]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_ptp.c
525e5c461e791a7b8eb08bada878740498e2a07e
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK 0x7fffffff
26 #define ISGN 0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not availible. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
56 *
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
68 */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
72 #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
84 u64 val;
85 u32 lo, hi;
86
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
89
90 val = ((u64) hi) << 32;
91 val |= lo;
92
93 return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
101 u32 lo, hi;
102 u64 val;
103
104 /* The timestamp latches on lowest register read. For the 82580
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
107 */
108 rd32(E1000_SYSTIMR);
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
111
112 val = ((u64) hi) << 32;
113 val |= lo;
114
115 return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120 {
121 struct e1000_hw *hw = &adapter->hw;
122 u32 sec, nsec;
123
124 /* The timestamp latches on lowest register read. For I210/I211, the
125 * lowest register is SYSTIMR. Since we only need to provide nanosecond
126 * resolution, we can ignore it.
127 */
128 rd32(E1000_SYSTIMR);
129 nsec = rd32(E1000_SYSTIML);
130 sec = rd32(E1000_SYSTIMH);
131
132 ts->tv_sec = sec;
133 ts->tv_nsec = nsec;
134 }
135
136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
137 const struct timespec *ts)
138 {
139 struct e1000_hw *hw = &adapter->hw;
140
141 /* Writing the SYSTIMR register is not necessary as it only provides
142 * sub-nanosecond resolution.
143 */
144 wr32(E1000_SYSTIML, ts->tv_nsec);
145 wr32(E1000_SYSTIMH, ts->tv_sec);
146 }
147
148 /**
149 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150 * @adapter: board private structure
151 * @hwtstamps: timestamp structure to update
152 * @systim: unsigned 64bit system time value.
153 *
154 * We need to convert the system time value stored in the RX/TXSTMP registers
155 * into a hwtstamp which can be used by the upper level timestamping functions.
156 *
157 * The 'tmreg_lock' spinlock is used to protect the consistency of the
158 * system time value. This is needed because reading the 64 bit time
159 * value involves reading two (or three) 32 bit registers. The first
160 * read latches the value. Ditto for writing.
161 *
162 * In addition, here have extended the system time with an overflow
163 * counter in software.
164 **/
165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166 struct skb_shared_hwtstamps *hwtstamps,
167 u64 systim)
168 {
169 unsigned long flags;
170 u64 ns;
171
172 switch (adapter->hw.mac.type) {
173 case e1000_82576:
174 case e1000_82580:
175 case e1000_i354:
176 case e1000_i350:
177 spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179 ns = timecounter_cyc2time(&adapter->tc, systim);
180
181 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183 memset(hwtstamps, 0, sizeof(*hwtstamps));
184 hwtstamps->hwtstamp = ns_to_ktime(ns);
185 break;
186 case e1000_i210:
187 case e1000_i211:
188 memset(hwtstamps, 0, sizeof(*hwtstamps));
189 /* Upper 32 bits contain s, lower 32 bits contain ns. */
190 hwtstamps->hwtstamp = ktime_set(systim >> 32,
191 systim & 0xFFFFFFFF);
192 break;
193 default:
194 break;
195 }
196 }
197
198 /* PTP clock operations */
199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200 {
201 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202 ptp_caps);
203 struct e1000_hw *hw = &igb->hw;
204 int neg_adj = 0;
205 u64 rate;
206 u32 incvalue;
207
208 if (ppb < 0) {
209 neg_adj = 1;
210 ppb = -ppb;
211 }
212 rate = ppb;
213 rate <<= 14;
214 rate = div_u64(rate, 1953125);
215
216 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218 if (neg_adj)
219 incvalue -= rate;
220 else
221 incvalue += rate;
222
223 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225 return 0;
226 }
227
228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229 {
230 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231 ptp_caps);
232 struct e1000_hw *hw = &igb->hw;
233 int neg_adj = 0;
234 u64 rate;
235 u32 inca;
236
237 if (ppb < 0) {
238 neg_adj = 1;
239 ppb = -ppb;
240 }
241 rate = ppb;
242 rate <<= 26;
243 rate = div_u64(rate, 1953125);
244
245 inca = rate & INCVALUE_MASK;
246 if (neg_adj)
247 inca |= ISGN;
248
249 wr32(E1000_TIMINCA, inca);
250
251 return 0;
252 }
253
254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255 {
256 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257 ptp_caps);
258 unsigned long flags;
259
260 spin_lock_irqsave(&igb->tmreg_lock, flags);
261 timecounter_adjtime(&igb->tc, delta);
262 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
263
264 return 0;
265 }
266
267 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
268 {
269 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
270 ptp_caps);
271 unsigned long flags;
272 struct timespec now, then = ns_to_timespec(delta);
273
274 spin_lock_irqsave(&igb->tmreg_lock, flags);
275
276 igb_ptp_read_i210(igb, &now);
277 now = timespec_add(now, then);
278 igb_ptp_write_i210(igb, (const struct timespec *)&now);
279
280 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
281
282 return 0;
283 }
284
285 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
286 struct timespec *ts)
287 {
288 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
289 ptp_caps);
290 unsigned long flags;
291 u64 ns;
292 u32 remainder;
293
294 spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296 ns = timecounter_read(&igb->tc);
297
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300 ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
301 ts->tv_nsec = remainder;
302
303 return 0;
304 }
305
306 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
307 struct timespec *ts)
308 {
309 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
310 ptp_caps);
311 unsigned long flags;
312
313 spin_lock_irqsave(&igb->tmreg_lock, flags);
314
315 igb_ptp_read_i210(igb, ts);
316
317 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
318
319 return 0;
320 }
321
322 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
323 const struct timespec *ts)
324 {
325 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
326 ptp_caps);
327 unsigned long flags;
328 u64 ns;
329
330 ns = ts->tv_sec * 1000000000ULL;
331 ns += ts->tv_nsec;
332
333 spin_lock_irqsave(&igb->tmreg_lock, flags);
334
335 timecounter_init(&igb->tc, &igb->cc, ns);
336
337 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
338
339 return 0;
340 }
341
342 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
343 const struct timespec *ts)
344 {
345 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
346 ptp_caps);
347 unsigned long flags;
348
349 spin_lock_irqsave(&igb->tmreg_lock, flags);
350
351 igb_ptp_write_i210(igb, ts);
352
353 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
354
355 return 0;
356 }
357
358 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
359 {
360 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
361 u32 mask[IGB_N_SDP] = {
362 E1000_CTRL_SDP0_DIR,
363 E1000_CTRL_SDP1_DIR,
364 E1000_CTRL_EXT_SDP2_DIR,
365 E1000_CTRL_EXT_SDP3_DIR,
366 };
367
368 if (input)
369 *ptr &= ~mask[pin];
370 else
371 *ptr |= mask[pin];
372 }
373
374 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
375 {
376 struct e1000_hw *hw = &igb->hw;
377 u32 aux0_sel_sdp[IGB_N_SDP] = {
378 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
379 };
380 u32 aux1_sel_sdp[IGB_N_SDP] = {
381 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
382 };
383 u32 ts_sdp_en[IGB_N_SDP] = {
384 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
385 };
386 u32 ctrl, ctrl_ext, tssdp = 0;
387
388 ctrl = rd32(E1000_CTRL);
389 ctrl_ext = rd32(E1000_CTRL_EXT);
390 tssdp = rd32(E1000_TSSDP);
391
392 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
393
394 /* Make sure this pin is not enabled as an output. */
395 tssdp &= ~ts_sdp_en[pin];
396
397 if (chan == 1) {
398 tssdp &= ~AUX1_SEL_SDP3;
399 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
400 } else {
401 tssdp &= ~AUX0_SEL_SDP3;
402 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
403 }
404
405 wr32(E1000_TSSDP, tssdp);
406 wr32(E1000_CTRL, ctrl);
407 wr32(E1000_CTRL_EXT, ctrl_ext);
408 }
409
410 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
411 {
412 struct e1000_hw *hw = &igb->hw;
413 u32 aux0_sel_sdp[IGB_N_SDP] = {
414 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
415 };
416 u32 aux1_sel_sdp[IGB_N_SDP] = {
417 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
418 };
419 u32 ts_sdp_en[IGB_N_SDP] = {
420 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
421 };
422 u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
423 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
424 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
425 };
426 u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
427 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
428 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
429 };
430 u32 ts_sdp_sel_clr[IGB_N_SDP] = {
431 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
432 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
433 };
434 u32 ctrl, ctrl_ext, tssdp = 0;
435
436 ctrl = rd32(E1000_CTRL);
437 ctrl_ext = rd32(E1000_CTRL_EXT);
438 tssdp = rd32(E1000_TSSDP);
439
440 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
441
442 /* Make sure this pin is not enabled as an input. */
443 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
444 tssdp &= ~AUX0_TS_SDP_EN;
445
446 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
447 tssdp &= ~AUX1_TS_SDP_EN;
448
449 tssdp &= ~ts_sdp_sel_clr[pin];
450 if (chan == 1)
451 tssdp |= ts_sdp_sel_tt1[pin];
452 else
453 tssdp |= ts_sdp_sel_tt0[pin];
454
455 tssdp |= ts_sdp_en[pin];
456
457 wr32(E1000_TSSDP, tssdp);
458 wr32(E1000_CTRL, ctrl);
459 wr32(E1000_CTRL_EXT, ctrl_ext);
460 }
461
462 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
463 struct ptp_clock_request *rq, int on)
464 {
465 struct igb_adapter *igb =
466 container_of(ptp, struct igb_adapter, ptp_caps);
467 struct e1000_hw *hw = &igb->hw;
468 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
469 unsigned long flags;
470 struct timespec ts;
471 int pin = -1;
472 s64 ns;
473
474 switch (rq->type) {
475 case PTP_CLK_REQ_EXTTS:
476 if (on) {
477 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
478 rq->extts.index);
479 if (pin < 0)
480 return -EBUSY;
481 }
482 if (rq->extts.index == 1) {
483 tsauxc_mask = TSAUXC_EN_TS1;
484 tsim_mask = TSINTR_AUTT1;
485 } else {
486 tsauxc_mask = TSAUXC_EN_TS0;
487 tsim_mask = TSINTR_AUTT0;
488 }
489 spin_lock_irqsave(&igb->tmreg_lock, flags);
490 tsauxc = rd32(E1000_TSAUXC);
491 tsim = rd32(E1000_TSIM);
492 if (on) {
493 igb_pin_extts(igb, rq->extts.index, pin);
494 tsauxc |= tsauxc_mask;
495 tsim |= tsim_mask;
496 } else {
497 tsauxc &= ~tsauxc_mask;
498 tsim &= ~tsim_mask;
499 }
500 wr32(E1000_TSAUXC, tsauxc);
501 wr32(E1000_TSIM, tsim);
502 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
503 return 0;
504
505 case PTP_CLK_REQ_PEROUT:
506 if (on) {
507 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
508 rq->perout.index);
509 if (pin < 0)
510 return -EBUSY;
511 }
512 ts.tv_sec = rq->perout.period.sec;
513 ts.tv_nsec = rq->perout.period.nsec;
514 ns = timespec_to_ns(&ts);
515 ns = ns >> 1;
516 if (on && ns < 500000LL) {
517 /* 2k interrupts per second is an awful lot. */
518 return -EINVAL;
519 }
520 ts = ns_to_timespec(ns);
521 if (rq->perout.index == 1) {
522 tsauxc_mask = TSAUXC_EN_TT1;
523 tsim_mask = TSINTR_TT1;
524 trgttiml = E1000_TRGTTIML1;
525 trgttimh = E1000_TRGTTIMH1;
526 } else {
527 tsauxc_mask = TSAUXC_EN_TT0;
528 tsim_mask = TSINTR_TT0;
529 trgttiml = E1000_TRGTTIML0;
530 trgttimh = E1000_TRGTTIMH0;
531 }
532 spin_lock_irqsave(&igb->tmreg_lock, flags);
533 tsauxc = rd32(E1000_TSAUXC);
534 tsim = rd32(E1000_TSIM);
535 if (on) {
536 int i = rq->perout.index;
537
538 igb_pin_perout(igb, i, pin);
539 igb->perout[i].start.tv_sec = rq->perout.start.sec;
540 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
541 igb->perout[i].period.tv_sec = ts.tv_sec;
542 igb->perout[i].period.tv_nsec = ts.tv_nsec;
543 wr32(trgttiml, rq->perout.start.sec);
544 wr32(trgttimh, rq->perout.start.nsec);
545 tsauxc |= tsauxc_mask;
546 tsim |= tsim_mask;
547 } else {
548 tsauxc &= ~tsauxc_mask;
549 tsim &= ~tsim_mask;
550 }
551 wr32(E1000_TSAUXC, tsauxc);
552 wr32(E1000_TSIM, tsim);
553 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
554 return 0;
555
556 case PTP_CLK_REQ_PPS:
557 spin_lock_irqsave(&igb->tmreg_lock, flags);
558 tsim = rd32(E1000_TSIM);
559 if (on)
560 tsim |= TSINTR_SYS_WRAP;
561 else
562 tsim &= ~TSINTR_SYS_WRAP;
563 wr32(E1000_TSIM, tsim);
564 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
565 return 0;
566 }
567
568 return -EOPNOTSUPP;
569 }
570
571 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
572 struct ptp_clock_request *rq, int on)
573 {
574 return -EOPNOTSUPP;
575 }
576
577 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
578 enum ptp_pin_function func, unsigned int chan)
579 {
580 switch (func) {
581 case PTP_PF_NONE:
582 case PTP_PF_EXTTS:
583 case PTP_PF_PEROUT:
584 break;
585 case PTP_PF_PHYSYNC:
586 return -1;
587 }
588 return 0;
589 }
590
591 /**
592 * igb_ptp_tx_work
593 * @work: pointer to work struct
594 *
595 * This work function polls the TSYNCTXCTL valid bit to determine when a
596 * timestamp has been taken for the current stored skb.
597 **/
598 static void igb_ptp_tx_work(struct work_struct *work)
599 {
600 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
601 ptp_tx_work);
602 struct e1000_hw *hw = &adapter->hw;
603 u32 tsynctxctl;
604
605 if (!adapter->ptp_tx_skb)
606 return;
607
608 if (time_is_before_jiffies(adapter->ptp_tx_start +
609 IGB_PTP_TX_TIMEOUT)) {
610 dev_kfree_skb_any(adapter->ptp_tx_skb);
611 adapter->ptp_tx_skb = NULL;
612 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
613 adapter->tx_hwtstamp_timeouts++;
614 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
615 return;
616 }
617
618 tsynctxctl = rd32(E1000_TSYNCTXCTL);
619 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
620 igb_ptp_tx_hwtstamp(adapter);
621 else
622 /* reschedule to check later */
623 schedule_work(&adapter->ptp_tx_work);
624 }
625
626 static void igb_ptp_overflow_check(struct work_struct *work)
627 {
628 struct igb_adapter *igb =
629 container_of(work, struct igb_adapter, ptp_overflow_work.work);
630 struct timespec ts;
631
632 igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
633
634 pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
635
636 schedule_delayed_work(&igb->ptp_overflow_work,
637 IGB_SYSTIM_OVERFLOW_PERIOD);
638 }
639
640 /**
641 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
642 * @adapter: private network adapter structure
643 *
644 * This watchdog task is scheduled to detect error case where hardware has
645 * dropped an Rx packet that was timestamped when the ring is full. The
646 * particular error is rare but leaves the device in a state unable to timestamp
647 * any future packets.
648 **/
649 void igb_ptp_rx_hang(struct igb_adapter *adapter)
650 {
651 struct e1000_hw *hw = &adapter->hw;
652 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
653 unsigned long rx_event;
654
655 if (hw->mac.type != e1000_82576)
656 return;
657
658 /* If we don't have a valid timestamp in the registers, just update the
659 * timeout counter and exit
660 */
661 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
662 adapter->last_rx_ptp_check = jiffies;
663 return;
664 }
665
666 /* Determine the most recent watchdog or rx_timestamp event */
667 rx_event = adapter->last_rx_ptp_check;
668 if (time_after(adapter->last_rx_timestamp, rx_event))
669 rx_event = adapter->last_rx_timestamp;
670
671 /* Only need to read the high RXSTMP register to clear the lock */
672 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
673 rd32(E1000_RXSTMPH);
674 adapter->last_rx_ptp_check = jiffies;
675 adapter->rx_hwtstamp_cleared++;
676 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
677 }
678 }
679
680 /**
681 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
682 * @adapter: Board private structure.
683 *
684 * If we were asked to do hardware stamping and such a time stamp is
685 * available, then it must have been for this skb here because we only
686 * allow only one such packet into the queue.
687 **/
688 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
689 {
690 struct e1000_hw *hw = &adapter->hw;
691 struct skb_shared_hwtstamps shhwtstamps;
692 u64 regval;
693
694 regval = rd32(E1000_TXSTMPL);
695 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
696
697 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
698 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
699 dev_kfree_skb_any(adapter->ptp_tx_skb);
700 adapter->ptp_tx_skb = NULL;
701 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
702 }
703
704 /**
705 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
706 * @q_vector: Pointer to interrupt specific structure
707 * @va: Pointer to address containing Rx buffer
708 * @skb: Buffer containing timestamp and packet
709 *
710 * This function is meant to retrieve a timestamp from the first buffer of an
711 * incoming frame. The value is stored in little endian format starting on
712 * byte 8.
713 **/
714 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
715 unsigned char *va,
716 struct sk_buff *skb)
717 {
718 __le64 *regval = (__le64 *)va;
719
720 /* The timestamp is recorded in little endian format.
721 * DWORD: 0 1 2 3
722 * Field: Reserved Reserved SYSTIML SYSTIMH
723 */
724 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
725 le64_to_cpu(regval[1]));
726 }
727
728 /**
729 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
730 * @q_vector: Pointer to interrupt specific structure
731 * @skb: Buffer containing timestamp and packet
732 *
733 * This function is meant to retrieve a timestamp from the internal registers
734 * of the adapter and store it in the skb.
735 **/
736 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
737 struct sk_buff *skb)
738 {
739 struct igb_adapter *adapter = q_vector->adapter;
740 struct e1000_hw *hw = &adapter->hw;
741 u64 regval;
742
743 /* If this bit is set, then the RX registers contain the time stamp. No
744 * other packet will be time stamped until we read these registers, so
745 * read the registers to make them available again. Because only one
746 * packet can be time stamped at a time, we know that the register
747 * values must belong to this one here and therefore we don't need to
748 * compare any of the additional attributes stored for it.
749 *
750 * If nothing went wrong, then it should have a shared tx_flags that we
751 * can turn into a skb_shared_hwtstamps.
752 */
753 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
754 return;
755
756 regval = rd32(E1000_RXSTMPL);
757 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
758
759 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
760
761 /* Update the last_rx_timestamp timer in order to enable watchdog check
762 * for error case of latched timestamp on a dropped packet.
763 */
764 adapter->last_rx_timestamp = jiffies;
765 }
766
767 /**
768 * igb_ptp_get_ts_config - get hardware time stamping config
769 * @netdev:
770 * @ifreq:
771 *
772 * Get the hwtstamp_config settings to return to the user. Rather than attempt
773 * to deconstruct the settings from the registers, just return a shadow copy
774 * of the last known settings.
775 **/
776 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
777 {
778 struct igb_adapter *adapter = netdev_priv(netdev);
779 struct hwtstamp_config *config = &adapter->tstamp_config;
780
781 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
782 -EFAULT : 0;
783 }
784
785 /**
786 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
787 * @adapter: networking device structure
788 * @config: hwtstamp configuration
789 *
790 * Outgoing time stamping can be enabled and disabled. Play nice and
791 * disable it when requested, although it shouldn't case any overhead
792 * when no packet needs it. At most one packet in the queue may be
793 * marked for time stamping, otherwise it would be impossible to tell
794 * for sure to which packet the hardware time stamp belongs.
795 *
796 * Incoming time stamping has to be configured via the hardware
797 * filters. Not all combinations are supported, in particular event
798 * type has to be specified. Matching the kind of event packet is
799 * not supported, with the exception of "all V2 events regardless of
800 * level 2 or 4".
801 */
802 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
803 struct hwtstamp_config *config)
804 {
805 struct e1000_hw *hw = &adapter->hw;
806 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
807 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
808 u32 tsync_rx_cfg = 0;
809 bool is_l4 = false;
810 bool is_l2 = false;
811 u32 regval;
812
813 /* reserved for future extensions */
814 if (config->flags)
815 return -EINVAL;
816
817 switch (config->tx_type) {
818 case HWTSTAMP_TX_OFF:
819 tsync_tx_ctl = 0;
820 case HWTSTAMP_TX_ON:
821 break;
822 default:
823 return -ERANGE;
824 }
825
826 switch (config->rx_filter) {
827 case HWTSTAMP_FILTER_NONE:
828 tsync_rx_ctl = 0;
829 break;
830 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
831 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
832 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
833 is_l4 = true;
834 break;
835 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
836 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
837 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
838 is_l4 = true;
839 break;
840 case HWTSTAMP_FILTER_PTP_V2_EVENT:
841 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
842 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
843 case HWTSTAMP_FILTER_PTP_V2_SYNC:
844 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
845 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
846 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
847 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
848 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
849 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
850 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
851 is_l2 = true;
852 is_l4 = true;
853 break;
854 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
855 case HWTSTAMP_FILTER_ALL:
856 /* 82576 cannot timestamp all packets, which it needs to do to
857 * support both V1 Sync and Delay_Req messages
858 */
859 if (hw->mac.type != e1000_82576) {
860 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
861 config->rx_filter = HWTSTAMP_FILTER_ALL;
862 break;
863 }
864 /* fall through */
865 default:
866 config->rx_filter = HWTSTAMP_FILTER_NONE;
867 return -ERANGE;
868 }
869
870 if (hw->mac.type == e1000_82575) {
871 if (tsync_rx_ctl | tsync_tx_ctl)
872 return -EINVAL;
873 return 0;
874 }
875
876 /* Per-packet timestamping only works if all packets are
877 * timestamped, so enable timestamping in all packets as
878 * long as one Rx filter was configured.
879 */
880 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
881 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
882 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
883 config->rx_filter = HWTSTAMP_FILTER_ALL;
884 is_l2 = true;
885 is_l4 = true;
886
887 if ((hw->mac.type == e1000_i210) ||
888 (hw->mac.type == e1000_i211)) {
889 regval = rd32(E1000_RXPBS);
890 regval |= E1000_RXPBS_CFG_TS_EN;
891 wr32(E1000_RXPBS, regval);
892 }
893 }
894
895 /* enable/disable TX */
896 regval = rd32(E1000_TSYNCTXCTL);
897 regval &= ~E1000_TSYNCTXCTL_ENABLED;
898 regval |= tsync_tx_ctl;
899 wr32(E1000_TSYNCTXCTL, regval);
900
901 /* enable/disable RX */
902 regval = rd32(E1000_TSYNCRXCTL);
903 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
904 regval |= tsync_rx_ctl;
905 wr32(E1000_TSYNCRXCTL, regval);
906
907 /* define which PTP packets are time stamped */
908 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
909
910 /* define ethertype filter for timestamped packets */
911 if (is_l2)
912 wr32(E1000_ETQF(3),
913 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
914 E1000_ETQF_1588 | /* enable timestamping */
915 ETH_P_1588)); /* 1588 eth protocol type */
916 else
917 wr32(E1000_ETQF(3), 0);
918
919 /* L4 Queue Filter[3]: filter by destination port and protocol */
920 if (is_l4) {
921 u32 ftqf = (IPPROTO_UDP /* UDP */
922 | E1000_FTQF_VF_BP /* VF not compared */
923 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
924 | E1000_FTQF_MASK); /* mask all inputs */
925 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
926
927 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
928 wr32(E1000_IMIREXT(3),
929 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
930 if (hw->mac.type == e1000_82576) {
931 /* enable source port check */
932 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
933 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
934 }
935 wr32(E1000_FTQF(3), ftqf);
936 } else {
937 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
938 }
939 wrfl();
940
941 /* clear TX/RX time stamp registers, just to be sure */
942 regval = rd32(E1000_TXSTMPL);
943 regval = rd32(E1000_TXSTMPH);
944 regval = rd32(E1000_RXSTMPL);
945 regval = rd32(E1000_RXSTMPH);
946
947 return 0;
948 }
949
950 /**
951 * igb_ptp_set_ts_config - set hardware time stamping config
952 * @netdev:
953 * @ifreq:
954 *
955 **/
956 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
957 {
958 struct igb_adapter *adapter = netdev_priv(netdev);
959 struct hwtstamp_config config;
960 int err;
961
962 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
963 return -EFAULT;
964
965 err = igb_ptp_set_timestamp_mode(adapter, &config);
966 if (err)
967 return err;
968
969 /* save these settings for future reference */
970 memcpy(&adapter->tstamp_config, &config,
971 sizeof(adapter->tstamp_config));
972
973 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
974 -EFAULT : 0;
975 }
976
977 void igb_ptp_init(struct igb_adapter *adapter)
978 {
979 struct e1000_hw *hw = &adapter->hw;
980 struct net_device *netdev = adapter->netdev;
981 int i;
982
983 switch (hw->mac.type) {
984 case e1000_82576:
985 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
986 adapter->ptp_caps.owner = THIS_MODULE;
987 adapter->ptp_caps.max_adj = 999999881;
988 adapter->ptp_caps.n_ext_ts = 0;
989 adapter->ptp_caps.pps = 0;
990 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
991 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
992 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
993 adapter->ptp_caps.settime = igb_ptp_settime_82576;
994 adapter->ptp_caps.enable = igb_ptp_feature_enable;
995 adapter->cc.read = igb_ptp_read_82576;
996 adapter->cc.mask = CYCLECOUNTER_MASK(64);
997 adapter->cc.mult = 1;
998 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
999 /* Dial the nominal frequency. */
1000 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1001 break;
1002 case e1000_82580:
1003 case e1000_i354:
1004 case e1000_i350:
1005 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1006 adapter->ptp_caps.owner = THIS_MODULE;
1007 adapter->ptp_caps.max_adj = 62499999;
1008 adapter->ptp_caps.n_ext_ts = 0;
1009 adapter->ptp_caps.pps = 0;
1010 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1011 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1012 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
1013 adapter->ptp_caps.settime = igb_ptp_settime_82576;
1014 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1015 adapter->cc.read = igb_ptp_read_82580;
1016 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1017 adapter->cc.mult = 1;
1018 adapter->cc.shift = 0;
1019 /* Enable the timer functions by clearing bit 31. */
1020 wr32(E1000_TSAUXC, 0x0);
1021 break;
1022 case e1000_i210:
1023 case e1000_i211:
1024 for (i = 0; i < IGB_N_SDP; i++) {
1025 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1026
1027 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1028 ppd->index = i;
1029 ppd->func = PTP_PF_NONE;
1030 }
1031 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1032 adapter->ptp_caps.owner = THIS_MODULE;
1033 adapter->ptp_caps.max_adj = 62499999;
1034 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1035 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1036 adapter->ptp_caps.n_pins = IGB_N_SDP;
1037 adapter->ptp_caps.pps = 1;
1038 adapter->ptp_caps.pin_config = adapter->sdp_config;
1039 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1040 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1041 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
1042 adapter->ptp_caps.settime = igb_ptp_settime_i210;
1043 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1044 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1045 /* Enable the timer functions by clearing bit 31. */
1046 wr32(E1000_TSAUXC, 0x0);
1047 break;
1048 default:
1049 adapter->ptp_clock = NULL;
1050 return;
1051 }
1052
1053 wrfl();
1054
1055 spin_lock_init(&adapter->tmreg_lock);
1056 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1057
1058 /* Initialize the clock and overflow work for devices that need it. */
1059 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1060 struct timespec ts = ktime_to_timespec(ktime_get_real());
1061
1062 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1063 } else {
1064 timecounter_init(&adapter->tc, &adapter->cc,
1065 ktime_to_ns(ktime_get_real()));
1066
1067 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1068 igb_ptp_overflow_check);
1069
1070 schedule_delayed_work(&adapter->ptp_overflow_work,
1071 IGB_SYSTIM_OVERFLOW_PERIOD);
1072 }
1073
1074 /* Initialize the time sync interrupts for devices that support it. */
1075 if (hw->mac.type >= e1000_82580) {
1076 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1077 wr32(E1000_IMS, E1000_IMS_TS);
1078 }
1079
1080 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1081 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1082
1083 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1084 &adapter->pdev->dev);
1085 if (IS_ERR(adapter->ptp_clock)) {
1086 adapter->ptp_clock = NULL;
1087 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1088 } else {
1089 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1090 adapter->netdev->name);
1091 adapter->flags |= IGB_FLAG_PTP;
1092 }
1093 }
1094
1095 /**
1096 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1097 * @adapter: Board private structure.
1098 *
1099 * This function stops the PTP support and cancels the delayed work.
1100 **/
1101 void igb_ptp_stop(struct igb_adapter *adapter)
1102 {
1103 switch (adapter->hw.mac.type) {
1104 case e1000_82576:
1105 case e1000_82580:
1106 case e1000_i354:
1107 case e1000_i350:
1108 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1109 break;
1110 case e1000_i210:
1111 case e1000_i211:
1112 /* No delayed work to cancel. */
1113 break;
1114 default:
1115 return;
1116 }
1117
1118 cancel_work_sync(&adapter->ptp_tx_work);
1119 if (adapter->ptp_tx_skb) {
1120 dev_kfree_skb_any(adapter->ptp_tx_skb);
1121 adapter->ptp_tx_skb = NULL;
1122 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1123 }
1124
1125 if (adapter->ptp_clock) {
1126 ptp_clock_unregister(adapter->ptp_clock);
1127 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1128 adapter->netdev->name);
1129 adapter->flags &= ~IGB_FLAG_PTP;
1130 }
1131 }
1132
1133 /**
1134 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1135 * @adapter: Board private structure.
1136 *
1137 * This function handles the reset work required to re-enable the PTP device.
1138 **/
1139 void igb_ptp_reset(struct igb_adapter *adapter)
1140 {
1141 struct e1000_hw *hw = &adapter->hw;
1142 unsigned long flags;
1143
1144 if (!(adapter->flags & IGB_FLAG_PTP))
1145 return;
1146
1147 /* reset the tstamp_config */
1148 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1149
1150 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1151
1152 switch (adapter->hw.mac.type) {
1153 case e1000_82576:
1154 /* Dial the nominal frequency. */
1155 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1156 break;
1157 case e1000_82580:
1158 case e1000_i354:
1159 case e1000_i350:
1160 case e1000_i210:
1161 case e1000_i211:
1162 wr32(E1000_TSAUXC, 0x0);
1163 wr32(E1000_TSSDP, 0x0);
1164 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1165 wr32(E1000_IMS, E1000_IMS_TS);
1166 break;
1167 default:
1168 /* No work to do. */
1169 goto out;
1170 }
1171
1172 /* Re-initialize the timer. */
1173 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1174 struct timespec ts = ktime_to_timespec(ktime_get_real());
1175
1176 igb_ptp_write_i210(adapter, &ts);
1177 } else {
1178 timecounter_init(&adapter->tc, &adapter->cc,
1179 ktime_to_ns(ktime_get_real()));
1180 }
1181 out:
1182 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1183 }