]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/igb/igb_ptp.c
regulator: core: Add set_voltage_time op
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK 0x7fffffff
26 #define ISGN 0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not available. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits. As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 * SYSTIMH SYSTIML
52 * +--------------+ +---+---+------+
53 * 82576 | 32 | | 8 | 5 | 19 |
54 * +--------------+ +---+---+------+
55 * \________ 45 bits _______/ fract
56 *
57 * +----------+---+ +--------------+
58 * 82580 | 24 | 8 | | 32 |
59 * +----------+---+ +--------------+
60 * reserved \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 * 2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 * 2^40 * 10^-9 / 60 = 18.3 minutes.
68 */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT (HZ * 15)
72 #define INCPERIOD_82576 BIT(E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
74 #define INCVALUE_82576 (16u << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83 struct e1000_hw *hw = &igb->hw;
84 u64 val;
85 u32 lo, hi;
86
87 lo = rd32(E1000_SYSTIML);
88 hi = rd32(E1000_SYSTIMH);
89
90 val = ((u64) hi) << 32;
91 val |= lo;
92
93 return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99 struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100 struct e1000_hw *hw = &igb->hw;
101 u32 lo, hi;
102 u64 val;
103
104 /* The timestamp latches on lowest register read. For the 82580
105 * the lowest register is SYSTIMR instead of SYSTIML. However we only
106 * need to provide nanosecond resolution, so we just ignore it.
107 */
108 rd32(E1000_SYSTIMR);
109 lo = rd32(E1000_SYSTIML);
110 hi = rd32(E1000_SYSTIMH);
111
112 val = ((u64) hi) << 32;
113 val |= lo;
114
115 return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter,
120 struct timespec64 *ts)
121 {
122 struct e1000_hw *hw = &adapter->hw;
123 u32 sec, nsec;
124
125 /* The timestamp latches on lowest register read. For I210/I211, the
126 * lowest register is SYSTIMR. Since we only need to provide nanosecond
127 * resolution, we can ignore it.
128 */
129 rd32(E1000_SYSTIMR);
130 nsec = rd32(E1000_SYSTIML);
131 sec = rd32(E1000_SYSTIMH);
132
133 ts->tv_sec = sec;
134 ts->tv_nsec = nsec;
135 }
136
137 static void igb_ptp_write_i210(struct igb_adapter *adapter,
138 const struct timespec64 *ts)
139 {
140 struct e1000_hw *hw = &adapter->hw;
141
142 /* Writing the SYSTIMR register is not necessary as it only provides
143 * sub-nanosecond resolution.
144 */
145 wr32(E1000_SYSTIML, ts->tv_nsec);
146 wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
147 }
148
149 /**
150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151 * @adapter: board private structure
152 * @hwtstamps: timestamp structure to update
153 * @systim: unsigned 64bit system time value.
154 *
155 * We need to convert the system time value stored in the RX/TXSTMP registers
156 * into a hwtstamp which can be used by the upper level timestamping functions.
157 *
158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
159 * system time value. This is needed because reading the 64 bit time
160 * value involves reading two (or three) 32 bit registers. The first
161 * read latches the value. Ditto for writing.
162 *
163 * In addition, here have extended the system time with an overflow
164 * counter in software.
165 **/
166 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167 struct skb_shared_hwtstamps *hwtstamps,
168 u64 systim)
169 {
170 unsigned long flags;
171 u64 ns;
172
173 switch (adapter->hw.mac.type) {
174 case e1000_82576:
175 case e1000_82580:
176 case e1000_i354:
177 case e1000_i350:
178 spin_lock_irqsave(&adapter->tmreg_lock, flags);
179
180 ns = timecounter_cyc2time(&adapter->tc, systim);
181
182 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
183
184 memset(hwtstamps, 0, sizeof(*hwtstamps));
185 hwtstamps->hwtstamp = ns_to_ktime(ns);
186 break;
187 case e1000_i210:
188 case e1000_i211:
189 memset(hwtstamps, 0, sizeof(*hwtstamps));
190 /* Upper 32 bits contain s, lower 32 bits contain ns. */
191 hwtstamps->hwtstamp = ktime_set(systim >> 32,
192 systim & 0xFFFFFFFF);
193 break;
194 default:
195 break;
196 }
197 }
198
199 /* PTP clock operations */
200 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201 {
202 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203 ptp_caps);
204 struct e1000_hw *hw = &igb->hw;
205 int neg_adj = 0;
206 u64 rate;
207 u32 incvalue;
208
209 if (ppb < 0) {
210 neg_adj = 1;
211 ppb = -ppb;
212 }
213 rate = ppb;
214 rate <<= 14;
215 rate = div_u64(rate, 1953125);
216
217 incvalue = 16 << IGB_82576_TSYNC_SHIFT;
218
219 if (neg_adj)
220 incvalue -= rate;
221 else
222 incvalue += rate;
223
224 wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
225
226 return 0;
227 }
228
229 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230 {
231 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232 ptp_caps);
233 struct e1000_hw *hw = &igb->hw;
234 int neg_adj = 0;
235 u64 rate;
236 u32 inca;
237
238 if (ppb < 0) {
239 neg_adj = 1;
240 ppb = -ppb;
241 }
242 rate = ppb;
243 rate <<= 26;
244 rate = div_u64(rate, 1953125);
245
246 inca = rate & INCVALUE_MASK;
247 if (neg_adj)
248 inca |= ISGN;
249
250 wr32(E1000_TIMINCA, inca);
251
252 return 0;
253 }
254
255 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256 {
257 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258 ptp_caps);
259 unsigned long flags;
260
261 spin_lock_irqsave(&igb->tmreg_lock, flags);
262 timecounter_adjtime(&igb->tc, delta);
263 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
264
265 return 0;
266 }
267
268 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
269 {
270 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271 ptp_caps);
272 unsigned long flags;
273 struct timespec64 now, then = ns_to_timespec64(delta);
274
275 spin_lock_irqsave(&igb->tmreg_lock, flags);
276
277 igb_ptp_read_i210(igb, &now);
278 now = timespec64_add(now, then);
279 igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280
281 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282
283 return 0;
284 }
285
286 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287 struct timespec64 *ts)
288 {
289 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290 ptp_caps);
291 unsigned long flags;
292 u64 ns;
293
294 spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296 ns = timecounter_read(&igb->tc);
297
298 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300 *ts = ns_to_timespec64(ns);
301
302 return 0;
303 }
304
305 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306 struct timespec64 *ts)
307 {
308 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309 ptp_caps);
310 unsigned long flags;
311
312 spin_lock_irqsave(&igb->tmreg_lock, flags);
313
314 igb_ptp_read_i210(igb, ts);
315
316 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317
318 return 0;
319 }
320
321 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322 const struct timespec64 *ts)
323 {
324 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325 ptp_caps);
326 unsigned long flags;
327 u64 ns;
328
329 ns = timespec64_to_ns(ts);
330
331 spin_lock_irqsave(&igb->tmreg_lock, flags);
332
333 timecounter_init(&igb->tc, &igb->cc, ns);
334
335 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336
337 return 0;
338 }
339
340 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341 const struct timespec64 *ts)
342 {
343 struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344 ptp_caps);
345 unsigned long flags;
346
347 spin_lock_irqsave(&igb->tmreg_lock, flags);
348
349 igb_ptp_write_i210(igb, ts);
350
351 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352
353 return 0;
354 }
355
356 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
357 {
358 u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359 static const u32 mask[IGB_N_SDP] = {
360 E1000_CTRL_SDP0_DIR,
361 E1000_CTRL_SDP1_DIR,
362 E1000_CTRL_EXT_SDP2_DIR,
363 E1000_CTRL_EXT_SDP3_DIR,
364 };
365
366 if (input)
367 *ptr &= ~mask[pin];
368 else
369 *ptr |= mask[pin];
370 }
371
372 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
373 {
374 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
376 };
377 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
379 };
380 static const u32 ts_sdp_en[IGB_N_SDP] = {
381 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
382 };
383 struct e1000_hw *hw = &igb->hw;
384 u32 ctrl, ctrl_ext, tssdp = 0;
385
386 ctrl = rd32(E1000_CTRL);
387 ctrl_ext = rd32(E1000_CTRL_EXT);
388 tssdp = rd32(E1000_TSSDP);
389
390 igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
391
392 /* Make sure this pin is not enabled as an output. */
393 tssdp &= ~ts_sdp_en[pin];
394
395 if (chan == 1) {
396 tssdp &= ~AUX1_SEL_SDP3;
397 tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398 } else {
399 tssdp &= ~AUX0_SEL_SDP3;
400 tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
401 }
402
403 wr32(E1000_TSSDP, tssdp);
404 wr32(E1000_CTRL, ctrl);
405 wr32(E1000_CTRL_EXT, ctrl_ext);
406 }
407
408 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
409 {
410 static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411 AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412 };
413 static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414 AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415 };
416 static const u32 ts_sdp_en[IGB_N_SDP] = {
417 TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418 };
419 static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420 TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421 TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
422 };
423 static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424 TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425 TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
426 };
427 static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
428 TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
429 TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
430 };
431 static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
432 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
433 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
434 };
435 static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
436 TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
437 TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
438 };
439 struct e1000_hw *hw = &igb->hw;
440 u32 ctrl, ctrl_ext, tssdp = 0;
441
442 ctrl = rd32(E1000_CTRL);
443 ctrl_ext = rd32(E1000_CTRL_EXT);
444 tssdp = rd32(E1000_TSSDP);
445
446 igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
447
448 /* Make sure this pin is not enabled as an input. */
449 if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
450 tssdp &= ~AUX0_TS_SDP_EN;
451
452 if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
453 tssdp &= ~AUX1_TS_SDP_EN;
454
455 tssdp &= ~ts_sdp_sel_clr[pin];
456 if (freq) {
457 if (chan == 1)
458 tssdp |= ts_sdp_sel_fc1[pin];
459 else
460 tssdp |= ts_sdp_sel_fc0[pin];
461 } else {
462 if (chan == 1)
463 tssdp |= ts_sdp_sel_tt1[pin];
464 else
465 tssdp |= ts_sdp_sel_tt0[pin];
466 }
467 tssdp |= ts_sdp_en[pin];
468
469 wr32(E1000_TSSDP, tssdp);
470 wr32(E1000_CTRL, ctrl);
471 wr32(E1000_CTRL_EXT, ctrl_ext);
472 }
473
474 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
475 struct ptp_clock_request *rq, int on)
476 {
477 struct igb_adapter *igb =
478 container_of(ptp, struct igb_adapter, ptp_caps);
479 struct e1000_hw *hw = &igb->hw;
480 u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
481 unsigned long flags;
482 struct timespec64 ts;
483 int use_freq = 0, pin = -1;
484 s64 ns;
485
486 switch (rq->type) {
487 case PTP_CLK_REQ_EXTTS:
488 if (on) {
489 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
490 rq->extts.index);
491 if (pin < 0)
492 return -EBUSY;
493 }
494 if (rq->extts.index == 1) {
495 tsauxc_mask = TSAUXC_EN_TS1;
496 tsim_mask = TSINTR_AUTT1;
497 } else {
498 tsauxc_mask = TSAUXC_EN_TS0;
499 tsim_mask = TSINTR_AUTT0;
500 }
501 spin_lock_irqsave(&igb->tmreg_lock, flags);
502 tsauxc = rd32(E1000_TSAUXC);
503 tsim = rd32(E1000_TSIM);
504 if (on) {
505 igb_pin_extts(igb, rq->extts.index, pin);
506 tsauxc |= tsauxc_mask;
507 tsim |= tsim_mask;
508 } else {
509 tsauxc &= ~tsauxc_mask;
510 tsim &= ~tsim_mask;
511 }
512 wr32(E1000_TSAUXC, tsauxc);
513 wr32(E1000_TSIM, tsim);
514 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
515 return 0;
516
517 case PTP_CLK_REQ_PEROUT:
518 if (on) {
519 pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
520 rq->perout.index);
521 if (pin < 0)
522 return -EBUSY;
523 }
524 ts.tv_sec = rq->perout.period.sec;
525 ts.tv_nsec = rq->perout.period.nsec;
526 ns = timespec64_to_ns(&ts);
527 ns = ns >> 1;
528 if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
529 (ns == 250000000LL) || (ns == 500000000LL))) {
530 if (ns < 8LL)
531 return -EINVAL;
532 use_freq = 1;
533 }
534 ts = ns_to_timespec64(ns);
535 if (rq->perout.index == 1) {
536 if (use_freq) {
537 tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
538 tsim_mask = 0;
539 } else {
540 tsauxc_mask = TSAUXC_EN_TT1;
541 tsim_mask = TSINTR_TT1;
542 }
543 trgttiml = E1000_TRGTTIML1;
544 trgttimh = E1000_TRGTTIMH1;
545 freqout = E1000_FREQOUT1;
546 } else {
547 if (use_freq) {
548 tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
549 tsim_mask = 0;
550 } else {
551 tsauxc_mask = TSAUXC_EN_TT0;
552 tsim_mask = TSINTR_TT0;
553 }
554 trgttiml = E1000_TRGTTIML0;
555 trgttimh = E1000_TRGTTIMH0;
556 freqout = E1000_FREQOUT0;
557 }
558 spin_lock_irqsave(&igb->tmreg_lock, flags);
559 tsauxc = rd32(E1000_TSAUXC);
560 tsim = rd32(E1000_TSIM);
561 if (rq->perout.index == 1) {
562 tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
563 tsim &= ~TSINTR_TT1;
564 } else {
565 tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
566 tsim &= ~TSINTR_TT0;
567 }
568 if (on) {
569 int i = rq->perout.index;
570 igb_pin_perout(igb, i, pin, use_freq);
571 igb->perout[i].start.tv_sec = rq->perout.start.sec;
572 igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
573 igb->perout[i].period.tv_sec = ts.tv_sec;
574 igb->perout[i].period.tv_nsec = ts.tv_nsec;
575 wr32(trgttimh, rq->perout.start.sec);
576 wr32(trgttiml, rq->perout.start.nsec);
577 if (use_freq)
578 wr32(freqout, ns);
579 tsauxc |= tsauxc_mask;
580 tsim |= tsim_mask;
581 }
582 wr32(E1000_TSAUXC, tsauxc);
583 wr32(E1000_TSIM, tsim);
584 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
585 return 0;
586
587 case PTP_CLK_REQ_PPS:
588 spin_lock_irqsave(&igb->tmreg_lock, flags);
589 tsim = rd32(E1000_TSIM);
590 if (on)
591 tsim |= TSINTR_SYS_WRAP;
592 else
593 tsim &= ~TSINTR_SYS_WRAP;
594 wr32(E1000_TSIM, tsim);
595 spin_unlock_irqrestore(&igb->tmreg_lock, flags);
596 return 0;
597 }
598
599 return -EOPNOTSUPP;
600 }
601
602 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
603 struct ptp_clock_request *rq, int on)
604 {
605 return -EOPNOTSUPP;
606 }
607
608 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
609 enum ptp_pin_function func, unsigned int chan)
610 {
611 switch (func) {
612 case PTP_PF_NONE:
613 case PTP_PF_EXTTS:
614 case PTP_PF_PEROUT:
615 break;
616 case PTP_PF_PHYSYNC:
617 return -1;
618 }
619 return 0;
620 }
621
622 /**
623 * igb_ptp_tx_work
624 * @work: pointer to work struct
625 *
626 * This work function polls the TSYNCTXCTL valid bit to determine when a
627 * timestamp has been taken for the current stored skb.
628 **/
629 static void igb_ptp_tx_work(struct work_struct *work)
630 {
631 struct igb_adapter *adapter = container_of(work, struct igb_adapter,
632 ptp_tx_work);
633 struct e1000_hw *hw = &adapter->hw;
634 u32 tsynctxctl;
635
636 if (!adapter->ptp_tx_skb)
637 return;
638
639 if (time_is_before_jiffies(adapter->ptp_tx_start +
640 IGB_PTP_TX_TIMEOUT)) {
641 dev_kfree_skb_any(adapter->ptp_tx_skb);
642 adapter->ptp_tx_skb = NULL;
643 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
644 adapter->tx_hwtstamp_timeouts++;
645 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
646 return;
647 }
648
649 tsynctxctl = rd32(E1000_TSYNCTXCTL);
650 if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
651 igb_ptp_tx_hwtstamp(adapter);
652 else
653 /* reschedule to check later */
654 schedule_work(&adapter->ptp_tx_work);
655 }
656
657 static void igb_ptp_overflow_check(struct work_struct *work)
658 {
659 struct igb_adapter *igb =
660 container_of(work, struct igb_adapter, ptp_overflow_work.work);
661 struct timespec64 ts;
662
663 igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
664
665 pr_debug("igb overflow check at %lld.%09lu\n",
666 (long long) ts.tv_sec, ts.tv_nsec);
667
668 schedule_delayed_work(&igb->ptp_overflow_work,
669 IGB_SYSTIM_OVERFLOW_PERIOD);
670 }
671
672 /**
673 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
674 * @adapter: private network adapter structure
675 *
676 * This watchdog task is scheduled to detect error case where hardware has
677 * dropped an Rx packet that was timestamped when the ring is full. The
678 * particular error is rare but leaves the device in a state unable to timestamp
679 * any future packets.
680 **/
681 void igb_ptp_rx_hang(struct igb_adapter *adapter)
682 {
683 struct e1000_hw *hw = &adapter->hw;
684 u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
685 unsigned long rx_event;
686
687 /* Other hardware uses per-packet timestamps */
688 if (hw->mac.type != e1000_82576)
689 return;
690
691 /* If we don't have a valid timestamp in the registers, just update the
692 * timeout counter and exit
693 */
694 if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
695 adapter->last_rx_ptp_check = jiffies;
696 return;
697 }
698
699 /* Determine the most recent watchdog or rx_timestamp event */
700 rx_event = adapter->last_rx_ptp_check;
701 if (time_after(adapter->last_rx_timestamp, rx_event))
702 rx_event = adapter->last_rx_timestamp;
703
704 /* Only need to read the high RXSTMP register to clear the lock */
705 if (time_is_before_jiffies(rx_event + 5 * HZ)) {
706 rd32(E1000_RXSTMPH);
707 adapter->last_rx_ptp_check = jiffies;
708 adapter->rx_hwtstamp_cleared++;
709 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
710 }
711 }
712
713 /**
714 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
715 * @adapter: Board private structure.
716 *
717 * If we were asked to do hardware stamping and such a time stamp is
718 * available, then it must have been for this skb here because we only
719 * allow only one such packet into the queue.
720 **/
721 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
722 {
723 struct e1000_hw *hw = &adapter->hw;
724 struct skb_shared_hwtstamps shhwtstamps;
725 u64 regval;
726 int adjust = 0;
727
728 regval = rd32(E1000_TXSTMPL);
729 regval |= (u64)rd32(E1000_TXSTMPH) << 32;
730
731 igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
732 /* adjust timestamp for the TX latency based on link speed */
733 if (adapter->hw.mac.type == e1000_i210) {
734 switch (adapter->link_speed) {
735 case SPEED_10:
736 adjust = IGB_I210_TX_LATENCY_10;
737 break;
738 case SPEED_100:
739 adjust = IGB_I210_TX_LATENCY_100;
740 break;
741 case SPEED_1000:
742 adjust = IGB_I210_TX_LATENCY_1000;
743 break;
744 }
745 }
746
747 shhwtstamps.hwtstamp = ktime_sub_ns(shhwtstamps.hwtstamp, adjust);
748
749 skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
750 dev_kfree_skb_any(adapter->ptp_tx_skb);
751 adapter->ptp_tx_skb = NULL;
752 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
753 }
754
755 /**
756 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
757 * @q_vector: Pointer to interrupt specific structure
758 * @va: Pointer to address containing Rx buffer
759 * @skb: Buffer containing timestamp and packet
760 *
761 * This function is meant to retrieve a timestamp from the first buffer of an
762 * incoming frame. The value is stored in little endian format starting on
763 * byte 8.
764 **/
765 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
766 unsigned char *va,
767 struct sk_buff *skb)
768 {
769 __le64 *regval = (__le64 *)va;
770
771 /* The timestamp is recorded in little endian format.
772 * DWORD: 0 1 2 3
773 * Field: Reserved Reserved SYSTIML SYSTIMH
774 */
775 igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
776 le64_to_cpu(regval[1]));
777 }
778
779 /**
780 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
781 * @q_vector: Pointer to interrupt specific structure
782 * @skb: Buffer containing timestamp and packet
783 *
784 * This function is meant to retrieve a timestamp from the internal registers
785 * of the adapter and store it in the skb.
786 **/
787 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
788 struct sk_buff *skb)
789 {
790 struct igb_adapter *adapter = q_vector->adapter;
791 struct e1000_hw *hw = &adapter->hw;
792 u64 regval;
793 int adjust = 0;
794
795 /* If this bit is set, then the RX registers contain the time stamp. No
796 * other packet will be time stamped until we read these registers, so
797 * read the registers to make them available again. Because only one
798 * packet can be time stamped at a time, we know that the register
799 * values must belong to this one here and therefore we don't need to
800 * compare any of the additional attributes stored for it.
801 *
802 * If nothing went wrong, then it should have a shared tx_flags that we
803 * can turn into a skb_shared_hwtstamps.
804 */
805 if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
806 return;
807
808 regval = rd32(E1000_RXSTMPL);
809 regval |= (u64)rd32(E1000_RXSTMPH) << 32;
810
811 igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
812
813 /* adjust timestamp for the RX latency based on link speed */
814 if (adapter->hw.mac.type == e1000_i210) {
815 switch (adapter->link_speed) {
816 case SPEED_10:
817 adjust = IGB_I210_RX_LATENCY_10;
818 break;
819 case SPEED_100:
820 adjust = IGB_I210_RX_LATENCY_100;
821 break;
822 case SPEED_1000:
823 adjust = IGB_I210_RX_LATENCY_1000;
824 break;
825 }
826 }
827 skb_hwtstamps(skb)->hwtstamp =
828 ktime_add_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
829
830 /* Update the last_rx_timestamp timer in order to enable watchdog check
831 * for error case of latched timestamp on a dropped packet.
832 */
833 adapter->last_rx_timestamp = jiffies;
834 }
835
836 /**
837 * igb_ptp_get_ts_config - get hardware time stamping config
838 * @netdev:
839 * @ifreq:
840 *
841 * Get the hwtstamp_config settings to return to the user. Rather than attempt
842 * to deconstruct the settings from the registers, just return a shadow copy
843 * of the last known settings.
844 **/
845 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
846 {
847 struct igb_adapter *adapter = netdev_priv(netdev);
848 struct hwtstamp_config *config = &adapter->tstamp_config;
849
850 return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
851 -EFAULT : 0;
852 }
853
854 /**
855 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
856 * @adapter: networking device structure
857 * @config: hwtstamp configuration
858 *
859 * Outgoing time stamping can be enabled and disabled. Play nice and
860 * disable it when requested, although it shouldn't case any overhead
861 * when no packet needs it. At most one packet in the queue may be
862 * marked for time stamping, otherwise it would be impossible to tell
863 * for sure to which packet the hardware time stamp belongs.
864 *
865 * Incoming time stamping has to be configured via the hardware
866 * filters. Not all combinations are supported, in particular event
867 * type has to be specified. Matching the kind of event packet is
868 * not supported, with the exception of "all V2 events regardless of
869 * level 2 or 4".
870 */
871 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
872 struct hwtstamp_config *config)
873 {
874 struct e1000_hw *hw = &adapter->hw;
875 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
876 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
877 u32 tsync_rx_cfg = 0;
878 bool is_l4 = false;
879 bool is_l2 = false;
880 u32 regval;
881
882 /* reserved for future extensions */
883 if (config->flags)
884 return -EINVAL;
885
886 switch (config->tx_type) {
887 case HWTSTAMP_TX_OFF:
888 tsync_tx_ctl = 0;
889 case HWTSTAMP_TX_ON:
890 break;
891 default:
892 return -ERANGE;
893 }
894
895 switch (config->rx_filter) {
896 case HWTSTAMP_FILTER_NONE:
897 tsync_rx_ctl = 0;
898 break;
899 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
900 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
901 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
902 is_l4 = true;
903 break;
904 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
905 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
906 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
907 is_l4 = true;
908 break;
909 case HWTSTAMP_FILTER_PTP_V2_EVENT:
910 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
911 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
912 case HWTSTAMP_FILTER_PTP_V2_SYNC:
913 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
914 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
915 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
916 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
917 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
918 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
919 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
920 is_l2 = true;
921 is_l4 = true;
922 break;
923 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
924 case HWTSTAMP_FILTER_ALL:
925 /* 82576 cannot timestamp all packets, which it needs to do to
926 * support both V1 Sync and Delay_Req messages
927 */
928 if (hw->mac.type != e1000_82576) {
929 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
930 config->rx_filter = HWTSTAMP_FILTER_ALL;
931 break;
932 }
933 /* fall through */
934 default:
935 config->rx_filter = HWTSTAMP_FILTER_NONE;
936 return -ERANGE;
937 }
938
939 if (hw->mac.type == e1000_82575) {
940 if (tsync_rx_ctl | tsync_tx_ctl)
941 return -EINVAL;
942 return 0;
943 }
944
945 /* Per-packet timestamping only works if all packets are
946 * timestamped, so enable timestamping in all packets as
947 * long as one Rx filter was configured.
948 */
949 if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
950 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
951 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
952 config->rx_filter = HWTSTAMP_FILTER_ALL;
953 is_l2 = true;
954 is_l4 = true;
955
956 if ((hw->mac.type == e1000_i210) ||
957 (hw->mac.type == e1000_i211)) {
958 regval = rd32(E1000_RXPBS);
959 regval |= E1000_RXPBS_CFG_TS_EN;
960 wr32(E1000_RXPBS, regval);
961 }
962 }
963
964 /* enable/disable TX */
965 regval = rd32(E1000_TSYNCTXCTL);
966 regval &= ~E1000_TSYNCTXCTL_ENABLED;
967 regval |= tsync_tx_ctl;
968 wr32(E1000_TSYNCTXCTL, regval);
969
970 /* enable/disable RX */
971 regval = rd32(E1000_TSYNCRXCTL);
972 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
973 regval |= tsync_rx_ctl;
974 wr32(E1000_TSYNCRXCTL, regval);
975
976 /* define which PTP packets are time stamped */
977 wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
978
979 /* define ethertype filter for timestamped packets */
980 if (is_l2)
981 wr32(E1000_ETQF(3),
982 (E1000_ETQF_FILTER_ENABLE | /* enable filter */
983 E1000_ETQF_1588 | /* enable timestamping */
984 ETH_P_1588)); /* 1588 eth protocol type */
985 else
986 wr32(E1000_ETQF(3), 0);
987
988 /* L4 Queue Filter[3]: filter by destination port and protocol */
989 if (is_l4) {
990 u32 ftqf = (IPPROTO_UDP /* UDP */
991 | E1000_FTQF_VF_BP /* VF not compared */
992 | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
993 | E1000_FTQF_MASK); /* mask all inputs */
994 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
995
996 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
997 wr32(E1000_IMIREXT(3),
998 (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
999 if (hw->mac.type == e1000_82576) {
1000 /* enable source port check */
1001 wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
1002 ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1003 }
1004 wr32(E1000_FTQF(3), ftqf);
1005 } else {
1006 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1007 }
1008 wrfl();
1009
1010 /* clear TX/RX time stamp registers, just to be sure */
1011 regval = rd32(E1000_TXSTMPL);
1012 regval = rd32(E1000_TXSTMPH);
1013 regval = rd32(E1000_RXSTMPL);
1014 regval = rd32(E1000_RXSTMPH);
1015
1016 return 0;
1017 }
1018
1019 /**
1020 * igb_ptp_set_ts_config - set hardware time stamping config
1021 * @netdev:
1022 * @ifreq:
1023 *
1024 **/
1025 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1026 {
1027 struct igb_adapter *adapter = netdev_priv(netdev);
1028 struct hwtstamp_config config;
1029 int err;
1030
1031 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1032 return -EFAULT;
1033
1034 err = igb_ptp_set_timestamp_mode(adapter, &config);
1035 if (err)
1036 return err;
1037
1038 /* save these settings for future reference */
1039 memcpy(&adapter->tstamp_config, &config,
1040 sizeof(adapter->tstamp_config));
1041
1042 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1043 -EFAULT : 0;
1044 }
1045
1046 /**
1047 * igb_ptp_init - Initialize PTP functionality
1048 * @adapter: Board private structure
1049 *
1050 * This function is called at device probe to initialize the PTP
1051 * functionality.
1052 */
1053 void igb_ptp_init(struct igb_adapter *adapter)
1054 {
1055 struct e1000_hw *hw = &adapter->hw;
1056 struct net_device *netdev = adapter->netdev;
1057 int i;
1058
1059 switch (hw->mac.type) {
1060 case e1000_82576:
1061 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1062 adapter->ptp_caps.owner = THIS_MODULE;
1063 adapter->ptp_caps.max_adj = 999999881;
1064 adapter->ptp_caps.n_ext_ts = 0;
1065 adapter->ptp_caps.pps = 0;
1066 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1067 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1068 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1069 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1070 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1071 adapter->cc.read = igb_ptp_read_82576;
1072 adapter->cc.mask = CYCLECOUNTER_MASK(64);
1073 adapter->cc.mult = 1;
1074 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1075 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1076 break;
1077 case e1000_82580:
1078 case e1000_i354:
1079 case e1000_i350:
1080 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1081 adapter->ptp_caps.owner = THIS_MODULE;
1082 adapter->ptp_caps.max_adj = 62499999;
1083 adapter->ptp_caps.n_ext_ts = 0;
1084 adapter->ptp_caps.pps = 0;
1085 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1086 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1087 adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1088 adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1089 adapter->ptp_caps.enable = igb_ptp_feature_enable;
1090 adapter->cc.read = igb_ptp_read_82580;
1091 adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1092 adapter->cc.mult = 1;
1093 adapter->cc.shift = 0;
1094 adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1095 break;
1096 case e1000_i210:
1097 case e1000_i211:
1098 for (i = 0; i < IGB_N_SDP; i++) {
1099 struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1100
1101 snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1102 ppd->index = i;
1103 ppd->func = PTP_PF_NONE;
1104 }
1105 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1106 adapter->ptp_caps.owner = THIS_MODULE;
1107 adapter->ptp_caps.max_adj = 62499999;
1108 adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1109 adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1110 adapter->ptp_caps.n_pins = IGB_N_SDP;
1111 adapter->ptp_caps.pps = 1;
1112 adapter->ptp_caps.pin_config = adapter->sdp_config;
1113 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1114 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1115 adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1116 adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1117 adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1118 adapter->ptp_caps.verify = igb_ptp_verify_pin;
1119 break;
1120 default:
1121 adapter->ptp_clock = NULL;
1122 return;
1123 }
1124
1125 spin_lock_init(&adapter->tmreg_lock);
1126 INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1127
1128 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1129 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1130 igb_ptp_overflow_check);
1131
1132 adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1133 adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1134
1135 igb_ptp_reset(adapter);
1136
1137 adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1138 &adapter->pdev->dev);
1139 if (IS_ERR(adapter->ptp_clock)) {
1140 adapter->ptp_clock = NULL;
1141 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1142 } else {
1143 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1144 adapter->netdev->name);
1145 adapter->ptp_flags |= IGB_PTP_ENABLED;
1146 }
1147 }
1148
1149 /**
1150 * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1151 * @adapter: Board private structure
1152 *
1153 * This function stops the overflow check work and PTP Tx timestamp work, and
1154 * will prepare the device for OS suspend.
1155 */
1156 void igb_ptp_suspend(struct igb_adapter *adapter)
1157 {
1158 if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1159 return;
1160
1161 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1162 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1163
1164 cancel_work_sync(&adapter->ptp_tx_work);
1165 if (adapter->ptp_tx_skb) {
1166 dev_kfree_skb_any(adapter->ptp_tx_skb);
1167 adapter->ptp_tx_skb = NULL;
1168 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1169 }
1170 }
1171
1172 /**
1173 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1174 * @adapter: Board private structure.
1175 *
1176 * This function stops the PTP support and cancels the delayed work.
1177 **/
1178 void igb_ptp_stop(struct igb_adapter *adapter)
1179 {
1180 igb_ptp_suspend(adapter);
1181
1182 if (adapter->ptp_clock) {
1183 ptp_clock_unregister(adapter->ptp_clock);
1184 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1185 adapter->netdev->name);
1186 adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1187 }
1188 }
1189
1190 /**
1191 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1192 * @adapter: Board private structure.
1193 *
1194 * This function handles the reset work required to re-enable the PTP device.
1195 **/
1196 void igb_ptp_reset(struct igb_adapter *adapter)
1197 {
1198 struct e1000_hw *hw = &adapter->hw;
1199 unsigned long flags;
1200
1201 /* reset the tstamp_config */
1202 igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1203
1204 spin_lock_irqsave(&adapter->tmreg_lock, flags);
1205
1206 switch (adapter->hw.mac.type) {
1207 case e1000_82576:
1208 /* Dial the nominal frequency. */
1209 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1210 break;
1211 case e1000_82580:
1212 case e1000_i354:
1213 case e1000_i350:
1214 case e1000_i210:
1215 case e1000_i211:
1216 wr32(E1000_TSAUXC, 0x0);
1217 wr32(E1000_TSSDP, 0x0);
1218 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1219 wr32(E1000_IMS, E1000_IMS_TS);
1220 break;
1221 default:
1222 /* No work to do. */
1223 goto out;
1224 }
1225
1226 /* Re-initialize the timer. */
1227 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1228 struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1229
1230 igb_ptp_write_i210(adapter, &ts);
1231 } else {
1232 timecounter_init(&adapter->tc, &adapter->cc,
1233 ktime_to_ns(ktime_get_real()));
1234 }
1235 out:
1236 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1237
1238 wrfl();
1239
1240 if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1241 schedule_delayed_work(&adapter->ptp_overflow_work,
1242 IGB_SYSTIM_OVERFLOW_PERIOD);
1243 }