rx_desc *rx_desc,
6205 struct sk_buff *skb)
6206 {
6207 struct page *page = rx_buffer->page;
6208 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6209 #if (PAGE_SIZE < 8192)
6210 unsigned int truesize = IGB_RX_BUFSZ;
6211 #else
6212 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6213 #endif
6214
6215 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6216 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6217
6218 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6219 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6220 va += IGB_TS_HDR_LEN;
6221 size -= IGB_TS_HDR_LEN;
6222 }
6223
6224 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6225
6226 /* we can reuse buffer as-is, just make sure it is local */
6227 if (likely(page_to_nid(page) == numa_node_id()))
6228 return true;
6229
6230 /* this page cannot be reused so discard it */
6231 put_page(page);
6232 return false;
6233 }
6234
6235 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6236 rx_buffer->page_offset, size, truesize);
6237
6238 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6239 }
6240
6241 static struct sk_buff *igb_build_rx_buffer(struct igb_ring *rx_ring,
6242 union e1000_adv_rx_desc *rx_desc)
6243 {
6244 struct igb_rx_buffer *rx_buffer;
6245 struct sk_buff *skb;
6246 struct page *page;
6247 void *page_addr;
6248 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6249 #if (PAGE_SIZE < 8192)
6250 unsigned int truesize = IGB_RX_BUFSZ;
6251 #else
6252 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
6253 SKB_DATA_ALIGN(NET_SKB_PAD +
6254 NET_IP_ALIGN +
6255 size);
6256 #endif
6257
6258 /* If we spanned a buffer we have a huge mess so test for it */
6259 BUG_ON(unlikely(!igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)));
6260
6261 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6262 page = rx_buffer->page;
6263 prefetchw(page);
6264
6265 page_addr = page_address(page) + rx_buffer->page_offset;
6266
6267 /* prefetch first cache line of first page */
6268 prefetch(page_addr + NET_SKB_PAD + NET_IP_ALIGN);
6269 #if L1_CACHE_BYTES < 128
6270 prefetch(page_addr + L1_CACHE_BYTES + NET_SKB_PAD + NET_IP_ALIGN);
6271 #endif
6272
6273 /* build an skb to around the page buffer */
6274 skb = build_skb(page_addr, truesize);
6275 if (unlikely(!skb)) {
6276 rx_ring->rx_stats.alloc_failed++;
6277 return NULL;
6278 }
6279
6280 /* we are reusing so sync this buffer for CPU use */
6281 dma_sync_single_range_for_cpu(rx_ring->dev,
6282 rx_buffer->dma,
6283 rx_buffer->page_offset,
6284 IGB_RX_BUFSZ,
6285 DMA_FROM_DEVICE);
6286
6287 /* update pointers within the skb to store the data */
6288 skb_reserve(skb, NET_IP_ALIGN + NET_SKB_PAD);
6289 __skb_put(skb, size);
6290
6291 /* pull timestamp out of packet data */
6292 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6293 igb_ptp_rx_pktstamp(rx_ring->q_vector, skb->data, skb);
6294 __skb_pull(skb, IGB_TS_HDR_LEN);
6295 }
6296
6297 if (igb_can_reuse_rx_page(rx_buffer, page, truesize)) {
6298 /* hand second half of page back to the ring */
6299 igb_reuse_rx_page(rx_ring, rx_buffer);
6300 } else {
6301 /* we are not reusing the buffer so unmap it */
6302 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6303 PAGE_SIZE, DMA_FROM_DEVICE);
6304 }
6305
6306 /* clear contents of buffer_info */
6307 rx_buffer->dma = 0;
6308 rx_buffer->page = NULL;
6309
6310 return skb;
6311 }
6312
6313 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6314 union e1000_adv_rx_desc *rx_desc,
6315 struct sk_buff *skb)
6316 {
6317 struct igb_rx_buffer *rx_buffer;
6318 struct page *page;
6319
6320 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6321
6322 page = rx_buffer->page;
6323 prefetchw(page);
6324
6325 if (likely(!skb)) {
6326 void *page_addr = page_address(page) +
6327 rx_buffer->page_offset;
6328
6329 /* prefetch first cache line of first page */
6330 prefetch(page_addr);
6331 #if L1_CACHE_BYTES < 128
6332 prefetch(page_addr + L1_CACHE_BYTES);
6333 #endif
6334
6335 /* allocate a skb to store the frags */
6336 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6337 IGB_RX_HDR_LEN);
6338 if (unlikely(!skb)) {
6339 rx_ring->rx_stats.alloc_failed++;
6340 return NULL;
6341 }
6342
6343 /* we will be copying header into skb->data in
6344 * pskb_may_pull so it is in our interest to prefetch
6345 * it now to avoid a possible cache miss
6346 */
6347 prefetchw(skb->data);
6348 }
6349
6350 /* we are reusing so sync this buffer for CPU use */
6351 dma_sync_single_range_for_cpu(rx_ring->dev,
6352 rx_buffer->dma,
6353 rx_buffer->page_offset,
6354 IGB_RX_BUFSZ,
6355 DMA_FROM_DEVICE);
6356
6357 /* pull page into skb */
6358 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6359 /* hand second half of page back to the ring */
6360 igb_reuse_rx_page(rx_ring, rx_buffer);
6361 } else {
6362 /* we are not reusing the buffer so unmap it */
6363 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6364 PAGE_SIZE, DMA_FROM_DEVICE);
6365 }
6366
6367 /* clear contents of rx_buffer */
6368 rx_buffer->page = NULL;
6369
6370 return skb;
6371 }
6372
6373 static inline void igb_rx_checksum(struct igb_ring *ring,
6374 union e1000_adv_rx_desc *rx_desc,
6375 struct sk_buff *skb)
6376 {
6377 skb_checksum_none_assert(skb);
6378
6379 /* Ignore Checksum bit is set */
6380 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6381 return;
6382
6383 /* Rx checksum disabled via ethtool */
6384 if (!(ring->netdev->features & NETIF_F_RXCSUM))
6385 return;
6386
6387 /* TCP/UDP checksum error bit is set */
6388 if (igb_test_staterr(rx_desc,
6389 E1000_RXDEXT_STATERR_TCPE |
6390 E1000_RXDEXT_STATERR_IPE)) {
6391 /* work around errata with sctp packets where the TCPE aka
6392 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6393 * packets, (aka let the stack check the crc32c)
6394 */
6395 if (!((skb->len == 60) &&
6396 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6397 u64_stats_update_begin(&ring->rx_syncp);
6398 ring->rx_stats.csum_err++;
6399 u64_stats_update_end(&ring->rx_syncp);
6400 }
6401 /* let the stack verify checksum errors */
6402 return;
6403 }
6404 /* It must be a TCP or UDP packet with a valid checksum */
6405 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6406 E1000_RXD_STAT_UDPCS))
6407 skb->ip_summed = CHECKSUM_UNNECESSARY;
6408
6409 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6410 le32_to_cpu(rx_desc->wb.upper.status_error));
6411 }
6412
6413 static inline void igb_rx_hash(struct igb_ring *ring,
6414 union e1000_adv_rx_desc *rx_desc,
6415 struct sk_buff *skb)
6416 {
6417 if (ring->netdev->features & NETIF_F_RXHASH)
6418 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6419 }
6420
6421 /**
6422 * igb_is_non_eop - process handling of non-EOP buffers
6423 * @rx_ring: Rx ring being processed
6424 * @rx_desc: Rx descriptor for current buffer
6425 * @skb: current socket buffer containing buffer in progress
6426 *
6427 * This function updates next to clean. If the buffer is an EOP buffer
6428 * this function exits returning false, otherwise it will place the
6429 * sk_buff in the next buffer to be chained and return true indicating
6430 * that this is in fact a non-EOP buffer.
6431 **/
6432 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6433 union e1000_adv_rx_desc *rx_desc)
6434 {
6435 u32 ntc = rx_ring->next_to_clean + 1;
6436
6437 /* fetch, update, and store next to clean */
6438 ntc = (ntc < rx_ring->count) ? ntc : 0;
6439 rx_ring->next_to_clean = ntc;
6440
6441 prefetch(IGB_RX_DESC(rx_ring, ntc));
6442
6443 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6444 return false;
6445
6446 return true;
6447 }
6448
6449 /**
6450 * igb_get_headlen - determine size of header for LRO/GRO
6451 * @data: pointer to the start of the headers
6452 * @max_len: total length of section to find headers in
6453 *
6454 * This function is meant to determine the length of headers that will
6455 * be recognized by hardware for LRO, and GRO offloads. The main
6456 * motivation of doing this is to only perform one pull for IPv4 TCP
6457 * packets so that we can do basic things like calculating the gso_size
6458 * based on the average data per packet.
6459 **/
6460 static unsigned int igb_get_headlen(unsigned char *data,
6461 unsigned int max_len)
6462 {
6463 union {
6464 unsigned char *network;
6465 /* l2 headers */
6466 struct ethhdr *eth;
6467 struct vlan_hdr *vlan;
6468 /* l3 headers */
6469 struct iphdr *ipv4;
6470 struct ipv6hdr *ipv6;
6471 } hdr;
6472 __be16 protocol;
6473 u8 nexthdr = 0; /* default to not TCP */
6474 u8 hlen;
6475
6476 /* this should never happen, but better safe than sorry */
6477 if (max_len < ETH_HLEN)
6478 return max_len;
6479
6480 /* initialize network frame pointer */
6481 hdr.network = data;
6482
6483 /* set first protocol and move network header forward */
6484 protocol = hdr.eth->h_proto;
6485 hdr.network += ETH_HLEN;
6486
6487 /* handle any vlan tag if present */
6488 if (protocol == __constant_htons(ETH_P_8021Q)) {
6489 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6490 return max_len;
6491
6492 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6493 hdr.network += VLAN_HLEN;
6494 }
6495
6496 /* handle L3 protocols */
6497 if (protocol == __constant_htons(ETH_P_IP)) {
6498 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6499 return max_len;
6500
6501 /* access ihl as a u8 to avoid unaligned access on ia64 */
6502 hlen = (hdr.network[0] & 0x0F) << 2;
6503
6504 /* verify hlen meets minimum size requirements */
6505 if (hlen < sizeof(struct iphdr))
6506 return hdr.network - data;
6507
6508 /* record next protocol if header is present */
6509 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
6510 nexthdr = hdr.ipv4->protocol;
6511 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6512 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6513 return max_len;
6514
6515 /* record next protocol */
6516 nexthdr = hdr.ipv6->nexthdr;
6517 hlen = sizeof(struct ipv6hdr);
6518 } else {
6519 return hdr.network - data;
6520 }
6521
6522 /* relocate pointer to start of L4 header */
6523 hdr.network += hlen;
6524
6525 /* finally sort out TCP */
6526 if (nexthdr == IPPROTO_TCP) {
6527 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6528 return max_len;
6529
6530 /* access doff as a u8 to avoid unaligned access on ia64 */
6531 hlen = (hdr.network[12] & 0xF0) >> 2;
6532
6533 /* verify hlen meets minimum size requirements */
6534 if (hlen < sizeof(struct tcphdr))
6535 return hdr.network - data;
6536
6537 hdr.network += hlen;
6538 } else if (nexthdr == IPPROTO_UDP) {
6539 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6540 return max_len;
6541
6542 hdr.network += sizeof(struct udphdr);
6543 }
6544
6545 /* If everything has gone correctly hdr.network should be the
6546 * data section of the packet and will be the end of the header.
6547 * If not then it probably represents the end of the last recognized
6548 * header.
6549 */
6550 if ((hdr.network - data) < max_len)
6551 return hdr.network - data;
6552 else
6553 return max_len;
6554 }
6555
6556 /**
6557 * igb_pull_tail - igb specific version of skb_pull_tail
6558 * @rx_ring: rx descriptor ring packet is being transacted on
6559 * @rx_desc: pointer to the EOP Rx descriptor
6560 * @skb: pointer to current skb being adjusted
6561 *
6562 * This function is an igb specific version of __pskb_pull_tail. The
6563 * main difference between this version and the original function is that
6564 * this function can make several assumptions about the state of things
6565 * that allow for significant optimizations versus the standard function.
6566 * As a result we can do things like drop a frag and maintain an accurate
6567 * truesize for the skb.
6568 */
6569 static void igb_pull_tail(struct igb_ring *rx_ring,
6570 union e1000_adv_rx_desc *rx_desc,
6571 struct sk_buff *skb)
6572 {
6573 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6574 unsigned char *va;
6575 unsigned int pull_len;
6576
6577 /* it is valid to use page_address instead of kmap since we are
6578 * working with pages allocated out of the lomem pool per
6579 * alloc_page(GFP_ATOMIC)
6580 */
6581 va = skb_frag_address(frag);
6582
6583 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6584 /* retrieve timestamp from buffer */
6585 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6586
6587 /* update pointers to remove timestamp header */
6588 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6589 frag->page_offset += IGB_TS_HDR_LEN;
6590 skb->data_len -= IGB_TS_HDR_LEN;
6591 skb->len -= IGB_TS_HDR_LEN;
6592
6593 /* move va to start of packet data */
6594 va += IGB_TS_HDR_LEN;
6595 }
6596
6597 /* we need the header to contain the greater of either ETH_HLEN or
6598 * 60 bytes if the skb->len is less than 60 for skb_pad.
6599 */
6600 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6601
6602 /* align pull length to size of long to optimize memcpy performance */
6603 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6604
6605 /* update all of the pointers */
6606 skb_frag_size_sub(frag, pull_len);
6607 frag->page_offset += pull_len;
6608 skb->data_len -= pull_len;
6609 skb->tail += pull_len;
6610 }
6611
6612 /**
6613 * igb_cleanup_headers - Correct corrupted or empty headers
6614 * @rx_ring: rx descriptor ring packet is being transacted on
6615 * @rx_desc: pointer to the EOP Rx descriptor
6616 * @skb: pointer to current skb being fixed
6617 *
6618 * Address the case where we are pulling data in on pages only
6619 * and as such no data is present in the skb header.
6620 *
6621 * In addition if skb is not at least 60 bytes we need to pad it so that
6622 * it is large enough to qualify as a valid Ethernet frame.
6623 *
6624 * Returns true if an error was encountered and skb was freed.
6625 **/
6626 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6627 union e1000_adv_rx_desc *rx_desc,
6628 struct sk_buff *skb)
6629 {
6630 if (unlikely((igb_test_staterr(rx_desc,
6631 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6632 struct net_device *netdev = rx_ring->netdev;
6633 if (!(netdev->features & NETIF_F_RXALL)) {
6634 dev_kfree_skb_any(skb);
6635 return true;
6636 }
6637 }
6638
6639 /* place header in linear portion of buffer */
6640 if (skb_is_nonlinear(skb))
6641 igb_pull_tail(rx_ring, rx_desc, skb);
6642
6643 /* if skb_pad returns an error the skb was freed */
6644 if (unlikely(skb->len < 60)) {
6645 int pad_len = 60 - skb->len;
6646
6647 if (skb_pad(skb, pad_len))
6648 return true;
6649 __skb_put(skb, pad_len);
6650 }
6651
6652 return false;
6653 }
6654
6655 /**
6656 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6657 * @rx_ring: rx descriptor ring packet is being transacted on
6658 * @rx_desc: pointer to the EOP Rx descriptor
6659 * @skb: pointer to current skb being populated
6660 *
6661 * This function checks the ring, descriptor, and packet information in
6662 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6663 * other fields within the skb.
6664 **/
6665 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6666 union e1000_adv_rx_desc *rx_desc,
6667 struct sk_buff *skb)
6668 {
6669 struct net_device *dev = rx_ring->netdev;
6670
6671 igb_rx_hash(rx_ring, rx_desc, skb);
6672
6673 igb_rx_checksum(rx_ring, rx_desc, skb);
6674
6675 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
6676
6677 if ((dev->features & NETIF_F_HW_VLAN_RX) &&
6678 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6679 u16 vid;
6680 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6681 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6682 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6683 else
6684 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6685
6686 __vlan_hwaccel_put_tag(skb, vid);
6687 }
6688
6689 skb_record_rx_queue(skb, rx_ring->queue_index);
6690
6691 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6692 }
6693
6694 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6695 {
6696 struct igb_ring *rx_ring = q_vector->rx.ring;
6697 struct sk_buff *skb = rx_ring->skb;
6698 unsigned int total_bytes = 0, total_packets = 0;
6699 u16 cleaned_count = igb_desc_unused(rx_ring);
6700
6701 do {
6702 union e1000_adv_rx_desc *rx_desc;
6703
6704 /* return some buffers to hardware, one at a time is too slow */
6705 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6706 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6707 cleaned_count = 0;
6708 }
6709
6710 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6711
6712 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6713 break;
6714
6715 /* This memory barrier is needed to keep us from reading
6716 * any other fields out of the rx_desc until we know the
6717 * RXD_STAT_DD bit is set
6718 */
6719 rmb();
6720
6721 /* retrieve a buffer from the ring */
6722 if (ring_uses_build_skb(rx_ring))
6723 skb = igb_build_rx_buffer(rx_ring, rx_desc);
6724 else
6725 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6726
6727 /* exit if we failed to retrieve a buffer */
6728 if (!skb)
6729 break;
6730
6731 cleaned_count++;
6732
6733 /* fetch next buffer in frame if non-eop */
6734 if (igb_is_non_eop(rx_ring, rx_desc))
6735 continue;
6736
6737 /* verify the packet layout is correct */
6738 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6739 skb = NULL;
6740 continue;
6741 }
6742
6743 /* probably a little skewed due to removing CRC */
6744 total_bytes += skb->len;
6745
6746 /* populate checksum, timestamp, VLAN, and protocol */
6747 igb_process_skb_fields(rx_ring, rx_desc, skb);
6748
6749 napi_gro_receive(&q_vector->napi, skb);
6750
6751 /* reset skb pointer */
6752 skb = NULL;
6753
6754 /* update budget accounting */
6755 total_packets++;
6756 } while (likely(total_packets < budget));
6757
6758 /* place incomplete frames back on ring for completion */
6759 rx_ring->skb = skb;
6760
6761 u64_stats_update_begin(&rx_ring->rx_syncp);
6762 rx_ring->rx_stats.packets += total_packets;
6763 rx_ring->rx_stats.bytes += total_bytes;
6764 u64_stats_update_end(&rx_ring->rx_syncp);
6765 q_vector->rx.total_packets += total_packets;
6766 q_vector->rx.total_bytes += total_bytes;
6767
6768 if (cleaned_count)
6769 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6770
6771 return (total_packets < budget);
6772 }
6773
6774 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6775 struct igb_rx_buffer *bi)
6776 {
6777 struct page *page = bi->page;
6778 dma_addr_t dma;
6779
6780 /* since we are recycling buffers we should seldom need to alloc */
6781 if (likely(page))
6782 return true;
6783
6784 /* alloc new page for storage */
6785 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6786 if (unlikely(!page)) {
6787 rx_ring->rx_stats.alloc_failed++;
6788 return false;
6789 }
6790
6791 /* map page for use */
6792 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6793
6794 /* if mapping failed free memory back to system since
6795 * there isn't much point in holding memory we can't use
6796 */
6797 if (dma_mapping_error(rx_ring->dev, dma)) {
6798 __free_page(page);
6799
6800 rx_ring->rx_stats.alloc_failed++;
6801 return false;
6802 }
6803
6804 bi->dma = dma;
6805 bi->page = page;
6806 bi->page_offset = 0;
6807
6808 return true;
6809 }
6810
6811 static inline unsigned int igb_rx_offset(struct igb_ring *rx_ring)
6812 {
6813 if (ring_uses_build_skb(rx_ring))
6814 return NET_SKB_PAD + NET_IP_ALIGN;
6815 else
6816 return 0;
6817 }
6818
6819 /**
6820 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6821 * @adapter: address of board private structure
6822 **/
6823 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
6824 {
6825 union e1000_adv_rx_desc *rx_desc;
6826 struct igb_rx_buffer *bi;
6827 u16 i = rx_ring->next_to_use;
6828
6829 /* nothing to do */
6830 if (!cleaned_count)
6831 return;
6832
6833 rx_desc = IGB_RX_DESC(rx_ring, i);
6834 bi = &rx_ring->rx_buffer_info[i];
6835 i -= rx_ring->count;
6836
6837 do {
6838 if (!igb_alloc_mapped_page(rx_ring, bi))
6839 break;
6840
6841 /* Refresh the desc even if buffer_addrs didn't change
6842 * because each write-back erases this info.
6843 */
6844 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma +
6845 bi->page_offset +
6846 igb_rx_offset(rx_ring));
6847
6848 rx_desc++;
6849 bi++;
6850 i++;
6851 if (unlikely(!i)) {
6852 rx_desc = IGB_RX_DESC(rx_ring, 0);
6853 bi = rx_ring->rx_buffer_info;
6854 i -= rx_ring->count;
6855 }
6856
6857 /* clear the hdr_addr for the next_to_use descriptor */
6858 rx_desc->read.hdr_addr = 0;
6859
6860 cleaned_count--;
6861 } while (cleaned_count);
6862
6863 i += rx_ring->count;
6864
6865 if (rx_ring->next_to_use != i) {
6866 /* record the next descriptor to use */
6867 rx_ring->next_to_use = i;
6868
6869 /* update next to alloc since we have filled the ring */
6870 rx_ring->next_to_alloc = i;
6871
6872 /* Force memory writes to complete before letting h/w
6873 * know there are new descriptors to fetch. (Only
6874 * applicable for weak-ordered memory model archs,
6875 * such as IA-64).
6876 */
6877 wmb();
6878 writel(i, rx_ring->tail);
6879 }
6880 }
6881
6882 /**
6883 * igb_mii_ioctl -
6884 * @netdev:
6885 * @ifreq:
6886 * @cmd:
6887 **/
6888 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6889 {
6890 struct igb_adapter *adapter = netdev_priv(netdev);
6891 struct mii_ioctl_data *data = if_mii(ifr);
6892
6893 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6894 return -EOPNOTSUPP;
6895
6896 switch (cmd) {
6897 case SIOCGMIIPHY:
6898 data->phy_id = adapter->hw.phy.addr;
6899 break;
6900 case SIOCGMIIREG:
6901 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6902 &data->val_out))
6903 return -EIO;
6904 break;
6905 case SIOCSMIIREG:
6906 default:
6907 return -EOPNOTSUPP;
6908 }
6909 return 0;
6910 }
6911
6912 /**
6913 * igb_ioctl -
6914 * @netdev:
6915 * @ifreq:
6916 * @cmd:
6917 **/
6918 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6919 {
6920 switch (cmd) {
6921 case SIOCGMIIPHY:
6922 case SIOCGMIIREG:
6923 case SIOCSMIIREG:
6924 return igb_mii_ioctl(netdev, ifr, cmd);
6925 case SIOCSHWTSTAMP:
6926 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
6927 default:
6928 return -EOPNOTSUPP;
6929 }
6930 }
6931
6932 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6933 {
6934 struct igb_adapter *adapter = hw->back;
6935
6936 if (pcie_capability_read_word(adapter->pdev, reg, value))
6937 return -E1000_ERR_CONFIG;
6938
6939 return 0;
6940 }
6941
6942 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6943 {
6944 struct igb_adapter *adapter = hw->back;
6945
6946 if (pcie_capability_write_word(adapter->pdev, reg, *value))
6947 return -E1000_ERR_CONFIG;
6948
6949 return 0;
6950 }
6951
6952 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
6953 {
6954 struct igb_adapter *adapter = netdev_priv(netdev);
6955 struct e1000_hw *hw = &adapter->hw;
6956 u32 ctrl, rctl;
6957 bool enable = !!(features & NETIF_F_HW_VLAN_RX);
6958
6959 if (enable) {
6960 /* enable VLAN tag insert/strip */
6961 ctrl = rd32(E1000_CTRL);
6962 ctrl |= E1000_CTRL_VME;
6963 wr32(E1000_CTRL, ctrl);
6964
6965 /* Disable CFI check */
6966 rctl = rd32(E1000_RCTL);
6967 rctl &= ~E1000_RCTL_CFIEN;
6968 wr32(E1000_RCTL, rctl);
6969 } else {
6970 /* disable VLAN tag insert/strip */
6971 ctrl = rd32(E1000_CTRL);
6972 ctrl &= ~E1000_CTRL_VME;
6973 wr32(E1000_CTRL, ctrl);
6974 }
6975
6976 igb_rlpml_set(adapter);
6977 }
6978
6979 static int igb_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
6980 {
6981 struct igb_adapter *adapter = netdev_priv(netdev);
6982 struct e1000_hw *hw = &adapter->hw;
6983 int pf_id = adapter->vfs_allocated_count;
6984
6985 /* attempt to add filter to vlvf array */
6986 igb_vlvf_set(adapter, vid, true, pf_id);
6987
6988 /* add the filter since PF can receive vlans w/o entry in vlvf */
6989 igb_vfta_set(hw, vid, true);
6990
6991 set_bit(vid, adapter->active_vlans);
6992
6993 return 0;
6994 }
6995
6996 static int igb_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
6997 {
6998 struct igb_adapter *adapter = netdev_priv(netdev);
6999 struct e1000_hw *hw = &adapter->hw;
7000 int pf_id = adapter->vfs_allocated_count;
7001 s32 err;
7002
7003 /* remove vlan from VLVF table array */
7004 err = igb_vlvf_set(adapter, vid, false, pf_id);
7005
7006 /* if vid was not present in VLVF just remove it from table */
7007 if (err)
7008 igb_vfta_set(hw, vid, false);
7009
7010 clear_bit(vid, adapter->active_vlans);
7011
7012 return 0;
7013 }
7014
7015 static void igb_restore_vlan(struct igb_adapter *adapter)
7016 {
7017 u16 vid;
7018
7019 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7020
7021 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7022 igb_vlan_rx_add_vid(adapter->netdev, vid);
7023 }
7024
7025 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7026 {
7027 struct pci_dev *pdev = adapter->pdev;
7028 struct e1000_mac_info *mac = &adapter->hw.mac;
7029
7030 mac->autoneg = 0;
7031
7032 /* Make sure dplx is at most 1 bit and lsb of speed is not set
7033 * for the switch() below to work
7034 */
7035 if ((spd & 1) || (dplx & ~1))
7036 goto err_inval;
7037
7038 /* Fiber NIC's only allow 1000 gbps Full duplex
7039 * and 100Mbps Full duplex for 100baseFx sfp
7040 */
7041 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7042 switch (spd + dplx) {
7043 case SPEED_10 + DUPLEX_HALF:
7044 case SPEED_10 + DUPLEX_FULL:
7045 case SPEED_100 + DUPLEX_HALF:
7046 goto err_inval;
7047 default:
7048 break;
7049 }
7050 }
7051
7052 switch (spd + dplx) {
7053 case SPEED_10 + DUPLEX_HALF:
7054 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7055 break;
7056 case SPEED_10 + DUPLEX_FULL:
7057 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7058 break;
7059 case SPEED_100 + DUPLEX_HALF:
7060 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7061 break;
7062 case SPEED_100 + DUPLEX_FULL:
7063 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7064 break;
7065 case SPEED_1000 + DUPLEX_FULL:
7066 mac->autoneg = 1;
7067 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7068 break;
7069 case SPEED_1000 + DUPLEX_HALF: /* not supported */
7070 default:
7071 goto err_inval;
7072 }
7073
7074 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7075 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7076
7077 return 0;
7078
7079 err_inval:
7080 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7081 return -EINVAL;
7082 }
7083
7084 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7085 bool runtime)
7086 {
7087 struct net_device *netdev = pci_get_drvdata(pdev);
7088 struct igb_adapter *adapter = netdev_priv(netdev);
7089 struct e1000_hw *hw = &adapter->hw;
7090 u32 ctrl, rctl, status;
7091 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7092 #ifdef CONFIG_PM
7093 int retval = 0;
7094 #endif
7095
7096 netif_device_detach(netdev);
7097
7098 if (netif_running(netdev))
7099 __igb_close(netdev, true);
7100
7101 igb_clear_interrupt_scheme(adapter);
7102
7103 #ifdef CONFIG_PM
7104 retval = pci_save_state(pdev);
7105 if (retval)
7106 return retval;
7107 #endif
7108
7109 status = rd32(E1000_STATUS);
7110 if (status & E1000_STATUS_LU)
7111 wufc &= ~E1000_WUFC_LNKC;
7112
7113 if (wufc) {
7114 igb_setup_rctl(adapter);
7115 igb_set_rx_mode(netdev);
7116
7117 /* turn on all-multi mode if wake on multicast is enabled */
7118 if (wufc & E1000_WUFC_MC) {
7119 rctl = rd32(E1000_RCTL);
7120 rctl |= E1000_RCTL_MPE;
7121 wr32(E1000_RCTL, rctl);
7122 }
7123
7124 ctrl = rd32(E1000_CTRL);
7125 /* advertise wake from D3Cold */
7126 #define E1000_CTRL_ADVD3WUC 0x00100000
7127 /* phy power management enable */
7128 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7129 ctrl |= E1000_CTRL_ADVD3WUC;
7130 wr32(E1000_CTRL, ctrl);
7131
7132 /* Allow time for pending master requests to run */
7133 igb_disable_pcie_master(hw);
7134
7135 wr32(E1000_WUC, E1000_WUC_PME_EN);
7136 wr32(E1000_WUFC, wufc);
7137 } else {
7138 wr32(E1000_WUC, 0);
7139 wr32(E1000_WUFC, 0);
7140 }
7141
7142 *enable_wake = wufc || adapter->en_mng_pt;
7143 if (!*enable_wake)
7144 igb_power_down_link(adapter);
7145 else
7146 igb_power_up_link(adapter);
7147
7148 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7149 * would have already happened in close and is redundant.
7150 */
7151 igb_release_hw_control(adapter);
7152
7153 pci_disable_device(pdev);
7154
7155 return 0;
7156 }
7157
7158 #ifdef CONFIG_PM
7159 #ifdef CONFIG_PM_SLEEP
7160 static int igb_suspend(struct device *dev)
7161 {
7162 int retval;
7163 bool wake;
7164 struct pci_dev *pdev = to_pci_dev(dev);
7165
7166 retval = __igb_shutdown(pdev, &wake, 0);
7167 if (retval)
7168 return retval;
7169
7170 if (wake) {
7171 pci_prepare_to_sleep(pdev);
7172 } else {
7173 pci_wake_from_d3(pdev, false);
7174 pci_set_power_state(pdev, PCI_D3hot);
7175 }
7176
7177 return 0;
7178 }
7179 #endif /* CONFIG_PM_SLEEP */
7180
7181 static int igb_resume(struct device *dev)
7182 {
7183 struct pci_dev *pdev = to_pci_dev(dev);
7184 struct net_device *netdev = pci_get_drvdata(pdev);
7185 struct igb_adapter *adapter = netdev_priv(netdev);
7186 struct e1000_hw *hw = &adapter->hw;
7187 u32 err;
7188
7189 pci_set_power_state(pdev, PCI_D0);
7190 pci_restore_state(pdev);
7191 pci_save_state(pdev);
7192
7193 err = pci_enable_device_mem(pdev);
7194 if (err) {
7195 dev_err(&pdev->dev,
7196 "igb: Cannot enable PCI device from suspend\n");
7197 return err;
7198 }
7199 pci_set_master(pdev);
7200
7201 pci_enable_wake(pdev, PCI_D3hot, 0);
7202 pci_enable_wake(pdev, PCI_D3cold, 0);
7203
7204 if (igb_init_interrupt_scheme(adapter, true)) {
7205 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7206 return -ENOMEM;
7207 }
7208
7209 igb_reset(adapter);
7210
7211 /* let the f/w know that the h/w is now under the control of the
7212 * driver.
7213 */
7214 igb_get_hw_control(adapter);
7215
7216 wr32(E1000_WUS, ~0);
7217
7218 if (netdev->flags & IFF_UP) {
7219 rtnl_lock();
7220 err = __igb_open(netdev, true);
7221 rtnl_unlock();
7222 if (err)
7223 return err;
7224 }
7225
7226 netif_device_attach(netdev);
7227 return 0;
7228 }
7229
7230 #ifdef CONFIG_PM_RUNTIME
7231 static int igb_runtime_idle(struct device *dev)
7232 {
7233 struct pci_dev *pdev = to_pci_dev(dev);
7234 struct net_device *netdev = pci_get_drvdata(pdev);
7235 struct igb_adapter *adapter = netdev_priv(netdev);
7236
7237 if (!igb_has_link(adapter))
7238 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7239
7240 return -EBUSY;
7241 }
7242
7243 static int igb_runtime_suspend(struct device *dev)
7244 {
7245 struct pci_dev *pdev = to_pci_dev(dev);
7246 int retval;
7247 bool wake;
7248
7249 retval = __igb_shutdown(pdev, &wake, 1);
7250 if (retval)
7251 return retval;
7252
7253 if (wake) {
7254 pci_prepare_to_sleep(pdev);
7255 } else {
7256 pci_wake_from_d3(pdev, false);
7257 pci_set_power_state(pdev, PCI_D3hot);
7258 }
7259
7260 return 0;
7261 }
7262
7263 static int igb_runtime_resume(struct device *dev)
7264 {
7265 return igb_resume(dev);
7266 }
7267 #endif /* CONFIG_PM_RUNTIME */
7268 #endif
7269
7270 static void igb_shutdown(struct pci_dev *pdev)
7271 {
7272 bool wake;
7273
7274 __igb_shutdown(pdev, &wake, 0);
7275
7276 if (system_state == SYSTEM_POWER_OFF) {
7277 pci_wake_from_d3(pdev, wake);
7278 pci_set_power_state(pdev, PCI_D3hot);
7279 }
7280 }
7281
7282 #ifdef CONFIG_PCI_IOV
7283 static int igb_sriov_reinit(struct pci_dev *dev)
7284 {
7285 struct net_device *netdev = pci_get_drvdata(dev);
7286 struct igb_adapter *adapter = netdev_priv(netdev);
7287 struct pci_dev *pdev = adapter->pdev;
7288
7289 rtnl_lock();
7290
7291 if (netif_running(netdev))
7292 igb_close(netdev);
7293
7294 igb_clear_interrupt_scheme(adapter);
7295
7296 igb_init_queue_configuration(adapter);
7297
7298 if (igb_init_interrupt_scheme(adapter, true)) {
7299 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7300 return -ENOMEM;
7301 }
7302
7303 if (netif_running(netdev))
7304 igb_open(netdev);
7305
7306 rtnl_unlock();
7307
7308 return 0;
7309 }
7310
7311 static int igb_pci_disable_sriov(struct pci_dev *dev)
7312 {
7313 int err = igb_disable_sriov(dev);
7314
7315 if (!err)
7316 err = igb_sriov_reinit(dev);
7317
7318 return err;
7319 }
7320
7321 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7322 {
7323 int err = igb_enable_sriov(dev, num_vfs);
7324
7325 if (err)
7326 goto out;
7327
7328 err = igb_sriov_reinit(dev);
7329 if (!err)
7330 return num_vfs;
7331
7332 out:
7333 return err;
7334 }
7335
7336 #endif
7337 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7338 {
7339 #ifdef CONFIG_PCI_IOV
7340 if (num_vfs == 0)
7341 return igb_pci_disable_sriov(dev);
7342 else
7343 return igb_pci_enable_sriov(dev, num_vfs);
7344 #endif
7345 return 0;
7346 }
7347
7348 #ifdef CONFIG_NET_POLL_CONTROLLER
7349 /* Polling 'interrupt' - used by things like netconsole to send skbs
7350 * without having to re-enable interrupts. It's not called while
7351 * the interrupt routine is executing.
7352 */
7353 static void igb_netpoll(struct net_device *netdev)
7354 {
7355 struct igb_adapter *adapter = netdev_priv(netdev);
7356 struct e1000_hw *hw = &adapter->hw;
7357 struct igb_q_vector *q_vector;
7358 int i;
7359
7360 for (i = 0; i < adapter->num_q_vectors; i++) {
7361 q_vector = adapter->q_vector[i];
7362 if (adapter->msix_entries)
7363 wr32(E1000_EIMC, q_vector->eims_value);
7364 else
7365 igb_irq_disable(adapter);
7366 napi_schedule(&q_vector->napi);
7367 }
7368 }
7369 #endif /* CONFIG_NET_POLL_CONTROLLER */
7370
7371 /**
7372 * igb_io_error_detected - called when PCI error is detected
7373 * @pdev: Pointer to PCI device
7374 * @state: The current pci connection state
7375 *
7376 * This function is called after a PCI bus error affecting
7377 * this device has been detected.
7378 **/
7379 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7380 pci_channel_state_t state)
7381 {
7382 struct net_device *netdev = pci_get_drvdata(pdev);
7383 struct igb_adapter *adapter = netdev_priv(netdev);
7384
7385 netif_device_detach(netdev);
7386
7387 if (state == pci_channel_io_perm_failure)
7388 return PCI_ERS_RESULT_DISCONNECT;
7389
7390 if (netif_running(netdev))
7391 igb_down(adapter);
7392 pci_disable_device(pdev);
7393
7394 /* Request a slot slot reset. */
7395 return PCI_ERS_RESULT_NEED_RESET;
7396 }
7397
7398 /**
7399 * igb_io_slot_reset - called after the pci bus has been reset.
7400 * @pdev: Pointer to PCI device
7401 *
7402 * Restart the card from scratch, as if from a cold-boot. Implementation
7403 * resembles the first-half of the igb_resume routine.
7404 **/
7405 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7406 {
7407 struct net_device *netdev = pci_get_drvdata(pdev);
7408 struct igb_adapter *adapter = netdev_priv(netdev);
7409 struct e1000_hw *hw = &adapter->hw;
7410 pci_ers_result_t result;
7411 int err;
7412
7413 if (pci_enable_device_mem(pdev)) {
7414 dev_err(&pdev->dev,
7415 "Cannot re-enable PCI device after reset.\n");
7416 result = PCI_ERS_RESULT_DISCONNECT;
7417 } else {
7418 pci_set_master(pdev);
7419 pci_restore_state(pdev);
7420 pci_save_state(pdev);
7421
7422 pci_enable_wake(pdev, PCI_D3hot, 0);
7423 pci_enable_wake(pdev, PCI_D3cold, 0);
7424
7425 igb_reset(adapter);
7426 wr32(E1000_WUS, ~0);
7427 result = PCI_ERS_RESULT_RECOVERED;
7428 }
7429
7430 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7431 if (err) {
7432 dev_err(&pdev->dev,
7433 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7434 err);
7435 /* non-fatal, continue */
7436 }
7437
7438 return result;
7439 }
7440
7441 /**
7442 * igb_io_resume - called when traffic can start flowing again.
7443 * @pdev: Pointer to PCI device
7444 *
7445 * This callback is called when the error recovery driver tells us that
7446 * its OK to resume normal operation. Implementation resembles the
7447 * second-half of the igb_resume routine.
7448 */
7449 static void igb_io_resume(struct pci_dev *pdev)
7450 {
7451 struct net_device *netdev = pci_get_drvdata(pdev);
7452 struct igb_adapter *adapter = netdev_priv(netdev);
7453
7454 if (netif_running(netdev)) {
7455 if (igb_up(adapter)) {
7456 dev_err(&pdev->dev, "igb_up failed after reset\n");
7457 return;
7458 }
7459 }
7460
7461 netif_device_attach(netdev);
7462
7463 /* let the f/w know that the h/w is now under the control of the
7464 * driver.
7465 */
7466 igb_get_hw_control(adapter);
7467 }
7468
7469 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7470 u8 qsel)
7471 {
7472 u32 rar_low, rar_high;
7473 struct e1000_hw *hw = &adapter->hw;
7474
7475 /* HW expects these in little endian so we reverse the byte order
7476 * from network order (big endian) to little endian
7477 */
7478 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7479 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7480 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7481
7482 /* Indicate to hardware the Address is Valid. */
7483 rar_high |= E1000_RAH_AV;
7484
7485 if (hw->mac.type == e1000_82575)
7486 rar_high |= E1000_RAH_POOL_1 * qsel;
7487 else
7488 rar_high |= E1000_RAH_POOL_1 << qsel;
7489
7490 wr32(E1000_RAL(index), rar_low);
7491 wrfl();
7492 wr32(E1000_RAH(index), rar_high);
7493 wrfl();
7494 }
7495
7496 static int igb_set_vf_mac(struct igb_adapter *adapter,
7497 int vf, unsigned char *mac_addr)
7498 {
7499 struct e1000_hw *hw = &adapter->hw;
7500 /* VF MAC addresses start at end of receive addresses and moves
7501 * towards the first, as a result a collision should not be possible
7502 */
7503 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7504
7505 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7506
7507 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7508
7509 return 0;
7510 }
7511
7512 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7513 {
7514 struct igb_adapter *adapter = netdev_priv(netdev);
7515 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7516 return -EINVAL;
7517 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7518 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7519 dev_info(&adapter->pdev->dev,
7520 "Reload the VF driver to make this change effective.");
7521 if (test_bit(__IGB_DOWN, &adapter->state)) {
7522 dev_warn(&adapter->pdev->dev,
7523 "The VF MAC address has been set, but the PF device is not up.\n");
7524 dev_warn(&adapter->pdev->dev,
7525 "Bring the PF device up before attempting to use the VF device.\n");
7526 }
7527 return igb_set_vf_mac(adapter, vf, mac);
7528 }
7529
7530 static int igb_link_mbps(int internal_link_speed)
7531 {
7532 switch (internal_link_speed) {
7533 case SPEED_100:
7534 return 100;
7535 case SPEED_1000:
7536 return 1000;
7537 default:
7538 return 0;
7539 }
7540 }
7541
7542 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7543 int link_speed)
7544 {
7545 int rf_dec, rf_int;
7546 u32 bcnrc_val;
7547
7548 if (tx_rate != 0) {
7549 /* Calculate the rate factor values to set */
7550 rf_int = link_speed / tx_rate;
7551 rf_dec = (link_speed - (rf_int * tx_rate));
7552 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7553 tx_rate;
7554
7555 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7556 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7557 E1000_RTTBCNRC_RF_INT_MASK);
7558 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7559 } else {
7560 bcnrc_val = 0;
7561 }
7562
7563 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7564 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7565 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7566 */
7567 wr32(E1000_RTTBCNRM, 0x14);
7568 wr32(E1000_RTTBCNRC, bcnrc_val);
7569 }
7570
7571 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7572 {
7573 int actual_link_speed, i;
7574 bool reset_rate = false;
7575
7576 /* VF TX rate limit was not set or not supported */
7577 if ((adapter->vf_rate_link_speed == 0) ||
7578 (adapter->hw.mac.type != e1000_82576))
7579 return;
7580
7581 actual_link_speed = igb_link_mbps(adapter->link_speed);
7582 if (actual_link_speed != adapter->vf_rate_link_speed) {
7583 reset_rate = true;
7584 adapter->vf_rate_link_speed = 0;
7585 dev_info(&adapter->pdev->dev,
7586 "Link speed has been changed. VF Transmit rate is disabled\n");
7587 }
7588
7589 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7590 if (reset_rate)
7591 adapter->vf_data[i].tx_rate = 0;
7592
7593 igb_set_vf_rate_limit(&adapter->hw, i,
7594 adapter->vf_data[i].tx_rate,
7595 actual_link_speed);
7596 }
7597 }
7598
7599 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7600 {
7601 struct igb_adapter *adapter = netdev_priv(netdev);
7602 struct e1000_hw *hw = &adapter->hw;
7603 int actual_link_speed;
7604
7605 if (hw->mac.type != e1000_82576)
7606 return -EOPNOTSUPP;
7607
7608 actual_link_speed = igb_link_mbps(adapter->link_speed);
7609 if ((vf >= adapter->vfs_allocated_count) ||
7610 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7611 (tx_rate < 0) || (tx_rate > actual_link_speed))
7612 return -EINVAL;
7613
7614 adapter->vf_rate_link_speed = actual_link_speed;
7615 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7616 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7617
7618 return 0;
7619 }
7620
7621 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7622 bool setting)
7623 {
7624 struct igb_adapter *adapter = netdev_priv(netdev);
7625 struct e1000_hw *hw = &adapter->hw;
7626 u32 reg_val, reg_offset;
7627
7628 if (!adapter->vfs_allocated_count)
7629 return -EOPNOTSUPP;
7630
7631 if (vf >= adapter->vfs_allocated_count)
7632 return -EINVAL;
7633
7634 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7635 reg_val = rd32(reg_offset);
7636 if (setting)
7637 reg_val |= ((1 << vf) |
7638 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7639 else
7640 reg_val &= ~((1 << vf) |
7641 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7642 wr32(reg_offset, reg_val);
7643
7644 adapter->vf_data[vf].spoofchk_enabled = setting;
7645 return E1000_SUCCESS;
7646 }
7647
7648 static int igb_ndo_get_vf_config(struct net_device *netdev,
7649 int vf, struct ifla_vf_info *ivi)
7650 {
7651 struct igb_adapter *adapter = netdev_priv(netdev);
7652 if (vf >= adapter->vfs_allocated_count)
7653 return -EINVAL;
7654 ivi->vf = vf;
7655 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7656 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
7657 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7658 ivi->qos = adapter->vf_data[vf].pf_qos;
7659 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7660 return 0;
7661 }
7662
7663 static void igb_vmm_control(struct igb_adapter *adapter)
7664 {
7665 struct e1000_hw *hw = &adapter->hw;
7666 u32 reg;
7667
7668 switch (hw->mac.type) {
7669 case e1000_82575:
7670 case e1000_i210:
7671 case e1000_i211:
7672 case e1000_i354:
7673 default:
7674 /* replication is not supported for 82575 */
7675 return;
7676 case e1000_82576:
7677 /* notify HW that the MAC is adding vlan tags */
7678 reg = rd32(E1000_DTXCTL);
7679 reg |= E1000_DTXCTL_VLAN_ADDED;
7680 wr32(E1000_DTXCTL, reg);
7681 case e1000_82580:
7682 /* enable replication vlan tag stripping */
7683 reg = rd32(E1000_RPLOLR);
7684 reg |= E1000_RPLOLR_STRVLAN;
7685 wr32(E1000_RPLOLR, reg);
7686 case e1000_i350:
7687 /* none of the above registers are supported by i350 */
7688 break;
7689 }
7690
7691 if (adapter->vfs_allocated_count) {
7692 igb_vmdq_set_loopback_pf(hw, true);
7693 igb_vmdq_set_replication_pf(hw, true);
7694 igb_vmdq_set_anti_spoofing_pf(hw, true,
7695 adapter->vfs_allocated_count);
7696 } else {
7697 igb_vmdq_set_loopback_pf(hw, false);
7698 igb_vmdq_set_replication_pf(hw, false);
7699 }
7700 }
7701
7702 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7703 {
7704 struct e1000_hw *hw = &adapter->hw;
7705 u32 dmac_thr;
7706 u16 hwm;
7707
7708 if (hw->mac.type > e1000_82580) {
7709 if (adapter->flags & IGB_FLAG_DMAC) {
7710 u32 reg;
7711
7712 /* force threshold to 0. */
7713 wr32(E1000_DMCTXTH, 0);
7714
7715 /* DMA Coalescing high water mark needs to be greater
7716 * than the Rx threshold. Set hwm to PBA - max frame
7717 * size in 16B units, capping it at PBA - 6KB.
7718 */
7719 hwm = 64 * pba - adapter->max_frame_size / 16;
7720 if (hwm < 64 * (pba - 6))
7721 hwm = 64 * (pba - 6);
7722 reg = rd32(E1000_FCRTC);
7723 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7724 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7725 & E1000_FCRTC_RTH_COAL_MASK);
7726 wr32(E1000_FCRTC, reg);
7727
7728 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7729 * frame size, capping it at PBA - 10KB.
7730 */
7731 dmac_thr = pba - adapter->max_frame_size / 512;
7732 if (dmac_thr < pba - 10)
7733 dmac_thr = pba - 10;
7734 reg = rd32(E1000_DMACR);
7735 reg &= ~E1000_DMACR_DMACTHR_MASK;
7736 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7737 & E1000_DMACR_DMACTHR_MASK);
7738
7739 /* transition to L0x or L1 if available..*/
7740 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7741
7742 /* watchdog timer= +-1000 usec in 32usec intervals */
7743 reg |= (1000 >> 5);
7744
7745 /* Disable BMC-to-OS Watchdog Enable */
7746 if (hw->mac.type != e1000_i354)
7747 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7748
7749 wr32(E1000_DMACR, reg);
7750
7751 /* no lower threshold to disable
7752 * coalescing(smart fifb)-UTRESH=0
7753 */
7754 wr32(E1000_DMCRTRH, 0);
7755
7756 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7757
7758 wr32(E1000_DMCTLX, reg);
7759
7760 /* free space in tx packet buffer to wake from
7761 * DMA coal
7762 */
7763 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7764 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7765
7766 /* make low power state decision controlled
7767 * by DMA coal
7768 */
7769 reg = rd32(E1000_PCIEMISC);
7770 reg &= ~E1000_PCIEMISC_LX_DECISION;
7771 wr32(E1000_PCIEMISC, reg);
7772 } /* endif adapter->dmac is not disabled */
7773 } else if (hw->mac.type == e1000_82580) {
7774 u32 reg = rd32(E1000_PCIEMISC);
7775 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7776 wr32(E1000_DMACR, 0);
7777 }
7778 }
7779
7780 /**
7781 * igb_read_i2c_byte - Reads 8 bit word over I2C
7782 * @hw: pointer to hardware structure
7783 * @byte_offset: byte offset to read
7784 * @dev_addr: device address
7785 * @data: value read
7786 *
7787 * Performs byte read operation over I2C interface at
7788 * a specified device address.
7789 **/
7790 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7791 u8 dev_addr, u8 *data)
7792 {
7793 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7794 struct i2c_client *this_client = adapter->i2c_client;
7795 s32 status;
7796 u16 swfw_mask = 0;
7797
7798 if (!this_client)
7799 return E1000_ERR_I2C;
7800
7801 swfw_mask = E1000_SWFW_PHY0_SM;
7802
7803 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7804 != E1000_SUCCESS)
7805 return E1000_ERR_SWFW_SYNC;
7806
7807 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7808 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7809
7810 if (status < 0)
7811 return E1000_ERR_I2C;
7812 else {
7813 *data = status;
7814 return E1000_SUCCESS;
7815 }
7816 }
7817
7818 /**
7819 * igb_write_i2c_byte - Writes 8 bit word over I2C
7820 * @hw: pointer to hardware structure
7821 * @byte_offset: byte offset to write
7822 * @dev_addr: device address
7823 * @data: value to write
7824 *
7825 * Performs byte write operation over I2C interface at
7826 * a specified device address.
7827 **/
7828 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
7829 u8 dev_addr, u8 data)
7830 {
7831 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
7832 struct i2c_client *this_client = adapter->i2c_client;
7833 s32 status;
7834 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7835
7836 if (!this_client)
7837 return E1000_ERR_I2C;
7838
7839 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7840 return E1000_ERR_SWFW_SYNC;
7841 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7842 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7843
7844 if (status)
7845 return E1000_ERR_I2C;
7846 else
7847 return E1000_SUCCESS;
7848
7849 }
7850 /* igb_main.c */