]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/igbvf/netdev.c
net: define gso types for IPx over IPv4 and IPv6
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, see <http://www.gnu.org/licenses/>.
17
18 The full GNU General Public License is included in this distribution in
19 the file called "COPYING".
20
21 Contact Information:
22 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24
25 *******************************************************************************/
26
27 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <linux/slab.h>
40 #include <net/checksum.h>
41 #include <net/ip6_checksum.h>
42 #include <linux/mii.h>
43 #include <linux/ethtool.h>
44 #include <linux/if_vlan.h>
45 #include <linux/prefetch.h>
46 #include <linux/sctp.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
85 };
86
87 /**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 * @rx_ring: address of receive ring structure
90 **/
91 static int igbvf_desc_unused(struct igbvf_ring *ring)
92 {
93 if (ring->next_to_clean > ring->next_to_use)
94 return ring->next_to_clean - ring->next_to_use - 1;
95
96 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
97 }
98
99 /**
100 * igbvf_receive_skb - helper function to handle Rx indications
101 * @adapter: board private structure
102 * @status: descriptor status field as written by hardware
103 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
104 * @skb: pointer to sk_buff to be indicated to stack
105 **/
106 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
107 struct net_device *netdev,
108 struct sk_buff *skb,
109 u32 status, u16 vlan)
110 {
111 u16 vid;
112
113 if (status & E1000_RXD_STAT_VP) {
114 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
115 (status & E1000_RXDEXT_STATERR_LB))
116 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
117 else
118 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
119 if (test_bit(vid, adapter->active_vlans))
120 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
121 }
122
123 napi_gro_receive(&adapter->rx_ring->napi, skb);
124 }
125
126 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
127 u32 status_err, struct sk_buff *skb)
128 {
129 skb_checksum_none_assert(skb);
130
131 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
132 if ((status_err & E1000_RXD_STAT_IXSM) ||
133 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
134 return;
135
136 /* TCP/UDP checksum error bit is set */
137 if (status_err &
138 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
139 /* let the stack verify checksum errors */
140 adapter->hw_csum_err++;
141 return;
142 }
143
144 /* It must be a TCP or UDP packet with a valid checksum */
145 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
146 skb->ip_summed = CHECKSUM_UNNECESSARY;
147
148 adapter->hw_csum_good++;
149 }
150
151 /**
152 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
153 * @rx_ring: address of ring structure to repopulate
154 * @cleaned_count: number of buffers to repopulate
155 **/
156 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
157 int cleaned_count)
158 {
159 struct igbvf_adapter *adapter = rx_ring->adapter;
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 union e1000_adv_rx_desc *rx_desc;
163 struct igbvf_buffer *buffer_info;
164 struct sk_buff *skb;
165 unsigned int i;
166 int bufsz;
167
168 i = rx_ring->next_to_use;
169 buffer_info = &rx_ring->buffer_info[i];
170
171 if (adapter->rx_ps_hdr_size)
172 bufsz = adapter->rx_ps_hdr_size;
173 else
174 bufsz = adapter->rx_buffer_len;
175
176 while (cleaned_count--) {
177 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
178
179 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
180 if (!buffer_info->page) {
181 buffer_info->page = alloc_page(GFP_ATOMIC);
182 if (!buffer_info->page) {
183 adapter->alloc_rx_buff_failed++;
184 goto no_buffers;
185 }
186 buffer_info->page_offset = 0;
187 } else {
188 buffer_info->page_offset ^= PAGE_SIZE / 2;
189 }
190 buffer_info->page_dma =
191 dma_map_page(&pdev->dev, buffer_info->page,
192 buffer_info->page_offset,
193 PAGE_SIZE / 2,
194 DMA_FROM_DEVICE);
195 if (dma_mapping_error(&pdev->dev,
196 buffer_info->page_dma)) {
197 __free_page(buffer_info->page);
198 buffer_info->page = NULL;
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 break;
201 }
202 }
203
204 if (!buffer_info->skb) {
205 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
206 if (!skb) {
207 adapter->alloc_rx_buff_failed++;
208 goto no_buffers;
209 }
210
211 buffer_info->skb = skb;
212 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
213 bufsz,
214 DMA_FROM_DEVICE);
215 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
216 dev_kfree_skb(buffer_info->skb);
217 buffer_info->skb = NULL;
218 dev_err(&pdev->dev, "RX DMA map failed\n");
219 goto no_buffers;
220 }
221 }
222 /* Refresh the desc even if buffer_addrs didn't change because
223 * each write-back erases this info.
224 */
225 if (adapter->rx_ps_hdr_size) {
226 rx_desc->read.pkt_addr =
227 cpu_to_le64(buffer_info->page_dma);
228 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
229 } else {
230 rx_desc->read.pkt_addr = cpu_to_le64(buffer_info->dma);
231 rx_desc->read.hdr_addr = 0;
232 }
233
234 i++;
235 if (i == rx_ring->count)
236 i = 0;
237 buffer_info = &rx_ring->buffer_info[i];
238 }
239
240 no_buffers:
241 if (rx_ring->next_to_use != i) {
242 rx_ring->next_to_use = i;
243 if (i == 0)
244 i = (rx_ring->count - 1);
245 else
246 i--;
247
248 /* Force memory writes to complete before letting h/w
249 * know there are new descriptors to fetch. (Only
250 * applicable for weak-ordered memory model archs,
251 * such as IA-64).
252 */
253 wmb();
254 writel(i, adapter->hw.hw_addr + rx_ring->tail);
255 }
256 }
257
258 /**
259 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
260 * @adapter: board private structure
261 *
262 * the return value indicates whether actual cleaning was done, there
263 * is no guarantee that everything was cleaned
264 **/
265 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
266 int *work_done, int work_to_do)
267 {
268 struct igbvf_ring *rx_ring = adapter->rx_ring;
269 struct net_device *netdev = adapter->netdev;
270 struct pci_dev *pdev = adapter->pdev;
271 union e1000_adv_rx_desc *rx_desc, *next_rxd;
272 struct igbvf_buffer *buffer_info, *next_buffer;
273 struct sk_buff *skb;
274 bool cleaned = false;
275 int cleaned_count = 0;
276 unsigned int total_bytes = 0, total_packets = 0;
277 unsigned int i;
278 u32 length, hlen, staterr;
279
280 i = rx_ring->next_to_clean;
281 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
282 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
283
284 while (staterr & E1000_RXD_STAT_DD) {
285 if (*work_done >= work_to_do)
286 break;
287 (*work_done)++;
288 rmb(); /* read descriptor and rx_buffer_info after status DD */
289
290 buffer_info = &rx_ring->buffer_info[i];
291
292 /* HW will not DMA in data larger than the given buffer, even
293 * if it parses the (NFS, of course) header to be larger. In
294 * that case, it fills the header buffer and spills the rest
295 * into the page.
296 */
297 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info)
298 & E1000_RXDADV_HDRBUFLEN_MASK) >>
299 E1000_RXDADV_HDRBUFLEN_SHIFT;
300 if (hlen > adapter->rx_ps_hdr_size)
301 hlen = adapter->rx_ps_hdr_size;
302
303 length = le16_to_cpu(rx_desc->wb.upper.length);
304 cleaned = true;
305 cleaned_count++;
306
307 skb = buffer_info->skb;
308 prefetch(skb->data - NET_IP_ALIGN);
309 buffer_info->skb = NULL;
310 if (!adapter->rx_ps_hdr_size) {
311 dma_unmap_single(&pdev->dev, buffer_info->dma,
312 adapter->rx_buffer_len,
313 DMA_FROM_DEVICE);
314 buffer_info->dma = 0;
315 skb_put(skb, length);
316 goto send_up;
317 }
318
319 if (!skb_shinfo(skb)->nr_frags) {
320 dma_unmap_single(&pdev->dev, buffer_info->dma,
321 adapter->rx_ps_hdr_size,
322 DMA_FROM_DEVICE);
323 buffer_info->dma = 0;
324 skb_put(skb, hlen);
325 }
326
327 if (length) {
328 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
329 PAGE_SIZE / 2,
330 DMA_FROM_DEVICE);
331 buffer_info->page_dma = 0;
332
333 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
334 buffer_info->page,
335 buffer_info->page_offset,
336 length);
337
338 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
339 (page_count(buffer_info->page) != 1))
340 buffer_info->page = NULL;
341 else
342 get_page(buffer_info->page);
343
344 skb->len += length;
345 skb->data_len += length;
346 skb->truesize += PAGE_SIZE / 2;
347 }
348 send_up:
349 i++;
350 if (i == rx_ring->count)
351 i = 0;
352 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
353 prefetch(next_rxd);
354 next_buffer = &rx_ring->buffer_info[i];
355
356 if (!(staterr & E1000_RXD_STAT_EOP)) {
357 buffer_info->skb = next_buffer->skb;
358 buffer_info->dma = next_buffer->dma;
359 next_buffer->skb = skb;
360 next_buffer->dma = 0;
361 goto next_desc;
362 }
363
364 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
365 dev_kfree_skb_irq(skb);
366 goto next_desc;
367 }
368
369 total_bytes += skb->len;
370 total_packets++;
371
372 igbvf_rx_checksum_adv(adapter, staterr, skb);
373
374 skb->protocol = eth_type_trans(skb, netdev);
375
376 igbvf_receive_skb(adapter, netdev, skb, staterr,
377 rx_desc->wb.upper.vlan);
378
379 next_desc:
380 rx_desc->wb.upper.status_error = 0;
381
382 /* return some buffers to hardware, one at a time is too slow */
383 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
384 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
385 cleaned_count = 0;
386 }
387
388 /* use prefetched values */
389 rx_desc = next_rxd;
390 buffer_info = next_buffer;
391
392 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
393 }
394
395 rx_ring->next_to_clean = i;
396 cleaned_count = igbvf_desc_unused(rx_ring);
397
398 if (cleaned_count)
399 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
400
401 adapter->total_rx_packets += total_packets;
402 adapter->total_rx_bytes += total_bytes;
403 adapter->net_stats.rx_bytes += total_bytes;
404 adapter->net_stats.rx_packets += total_packets;
405 return cleaned;
406 }
407
408 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
409 struct igbvf_buffer *buffer_info)
410 {
411 if (buffer_info->dma) {
412 if (buffer_info->mapped_as_page)
413 dma_unmap_page(&adapter->pdev->dev,
414 buffer_info->dma,
415 buffer_info->length,
416 DMA_TO_DEVICE);
417 else
418 dma_unmap_single(&adapter->pdev->dev,
419 buffer_info->dma,
420 buffer_info->length,
421 DMA_TO_DEVICE);
422 buffer_info->dma = 0;
423 }
424 if (buffer_info->skb) {
425 dev_kfree_skb_any(buffer_info->skb);
426 buffer_info->skb = NULL;
427 }
428 buffer_info->time_stamp = 0;
429 }
430
431 /**
432 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
433 * @adapter: board private structure
434 *
435 * Return 0 on success, negative on failure
436 **/
437 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
438 struct igbvf_ring *tx_ring)
439 {
440 struct pci_dev *pdev = adapter->pdev;
441 int size;
442
443 size = sizeof(struct igbvf_buffer) * tx_ring->count;
444 tx_ring->buffer_info = vzalloc(size);
445 if (!tx_ring->buffer_info)
446 goto err;
447
448 /* round up to nearest 4K */
449 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
450 tx_ring->size = ALIGN(tx_ring->size, 4096);
451
452 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
453 &tx_ring->dma, GFP_KERNEL);
454 if (!tx_ring->desc)
455 goto err;
456
457 tx_ring->adapter = adapter;
458 tx_ring->next_to_use = 0;
459 tx_ring->next_to_clean = 0;
460
461 return 0;
462 err:
463 vfree(tx_ring->buffer_info);
464 dev_err(&adapter->pdev->dev,
465 "Unable to allocate memory for the transmit descriptor ring\n");
466 return -ENOMEM;
467 }
468
469 /**
470 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
471 * @adapter: board private structure
472 *
473 * Returns 0 on success, negative on failure
474 **/
475 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
476 struct igbvf_ring *rx_ring)
477 {
478 struct pci_dev *pdev = adapter->pdev;
479 int size, desc_len;
480
481 size = sizeof(struct igbvf_buffer) * rx_ring->count;
482 rx_ring->buffer_info = vzalloc(size);
483 if (!rx_ring->buffer_info)
484 goto err;
485
486 desc_len = sizeof(union e1000_adv_rx_desc);
487
488 /* Round up to nearest 4K */
489 rx_ring->size = rx_ring->count * desc_len;
490 rx_ring->size = ALIGN(rx_ring->size, 4096);
491
492 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
493 &rx_ring->dma, GFP_KERNEL);
494 if (!rx_ring->desc)
495 goto err;
496
497 rx_ring->next_to_clean = 0;
498 rx_ring->next_to_use = 0;
499
500 rx_ring->adapter = adapter;
501
502 return 0;
503
504 err:
505 vfree(rx_ring->buffer_info);
506 rx_ring->buffer_info = NULL;
507 dev_err(&adapter->pdev->dev,
508 "Unable to allocate memory for the receive descriptor ring\n");
509 return -ENOMEM;
510 }
511
512 /**
513 * igbvf_clean_tx_ring - Free Tx Buffers
514 * @tx_ring: ring to be cleaned
515 **/
516 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
517 {
518 struct igbvf_adapter *adapter = tx_ring->adapter;
519 struct igbvf_buffer *buffer_info;
520 unsigned long size;
521 unsigned int i;
522
523 if (!tx_ring->buffer_info)
524 return;
525
526 /* Free all the Tx ring sk_buffs */
527 for (i = 0; i < tx_ring->count; i++) {
528 buffer_info = &tx_ring->buffer_info[i];
529 igbvf_put_txbuf(adapter, buffer_info);
530 }
531
532 size = sizeof(struct igbvf_buffer) * tx_ring->count;
533 memset(tx_ring->buffer_info, 0, size);
534
535 /* Zero out the descriptor ring */
536 memset(tx_ring->desc, 0, tx_ring->size);
537
538 tx_ring->next_to_use = 0;
539 tx_ring->next_to_clean = 0;
540
541 writel(0, adapter->hw.hw_addr + tx_ring->head);
542 writel(0, adapter->hw.hw_addr + tx_ring->tail);
543 }
544
545 /**
546 * igbvf_free_tx_resources - Free Tx Resources per Queue
547 * @tx_ring: ring to free resources from
548 *
549 * Free all transmit software resources
550 **/
551 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
552 {
553 struct pci_dev *pdev = tx_ring->adapter->pdev;
554
555 igbvf_clean_tx_ring(tx_ring);
556
557 vfree(tx_ring->buffer_info);
558 tx_ring->buffer_info = NULL;
559
560 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
561 tx_ring->dma);
562
563 tx_ring->desc = NULL;
564 }
565
566 /**
567 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
568 * @adapter: board private structure
569 **/
570 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
571 {
572 struct igbvf_adapter *adapter = rx_ring->adapter;
573 struct igbvf_buffer *buffer_info;
574 struct pci_dev *pdev = adapter->pdev;
575 unsigned long size;
576 unsigned int i;
577
578 if (!rx_ring->buffer_info)
579 return;
580
581 /* Free all the Rx ring sk_buffs */
582 for (i = 0; i < rx_ring->count; i++) {
583 buffer_info = &rx_ring->buffer_info[i];
584 if (buffer_info->dma) {
585 if (adapter->rx_ps_hdr_size) {
586 dma_unmap_single(&pdev->dev, buffer_info->dma,
587 adapter->rx_ps_hdr_size,
588 DMA_FROM_DEVICE);
589 } else {
590 dma_unmap_single(&pdev->dev, buffer_info->dma,
591 adapter->rx_buffer_len,
592 DMA_FROM_DEVICE);
593 }
594 buffer_info->dma = 0;
595 }
596
597 if (buffer_info->skb) {
598 dev_kfree_skb(buffer_info->skb);
599 buffer_info->skb = NULL;
600 }
601
602 if (buffer_info->page) {
603 if (buffer_info->page_dma)
604 dma_unmap_page(&pdev->dev,
605 buffer_info->page_dma,
606 PAGE_SIZE / 2,
607 DMA_FROM_DEVICE);
608 put_page(buffer_info->page);
609 buffer_info->page = NULL;
610 buffer_info->page_dma = 0;
611 buffer_info->page_offset = 0;
612 }
613 }
614
615 size = sizeof(struct igbvf_buffer) * rx_ring->count;
616 memset(rx_ring->buffer_info, 0, size);
617
618 /* Zero out the descriptor ring */
619 memset(rx_ring->desc, 0, rx_ring->size);
620
621 rx_ring->next_to_clean = 0;
622 rx_ring->next_to_use = 0;
623
624 writel(0, adapter->hw.hw_addr + rx_ring->head);
625 writel(0, adapter->hw.hw_addr + rx_ring->tail);
626 }
627
628 /**
629 * igbvf_free_rx_resources - Free Rx Resources
630 * @rx_ring: ring to clean the resources from
631 *
632 * Free all receive software resources
633 **/
634
635 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
636 {
637 struct pci_dev *pdev = rx_ring->adapter->pdev;
638
639 igbvf_clean_rx_ring(rx_ring);
640
641 vfree(rx_ring->buffer_info);
642 rx_ring->buffer_info = NULL;
643
644 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
645 rx_ring->dma);
646 rx_ring->desc = NULL;
647 }
648
649 /**
650 * igbvf_update_itr - update the dynamic ITR value based on statistics
651 * @adapter: pointer to adapter
652 * @itr_setting: current adapter->itr
653 * @packets: the number of packets during this measurement interval
654 * @bytes: the number of bytes during this measurement interval
655 *
656 * Stores a new ITR value based on packets and byte counts during the last
657 * interrupt. The advantage of per interrupt computation is faster updates
658 * and more accurate ITR for the current traffic pattern. Constants in this
659 * function were computed based on theoretical maximum wire speed and thresholds
660 * were set based on testing data as well as attempting to minimize response
661 * time while increasing bulk throughput.
662 **/
663 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
664 enum latency_range itr_setting,
665 int packets, int bytes)
666 {
667 enum latency_range retval = itr_setting;
668
669 if (packets == 0)
670 goto update_itr_done;
671
672 switch (itr_setting) {
673 case lowest_latency:
674 /* handle TSO and jumbo frames */
675 if (bytes/packets > 8000)
676 retval = bulk_latency;
677 else if ((packets < 5) && (bytes > 512))
678 retval = low_latency;
679 break;
680 case low_latency: /* 50 usec aka 20000 ints/s */
681 if (bytes > 10000) {
682 /* this if handles the TSO accounting */
683 if (bytes/packets > 8000)
684 retval = bulk_latency;
685 else if ((packets < 10) || ((bytes/packets) > 1200))
686 retval = bulk_latency;
687 else if ((packets > 35))
688 retval = lowest_latency;
689 } else if (bytes/packets > 2000) {
690 retval = bulk_latency;
691 } else if (packets <= 2 && bytes < 512) {
692 retval = lowest_latency;
693 }
694 break;
695 case bulk_latency: /* 250 usec aka 4000 ints/s */
696 if (bytes > 25000) {
697 if (packets > 35)
698 retval = low_latency;
699 } else if (bytes < 6000) {
700 retval = low_latency;
701 }
702 break;
703 default:
704 break;
705 }
706
707 update_itr_done:
708 return retval;
709 }
710
711 static int igbvf_range_to_itr(enum latency_range current_range)
712 {
713 int new_itr;
714
715 switch (current_range) {
716 /* counts and packets in update_itr are dependent on these numbers */
717 case lowest_latency:
718 new_itr = IGBVF_70K_ITR;
719 break;
720 case low_latency:
721 new_itr = IGBVF_20K_ITR;
722 break;
723 case bulk_latency:
724 new_itr = IGBVF_4K_ITR;
725 break;
726 default:
727 new_itr = IGBVF_START_ITR;
728 break;
729 }
730 return new_itr;
731 }
732
733 static void igbvf_set_itr(struct igbvf_adapter *adapter)
734 {
735 u32 new_itr;
736
737 adapter->tx_ring->itr_range =
738 igbvf_update_itr(adapter,
739 adapter->tx_ring->itr_val,
740 adapter->total_tx_packets,
741 adapter->total_tx_bytes);
742
743 /* conservative mode (itr 3) eliminates the lowest_latency setting */
744 if (adapter->requested_itr == 3 &&
745 adapter->tx_ring->itr_range == lowest_latency)
746 adapter->tx_ring->itr_range = low_latency;
747
748 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
749
750 if (new_itr != adapter->tx_ring->itr_val) {
751 u32 current_itr = adapter->tx_ring->itr_val;
752 /* this attempts to bias the interrupt rate towards Bulk
753 * by adding intermediate steps when interrupt rate is
754 * increasing
755 */
756 new_itr = new_itr > current_itr ?
757 min(current_itr + (new_itr >> 2), new_itr) :
758 new_itr;
759 adapter->tx_ring->itr_val = new_itr;
760
761 adapter->tx_ring->set_itr = 1;
762 }
763
764 adapter->rx_ring->itr_range =
765 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
766 adapter->total_rx_packets,
767 adapter->total_rx_bytes);
768 if (adapter->requested_itr == 3 &&
769 adapter->rx_ring->itr_range == lowest_latency)
770 adapter->rx_ring->itr_range = low_latency;
771
772 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
773
774 if (new_itr != adapter->rx_ring->itr_val) {
775 u32 current_itr = adapter->rx_ring->itr_val;
776
777 new_itr = new_itr > current_itr ?
778 min(current_itr + (new_itr >> 2), new_itr) :
779 new_itr;
780 adapter->rx_ring->itr_val = new_itr;
781
782 adapter->rx_ring->set_itr = 1;
783 }
784 }
785
786 /**
787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788 * @adapter: board private structure
789 *
790 * returns true if ring is completely cleaned
791 **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794 struct igbvf_adapter *adapter = tx_ring->adapter;
795 struct net_device *netdev = adapter->netdev;
796 struct igbvf_buffer *buffer_info;
797 struct sk_buff *skb;
798 union e1000_adv_tx_desc *tx_desc, *eop_desc;
799 unsigned int total_bytes = 0, total_packets = 0;
800 unsigned int i, count = 0;
801 bool cleaned = false;
802
803 i = tx_ring->next_to_clean;
804 buffer_info = &tx_ring->buffer_info[i];
805 eop_desc = buffer_info->next_to_watch;
806
807 do {
808 /* if next_to_watch is not set then there is no work pending */
809 if (!eop_desc)
810 break;
811
812 /* prevent any other reads prior to eop_desc */
813 read_barrier_depends();
814
815 /* if DD is not set pending work has not been completed */
816 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
817 break;
818
819 /* clear next_to_watch to prevent false hangs */
820 buffer_info->next_to_watch = NULL;
821
822 for (cleaned = false; !cleaned; count++) {
823 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
824 cleaned = (tx_desc == eop_desc);
825 skb = buffer_info->skb;
826
827 if (skb) {
828 unsigned int segs, bytecount;
829
830 /* gso_segs is currently only valid for tcp */
831 segs = skb_shinfo(skb)->gso_segs ?: 1;
832 /* multiply data chunks by size of headers */
833 bytecount = ((segs - 1) * skb_headlen(skb)) +
834 skb->len;
835 total_packets += segs;
836 total_bytes += bytecount;
837 }
838
839 igbvf_put_txbuf(adapter, buffer_info);
840 tx_desc->wb.status = 0;
841
842 i++;
843 if (i == tx_ring->count)
844 i = 0;
845
846 buffer_info = &tx_ring->buffer_info[i];
847 }
848
849 eop_desc = buffer_info->next_to_watch;
850 } while (count < tx_ring->count);
851
852 tx_ring->next_to_clean = i;
853
854 if (unlikely(count && netif_carrier_ok(netdev) &&
855 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
856 /* Make sure that anybody stopping the queue after this
857 * sees the new next_to_clean.
858 */
859 smp_mb();
860 if (netif_queue_stopped(netdev) &&
861 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
862 netif_wake_queue(netdev);
863 ++adapter->restart_queue;
864 }
865 }
866
867 adapter->net_stats.tx_bytes += total_bytes;
868 adapter->net_stats.tx_packets += total_packets;
869 return count < tx_ring->count;
870 }
871
872 static irqreturn_t igbvf_msix_other(int irq, void *data)
873 {
874 struct net_device *netdev = data;
875 struct igbvf_adapter *adapter = netdev_priv(netdev);
876 struct e1000_hw *hw = &adapter->hw;
877
878 adapter->int_counter1++;
879
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884 ew32(EIMS, adapter->eims_other);
885
886 return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
900 }
901
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
904
905 /* auto mask will automatically re-enable the interrupt when we write
906 * EICS
907 */
908 if (!igbvf_clean_tx_irq(tx_ring))
909 /* Ring was not completely cleaned, so fire another interrupt */
910 ew32(EICS, tx_ring->eims_value);
911 else
912 ew32(EIMS, tx_ring->eims_value);
913
914 return IRQ_HANDLED;
915 }
916
917 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
918 {
919 struct net_device *netdev = data;
920 struct igbvf_adapter *adapter = netdev_priv(netdev);
921
922 adapter->int_counter0++;
923
924 /* Write the ITR value calculated at the end of the
925 * previous interrupt.
926 */
927 if (adapter->rx_ring->set_itr) {
928 writel(adapter->rx_ring->itr_val,
929 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
930 adapter->rx_ring->set_itr = 0;
931 }
932
933 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
934 adapter->total_rx_bytes = 0;
935 adapter->total_rx_packets = 0;
936 __napi_schedule(&adapter->rx_ring->napi);
937 }
938
939 return IRQ_HANDLED;
940 }
941
942 #define IGBVF_NO_QUEUE -1
943
944 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
945 int tx_queue, int msix_vector)
946 {
947 struct e1000_hw *hw = &adapter->hw;
948 u32 ivar, index;
949
950 /* 82576 uses a table-based method for assigning vectors.
951 * Each queue has a single entry in the table to which we write
952 * a vector number along with a "valid" bit. Sadly, the layout
953 * of the table is somewhat counterintuitive.
954 */
955 if (rx_queue > IGBVF_NO_QUEUE) {
956 index = (rx_queue >> 1);
957 ivar = array_er32(IVAR0, index);
958 if (rx_queue & 0x1) {
959 /* vector goes into third byte of register */
960 ivar = ivar & 0xFF00FFFF;
961 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
962 } else {
963 /* vector goes into low byte of register */
964 ivar = ivar & 0xFFFFFF00;
965 ivar |= msix_vector | E1000_IVAR_VALID;
966 }
967 adapter->rx_ring[rx_queue].eims_value = BIT(msix_vector);
968 array_ew32(IVAR0, index, ivar);
969 }
970 if (tx_queue > IGBVF_NO_QUEUE) {
971 index = (tx_queue >> 1);
972 ivar = array_er32(IVAR0, index);
973 if (tx_queue & 0x1) {
974 /* vector goes into high byte of register */
975 ivar = ivar & 0x00FFFFFF;
976 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
977 } else {
978 /* vector goes into second byte of register */
979 ivar = ivar & 0xFFFF00FF;
980 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
981 }
982 adapter->tx_ring[tx_queue].eims_value = BIT(msix_vector);
983 array_ew32(IVAR0, index, ivar);
984 }
985 }
986
987 /**
988 * igbvf_configure_msix - Configure MSI-X hardware
989 * @adapter: board private structure
990 *
991 * igbvf_configure_msix sets up the hardware to properly
992 * generate MSI-X interrupts.
993 **/
994 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
995 {
996 u32 tmp;
997 struct e1000_hw *hw = &adapter->hw;
998 struct igbvf_ring *tx_ring = adapter->tx_ring;
999 struct igbvf_ring *rx_ring = adapter->rx_ring;
1000 int vector = 0;
1001
1002 adapter->eims_enable_mask = 0;
1003
1004 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1005 adapter->eims_enable_mask |= tx_ring->eims_value;
1006 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1007 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1008 adapter->eims_enable_mask |= rx_ring->eims_value;
1009 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1010
1011 /* set vector for other causes, i.e. link changes */
1012
1013 tmp = (vector++ | E1000_IVAR_VALID);
1014
1015 ew32(IVAR_MISC, tmp);
1016
1017 adapter->eims_enable_mask = GENMASK(vector - 1, 0);
1018 adapter->eims_other = BIT(vector - 1);
1019 e1e_flush();
1020 }
1021
1022 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1023 {
1024 if (adapter->msix_entries) {
1025 pci_disable_msix(adapter->pdev);
1026 kfree(adapter->msix_entries);
1027 adapter->msix_entries = NULL;
1028 }
1029 }
1030
1031 /**
1032 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1033 * @adapter: board private structure
1034 *
1035 * Attempt to configure interrupts using the best available
1036 * capabilities of the hardware and kernel.
1037 **/
1038 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1039 {
1040 int err = -ENOMEM;
1041 int i;
1042
1043 /* we allocate 3 vectors, 1 for Tx, 1 for Rx, one for PF messages */
1044 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1045 GFP_KERNEL);
1046 if (adapter->msix_entries) {
1047 for (i = 0; i < 3; i++)
1048 adapter->msix_entries[i].entry = i;
1049
1050 err = pci_enable_msix_range(adapter->pdev,
1051 adapter->msix_entries, 3, 3);
1052 }
1053
1054 if (err < 0) {
1055 /* MSI-X failed */
1056 dev_err(&adapter->pdev->dev,
1057 "Failed to initialize MSI-X interrupts.\n");
1058 igbvf_reset_interrupt_capability(adapter);
1059 }
1060 }
1061
1062 /**
1063 * igbvf_request_msix - Initialize MSI-X interrupts
1064 * @adapter: board private structure
1065 *
1066 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1067 * kernel.
1068 **/
1069 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1070 {
1071 struct net_device *netdev = adapter->netdev;
1072 int err = 0, vector = 0;
1073
1074 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1075 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1076 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1077 } else {
1078 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1079 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1080 }
1081
1082 err = request_irq(adapter->msix_entries[vector].vector,
1083 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1084 netdev);
1085 if (err)
1086 goto out;
1087
1088 adapter->tx_ring->itr_register = E1000_EITR(vector);
1089 adapter->tx_ring->itr_val = adapter->current_itr;
1090 vector++;
1091
1092 err = request_irq(adapter->msix_entries[vector].vector,
1093 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1094 netdev);
1095 if (err)
1096 goto out;
1097
1098 adapter->rx_ring->itr_register = E1000_EITR(vector);
1099 adapter->rx_ring->itr_val = adapter->current_itr;
1100 vector++;
1101
1102 err = request_irq(adapter->msix_entries[vector].vector,
1103 igbvf_msix_other, 0, netdev->name, netdev);
1104 if (err)
1105 goto out;
1106
1107 igbvf_configure_msix(adapter);
1108 return 0;
1109 out:
1110 return err;
1111 }
1112
1113 /**
1114 * igbvf_alloc_queues - Allocate memory for all rings
1115 * @adapter: board private structure to initialize
1116 **/
1117 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1118 {
1119 struct net_device *netdev = adapter->netdev;
1120
1121 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1122 if (!adapter->tx_ring)
1123 return -ENOMEM;
1124
1125 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1126 if (!adapter->rx_ring) {
1127 kfree(adapter->tx_ring);
1128 return -ENOMEM;
1129 }
1130
1131 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1132
1133 return 0;
1134 }
1135
1136 /**
1137 * igbvf_request_irq - initialize interrupts
1138 * @adapter: board private structure
1139 *
1140 * Attempts to configure interrupts using the best available
1141 * capabilities of the hardware and kernel.
1142 **/
1143 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1144 {
1145 int err = -1;
1146
1147 /* igbvf supports msi-x only */
1148 if (adapter->msix_entries)
1149 err = igbvf_request_msix(adapter);
1150
1151 if (!err)
1152 return err;
1153
1154 dev_err(&adapter->pdev->dev,
1155 "Unable to allocate interrupt, Error: %d\n", err);
1156
1157 return err;
1158 }
1159
1160 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1161 {
1162 struct net_device *netdev = adapter->netdev;
1163 int vector;
1164
1165 if (adapter->msix_entries) {
1166 for (vector = 0; vector < 3; vector++)
1167 free_irq(adapter->msix_entries[vector].vector, netdev);
1168 }
1169 }
1170
1171 /**
1172 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1173 * @adapter: board private structure
1174 **/
1175 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1176 {
1177 struct e1000_hw *hw = &adapter->hw;
1178
1179 ew32(EIMC, ~0);
1180
1181 if (adapter->msix_entries)
1182 ew32(EIAC, 0);
1183 }
1184
1185 /**
1186 * igbvf_irq_enable - Enable default interrupt generation settings
1187 * @adapter: board private structure
1188 **/
1189 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1190 {
1191 struct e1000_hw *hw = &adapter->hw;
1192
1193 ew32(EIAC, adapter->eims_enable_mask);
1194 ew32(EIAM, adapter->eims_enable_mask);
1195 ew32(EIMS, adapter->eims_enable_mask);
1196 }
1197
1198 /**
1199 * igbvf_poll - NAPI Rx polling callback
1200 * @napi: struct associated with this polling callback
1201 * @budget: amount of packets driver is allowed to process this poll
1202 **/
1203 static int igbvf_poll(struct napi_struct *napi, int budget)
1204 {
1205 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1206 struct igbvf_adapter *adapter = rx_ring->adapter;
1207 struct e1000_hw *hw = &adapter->hw;
1208 int work_done = 0;
1209
1210 igbvf_clean_rx_irq(adapter, &work_done, budget);
1211
1212 /* If not enough Rx work done, exit the polling mode */
1213 if (work_done < budget) {
1214 napi_complete_done(napi, work_done);
1215
1216 if (adapter->requested_itr & 3)
1217 igbvf_set_itr(adapter);
1218
1219 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1220 ew32(EIMS, adapter->rx_ring->eims_value);
1221 }
1222
1223 return work_done;
1224 }
1225
1226 /**
1227 * igbvf_set_rlpml - set receive large packet maximum length
1228 * @adapter: board private structure
1229 *
1230 * Configure the maximum size of packets that will be received
1231 */
1232 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1233 {
1234 int max_frame_size;
1235 struct e1000_hw *hw = &adapter->hw;
1236
1237 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1238 e1000_rlpml_set_vf(hw, max_frame_size);
1239 }
1240
1241 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1242 __be16 proto, u16 vid)
1243 {
1244 struct igbvf_adapter *adapter = netdev_priv(netdev);
1245 struct e1000_hw *hw = &adapter->hw;
1246
1247 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1248 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1249 return -EINVAL;
1250 }
1251 set_bit(vid, adapter->active_vlans);
1252 return 0;
1253 }
1254
1255 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1256 __be16 proto, u16 vid)
1257 {
1258 struct igbvf_adapter *adapter = netdev_priv(netdev);
1259 struct e1000_hw *hw = &adapter->hw;
1260
1261 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1262 dev_err(&adapter->pdev->dev,
1263 "Failed to remove vlan id %d\n", vid);
1264 return -EINVAL;
1265 }
1266 clear_bit(vid, adapter->active_vlans);
1267 return 0;
1268 }
1269
1270 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1271 {
1272 u16 vid;
1273
1274 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1275 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1276 }
1277
1278 /**
1279 * igbvf_configure_tx - Configure Transmit Unit after Reset
1280 * @adapter: board private structure
1281 *
1282 * Configure the Tx unit of the MAC after a reset.
1283 **/
1284 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1285 {
1286 struct e1000_hw *hw = &adapter->hw;
1287 struct igbvf_ring *tx_ring = adapter->tx_ring;
1288 u64 tdba;
1289 u32 txdctl, dca_txctrl;
1290
1291 /* disable transmits */
1292 txdctl = er32(TXDCTL(0));
1293 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1294 e1e_flush();
1295 msleep(10);
1296
1297 /* Setup the HW Tx Head and Tail descriptor pointers */
1298 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1299 tdba = tx_ring->dma;
1300 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1301 ew32(TDBAH(0), (tdba >> 32));
1302 ew32(TDH(0), 0);
1303 ew32(TDT(0), 0);
1304 tx_ring->head = E1000_TDH(0);
1305 tx_ring->tail = E1000_TDT(0);
1306
1307 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1308 * MUST be delivered in order or it will completely screw up
1309 * our bookkeeping.
1310 */
1311 dca_txctrl = er32(DCA_TXCTRL(0));
1312 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1313 ew32(DCA_TXCTRL(0), dca_txctrl);
1314
1315 /* enable transmits */
1316 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1317 ew32(TXDCTL(0), txdctl);
1318
1319 /* Setup Transmit Descriptor Settings for eop descriptor */
1320 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1321
1322 /* enable Report Status bit */
1323 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1324 }
1325
1326 /**
1327 * igbvf_setup_srrctl - configure the receive control registers
1328 * @adapter: Board private structure
1329 **/
1330 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1331 {
1332 struct e1000_hw *hw = &adapter->hw;
1333 u32 srrctl = 0;
1334
1335 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1336 E1000_SRRCTL_BSIZEHDR_MASK |
1337 E1000_SRRCTL_BSIZEPKT_MASK);
1338
1339 /* Enable queue drop to avoid head of line blocking */
1340 srrctl |= E1000_SRRCTL_DROP_EN;
1341
1342 /* Setup buffer sizes */
1343 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1344 E1000_SRRCTL_BSIZEPKT_SHIFT;
1345
1346 if (adapter->rx_buffer_len < 2048) {
1347 adapter->rx_ps_hdr_size = 0;
1348 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1349 } else {
1350 adapter->rx_ps_hdr_size = 128;
1351 srrctl |= adapter->rx_ps_hdr_size <<
1352 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1353 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1354 }
1355
1356 ew32(SRRCTL(0), srrctl);
1357 }
1358
1359 /**
1360 * igbvf_configure_rx - Configure Receive Unit after Reset
1361 * @adapter: board private structure
1362 *
1363 * Configure the Rx unit of the MAC after a reset.
1364 **/
1365 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1366 {
1367 struct e1000_hw *hw = &adapter->hw;
1368 struct igbvf_ring *rx_ring = adapter->rx_ring;
1369 u64 rdba;
1370 u32 rxdctl;
1371
1372 /* disable receives */
1373 rxdctl = er32(RXDCTL(0));
1374 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1375 e1e_flush();
1376 msleep(10);
1377
1378 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1379 * the Base and Length of the Rx Descriptor Ring
1380 */
1381 rdba = rx_ring->dma;
1382 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1383 ew32(RDBAH(0), (rdba >> 32));
1384 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1385 rx_ring->head = E1000_RDH(0);
1386 rx_ring->tail = E1000_RDT(0);
1387 ew32(RDH(0), 0);
1388 ew32(RDT(0), 0);
1389
1390 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1391 rxdctl &= 0xFFF00000;
1392 rxdctl |= IGBVF_RX_PTHRESH;
1393 rxdctl |= IGBVF_RX_HTHRESH << 8;
1394 rxdctl |= IGBVF_RX_WTHRESH << 16;
1395
1396 igbvf_set_rlpml(adapter);
1397
1398 /* enable receives */
1399 ew32(RXDCTL(0), rxdctl);
1400 }
1401
1402 /**
1403 * igbvf_set_multi - Multicast and Promiscuous mode set
1404 * @netdev: network interface device structure
1405 *
1406 * The set_multi entry point is called whenever the multicast address
1407 * list or the network interface flags are updated. This routine is
1408 * responsible for configuring the hardware for proper multicast,
1409 * promiscuous mode, and all-multi behavior.
1410 **/
1411 static void igbvf_set_multi(struct net_device *netdev)
1412 {
1413 struct igbvf_adapter *adapter = netdev_priv(netdev);
1414 struct e1000_hw *hw = &adapter->hw;
1415 struct netdev_hw_addr *ha;
1416 u8 *mta_list = NULL;
1417 int i;
1418
1419 if (!netdev_mc_empty(netdev)) {
1420 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1421 GFP_ATOMIC);
1422 if (!mta_list)
1423 return;
1424 }
1425
1426 /* prepare a packed array of only addresses. */
1427 i = 0;
1428 netdev_for_each_mc_addr(ha, netdev)
1429 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1430
1431 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1432 kfree(mta_list);
1433 }
1434
1435 /**
1436 * igbvf_configure - configure the hardware for Rx and Tx
1437 * @adapter: private board structure
1438 **/
1439 static void igbvf_configure(struct igbvf_adapter *adapter)
1440 {
1441 igbvf_set_multi(adapter->netdev);
1442
1443 igbvf_restore_vlan(adapter);
1444
1445 igbvf_configure_tx(adapter);
1446 igbvf_setup_srrctl(adapter);
1447 igbvf_configure_rx(adapter);
1448 igbvf_alloc_rx_buffers(adapter->rx_ring,
1449 igbvf_desc_unused(adapter->rx_ring));
1450 }
1451
1452 /* igbvf_reset - bring the hardware into a known good state
1453 * @adapter: private board structure
1454 *
1455 * This function boots the hardware and enables some settings that
1456 * require a configuration cycle of the hardware - those cannot be
1457 * set/changed during runtime. After reset the device needs to be
1458 * properly configured for Rx, Tx etc.
1459 */
1460 static void igbvf_reset(struct igbvf_adapter *adapter)
1461 {
1462 struct e1000_mac_info *mac = &adapter->hw.mac;
1463 struct net_device *netdev = adapter->netdev;
1464 struct e1000_hw *hw = &adapter->hw;
1465
1466 /* Allow time for pending master requests to run */
1467 if (mac->ops.reset_hw(hw))
1468 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1469
1470 mac->ops.init_hw(hw);
1471
1472 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1473 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1474 netdev->addr_len);
1475 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1476 netdev->addr_len);
1477 }
1478
1479 adapter->last_reset = jiffies;
1480 }
1481
1482 int igbvf_up(struct igbvf_adapter *adapter)
1483 {
1484 struct e1000_hw *hw = &adapter->hw;
1485
1486 /* hardware has been reset, we need to reload some things */
1487 igbvf_configure(adapter);
1488
1489 clear_bit(__IGBVF_DOWN, &adapter->state);
1490
1491 napi_enable(&adapter->rx_ring->napi);
1492 if (adapter->msix_entries)
1493 igbvf_configure_msix(adapter);
1494
1495 /* Clear any pending interrupts. */
1496 er32(EICR);
1497 igbvf_irq_enable(adapter);
1498
1499 /* start the watchdog */
1500 hw->mac.get_link_status = 1;
1501 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1502
1503 return 0;
1504 }
1505
1506 void igbvf_down(struct igbvf_adapter *adapter)
1507 {
1508 struct net_device *netdev = adapter->netdev;
1509 struct e1000_hw *hw = &adapter->hw;
1510 u32 rxdctl, txdctl;
1511
1512 /* signal that we're down so the interrupt handler does not
1513 * reschedule our watchdog timer
1514 */
1515 set_bit(__IGBVF_DOWN, &adapter->state);
1516
1517 /* disable receives in the hardware */
1518 rxdctl = er32(RXDCTL(0));
1519 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1520
1521 netif_carrier_off(netdev);
1522 netif_stop_queue(netdev);
1523
1524 /* disable transmits in the hardware */
1525 txdctl = er32(TXDCTL(0));
1526 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1527
1528 /* flush both disables and wait for them to finish */
1529 e1e_flush();
1530 msleep(10);
1531
1532 napi_disable(&adapter->rx_ring->napi);
1533
1534 igbvf_irq_disable(adapter);
1535
1536 del_timer_sync(&adapter->watchdog_timer);
1537
1538 /* record the stats before reset*/
1539 igbvf_update_stats(adapter);
1540
1541 adapter->link_speed = 0;
1542 adapter->link_duplex = 0;
1543
1544 igbvf_reset(adapter);
1545 igbvf_clean_tx_ring(adapter->tx_ring);
1546 igbvf_clean_rx_ring(adapter->rx_ring);
1547 }
1548
1549 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1550 {
1551 might_sleep();
1552 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1553 usleep_range(1000, 2000);
1554 igbvf_down(adapter);
1555 igbvf_up(adapter);
1556 clear_bit(__IGBVF_RESETTING, &adapter->state);
1557 }
1558
1559 /**
1560 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1561 * @adapter: board private structure to initialize
1562 *
1563 * igbvf_sw_init initializes the Adapter private data structure.
1564 * Fields are initialized based on PCI device information and
1565 * OS network device settings (MTU size).
1566 **/
1567 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1568 {
1569 struct net_device *netdev = adapter->netdev;
1570 s32 rc;
1571
1572 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1573 adapter->rx_ps_hdr_size = 0;
1574 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1575 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1576
1577 adapter->tx_int_delay = 8;
1578 adapter->tx_abs_int_delay = 32;
1579 adapter->rx_int_delay = 0;
1580 adapter->rx_abs_int_delay = 8;
1581 adapter->requested_itr = 3;
1582 adapter->current_itr = IGBVF_START_ITR;
1583
1584 /* Set various function pointers */
1585 adapter->ei->init_ops(&adapter->hw);
1586
1587 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1588 if (rc)
1589 return rc;
1590
1591 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1592 if (rc)
1593 return rc;
1594
1595 igbvf_set_interrupt_capability(adapter);
1596
1597 if (igbvf_alloc_queues(adapter))
1598 return -ENOMEM;
1599
1600 spin_lock_init(&adapter->tx_queue_lock);
1601
1602 /* Explicitly disable IRQ since the NIC can be in any state. */
1603 igbvf_irq_disable(adapter);
1604
1605 spin_lock_init(&adapter->stats_lock);
1606
1607 set_bit(__IGBVF_DOWN, &adapter->state);
1608 return 0;
1609 }
1610
1611 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1612 {
1613 struct e1000_hw *hw = &adapter->hw;
1614
1615 adapter->stats.last_gprc = er32(VFGPRC);
1616 adapter->stats.last_gorc = er32(VFGORC);
1617 adapter->stats.last_gptc = er32(VFGPTC);
1618 adapter->stats.last_gotc = er32(VFGOTC);
1619 adapter->stats.last_mprc = er32(VFMPRC);
1620 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1621 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1622 adapter->stats.last_gorlbc = er32(VFGORLBC);
1623 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1624
1625 adapter->stats.base_gprc = er32(VFGPRC);
1626 adapter->stats.base_gorc = er32(VFGORC);
1627 adapter->stats.base_gptc = er32(VFGPTC);
1628 adapter->stats.base_gotc = er32(VFGOTC);
1629 adapter->stats.base_mprc = er32(VFMPRC);
1630 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1631 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1632 adapter->stats.base_gorlbc = er32(VFGORLBC);
1633 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1634 }
1635
1636 /**
1637 * igbvf_open - Called when a network interface is made active
1638 * @netdev: network interface device structure
1639 *
1640 * Returns 0 on success, negative value on failure
1641 *
1642 * The open entry point is called when a network interface is made
1643 * active by the system (IFF_UP). At this point all resources needed
1644 * for transmit and receive operations are allocated, the interrupt
1645 * handler is registered with the OS, the watchdog timer is started,
1646 * and the stack is notified that the interface is ready.
1647 **/
1648 static int igbvf_open(struct net_device *netdev)
1649 {
1650 struct igbvf_adapter *adapter = netdev_priv(netdev);
1651 struct e1000_hw *hw = &adapter->hw;
1652 int err;
1653
1654 /* disallow open during test */
1655 if (test_bit(__IGBVF_TESTING, &adapter->state))
1656 return -EBUSY;
1657
1658 /* allocate transmit descriptors */
1659 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1660 if (err)
1661 goto err_setup_tx;
1662
1663 /* allocate receive descriptors */
1664 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1665 if (err)
1666 goto err_setup_rx;
1667
1668 /* before we allocate an interrupt, we must be ready to handle it.
1669 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1670 * as soon as we call pci_request_irq, so we have to setup our
1671 * clean_rx handler before we do so.
1672 */
1673 igbvf_configure(adapter);
1674
1675 err = igbvf_request_irq(adapter);
1676 if (err)
1677 goto err_req_irq;
1678
1679 /* From here on the code is the same as igbvf_up() */
1680 clear_bit(__IGBVF_DOWN, &adapter->state);
1681
1682 napi_enable(&adapter->rx_ring->napi);
1683
1684 /* clear any pending interrupts */
1685 er32(EICR);
1686
1687 igbvf_irq_enable(adapter);
1688
1689 /* start the watchdog */
1690 hw->mac.get_link_status = 1;
1691 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1692
1693 return 0;
1694
1695 err_req_irq:
1696 igbvf_free_rx_resources(adapter->rx_ring);
1697 err_setup_rx:
1698 igbvf_free_tx_resources(adapter->tx_ring);
1699 err_setup_tx:
1700 igbvf_reset(adapter);
1701
1702 return err;
1703 }
1704
1705 /**
1706 * igbvf_close - Disables a network interface
1707 * @netdev: network interface device structure
1708 *
1709 * Returns 0, this is not allowed to fail
1710 *
1711 * The close entry point is called when an interface is de-activated
1712 * by the OS. The hardware is still under the drivers control, but
1713 * needs to be disabled. A global MAC reset is issued to stop the
1714 * hardware, and all transmit and receive resources are freed.
1715 **/
1716 static int igbvf_close(struct net_device *netdev)
1717 {
1718 struct igbvf_adapter *adapter = netdev_priv(netdev);
1719
1720 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1721 igbvf_down(adapter);
1722
1723 igbvf_free_irq(adapter);
1724
1725 igbvf_free_tx_resources(adapter->tx_ring);
1726 igbvf_free_rx_resources(adapter->rx_ring);
1727
1728 return 0;
1729 }
1730
1731 /**
1732 * igbvf_set_mac - Change the Ethernet Address of the NIC
1733 * @netdev: network interface device structure
1734 * @p: pointer to an address structure
1735 *
1736 * Returns 0 on success, negative on failure
1737 **/
1738 static int igbvf_set_mac(struct net_device *netdev, void *p)
1739 {
1740 struct igbvf_adapter *adapter = netdev_priv(netdev);
1741 struct e1000_hw *hw = &adapter->hw;
1742 struct sockaddr *addr = p;
1743
1744 if (!is_valid_ether_addr(addr->sa_data))
1745 return -EADDRNOTAVAIL;
1746
1747 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1748
1749 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1750
1751 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1752 return -EADDRNOTAVAIL;
1753
1754 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1755
1756 return 0;
1757 }
1758
1759 #define UPDATE_VF_COUNTER(reg, name) \
1760 { \
1761 u32 current_counter = er32(reg); \
1762 if (current_counter < adapter->stats.last_##name) \
1763 adapter->stats.name += 0x100000000LL; \
1764 adapter->stats.last_##name = current_counter; \
1765 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1766 adapter->stats.name |= current_counter; \
1767 }
1768
1769 /**
1770 * igbvf_update_stats - Update the board statistics counters
1771 * @adapter: board private structure
1772 **/
1773 void igbvf_update_stats(struct igbvf_adapter *adapter)
1774 {
1775 struct e1000_hw *hw = &adapter->hw;
1776 struct pci_dev *pdev = adapter->pdev;
1777
1778 /* Prevent stats update while adapter is being reset, link is down
1779 * or if the pci connection is down.
1780 */
1781 if (adapter->link_speed == 0)
1782 return;
1783
1784 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1785 return;
1786
1787 if (pci_channel_offline(pdev))
1788 return;
1789
1790 UPDATE_VF_COUNTER(VFGPRC, gprc);
1791 UPDATE_VF_COUNTER(VFGORC, gorc);
1792 UPDATE_VF_COUNTER(VFGPTC, gptc);
1793 UPDATE_VF_COUNTER(VFGOTC, gotc);
1794 UPDATE_VF_COUNTER(VFMPRC, mprc);
1795 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1796 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1797 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1798 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1799
1800 /* Fill out the OS statistics structure */
1801 adapter->net_stats.multicast = adapter->stats.mprc;
1802 }
1803
1804 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1805 {
1806 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1807 adapter->link_speed,
1808 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1809 }
1810
1811 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1812 {
1813 struct e1000_hw *hw = &adapter->hw;
1814 s32 ret_val = E1000_SUCCESS;
1815 bool link_active;
1816
1817 /* If interface is down, stay link down */
1818 if (test_bit(__IGBVF_DOWN, &adapter->state))
1819 return false;
1820
1821 ret_val = hw->mac.ops.check_for_link(hw);
1822 link_active = !hw->mac.get_link_status;
1823
1824 /* if check for link returns error we will need to reset */
1825 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1826 schedule_work(&adapter->reset_task);
1827
1828 return link_active;
1829 }
1830
1831 /**
1832 * igbvf_watchdog - Timer Call-back
1833 * @data: pointer to adapter cast into an unsigned long
1834 **/
1835 static void igbvf_watchdog(unsigned long data)
1836 {
1837 struct igbvf_adapter *adapter = (struct igbvf_adapter *)data;
1838
1839 /* Do the rest outside of interrupt context */
1840 schedule_work(&adapter->watchdog_task);
1841 }
1842
1843 static void igbvf_watchdog_task(struct work_struct *work)
1844 {
1845 struct igbvf_adapter *adapter = container_of(work,
1846 struct igbvf_adapter,
1847 watchdog_task);
1848 struct net_device *netdev = adapter->netdev;
1849 struct e1000_mac_info *mac = &adapter->hw.mac;
1850 struct igbvf_ring *tx_ring = adapter->tx_ring;
1851 struct e1000_hw *hw = &adapter->hw;
1852 u32 link;
1853 int tx_pending = 0;
1854
1855 link = igbvf_has_link(adapter);
1856
1857 if (link) {
1858 if (!netif_carrier_ok(netdev)) {
1859 mac->ops.get_link_up_info(&adapter->hw,
1860 &adapter->link_speed,
1861 &adapter->link_duplex);
1862 igbvf_print_link_info(adapter);
1863
1864 netif_carrier_on(netdev);
1865 netif_wake_queue(netdev);
1866 }
1867 } else {
1868 if (netif_carrier_ok(netdev)) {
1869 adapter->link_speed = 0;
1870 adapter->link_duplex = 0;
1871 dev_info(&adapter->pdev->dev, "Link is Down\n");
1872 netif_carrier_off(netdev);
1873 netif_stop_queue(netdev);
1874 }
1875 }
1876
1877 if (netif_carrier_ok(netdev)) {
1878 igbvf_update_stats(adapter);
1879 } else {
1880 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1881 tx_ring->count);
1882 if (tx_pending) {
1883 /* We've lost link, so the controller stops DMA,
1884 * but we've got queued Tx work that's never going
1885 * to get done, so reset controller to flush Tx.
1886 * (Do the reset outside of interrupt context).
1887 */
1888 adapter->tx_timeout_count++;
1889 schedule_work(&adapter->reset_task);
1890 }
1891 }
1892
1893 /* Cause software interrupt to ensure Rx ring is cleaned */
1894 ew32(EICS, adapter->rx_ring->eims_value);
1895
1896 /* Reset the timer */
1897 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1898 mod_timer(&adapter->watchdog_timer,
1899 round_jiffies(jiffies + (2 * HZ)));
1900 }
1901
1902 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1903 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1904 #define IGBVF_TX_FLAGS_TSO 0x00000004
1905 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1906 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1907 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1908
1909 static void igbvf_tx_ctxtdesc(struct igbvf_ring *tx_ring, u32 vlan_macip_lens,
1910 u32 type_tucmd, u32 mss_l4len_idx)
1911 {
1912 struct e1000_adv_tx_context_desc *context_desc;
1913 struct igbvf_buffer *buffer_info;
1914 u16 i = tx_ring->next_to_use;
1915
1916 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1917 buffer_info = &tx_ring->buffer_info[i];
1918
1919 i++;
1920 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1921
1922 /* set bits to identify this as an advanced context descriptor */
1923 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
1924
1925 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
1926 context_desc->seqnum_seed = 0;
1927 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
1928 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1929
1930 buffer_info->time_stamp = jiffies;
1931 buffer_info->dma = 0;
1932 }
1933
1934 static int igbvf_tso(struct igbvf_ring *tx_ring,
1935 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1936 {
1937 u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1938 union {
1939 struct iphdr *v4;
1940 struct ipv6hdr *v6;
1941 unsigned char *hdr;
1942 } ip;
1943 union {
1944 struct tcphdr *tcp;
1945 unsigned char *hdr;
1946 } l4;
1947 u32 paylen, l4_offset;
1948 int err;
1949
1950 if (skb->ip_summed != CHECKSUM_PARTIAL)
1951 return 0;
1952
1953 if (!skb_is_gso(skb))
1954 return 0;
1955
1956 err = skb_cow_head(skb, 0);
1957 if (err < 0)
1958 return err;
1959
1960 ip.hdr = skb_network_header(skb);
1961 l4.hdr = skb_checksum_start(skb);
1962
1963 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1964 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
1965
1966 /* initialize outer IP header fields */
1967 if (ip.v4->version == 4) {
1968 /* IP header will have to cancel out any data that
1969 * is not a part of the outer IP header
1970 */
1971 ip.v4->check = csum_fold(csum_add(lco_csum(skb),
1972 csum_unfold(l4.tcp->check)));
1973 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
1974
1975 ip.v4->tot_len = 0;
1976 } else {
1977 ip.v6->payload_len = 0;
1978 }
1979
1980 /* determine offset of inner transport header */
1981 l4_offset = l4.hdr - skb->data;
1982
1983 /* compute length of segmentation header */
1984 *hdr_len = (l4.tcp->doff * 4) + l4_offset;
1985
1986 /* remove payload length from inner checksum */
1987 paylen = skb->len - l4_offset;
1988 csum_replace_by_diff(&l4.tcp->check, htonl(paylen));
1989
1990 /* MSS L4LEN IDX */
1991 mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
1992 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
1993
1994 /* VLAN MACLEN IPLEN */
1995 vlan_macip_lens = l4.hdr - ip.hdr;
1996 vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
1997 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
1998
1999 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
2000
2001 return 1;
2002 }
2003
2004 static inline bool igbvf_ipv6_csum_is_sctp(struct sk_buff *skb)
2005 {
2006 unsigned int offset = 0;
2007
2008 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
2009
2010 return offset == skb_checksum_start_offset(skb);
2011 }
2012
2013 static bool igbvf_tx_csum(struct igbvf_ring *tx_ring, struct sk_buff *skb,
2014 u32 tx_flags, __be16 protocol)
2015 {
2016 u32 vlan_macip_lens = 0;
2017 u32 type_tucmd = 0;
2018
2019 if (skb->ip_summed != CHECKSUM_PARTIAL) {
2020 csum_failed:
2021 if (!(tx_flags & IGBVF_TX_FLAGS_VLAN))
2022 return false;
2023 goto no_csum;
2024 }
2025
2026 switch (skb->csum_offset) {
2027 case offsetof(struct tcphdr, check):
2028 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
2029 /* fall through */
2030 case offsetof(struct udphdr, check):
2031 break;
2032 case offsetof(struct sctphdr, checksum):
2033 /* validate that this is actually an SCTP request */
2034 if (((protocol == htons(ETH_P_IP)) &&
2035 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
2036 ((protocol == htons(ETH_P_IPV6)) &&
2037 igbvf_ipv6_csum_is_sctp(skb))) {
2038 type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
2039 break;
2040 }
2041 default:
2042 skb_checksum_help(skb);
2043 goto csum_failed;
2044 }
2045
2046 vlan_macip_lens = skb_checksum_start_offset(skb) -
2047 skb_network_offset(skb);
2048 no_csum:
2049 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
2050 vlan_macip_lens |= tx_flags & IGBVF_TX_FLAGS_VLAN_MASK;
2051
2052 igbvf_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, 0);
2053 return true;
2054 }
2055
2056 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2057 {
2058 struct igbvf_adapter *adapter = netdev_priv(netdev);
2059
2060 /* there is enough descriptors then we don't need to worry */
2061 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2062 return 0;
2063
2064 netif_stop_queue(netdev);
2065
2066 /* Herbert's original patch had:
2067 * smp_mb__after_netif_stop_queue();
2068 * but since that doesn't exist yet, just open code it.
2069 */
2070 smp_mb();
2071
2072 /* We need to check again just in case room has been made available */
2073 if (igbvf_desc_unused(adapter->tx_ring) < size)
2074 return -EBUSY;
2075
2076 netif_wake_queue(netdev);
2077
2078 ++adapter->restart_queue;
2079 return 0;
2080 }
2081
2082 #define IGBVF_MAX_TXD_PWR 16
2083 #define IGBVF_MAX_DATA_PER_TXD (1u << IGBVF_MAX_TXD_PWR)
2084
2085 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2086 struct igbvf_ring *tx_ring,
2087 struct sk_buff *skb)
2088 {
2089 struct igbvf_buffer *buffer_info;
2090 struct pci_dev *pdev = adapter->pdev;
2091 unsigned int len = skb_headlen(skb);
2092 unsigned int count = 0, i;
2093 unsigned int f;
2094
2095 i = tx_ring->next_to_use;
2096
2097 buffer_info = &tx_ring->buffer_info[i];
2098 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2099 buffer_info->length = len;
2100 /* set time_stamp *before* dma to help avoid a possible race */
2101 buffer_info->time_stamp = jiffies;
2102 buffer_info->mapped_as_page = false;
2103 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2104 DMA_TO_DEVICE);
2105 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2106 goto dma_error;
2107
2108 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2109 const struct skb_frag_struct *frag;
2110
2111 count++;
2112 i++;
2113 if (i == tx_ring->count)
2114 i = 0;
2115
2116 frag = &skb_shinfo(skb)->frags[f];
2117 len = skb_frag_size(frag);
2118
2119 buffer_info = &tx_ring->buffer_info[i];
2120 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2121 buffer_info->length = len;
2122 buffer_info->time_stamp = jiffies;
2123 buffer_info->mapped_as_page = true;
2124 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2125 DMA_TO_DEVICE);
2126 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2127 goto dma_error;
2128 }
2129
2130 tx_ring->buffer_info[i].skb = skb;
2131
2132 return ++count;
2133
2134 dma_error:
2135 dev_err(&pdev->dev, "TX DMA map failed\n");
2136
2137 /* clear timestamp and dma mappings for failed buffer_info mapping */
2138 buffer_info->dma = 0;
2139 buffer_info->time_stamp = 0;
2140 buffer_info->length = 0;
2141 buffer_info->mapped_as_page = false;
2142 if (count)
2143 count--;
2144
2145 /* clear timestamp and dma mappings for remaining portion of packet */
2146 while (count--) {
2147 if (i == 0)
2148 i += tx_ring->count;
2149 i--;
2150 buffer_info = &tx_ring->buffer_info[i];
2151 igbvf_put_txbuf(adapter, buffer_info);
2152 }
2153
2154 return 0;
2155 }
2156
2157 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2158 struct igbvf_ring *tx_ring,
2159 int tx_flags, int count,
2160 unsigned int first, u32 paylen,
2161 u8 hdr_len)
2162 {
2163 union e1000_adv_tx_desc *tx_desc = NULL;
2164 struct igbvf_buffer *buffer_info;
2165 u32 olinfo_status = 0, cmd_type_len;
2166 unsigned int i;
2167
2168 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2169 E1000_ADVTXD_DCMD_DEXT);
2170
2171 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2172 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2173
2174 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2175 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2176
2177 /* insert tcp checksum */
2178 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2179
2180 /* insert ip checksum */
2181 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2182 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2183
2184 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2185 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2186 }
2187
2188 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2189
2190 i = tx_ring->next_to_use;
2191 while (count--) {
2192 buffer_info = &tx_ring->buffer_info[i];
2193 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2194 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2195 tx_desc->read.cmd_type_len =
2196 cpu_to_le32(cmd_type_len | buffer_info->length);
2197 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2198 i++;
2199 if (i == tx_ring->count)
2200 i = 0;
2201 }
2202
2203 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2204 /* Force memory writes to complete before letting h/w
2205 * know there are new descriptors to fetch. (Only
2206 * applicable for weak-ordered memory model archs,
2207 * such as IA-64).
2208 */
2209 wmb();
2210
2211 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2212 tx_ring->next_to_use = i;
2213 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2214 /* we need this if more than one processor can write to our tail
2215 * at a time, it synchronizes IO on IA64/Altix systems
2216 */
2217 mmiowb();
2218 }
2219
2220 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2221 struct net_device *netdev,
2222 struct igbvf_ring *tx_ring)
2223 {
2224 struct igbvf_adapter *adapter = netdev_priv(netdev);
2225 unsigned int first, tx_flags = 0;
2226 u8 hdr_len = 0;
2227 int count = 0;
2228 int tso = 0;
2229 __be16 protocol = vlan_get_protocol(skb);
2230
2231 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2232 dev_kfree_skb_any(skb);
2233 return NETDEV_TX_OK;
2234 }
2235
2236 if (skb->len <= 0) {
2237 dev_kfree_skb_any(skb);
2238 return NETDEV_TX_OK;
2239 }
2240
2241 /* need: count + 4 desc gap to keep tail from touching
2242 * + 2 desc gap to keep tail from touching head,
2243 * + 1 desc for skb->data,
2244 * + 1 desc for context descriptor,
2245 * head, otherwise try next time
2246 */
2247 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2248 /* this is a hard error */
2249 return NETDEV_TX_BUSY;
2250 }
2251
2252 if (skb_vlan_tag_present(skb)) {
2253 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2254 tx_flags |= (skb_vlan_tag_get(skb) <<
2255 IGBVF_TX_FLAGS_VLAN_SHIFT);
2256 }
2257
2258 if (protocol == htons(ETH_P_IP))
2259 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2260
2261 first = tx_ring->next_to_use;
2262
2263 tso = igbvf_tso(tx_ring, skb, tx_flags, &hdr_len);
2264 if (unlikely(tso < 0)) {
2265 dev_kfree_skb_any(skb);
2266 return NETDEV_TX_OK;
2267 }
2268
2269 if (tso)
2270 tx_flags |= IGBVF_TX_FLAGS_TSO;
2271 else if (igbvf_tx_csum(tx_ring, skb, tx_flags, protocol) &&
2272 (skb->ip_summed == CHECKSUM_PARTIAL))
2273 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2274
2275 /* count reflects descriptors mapped, if 0 then mapping error
2276 * has occurred and we need to rewind the descriptor queue
2277 */
2278 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2279
2280 if (count) {
2281 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2282 first, skb->len, hdr_len);
2283 /* Make sure there is space in the ring for the next send. */
2284 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2285 } else {
2286 dev_kfree_skb_any(skb);
2287 tx_ring->buffer_info[first].time_stamp = 0;
2288 tx_ring->next_to_use = first;
2289 }
2290
2291 return NETDEV_TX_OK;
2292 }
2293
2294 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2295 struct net_device *netdev)
2296 {
2297 struct igbvf_adapter *adapter = netdev_priv(netdev);
2298 struct igbvf_ring *tx_ring;
2299
2300 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2301 dev_kfree_skb_any(skb);
2302 return NETDEV_TX_OK;
2303 }
2304
2305 tx_ring = &adapter->tx_ring[0];
2306
2307 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2308 }
2309
2310 /**
2311 * igbvf_tx_timeout - Respond to a Tx Hang
2312 * @netdev: network interface device structure
2313 **/
2314 static void igbvf_tx_timeout(struct net_device *netdev)
2315 {
2316 struct igbvf_adapter *adapter = netdev_priv(netdev);
2317
2318 /* Do the reset outside of interrupt context */
2319 adapter->tx_timeout_count++;
2320 schedule_work(&adapter->reset_task);
2321 }
2322
2323 static void igbvf_reset_task(struct work_struct *work)
2324 {
2325 struct igbvf_adapter *adapter;
2326
2327 adapter = container_of(work, struct igbvf_adapter, reset_task);
2328
2329 igbvf_reinit_locked(adapter);
2330 }
2331
2332 /**
2333 * igbvf_get_stats - Get System Network Statistics
2334 * @netdev: network interface device structure
2335 *
2336 * Returns the address of the device statistics structure.
2337 * The statistics are actually updated from the timer callback.
2338 **/
2339 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2340 {
2341 struct igbvf_adapter *adapter = netdev_priv(netdev);
2342
2343 /* only return the current stats */
2344 return &adapter->net_stats;
2345 }
2346
2347 /**
2348 * igbvf_change_mtu - Change the Maximum Transfer Unit
2349 * @netdev: network interface device structure
2350 * @new_mtu: new value for maximum frame size
2351 *
2352 * Returns 0 on success, negative on failure
2353 **/
2354 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2355 {
2356 struct igbvf_adapter *adapter = netdev_priv(netdev);
2357 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2358
2359 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2360 max_frame > MAX_JUMBO_FRAME_SIZE)
2361 return -EINVAL;
2362
2363 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2364 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2365 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2366 return -EINVAL;
2367 }
2368
2369 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2370 usleep_range(1000, 2000);
2371 /* igbvf_down has a dependency on max_frame_size */
2372 adapter->max_frame_size = max_frame;
2373 if (netif_running(netdev))
2374 igbvf_down(adapter);
2375
2376 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2377 * means we reserve 2 more, this pushes us to allocate from the next
2378 * larger slab size.
2379 * i.e. RXBUFFER_2048 --> size-4096 slab
2380 * However with the new *_jumbo_rx* routines, jumbo receives will use
2381 * fragmented skbs
2382 */
2383
2384 if (max_frame <= 1024)
2385 adapter->rx_buffer_len = 1024;
2386 else if (max_frame <= 2048)
2387 adapter->rx_buffer_len = 2048;
2388 else
2389 #if (PAGE_SIZE / 2) > 16384
2390 adapter->rx_buffer_len = 16384;
2391 #else
2392 adapter->rx_buffer_len = PAGE_SIZE / 2;
2393 #endif
2394
2395 /* adjust allocation if LPE protects us, and we aren't using SBP */
2396 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2397 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2398 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2399 ETH_FCS_LEN;
2400
2401 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2402 netdev->mtu, new_mtu);
2403 netdev->mtu = new_mtu;
2404
2405 if (netif_running(netdev))
2406 igbvf_up(adapter);
2407 else
2408 igbvf_reset(adapter);
2409
2410 clear_bit(__IGBVF_RESETTING, &adapter->state);
2411
2412 return 0;
2413 }
2414
2415 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2416 {
2417 switch (cmd) {
2418 default:
2419 return -EOPNOTSUPP;
2420 }
2421 }
2422
2423 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2424 {
2425 struct net_device *netdev = pci_get_drvdata(pdev);
2426 struct igbvf_adapter *adapter = netdev_priv(netdev);
2427 #ifdef CONFIG_PM
2428 int retval = 0;
2429 #endif
2430
2431 netif_device_detach(netdev);
2432
2433 if (netif_running(netdev)) {
2434 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2435 igbvf_down(adapter);
2436 igbvf_free_irq(adapter);
2437 }
2438
2439 #ifdef CONFIG_PM
2440 retval = pci_save_state(pdev);
2441 if (retval)
2442 return retval;
2443 #endif
2444
2445 pci_disable_device(pdev);
2446
2447 return 0;
2448 }
2449
2450 #ifdef CONFIG_PM
2451 static int igbvf_resume(struct pci_dev *pdev)
2452 {
2453 struct net_device *netdev = pci_get_drvdata(pdev);
2454 struct igbvf_adapter *adapter = netdev_priv(netdev);
2455 u32 err;
2456
2457 pci_restore_state(pdev);
2458 err = pci_enable_device_mem(pdev);
2459 if (err) {
2460 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2461 return err;
2462 }
2463
2464 pci_set_master(pdev);
2465
2466 if (netif_running(netdev)) {
2467 err = igbvf_request_irq(adapter);
2468 if (err)
2469 return err;
2470 }
2471
2472 igbvf_reset(adapter);
2473
2474 if (netif_running(netdev))
2475 igbvf_up(adapter);
2476
2477 netif_device_attach(netdev);
2478
2479 return 0;
2480 }
2481 #endif
2482
2483 static void igbvf_shutdown(struct pci_dev *pdev)
2484 {
2485 igbvf_suspend(pdev, PMSG_SUSPEND);
2486 }
2487
2488 #ifdef CONFIG_NET_POLL_CONTROLLER
2489 /* Polling 'interrupt' - used by things like netconsole to send skbs
2490 * without having to re-enable interrupts. It's not called while
2491 * the interrupt routine is executing.
2492 */
2493 static void igbvf_netpoll(struct net_device *netdev)
2494 {
2495 struct igbvf_adapter *adapter = netdev_priv(netdev);
2496
2497 disable_irq(adapter->pdev->irq);
2498
2499 igbvf_clean_tx_irq(adapter->tx_ring);
2500
2501 enable_irq(adapter->pdev->irq);
2502 }
2503 #endif
2504
2505 /**
2506 * igbvf_io_error_detected - called when PCI error is detected
2507 * @pdev: Pointer to PCI device
2508 * @state: The current pci connection state
2509 *
2510 * This function is called after a PCI bus error affecting
2511 * this device has been detected.
2512 */
2513 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2514 pci_channel_state_t state)
2515 {
2516 struct net_device *netdev = pci_get_drvdata(pdev);
2517 struct igbvf_adapter *adapter = netdev_priv(netdev);
2518
2519 netif_device_detach(netdev);
2520
2521 if (state == pci_channel_io_perm_failure)
2522 return PCI_ERS_RESULT_DISCONNECT;
2523
2524 if (netif_running(netdev))
2525 igbvf_down(adapter);
2526 pci_disable_device(pdev);
2527
2528 /* Request a slot slot reset. */
2529 return PCI_ERS_RESULT_NEED_RESET;
2530 }
2531
2532 /**
2533 * igbvf_io_slot_reset - called after the pci bus has been reset.
2534 * @pdev: Pointer to PCI device
2535 *
2536 * Restart the card from scratch, as if from a cold-boot. Implementation
2537 * resembles the first-half of the igbvf_resume routine.
2538 */
2539 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2540 {
2541 struct net_device *netdev = pci_get_drvdata(pdev);
2542 struct igbvf_adapter *adapter = netdev_priv(netdev);
2543
2544 if (pci_enable_device_mem(pdev)) {
2545 dev_err(&pdev->dev,
2546 "Cannot re-enable PCI device after reset.\n");
2547 return PCI_ERS_RESULT_DISCONNECT;
2548 }
2549 pci_set_master(pdev);
2550
2551 igbvf_reset(adapter);
2552
2553 return PCI_ERS_RESULT_RECOVERED;
2554 }
2555
2556 /**
2557 * igbvf_io_resume - called when traffic can start flowing again.
2558 * @pdev: Pointer to PCI device
2559 *
2560 * This callback is called when the error recovery driver tells us that
2561 * its OK to resume normal operation. Implementation resembles the
2562 * second-half of the igbvf_resume routine.
2563 */
2564 static void igbvf_io_resume(struct pci_dev *pdev)
2565 {
2566 struct net_device *netdev = pci_get_drvdata(pdev);
2567 struct igbvf_adapter *adapter = netdev_priv(netdev);
2568
2569 if (netif_running(netdev)) {
2570 if (igbvf_up(adapter)) {
2571 dev_err(&pdev->dev,
2572 "can't bring device back up after reset\n");
2573 return;
2574 }
2575 }
2576
2577 netif_device_attach(netdev);
2578 }
2579
2580 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2581 {
2582 struct e1000_hw *hw = &adapter->hw;
2583 struct net_device *netdev = adapter->netdev;
2584 struct pci_dev *pdev = adapter->pdev;
2585
2586 if (hw->mac.type == e1000_vfadapt_i350)
2587 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2588 else
2589 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2590 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2591 }
2592
2593 static int igbvf_set_features(struct net_device *netdev,
2594 netdev_features_t features)
2595 {
2596 struct igbvf_adapter *adapter = netdev_priv(netdev);
2597
2598 if (features & NETIF_F_RXCSUM)
2599 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2600 else
2601 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2602
2603 return 0;
2604 }
2605
2606 #define IGBVF_MAX_MAC_HDR_LEN 127
2607 #define IGBVF_MAX_NETWORK_HDR_LEN 511
2608
2609 static netdev_features_t
2610 igbvf_features_check(struct sk_buff *skb, struct net_device *dev,
2611 netdev_features_t features)
2612 {
2613 unsigned int network_hdr_len, mac_hdr_len;
2614
2615 /* Make certain the headers can be described by a context descriptor */
2616 mac_hdr_len = skb_network_header(skb) - skb->data;
2617 if (unlikely(mac_hdr_len > IGBVF_MAX_MAC_HDR_LEN))
2618 return features & ~(NETIF_F_HW_CSUM |
2619 NETIF_F_SCTP_CRC |
2620 NETIF_F_HW_VLAN_CTAG_TX |
2621 NETIF_F_TSO |
2622 NETIF_F_TSO6);
2623
2624 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2625 if (unlikely(network_hdr_len > IGBVF_MAX_NETWORK_HDR_LEN))
2626 return features & ~(NETIF_F_HW_CSUM |
2627 NETIF_F_SCTP_CRC |
2628 NETIF_F_TSO |
2629 NETIF_F_TSO6);
2630
2631 /* We can only support IPV4 TSO in tunnels if we can mangle the
2632 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2633 */
2634 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2635 features &= ~NETIF_F_TSO;
2636
2637 return features;
2638 }
2639
2640 static const struct net_device_ops igbvf_netdev_ops = {
2641 .ndo_open = igbvf_open,
2642 .ndo_stop = igbvf_close,
2643 .ndo_start_xmit = igbvf_xmit_frame,
2644 .ndo_get_stats = igbvf_get_stats,
2645 .ndo_set_rx_mode = igbvf_set_multi,
2646 .ndo_set_mac_address = igbvf_set_mac,
2647 .ndo_change_mtu = igbvf_change_mtu,
2648 .ndo_do_ioctl = igbvf_ioctl,
2649 .ndo_tx_timeout = igbvf_tx_timeout,
2650 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2651 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2652 #ifdef CONFIG_NET_POLL_CONTROLLER
2653 .ndo_poll_controller = igbvf_netpoll,
2654 #endif
2655 .ndo_set_features = igbvf_set_features,
2656 .ndo_features_check = igbvf_features_check,
2657 };
2658
2659 /**
2660 * igbvf_probe - Device Initialization Routine
2661 * @pdev: PCI device information struct
2662 * @ent: entry in igbvf_pci_tbl
2663 *
2664 * Returns 0 on success, negative on failure
2665 *
2666 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2667 * The OS initialization, configuring of the adapter private structure,
2668 * and a hardware reset occur.
2669 **/
2670 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2671 {
2672 struct net_device *netdev;
2673 struct igbvf_adapter *adapter;
2674 struct e1000_hw *hw;
2675 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2676
2677 static int cards_found;
2678 int err, pci_using_dac;
2679
2680 err = pci_enable_device_mem(pdev);
2681 if (err)
2682 return err;
2683
2684 pci_using_dac = 0;
2685 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2686 if (!err) {
2687 pci_using_dac = 1;
2688 } else {
2689 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2690 if (err) {
2691 dev_err(&pdev->dev,
2692 "No usable DMA configuration, aborting\n");
2693 goto err_dma;
2694 }
2695 }
2696
2697 err = pci_request_regions(pdev, igbvf_driver_name);
2698 if (err)
2699 goto err_pci_reg;
2700
2701 pci_set_master(pdev);
2702
2703 err = -ENOMEM;
2704 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2705 if (!netdev)
2706 goto err_alloc_etherdev;
2707
2708 SET_NETDEV_DEV(netdev, &pdev->dev);
2709
2710 pci_set_drvdata(pdev, netdev);
2711 adapter = netdev_priv(netdev);
2712 hw = &adapter->hw;
2713 adapter->netdev = netdev;
2714 adapter->pdev = pdev;
2715 adapter->ei = ei;
2716 adapter->pba = ei->pba;
2717 adapter->flags = ei->flags;
2718 adapter->hw.back = adapter;
2719 adapter->hw.mac.type = ei->mac;
2720 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2721
2722 /* PCI config space info */
2723
2724 hw->vendor_id = pdev->vendor;
2725 hw->device_id = pdev->device;
2726 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2727 hw->subsystem_device_id = pdev->subsystem_device;
2728 hw->revision_id = pdev->revision;
2729
2730 err = -EIO;
2731 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2732 pci_resource_len(pdev, 0));
2733
2734 if (!adapter->hw.hw_addr)
2735 goto err_ioremap;
2736
2737 if (ei->get_variants) {
2738 err = ei->get_variants(adapter);
2739 if (err)
2740 goto err_get_variants;
2741 }
2742
2743 /* setup adapter struct */
2744 err = igbvf_sw_init(adapter);
2745 if (err)
2746 goto err_sw_init;
2747
2748 /* construct the net_device struct */
2749 netdev->netdev_ops = &igbvf_netdev_ops;
2750
2751 igbvf_set_ethtool_ops(netdev);
2752 netdev->watchdog_timeo = 5 * HZ;
2753 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2754
2755 adapter->bd_number = cards_found++;
2756
2757 netdev->hw_features = NETIF_F_SG |
2758 NETIF_F_TSO |
2759 NETIF_F_TSO6 |
2760 NETIF_F_RXCSUM |
2761 NETIF_F_HW_CSUM |
2762 NETIF_F_SCTP_CRC;
2763
2764 #define IGBVF_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
2765 NETIF_F_GSO_GRE_CSUM | \
2766 NETIF_F_GSO_IPXIP4 | \
2767 NETIF_F_GSO_UDP_TUNNEL | \
2768 NETIF_F_GSO_UDP_TUNNEL_CSUM)
2769
2770 netdev->gso_partial_features = IGBVF_GSO_PARTIAL_FEATURES;
2771 netdev->hw_features |= NETIF_F_GSO_PARTIAL |
2772 IGBVF_GSO_PARTIAL_FEATURES;
2773
2774 netdev->features = netdev->hw_features;
2775
2776 if (pci_using_dac)
2777 netdev->features |= NETIF_F_HIGHDMA;
2778
2779 netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
2780 netdev->mpls_features |= NETIF_F_HW_CSUM;
2781 netdev->hw_enc_features |= netdev->vlan_features;
2782
2783 /* set this bit last since it cannot be part of vlan_features */
2784 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
2785 NETIF_F_HW_VLAN_CTAG_RX |
2786 NETIF_F_HW_VLAN_CTAG_TX;
2787
2788 /*reset the controller to put the device in a known good state */
2789 err = hw->mac.ops.reset_hw(hw);
2790 if (err) {
2791 dev_info(&pdev->dev,
2792 "PF still in reset state. Is the PF interface up?\n");
2793 } else {
2794 err = hw->mac.ops.read_mac_addr(hw);
2795 if (err)
2796 dev_info(&pdev->dev, "Error reading MAC address.\n");
2797 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2798 dev_info(&pdev->dev,
2799 "MAC address not assigned by administrator.\n");
2800 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2801 netdev->addr_len);
2802 }
2803
2804 if (!is_valid_ether_addr(netdev->dev_addr)) {
2805 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2806 eth_hw_addr_random(netdev);
2807 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2808 netdev->addr_len);
2809 }
2810
2811 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2812 (unsigned long)adapter);
2813
2814 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2815 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2816
2817 /* ring size defaults */
2818 adapter->rx_ring->count = 1024;
2819 adapter->tx_ring->count = 1024;
2820
2821 /* reset the hardware with the new settings */
2822 igbvf_reset(adapter);
2823
2824 /* set hardware-specific flags */
2825 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2826 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2827
2828 strcpy(netdev->name, "eth%d");
2829 err = register_netdev(netdev);
2830 if (err)
2831 goto err_hw_init;
2832
2833 /* tell the stack to leave us alone until igbvf_open() is called */
2834 netif_carrier_off(netdev);
2835 netif_stop_queue(netdev);
2836
2837 igbvf_print_device_info(adapter);
2838
2839 igbvf_initialize_last_counter_stats(adapter);
2840
2841 return 0;
2842
2843 err_hw_init:
2844 kfree(adapter->tx_ring);
2845 kfree(adapter->rx_ring);
2846 err_sw_init:
2847 igbvf_reset_interrupt_capability(adapter);
2848 err_get_variants:
2849 iounmap(adapter->hw.hw_addr);
2850 err_ioremap:
2851 free_netdev(netdev);
2852 err_alloc_etherdev:
2853 pci_release_regions(pdev);
2854 err_pci_reg:
2855 err_dma:
2856 pci_disable_device(pdev);
2857 return err;
2858 }
2859
2860 /**
2861 * igbvf_remove - Device Removal Routine
2862 * @pdev: PCI device information struct
2863 *
2864 * igbvf_remove is called by the PCI subsystem to alert the driver
2865 * that it should release a PCI device. The could be caused by a
2866 * Hot-Plug event, or because the driver is going to be removed from
2867 * memory.
2868 **/
2869 static void igbvf_remove(struct pci_dev *pdev)
2870 {
2871 struct net_device *netdev = pci_get_drvdata(pdev);
2872 struct igbvf_adapter *adapter = netdev_priv(netdev);
2873 struct e1000_hw *hw = &adapter->hw;
2874
2875 /* The watchdog timer may be rescheduled, so explicitly
2876 * disable it from being rescheduled.
2877 */
2878 set_bit(__IGBVF_DOWN, &adapter->state);
2879 del_timer_sync(&adapter->watchdog_timer);
2880
2881 cancel_work_sync(&adapter->reset_task);
2882 cancel_work_sync(&adapter->watchdog_task);
2883
2884 unregister_netdev(netdev);
2885
2886 igbvf_reset_interrupt_capability(adapter);
2887
2888 /* it is important to delete the NAPI struct prior to freeing the
2889 * Rx ring so that you do not end up with null pointer refs
2890 */
2891 netif_napi_del(&adapter->rx_ring->napi);
2892 kfree(adapter->tx_ring);
2893 kfree(adapter->rx_ring);
2894
2895 iounmap(hw->hw_addr);
2896 if (hw->flash_address)
2897 iounmap(hw->flash_address);
2898 pci_release_regions(pdev);
2899
2900 free_netdev(netdev);
2901
2902 pci_disable_device(pdev);
2903 }
2904
2905 /* PCI Error Recovery (ERS) */
2906 static const struct pci_error_handlers igbvf_err_handler = {
2907 .error_detected = igbvf_io_error_detected,
2908 .slot_reset = igbvf_io_slot_reset,
2909 .resume = igbvf_io_resume,
2910 };
2911
2912 static const struct pci_device_id igbvf_pci_tbl[] = {
2913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2915 { } /* terminate list */
2916 };
2917 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2918
2919 /* PCI Device API Driver */
2920 static struct pci_driver igbvf_driver = {
2921 .name = igbvf_driver_name,
2922 .id_table = igbvf_pci_tbl,
2923 .probe = igbvf_probe,
2924 .remove = igbvf_remove,
2925 #ifdef CONFIG_PM
2926 /* Power Management Hooks */
2927 .suspend = igbvf_suspend,
2928 .resume = igbvf_resume,
2929 #endif
2930 .shutdown = igbvf_shutdown,
2931 .err_handler = &igbvf_err_handler
2932 };
2933
2934 /**
2935 * igbvf_init_module - Driver Registration Routine
2936 *
2937 * igbvf_init_module is the first routine called when the driver is
2938 * loaded. All it does is register with the PCI subsystem.
2939 **/
2940 static int __init igbvf_init_module(void)
2941 {
2942 int ret;
2943
2944 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2945 pr_info("%s\n", igbvf_copyright);
2946
2947 ret = pci_register_driver(&igbvf_driver);
2948
2949 return ret;
2950 }
2951 module_init(igbvf_init_module);
2952
2953 /**
2954 * igbvf_exit_module - Driver Exit Cleanup Routine
2955 *
2956 * igbvf_exit_module is called just before the driver is removed
2957 * from memory.
2958 **/
2959 static void __exit igbvf_exit_module(void)
2960 {
2961 pci_unregister_driver(&igbvf_driver);
2962 }
2963 module_exit(igbvf_exit_module);
2964
2965 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2966 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2967 MODULE_LICENSE("GPL");
2968 MODULE_VERSION(DRV_VERSION);
2969
2970 /* netdev.c */