]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - drivers/net/ethernet/intel/igbvf/netdev.c
net: rename vlan_tx_* helpers since "tx" is misleading there
[mirror_ubuntu-bionic-kernel.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
85 };
86
87 /**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109 {
110 u16 vid;
111
112 if (status & E1000_RXD_STAT_VP) {
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
120 }
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127 {
128 skb_checksum_none_assert(skb);
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 return;
134
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
142
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148 }
149
150 /**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157 {
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
190 dma_map_page(&pdev->dev, buffer_info->page,
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
193 DMA_FROM_DEVICE);
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
201 }
202
203 if (!buffer_info->skb) {
204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
210 buffer_info->skb = skb;
211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 bufsz,
213 DMA_FROM_DEVICE);
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info. */
223 if (adapter->rx_ps_hdr_size) {
224 rx_desc->read.pkt_addr =
225 cpu_to_le64(buffer_info->page_dma);
226 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227 } else {
228 rx_desc->read.pkt_addr =
229 cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239 no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64). */
251 wmb();
252 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253 }
254 }
255
256 /**
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
259 *
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
262 **/
263 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264 int *work_done, int work_to_do)
265 {
266 struct igbvf_ring *rx_ring = adapter->rx_ring;
267 struct net_device *netdev = adapter->netdev;
268 struct pci_dev *pdev = adapter->pdev;
269 union e1000_adv_rx_desc *rx_desc, *next_rxd;
270 struct igbvf_buffer *buffer_info, *next_buffer;
271 struct sk_buff *skb;
272 bool cleaned = false;
273 int cleaned_count = 0;
274 unsigned int total_bytes = 0, total_packets = 0;
275 unsigned int i;
276 u32 length, hlen, staterr;
277
278 i = rx_ring->next_to_clean;
279 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282 while (staterr & E1000_RXD_STAT_DD) {
283 if (*work_done >= work_to_do)
284 break;
285 (*work_done)++;
286 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288 buffer_info = &rx_ring->buffer_info[i];
289
290 /* HW will not DMA in data larger than the given buffer, even
291 * if it parses the (NFS, of course) header to be larger. In
292 * that case, it fills the header buffer and spills the rest
293 * into the page.
294 */
295 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297 if (hlen > adapter->rx_ps_hdr_size)
298 hlen = adapter->rx_ps_hdr_size;
299
300 length = le16_to_cpu(rx_desc->wb.upper.length);
301 cleaned = true;
302 cleaned_count++;
303
304 skb = buffer_info->skb;
305 prefetch(skb->data - NET_IP_ALIGN);
306 buffer_info->skb = NULL;
307 if (!adapter->rx_ps_hdr_size) {
308 dma_unmap_single(&pdev->dev, buffer_info->dma,
309 adapter->rx_buffer_len,
310 DMA_FROM_DEVICE);
311 buffer_info->dma = 0;
312 skb_put(skb, length);
313 goto send_up;
314 }
315
316 if (!skb_shinfo(skb)->nr_frags) {
317 dma_unmap_single(&pdev->dev, buffer_info->dma,
318 adapter->rx_ps_hdr_size,
319 DMA_FROM_DEVICE);
320 skb_put(skb, hlen);
321 }
322
323 if (length) {
324 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325 PAGE_SIZE / 2,
326 DMA_FROM_DEVICE);
327 buffer_info->page_dma = 0;
328
329 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330 buffer_info->page,
331 buffer_info->page_offset,
332 length);
333
334 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335 (page_count(buffer_info->page) != 1))
336 buffer_info->page = NULL;
337 else
338 get_page(buffer_info->page);
339
340 skb->len += length;
341 skb->data_len += length;
342 skb->truesize += PAGE_SIZE / 2;
343 }
344 send_up:
345 i++;
346 if (i == rx_ring->count)
347 i = 0;
348 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349 prefetch(next_rxd);
350 next_buffer = &rx_ring->buffer_info[i];
351
352 if (!(staterr & E1000_RXD_STAT_EOP)) {
353 buffer_info->skb = next_buffer->skb;
354 buffer_info->dma = next_buffer->dma;
355 next_buffer->skb = skb;
356 next_buffer->dma = 0;
357 goto next_desc;
358 }
359
360 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361 dev_kfree_skb_irq(skb);
362 goto next_desc;
363 }
364
365 total_bytes += skb->len;
366 total_packets++;
367
368 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370 skb->protocol = eth_type_trans(skb, netdev);
371
372 igbvf_receive_skb(adapter, netdev, skb, staterr,
373 rx_desc->wb.upper.vlan);
374
375 next_desc:
376 rx_desc->wb.upper.status_error = 0;
377
378 /* return some buffers to hardware, one at a time is too slow */
379 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381 cleaned_count = 0;
382 }
383
384 /* use prefetched values */
385 rx_desc = next_rxd;
386 buffer_info = next_buffer;
387
388 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389 }
390
391 rx_ring->next_to_clean = i;
392 cleaned_count = igbvf_desc_unused(rx_ring);
393
394 if (cleaned_count)
395 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397 adapter->total_rx_packets += total_packets;
398 adapter->total_rx_bytes += total_bytes;
399 adapter->net_stats.rx_bytes += total_bytes;
400 adapter->net_stats.rx_packets += total_packets;
401 return cleaned;
402 }
403
404 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405 struct igbvf_buffer *buffer_info)
406 {
407 if (buffer_info->dma) {
408 if (buffer_info->mapped_as_page)
409 dma_unmap_page(&adapter->pdev->dev,
410 buffer_info->dma,
411 buffer_info->length,
412 DMA_TO_DEVICE);
413 else
414 dma_unmap_single(&adapter->pdev->dev,
415 buffer_info->dma,
416 buffer_info->length,
417 DMA_TO_DEVICE);
418 buffer_info->dma = 0;
419 }
420 if (buffer_info->skb) {
421 dev_kfree_skb_any(buffer_info->skb);
422 buffer_info->skb = NULL;
423 }
424 buffer_info->time_stamp = 0;
425 }
426
427 /**
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
430 *
431 * Return 0 on success, negative on failure
432 **/
433 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434 struct igbvf_ring *tx_ring)
435 {
436 struct pci_dev *pdev = adapter->pdev;
437 int size;
438
439 size = sizeof(struct igbvf_buffer) * tx_ring->count;
440 tx_ring->buffer_info = vzalloc(size);
441 if (!tx_ring->buffer_info)
442 goto err;
443
444 /* round up to nearest 4K */
445 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446 tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449 &tx_ring->dma, GFP_KERNEL);
450 if (!tx_ring->desc)
451 goto err;
452
453 tx_ring->adapter = adapter;
454 tx_ring->next_to_use = 0;
455 tx_ring->next_to_clean = 0;
456
457 return 0;
458 err:
459 vfree(tx_ring->buffer_info);
460 dev_err(&adapter->pdev->dev,
461 "Unable to allocate memory for the transmit descriptor ring\n");
462 return -ENOMEM;
463 }
464
465 /**
466 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
467 * @adapter: board private structure
468 *
469 * Returns 0 on success, negative on failure
470 **/
471 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
472 struct igbvf_ring *rx_ring)
473 {
474 struct pci_dev *pdev = adapter->pdev;
475 int size, desc_len;
476
477 size = sizeof(struct igbvf_buffer) * rx_ring->count;
478 rx_ring->buffer_info = vzalloc(size);
479 if (!rx_ring->buffer_info)
480 goto err;
481
482 desc_len = sizeof(union e1000_adv_rx_desc);
483
484 /* Round up to nearest 4K */
485 rx_ring->size = rx_ring->count * desc_len;
486 rx_ring->size = ALIGN(rx_ring->size, 4096);
487
488 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
489 &rx_ring->dma, GFP_KERNEL);
490 if (!rx_ring->desc)
491 goto err;
492
493 rx_ring->next_to_clean = 0;
494 rx_ring->next_to_use = 0;
495
496 rx_ring->adapter = adapter;
497
498 return 0;
499
500 err:
501 vfree(rx_ring->buffer_info);
502 rx_ring->buffer_info = NULL;
503 dev_err(&adapter->pdev->dev,
504 "Unable to allocate memory for the receive descriptor ring\n");
505 return -ENOMEM;
506 }
507
508 /**
509 * igbvf_clean_tx_ring - Free Tx Buffers
510 * @tx_ring: ring to be cleaned
511 **/
512 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
513 {
514 struct igbvf_adapter *adapter = tx_ring->adapter;
515 struct igbvf_buffer *buffer_info;
516 unsigned long size;
517 unsigned int i;
518
519 if (!tx_ring->buffer_info)
520 return;
521
522 /* Free all the Tx ring sk_buffs */
523 for (i = 0; i < tx_ring->count; i++) {
524 buffer_info = &tx_ring->buffer_info[i];
525 igbvf_put_txbuf(adapter, buffer_info);
526 }
527
528 size = sizeof(struct igbvf_buffer) * tx_ring->count;
529 memset(tx_ring->buffer_info, 0, size);
530
531 /* Zero out the descriptor ring */
532 memset(tx_ring->desc, 0, tx_ring->size);
533
534 tx_ring->next_to_use = 0;
535 tx_ring->next_to_clean = 0;
536
537 writel(0, adapter->hw.hw_addr + tx_ring->head);
538 writel(0, adapter->hw.hw_addr + tx_ring->tail);
539 }
540
541 /**
542 * igbvf_free_tx_resources - Free Tx Resources per Queue
543 * @tx_ring: ring to free resources from
544 *
545 * Free all transmit software resources
546 **/
547 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
548 {
549 struct pci_dev *pdev = tx_ring->adapter->pdev;
550
551 igbvf_clean_tx_ring(tx_ring);
552
553 vfree(tx_ring->buffer_info);
554 tx_ring->buffer_info = NULL;
555
556 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
557 tx_ring->dma);
558
559 tx_ring->desc = NULL;
560 }
561
562 /**
563 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
564 * @adapter: board private structure
565 **/
566 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
567 {
568 struct igbvf_adapter *adapter = rx_ring->adapter;
569 struct igbvf_buffer *buffer_info;
570 struct pci_dev *pdev = adapter->pdev;
571 unsigned long size;
572 unsigned int i;
573
574 if (!rx_ring->buffer_info)
575 return;
576
577 /* Free all the Rx ring sk_buffs */
578 for (i = 0; i < rx_ring->count; i++) {
579 buffer_info = &rx_ring->buffer_info[i];
580 if (buffer_info->dma) {
581 if (adapter->rx_ps_hdr_size){
582 dma_unmap_single(&pdev->dev, buffer_info->dma,
583 adapter->rx_ps_hdr_size,
584 DMA_FROM_DEVICE);
585 } else {
586 dma_unmap_single(&pdev->dev, buffer_info->dma,
587 adapter->rx_buffer_len,
588 DMA_FROM_DEVICE);
589 }
590 buffer_info->dma = 0;
591 }
592
593 if (buffer_info->skb) {
594 dev_kfree_skb(buffer_info->skb);
595 buffer_info->skb = NULL;
596 }
597
598 if (buffer_info->page) {
599 if (buffer_info->page_dma)
600 dma_unmap_page(&pdev->dev,
601 buffer_info->page_dma,
602 PAGE_SIZE / 2,
603 DMA_FROM_DEVICE);
604 put_page(buffer_info->page);
605 buffer_info->page = NULL;
606 buffer_info->page_dma = 0;
607 buffer_info->page_offset = 0;
608 }
609 }
610
611 size = sizeof(struct igbvf_buffer) * rx_ring->count;
612 memset(rx_ring->buffer_info, 0, size);
613
614 /* Zero out the descriptor ring */
615 memset(rx_ring->desc, 0, rx_ring->size);
616
617 rx_ring->next_to_clean = 0;
618 rx_ring->next_to_use = 0;
619
620 writel(0, adapter->hw.hw_addr + rx_ring->head);
621 writel(0, adapter->hw.hw_addr + rx_ring->tail);
622 }
623
624 /**
625 * igbvf_free_rx_resources - Free Rx Resources
626 * @rx_ring: ring to clean the resources from
627 *
628 * Free all receive software resources
629 **/
630
631 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
632 {
633 struct pci_dev *pdev = rx_ring->adapter->pdev;
634
635 igbvf_clean_rx_ring(rx_ring);
636
637 vfree(rx_ring->buffer_info);
638 rx_ring->buffer_info = NULL;
639
640 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
641 rx_ring->dma);
642 rx_ring->desc = NULL;
643 }
644
645 /**
646 * igbvf_update_itr - update the dynamic ITR value based on statistics
647 * @adapter: pointer to adapter
648 * @itr_setting: current adapter->itr
649 * @packets: the number of packets during this measurement interval
650 * @bytes: the number of bytes during this measurement interval
651 *
652 * Stores a new ITR value based on packets and byte
653 * counts during the last interrupt. The advantage of per interrupt
654 * computation is faster updates and more accurate ITR for the current
655 * traffic pattern. Constants in this function were computed
656 * based on theoretical maximum wire speed and thresholds were set based
657 * on testing data as well as attempting to minimize response time
658 * while increasing bulk throughput.
659 **/
660 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
661 enum latency_range itr_setting,
662 int packets, int bytes)
663 {
664 enum latency_range retval = itr_setting;
665
666 if (packets == 0)
667 goto update_itr_done;
668
669 switch (itr_setting) {
670 case lowest_latency:
671 /* handle TSO and jumbo frames */
672 if (bytes/packets > 8000)
673 retval = bulk_latency;
674 else if ((packets < 5) && (bytes > 512))
675 retval = low_latency;
676 break;
677 case low_latency: /* 50 usec aka 20000 ints/s */
678 if (bytes > 10000) {
679 /* this if handles the TSO accounting */
680 if (bytes/packets > 8000)
681 retval = bulk_latency;
682 else if ((packets < 10) || ((bytes/packets) > 1200))
683 retval = bulk_latency;
684 else if ((packets > 35))
685 retval = lowest_latency;
686 } else if (bytes/packets > 2000) {
687 retval = bulk_latency;
688 } else if (packets <= 2 && bytes < 512) {
689 retval = lowest_latency;
690 }
691 break;
692 case bulk_latency: /* 250 usec aka 4000 ints/s */
693 if (bytes > 25000) {
694 if (packets > 35)
695 retval = low_latency;
696 } else if (bytes < 6000) {
697 retval = low_latency;
698 }
699 break;
700 default:
701 break;
702 }
703
704 update_itr_done:
705 return retval;
706 }
707
708 static int igbvf_range_to_itr(enum latency_range current_range)
709 {
710 int new_itr;
711
712 switch (current_range) {
713 /* counts and packets in update_itr are dependent on these numbers */
714 case lowest_latency:
715 new_itr = IGBVF_70K_ITR;
716 break;
717 case low_latency:
718 new_itr = IGBVF_20K_ITR;
719 break;
720 case bulk_latency:
721 new_itr = IGBVF_4K_ITR;
722 break;
723 default:
724 new_itr = IGBVF_START_ITR;
725 break;
726 }
727 return new_itr;
728 }
729
730 static void igbvf_set_itr(struct igbvf_adapter *adapter)
731 {
732 u32 new_itr;
733
734 adapter->tx_ring->itr_range =
735 igbvf_update_itr(adapter,
736 adapter->tx_ring->itr_val,
737 adapter->total_tx_packets,
738 adapter->total_tx_bytes);
739
740 /* conservative mode (itr 3) eliminates the lowest_latency setting */
741 if (adapter->requested_itr == 3 &&
742 adapter->tx_ring->itr_range == lowest_latency)
743 adapter->tx_ring->itr_range = low_latency;
744
745 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
746
747
748 if (new_itr != adapter->tx_ring->itr_val) {
749 u32 current_itr = adapter->tx_ring->itr_val;
750 /*
751 * this attempts to bias the interrupt rate towards Bulk
752 * by adding intermediate steps when interrupt rate is
753 * increasing
754 */
755 new_itr = new_itr > current_itr ?
756 min(current_itr + (new_itr >> 2), new_itr) :
757 new_itr;
758 adapter->tx_ring->itr_val = new_itr;
759
760 adapter->tx_ring->set_itr = 1;
761 }
762
763 adapter->rx_ring->itr_range =
764 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
765 adapter->total_rx_packets,
766 adapter->total_rx_bytes);
767 if (adapter->requested_itr == 3 &&
768 adapter->rx_ring->itr_range == lowest_latency)
769 adapter->rx_ring->itr_range = low_latency;
770
771 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
772
773 if (new_itr != adapter->rx_ring->itr_val) {
774 u32 current_itr = adapter->rx_ring->itr_val;
775 new_itr = new_itr > current_itr ?
776 min(current_itr + (new_itr >> 2), new_itr) :
777 new_itr;
778 adapter->rx_ring->itr_val = new_itr;
779
780 adapter->rx_ring->set_itr = 1;
781 }
782 }
783
784 /**
785 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
786 * @adapter: board private structure
787 *
788 * returns true if ring is completely cleaned
789 **/
790 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
791 {
792 struct igbvf_adapter *adapter = tx_ring->adapter;
793 struct net_device *netdev = adapter->netdev;
794 struct igbvf_buffer *buffer_info;
795 struct sk_buff *skb;
796 union e1000_adv_tx_desc *tx_desc, *eop_desc;
797 unsigned int total_bytes = 0, total_packets = 0;
798 unsigned int i, count = 0;
799 bool cleaned = false;
800
801 i = tx_ring->next_to_clean;
802 buffer_info = &tx_ring->buffer_info[i];
803 eop_desc = buffer_info->next_to_watch;
804
805 do {
806 /* if next_to_watch is not set then there is no work pending */
807 if (!eop_desc)
808 break;
809
810 /* prevent any other reads prior to eop_desc */
811 read_barrier_depends();
812
813 /* if DD is not set pending work has not been completed */
814 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
815 break;
816
817 /* clear next_to_watch to prevent false hangs */
818 buffer_info->next_to_watch = NULL;
819
820 for (cleaned = false; !cleaned; count++) {
821 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
822 cleaned = (tx_desc == eop_desc);
823 skb = buffer_info->skb;
824
825 if (skb) {
826 unsigned int segs, bytecount;
827
828 /* gso_segs is currently only valid for tcp */
829 segs = skb_shinfo(skb)->gso_segs ?: 1;
830 /* multiply data chunks by size of headers */
831 bytecount = ((segs - 1) * skb_headlen(skb)) +
832 skb->len;
833 total_packets += segs;
834 total_bytes += bytecount;
835 }
836
837 igbvf_put_txbuf(adapter, buffer_info);
838 tx_desc->wb.status = 0;
839
840 i++;
841 if (i == tx_ring->count)
842 i = 0;
843
844 buffer_info = &tx_ring->buffer_info[i];
845 }
846
847 eop_desc = buffer_info->next_to_watch;
848 } while (count < tx_ring->count);
849
850 tx_ring->next_to_clean = i;
851
852 if (unlikely(count &&
853 netif_carrier_ok(netdev) &&
854 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
855 /* Make sure that anybody stopping the queue after this
856 * sees the new next_to_clean.
857 */
858 smp_mb();
859 if (netif_queue_stopped(netdev) &&
860 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
861 netif_wake_queue(netdev);
862 ++adapter->restart_queue;
863 }
864 }
865
866 adapter->net_stats.tx_bytes += total_bytes;
867 adapter->net_stats.tx_packets += total_packets;
868 return count < tx_ring->count;
869 }
870
871 static irqreturn_t igbvf_msix_other(int irq, void *data)
872 {
873 struct net_device *netdev = data;
874 struct igbvf_adapter *adapter = netdev_priv(netdev);
875 struct e1000_hw *hw = &adapter->hw;
876
877 adapter->int_counter1++;
878
879 netif_carrier_off(netdev);
880 hw->mac.get_link_status = 1;
881 if (!test_bit(__IGBVF_DOWN, &adapter->state))
882 mod_timer(&adapter->watchdog_timer, jiffies + 1);
883
884 ew32(EIMS, adapter->eims_other);
885
886 return IRQ_HANDLED;
887 }
888
889 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
890 {
891 struct net_device *netdev = data;
892 struct igbvf_adapter *adapter = netdev_priv(netdev);
893 struct e1000_hw *hw = &adapter->hw;
894 struct igbvf_ring *tx_ring = adapter->tx_ring;
895
896 if (tx_ring->set_itr) {
897 writel(tx_ring->itr_val,
898 adapter->hw.hw_addr + tx_ring->itr_register);
899 adapter->tx_ring->set_itr = 0;
900 }
901
902 adapter->total_tx_bytes = 0;
903 adapter->total_tx_packets = 0;
904
905 /* auto mask will automatically reenable the interrupt when we write
906 * EICS */
907 if (!igbvf_clean_tx_irq(tx_ring))
908 /* Ring was not completely cleaned, so fire another interrupt */
909 ew32(EICS, tx_ring->eims_value);
910 else
911 ew32(EIMS, tx_ring->eims_value);
912
913 return IRQ_HANDLED;
914 }
915
916 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
917 {
918 struct net_device *netdev = data;
919 struct igbvf_adapter *adapter = netdev_priv(netdev);
920
921 adapter->int_counter0++;
922
923 /* Write the ITR value calculated at the end of the
924 * previous interrupt.
925 */
926 if (adapter->rx_ring->set_itr) {
927 writel(adapter->rx_ring->itr_val,
928 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
929 adapter->rx_ring->set_itr = 0;
930 }
931
932 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
933 adapter->total_rx_bytes = 0;
934 adapter->total_rx_packets = 0;
935 __napi_schedule(&adapter->rx_ring->napi);
936 }
937
938 return IRQ_HANDLED;
939 }
940
941 #define IGBVF_NO_QUEUE -1
942
943 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
944 int tx_queue, int msix_vector)
945 {
946 struct e1000_hw *hw = &adapter->hw;
947 u32 ivar, index;
948
949 /* 82576 uses a table-based method for assigning vectors.
950 Each queue has a single entry in the table to which we write
951 a vector number along with a "valid" bit. Sadly, the layout
952 of the table is somewhat counterintuitive. */
953 if (rx_queue > IGBVF_NO_QUEUE) {
954 index = (rx_queue >> 1);
955 ivar = array_er32(IVAR0, index);
956 if (rx_queue & 0x1) {
957 /* vector goes into third byte of register */
958 ivar = ivar & 0xFF00FFFF;
959 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
960 } else {
961 /* vector goes into low byte of register */
962 ivar = ivar & 0xFFFFFF00;
963 ivar |= msix_vector | E1000_IVAR_VALID;
964 }
965 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
966 array_ew32(IVAR0, index, ivar);
967 }
968 if (tx_queue > IGBVF_NO_QUEUE) {
969 index = (tx_queue >> 1);
970 ivar = array_er32(IVAR0, index);
971 if (tx_queue & 0x1) {
972 /* vector goes into high byte of register */
973 ivar = ivar & 0x00FFFFFF;
974 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
975 } else {
976 /* vector goes into second byte of register */
977 ivar = ivar & 0xFFFF00FF;
978 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
979 }
980 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
981 array_ew32(IVAR0, index, ivar);
982 }
983 }
984
985 /**
986 * igbvf_configure_msix - Configure MSI-X hardware
987 *
988 * igbvf_configure_msix sets up the hardware to properly
989 * generate MSI-X interrupts.
990 **/
991 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
992 {
993 u32 tmp;
994 struct e1000_hw *hw = &adapter->hw;
995 struct igbvf_ring *tx_ring = adapter->tx_ring;
996 struct igbvf_ring *rx_ring = adapter->rx_ring;
997 int vector = 0;
998
999 adapter->eims_enable_mask = 0;
1000
1001 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
1002 adapter->eims_enable_mask |= tx_ring->eims_value;
1003 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
1004 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
1005 adapter->eims_enable_mask |= rx_ring->eims_value;
1006 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
1007
1008 /* set vector for other causes, i.e. link changes */
1009
1010 tmp = (vector++ | E1000_IVAR_VALID);
1011
1012 ew32(IVAR_MISC, tmp);
1013
1014 adapter->eims_enable_mask = (1 << (vector)) - 1;
1015 adapter->eims_other = 1 << (vector - 1);
1016 e1e_flush();
1017 }
1018
1019 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1020 {
1021 if (adapter->msix_entries) {
1022 pci_disable_msix(adapter->pdev);
1023 kfree(adapter->msix_entries);
1024 adapter->msix_entries = NULL;
1025 }
1026 }
1027
1028 /**
1029 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1030 *
1031 * Attempt to configure interrupts using the best available
1032 * capabilities of the hardware and kernel.
1033 **/
1034 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1035 {
1036 int err = -ENOMEM;
1037 int i;
1038
1039 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1040 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1041 GFP_KERNEL);
1042 if (adapter->msix_entries) {
1043 for (i = 0; i < 3; i++)
1044 adapter->msix_entries[i].entry = i;
1045
1046 err = pci_enable_msix_range(adapter->pdev,
1047 adapter->msix_entries, 3, 3);
1048 }
1049
1050 if (err < 0) {
1051 /* MSI-X failed */
1052 dev_err(&adapter->pdev->dev,
1053 "Failed to initialize MSI-X interrupts.\n");
1054 igbvf_reset_interrupt_capability(adapter);
1055 }
1056 }
1057
1058 /**
1059 * igbvf_request_msix - Initialize MSI-X interrupts
1060 *
1061 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1062 * kernel.
1063 **/
1064 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1065 {
1066 struct net_device *netdev = adapter->netdev;
1067 int err = 0, vector = 0;
1068
1069 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1070 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1071 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1072 } else {
1073 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1074 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1075 }
1076
1077 err = request_irq(adapter->msix_entries[vector].vector,
1078 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1079 netdev);
1080 if (err)
1081 goto out;
1082
1083 adapter->tx_ring->itr_register = E1000_EITR(vector);
1084 adapter->tx_ring->itr_val = adapter->current_itr;
1085 vector++;
1086
1087 err = request_irq(adapter->msix_entries[vector].vector,
1088 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1089 netdev);
1090 if (err)
1091 goto out;
1092
1093 adapter->rx_ring->itr_register = E1000_EITR(vector);
1094 adapter->rx_ring->itr_val = adapter->current_itr;
1095 vector++;
1096
1097 err = request_irq(adapter->msix_entries[vector].vector,
1098 igbvf_msix_other, 0, netdev->name, netdev);
1099 if (err)
1100 goto out;
1101
1102 igbvf_configure_msix(adapter);
1103 return 0;
1104 out:
1105 return err;
1106 }
1107
1108 /**
1109 * igbvf_alloc_queues - Allocate memory for all rings
1110 * @adapter: board private structure to initialize
1111 **/
1112 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1113 {
1114 struct net_device *netdev = adapter->netdev;
1115
1116 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1117 if (!adapter->tx_ring)
1118 return -ENOMEM;
1119
1120 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1121 if (!adapter->rx_ring) {
1122 kfree(adapter->tx_ring);
1123 return -ENOMEM;
1124 }
1125
1126 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1127
1128 return 0;
1129 }
1130
1131 /**
1132 * igbvf_request_irq - initialize interrupts
1133 *
1134 * Attempts to configure interrupts using the best available
1135 * capabilities of the hardware and kernel.
1136 **/
1137 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1138 {
1139 int err = -1;
1140
1141 /* igbvf supports msi-x only */
1142 if (adapter->msix_entries)
1143 err = igbvf_request_msix(adapter);
1144
1145 if (!err)
1146 return err;
1147
1148 dev_err(&adapter->pdev->dev,
1149 "Unable to allocate interrupt, Error: %d\n", err);
1150
1151 return err;
1152 }
1153
1154 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1155 {
1156 struct net_device *netdev = adapter->netdev;
1157 int vector;
1158
1159 if (adapter->msix_entries) {
1160 for (vector = 0; vector < 3; vector++)
1161 free_irq(adapter->msix_entries[vector].vector, netdev);
1162 }
1163 }
1164
1165 /**
1166 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1167 **/
1168 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1169 {
1170 struct e1000_hw *hw = &adapter->hw;
1171
1172 ew32(EIMC, ~0);
1173
1174 if (adapter->msix_entries)
1175 ew32(EIAC, 0);
1176 }
1177
1178 /**
1179 * igbvf_irq_enable - Enable default interrupt generation settings
1180 **/
1181 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1182 {
1183 struct e1000_hw *hw = &adapter->hw;
1184
1185 ew32(EIAC, adapter->eims_enable_mask);
1186 ew32(EIAM, adapter->eims_enable_mask);
1187 ew32(EIMS, adapter->eims_enable_mask);
1188 }
1189
1190 /**
1191 * igbvf_poll - NAPI Rx polling callback
1192 * @napi: struct associated with this polling callback
1193 * @budget: amount of packets driver is allowed to process this poll
1194 **/
1195 static int igbvf_poll(struct napi_struct *napi, int budget)
1196 {
1197 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1198 struct igbvf_adapter *adapter = rx_ring->adapter;
1199 struct e1000_hw *hw = &adapter->hw;
1200 int work_done = 0;
1201
1202 igbvf_clean_rx_irq(adapter, &work_done, budget);
1203
1204 /* If not enough Rx work done, exit the polling mode */
1205 if (work_done < budget) {
1206 napi_complete(napi);
1207
1208 if (adapter->requested_itr & 3)
1209 igbvf_set_itr(adapter);
1210
1211 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1212 ew32(EIMS, adapter->rx_ring->eims_value);
1213 }
1214
1215 return work_done;
1216 }
1217
1218 /**
1219 * igbvf_set_rlpml - set receive large packet maximum length
1220 * @adapter: board private structure
1221 *
1222 * Configure the maximum size of packets that will be received
1223 */
1224 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1225 {
1226 int max_frame_size;
1227 struct e1000_hw *hw = &adapter->hw;
1228
1229 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1230 e1000_rlpml_set_vf(hw, max_frame_size);
1231 }
1232
1233 static int igbvf_vlan_rx_add_vid(struct net_device *netdev,
1234 __be16 proto, u16 vid)
1235 {
1236 struct igbvf_adapter *adapter = netdev_priv(netdev);
1237 struct e1000_hw *hw = &adapter->hw;
1238
1239 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1240 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1241 return -EINVAL;
1242 }
1243 set_bit(vid, adapter->active_vlans);
1244 return 0;
1245 }
1246
1247 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev,
1248 __be16 proto, u16 vid)
1249 {
1250 struct igbvf_adapter *adapter = netdev_priv(netdev);
1251 struct e1000_hw *hw = &adapter->hw;
1252
1253 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1254 dev_err(&adapter->pdev->dev,
1255 "Failed to remove vlan id %d\n", vid);
1256 return -EINVAL;
1257 }
1258 clear_bit(vid, adapter->active_vlans);
1259 return 0;
1260 }
1261
1262 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1263 {
1264 u16 vid;
1265
1266 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1267 igbvf_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1268 }
1269
1270 /**
1271 * igbvf_configure_tx - Configure Transmit Unit after Reset
1272 * @adapter: board private structure
1273 *
1274 * Configure the Tx unit of the MAC after a reset.
1275 **/
1276 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1277 {
1278 struct e1000_hw *hw = &adapter->hw;
1279 struct igbvf_ring *tx_ring = adapter->tx_ring;
1280 u64 tdba;
1281 u32 txdctl, dca_txctrl;
1282
1283 /* disable transmits */
1284 txdctl = er32(TXDCTL(0));
1285 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1286 e1e_flush();
1287 msleep(10);
1288
1289 /* Setup the HW Tx Head and Tail descriptor pointers */
1290 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1291 tdba = tx_ring->dma;
1292 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1293 ew32(TDBAH(0), (tdba >> 32));
1294 ew32(TDH(0), 0);
1295 ew32(TDT(0), 0);
1296 tx_ring->head = E1000_TDH(0);
1297 tx_ring->tail = E1000_TDT(0);
1298
1299 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1300 * MUST be delivered in order or it will completely screw up
1301 * our bookeeping.
1302 */
1303 dca_txctrl = er32(DCA_TXCTRL(0));
1304 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1305 ew32(DCA_TXCTRL(0), dca_txctrl);
1306
1307 /* enable transmits */
1308 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1309 ew32(TXDCTL(0), txdctl);
1310
1311 /* Setup Transmit Descriptor Settings for eop descriptor */
1312 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1313
1314 /* enable Report Status bit */
1315 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1316 }
1317
1318 /**
1319 * igbvf_setup_srrctl - configure the receive control registers
1320 * @adapter: Board private structure
1321 **/
1322 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1323 {
1324 struct e1000_hw *hw = &adapter->hw;
1325 u32 srrctl = 0;
1326
1327 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1328 E1000_SRRCTL_BSIZEHDR_MASK |
1329 E1000_SRRCTL_BSIZEPKT_MASK);
1330
1331 /* Enable queue drop to avoid head of line blocking */
1332 srrctl |= E1000_SRRCTL_DROP_EN;
1333
1334 /* Setup buffer sizes */
1335 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1336 E1000_SRRCTL_BSIZEPKT_SHIFT;
1337
1338 if (adapter->rx_buffer_len < 2048) {
1339 adapter->rx_ps_hdr_size = 0;
1340 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1341 } else {
1342 adapter->rx_ps_hdr_size = 128;
1343 srrctl |= adapter->rx_ps_hdr_size <<
1344 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1345 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1346 }
1347
1348 ew32(SRRCTL(0), srrctl);
1349 }
1350
1351 /**
1352 * igbvf_configure_rx - Configure Receive Unit after Reset
1353 * @adapter: board private structure
1354 *
1355 * Configure the Rx unit of the MAC after a reset.
1356 **/
1357 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1358 {
1359 struct e1000_hw *hw = &adapter->hw;
1360 struct igbvf_ring *rx_ring = adapter->rx_ring;
1361 u64 rdba;
1362 u32 rdlen, rxdctl;
1363
1364 /* disable receives */
1365 rxdctl = er32(RXDCTL(0));
1366 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1367 e1e_flush();
1368 msleep(10);
1369
1370 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1371
1372 /*
1373 * Setup the HW Rx Head and Tail Descriptor Pointers and
1374 * the Base and Length of the Rx Descriptor Ring
1375 */
1376 rdba = rx_ring->dma;
1377 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1378 ew32(RDBAH(0), (rdba >> 32));
1379 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1380 rx_ring->head = E1000_RDH(0);
1381 rx_ring->tail = E1000_RDT(0);
1382 ew32(RDH(0), 0);
1383 ew32(RDT(0), 0);
1384
1385 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1386 rxdctl &= 0xFFF00000;
1387 rxdctl |= IGBVF_RX_PTHRESH;
1388 rxdctl |= IGBVF_RX_HTHRESH << 8;
1389 rxdctl |= IGBVF_RX_WTHRESH << 16;
1390
1391 igbvf_set_rlpml(adapter);
1392
1393 /* enable receives */
1394 ew32(RXDCTL(0), rxdctl);
1395 }
1396
1397 /**
1398 * igbvf_set_multi - Multicast and Promiscuous mode set
1399 * @netdev: network interface device structure
1400 *
1401 * The set_multi entry point is called whenever the multicast address
1402 * list or the network interface flags are updated. This routine is
1403 * responsible for configuring the hardware for proper multicast,
1404 * promiscuous mode, and all-multi behavior.
1405 **/
1406 static void igbvf_set_multi(struct net_device *netdev)
1407 {
1408 struct igbvf_adapter *adapter = netdev_priv(netdev);
1409 struct e1000_hw *hw = &adapter->hw;
1410 struct netdev_hw_addr *ha;
1411 u8 *mta_list = NULL;
1412 int i;
1413
1414 if (!netdev_mc_empty(netdev)) {
1415 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1416 GFP_ATOMIC);
1417 if (!mta_list)
1418 return;
1419 }
1420
1421 /* prepare a packed array of only addresses. */
1422 i = 0;
1423 netdev_for_each_mc_addr(ha, netdev)
1424 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1425
1426 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1427 kfree(mta_list);
1428 }
1429
1430 /**
1431 * igbvf_configure - configure the hardware for Rx and Tx
1432 * @adapter: private board structure
1433 **/
1434 static void igbvf_configure(struct igbvf_adapter *adapter)
1435 {
1436 igbvf_set_multi(adapter->netdev);
1437
1438 igbvf_restore_vlan(adapter);
1439
1440 igbvf_configure_tx(adapter);
1441 igbvf_setup_srrctl(adapter);
1442 igbvf_configure_rx(adapter);
1443 igbvf_alloc_rx_buffers(adapter->rx_ring,
1444 igbvf_desc_unused(adapter->rx_ring));
1445 }
1446
1447 /* igbvf_reset - bring the hardware into a known good state
1448 *
1449 * This function boots the hardware and enables some settings that
1450 * require a configuration cycle of the hardware - those cannot be
1451 * set/changed during runtime. After reset the device needs to be
1452 * properly configured for Rx, Tx etc.
1453 */
1454 static void igbvf_reset(struct igbvf_adapter *adapter)
1455 {
1456 struct e1000_mac_info *mac = &adapter->hw.mac;
1457 struct net_device *netdev = adapter->netdev;
1458 struct e1000_hw *hw = &adapter->hw;
1459
1460 /* Allow time for pending master requests to run */
1461 if (mac->ops.reset_hw(hw))
1462 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1463
1464 mac->ops.init_hw(hw);
1465
1466 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1467 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1468 netdev->addr_len);
1469 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1470 netdev->addr_len);
1471 }
1472
1473 adapter->last_reset = jiffies;
1474 }
1475
1476 int igbvf_up(struct igbvf_adapter *adapter)
1477 {
1478 struct e1000_hw *hw = &adapter->hw;
1479
1480 /* hardware has been reset, we need to reload some things */
1481 igbvf_configure(adapter);
1482
1483 clear_bit(__IGBVF_DOWN, &adapter->state);
1484
1485 napi_enable(&adapter->rx_ring->napi);
1486 if (adapter->msix_entries)
1487 igbvf_configure_msix(adapter);
1488
1489 /* Clear any pending interrupts. */
1490 er32(EICR);
1491 igbvf_irq_enable(adapter);
1492
1493 /* start the watchdog */
1494 hw->mac.get_link_status = 1;
1495 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1496
1497
1498 return 0;
1499 }
1500
1501 void igbvf_down(struct igbvf_adapter *adapter)
1502 {
1503 struct net_device *netdev = adapter->netdev;
1504 struct e1000_hw *hw = &adapter->hw;
1505 u32 rxdctl, txdctl;
1506
1507 /*
1508 * signal that we're down so the interrupt handler does not
1509 * reschedule our watchdog timer
1510 */
1511 set_bit(__IGBVF_DOWN, &adapter->state);
1512
1513 /* disable receives in the hardware */
1514 rxdctl = er32(RXDCTL(0));
1515 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1516
1517 netif_stop_queue(netdev);
1518
1519 /* disable transmits in the hardware */
1520 txdctl = er32(TXDCTL(0));
1521 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1522
1523 /* flush both disables and wait for them to finish */
1524 e1e_flush();
1525 msleep(10);
1526
1527 napi_disable(&adapter->rx_ring->napi);
1528
1529 igbvf_irq_disable(adapter);
1530
1531 del_timer_sync(&adapter->watchdog_timer);
1532
1533 netif_carrier_off(netdev);
1534
1535 /* record the stats before reset*/
1536 igbvf_update_stats(adapter);
1537
1538 adapter->link_speed = 0;
1539 adapter->link_duplex = 0;
1540
1541 igbvf_reset(adapter);
1542 igbvf_clean_tx_ring(adapter->tx_ring);
1543 igbvf_clean_rx_ring(adapter->rx_ring);
1544 }
1545
1546 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1547 {
1548 might_sleep();
1549 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1550 msleep(1);
1551 igbvf_down(adapter);
1552 igbvf_up(adapter);
1553 clear_bit(__IGBVF_RESETTING, &adapter->state);
1554 }
1555
1556 /**
1557 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1558 * @adapter: board private structure to initialize
1559 *
1560 * igbvf_sw_init initializes the Adapter private data structure.
1561 * Fields are initialized based on PCI device information and
1562 * OS network device settings (MTU size).
1563 **/
1564 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1565 {
1566 struct net_device *netdev = adapter->netdev;
1567 s32 rc;
1568
1569 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1570 adapter->rx_ps_hdr_size = 0;
1571 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1572 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1573
1574 adapter->tx_int_delay = 8;
1575 adapter->tx_abs_int_delay = 32;
1576 adapter->rx_int_delay = 0;
1577 adapter->rx_abs_int_delay = 8;
1578 adapter->requested_itr = 3;
1579 adapter->current_itr = IGBVF_START_ITR;
1580
1581 /* Set various function pointers */
1582 adapter->ei->init_ops(&adapter->hw);
1583
1584 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1585 if (rc)
1586 return rc;
1587
1588 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1589 if (rc)
1590 return rc;
1591
1592 igbvf_set_interrupt_capability(adapter);
1593
1594 if (igbvf_alloc_queues(adapter))
1595 return -ENOMEM;
1596
1597 spin_lock_init(&adapter->tx_queue_lock);
1598
1599 /* Explicitly disable IRQ since the NIC can be in any state. */
1600 igbvf_irq_disable(adapter);
1601
1602 spin_lock_init(&adapter->stats_lock);
1603
1604 set_bit(__IGBVF_DOWN, &adapter->state);
1605 return 0;
1606 }
1607
1608 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1609 {
1610 struct e1000_hw *hw = &adapter->hw;
1611
1612 adapter->stats.last_gprc = er32(VFGPRC);
1613 adapter->stats.last_gorc = er32(VFGORC);
1614 adapter->stats.last_gptc = er32(VFGPTC);
1615 adapter->stats.last_gotc = er32(VFGOTC);
1616 adapter->stats.last_mprc = er32(VFMPRC);
1617 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1618 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1619 adapter->stats.last_gorlbc = er32(VFGORLBC);
1620 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1621
1622 adapter->stats.base_gprc = er32(VFGPRC);
1623 adapter->stats.base_gorc = er32(VFGORC);
1624 adapter->stats.base_gptc = er32(VFGPTC);
1625 adapter->stats.base_gotc = er32(VFGOTC);
1626 adapter->stats.base_mprc = er32(VFMPRC);
1627 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1628 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1629 adapter->stats.base_gorlbc = er32(VFGORLBC);
1630 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1631 }
1632
1633 /**
1634 * igbvf_open - Called when a network interface is made active
1635 * @netdev: network interface device structure
1636 *
1637 * Returns 0 on success, negative value on failure
1638 *
1639 * The open entry point is called when a network interface is made
1640 * active by the system (IFF_UP). At this point all resources needed
1641 * for transmit and receive operations are allocated, the interrupt
1642 * handler is registered with the OS, the watchdog timer is started,
1643 * and the stack is notified that the interface is ready.
1644 **/
1645 static int igbvf_open(struct net_device *netdev)
1646 {
1647 struct igbvf_adapter *adapter = netdev_priv(netdev);
1648 struct e1000_hw *hw = &adapter->hw;
1649 int err;
1650
1651 /* disallow open during test */
1652 if (test_bit(__IGBVF_TESTING, &adapter->state))
1653 return -EBUSY;
1654
1655 /* allocate transmit descriptors */
1656 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1657 if (err)
1658 goto err_setup_tx;
1659
1660 /* allocate receive descriptors */
1661 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1662 if (err)
1663 goto err_setup_rx;
1664
1665 /*
1666 * before we allocate an interrupt, we must be ready to handle it.
1667 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1668 * as soon as we call pci_request_irq, so we have to setup our
1669 * clean_rx handler before we do so.
1670 */
1671 igbvf_configure(adapter);
1672
1673 err = igbvf_request_irq(adapter);
1674 if (err)
1675 goto err_req_irq;
1676
1677 /* From here on the code is the same as igbvf_up() */
1678 clear_bit(__IGBVF_DOWN, &adapter->state);
1679
1680 napi_enable(&adapter->rx_ring->napi);
1681
1682 /* clear any pending interrupts */
1683 er32(EICR);
1684
1685 igbvf_irq_enable(adapter);
1686
1687 /* start the watchdog */
1688 hw->mac.get_link_status = 1;
1689 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1690
1691 return 0;
1692
1693 err_req_irq:
1694 igbvf_free_rx_resources(adapter->rx_ring);
1695 err_setup_rx:
1696 igbvf_free_tx_resources(adapter->tx_ring);
1697 err_setup_tx:
1698 igbvf_reset(adapter);
1699
1700 return err;
1701 }
1702
1703 /**
1704 * igbvf_close - Disables a network interface
1705 * @netdev: network interface device structure
1706 *
1707 * Returns 0, this is not allowed to fail
1708 *
1709 * The close entry point is called when an interface is de-activated
1710 * by the OS. The hardware is still under the drivers control, but
1711 * needs to be disabled. A global MAC reset is issued to stop the
1712 * hardware, and all transmit and receive resources are freed.
1713 **/
1714 static int igbvf_close(struct net_device *netdev)
1715 {
1716 struct igbvf_adapter *adapter = netdev_priv(netdev);
1717
1718 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1719 igbvf_down(adapter);
1720
1721 igbvf_free_irq(adapter);
1722
1723 igbvf_free_tx_resources(adapter->tx_ring);
1724 igbvf_free_rx_resources(adapter->rx_ring);
1725
1726 return 0;
1727 }
1728 /**
1729 * igbvf_set_mac - Change the Ethernet Address of the NIC
1730 * @netdev: network interface device structure
1731 * @p: pointer to an address structure
1732 *
1733 * Returns 0 on success, negative on failure
1734 **/
1735 static int igbvf_set_mac(struct net_device *netdev, void *p)
1736 {
1737 struct igbvf_adapter *adapter = netdev_priv(netdev);
1738 struct e1000_hw *hw = &adapter->hw;
1739 struct sockaddr *addr = p;
1740
1741 if (!is_valid_ether_addr(addr->sa_data))
1742 return -EADDRNOTAVAIL;
1743
1744 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1745
1746 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1747
1748 if (!ether_addr_equal(addr->sa_data, hw->mac.addr))
1749 return -EADDRNOTAVAIL;
1750
1751 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1752
1753 return 0;
1754 }
1755
1756 #define UPDATE_VF_COUNTER(reg, name) \
1757 { \
1758 u32 current_counter = er32(reg); \
1759 if (current_counter < adapter->stats.last_##name) \
1760 adapter->stats.name += 0x100000000LL; \
1761 adapter->stats.last_##name = current_counter; \
1762 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1763 adapter->stats.name |= current_counter; \
1764 }
1765
1766 /**
1767 * igbvf_update_stats - Update the board statistics counters
1768 * @adapter: board private structure
1769 **/
1770 void igbvf_update_stats(struct igbvf_adapter *adapter)
1771 {
1772 struct e1000_hw *hw = &adapter->hw;
1773 struct pci_dev *pdev = adapter->pdev;
1774
1775 /*
1776 * Prevent stats update while adapter is being reset, link is down
1777 * or if the pci connection is down.
1778 */
1779 if (adapter->link_speed == 0)
1780 return;
1781
1782 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1783 return;
1784
1785 if (pci_channel_offline(pdev))
1786 return;
1787
1788 UPDATE_VF_COUNTER(VFGPRC, gprc);
1789 UPDATE_VF_COUNTER(VFGORC, gorc);
1790 UPDATE_VF_COUNTER(VFGPTC, gptc);
1791 UPDATE_VF_COUNTER(VFGOTC, gotc);
1792 UPDATE_VF_COUNTER(VFMPRC, mprc);
1793 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1794 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1795 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1796 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1797
1798 /* Fill out the OS statistics structure */
1799 adapter->net_stats.multicast = adapter->stats.mprc;
1800 }
1801
1802 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1803 {
1804 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1805 adapter->link_speed,
1806 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1807 }
1808
1809 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1810 {
1811 struct e1000_hw *hw = &adapter->hw;
1812 s32 ret_val = E1000_SUCCESS;
1813 bool link_active;
1814
1815 /* If interface is down, stay link down */
1816 if (test_bit(__IGBVF_DOWN, &adapter->state))
1817 return false;
1818
1819 ret_val = hw->mac.ops.check_for_link(hw);
1820 link_active = !hw->mac.get_link_status;
1821
1822 /* if check for link returns error we will need to reset */
1823 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1824 schedule_work(&adapter->reset_task);
1825
1826 return link_active;
1827 }
1828
1829 /**
1830 * igbvf_watchdog - Timer Call-back
1831 * @data: pointer to adapter cast into an unsigned long
1832 **/
1833 static void igbvf_watchdog(unsigned long data)
1834 {
1835 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1836
1837 /* Do the rest outside of interrupt context */
1838 schedule_work(&adapter->watchdog_task);
1839 }
1840
1841 static void igbvf_watchdog_task(struct work_struct *work)
1842 {
1843 struct igbvf_adapter *adapter = container_of(work,
1844 struct igbvf_adapter,
1845 watchdog_task);
1846 struct net_device *netdev = adapter->netdev;
1847 struct e1000_mac_info *mac = &adapter->hw.mac;
1848 struct igbvf_ring *tx_ring = adapter->tx_ring;
1849 struct e1000_hw *hw = &adapter->hw;
1850 u32 link;
1851 int tx_pending = 0;
1852
1853 link = igbvf_has_link(adapter);
1854
1855 if (link) {
1856 if (!netif_carrier_ok(netdev)) {
1857 mac->ops.get_link_up_info(&adapter->hw,
1858 &adapter->link_speed,
1859 &adapter->link_duplex);
1860 igbvf_print_link_info(adapter);
1861
1862 netif_carrier_on(netdev);
1863 netif_wake_queue(netdev);
1864 }
1865 } else {
1866 if (netif_carrier_ok(netdev)) {
1867 adapter->link_speed = 0;
1868 adapter->link_duplex = 0;
1869 dev_info(&adapter->pdev->dev, "Link is Down\n");
1870 netif_carrier_off(netdev);
1871 netif_stop_queue(netdev);
1872 }
1873 }
1874
1875 if (netif_carrier_ok(netdev)) {
1876 igbvf_update_stats(adapter);
1877 } else {
1878 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1879 tx_ring->count);
1880 if (tx_pending) {
1881 /*
1882 * We've lost link, so the controller stops DMA,
1883 * but we've got queued Tx work that's never going
1884 * to get done, so reset controller to flush Tx.
1885 * (Do the reset outside of interrupt context).
1886 */
1887 adapter->tx_timeout_count++;
1888 schedule_work(&adapter->reset_task);
1889 }
1890 }
1891
1892 /* Cause software interrupt to ensure Rx ring is cleaned */
1893 ew32(EICS, adapter->rx_ring->eims_value);
1894
1895 /* Reset the timer */
1896 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1897 mod_timer(&adapter->watchdog_timer,
1898 round_jiffies(jiffies + (2 * HZ)));
1899 }
1900
1901 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1902 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1903 #define IGBVF_TX_FLAGS_TSO 0x00000004
1904 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1905 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1906 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1907
1908 static int igbvf_tso(struct igbvf_adapter *adapter,
1909 struct igbvf_ring *tx_ring,
1910 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1911 {
1912 struct e1000_adv_tx_context_desc *context_desc;
1913 struct igbvf_buffer *buffer_info;
1914 u32 info = 0, tu_cmd = 0;
1915 u32 mss_l4len_idx, l4len;
1916 unsigned int i;
1917 int err;
1918
1919 *hdr_len = 0;
1920
1921 err = skb_cow_head(skb, 0);
1922 if (err < 0) {
1923 dev_err(&adapter->pdev->dev, "igbvf_tso returning an error\n");
1924 return err;
1925 }
1926
1927 l4len = tcp_hdrlen(skb);
1928 *hdr_len += l4len;
1929
1930 if (skb->protocol == htons(ETH_P_IP)) {
1931 struct iphdr *iph = ip_hdr(skb);
1932 iph->tot_len = 0;
1933 iph->check = 0;
1934 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1935 iph->daddr, 0,
1936 IPPROTO_TCP,
1937 0);
1938 } else if (skb_is_gso_v6(skb)) {
1939 ipv6_hdr(skb)->payload_len = 0;
1940 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1941 &ipv6_hdr(skb)->daddr,
1942 0, IPPROTO_TCP, 0);
1943 }
1944
1945 i = tx_ring->next_to_use;
1946
1947 buffer_info = &tx_ring->buffer_info[i];
1948 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1949 /* VLAN MACLEN IPLEN */
1950 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1951 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1952 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953 *hdr_len += skb_network_offset(skb);
1954 info |= (skb_transport_header(skb) - skb_network_header(skb));
1955 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1956 context_desc->vlan_macip_lens = cpu_to_le32(info);
1957
1958 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1959 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1960
1961 if (skb->protocol == htons(ETH_P_IP))
1962 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1963 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1964
1965 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1966
1967 /* MSS L4LEN IDX */
1968 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1969 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1970
1971 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1972 context_desc->seqnum_seed = 0;
1973
1974 buffer_info->time_stamp = jiffies;
1975 buffer_info->dma = 0;
1976 i++;
1977 if (i == tx_ring->count)
1978 i = 0;
1979
1980 tx_ring->next_to_use = i;
1981
1982 return true;
1983 }
1984
1985 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1986 struct igbvf_ring *tx_ring,
1987 struct sk_buff *skb, u32 tx_flags)
1988 {
1989 struct e1000_adv_tx_context_desc *context_desc;
1990 unsigned int i;
1991 struct igbvf_buffer *buffer_info;
1992 u32 info = 0, tu_cmd = 0;
1993
1994 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1995 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1996 i = tx_ring->next_to_use;
1997 buffer_info = &tx_ring->buffer_info[i];
1998 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1999
2000 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2001 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2002
2003 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2004 if (skb->ip_summed == CHECKSUM_PARTIAL)
2005 info |= (skb_transport_header(skb) -
2006 skb_network_header(skb));
2007
2008
2009 context_desc->vlan_macip_lens = cpu_to_le32(info);
2010
2011 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2012
2013 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2014 switch (skb->protocol) {
2015 case htons(ETH_P_IP):
2016 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2017 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2018 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2019 break;
2020 case htons(ETH_P_IPV6):
2021 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2022 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2023 break;
2024 default:
2025 break;
2026 }
2027 }
2028
2029 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2030 context_desc->seqnum_seed = 0;
2031 context_desc->mss_l4len_idx = 0;
2032
2033 buffer_info->time_stamp = jiffies;
2034 buffer_info->dma = 0;
2035 i++;
2036 if (i == tx_ring->count)
2037 i = 0;
2038 tx_ring->next_to_use = i;
2039
2040 return true;
2041 }
2042
2043 return false;
2044 }
2045
2046 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2047 {
2048 struct igbvf_adapter *adapter = netdev_priv(netdev);
2049
2050 /* there is enough descriptors then we don't need to worry */
2051 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2052 return 0;
2053
2054 netif_stop_queue(netdev);
2055
2056 smp_mb();
2057
2058 /* We need to check again just in case room has been made available */
2059 if (igbvf_desc_unused(adapter->tx_ring) < size)
2060 return -EBUSY;
2061
2062 netif_wake_queue(netdev);
2063
2064 ++adapter->restart_queue;
2065 return 0;
2066 }
2067
2068 #define IGBVF_MAX_TXD_PWR 16
2069 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2070
2071 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2072 struct igbvf_ring *tx_ring,
2073 struct sk_buff *skb)
2074 {
2075 struct igbvf_buffer *buffer_info;
2076 struct pci_dev *pdev = adapter->pdev;
2077 unsigned int len = skb_headlen(skb);
2078 unsigned int count = 0, i;
2079 unsigned int f;
2080
2081 i = tx_ring->next_to_use;
2082
2083 buffer_info = &tx_ring->buffer_info[i];
2084 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2085 buffer_info->length = len;
2086 /* set time_stamp *before* dma to help avoid a possible race */
2087 buffer_info->time_stamp = jiffies;
2088 buffer_info->mapped_as_page = false;
2089 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2090 DMA_TO_DEVICE);
2091 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2092 goto dma_error;
2093
2094
2095 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2096 const struct skb_frag_struct *frag;
2097
2098 count++;
2099 i++;
2100 if (i == tx_ring->count)
2101 i = 0;
2102
2103 frag = &skb_shinfo(skb)->frags[f];
2104 len = skb_frag_size(frag);
2105
2106 buffer_info = &tx_ring->buffer_info[i];
2107 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2108 buffer_info->length = len;
2109 buffer_info->time_stamp = jiffies;
2110 buffer_info->mapped_as_page = true;
2111 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2112 DMA_TO_DEVICE);
2113 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2114 goto dma_error;
2115 }
2116
2117 tx_ring->buffer_info[i].skb = skb;
2118
2119 return ++count;
2120
2121 dma_error:
2122 dev_err(&pdev->dev, "TX DMA map failed\n");
2123
2124 /* clear timestamp and dma mappings for failed buffer_info mapping */
2125 buffer_info->dma = 0;
2126 buffer_info->time_stamp = 0;
2127 buffer_info->length = 0;
2128 buffer_info->mapped_as_page = false;
2129 if (count)
2130 count--;
2131
2132 /* clear timestamp and dma mappings for remaining portion of packet */
2133 while (count--) {
2134 if (i==0)
2135 i += tx_ring->count;
2136 i--;
2137 buffer_info = &tx_ring->buffer_info[i];
2138 igbvf_put_txbuf(adapter, buffer_info);
2139 }
2140
2141 return 0;
2142 }
2143
2144 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2145 struct igbvf_ring *tx_ring,
2146 int tx_flags, int count,
2147 unsigned int first, u32 paylen,
2148 u8 hdr_len)
2149 {
2150 union e1000_adv_tx_desc *tx_desc = NULL;
2151 struct igbvf_buffer *buffer_info;
2152 u32 olinfo_status = 0, cmd_type_len;
2153 unsigned int i;
2154
2155 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2156 E1000_ADVTXD_DCMD_DEXT);
2157
2158 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2159 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2162 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2163
2164 /* insert tcp checksum */
2165 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2166
2167 /* insert ip checksum */
2168 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2169 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2170
2171 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2172 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2173 }
2174
2175 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2176
2177 i = tx_ring->next_to_use;
2178 while (count--) {
2179 buffer_info = &tx_ring->buffer_info[i];
2180 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2181 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2182 tx_desc->read.cmd_type_len =
2183 cpu_to_le32(cmd_type_len | buffer_info->length);
2184 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2185 i++;
2186 if (i == tx_ring->count)
2187 i = 0;
2188 }
2189
2190 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2191 /* Force memory writes to complete before letting h/w
2192 * know there are new descriptors to fetch. (Only
2193 * applicable for weak-ordered memory model archs,
2194 * such as IA-64). */
2195 wmb();
2196
2197 tx_ring->buffer_info[first].next_to_watch = tx_desc;
2198 tx_ring->next_to_use = i;
2199 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2200 /* we need this if more than one processor can write to our tail
2201 * at a time, it syncronizes IO on IA64/Altix systems */
2202 mmiowb();
2203 }
2204
2205 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2206 struct net_device *netdev,
2207 struct igbvf_ring *tx_ring)
2208 {
2209 struct igbvf_adapter *adapter = netdev_priv(netdev);
2210 unsigned int first, tx_flags = 0;
2211 u8 hdr_len = 0;
2212 int count = 0;
2213 int tso = 0;
2214
2215 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2216 dev_kfree_skb_any(skb);
2217 return NETDEV_TX_OK;
2218 }
2219
2220 if (skb->len <= 0) {
2221 dev_kfree_skb_any(skb);
2222 return NETDEV_TX_OK;
2223 }
2224
2225 /*
2226 * need: count + 4 desc gap to keep tail from touching
2227 * + 2 desc gap to keep tail from touching head,
2228 * + 1 desc for skb->data,
2229 * + 1 desc for context descriptor,
2230 * head, otherwise try next time
2231 */
2232 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2233 /* this is a hard error */
2234 return NETDEV_TX_BUSY;
2235 }
2236
2237 if (skb_vlan_tag_present(skb)) {
2238 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2239 tx_flags |= (skb_vlan_tag_get(skb) <<
2240 IGBVF_TX_FLAGS_VLAN_SHIFT);
2241 }
2242
2243 if (skb->protocol == htons(ETH_P_IP))
2244 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2245
2246 first = tx_ring->next_to_use;
2247
2248 tso = skb_is_gso(skb) ?
2249 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2250 if (unlikely(tso < 0)) {
2251 dev_kfree_skb_any(skb);
2252 return NETDEV_TX_OK;
2253 }
2254
2255 if (tso)
2256 tx_flags |= IGBVF_TX_FLAGS_TSO;
2257 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2258 (skb->ip_summed == CHECKSUM_PARTIAL))
2259 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2260
2261 /*
2262 * count reflects descriptors mapped, if 0 then mapping error
2263 * has occurred and we need to rewind the descriptor queue
2264 */
2265 count = igbvf_tx_map_adv(adapter, tx_ring, skb);
2266
2267 if (count) {
2268 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2269 first, skb->len, hdr_len);
2270 /* Make sure there is space in the ring for the next send. */
2271 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2272 } else {
2273 dev_kfree_skb_any(skb);
2274 tx_ring->buffer_info[first].time_stamp = 0;
2275 tx_ring->next_to_use = first;
2276 }
2277
2278 return NETDEV_TX_OK;
2279 }
2280
2281 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2282 struct net_device *netdev)
2283 {
2284 struct igbvf_adapter *adapter = netdev_priv(netdev);
2285 struct igbvf_ring *tx_ring;
2286
2287 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2288 dev_kfree_skb_any(skb);
2289 return NETDEV_TX_OK;
2290 }
2291
2292 tx_ring = &adapter->tx_ring[0];
2293
2294 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2295 }
2296
2297 /**
2298 * igbvf_tx_timeout - Respond to a Tx Hang
2299 * @netdev: network interface device structure
2300 **/
2301 static void igbvf_tx_timeout(struct net_device *netdev)
2302 {
2303 struct igbvf_adapter *adapter = netdev_priv(netdev);
2304
2305 /* Do the reset outside of interrupt context */
2306 adapter->tx_timeout_count++;
2307 schedule_work(&adapter->reset_task);
2308 }
2309
2310 static void igbvf_reset_task(struct work_struct *work)
2311 {
2312 struct igbvf_adapter *adapter;
2313 adapter = container_of(work, struct igbvf_adapter, reset_task);
2314
2315 igbvf_reinit_locked(adapter);
2316 }
2317
2318 /**
2319 * igbvf_get_stats - Get System Network Statistics
2320 * @netdev: network interface device structure
2321 *
2322 * Returns the address of the device statistics structure.
2323 * The statistics are actually updated from the timer callback.
2324 **/
2325 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2326 {
2327 struct igbvf_adapter *adapter = netdev_priv(netdev);
2328
2329 /* only return the current stats */
2330 return &adapter->net_stats;
2331 }
2332
2333 /**
2334 * igbvf_change_mtu - Change the Maximum Transfer Unit
2335 * @netdev: network interface device structure
2336 * @new_mtu: new value for maximum frame size
2337 *
2338 * Returns 0 on success, negative on failure
2339 **/
2340 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2341 {
2342 struct igbvf_adapter *adapter = netdev_priv(netdev);
2343 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2344
2345 if (new_mtu < 68 || new_mtu > INT_MAX - ETH_HLEN - ETH_FCS_LEN ||
2346 max_frame > MAX_JUMBO_FRAME_SIZE)
2347 return -EINVAL;
2348
2349 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2350 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2351 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2352 return -EINVAL;
2353 }
2354
2355 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2356 msleep(1);
2357 /* igbvf_down has a dependency on max_frame_size */
2358 adapter->max_frame_size = max_frame;
2359 if (netif_running(netdev))
2360 igbvf_down(adapter);
2361
2362 /*
2363 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2364 * means we reserve 2 more, this pushes us to allocate from the next
2365 * larger slab size.
2366 * i.e. RXBUFFER_2048 --> size-4096 slab
2367 * However with the new *_jumbo_rx* routines, jumbo receives will use
2368 * fragmented skbs
2369 */
2370
2371 if (max_frame <= 1024)
2372 adapter->rx_buffer_len = 1024;
2373 else if (max_frame <= 2048)
2374 adapter->rx_buffer_len = 2048;
2375 else
2376 #if (PAGE_SIZE / 2) > 16384
2377 adapter->rx_buffer_len = 16384;
2378 #else
2379 adapter->rx_buffer_len = PAGE_SIZE / 2;
2380 #endif
2381
2382
2383 /* adjust allocation if LPE protects us, and we aren't using SBP */
2384 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2385 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2386 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2387 ETH_FCS_LEN;
2388
2389 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2390 netdev->mtu, new_mtu);
2391 netdev->mtu = new_mtu;
2392
2393 if (netif_running(netdev))
2394 igbvf_up(adapter);
2395 else
2396 igbvf_reset(adapter);
2397
2398 clear_bit(__IGBVF_RESETTING, &adapter->state);
2399
2400 return 0;
2401 }
2402
2403 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2404 {
2405 switch (cmd) {
2406 default:
2407 return -EOPNOTSUPP;
2408 }
2409 }
2410
2411 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2412 {
2413 struct net_device *netdev = pci_get_drvdata(pdev);
2414 struct igbvf_adapter *adapter = netdev_priv(netdev);
2415 #ifdef CONFIG_PM
2416 int retval = 0;
2417 #endif
2418
2419 netif_device_detach(netdev);
2420
2421 if (netif_running(netdev)) {
2422 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2423 igbvf_down(adapter);
2424 igbvf_free_irq(adapter);
2425 }
2426
2427 #ifdef CONFIG_PM
2428 retval = pci_save_state(pdev);
2429 if (retval)
2430 return retval;
2431 #endif
2432
2433 pci_disable_device(pdev);
2434
2435 return 0;
2436 }
2437
2438 #ifdef CONFIG_PM
2439 static int igbvf_resume(struct pci_dev *pdev)
2440 {
2441 struct net_device *netdev = pci_get_drvdata(pdev);
2442 struct igbvf_adapter *adapter = netdev_priv(netdev);
2443 u32 err;
2444
2445 pci_restore_state(pdev);
2446 err = pci_enable_device_mem(pdev);
2447 if (err) {
2448 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2449 return err;
2450 }
2451
2452 pci_set_master(pdev);
2453
2454 if (netif_running(netdev)) {
2455 err = igbvf_request_irq(adapter);
2456 if (err)
2457 return err;
2458 }
2459
2460 igbvf_reset(adapter);
2461
2462 if (netif_running(netdev))
2463 igbvf_up(adapter);
2464
2465 netif_device_attach(netdev);
2466
2467 return 0;
2468 }
2469 #endif
2470
2471 static void igbvf_shutdown(struct pci_dev *pdev)
2472 {
2473 igbvf_suspend(pdev, PMSG_SUSPEND);
2474 }
2475
2476 #ifdef CONFIG_NET_POLL_CONTROLLER
2477 /*
2478 * Polling 'interrupt' - used by things like netconsole to send skbs
2479 * without having to re-enable interrupts. It's not called while
2480 * the interrupt routine is executing.
2481 */
2482 static void igbvf_netpoll(struct net_device *netdev)
2483 {
2484 struct igbvf_adapter *adapter = netdev_priv(netdev);
2485
2486 disable_irq(adapter->pdev->irq);
2487
2488 igbvf_clean_tx_irq(adapter->tx_ring);
2489
2490 enable_irq(adapter->pdev->irq);
2491 }
2492 #endif
2493
2494 /**
2495 * igbvf_io_error_detected - called when PCI error is detected
2496 * @pdev: Pointer to PCI device
2497 * @state: The current pci connection state
2498 *
2499 * This function is called after a PCI bus error affecting
2500 * this device has been detected.
2501 */
2502 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2503 pci_channel_state_t state)
2504 {
2505 struct net_device *netdev = pci_get_drvdata(pdev);
2506 struct igbvf_adapter *adapter = netdev_priv(netdev);
2507
2508 netif_device_detach(netdev);
2509
2510 if (state == pci_channel_io_perm_failure)
2511 return PCI_ERS_RESULT_DISCONNECT;
2512
2513 if (netif_running(netdev))
2514 igbvf_down(adapter);
2515 pci_disable_device(pdev);
2516
2517 /* Request a slot slot reset. */
2518 return PCI_ERS_RESULT_NEED_RESET;
2519 }
2520
2521 /**
2522 * igbvf_io_slot_reset - called after the pci bus has been reset.
2523 * @pdev: Pointer to PCI device
2524 *
2525 * Restart the card from scratch, as if from a cold-boot. Implementation
2526 * resembles the first-half of the igbvf_resume routine.
2527 */
2528 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2529 {
2530 struct net_device *netdev = pci_get_drvdata(pdev);
2531 struct igbvf_adapter *adapter = netdev_priv(netdev);
2532
2533 if (pci_enable_device_mem(pdev)) {
2534 dev_err(&pdev->dev,
2535 "Cannot re-enable PCI device after reset.\n");
2536 return PCI_ERS_RESULT_DISCONNECT;
2537 }
2538 pci_set_master(pdev);
2539
2540 igbvf_reset(adapter);
2541
2542 return PCI_ERS_RESULT_RECOVERED;
2543 }
2544
2545 /**
2546 * igbvf_io_resume - called when traffic can start flowing again.
2547 * @pdev: Pointer to PCI device
2548 *
2549 * This callback is called when the error recovery driver tells us that
2550 * its OK to resume normal operation. Implementation resembles the
2551 * second-half of the igbvf_resume routine.
2552 */
2553 static void igbvf_io_resume(struct pci_dev *pdev)
2554 {
2555 struct net_device *netdev = pci_get_drvdata(pdev);
2556 struct igbvf_adapter *adapter = netdev_priv(netdev);
2557
2558 if (netif_running(netdev)) {
2559 if (igbvf_up(adapter)) {
2560 dev_err(&pdev->dev,
2561 "can't bring device back up after reset\n");
2562 return;
2563 }
2564 }
2565
2566 netif_device_attach(netdev);
2567 }
2568
2569 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2570 {
2571 struct e1000_hw *hw = &adapter->hw;
2572 struct net_device *netdev = adapter->netdev;
2573 struct pci_dev *pdev = adapter->pdev;
2574
2575 if (hw->mac.type == e1000_vfadapt_i350)
2576 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2577 else
2578 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2579 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2580 }
2581
2582 static int igbvf_set_features(struct net_device *netdev,
2583 netdev_features_t features)
2584 {
2585 struct igbvf_adapter *adapter = netdev_priv(netdev);
2586
2587 if (features & NETIF_F_RXCSUM)
2588 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2589 else
2590 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2591
2592 return 0;
2593 }
2594
2595 static const struct net_device_ops igbvf_netdev_ops = {
2596 .ndo_open = igbvf_open,
2597 .ndo_stop = igbvf_close,
2598 .ndo_start_xmit = igbvf_xmit_frame,
2599 .ndo_get_stats = igbvf_get_stats,
2600 .ndo_set_rx_mode = igbvf_set_multi,
2601 .ndo_set_mac_address = igbvf_set_mac,
2602 .ndo_change_mtu = igbvf_change_mtu,
2603 .ndo_do_ioctl = igbvf_ioctl,
2604 .ndo_tx_timeout = igbvf_tx_timeout,
2605 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2606 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2607 #ifdef CONFIG_NET_POLL_CONTROLLER
2608 .ndo_poll_controller = igbvf_netpoll,
2609 #endif
2610 .ndo_set_features = igbvf_set_features,
2611 };
2612
2613 /**
2614 * igbvf_probe - Device Initialization Routine
2615 * @pdev: PCI device information struct
2616 * @ent: entry in igbvf_pci_tbl
2617 *
2618 * Returns 0 on success, negative on failure
2619 *
2620 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2621 * The OS initialization, configuring of the adapter private structure,
2622 * and a hardware reset occur.
2623 **/
2624 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2625 {
2626 struct net_device *netdev;
2627 struct igbvf_adapter *adapter;
2628 struct e1000_hw *hw;
2629 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2630
2631 static int cards_found;
2632 int err, pci_using_dac;
2633
2634 err = pci_enable_device_mem(pdev);
2635 if (err)
2636 return err;
2637
2638 pci_using_dac = 0;
2639 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2640 if (!err) {
2641 pci_using_dac = 1;
2642 } else {
2643 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2644 if (err) {
2645 dev_err(&pdev->dev, "No usable DMA "
2646 "configuration, aborting\n");
2647 goto err_dma;
2648 }
2649 }
2650
2651 err = pci_request_regions(pdev, igbvf_driver_name);
2652 if (err)
2653 goto err_pci_reg;
2654
2655 pci_set_master(pdev);
2656
2657 err = -ENOMEM;
2658 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2659 if (!netdev)
2660 goto err_alloc_etherdev;
2661
2662 SET_NETDEV_DEV(netdev, &pdev->dev);
2663
2664 pci_set_drvdata(pdev, netdev);
2665 adapter = netdev_priv(netdev);
2666 hw = &adapter->hw;
2667 adapter->netdev = netdev;
2668 adapter->pdev = pdev;
2669 adapter->ei = ei;
2670 adapter->pba = ei->pba;
2671 adapter->flags = ei->flags;
2672 adapter->hw.back = adapter;
2673 adapter->hw.mac.type = ei->mac;
2674 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2675
2676 /* PCI config space info */
2677
2678 hw->vendor_id = pdev->vendor;
2679 hw->device_id = pdev->device;
2680 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2681 hw->subsystem_device_id = pdev->subsystem_device;
2682 hw->revision_id = pdev->revision;
2683
2684 err = -EIO;
2685 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2686 pci_resource_len(pdev, 0));
2687
2688 if (!adapter->hw.hw_addr)
2689 goto err_ioremap;
2690
2691 if (ei->get_variants) {
2692 err = ei->get_variants(adapter);
2693 if (err)
2694 goto err_get_variants;
2695 }
2696
2697 /* setup adapter struct */
2698 err = igbvf_sw_init(adapter);
2699 if (err)
2700 goto err_sw_init;
2701
2702 /* construct the net_device struct */
2703 netdev->netdev_ops = &igbvf_netdev_ops;
2704
2705 igbvf_set_ethtool_ops(netdev);
2706 netdev->watchdog_timeo = 5 * HZ;
2707 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2708
2709 adapter->bd_number = cards_found++;
2710
2711 netdev->hw_features = NETIF_F_SG |
2712 NETIF_F_IP_CSUM |
2713 NETIF_F_IPV6_CSUM |
2714 NETIF_F_TSO |
2715 NETIF_F_TSO6 |
2716 NETIF_F_RXCSUM;
2717
2718 netdev->features = netdev->hw_features |
2719 NETIF_F_HW_VLAN_CTAG_TX |
2720 NETIF_F_HW_VLAN_CTAG_RX |
2721 NETIF_F_HW_VLAN_CTAG_FILTER;
2722
2723 if (pci_using_dac)
2724 netdev->features |= NETIF_F_HIGHDMA;
2725
2726 netdev->vlan_features |= NETIF_F_TSO;
2727 netdev->vlan_features |= NETIF_F_TSO6;
2728 netdev->vlan_features |= NETIF_F_IP_CSUM;
2729 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2730 netdev->vlan_features |= NETIF_F_SG;
2731
2732 /*reset the controller to put the device in a known good state */
2733 err = hw->mac.ops.reset_hw(hw);
2734 if (err) {
2735 dev_info(&pdev->dev,
2736 "PF still in reset state. Is the PF interface up?\n");
2737 } else {
2738 err = hw->mac.ops.read_mac_addr(hw);
2739 if (err)
2740 dev_info(&pdev->dev, "Error reading MAC address.\n");
2741 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2742 dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2743 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2744 netdev->addr_len);
2745 }
2746
2747 if (!is_valid_ether_addr(netdev->dev_addr)) {
2748 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2749 eth_hw_addr_random(netdev);
2750 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2751 netdev->addr_len);
2752 }
2753
2754 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2755 (unsigned long) adapter);
2756
2757 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2758 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2759
2760 /* ring size defaults */
2761 adapter->rx_ring->count = 1024;
2762 adapter->tx_ring->count = 1024;
2763
2764 /* reset the hardware with the new settings */
2765 igbvf_reset(adapter);
2766
2767 /* set hardware-specific flags */
2768 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2769 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2770
2771 strcpy(netdev->name, "eth%d");
2772 err = register_netdev(netdev);
2773 if (err)
2774 goto err_hw_init;
2775
2776 /* tell the stack to leave us alone until igbvf_open() is called */
2777 netif_carrier_off(netdev);
2778 netif_stop_queue(netdev);
2779
2780 igbvf_print_device_info(adapter);
2781
2782 igbvf_initialize_last_counter_stats(adapter);
2783
2784 return 0;
2785
2786 err_hw_init:
2787 kfree(adapter->tx_ring);
2788 kfree(adapter->rx_ring);
2789 err_sw_init:
2790 igbvf_reset_interrupt_capability(adapter);
2791 err_get_variants:
2792 iounmap(adapter->hw.hw_addr);
2793 err_ioremap:
2794 free_netdev(netdev);
2795 err_alloc_etherdev:
2796 pci_release_regions(pdev);
2797 err_pci_reg:
2798 err_dma:
2799 pci_disable_device(pdev);
2800 return err;
2801 }
2802
2803 /**
2804 * igbvf_remove - Device Removal Routine
2805 * @pdev: PCI device information struct
2806 *
2807 * igbvf_remove is called by the PCI subsystem to alert the driver
2808 * that it should release a PCI device. The could be caused by a
2809 * Hot-Plug event, or because the driver is going to be removed from
2810 * memory.
2811 **/
2812 static void igbvf_remove(struct pci_dev *pdev)
2813 {
2814 struct net_device *netdev = pci_get_drvdata(pdev);
2815 struct igbvf_adapter *adapter = netdev_priv(netdev);
2816 struct e1000_hw *hw = &adapter->hw;
2817
2818 /*
2819 * The watchdog timer may be rescheduled, so explicitly
2820 * disable it from being rescheduled.
2821 */
2822 set_bit(__IGBVF_DOWN, &adapter->state);
2823 del_timer_sync(&adapter->watchdog_timer);
2824
2825 cancel_work_sync(&adapter->reset_task);
2826 cancel_work_sync(&adapter->watchdog_task);
2827
2828 unregister_netdev(netdev);
2829
2830 igbvf_reset_interrupt_capability(adapter);
2831
2832 /*
2833 * it is important to delete the napi struct prior to freeing the
2834 * rx ring so that you do not end up with null pointer refs
2835 */
2836 netif_napi_del(&adapter->rx_ring->napi);
2837 kfree(adapter->tx_ring);
2838 kfree(adapter->rx_ring);
2839
2840 iounmap(hw->hw_addr);
2841 if (hw->flash_address)
2842 iounmap(hw->flash_address);
2843 pci_release_regions(pdev);
2844
2845 free_netdev(netdev);
2846
2847 pci_disable_device(pdev);
2848 }
2849
2850 /* PCI Error Recovery (ERS) */
2851 static const struct pci_error_handlers igbvf_err_handler = {
2852 .error_detected = igbvf_io_error_detected,
2853 .slot_reset = igbvf_io_slot_reset,
2854 .resume = igbvf_io_resume,
2855 };
2856
2857 static const struct pci_device_id igbvf_pci_tbl[] = {
2858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2859 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2860 { } /* terminate list */
2861 };
2862 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2863
2864 /* PCI Device API Driver */
2865 static struct pci_driver igbvf_driver = {
2866 .name = igbvf_driver_name,
2867 .id_table = igbvf_pci_tbl,
2868 .probe = igbvf_probe,
2869 .remove = igbvf_remove,
2870 #ifdef CONFIG_PM
2871 /* Power Management Hooks */
2872 .suspend = igbvf_suspend,
2873 .resume = igbvf_resume,
2874 #endif
2875 .shutdown = igbvf_shutdown,
2876 .err_handler = &igbvf_err_handler
2877 };
2878
2879 /**
2880 * igbvf_init_module - Driver Registration Routine
2881 *
2882 * igbvf_init_module is the first routine called when the driver is
2883 * loaded. All it does is register with the PCI subsystem.
2884 **/
2885 static int __init igbvf_init_module(void)
2886 {
2887 int ret;
2888 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2889 pr_info("%s\n", igbvf_copyright);
2890
2891 ret = pci_register_driver(&igbvf_driver);
2892
2893 return ret;
2894 }
2895 module_init(igbvf_init_module);
2896
2897 /**
2898 * igbvf_exit_module - Driver Exit Cleanup Routine
2899 *
2900 * igbvf_exit_module is called just before the driver is removed
2901 * from memory.
2902 **/
2903 static void __exit igbvf_exit_module(void)
2904 {
2905 pci_unregister_driver(&igbvf_driver);
2906 }
2907 module_exit(igbvf_exit_module);
2908
2909
2910 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2911 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2912 MODULE_LICENSE("GPL");
2913 MODULE_VERSION(DRV_VERSION);
2914
2915 /* netdev.c */