1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name
[] = "igbvf";
52 const char igbvf_driver_version
[] = DRV_VERSION
;
53 static const char igbvf_driver_string
[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright
[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug
= -1;
60 module_param(debug
, int, 0);
61 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
63 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
64 static void igbvf_reset(struct igbvf_adapter
*);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
68 static struct igbvf_info igbvf_vf_info
= {
72 .init_ops
= e1000_init_function_pointers_vf
,
75 static struct igbvf_info igbvf_i350_vf_info
= {
76 .mac
= e1000_vfadapt_i350
,
79 .init_ops
= e1000_init_function_pointers_vf
,
82 static const struct igbvf_info
*igbvf_info_tbl
[] = {
83 [board_vf
] = &igbvf_vf_info
,
84 [board_i350_vf
] = &igbvf_i350_vf_info
,
88 * igbvf_desc_unused - calculate if we have unused descriptors
90 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
92 if (ring
->next_to_clean
> ring
->next_to_use
)
93 return ring
->next_to_clean
- ring
->next_to_use
- 1;
95 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
105 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
106 struct net_device
*netdev
,
108 u32 status
, u16 vlan
)
112 if (status
& E1000_RXD_STAT_VP
) {
113 if ((adapter
->flags
& IGBVF_FLAG_RX_LB_VLAN_BSWAP
) &&
114 (status
& E1000_RXDEXT_STATERR_LB
))
115 vid
= be16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
117 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
118 if (test_bit(vid
, adapter
->active_vlans
))
119 __vlan_hwaccel_put_tag(skb
, htons(ETH_P_8021Q
), vid
);
122 napi_gro_receive(&adapter
->rx_ring
->napi
, skb
);
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
126 u32 status_err
, struct sk_buff
*skb
)
128 skb_checksum_none_assert(skb
);
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
132 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
135 /* TCP/UDP checksum error bit is set */
137 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
138 /* let the stack verify checksum errors */
139 adapter
->hw_csum_err
++;
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
145 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
147 adapter
->hw_csum_good
++;
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
158 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
159 struct net_device
*netdev
= adapter
->netdev
;
160 struct pci_dev
*pdev
= adapter
->pdev
;
161 union e1000_adv_rx_desc
*rx_desc
;
162 struct igbvf_buffer
*buffer_info
;
167 i
= rx_ring
->next_to_use
;
168 buffer_info
= &rx_ring
->buffer_info
[i
];
170 if (adapter
->rx_ps_hdr_size
)
171 bufsz
= adapter
->rx_ps_hdr_size
;
173 bufsz
= adapter
->rx_buffer_len
;
175 while (cleaned_count
--) {
176 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
178 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
179 if (!buffer_info
->page
) {
180 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
181 if (!buffer_info
->page
) {
182 adapter
->alloc_rx_buff_failed
++;
185 buffer_info
->page_offset
= 0;
187 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
189 buffer_info
->page_dma
=
190 dma_map_page(&pdev
->dev
, buffer_info
->page
,
191 buffer_info
->page_offset
,
194 if (dma_mapping_error(&pdev
->dev
,
195 buffer_info
->page_dma
)) {
196 __free_page(buffer_info
->page
);
197 buffer_info
->page
= NULL
;
198 dev_err(&pdev
->dev
, "RX DMA map failed\n");
203 if (!buffer_info
->skb
) {
204 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
206 adapter
->alloc_rx_buff_failed
++;
210 buffer_info
->skb
= skb
;
211 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
214 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
215 dev_kfree_skb(buffer_info
->skb
);
216 buffer_info
->skb
= NULL
;
217 dev_err(&pdev
->dev
, "RX DMA map failed\n");
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info. */
223 if (adapter
->rx_ps_hdr_size
) {
224 rx_desc
->read
.pkt_addr
=
225 cpu_to_le64(buffer_info
->page_dma
);
226 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
228 rx_desc
->read
.pkt_addr
=
229 cpu_to_le64(buffer_info
->dma
);
230 rx_desc
->read
.hdr_addr
= 0;
234 if (i
== rx_ring
->count
)
236 buffer_info
= &rx_ring
->buffer_info
[i
];
240 if (rx_ring
->next_to_use
!= i
) {
241 rx_ring
->next_to_use
= i
;
243 i
= (rx_ring
->count
- 1);
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
252 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
263 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
264 int *work_done
, int work_to_do
)
266 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
267 struct net_device
*netdev
= adapter
->netdev
;
268 struct pci_dev
*pdev
= adapter
->pdev
;
269 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
270 struct igbvf_buffer
*buffer_info
, *next_buffer
;
272 bool cleaned
= false;
273 int cleaned_count
= 0;
274 unsigned int total_bytes
= 0, total_packets
= 0;
276 u32 length
, hlen
, staterr
;
278 i
= rx_ring
->next_to_clean
;
279 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
280 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
282 while (staterr
& E1000_RXD_STAT_DD
) {
283 if (*work_done
>= work_to_do
)
286 rmb(); /* read descriptor and rx_buffer_info after status DD */
288 buffer_info
= &rx_ring
->buffer_info
[i
];
290 /* HW will not DMA in data larger than the given buffer, even
291 * if it parses the (NFS, of course) header to be larger. In
292 * that case, it fills the header buffer and spills the rest
295 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
296 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
297 if (hlen
> adapter
->rx_ps_hdr_size
)
298 hlen
= adapter
->rx_ps_hdr_size
;
300 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
304 skb
= buffer_info
->skb
;
305 prefetch(skb
->data
- NET_IP_ALIGN
);
306 buffer_info
->skb
= NULL
;
307 if (!adapter
->rx_ps_hdr_size
) {
308 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
309 adapter
->rx_buffer_len
,
311 buffer_info
->dma
= 0;
312 skb_put(skb
, length
);
316 if (!skb_shinfo(skb
)->nr_frags
) {
317 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
318 adapter
->rx_ps_hdr_size
,
324 dma_unmap_page(&pdev
->dev
, buffer_info
->page_dma
,
327 buffer_info
->page_dma
= 0;
329 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
331 buffer_info
->page_offset
,
334 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
335 (page_count(buffer_info
->page
) != 1))
336 buffer_info
->page
= NULL
;
338 get_page(buffer_info
->page
);
341 skb
->data_len
+= length
;
342 skb
->truesize
+= PAGE_SIZE
/ 2;
346 if (i
== rx_ring
->count
)
348 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
350 next_buffer
= &rx_ring
->buffer_info
[i
];
352 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
353 buffer_info
->skb
= next_buffer
->skb
;
354 buffer_info
->dma
= next_buffer
->dma
;
355 next_buffer
->skb
= skb
;
356 next_buffer
->dma
= 0;
360 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
361 dev_kfree_skb_irq(skb
);
365 total_bytes
+= skb
->len
;
368 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
370 skb
->protocol
= eth_type_trans(skb
, netdev
);
372 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
373 rx_desc
->wb
.upper
.vlan
);
376 rx_desc
->wb
.upper
.status_error
= 0;
378 /* return some buffers to hardware, one at a time is too slow */
379 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
380 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
384 /* use prefetched values */
386 buffer_info
= next_buffer
;
388 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
391 rx_ring
->next_to_clean
= i
;
392 cleaned_count
= igbvf_desc_unused(rx_ring
);
395 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
397 adapter
->total_rx_packets
+= total_packets
;
398 adapter
->total_rx_bytes
+= total_bytes
;
399 adapter
->net_stats
.rx_bytes
+= total_bytes
;
400 adapter
->net_stats
.rx_packets
+= total_packets
;
404 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
405 struct igbvf_buffer
*buffer_info
)
407 if (buffer_info
->dma
) {
408 if (buffer_info
->mapped_as_page
)
409 dma_unmap_page(&adapter
->pdev
->dev
,
414 dma_unmap_single(&adapter
->pdev
->dev
,
418 buffer_info
->dma
= 0;
420 if (buffer_info
->skb
) {
421 dev_kfree_skb_any(buffer_info
->skb
);
422 buffer_info
->skb
= NULL
;
424 buffer_info
->time_stamp
= 0;
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
431 * Return 0 on success, negative on failure
433 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
434 struct igbvf_ring
*tx_ring
)
436 struct pci_dev
*pdev
= adapter
->pdev
;
439 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
440 tx_ring
->buffer_info
= vzalloc(size
);
441 if (!tx_ring
->buffer_info
)
444 /* round up to nearest 4K */
445 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
446 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
448 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
449 &tx_ring
->dma
, GFP_KERNEL
);
453 tx_ring
->adapter
= adapter
;
454 tx_ring
->next_to_use
= 0;
455 tx_ring
->next_to_clean
= 0;
459 vfree(tx_ring
->buffer_info
);
460 dev_err(&adapter
->pdev
->dev
,
461 "Unable to allocate memory for the transmit descriptor ring\n");
466 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467 * @adapter: board private structure
469 * Returns 0 on success, negative on failure
471 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
472 struct igbvf_ring
*rx_ring
)
474 struct pci_dev
*pdev
= adapter
->pdev
;
477 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
478 rx_ring
->buffer_info
= vzalloc(size
);
479 if (!rx_ring
->buffer_info
)
482 desc_len
= sizeof(union e1000_adv_rx_desc
);
484 /* Round up to nearest 4K */
485 rx_ring
->size
= rx_ring
->count
* desc_len
;
486 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
488 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
489 &rx_ring
->dma
, GFP_KERNEL
);
493 rx_ring
->next_to_clean
= 0;
494 rx_ring
->next_to_use
= 0;
496 rx_ring
->adapter
= adapter
;
501 vfree(rx_ring
->buffer_info
);
502 rx_ring
->buffer_info
= NULL
;
503 dev_err(&adapter
->pdev
->dev
,
504 "Unable to allocate memory for the receive descriptor ring\n");
509 * igbvf_clean_tx_ring - Free Tx Buffers
510 * @tx_ring: ring to be cleaned
512 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
514 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
515 struct igbvf_buffer
*buffer_info
;
519 if (!tx_ring
->buffer_info
)
522 /* Free all the Tx ring sk_buffs */
523 for (i
= 0; i
< tx_ring
->count
; i
++) {
524 buffer_info
= &tx_ring
->buffer_info
[i
];
525 igbvf_put_txbuf(adapter
, buffer_info
);
528 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
529 memset(tx_ring
->buffer_info
, 0, size
);
531 /* Zero out the descriptor ring */
532 memset(tx_ring
->desc
, 0, tx_ring
->size
);
534 tx_ring
->next_to_use
= 0;
535 tx_ring
->next_to_clean
= 0;
537 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
538 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
542 * igbvf_free_tx_resources - Free Tx Resources per Queue
543 * @tx_ring: ring to free resources from
545 * Free all transmit software resources
547 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
549 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
551 igbvf_clean_tx_ring(tx_ring
);
553 vfree(tx_ring
->buffer_info
);
554 tx_ring
->buffer_info
= NULL
;
556 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
559 tx_ring
->desc
= NULL
;
563 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564 * @adapter: board private structure
566 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
568 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
569 struct igbvf_buffer
*buffer_info
;
570 struct pci_dev
*pdev
= adapter
->pdev
;
574 if (!rx_ring
->buffer_info
)
577 /* Free all the Rx ring sk_buffs */
578 for (i
= 0; i
< rx_ring
->count
; i
++) {
579 buffer_info
= &rx_ring
->buffer_info
[i
];
580 if (buffer_info
->dma
) {
581 if (adapter
->rx_ps_hdr_size
){
582 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
583 adapter
->rx_ps_hdr_size
,
586 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
587 adapter
->rx_buffer_len
,
590 buffer_info
->dma
= 0;
593 if (buffer_info
->skb
) {
594 dev_kfree_skb(buffer_info
->skb
);
595 buffer_info
->skb
= NULL
;
598 if (buffer_info
->page
) {
599 if (buffer_info
->page_dma
)
600 dma_unmap_page(&pdev
->dev
,
601 buffer_info
->page_dma
,
604 put_page(buffer_info
->page
);
605 buffer_info
->page
= NULL
;
606 buffer_info
->page_dma
= 0;
607 buffer_info
->page_offset
= 0;
611 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
612 memset(rx_ring
->buffer_info
, 0, size
);
614 /* Zero out the descriptor ring */
615 memset(rx_ring
->desc
, 0, rx_ring
->size
);
617 rx_ring
->next_to_clean
= 0;
618 rx_ring
->next_to_use
= 0;
620 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
621 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
625 * igbvf_free_rx_resources - Free Rx Resources
626 * @rx_ring: ring to clean the resources from
628 * Free all receive software resources
631 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
633 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
635 igbvf_clean_rx_ring(rx_ring
);
637 vfree(rx_ring
->buffer_info
);
638 rx_ring
->buffer_info
= NULL
;
640 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
642 rx_ring
->desc
= NULL
;
646 * igbvf_update_itr - update the dynamic ITR value based on statistics
647 * @adapter: pointer to adapter
648 * @itr_setting: current adapter->itr
649 * @packets: the number of packets during this measurement interval
650 * @bytes: the number of bytes during this measurement interval
652 * Stores a new ITR value based on packets and byte
653 * counts during the last interrupt. The advantage of per interrupt
654 * computation is faster updates and more accurate ITR for the current
655 * traffic pattern. Constants in this function were computed
656 * based on theoretical maximum wire speed and thresholds were set based
657 * on testing data as well as attempting to minimize response time
658 * while increasing bulk throughput.
660 static enum latency_range
igbvf_update_itr(struct igbvf_adapter
*adapter
,
661 enum latency_range itr_setting
,
662 int packets
, int bytes
)
664 enum latency_range retval
= itr_setting
;
667 goto update_itr_done
;
669 switch (itr_setting
) {
671 /* handle TSO and jumbo frames */
672 if (bytes
/packets
> 8000)
673 retval
= bulk_latency
;
674 else if ((packets
< 5) && (bytes
> 512))
675 retval
= low_latency
;
677 case low_latency
: /* 50 usec aka 20000 ints/s */
679 /* this if handles the TSO accounting */
680 if (bytes
/packets
> 8000)
681 retval
= bulk_latency
;
682 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
683 retval
= bulk_latency
;
684 else if ((packets
> 35))
685 retval
= lowest_latency
;
686 } else if (bytes
/packets
> 2000) {
687 retval
= bulk_latency
;
688 } else if (packets
<= 2 && bytes
< 512) {
689 retval
= lowest_latency
;
692 case bulk_latency
: /* 250 usec aka 4000 ints/s */
695 retval
= low_latency
;
696 } else if (bytes
< 6000) {
697 retval
= low_latency
;
708 static int igbvf_range_to_itr(enum latency_range current_range
)
712 switch (current_range
) {
713 /* counts and packets in update_itr are dependent on these numbers */
715 new_itr
= IGBVF_70K_ITR
;
718 new_itr
= IGBVF_20K_ITR
;
721 new_itr
= IGBVF_4K_ITR
;
724 new_itr
= IGBVF_START_ITR
;
730 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
734 adapter
->tx_ring
->itr_range
=
735 igbvf_update_itr(adapter
,
736 adapter
->tx_ring
->itr_val
,
737 adapter
->total_tx_packets
,
738 adapter
->total_tx_bytes
);
740 /* conservative mode (itr 3) eliminates the lowest_latency setting */
741 if (adapter
->requested_itr
== 3 &&
742 adapter
->tx_ring
->itr_range
== lowest_latency
)
743 adapter
->tx_ring
->itr_range
= low_latency
;
745 new_itr
= igbvf_range_to_itr(adapter
->tx_ring
->itr_range
);
748 if (new_itr
!= adapter
->tx_ring
->itr_val
) {
749 u32 current_itr
= adapter
->tx_ring
->itr_val
;
751 * this attempts to bias the interrupt rate towards Bulk
752 * by adding intermediate steps when interrupt rate is
755 new_itr
= new_itr
> current_itr
?
756 min(current_itr
+ (new_itr
>> 2), new_itr
) :
758 adapter
->tx_ring
->itr_val
= new_itr
;
760 adapter
->tx_ring
->set_itr
= 1;
763 adapter
->rx_ring
->itr_range
=
764 igbvf_update_itr(adapter
, adapter
->rx_ring
->itr_val
,
765 adapter
->total_rx_packets
,
766 adapter
->total_rx_bytes
);
767 if (adapter
->requested_itr
== 3 &&
768 adapter
->rx_ring
->itr_range
== lowest_latency
)
769 adapter
->rx_ring
->itr_range
= low_latency
;
771 new_itr
= igbvf_range_to_itr(adapter
->rx_ring
->itr_range
);
773 if (new_itr
!= adapter
->rx_ring
->itr_val
) {
774 u32 current_itr
= adapter
->rx_ring
->itr_val
;
775 new_itr
= new_itr
> current_itr
?
776 min(current_itr
+ (new_itr
>> 2), new_itr
) :
778 adapter
->rx_ring
->itr_val
= new_itr
;
780 adapter
->rx_ring
->set_itr
= 1;
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
788 * returns true if ring is completely cleaned
790 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
792 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
793 struct net_device
*netdev
= adapter
->netdev
;
794 struct igbvf_buffer
*buffer_info
;
796 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
797 unsigned int total_bytes
= 0, total_packets
= 0;
798 unsigned int i
, count
= 0;
799 bool cleaned
= false;
801 i
= tx_ring
->next_to_clean
;
802 buffer_info
= &tx_ring
->buffer_info
[i
];
803 eop_desc
= buffer_info
->next_to_watch
;
806 /* if next_to_watch is not set then there is no work pending */
810 /* prevent any other reads prior to eop_desc */
811 read_barrier_depends();
813 /* if DD is not set pending work has not been completed */
814 if (!(eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)))
817 /* clear next_to_watch to prevent false hangs */
818 buffer_info
->next_to_watch
= NULL
;
820 for (cleaned
= false; !cleaned
; count
++) {
821 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
822 cleaned
= (tx_desc
== eop_desc
);
823 skb
= buffer_info
->skb
;
826 unsigned int segs
, bytecount
;
828 /* gso_segs is currently only valid for tcp */
829 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
830 /* multiply data chunks by size of headers */
831 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
833 total_packets
+= segs
;
834 total_bytes
+= bytecount
;
837 igbvf_put_txbuf(adapter
, buffer_info
);
838 tx_desc
->wb
.status
= 0;
841 if (i
== tx_ring
->count
)
844 buffer_info
= &tx_ring
->buffer_info
[i
];
847 eop_desc
= buffer_info
->next_to_watch
;
848 } while (count
< tx_ring
->count
);
850 tx_ring
->next_to_clean
= i
;
852 if (unlikely(count
&&
853 netif_carrier_ok(netdev
) &&
854 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
855 /* Make sure that anybody stopping the queue after this
856 * sees the new next_to_clean.
859 if (netif_queue_stopped(netdev
) &&
860 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
861 netif_wake_queue(netdev
);
862 ++adapter
->restart_queue
;
866 adapter
->net_stats
.tx_bytes
+= total_bytes
;
867 adapter
->net_stats
.tx_packets
+= total_packets
;
868 return count
< tx_ring
->count
;
871 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
873 struct net_device
*netdev
= data
;
874 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
875 struct e1000_hw
*hw
= &adapter
->hw
;
877 adapter
->int_counter1
++;
879 netif_carrier_off(netdev
);
880 hw
->mac
.get_link_status
= 1;
881 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
882 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
884 ew32(EIMS
, adapter
->eims_other
);
889 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
891 struct net_device
*netdev
= data
;
892 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
893 struct e1000_hw
*hw
= &adapter
->hw
;
894 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
896 if (tx_ring
->set_itr
) {
897 writel(tx_ring
->itr_val
,
898 adapter
->hw
.hw_addr
+ tx_ring
->itr_register
);
899 adapter
->tx_ring
->set_itr
= 0;
902 adapter
->total_tx_bytes
= 0;
903 adapter
->total_tx_packets
= 0;
905 /* auto mask will automatically reenable the interrupt when we write
907 if (!igbvf_clean_tx_irq(tx_ring
))
908 /* Ring was not completely cleaned, so fire another interrupt */
909 ew32(EICS
, tx_ring
->eims_value
);
911 ew32(EIMS
, tx_ring
->eims_value
);
916 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
918 struct net_device
*netdev
= data
;
919 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
921 adapter
->int_counter0
++;
923 /* Write the ITR value calculated at the end of the
924 * previous interrupt.
926 if (adapter
->rx_ring
->set_itr
) {
927 writel(adapter
->rx_ring
->itr_val
,
928 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
929 adapter
->rx_ring
->set_itr
= 0;
932 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
933 adapter
->total_rx_bytes
= 0;
934 adapter
->total_rx_packets
= 0;
935 __napi_schedule(&adapter
->rx_ring
->napi
);
941 #define IGBVF_NO_QUEUE -1
943 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
944 int tx_queue
, int msix_vector
)
946 struct e1000_hw
*hw
= &adapter
->hw
;
949 /* 82576 uses a table-based method for assigning vectors.
950 Each queue has a single entry in the table to which we write
951 a vector number along with a "valid" bit. Sadly, the layout
952 of the table is somewhat counterintuitive. */
953 if (rx_queue
> IGBVF_NO_QUEUE
) {
954 index
= (rx_queue
>> 1);
955 ivar
= array_er32(IVAR0
, index
);
956 if (rx_queue
& 0x1) {
957 /* vector goes into third byte of register */
958 ivar
= ivar
& 0xFF00FFFF;
959 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
961 /* vector goes into low byte of register */
962 ivar
= ivar
& 0xFFFFFF00;
963 ivar
|= msix_vector
| E1000_IVAR_VALID
;
965 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
966 array_ew32(IVAR0
, index
, ivar
);
968 if (tx_queue
> IGBVF_NO_QUEUE
) {
969 index
= (tx_queue
>> 1);
970 ivar
= array_er32(IVAR0
, index
);
971 if (tx_queue
& 0x1) {
972 /* vector goes into high byte of register */
973 ivar
= ivar
& 0x00FFFFFF;
974 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
976 /* vector goes into second byte of register */
977 ivar
= ivar
& 0xFFFF00FF;
978 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
980 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
981 array_ew32(IVAR0
, index
, ivar
);
986 * igbvf_configure_msix - Configure MSI-X hardware
988 * igbvf_configure_msix sets up the hardware to properly
989 * generate MSI-X interrupts.
991 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
994 struct e1000_hw
*hw
= &adapter
->hw
;
995 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
996 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
999 adapter
->eims_enable_mask
= 0;
1001 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
1002 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
1003 writel(tx_ring
->itr_val
, hw
->hw_addr
+ tx_ring
->itr_register
);
1004 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
1005 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
1006 writel(rx_ring
->itr_val
, hw
->hw_addr
+ rx_ring
->itr_register
);
1008 /* set vector for other causes, i.e. link changes */
1010 tmp
= (vector
++ | E1000_IVAR_VALID
);
1012 ew32(IVAR_MISC
, tmp
);
1014 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
1015 adapter
->eims_other
= 1 << (vector
- 1);
1019 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
1021 if (adapter
->msix_entries
) {
1022 pci_disable_msix(adapter
->pdev
);
1023 kfree(adapter
->msix_entries
);
1024 adapter
->msix_entries
= NULL
;
1029 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1031 * Attempt to configure interrupts using the best available
1032 * capabilities of the hardware and kernel.
1034 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
1039 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
1042 if (adapter
->msix_entries
) {
1043 for (i
= 0; i
< 3; i
++)
1044 adapter
->msix_entries
[i
].entry
= i
;
1046 err
= pci_enable_msix(adapter
->pdev
,
1047 adapter
->msix_entries
, 3);
1052 dev_err(&adapter
->pdev
->dev
,
1053 "Failed to initialize MSI-X interrupts.\n");
1054 igbvf_reset_interrupt_capability(adapter
);
1059 * igbvf_request_msix - Initialize MSI-X interrupts
1061 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1064 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1066 struct net_device
*netdev
= adapter
->netdev
;
1067 int err
= 0, vector
= 0;
1069 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1070 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1071 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1073 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1074 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1077 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1078 igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1083 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1084 adapter
->tx_ring
->itr_val
= adapter
->current_itr
;
1087 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1088 igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1093 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1094 adapter
->rx_ring
->itr_val
= adapter
->current_itr
;
1097 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1098 igbvf_msix_other
, 0, netdev
->name
, netdev
);
1102 igbvf_configure_msix(adapter
);
1109 * igbvf_alloc_queues - Allocate memory for all rings
1110 * @adapter: board private structure to initialize
1112 static int igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1114 struct net_device
*netdev
= adapter
->netdev
;
1116 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1117 if (!adapter
->tx_ring
)
1120 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1121 if (!adapter
->rx_ring
) {
1122 kfree(adapter
->tx_ring
);
1126 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1132 * igbvf_request_irq - initialize interrupts
1134 * Attempts to configure interrupts using the best available
1135 * capabilities of the hardware and kernel.
1137 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1141 /* igbvf supports msi-x only */
1142 if (adapter
->msix_entries
)
1143 err
= igbvf_request_msix(adapter
);
1148 dev_err(&adapter
->pdev
->dev
,
1149 "Unable to allocate interrupt, Error: %d\n", err
);
1154 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1156 struct net_device
*netdev
= adapter
->netdev
;
1159 if (adapter
->msix_entries
) {
1160 for (vector
= 0; vector
< 3; vector
++)
1161 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1166 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1168 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1170 struct e1000_hw
*hw
= &adapter
->hw
;
1174 if (adapter
->msix_entries
)
1179 * igbvf_irq_enable - Enable default interrupt generation settings
1181 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1183 struct e1000_hw
*hw
= &adapter
->hw
;
1185 ew32(EIAC
, adapter
->eims_enable_mask
);
1186 ew32(EIAM
, adapter
->eims_enable_mask
);
1187 ew32(EIMS
, adapter
->eims_enable_mask
);
1191 * igbvf_poll - NAPI Rx polling callback
1192 * @napi: struct associated with this polling callback
1193 * @budget: amount of packets driver is allowed to process this poll
1195 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1197 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1198 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1199 struct e1000_hw
*hw
= &adapter
->hw
;
1202 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1204 /* If not enough Rx work done, exit the polling mode */
1205 if (work_done
< budget
) {
1206 napi_complete(napi
);
1208 if (adapter
->requested_itr
& 3)
1209 igbvf_set_itr(adapter
);
1211 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1212 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1219 * igbvf_set_rlpml - set receive large packet maximum length
1220 * @adapter: board private structure
1222 * Configure the maximum size of packets that will be received
1224 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1227 struct e1000_hw
*hw
= &adapter
->hw
;
1229 max_frame_size
= adapter
->max_frame_size
+ VLAN_TAG_SIZE
;
1230 e1000_rlpml_set_vf(hw
, max_frame_size
);
1233 static int igbvf_vlan_rx_add_vid(struct net_device
*netdev
,
1234 __be16 proto
, u16 vid
)
1236 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1237 struct e1000_hw
*hw
= &adapter
->hw
;
1239 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true)) {
1240 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1243 set_bit(vid
, adapter
->active_vlans
);
1247 static int igbvf_vlan_rx_kill_vid(struct net_device
*netdev
,
1248 __be16 proto
, u16 vid
)
1250 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1251 struct e1000_hw
*hw
= &adapter
->hw
;
1253 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false)) {
1254 dev_err(&adapter
->pdev
->dev
,
1255 "Failed to remove vlan id %d\n", vid
);
1258 clear_bit(vid
, adapter
->active_vlans
);
1262 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1266 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
1267 igbvf_vlan_rx_add_vid(adapter
->netdev
, htons(ETH_P_8021Q
), vid
);
1271 * igbvf_configure_tx - Configure Transmit Unit after Reset
1272 * @adapter: board private structure
1274 * Configure the Tx unit of the MAC after a reset.
1276 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1278 struct e1000_hw
*hw
= &adapter
->hw
;
1279 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1281 u32 txdctl
, dca_txctrl
;
1283 /* disable transmits */
1284 txdctl
= er32(TXDCTL(0));
1285 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1289 /* Setup the HW Tx Head and Tail descriptor pointers */
1290 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1291 tdba
= tx_ring
->dma
;
1292 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1293 ew32(TDBAH(0), (tdba
>> 32));
1296 tx_ring
->head
= E1000_TDH(0);
1297 tx_ring
->tail
= E1000_TDT(0);
1299 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1300 * MUST be delivered in order or it will completely screw up
1303 dca_txctrl
= er32(DCA_TXCTRL(0));
1304 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1305 ew32(DCA_TXCTRL(0), dca_txctrl
);
1307 /* enable transmits */
1308 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1309 ew32(TXDCTL(0), txdctl
);
1311 /* Setup Transmit Descriptor Settings for eop descriptor */
1312 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1314 /* enable Report Status bit */
1315 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1319 * igbvf_setup_srrctl - configure the receive control registers
1320 * @adapter: Board private structure
1322 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1324 struct e1000_hw
*hw
= &adapter
->hw
;
1327 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1328 E1000_SRRCTL_BSIZEHDR_MASK
|
1329 E1000_SRRCTL_BSIZEPKT_MASK
);
1331 /* Enable queue drop to avoid head of line blocking */
1332 srrctl
|= E1000_SRRCTL_DROP_EN
;
1334 /* Setup buffer sizes */
1335 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1336 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1338 if (adapter
->rx_buffer_len
< 2048) {
1339 adapter
->rx_ps_hdr_size
= 0;
1340 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1342 adapter
->rx_ps_hdr_size
= 128;
1343 srrctl
|= adapter
->rx_ps_hdr_size
<<
1344 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1345 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1348 ew32(SRRCTL(0), srrctl
);
1352 * igbvf_configure_rx - Configure Receive Unit after Reset
1353 * @adapter: board private structure
1355 * Configure the Rx unit of the MAC after a reset.
1357 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1359 struct e1000_hw
*hw
= &adapter
->hw
;
1360 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1364 /* disable receives */
1365 rxdctl
= er32(RXDCTL(0));
1366 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1370 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1373 * Setup the HW Rx Head and Tail Descriptor Pointers and
1374 * the Base and Length of the Rx Descriptor Ring
1376 rdba
= rx_ring
->dma
;
1377 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1378 ew32(RDBAH(0), (rdba
>> 32));
1379 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1380 rx_ring
->head
= E1000_RDH(0);
1381 rx_ring
->tail
= E1000_RDT(0);
1385 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1386 rxdctl
&= 0xFFF00000;
1387 rxdctl
|= IGBVF_RX_PTHRESH
;
1388 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1389 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1391 igbvf_set_rlpml(adapter
);
1393 /* enable receives */
1394 ew32(RXDCTL(0), rxdctl
);
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated. This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1406 static void igbvf_set_multi(struct net_device
*netdev
)
1408 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1409 struct e1000_hw
*hw
= &adapter
->hw
;
1410 struct netdev_hw_addr
*ha
;
1411 u8
*mta_list
= NULL
;
1414 if (!netdev_mc_empty(netdev
)) {
1415 mta_list
= kmalloc_array(netdev_mc_count(netdev
), ETH_ALEN
,
1421 /* prepare a packed array of only addresses. */
1423 netdev_for_each_mc_addr(ha
, netdev
)
1424 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
1426 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1434 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1436 igbvf_set_multi(adapter
->netdev
);
1438 igbvf_restore_vlan(adapter
);
1440 igbvf_configure_tx(adapter
);
1441 igbvf_setup_srrctl(adapter
);
1442 igbvf_configure_rx(adapter
);
1443 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1444 igbvf_desc_unused(adapter
->rx_ring
));
1447 /* igbvf_reset - bring the hardware into a known good state
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1454 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1456 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1457 struct net_device
*netdev
= adapter
->netdev
;
1458 struct e1000_hw
*hw
= &adapter
->hw
;
1460 /* Allow time for pending master requests to run */
1461 if (mac
->ops
.reset_hw(hw
))
1462 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1464 mac
->ops
.init_hw(hw
);
1466 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1467 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1469 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1473 adapter
->last_reset
= jiffies
;
1476 int igbvf_up(struct igbvf_adapter
*adapter
)
1478 struct e1000_hw
*hw
= &adapter
->hw
;
1480 /* hardware has been reset, we need to reload some things */
1481 igbvf_configure(adapter
);
1483 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1485 napi_enable(&adapter
->rx_ring
->napi
);
1486 if (adapter
->msix_entries
)
1487 igbvf_configure_msix(adapter
);
1489 /* Clear any pending interrupts. */
1491 igbvf_irq_enable(adapter
);
1493 /* start the watchdog */
1494 hw
->mac
.get_link_status
= 1;
1495 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1501 void igbvf_down(struct igbvf_adapter
*adapter
)
1503 struct net_device
*netdev
= adapter
->netdev
;
1504 struct e1000_hw
*hw
= &adapter
->hw
;
1508 * signal that we're down so the interrupt handler does not
1509 * reschedule our watchdog timer
1511 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1513 /* disable receives in the hardware */
1514 rxdctl
= er32(RXDCTL(0));
1515 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1517 netif_stop_queue(netdev
);
1519 /* disable transmits in the hardware */
1520 txdctl
= er32(TXDCTL(0));
1521 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1523 /* flush both disables and wait for them to finish */
1527 napi_disable(&adapter
->rx_ring
->napi
);
1529 igbvf_irq_disable(adapter
);
1531 del_timer_sync(&adapter
->watchdog_timer
);
1533 netif_carrier_off(netdev
);
1535 /* record the stats before reset*/
1536 igbvf_update_stats(adapter
);
1538 adapter
->link_speed
= 0;
1539 adapter
->link_duplex
= 0;
1541 igbvf_reset(adapter
);
1542 igbvf_clean_tx_ring(adapter
->tx_ring
);
1543 igbvf_clean_rx_ring(adapter
->rx_ring
);
1546 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1549 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1551 igbvf_down(adapter
);
1553 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1564 static int igbvf_sw_init(struct igbvf_adapter
*adapter
)
1566 struct net_device
*netdev
= adapter
->netdev
;
1569 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1570 adapter
->rx_ps_hdr_size
= 0;
1571 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1572 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1574 adapter
->tx_int_delay
= 8;
1575 adapter
->tx_abs_int_delay
= 32;
1576 adapter
->rx_int_delay
= 0;
1577 adapter
->rx_abs_int_delay
= 8;
1578 adapter
->requested_itr
= 3;
1579 adapter
->current_itr
= IGBVF_START_ITR
;
1581 /* Set various function pointers */
1582 adapter
->ei
->init_ops(&adapter
->hw
);
1584 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1588 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1592 igbvf_set_interrupt_capability(adapter
);
1594 if (igbvf_alloc_queues(adapter
))
1597 spin_lock_init(&adapter
->tx_queue_lock
);
1599 /* Explicitly disable IRQ since the NIC can be in any state. */
1600 igbvf_irq_disable(adapter
);
1602 spin_lock_init(&adapter
->stats_lock
);
1604 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1608 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1610 struct e1000_hw
*hw
= &adapter
->hw
;
1612 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1613 adapter
->stats
.last_gorc
= er32(VFGORC
);
1614 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1615 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1616 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1617 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1618 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1619 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1620 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1622 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1623 adapter
->stats
.base_gorc
= er32(VFGORC
);
1624 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1625 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1626 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1627 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1628 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1629 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1630 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1637 * Returns 0 on success, negative value on failure
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP). At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1645 static int igbvf_open(struct net_device
*netdev
)
1647 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1648 struct e1000_hw
*hw
= &adapter
->hw
;
1651 /* disallow open during test */
1652 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1655 /* allocate transmit descriptors */
1656 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1660 /* allocate receive descriptors */
1661 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1666 * before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so.
1671 igbvf_configure(adapter
);
1673 err
= igbvf_request_irq(adapter
);
1677 /* From here on the code is the same as igbvf_up() */
1678 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1680 napi_enable(&adapter
->rx_ring
->napi
);
1682 /* clear any pending interrupts */
1685 igbvf_irq_enable(adapter
);
1687 /* start the watchdog */
1688 hw
->mac
.get_link_status
= 1;
1689 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1694 igbvf_free_rx_resources(adapter
->rx_ring
);
1696 igbvf_free_tx_resources(adapter
->tx_ring
);
1698 igbvf_reset(adapter
);
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1707 * Returns 0, this is not allowed to fail
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS. The hardware is still under the drivers control, but
1711 * needs to be disabled. A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1714 static int igbvf_close(struct net_device
*netdev
)
1716 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1718 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1719 igbvf_down(adapter
);
1721 igbvf_free_irq(adapter
);
1723 igbvf_free_tx_resources(adapter
->tx_ring
);
1724 igbvf_free_rx_resources(adapter
->rx_ring
);
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1733 * Returns 0 on success, negative on failure
1735 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1737 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1738 struct e1000_hw
*hw
= &adapter
->hw
;
1739 struct sockaddr
*addr
= p
;
1741 if (!is_valid_ether_addr(addr
->sa_data
))
1742 return -EADDRNOTAVAIL
;
1744 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1746 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1748 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1749 return -EADDRNOTAVAIL
;
1751 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1756 #define UPDATE_VF_COUNTER(reg, name) \
1758 u32 current_counter = er32(reg); \
1759 if (current_counter < adapter->stats.last_##name) \
1760 adapter->stats.name += 0x100000000LL; \
1761 adapter->stats.last_##name = current_counter; \
1762 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1763 adapter->stats.name |= current_counter; \
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1770 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1772 struct e1000_hw
*hw
= &adapter
->hw
;
1773 struct pci_dev
*pdev
= adapter
->pdev
;
1776 * Prevent stats update while adapter is being reset, link is down
1777 * or if the pci connection is down.
1779 if (adapter
->link_speed
== 0)
1782 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1785 if (pci_channel_offline(pdev
))
1788 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1789 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1790 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1791 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1792 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1793 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1794 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1795 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1796 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1798 /* Fill out the OS statistics structure */
1799 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1802 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1804 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s Duplex\n",
1805 adapter
->link_speed
,
1806 adapter
->link_duplex
== FULL_DUPLEX
? "Full" : "Half");
1809 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1811 struct e1000_hw
*hw
= &adapter
->hw
;
1812 s32 ret_val
= E1000_SUCCESS
;
1815 /* If interface is down, stay link down */
1816 if (test_bit(__IGBVF_DOWN
, &adapter
->state
))
1819 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1820 link_active
= !hw
->mac
.get_link_status
;
1822 /* if check for link returns error we will need to reset */
1823 if (ret_val
&& time_after(jiffies
, adapter
->last_reset
+ (10 * HZ
)))
1824 schedule_work(&adapter
->reset_task
);
1830 * igbvf_watchdog - Timer Call-back
1831 * @data: pointer to adapter cast into an unsigned long
1833 static void igbvf_watchdog(unsigned long data
)
1835 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1837 /* Do the rest outside of interrupt context */
1838 schedule_work(&adapter
->watchdog_task
);
1841 static void igbvf_watchdog_task(struct work_struct
*work
)
1843 struct igbvf_adapter
*adapter
= container_of(work
,
1844 struct igbvf_adapter
,
1846 struct net_device
*netdev
= adapter
->netdev
;
1847 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1848 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1849 struct e1000_hw
*hw
= &adapter
->hw
;
1853 link
= igbvf_has_link(adapter
);
1856 if (!netif_carrier_ok(netdev
)) {
1857 mac
->ops
.get_link_up_info(&adapter
->hw
,
1858 &adapter
->link_speed
,
1859 &adapter
->link_duplex
);
1860 igbvf_print_link_info(adapter
);
1862 netif_carrier_on(netdev
);
1863 netif_wake_queue(netdev
);
1866 if (netif_carrier_ok(netdev
)) {
1867 adapter
->link_speed
= 0;
1868 adapter
->link_duplex
= 0;
1869 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1870 netif_carrier_off(netdev
);
1871 netif_stop_queue(netdev
);
1875 if (netif_carrier_ok(netdev
)) {
1876 igbvf_update_stats(adapter
);
1878 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1882 * We've lost link, so the controller stops DMA,
1883 * but we've got queued Tx work that's never going
1884 * to get done, so reset controller to flush Tx.
1885 * (Do the reset outside of interrupt context).
1887 adapter
->tx_timeout_count
++;
1888 schedule_work(&adapter
->reset_task
);
1892 /* Cause software interrupt to ensure Rx ring is cleaned */
1893 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1895 /* Reset the timer */
1896 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1897 mod_timer(&adapter
->watchdog_timer
,
1898 round_jiffies(jiffies
+ (2 * HZ
)));
1901 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1902 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1903 #define IGBVF_TX_FLAGS_TSO 0x00000004
1904 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1905 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1906 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1908 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1909 struct igbvf_ring
*tx_ring
,
1910 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1912 struct e1000_adv_tx_context_desc
*context_desc
;
1915 struct igbvf_buffer
*buffer_info
;
1916 u32 info
= 0, tu_cmd
= 0;
1917 u32 mss_l4len_idx
, l4len
;
1920 if (skb_header_cloned(skb
)) {
1921 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1923 dev_err(&adapter
->pdev
->dev
,
1924 "igbvf_tso returning an error\n");
1929 l4len
= tcp_hdrlen(skb
);
1932 if (skb
->protocol
== htons(ETH_P_IP
)) {
1933 struct iphdr
*iph
= ip_hdr(skb
);
1936 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1940 } else if (skb_is_gso_v6(skb
)) {
1941 ipv6_hdr(skb
)->payload_len
= 0;
1942 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1943 &ipv6_hdr(skb
)->daddr
,
1947 i
= tx_ring
->next_to_use
;
1949 buffer_info
= &tx_ring
->buffer_info
[i
];
1950 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1951 /* VLAN MACLEN IPLEN */
1952 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1953 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1954 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1955 *hdr_len
+= skb_network_offset(skb
);
1956 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1957 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1958 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1960 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1961 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1963 if (skb
->protocol
== htons(ETH_P_IP
))
1964 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1965 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1967 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1970 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1971 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1973 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1974 context_desc
->seqnum_seed
= 0;
1976 buffer_info
->time_stamp
= jiffies
;
1977 buffer_info
->dma
= 0;
1979 if (i
== tx_ring
->count
)
1982 tx_ring
->next_to_use
= i
;
1987 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
1988 struct igbvf_ring
*tx_ring
,
1989 struct sk_buff
*skb
, u32 tx_flags
)
1991 struct e1000_adv_tx_context_desc
*context_desc
;
1993 struct igbvf_buffer
*buffer_info
;
1994 u32 info
= 0, tu_cmd
= 0;
1996 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1997 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
1998 i
= tx_ring
->next_to_use
;
1999 buffer_info
= &tx_ring
->buffer_info
[i
];
2000 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
2002 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2003 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
2005 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
2006 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
2007 info
|= (skb_transport_header(skb
) -
2008 skb_network_header(skb
));
2011 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
2013 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
2015 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2016 switch (skb
->protocol
) {
2017 case __constant_htons(ETH_P_IP
):
2018 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
2019 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2020 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2022 case __constant_htons(ETH_P_IPV6
):
2023 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2024 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
2031 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
2032 context_desc
->seqnum_seed
= 0;
2033 context_desc
->mss_l4len_idx
= 0;
2035 buffer_info
->time_stamp
= jiffies
;
2036 buffer_info
->dma
= 0;
2038 if (i
== tx_ring
->count
)
2040 tx_ring
->next_to_use
= i
;
2048 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
2050 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2052 /* there is enough descriptors then we don't need to worry */
2053 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2056 netif_stop_queue(netdev
);
2060 /* We need to check again just in case room has been made available */
2061 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2064 netif_wake_queue(netdev
);
2066 ++adapter
->restart_queue
;
2070 #define IGBVF_MAX_TXD_PWR 16
2071 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2073 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2074 struct igbvf_ring
*tx_ring
,
2075 struct sk_buff
*skb
)
2077 struct igbvf_buffer
*buffer_info
;
2078 struct pci_dev
*pdev
= adapter
->pdev
;
2079 unsigned int len
= skb_headlen(skb
);
2080 unsigned int count
= 0, i
;
2083 i
= tx_ring
->next_to_use
;
2085 buffer_info
= &tx_ring
->buffer_info
[i
];
2086 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2087 buffer_info
->length
= len
;
2088 /* set time_stamp *before* dma to help avoid a possible race */
2089 buffer_info
->time_stamp
= jiffies
;
2090 buffer_info
->mapped_as_page
= false;
2091 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
, len
,
2093 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2097 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2098 const struct skb_frag_struct
*frag
;
2102 if (i
== tx_ring
->count
)
2105 frag
= &skb_shinfo(skb
)->frags
[f
];
2106 len
= skb_frag_size(frag
);
2108 buffer_info
= &tx_ring
->buffer_info
[i
];
2109 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2110 buffer_info
->length
= len
;
2111 buffer_info
->time_stamp
= jiffies
;
2112 buffer_info
->mapped_as_page
= true;
2113 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
, 0, len
,
2115 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2119 tx_ring
->buffer_info
[i
].skb
= skb
;
2124 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2126 /* clear timestamp and dma mappings for failed buffer_info mapping */
2127 buffer_info
->dma
= 0;
2128 buffer_info
->time_stamp
= 0;
2129 buffer_info
->length
= 0;
2130 buffer_info
->mapped_as_page
= false;
2134 /* clear timestamp and dma mappings for remaining portion of packet */
2137 i
+= tx_ring
->count
;
2139 buffer_info
= &tx_ring
->buffer_info
[i
];
2140 igbvf_put_txbuf(adapter
, buffer_info
);
2146 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2147 struct igbvf_ring
*tx_ring
,
2148 int tx_flags
, int count
,
2149 unsigned int first
, u32 paylen
,
2152 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2153 struct igbvf_buffer
*buffer_info
;
2154 u32 olinfo_status
= 0, cmd_type_len
;
2157 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2158 E1000_ADVTXD_DCMD_DEXT
);
2160 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2161 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2163 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2164 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2166 /* insert tcp checksum */
2167 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2169 /* insert ip checksum */
2170 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2171 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2173 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2174 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2177 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2179 i
= tx_ring
->next_to_use
;
2181 buffer_info
= &tx_ring
->buffer_info
[i
];
2182 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2183 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2184 tx_desc
->read
.cmd_type_len
=
2185 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2186 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2188 if (i
== tx_ring
->count
)
2192 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2193 /* Force memory writes to complete before letting h/w
2194 * know there are new descriptors to fetch. (Only
2195 * applicable for weak-ordered memory model archs,
2196 * such as IA-64). */
2199 tx_ring
->buffer_info
[first
].next_to_watch
= tx_desc
;
2200 tx_ring
->next_to_use
= i
;
2201 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2202 /* we need this if more than one processor can write to our tail
2203 * at a time, it syncronizes IO on IA64/Altix systems */
2207 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2208 struct net_device
*netdev
,
2209 struct igbvf_ring
*tx_ring
)
2211 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2212 unsigned int first
, tx_flags
= 0;
2217 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2218 dev_kfree_skb_any(skb
);
2219 return NETDEV_TX_OK
;
2222 if (skb
->len
<= 0) {
2223 dev_kfree_skb_any(skb
);
2224 return NETDEV_TX_OK
;
2228 * need: count + 4 desc gap to keep tail from touching
2229 * + 2 desc gap to keep tail from touching head,
2230 * + 1 desc for skb->data,
2231 * + 1 desc for context descriptor,
2232 * head, otherwise try next time
2234 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2235 /* this is a hard error */
2236 return NETDEV_TX_BUSY
;
2239 if (vlan_tx_tag_present(skb
)) {
2240 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2241 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2244 if (skb
->protocol
== htons(ETH_P_IP
))
2245 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2247 first
= tx_ring
->next_to_use
;
2249 tso
= skb_is_gso(skb
) ?
2250 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2251 if (unlikely(tso
< 0)) {
2252 dev_kfree_skb_any(skb
);
2253 return NETDEV_TX_OK
;
2257 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2258 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2259 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2260 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2263 * count reflects descriptors mapped, if 0 then mapping error
2264 * has occurred and we need to rewind the descriptor queue
2266 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
);
2269 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2270 first
, skb
->len
, hdr_len
);
2271 /* Make sure there is space in the ring for the next send. */
2272 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2274 dev_kfree_skb_any(skb
);
2275 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2276 tx_ring
->next_to_use
= first
;
2279 return NETDEV_TX_OK
;
2282 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2283 struct net_device
*netdev
)
2285 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2286 struct igbvf_ring
*tx_ring
;
2288 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2289 dev_kfree_skb_any(skb
);
2290 return NETDEV_TX_OK
;
2293 tx_ring
= &adapter
->tx_ring
[0];
2295 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2299 * igbvf_tx_timeout - Respond to a Tx Hang
2300 * @netdev: network interface device structure
2302 static void igbvf_tx_timeout(struct net_device
*netdev
)
2304 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2306 /* Do the reset outside of interrupt context */
2307 adapter
->tx_timeout_count
++;
2308 schedule_work(&adapter
->reset_task
);
2311 static void igbvf_reset_task(struct work_struct
*work
)
2313 struct igbvf_adapter
*adapter
;
2314 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2316 igbvf_reinit_locked(adapter
);
2320 * igbvf_get_stats - Get System Network Statistics
2321 * @netdev: network interface device structure
2323 * Returns the address of the device statistics structure.
2324 * The statistics are actually updated from the timer callback.
2326 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2328 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2330 /* only return the current stats */
2331 return &adapter
->net_stats
;
2335 * igbvf_change_mtu - Change the Maximum Transfer Unit
2336 * @netdev: network interface device structure
2337 * @new_mtu: new value for maximum frame size
2339 * Returns 0 on success, negative on failure
2341 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2343 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2344 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2346 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2347 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2351 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2352 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2353 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2357 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2359 /* igbvf_down has a dependency on max_frame_size */
2360 adapter
->max_frame_size
= max_frame
;
2361 if (netif_running(netdev
))
2362 igbvf_down(adapter
);
2365 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2366 * means we reserve 2 more, this pushes us to allocate from the next
2368 * i.e. RXBUFFER_2048 --> size-4096 slab
2369 * However with the new *_jumbo_rx* routines, jumbo receives will use
2373 if (max_frame
<= 1024)
2374 adapter
->rx_buffer_len
= 1024;
2375 else if (max_frame
<= 2048)
2376 adapter
->rx_buffer_len
= 2048;
2378 #if (PAGE_SIZE / 2) > 16384
2379 adapter
->rx_buffer_len
= 16384;
2381 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2385 /* adjust allocation if LPE protects us, and we aren't using SBP */
2386 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2387 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2388 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2391 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2392 netdev
->mtu
, new_mtu
);
2393 netdev
->mtu
= new_mtu
;
2395 if (netif_running(netdev
))
2398 igbvf_reset(adapter
);
2400 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2405 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2413 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2415 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2416 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2421 netif_device_detach(netdev
);
2423 if (netif_running(netdev
)) {
2424 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2425 igbvf_down(adapter
);
2426 igbvf_free_irq(adapter
);
2430 retval
= pci_save_state(pdev
);
2435 pci_disable_device(pdev
);
2441 static int igbvf_resume(struct pci_dev
*pdev
)
2443 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2444 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2447 pci_restore_state(pdev
);
2448 err
= pci_enable_device_mem(pdev
);
2450 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2454 pci_set_master(pdev
);
2456 if (netif_running(netdev
)) {
2457 err
= igbvf_request_irq(adapter
);
2462 igbvf_reset(adapter
);
2464 if (netif_running(netdev
))
2467 netif_device_attach(netdev
);
2473 static void igbvf_shutdown(struct pci_dev
*pdev
)
2475 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2478 #ifdef CONFIG_NET_POLL_CONTROLLER
2480 * Polling 'interrupt' - used by things like netconsole to send skbs
2481 * without having to re-enable interrupts. It's not called while
2482 * the interrupt routine is executing.
2484 static void igbvf_netpoll(struct net_device
*netdev
)
2486 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2488 disable_irq(adapter
->pdev
->irq
);
2490 igbvf_clean_tx_irq(adapter
->tx_ring
);
2492 enable_irq(adapter
->pdev
->irq
);
2497 * igbvf_io_error_detected - called when PCI error is detected
2498 * @pdev: Pointer to PCI device
2499 * @state: The current pci connection state
2501 * This function is called after a PCI bus error affecting
2502 * this device has been detected.
2504 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2505 pci_channel_state_t state
)
2507 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2508 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2510 netif_device_detach(netdev
);
2512 if (state
== pci_channel_io_perm_failure
)
2513 return PCI_ERS_RESULT_DISCONNECT
;
2515 if (netif_running(netdev
))
2516 igbvf_down(adapter
);
2517 pci_disable_device(pdev
);
2519 /* Request a slot slot reset. */
2520 return PCI_ERS_RESULT_NEED_RESET
;
2524 * igbvf_io_slot_reset - called after the pci bus has been reset.
2525 * @pdev: Pointer to PCI device
2527 * Restart the card from scratch, as if from a cold-boot. Implementation
2528 * resembles the first-half of the igbvf_resume routine.
2530 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2532 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2533 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2535 if (pci_enable_device_mem(pdev
)) {
2537 "Cannot re-enable PCI device after reset.\n");
2538 return PCI_ERS_RESULT_DISCONNECT
;
2540 pci_set_master(pdev
);
2542 igbvf_reset(adapter
);
2544 return PCI_ERS_RESULT_RECOVERED
;
2548 * igbvf_io_resume - called when traffic can start flowing again.
2549 * @pdev: Pointer to PCI device
2551 * This callback is called when the error recovery driver tells us that
2552 * its OK to resume normal operation. Implementation resembles the
2553 * second-half of the igbvf_resume routine.
2555 static void igbvf_io_resume(struct pci_dev
*pdev
)
2557 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2558 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2560 if (netif_running(netdev
)) {
2561 if (igbvf_up(adapter
)) {
2563 "can't bring device back up after reset\n");
2568 netif_device_attach(netdev
);
2571 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2573 struct e1000_hw
*hw
= &adapter
->hw
;
2574 struct net_device
*netdev
= adapter
->netdev
;
2575 struct pci_dev
*pdev
= adapter
->pdev
;
2577 if (hw
->mac
.type
== e1000_vfadapt_i350
)
2578 dev_info(&pdev
->dev
, "Intel(R) I350 Virtual Function\n");
2580 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2581 dev_info(&pdev
->dev
, "Address: %pM\n", netdev
->dev_addr
);
2584 static int igbvf_set_features(struct net_device
*netdev
,
2585 netdev_features_t features
)
2587 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2589 if (features
& NETIF_F_RXCSUM
)
2590 adapter
->flags
&= ~IGBVF_FLAG_RX_CSUM_DISABLED
;
2592 adapter
->flags
|= IGBVF_FLAG_RX_CSUM_DISABLED
;
2597 static const struct net_device_ops igbvf_netdev_ops
= {
2598 .ndo_open
= igbvf_open
,
2599 .ndo_stop
= igbvf_close
,
2600 .ndo_start_xmit
= igbvf_xmit_frame
,
2601 .ndo_get_stats
= igbvf_get_stats
,
2602 .ndo_set_rx_mode
= igbvf_set_multi
,
2603 .ndo_set_mac_address
= igbvf_set_mac
,
2604 .ndo_change_mtu
= igbvf_change_mtu
,
2605 .ndo_do_ioctl
= igbvf_ioctl
,
2606 .ndo_tx_timeout
= igbvf_tx_timeout
,
2607 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2608 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2609 #ifdef CONFIG_NET_POLL_CONTROLLER
2610 .ndo_poll_controller
= igbvf_netpoll
,
2612 .ndo_set_features
= igbvf_set_features
,
2616 * igbvf_probe - Device Initialization Routine
2617 * @pdev: PCI device information struct
2618 * @ent: entry in igbvf_pci_tbl
2620 * Returns 0 on success, negative on failure
2622 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2623 * The OS initialization, configuring of the adapter private structure,
2624 * and a hardware reset occur.
2626 static int igbvf_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2628 struct net_device
*netdev
;
2629 struct igbvf_adapter
*adapter
;
2630 struct e1000_hw
*hw
;
2631 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2633 static int cards_found
;
2634 int err
, pci_using_dac
;
2636 err
= pci_enable_device_mem(pdev
);
2641 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2643 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2647 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
2649 err
= dma_set_coherent_mask(&pdev
->dev
,
2652 dev_err(&pdev
->dev
, "No usable DMA "
2653 "configuration, aborting\n");
2659 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2663 pci_set_master(pdev
);
2666 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2668 goto err_alloc_etherdev
;
2670 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2672 pci_set_drvdata(pdev
, netdev
);
2673 adapter
= netdev_priv(netdev
);
2675 adapter
->netdev
= netdev
;
2676 adapter
->pdev
= pdev
;
2678 adapter
->pba
= ei
->pba
;
2679 adapter
->flags
= ei
->flags
;
2680 adapter
->hw
.back
= adapter
;
2681 adapter
->hw
.mac
.type
= ei
->mac
;
2682 adapter
->msg_enable
= netif_msg_init(debug
, DEFAULT_MSG_ENABLE
);
2684 /* PCI config space info */
2686 hw
->vendor_id
= pdev
->vendor
;
2687 hw
->device_id
= pdev
->device
;
2688 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2689 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2690 hw
->revision_id
= pdev
->revision
;
2693 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2694 pci_resource_len(pdev
, 0));
2696 if (!adapter
->hw
.hw_addr
)
2699 if (ei
->get_variants
) {
2700 err
= ei
->get_variants(adapter
);
2705 /* setup adapter struct */
2706 err
= igbvf_sw_init(adapter
);
2710 /* construct the net_device struct */
2711 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2713 igbvf_set_ethtool_ops(netdev
);
2714 netdev
->watchdog_timeo
= 5 * HZ
;
2715 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2717 adapter
->bd_number
= cards_found
++;
2719 netdev
->hw_features
= NETIF_F_SG
|
2726 netdev
->features
= netdev
->hw_features
|
2727 NETIF_F_HW_VLAN_CTAG_TX
|
2728 NETIF_F_HW_VLAN_CTAG_RX
|
2729 NETIF_F_HW_VLAN_CTAG_FILTER
;
2732 netdev
->features
|= NETIF_F_HIGHDMA
;
2734 netdev
->vlan_features
|= NETIF_F_TSO
;
2735 netdev
->vlan_features
|= NETIF_F_TSO6
;
2736 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2737 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2738 netdev
->vlan_features
|= NETIF_F_SG
;
2740 /*reset the controller to put the device in a known good state */
2741 err
= hw
->mac
.ops
.reset_hw(hw
);
2743 dev_info(&pdev
->dev
,
2744 "PF still in reset state. Is the PF interface up?\n");
2746 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2748 dev_info(&pdev
->dev
, "Error reading MAC address.\n");
2749 else if (is_zero_ether_addr(adapter
->hw
.mac
.addr
))
2750 dev_info(&pdev
->dev
, "MAC address not assigned by administrator.\n");
2751 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
2755 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
2756 dev_info(&pdev
->dev
, "Assigning random MAC address.\n");
2757 eth_hw_addr_random(netdev
);
2758 memcpy(adapter
->hw
.mac
.addr
, netdev
->dev_addr
,
2762 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2763 (unsigned long) adapter
);
2765 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2766 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2768 /* ring size defaults */
2769 adapter
->rx_ring
->count
= 1024;
2770 adapter
->tx_ring
->count
= 1024;
2772 /* reset the hardware with the new settings */
2773 igbvf_reset(adapter
);
2775 /* set hardware-specific flags */
2776 if (adapter
->hw
.mac
.type
== e1000_vfadapt_i350
)
2777 adapter
->flags
|= IGBVF_FLAG_RX_LB_VLAN_BSWAP
;
2779 strcpy(netdev
->name
, "eth%d");
2780 err
= register_netdev(netdev
);
2784 /* tell the stack to leave us alone until igbvf_open() is called */
2785 netif_carrier_off(netdev
);
2786 netif_stop_queue(netdev
);
2788 igbvf_print_device_info(adapter
);
2790 igbvf_initialize_last_counter_stats(adapter
);
2795 kfree(adapter
->tx_ring
);
2796 kfree(adapter
->rx_ring
);
2798 igbvf_reset_interrupt_capability(adapter
);
2799 iounmap(adapter
->hw
.hw_addr
);
2801 free_netdev(netdev
);
2803 pci_release_regions(pdev
);
2806 pci_disable_device(pdev
);
2811 * igbvf_remove - Device Removal Routine
2812 * @pdev: PCI device information struct
2814 * igbvf_remove is called by the PCI subsystem to alert the driver
2815 * that it should release a PCI device. The could be caused by a
2816 * Hot-Plug event, or because the driver is going to be removed from
2819 static void igbvf_remove(struct pci_dev
*pdev
)
2821 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2822 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2823 struct e1000_hw
*hw
= &adapter
->hw
;
2826 * The watchdog timer may be rescheduled, so explicitly
2827 * disable it from being rescheduled.
2829 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2830 del_timer_sync(&adapter
->watchdog_timer
);
2832 cancel_work_sync(&adapter
->reset_task
);
2833 cancel_work_sync(&adapter
->watchdog_task
);
2835 unregister_netdev(netdev
);
2837 igbvf_reset_interrupt_capability(adapter
);
2840 * it is important to delete the napi struct prior to freeing the
2841 * rx ring so that you do not end up with null pointer refs
2843 netif_napi_del(&adapter
->rx_ring
->napi
);
2844 kfree(adapter
->tx_ring
);
2845 kfree(adapter
->rx_ring
);
2847 iounmap(hw
->hw_addr
);
2848 if (hw
->flash_address
)
2849 iounmap(hw
->flash_address
);
2850 pci_release_regions(pdev
);
2852 free_netdev(netdev
);
2854 pci_disable_device(pdev
);
2857 /* PCI Error Recovery (ERS) */
2858 static const struct pci_error_handlers igbvf_err_handler
= {
2859 .error_detected
= igbvf_io_error_detected
,
2860 .slot_reset
= igbvf_io_slot_reset
,
2861 .resume
= igbvf_io_resume
,
2864 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl
) = {
2865 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2866 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_VF
), board_i350_vf
},
2867 { } /* terminate list */
2869 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2871 /* PCI Device API Driver */
2872 static struct pci_driver igbvf_driver
= {
2873 .name
= igbvf_driver_name
,
2874 .id_table
= igbvf_pci_tbl
,
2875 .probe
= igbvf_probe
,
2876 .remove
= igbvf_remove
,
2878 /* Power Management Hooks */
2879 .suspend
= igbvf_suspend
,
2880 .resume
= igbvf_resume
,
2882 .shutdown
= igbvf_shutdown
,
2883 .err_handler
= &igbvf_err_handler
2887 * igbvf_init_module - Driver Registration Routine
2889 * igbvf_init_module is the first routine called when the driver is
2890 * loaded. All it does is register with the PCI subsystem.
2892 static int __init
igbvf_init_module(void)
2895 pr_info("%s - version %s\n", igbvf_driver_string
, igbvf_driver_version
);
2896 pr_info("%s\n", igbvf_copyright
);
2898 ret
= pci_register_driver(&igbvf_driver
);
2902 module_init(igbvf_init_module
);
2905 * igbvf_exit_module - Driver Exit Cleanup Routine
2907 * igbvf_exit_module is called just before the driver is removed
2910 static void __exit
igbvf_exit_module(void)
2912 pci_unregister_driver(&igbvf_driver
);
2914 module_exit(igbvf_exit_module
);
2917 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2918 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2919 MODULE_LICENSE("GPL");
2920 MODULE_VERSION(DRV_VERSION
);