]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - drivers/net/ethernet/intel/igbvf/netdev.c
ethernet: Remove unnecessary alloc/OOM messages, alloc cleanups
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igbvf / netdev.c
1 /*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/init.h>
33 #include <linux/pci.h>
34 #include <linux/vmalloc.h>
35 #include <linux/pagemap.h>
36 #include <linux/delay.h>
37 #include <linux/netdevice.h>
38 #include <linux/tcp.h>
39 #include <linux/ipv6.h>
40 #include <linux/slab.h>
41 #include <net/checksum.h>
42 #include <net/ip6_checksum.h>
43 #include <linux/mii.h>
44 #include <linux/ethtool.h>
45 #include <linux/if_vlan.h>
46 #include <linux/prefetch.h>
47
48 #include "igbvf.h"
49
50 #define DRV_VERSION "2.0.2-k"
51 char igbvf_driver_name[] = "igbvf";
52 const char igbvf_driver_version[] = DRV_VERSION;
53 static const char igbvf_driver_string[] =
54 "Intel(R) Gigabit Virtual Function Network Driver";
55 static const char igbvf_copyright[] =
56 "Copyright (c) 2009 - 2012 Intel Corporation.";
57
58 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
59 static int debug = -1;
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62
63 static int igbvf_poll(struct napi_struct *napi, int budget);
64 static void igbvf_reset(struct igbvf_adapter *);
65 static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
66 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
67
68 static struct igbvf_info igbvf_vf_info = {
69 .mac = e1000_vfadapt,
70 .flags = 0,
71 .pba = 10,
72 .init_ops = e1000_init_function_pointers_vf,
73 };
74
75 static struct igbvf_info igbvf_i350_vf_info = {
76 .mac = e1000_vfadapt_i350,
77 .flags = 0,
78 .pba = 10,
79 .init_ops = e1000_init_function_pointers_vf,
80 };
81
82 static const struct igbvf_info *igbvf_info_tbl[] = {
83 [board_vf] = &igbvf_vf_info,
84 [board_i350_vf] = &igbvf_i350_vf_info,
85 };
86
87 /**
88 * igbvf_desc_unused - calculate if we have unused descriptors
89 **/
90 static int igbvf_desc_unused(struct igbvf_ring *ring)
91 {
92 if (ring->next_to_clean > ring->next_to_use)
93 return ring->next_to_clean - ring->next_to_use - 1;
94
95 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
96 }
97
98 /**
99 * igbvf_receive_skb - helper function to handle Rx indications
100 * @adapter: board private structure
101 * @status: descriptor status field as written by hardware
102 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
103 * @skb: pointer to sk_buff to be indicated to stack
104 **/
105 static void igbvf_receive_skb(struct igbvf_adapter *adapter,
106 struct net_device *netdev,
107 struct sk_buff *skb,
108 u32 status, u16 vlan)
109 {
110 u16 vid;
111
112 if (status & E1000_RXD_STAT_VP) {
113 if ((adapter->flags & IGBVF_FLAG_RX_LB_VLAN_BSWAP) &&
114 (status & E1000_RXDEXT_STATERR_LB))
115 vid = be16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
116 else
117 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
118 if (test_bit(vid, adapter->active_vlans))
119 __vlan_hwaccel_put_tag(skb, vid);
120 }
121
122 napi_gro_receive(&adapter->rx_ring->napi, skb);
123 }
124
125 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
126 u32 status_err, struct sk_buff *skb)
127 {
128 skb_checksum_none_assert(skb);
129
130 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
131 if ((status_err & E1000_RXD_STAT_IXSM) ||
132 (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
133 return;
134
135 /* TCP/UDP checksum error bit is set */
136 if (status_err &
137 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
138 /* let the stack verify checksum errors */
139 adapter->hw_csum_err++;
140 return;
141 }
142
143 /* It must be a TCP or UDP packet with a valid checksum */
144 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
145 skb->ip_summed = CHECKSUM_UNNECESSARY;
146
147 adapter->hw_csum_good++;
148 }
149
150 /**
151 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
152 * @rx_ring: address of ring structure to repopulate
153 * @cleaned_count: number of buffers to repopulate
154 **/
155 static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
156 int cleaned_count)
157 {
158 struct igbvf_adapter *adapter = rx_ring->adapter;
159 struct net_device *netdev = adapter->netdev;
160 struct pci_dev *pdev = adapter->pdev;
161 union e1000_adv_rx_desc *rx_desc;
162 struct igbvf_buffer *buffer_info;
163 struct sk_buff *skb;
164 unsigned int i;
165 int bufsz;
166
167 i = rx_ring->next_to_use;
168 buffer_info = &rx_ring->buffer_info[i];
169
170 if (adapter->rx_ps_hdr_size)
171 bufsz = adapter->rx_ps_hdr_size;
172 else
173 bufsz = adapter->rx_buffer_len;
174
175 while (cleaned_count--) {
176 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
177
178 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
179 if (!buffer_info->page) {
180 buffer_info->page = alloc_page(GFP_ATOMIC);
181 if (!buffer_info->page) {
182 adapter->alloc_rx_buff_failed++;
183 goto no_buffers;
184 }
185 buffer_info->page_offset = 0;
186 } else {
187 buffer_info->page_offset ^= PAGE_SIZE / 2;
188 }
189 buffer_info->page_dma =
190 dma_map_page(&pdev->dev, buffer_info->page,
191 buffer_info->page_offset,
192 PAGE_SIZE / 2,
193 DMA_FROM_DEVICE);
194 if (dma_mapping_error(&pdev->dev,
195 buffer_info->page_dma)) {
196 __free_page(buffer_info->page);
197 buffer_info->page = NULL;
198 dev_err(&pdev->dev, "RX DMA map failed\n");
199 break;
200 }
201 }
202
203 if (!buffer_info->skb) {
204 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
205 if (!skb) {
206 adapter->alloc_rx_buff_failed++;
207 goto no_buffers;
208 }
209
210 buffer_info->skb = skb;
211 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
212 bufsz,
213 DMA_FROM_DEVICE);
214 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
215 dev_kfree_skb(buffer_info->skb);
216 buffer_info->skb = NULL;
217 dev_err(&pdev->dev, "RX DMA map failed\n");
218 goto no_buffers;
219 }
220 }
221 /* Refresh the desc even if buffer_addrs didn't change because
222 * each write-back erases this info. */
223 if (adapter->rx_ps_hdr_size) {
224 rx_desc->read.pkt_addr =
225 cpu_to_le64(buffer_info->page_dma);
226 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
227 } else {
228 rx_desc->read.pkt_addr =
229 cpu_to_le64(buffer_info->dma);
230 rx_desc->read.hdr_addr = 0;
231 }
232
233 i++;
234 if (i == rx_ring->count)
235 i = 0;
236 buffer_info = &rx_ring->buffer_info[i];
237 }
238
239 no_buffers:
240 if (rx_ring->next_to_use != i) {
241 rx_ring->next_to_use = i;
242 if (i == 0)
243 i = (rx_ring->count - 1);
244 else
245 i--;
246
247 /* Force memory writes to complete before letting h/w
248 * know there are new descriptors to fetch. (Only
249 * applicable for weak-ordered memory model archs,
250 * such as IA-64). */
251 wmb();
252 writel(i, adapter->hw.hw_addr + rx_ring->tail);
253 }
254 }
255
256 /**
257 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
258 * @adapter: board private structure
259 *
260 * the return value indicates whether actual cleaning was done, there
261 * is no guarantee that everything was cleaned
262 **/
263 static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
264 int *work_done, int work_to_do)
265 {
266 struct igbvf_ring *rx_ring = adapter->rx_ring;
267 struct net_device *netdev = adapter->netdev;
268 struct pci_dev *pdev = adapter->pdev;
269 union e1000_adv_rx_desc *rx_desc, *next_rxd;
270 struct igbvf_buffer *buffer_info, *next_buffer;
271 struct sk_buff *skb;
272 bool cleaned = false;
273 int cleaned_count = 0;
274 unsigned int total_bytes = 0, total_packets = 0;
275 unsigned int i;
276 u32 length, hlen, staterr;
277
278 i = rx_ring->next_to_clean;
279 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
280 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
281
282 while (staterr & E1000_RXD_STAT_DD) {
283 if (*work_done >= work_to_do)
284 break;
285 (*work_done)++;
286 rmb(); /* read descriptor and rx_buffer_info after status DD */
287
288 buffer_info = &rx_ring->buffer_info[i];
289
290 /* HW will not DMA in data larger than the given buffer, even
291 * if it parses the (NFS, of course) header to be larger. In
292 * that case, it fills the header buffer and spills the rest
293 * into the page.
294 */
295 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
296 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
297 if (hlen > adapter->rx_ps_hdr_size)
298 hlen = adapter->rx_ps_hdr_size;
299
300 length = le16_to_cpu(rx_desc->wb.upper.length);
301 cleaned = true;
302 cleaned_count++;
303
304 skb = buffer_info->skb;
305 prefetch(skb->data - NET_IP_ALIGN);
306 buffer_info->skb = NULL;
307 if (!adapter->rx_ps_hdr_size) {
308 dma_unmap_single(&pdev->dev, buffer_info->dma,
309 adapter->rx_buffer_len,
310 DMA_FROM_DEVICE);
311 buffer_info->dma = 0;
312 skb_put(skb, length);
313 goto send_up;
314 }
315
316 if (!skb_shinfo(skb)->nr_frags) {
317 dma_unmap_single(&pdev->dev, buffer_info->dma,
318 adapter->rx_ps_hdr_size,
319 DMA_FROM_DEVICE);
320 skb_put(skb, hlen);
321 }
322
323 if (length) {
324 dma_unmap_page(&pdev->dev, buffer_info->page_dma,
325 PAGE_SIZE / 2,
326 DMA_FROM_DEVICE);
327 buffer_info->page_dma = 0;
328
329 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
330 buffer_info->page,
331 buffer_info->page_offset,
332 length);
333
334 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
335 (page_count(buffer_info->page) != 1))
336 buffer_info->page = NULL;
337 else
338 get_page(buffer_info->page);
339
340 skb->len += length;
341 skb->data_len += length;
342 skb->truesize += PAGE_SIZE / 2;
343 }
344 send_up:
345 i++;
346 if (i == rx_ring->count)
347 i = 0;
348 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
349 prefetch(next_rxd);
350 next_buffer = &rx_ring->buffer_info[i];
351
352 if (!(staterr & E1000_RXD_STAT_EOP)) {
353 buffer_info->skb = next_buffer->skb;
354 buffer_info->dma = next_buffer->dma;
355 next_buffer->skb = skb;
356 next_buffer->dma = 0;
357 goto next_desc;
358 }
359
360 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
361 dev_kfree_skb_irq(skb);
362 goto next_desc;
363 }
364
365 total_bytes += skb->len;
366 total_packets++;
367
368 igbvf_rx_checksum_adv(adapter, staterr, skb);
369
370 skb->protocol = eth_type_trans(skb, netdev);
371
372 igbvf_receive_skb(adapter, netdev, skb, staterr,
373 rx_desc->wb.upper.vlan);
374
375 next_desc:
376 rx_desc->wb.upper.status_error = 0;
377
378 /* return some buffers to hardware, one at a time is too slow */
379 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
380 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
381 cleaned_count = 0;
382 }
383
384 /* use prefetched values */
385 rx_desc = next_rxd;
386 buffer_info = next_buffer;
387
388 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
389 }
390
391 rx_ring->next_to_clean = i;
392 cleaned_count = igbvf_desc_unused(rx_ring);
393
394 if (cleaned_count)
395 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
396
397 adapter->total_rx_packets += total_packets;
398 adapter->total_rx_bytes += total_bytes;
399 adapter->net_stats.rx_bytes += total_bytes;
400 adapter->net_stats.rx_packets += total_packets;
401 return cleaned;
402 }
403
404 static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
405 struct igbvf_buffer *buffer_info)
406 {
407 if (buffer_info->dma) {
408 if (buffer_info->mapped_as_page)
409 dma_unmap_page(&adapter->pdev->dev,
410 buffer_info->dma,
411 buffer_info->length,
412 DMA_TO_DEVICE);
413 else
414 dma_unmap_single(&adapter->pdev->dev,
415 buffer_info->dma,
416 buffer_info->length,
417 DMA_TO_DEVICE);
418 buffer_info->dma = 0;
419 }
420 if (buffer_info->skb) {
421 dev_kfree_skb_any(buffer_info->skb);
422 buffer_info->skb = NULL;
423 }
424 buffer_info->time_stamp = 0;
425 }
426
427 /**
428 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
429 * @adapter: board private structure
430 *
431 * Return 0 on success, negative on failure
432 **/
433 int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
434 struct igbvf_ring *tx_ring)
435 {
436 struct pci_dev *pdev = adapter->pdev;
437 int size;
438
439 size = sizeof(struct igbvf_buffer) * tx_ring->count;
440 tx_ring->buffer_info = vzalloc(size);
441 if (!tx_ring->buffer_info)
442 goto err;
443
444 /* round up to nearest 4K */
445 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
446 tx_ring->size = ALIGN(tx_ring->size, 4096);
447
448 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
449 &tx_ring->dma, GFP_KERNEL);
450
451 if (!tx_ring->desc)
452 goto err;
453
454 tx_ring->adapter = adapter;
455 tx_ring->next_to_use = 0;
456 tx_ring->next_to_clean = 0;
457
458 return 0;
459 err:
460 vfree(tx_ring->buffer_info);
461 dev_err(&adapter->pdev->dev,
462 "Unable to allocate memory for the transmit descriptor ring\n");
463 return -ENOMEM;
464 }
465
466 /**
467 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
468 * @adapter: board private structure
469 *
470 * Returns 0 on success, negative on failure
471 **/
472 int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
473 struct igbvf_ring *rx_ring)
474 {
475 struct pci_dev *pdev = adapter->pdev;
476 int size, desc_len;
477
478 size = sizeof(struct igbvf_buffer) * rx_ring->count;
479 rx_ring->buffer_info = vzalloc(size);
480 if (!rx_ring->buffer_info)
481 goto err;
482
483 desc_len = sizeof(union e1000_adv_rx_desc);
484
485 /* Round up to nearest 4K */
486 rx_ring->size = rx_ring->count * desc_len;
487 rx_ring->size = ALIGN(rx_ring->size, 4096);
488
489 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
490 &rx_ring->dma, GFP_KERNEL);
491
492 if (!rx_ring->desc)
493 goto err;
494
495 rx_ring->next_to_clean = 0;
496 rx_ring->next_to_use = 0;
497
498 rx_ring->adapter = adapter;
499
500 return 0;
501
502 err:
503 vfree(rx_ring->buffer_info);
504 rx_ring->buffer_info = NULL;
505 dev_err(&adapter->pdev->dev,
506 "Unable to allocate memory for the receive descriptor ring\n");
507 return -ENOMEM;
508 }
509
510 /**
511 * igbvf_clean_tx_ring - Free Tx Buffers
512 * @tx_ring: ring to be cleaned
513 **/
514 static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
515 {
516 struct igbvf_adapter *adapter = tx_ring->adapter;
517 struct igbvf_buffer *buffer_info;
518 unsigned long size;
519 unsigned int i;
520
521 if (!tx_ring->buffer_info)
522 return;
523
524 /* Free all the Tx ring sk_buffs */
525 for (i = 0; i < tx_ring->count; i++) {
526 buffer_info = &tx_ring->buffer_info[i];
527 igbvf_put_txbuf(adapter, buffer_info);
528 }
529
530 size = sizeof(struct igbvf_buffer) * tx_ring->count;
531 memset(tx_ring->buffer_info, 0, size);
532
533 /* Zero out the descriptor ring */
534 memset(tx_ring->desc, 0, tx_ring->size);
535
536 tx_ring->next_to_use = 0;
537 tx_ring->next_to_clean = 0;
538
539 writel(0, adapter->hw.hw_addr + tx_ring->head);
540 writel(0, adapter->hw.hw_addr + tx_ring->tail);
541 }
542
543 /**
544 * igbvf_free_tx_resources - Free Tx Resources per Queue
545 * @tx_ring: ring to free resources from
546 *
547 * Free all transmit software resources
548 **/
549 void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
550 {
551 struct pci_dev *pdev = tx_ring->adapter->pdev;
552
553 igbvf_clean_tx_ring(tx_ring);
554
555 vfree(tx_ring->buffer_info);
556 tx_ring->buffer_info = NULL;
557
558 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
559 tx_ring->dma);
560
561 tx_ring->desc = NULL;
562 }
563
564 /**
565 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
566 * @adapter: board private structure
567 **/
568 static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
569 {
570 struct igbvf_adapter *adapter = rx_ring->adapter;
571 struct igbvf_buffer *buffer_info;
572 struct pci_dev *pdev = adapter->pdev;
573 unsigned long size;
574 unsigned int i;
575
576 if (!rx_ring->buffer_info)
577 return;
578
579 /* Free all the Rx ring sk_buffs */
580 for (i = 0; i < rx_ring->count; i++) {
581 buffer_info = &rx_ring->buffer_info[i];
582 if (buffer_info->dma) {
583 if (adapter->rx_ps_hdr_size){
584 dma_unmap_single(&pdev->dev, buffer_info->dma,
585 adapter->rx_ps_hdr_size,
586 DMA_FROM_DEVICE);
587 } else {
588 dma_unmap_single(&pdev->dev, buffer_info->dma,
589 adapter->rx_buffer_len,
590 DMA_FROM_DEVICE);
591 }
592 buffer_info->dma = 0;
593 }
594
595 if (buffer_info->skb) {
596 dev_kfree_skb(buffer_info->skb);
597 buffer_info->skb = NULL;
598 }
599
600 if (buffer_info->page) {
601 if (buffer_info->page_dma)
602 dma_unmap_page(&pdev->dev,
603 buffer_info->page_dma,
604 PAGE_SIZE / 2,
605 DMA_FROM_DEVICE);
606 put_page(buffer_info->page);
607 buffer_info->page = NULL;
608 buffer_info->page_dma = 0;
609 buffer_info->page_offset = 0;
610 }
611 }
612
613 size = sizeof(struct igbvf_buffer) * rx_ring->count;
614 memset(rx_ring->buffer_info, 0, size);
615
616 /* Zero out the descriptor ring */
617 memset(rx_ring->desc, 0, rx_ring->size);
618
619 rx_ring->next_to_clean = 0;
620 rx_ring->next_to_use = 0;
621
622 writel(0, adapter->hw.hw_addr + rx_ring->head);
623 writel(0, adapter->hw.hw_addr + rx_ring->tail);
624 }
625
626 /**
627 * igbvf_free_rx_resources - Free Rx Resources
628 * @rx_ring: ring to clean the resources from
629 *
630 * Free all receive software resources
631 **/
632
633 void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
634 {
635 struct pci_dev *pdev = rx_ring->adapter->pdev;
636
637 igbvf_clean_rx_ring(rx_ring);
638
639 vfree(rx_ring->buffer_info);
640 rx_ring->buffer_info = NULL;
641
642 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
643 rx_ring->dma);
644 rx_ring->desc = NULL;
645 }
646
647 /**
648 * igbvf_update_itr - update the dynamic ITR value based on statistics
649 * @adapter: pointer to adapter
650 * @itr_setting: current adapter->itr
651 * @packets: the number of packets during this measurement interval
652 * @bytes: the number of bytes during this measurement interval
653 *
654 * Stores a new ITR value based on packets and byte
655 * counts during the last interrupt. The advantage of per interrupt
656 * computation is faster updates and more accurate ITR for the current
657 * traffic pattern. Constants in this function were computed
658 * based on theoretical maximum wire speed and thresholds were set based
659 * on testing data as well as attempting to minimize response time
660 * while increasing bulk throughput.
661 **/
662 static enum latency_range igbvf_update_itr(struct igbvf_adapter *adapter,
663 enum latency_range itr_setting,
664 int packets, int bytes)
665 {
666 enum latency_range retval = itr_setting;
667
668 if (packets == 0)
669 goto update_itr_done;
670
671 switch (itr_setting) {
672 case lowest_latency:
673 /* handle TSO and jumbo frames */
674 if (bytes/packets > 8000)
675 retval = bulk_latency;
676 else if ((packets < 5) && (bytes > 512))
677 retval = low_latency;
678 break;
679 case low_latency: /* 50 usec aka 20000 ints/s */
680 if (bytes > 10000) {
681 /* this if handles the TSO accounting */
682 if (bytes/packets > 8000)
683 retval = bulk_latency;
684 else if ((packets < 10) || ((bytes/packets) > 1200))
685 retval = bulk_latency;
686 else if ((packets > 35))
687 retval = lowest_latency;
688 } else if (bytes/packets > 2000) {
689 retval = bulk_latency;
690 } else if (packets <= 2 && bytes < 512) {
691 retval = lowest_latency;
692 }
693 break;
694 case bulk_latency: /* 250 usec aka 4000 ints/s */
695 if (bytes > 25000) {
696 if (packets > 35)
697 retval = low_latency;
698 } else if (bytes < 6000) {
699 retval = low_latency;
700 }
701 break;
702 default:
703 break;
704 }
705
706 update_itr_done:
707 return retval;
708 }
709
710 static int igbvf_range_to_itr(enum latency_range current_range)
711 {
712 int new_itr;
713
714 switch (current_range) {
715 /* counts and packets in update_itr are dependent on these numbers */
716 case lowest_latency:
717 new_itr = IGBVF_70K_ITR;
718 break;
719 case low_latency:
720 new_itr = IGBVF_20K_ITR;
721 break;
722 case bulk_latency:
723 new_itr = IGBVF_4K_ITR;
724 break;
725 default:
726 new_itr = IGBVF_START_ITR;
727 break;
728 }
729 return new_itr;
730 }
731
732 static void igbvf_set_itr(struct igbvf_adapter *adapter)
733 {
734 u32 new_itr;
735
736 adapter->tx_ring->itr_range =
737 igbvf_update_itr(adapter,
738 adapter->tx_ring->itr_val,
739 adapter->total_tx_packets,
740 adapter->total_tx_bytes);
741
742 /* conservative mode (itr 3) eliminates the lowest_latency setting */
743 if (adapter->requested_itr == 3 &&
744 adapter->tx_ring->itr_range == lowest_latency)
745 adapter->tx_ring->itr_range = low_latency;
746
747 new_itr = igbvf_range_to_itr(adapter->tx_ring->itr_range);
748
749
750 if (new_itr != adapter->tx_ring->itr_val) {
751 u32 current_itr = adapter->tx_ring->itr_val;
752 /*
753 * this attempts to bias the interrupt rate towards Bulk
754 * by adding intermediate steps when interrupt rate is
755 * increasing
756 */
757 new_itr = new_itr > current_itr ?
758 min(current_itr + (new_itr >> 2), new_itr) :
759 new_itr;
760 adapter->tx_ring->itr_val = new_itr;
761
762 adapter->tx_ring->set_itr = 1;
763 }
764
765 adapter->rx_ring->itr_range =
766 igbvf_update_itr(adapter, adapter->rx_ring->itr_val,
767 adapter->total_rx_packets,
768 adapter->total_rx_bytes);
769 if (adapter->requested_itr == 3 &&
770 adapter->rx_ring->itr_range == lowest_latency)
771 adapter->rx_ring->itr_range = low_latency;
772
773 new_itr = igbvf_range_to_itr(adapter->rx_ring->itr_range);
774
775 if (new_itr != adapter->rx_ring->itr_val) {
776 u32 current_itr = adapter->rx_ring->itr_val;
777 new_itr = new_itr > current_itr ?
778 min(current_itr + (new_itr >> 2), new_itr) :
779 new_itr;
780 adapter->rx_ring->itr_val = new_itr;
781
782 adapter->rx_ring->set_itr = 1;
783 }
784 }
785
786 /**
787 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
788 * @adapter: board private structure
789 *
790 * returns true if ring is completely cleaned
791 **/
792 static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
793 {
794 struct igbvf_adapter *adapter = tx_ring->adapter;
795 struct net_device *netdev = adapter->netdev;
796 struct igbvf_buffer *buffer_info;
797 struct sk_buff *skb;
798 union e1000_adv_tx_desc *tx_desc, *eop_desc;
799 unsigned int total_bytes = 0, total_packets = 0;
800 unsigned int i, eop, count = 0;
801 bool cleaned = false;
802
803 i = tx_ring->next_to_clean;
804 eop = tx_ring->buffer_info[i].next_to_watch;
805 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
806
807 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
808 (count < tx_ring->count)) {
809 rmb(); /* read buffer_info after eop_desc status */
810 for (cleaned = false; !cleaned; count++) {
811 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
812 buffer_info = &tx_ring->buffer_info[i];
813 cleaned = (i == eop);
814 skb = buffer_info->skb;
815
816 if (skb) {
817 unsigned int segs, bytecount;
818
819 /* gso_segs is currently only valid for tcp */
820 segs = skb_shinfo(skb)->gso_segs ?: 1;
821 /* multiply data chunks by size of headers */
822 bytecount = ((segs - 1) * skb_headlen(skb)) +
823 skb->len;
824 total_packets += segs;
825 total_bytes += bytecount;
826 }
827
828 igbvf_put_txbuf(adapter, buffer_info);
829 tx_desc->wb.status = 0;
830
831 i++;
832 if (i == tx_ring->count)
833 i = 0;
834 }
835 eop = tx_ring->buffer_info[i].next_to_watch;
836 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
837 }
838
839 tx_ring->next_to_clean = i;
840
841 if (unlikely(count &&
842 netif_carrier_ok(netdev) &&
843 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
844 /* Make sure that anybody stopping the queue after this
845 * sees the new next_to_clean.
846 */
847 smp_mb();
848 if (netif_queue_stopped(netdev) &&
849 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
850 netif_wake_queue(netdev);
851 ++adapter->restart_queue;
852 }
853 }
854
855 adapter->net_stats.tx_bytes += total_bytes;
856 adapter->net_stats.tx_packets += total_packets;
857 return count < tx_ring->count;
858 }
859
860 static irqreturn_t igbvf_msix_other(int irq, void *data)
861 {
862 struct net_device *netdev = data;
863 struct igbvf_adapter *adapter = netdev_priv(netdev);
864 struct e1000_hw *hw = &adapter->hw;
865
866 adapter->int_counter1++;
867
868 netif_carrier_off(netdev);
869 hw->mac.get_link_status = 1;
870 if (!test_bit(__IGBVF_DOWN, &adapter->state))
871 mod_timer(&adapter->watchdog_timer, jiffies + 1);
872
873 ew32(EIMS, adapter->eims_other);
874
875 return IRQ_HANDLED;
876 }
877
878 static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
879 {
880 struct net_device *netdev = data;
881 struct igbvf_adapter *adapter = netdev_priv(netdev);
882 struct e1000_hw *hw = &adapter->hw;
883 struct igbvf_ring *tx_ring = adapter->tx_ring;
884
885 if (tx_ring->set_itr) {
886 writel(tx_ring->itr_val,
887 adapter->hw.hw_addr + tx_ring->itr_register);
888 adapter->tx_ring->set_itr = 0;
889 }
890
891 adapter->total_tx_bytes = 0;
892 adapter->total_tx_packets = 0;
893
894 /* auto mask will automatically reenable the interrupt when we write
895 * EICS */
896 if (!igbvf_clean_tx_irq(tx_ring))
897 /* Ring was not completely cleaned, so fire another interrupt */
898 ew32(EICS, tx_ring->eims_value);
899 else
900 ew32(EIMS, tx_ring->eims_value);
901
902 return IRQ_HANDLED;
903 }
904
905 static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
906 {
907 struct net_device *netdev = data;
908 struct igbvf_adapter *adapter = netdev_priv(netdev);
909
910 adapter->int_counter0++;
911
912 /* Write the ITR value calculated at the end of the
913 * previous interrupt.
914 */
915 if (adapter->rx_ring->set_itr) {
916 writel(adapter->rx_ring->itr_val,
917 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
918 adapter->rx_ring->set_itr = 0;
919 }
920
921 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
922 adapter->total_rx_bytes = 0;
923 adapter->total_rx_packets = 0;
924 __napi_schedule(&adapter->rx_ring->napi);
925 }
926
927 return IRQ_HANDLED;
928 }
929
930 #define IGBVF_NO_QUEUE -1
931
932 static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
933 int tx_queue, int msix_vector)
934 {
935 struct e1000_hw *hw = &adapter->hw;
936 u32 ivar, index;
937
938 /* 82576 uses a table-based method for assigning vectors.
939 Each queue has a single entry in the table to which we write
940 a vector number along with a "valid" bit. Sadly, the layout
941 of the table is somewhat counterintuitive. */
942 if (rx_queue > IGBVF_NO_QUEUE) {
943 index = (rx_queue >> 1);
944 ivar = array_er32(IVAR0, index);
945 if (rx_queue & 0x1) {
946 /* vector goes into third byte of register */
947 ivar = ivar & 0xFF00FFFF;
948 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
949 } else {
950 /* vector goes into low byte of register */
951 ivar = ivar & 0xFFFFFF00;
952 ivar |= msix_vector | E1000_IVAR_VALID;
953 }
954 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
955 array_ew32(IVAR0, index, ivar);
956 }
957 if (tx_queue > IGBVF_NO_QUEUE) {
958 index = (tx_queue >> 1);
959 ivar = array_er32(IVAR0, index);
960 if (tx_queue & 0x1) {
961 /* vector goes into high byte of register */
962 ivar = ivar & 0x00FFFFFF;
963 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
964 } else {
965 /* vector goes into second byte of register */
966 ivar = ivar & 0xFFFF00FF;
967 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
968 }
969 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
970 array_ew32(IVAR0, index, ivar);
971 }
972 }
973
974 /**
975 * igbvf_configure_msix - Configure MSI-X hardware
976 *
977 * igbvf_configure_msix sets up the hardware to properly
978 * generate MSI-X interrupts.
979 **/
980 static void igbvf_configure_msix(struct igbvf_adapter *adapter)
981 {
982 u32 tmp;
983 struct e1000_hw *hw = &adapter->hw;
984 struct igbvf_ring *tx_ring = adapter->tx_ring;
985 struct igbvf_ring *rx_ring = adapter->rx_ring;
986 int vector = 0;
987
988 adapter->eims_enable_mask = 0;
989
990 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
991 adapter->eims_enable_mask |= tx_ring->eims_value;
992 writel(tx_ring->itr_val, hw->hw_addr + tx_ring->itr_register);
993 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
994 adapter->eims_enable_mask |= rx_ring->eims_value;
995 writel(rx_ring->itr_val, hw->hw_addr + rx_ring->itr_register);
996
997 /* set vector for other causes, i.e. link changes */
998
999 tmp = (vector++ | E1000_IVAR_VALID);
1000
1001 ew32(IVAR_MISC, tmp);
1002
1003 adapter->eims_enable_mask = (1 << (vector)) - 1;
1004 adapter->eims_other = 1 << (vector - 1);
1005 e1e_flush();
1006 }
1007
1008 static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
1009 {
1010 if (adapter->msix_entries) {
1011 pci_disable_msix(adapter->pdev);
1012 kfree(adapter->msix_entries);
1013 adapter->msix_entries = NULL;
1014 }
1015 }
1016
1017 /**
1018 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1019 *
1020 * Attempt to configure interrupts using the best available
1021 * capabilities of the hardware and kernel.
1022 **/
1023 static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1024 {
1025 int err = -ENOMEM;
1026 int i;
1027
1028 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1029 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1030 GFP_KERNEL);
1031 if (adapter->msix_entries) {
1032 for (i = 0; i < 3; i++)
1033 adapter->msix_entries[i].entry = i;
1034
1035 err = pci_enable_msix(adapter->pdev,
1036 adapter->msix_entries, 3);
1037 }
1038
1039 if (err) {
1040 /* MSI-X failed */
1041 dev_err(&adapter->pdev->dev,
1042 "Failed to initialize MSI-X interrupts.\n");
1043 igbvf_reset_interrupt_capability(adapter);
1044 }
1045 }
1046
1047 /**
1048 * igbvf_request_msix - Initialize MSI-X interrupts
1049 *
1050 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1051 * kernel.
1052 **/
1053 static int igbvf_request_msix(struct igbvf_adapter *adapter)
1054 {
1055 struct net_device *netdev = adapter->netdev;
1056 int err = 0, vector = 0;
1057
1058 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1059 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1060 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1061 } else {
1062 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1063 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1064 }
1065
1066 err = request_irq(adapter->msix_entries[vector].vector,
1067 igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1068 netdev);
1069 if (err)
1070 goto out;
1071
1072 adapter->tx_ring->itr_register = E1000_EITR(vector);
1073 adapter->tx_ring->itr_val = adapter->current_itr;
1074 vector++;
1075
1076 err = request_irq(adapter->msix_entries[vector].vector,
1077 igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1078 netdev);
1079 if (err)
1080 goto out;
1081
1082 adapter->rx_ring->itr_register = E1000_EITR(vector);
1083 adapter->rx_ring->itr_val = adapter->current_itr;
1084 vector++;
1085
1086 err = request_irq(adapter->msix_entries[vector].vector,
1087 igbvf_msix_other, 0, netdev->name, netdev);
1088 if (err)
1089 goto out;
1090
1091 igbvf_configure_msix(adapter);
1092 return 0;
1093 out:
1094 return err;
1095 }
1096
1097 /**
1098 * igbvf_alloc_queues - Allocate memory for all rings
1099 * @adapter: board private structure to initialize
1100 **/
1101 static int igbvf_alloc_queues(struct igbvf_adapter *adapter)
1102 {
1103 struct net_device *netdev = adapter->netdev;
1104
1105 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1106 if (!adapter->tx_ring)
1107 return -ENOMEM;
1108
1109 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1110 if (!adapter->rx_ring) {
1111 kfree(adapter->tx_ring);
1112 return -ENOMEM;
1113 }
1114
1115 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1116
1117 return 0;
1118 }
1119
1120 /**
1121 * igbvf_request_irq - initialize interrupts
1122 *
1123 * Attempts to configure interrupts using the best available
1124 * capabilities of the hardware and kernel.
1125 **/
1126 static int igbvf_request_irq(struct igbvf_adapter *adapter)
1127 {
1128 int err = -1;
1129
1130 /* igbvf supports msi-x only */
1131 if (adapter->msix_entries)
1132 err = igbvf_request_msix(adapter);
1133
1134 if (!err)
1135 return err;
1136
1137 dev_err(&adapter->pdev->dev,
1138 "Unable to allocate interrupt, Error: %d\n", err);
1139
1140 return err;
1141 }
1142
1143 static void igbvf_free_irq(struct igbvf_adapter *adapter)
1144 {
1145 struct net_device *netdev = adapter->netdev;
1146 int vector;
1147
1148 if (adapter->msix_entries) {
1149 for (vector = 0; vector < 3; vector++)
1150 free_irq(adapter->msix_entries[vector].vector, netdev);
1151 }
1152 }
1153
1154 /**
1155 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1156 **/
1157 static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1158 {
1159 struct e1000_hw *hw = &adapter->hw;
1160
1161 ew32(EIMC, ~0);
1162
1163 if (adapter->msix_entries)
1164 ew32(EIAC, 0);
1165 }
1166
1167 /**
1168 * igbvf_irq_enable - Enable default interrupt generation settings
1169 **/
1170 static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1171 {
1172 struct e1000_hw *hw = &adapter->hw;
1173
1174 ew32(EIAC, adapter->eims_enable_mask);
1175 ew32(EIAM, adapter->eims_enable_mask);
1176 ew32(EIMS, adapter->eims_enable_mask);
1177 }
1178
1179 /**
1180 * igbvf_poll - NAPI Rx polling callback
1181 * @napi: struct associated with this polling callback
1182 * @budget: amount of packets driver is allowed to process this poll
1183 **/
1184 static int igbvf_poll(struct napi_struct *napi, int budget)
1185 {
1186 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1187 struct igbvf_adapter *adapter = rx_ring->adapter;
1188 struct e1000_hw *hw = &adapter->hw;
1189 int work_done = 0;
1190
1191 igbvf_clean_rx_irq(adapter, &work_done, budget);
1192
1193 /* If not enough Rx work done, exit the polling mode */
1194 if (work_done < budget) {
1195 napi_complete(napi);
1196
1197 if (adapter->requested_itr & 3)
1198 igbvf_set_itr(adapter);
1199
1200 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1201 ew32(EIMS, adapter->rx_ring->eims_value);
1202 }
1203
1204 return work_done;
1205 }
1206
1207 /**
1208 * igbvf_set_rlpml - set receive large packet maximum length
1209 * @adapter: board private structure
1210 *
1211 * Configure the maximum size of packets that will be received
1212 */
1213 static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1214 {
1215 int max_frame_size;
1216 struct e1000_hw *hw = &adapter->hw;
1217
1218 max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1219 e1000_rlpml_set_vf(hw, max_frame_size);
1220 }
1221
1222 static int igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1223 {
1224 struct igbvf_adapter *adapter = netdev_priv(netdev);
1225 struct e1000_hw *hw = &adapter->hw;
1226
1227 if (hw->mac.ops.set_vfta(hw, vid, true)) {
1228 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1229 return -EINVAL;
1230 }
1231 set_bit(vid, adapter->active_vlans);
1232 return 0;
1233 }
1234
1235 static int igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1236 {
1237 struct igbvf_adapter *adapter = netdev_priv(netdev);
1238 struct e1000_hw *hw = &adapter->hw;
1239
1240 if (hw->mac.ops.set_vfta(hw, vid, false)) {
1241 dev_err(&adapter->pdev->dev,
1242 "Failed to remove vlan id %d\n", vid);
1243 return -EINVAL;
1244 }
1245 clear_bit(vid, adapter->active_vlans);
1246 return 0;
1247 }
1248
1249 static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1250 {
1251 u16 vid;
1252
1253 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1254 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1255 }
1256
1257 /**
1258 * igbvf_configure_tx - Configure Transmit Unit after Reset
1259 * @adapter: board private structure
1260 *
1261 * Configure the Tx unit of the MAC after a reset.
1262 **/
1263 static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1264 {
1265 struct e1000_hw *hw = &adapter->hw;
1266 struct igbvf_ring *tx_ring = adapter->tx_ring;
1267 u64 tdba;
1268 u32 txdctl, dca_txctrl;
1269
1270 /* disable transmits */
1271 txdctl = er32(TXDCTL(0));
1272 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1273 e1e_flush();
1274 msleep(10);
1275
1276 /* Setup the HW Tx Head and Tail descriptor pointers */
1277 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1278 tdba = tx_ring->dma;
1279 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1280 ew32(TDBAH(0), (tdba >> 32));
1281 ew32(TDH(0), 0);
1282 ew32(TDT(0), 0);
1283 tx_ring->head = E1000_TDH(0);
1284 tx_ring->tail = E1000_TDT(0);
1285
1286 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1287 * MUST be delivered in order or it will completely screw up
1288 * our bookeeping.
1289 */
1290 dca_txctrl = er32(DCA_TXCTRL(0));
1291 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1292 ew32(DCA_TXCTRL(0), dca_txctrl);
1293
1294 /* enable transmits */
1295 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1296 ew32(TXDCTL(0), txdctl);
1297
1298 /* Setup Transmit Descriptor Settings for eop descriptor */
1299 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1300
1301 /* enable Report Status bit */
1302 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1303 }
1304
1305 /**
1306 * igbvf_setup_srrctl - configure the receive control registers
1307 * @adapter: Board private structure
1308 **/
1309 static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1310 {
1311 struct e1000_hw *hw = &adapter->hw;
1312 u32 srrctl = 0;
1313
1314 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1315 E1000_SRRCTL_BSIZEHDR_MASK |
1316 E1000_SRRCTL_BSIZEPKT_MASK);
1317
1318 /* Enable queue drop to avoid head of line blocking */
1319 srrctl |= E1000_SRRCTL_DROP_EN;
1320
1321 /* Setup buffer sizes */
1322 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1323 E1000_SRRCTL_BSIZEPKT_SHIFT;
1324
1325 if (adapter->rx_buffer_len < 2048) {
1326 adapter->rx_ps_hdr_size = 0;
1327 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1328 } else {
1329 adapter->rx_ps_hdr_size = 128;
1330 srrctl |= adapter->rx_ps_hdr_size <<
1331 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1332 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1333 }
1334
1335 ew32(SRRCTL(0), srrctl);
1336 }
1337
1338 /**
1339 * igbvf_configure_rx - Configure Receive Unit after Reset
1340 * @adapter: board private structure
1341 *
1342 * Configure the Rx unit of the MAC after a reset.
1343 **/
1344 static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1345 {
1346 struct e1000_hw *hw = &adapter->hw;
1347 struct igbvf_ring *rx_ring = adapter->rx_ring;
1348 u64 rdba;
1349 u32 rdlen, rxdctl;
1350
1351 /* disable receives */
1352 rxdctl = er32(RXDCTL(0));
1353 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1354 e1e_flush();
1355 msleep(10);
1356
1357 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1358
1359 /*
1360 * Setup the HW Rx Head and Tail Descriptor Pointers and
1361 * the Base and Length of the Rx Descriptor Ring
1362 */
1363 rdba = rx_ring->dma;
1364 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1365 ew32(RDBAH(0), (rdba >> 32));
1366 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1367 rx_ring->head = E1000_RDH(0);
1368 rx_ring->tail = E1000_RDT(0);
1369 ew32(RDH(0), 0);
1370 ew32(RDT(0), 0);
1371
1372 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1373 rxdctl &= 0xFFF00000;
1374 rxdctl |= IGBVF_RX_PTHRESH;
1375 rxdctl |= IGBVF_RX_HTHRESH << 8;
1376 rxdctl |= IGBVF_RX_WTHRESH << 16;
1377
1378 igbvf_set_rlpml(adapter);
1379
1380 /* enable receives */
1381 ew32(RXDCTL(0), rxdctl);
1382 }
1383
1384 /**
1385 * igbvf_set_multi - Multicast and Promiscuous mode set
1386 * @netdev: network interface device structure
1387 *
1388 * The set_multi entry point is called whenever the multicast address
1389 * list or the network interface flags are updated. This routine is
1390 * responsible for configuring the hardware for proper multicast,
1391 * promiscuous mode, and all-multi behavior.
1392 **/
1393 static void igbvf_set_multi(struct net_device *netdev)
1394 {
1395 struct igbvf_adapter *adapter = netdev_priv(netdev);
1396 struct e1000_hw *hw = &adapter->hw;
1397 struct netdev_hw_addr *ha;
1398 u8 *mta_list = NULL;
1399 int i;
1400
1401 if (!netdev_mc_empty(netdev)) {
1402 mta_list = kmalloc_array(netdev_mc_count(netdev), ETH_ALEN,
1403 GFP_ATOMIC);
1404 if (!mta_list)
1405 return;
1406 }
1407
1408 /* prepare a packed array of only addresses. */
1409 i = 0;
1410 netdev_for_each_mc_addr(ha, netdev)
1411 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1412
1413 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1414 kfree(mta_list);
1415 }
1416
1417 /**
1418 * igbvf_configure - configure the hardware for Rx and Tx
1419 * @adapter: private board structure
1420 **/
1421 static void igbvf_configure(struct igbvf_adapter *adapter)
1422 {
1423 igbvf_set_multi(adapter->netdev);
1424
1425 igbvf_restore_vlan(adapter);
1426
1427 igbvf_configure_tx(adapter);
1428 igbvf_setup_srrctl(adapter);
1429 igbvf_configure_rx(adapter);
1430 igbvf_alloc_rx_buffers(adapter->rx_ring,
1431 igbvf_desc_unused(adapter->rx_ring));
1432 }
1433
1434 /* igbvf_reset - bring the hardware into a known good state
1435 *
1436 * This function boots the hardware and enables some settings that
1437 * require a configuration cycle of the hardware - those cannot be
1438 * set/changed during runtime. After reset the device needs to be
1439 * properly configured for Rx, Tx etc.
1440 */
1441 static void igbvf_reset(struct igbvf_adapter *adapter)
1442 {
1443 struct e1000_mac_info *mac = &adapter->hw.mac;
1444 struct net_device *netdev = adapter->netdev;
1445 struct e1000_hw *hw = &adapter->hw;
1446
1447 /* Allow time for pending master requests to run */
1448 if (mac->ops.reset_hw(hw))
1449 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1450
1451 mac->ops.init_hw(hw);
1452
1453 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1454 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1455 netdev->addr_len);
1456 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1457 netdev->addr_len);
1458 }
1459
1460 adapter->last_reset = jiffies;
1461 }
1462
1463 int igbvf_up(struct igbvf_adapter *adapter)
1464 {
1465 struct e1000_hw *hw = &adapter->hw;
1466
1467 /* hardware has been reset, we need to reload some things */
1468 igbvf_configure(adapter);
1469
1470 clear_bit(__IGBVF_DOWN, &adapter->state);
1471
1472 napi_enable(&adapter->rx_ring->napi);
1473 if (adapter->msix_entries)
1474 igbvf_configure_msix(adapter);
1475
1476 /* Clear any pending interrupts. */
1477 er32(EICR);
1478 igbvf_irq_enable(adapter);
1479
1480 /* start the watchdog */
1481 hw->mac.get_link_status = 1;
1482 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1483
1484
1485 return 0;
1486 }
1487
1488 void igbvf_down(struct igbvf_adapter *adapter)
1489 {
1490 struct net_device *netdev = adapter->netdev;
1491 struct e1000_hw *hw = &adapter->hw;
1492 u32 rxdctl, txdctl;
1493
1494 /*
1495 * signal that we're down so the interrupt handler does not
1496 * reschedule our watchdog timer
1497 */
1498 set_bit(__IGBVF_DOWN, &adapter->state);
1499
1500 /* disable receives in the hardware */
1501 rxdctl = er32(RXDCTL(0));
1502 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1503
1504 netif_stop_queue(netdev);
1505
1506 /* disable transmits in the hardware */
1507 txdctl = er32(TXDCTL(0));
1508 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1509
1510 /* flush both disables and wait for them to finish */
1511 e1e_flush();
1512 msleep(10);
1513
1514 napi_disable(&adapter->rx_ring->napi);
1515
1516 igbvf_irq_disable(adapter);
1517
1518 del_timer_sync(&adapter->watchdog_timer);
1519
1520 netif_carrier_off(netdev);
1521
1522 /* record the stats before reset*/
1523 igbvf_update_stats(adapter);
1524
1525 adapter->link_speed = 0;
1526 adapter->link_duplex = 0;
1527
1528 igbvf_reset(adapter);
1529 igbvf_clean_tx_ring(adapter->tx_ring);
1530 igbvf_clean_rx_ring(adapter->rx_ring);
1531 }
1532
1533 void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1534 {
1535 might_sleep();
1536 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1537 msleep(1);
1538 igbvf_down(adapter);
1539 igbvf_up(adapter);
1540 clear_bit(__IGBVF_RESETTING, &adapter->state);
1541 }
1542
1543 /**
1544 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1545 * @adapter: board private structure to initialize
1546 *
1547 * igbvf_sw_init initializes the Adapter private data structure.
1548 * Fields are initialized based on PCI device information and
1549 * OS network device settings (MTU size).
1550 **/
1551 static int igbvf_sw_init(struct igbvf_adapter *adapter)
1552 {
1553 struct net_device *netdev = adapter->netdev;
1554 s32 rc;
1555
1556 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1557 adapter->rx_ps_hdr_size = 0;
1558 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1559 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1560
1561 adapter->tx_int_delay = 8;
1562 adapter->tx_abs_int_delay = 32;
1563 adapter->rx_int_delay = 0;
1564 adapter->rx_abs_int_delay = 8;
1565 adapter->requested_itr = 3;
1566 adapter->current_itr = IGBVF_START_ITR;
1567
1568 /* Set various function pointers */
1569 adapter->ei->init_ops(&adapter->hw);
1570
1571 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1572 if (rc)
1573 return rc;
1574
1575 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1576 if (rc)
1577 return rc;
1578
1579 igbvf_set_interrupt_capability(adapter);
1580
1581 if (igbvf_alloc_queues(adapter))
1582 return -ENOMEM;
1583
1584 spin_lock_init(&adapter->tx_queue_lock);
1585
1586 /* Explicitly disable IRQ since the NIC can be in any state. */
1587 igbvf_irq_disable(adapter);
1588
1589 spin_lock_init(&adapter->stats_lock);
1590
1591 set_bit(__IGBVF_DOWN, &adapter->state);
1592 return 0;
1593 }
1594
1595 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1596 {
1597 struct e1000_hw *hw = &adapter->hw;
1598
1599 adapter->stats.last_gprc = er32(VFGPRC);
1600 adapter->stats.last_gorc = er32(VFGORC);
1601 adapter->stats.last_gptc = er32(VFGPTC);
1602 adapter->stats.last_gotc = er32(VFGOTC);
1603 adapter->stats.last_mprc = er32(VFMPRC);
1604 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1605 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1606 adapter->stats.last_gorlbc = er32(VFGORLBC);
1607 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1608
1609 adapter->stats.base_gprc = er32(VFGPRC);
1610 adapter->stats.base_gorc = er32(VFGORC);
1611 adapter->stats.base_gptc = er32(VFGPTC);
1612 adapter->stats.base_gotc = er32(VFGOTC);
1613 adapter->stats.base_mprc = er32(VFMPRC);
1614 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1615 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1616 adapter->stats.base_gorlbc = er32(VFGORLBC);
1617 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1618 }
1619
1620 /**
1621 * igbvf_open - Called when a network interface is made active
1622 * @netdev: network interface device structure
1623 *
1624 * Returns 0 on success, negative value on failure
1625 *
1626 * The open entry point is called when a network interface is made
1627 * active by the system (IFF_UP). At this point all resources needed
1628 * for transmit and receive operations are allocated, the interrupt
1629 * handler is registered with the OS, the watchdog timer is started,
1630 * and the stack is notified that the interface is ready.
1631 **/
1632 static int igbvf_open(struct net_device *netdev)
1633 {
1634 struct igbvf_adapter *adapter = netdev_priv(netdev);
1635 struct e1000_hw *hw = &adapter->hw;
1636 int err;
1637
1638 /* disallow open during test */
1639 if (test_bit(__IGBVF_TESTING, &adapter->state))
1640 return -EBUSY;
1641
1642 /* allocate transmit descriptors */
1643 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1644 if (err)
1645 goto err_setup_tx;
1646
1647 /* allocate receive descriptors */
1648 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1649 if (err)
1650 goto err_setup_rx;
1651
1652 /*
1653 * before we allocate an interrupt, we must be ready to handle it.
1654 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1655 * as soon as we call pci_request_irq, so we have to setup our
1656 * clean_rx handler before we do so.
1657 */
1658 igbvf_configure(adapter);
1659
1660 err = igbvf_request_irq(adapter);
1661 if (err)
1662 goto err_req_irq;
1663
1664 /* From here on the code is the same as igbvf_up() */
1665 clear_bit(__IGBVF_DOWN, &adapter->state);
1666
1667 napi_enable(&adapter->rx_ring->napi);
1668
1669 /* clear any pending interrupts */
1670 er32(EICR);
1671
1672 igbvf_irq_enable(adapter);
1673
1674 /* start the watchdog */
1675 hw->mac.get_link_status = 1;
1676 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1677
1678 return 0;
1679
1680 err_req_irq:
1681 igbvf_free_rx_resources(adapter->rx_ring);
1682 err_setup_rx:
1683 igbvf_free_tx_resources(adapter->tx_ring);
1684 err_setup_tx:
1685 igbvf_reset(adapter);
1686
1687 return err;
1688 }
1689
1690 /**
1691 * igbvf_close - Disables a network interface
1692 * @netdev: network interface device structure
1693 *
1694 * Returns 0, this is not allowed to fail
1695 *
1696 * The close entry point is called when an interface is de-activated
1697 * by the OS. The hardware is still under the drivers control, but
1698 * needs to be disabled. A global MAC reset is issued to stop the
1699 * hardware, and all transmit and receive resources are freed.
1700 **/
1701 static int igbvf_close(struct net_device *netdev)
1702 {
1703 struct igbvf_adapter *adapter = netdev_priv(netdev);
1704
1705 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1706 igbvf_down(adapter);
1707
1708 igbvf_free_irq(adapter);
1709
1710 igbvf_free_tx_resources(adapter->tx_ring);
1711 igbvf_free_rx_resources(adapter->rx_ring);
1712
1713 return 0;
1714 }
1715 /**
1716 * igbvf_set_mac - Change the Ethernet Address of the NIC
1717 * @netdev: network interface device structure
1718 * @p: pointer to an address structure
1719 *
1720 * Returns 0 on success, negative on failure
1721 **/
1722 static int igbvf_set_mac(struct net_device *netdev, void *p)
1723 {
1724 struct igbvf_adapter *adapter = netdev_priv(netdev);
1725 struct e1000_hw *hw = &adapter->hw;
1726 struct sockaddr *addr = p;
1727
1728 if (!is_valid_ether_addr(addr->sa_data))
1729 return -EADDRNOTAVAIL;
1730
1731 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1732
1733 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1734
1735 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1736 return -EADDRNOTAVAIL;
1737
1738 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1739
1740 return 0;
1741 }
1742
1743 #define UPDATE_VF_COUNTER(reg, name) \
1744 { \
1745 u32 current_counter = er32(reg); \
1746 if (current_counter < adapter->stats.last_##name) \
1747 adapter->stats.name += 0x100000000LL; \
1748 adapter->stats.last_##name = current_counter; \
1749 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1750 adapter->stats.name |= current_counter; \
1751 }
1752
1753 /**
1754 * igbvf_update_stats - Update the board statistics counters
1755 * @adapter: board private structure
1756 **/
1757 void igbvf_update_stats(struct igbvf_adapter *adapter)
1758 {
1759 struct e1000_hw *hw = &adapter->hw;
1760 struct pci_dev *pdev = adapter->pdev;
1761
1762 /*
1763 * Prevent stats update while adapter is being reset, link is down
1764 * or if the pci connection is down.
1765 */
1766 if (adapter->link_speed == 0)
1767 return;
1768
1769 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1770 return;
1771
1772 if (pci_channel_offline(pdev))
1773 return;
1774
1775 UPDATE_VF_COUNTER(VFGPRC, gprc);
1776 UPDATE_VF_COUNTER(VFGORC, gorc);
1777 UPDATE_VF_COUNTER(VFGPTC, gptc);
1778 UPDATE_VF_COUNTER(VFGOTC, gotc);
1779 UPDATE_VF_COUNTER(VFMPRC, mprc);
1780 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1781 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1782 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1783 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1784
1785 /* Fill out the OS statistics structure */
1786 adapter->net_stats.multicast = adapter->stats.mprc;
1787 }
1788
1789 static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1790 {
1791 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s Duplex\n",
1792 adapter->link_speed,
1793 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half");
1794 }
1795
1796 static bool igbvf_has_link(struct igbvf_adapter *adapter)
1797 {
1798 struct e1000_hw *hw = &adapter->hw;
1799 s32 ret_val = E1000_SUCCESS;
1800 bool link_active;
1801
1802 /* If interface is down, stay link down */
1803 if (test_bit(__IGBVF_DOWN, &adapter->state))
1804 return false;
1805
1806 ret_val = hw->mac.ops.check_for_link(hw);
1807 link_active = !hw->mac.get_link_status;
1808
1809 /* if check for link returns error we will need to reset */
1810 if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1811 schedule_work(&adapter->reset_task);
1812
1813 return link_active;
1814 }
1815
1816 /**
1817 * igbvf_watchdog - Timer Call-back
1818 * @data: pointer to adapter cast into an unsigned long
1819 **/
1820 static void igbvf_watchdog(unsigned long data)
1821 {
1822 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1823
1824 /* Do the rest outside of interrupt context */
1825 schedule_work(&adapter->watchdog_task);
1826 }
1827
1828 static void igbvf_watchdog_task(struct work_struct *work)
1829 {
1830 struct igbvf_adapter *adapter = container_of(work,
1831 struct igbvf_adapter,
1832 watchdog_task);
1833 struct net_device *netdev = adapter->netdev;
1834 struct e1000_mac_info *mac = &adapter->hw.mac;
1835 struct igbvf_ring *tx_ring = adapter->tx_ring;
1836 struct e1000_hw *hw = &adapter->hw;
1837 u32 link;
1838 int tx_pending = 0;
1839
1840 link = igbvf_has_link(adapter);
1841
1842 if (link) {
1843 if (!netif_carrier_ok(netdev)) {
1844 mac->ops.get_link_up_info(&adapter->hw,
1845 &adapter->link_speed,
1846 &adapter->link_duplex);
1847 igbvf_print_link_info(adapter);
1848
1849 netif_carrier_on(netdev);
1850 netif_wake_queue(netdev);
1851 }
1852 } else {
1853 if (netif_carrier_ok(netdev)) {
1854 adapter->link_speed = 0;
1855 adapter->link_duplex = 0;
1856 dev_info(&adapter->pdev->dev, "Link is Down\n");
1857 netif_carrier_off(netdev);
1858 netif_stop_queue(netdev);
1859 }
1860 }
1861
1862 if (netif_carrier_ok(netdev)) {
1863 igbvf_update_stats(adapter);
1864 } else {
1865 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1866 tx_ring->count);
1867 if (tx_pending) {
1868 /*
1869 * We've lost link, so the controller stops DMA,
1870 * but we've got queued Tx work that's never going
1871 * to get done, so reset controller to flush Tx.
1872 * (Do the reset outside of interrupt context).
1873 */
1874 adapter->tx_timeout_count++;
1875 schedule_work(&adapter->reset_task);
1876 }
1877 }
1878
1879 /* Cause software interrupt to ensure Rx ring is cleaned */
1880 ew32(EICS, adapter->rx_ring->eims_value);
1881
1882 /* Reset the timer */
1883 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1884 mod_timer(&adapter->watchdog_timer,
1885 round_jiffies(jiffies + (2 * HZ)));
1886 }
1887
1888 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1889 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1890 #define IGBVF_TX_FLAGS_TSO 0x00000004
1891 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1892 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1893 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1894
1895 static int igbvf_tso(struct igbvf_adapter *adapter,
1896 struct igbvf_ring *tx_ring,
1897 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1898 {
1899 struct e1000_adv_tx_context_desc *context_desc;
1900 unsigned int i;
1901 int err;
1902 struct igbvf_buffer *buffer_info;
1903 u32 info = 0, tu_cmd = 0;
1904 u32 mss_l4len_idx, l4len;
1905 *hdr_len = 0;
1906
1907 if (skb_header_cloned(skb)) {
1908 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1909 if (err) {
1910 dev_err(&adapter->pdev->dev,
1911 "igbvf_tso returning an error\n");
1912 return err;
1913 }
1914 }
1915
1916 l4len = tcp_hdrlen(skb);
1917 *hdr_len += l4len;
1918
1919 if (skb->protocol == htons(ETH_P_IP)) {
1920 struct iphdr *iph = ip_hdr(skb);
1921 iph->tot_len = 0;
1922 iph->check = 0;
1923 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1924 iph->daddr, 0,
1925 IPPROTO_TCP,
1926 0);
1927 } else if (skb_is_gso_v6(skb)) {
1928 ipv6_hdr(skb)->payload_len = 0;
1929 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1930 &ipv6_hdr(skb)->daddr,
1931 0, IPPROTO_TCP, 0);
1932 }
1933
1934 i = tx_ring->next_to_use;
1935
1936 buffer_info = &tx_ring->buffer_info[i];
1937 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1938 /* VLAN MACLEN IPLEN */
1939 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1940 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1941 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1942 *hdr_len += skb_network_offset(skb);
1943 info |= (skb_transport_header(skb) - skb_network_header(skb));
1944 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1945 context_desc->vlan_macip_lens = cpu_to_le32(info);
1946
1947 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1948 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1949
1950 if (skb->protocol == htons(ETH_P_IP))
1951 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1952 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1953
1954 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1955
1956 /* MSS L4LEN IDX */
1957 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1958 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1959
1960 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1961 context_desc->seqnum_seed = 0;
1962
1963 buffer_info->time_stamp = jiffies;
1964 buffer_info->next_to_watch = i;
1965 buffer_info->dma = 0;
1966 i++;
1967 if (i == tx_ring->count)
1968 i = 0;
1969
1970 tx_ring->next_to_use = i;
1971
1972 return true;
1973 }
1974
1975 static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1976 struct igbvf_ring *tx_ring,
1977 struct sk_buff *skb, u32 tx_flags)
1978 {
1979 struct e1000_adv_tx_context_desc *context_desc;
1980 unsigned int i;
1981 struct igbvf_buffer *buffer_info;
1982 u32 info = 0, tu_cmd = 0;
1983
1984 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1985 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1986 i = tx_ring->next_to_use;
1987 buffer_info = &tx_ring->buffer_info[i];
1988 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1989
1990 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1991 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1992
1993 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1994 if (skb->ip_summed == CHECKSUM_PARTIAL)
1995 info |= (skb_transport_header(skb) -
1996 skb_network_header(skb));
1997
1998
1999 context_desc->vlan_macip_lens = cpu_to_le32(info);
2000
2001 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2002
2003 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2004 switch (skb->protocol) {
2005 case __constant_htons(ETH_P_IP):
2006 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2007 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2008 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2009 break;
2010 case __constant_htons(ETH_P_IPV6):
2011 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2012 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2013 break;
2014 default:
2015 break;
2016 }
2017 }
2018
2019 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2020 context_desc->seqnum_seed = 0;
2021 context_desc->mss_l4len_idx = 0;
2022
2023 buffer_info->time_stamp = jiffies;
2024 buffer_info->next_to_watch = i;
2025 buffer_info->dma = 0;
2026 i++;
2027 if (i == tx_ring->count)
2028 i = 0;
2029 tx_ring->next_to_use = i;
2030
2031 return true;
2032 }
2033
2034 return false;
2035 }
2036
2037 static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2038 {
2039 struct igbvf_adapter *adapter = netdev_priv(netdev);
2040
2041 /* there is enough descriptors then we don't need to worry */
2042 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2043 return 0;
2044
2045 netif_stop_queue(netdev);
2046
2047 smp_mb();
2048
2049 /* We need to check again just in case room has been made available */
2050 if (igbvf_desc_unused(adapter->tx_ring) < size)
2051 return -EBUSY;
2052
2053 netif_wake_queue(netdev);
2054
2055 ++adapter->restart_queue;
2056 return 0;
2057 }
2058
2059 #define IGBVF_MAX_TXD_PWR 16
2060 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2061
2062 static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2063 struct igbvf_ring *tx_ring,
2064 struct sk_buff *skb,
2065 unsigned int first)
2066 {
2067 struct igbvf_buffer *buffer_info;
2068 struct pci_dev *pdev = adapter->pdev;
2069 unsigned int len = skb_headlen(skb);
2070 unsigned int count = 0, i;
2071 unsigned int f;
2072
2073 i = tx_ring->next_to_use;
2074
2075 buffer_info = &tx_ring->buffer_info[i];
2076 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2077 buffer_info->length = len;
2078 /* set time_stamp *before* dma to help avoid a possible race */
2079 buffer_info->time_stamp = jiffies;
2080 buffer_info->next_to_watch = i;
2081 buffer_info->mapped_as_page = false;
2082 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2083 DMA_TO_DEVICE);
2084 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2085 goto dma_error;
2086
2087
2088 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2089 const struct skb_frag_struct *frag;
2090
2091 count++;
2092 i++;
2093 if (i == tx_ring->count)
2094 i = 0;
2095
2096 frag = &skb_shinfo(skb)->frags[f];
2097 len = skb_frag_size(frag);
2098
2099 buffer_info = &tx_ring->buffer_info[i];
2100 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2101 buffer_info->length = len;
2102 buffer_info->time_stamp = jiffies;
2103 buffer_info->next_to_watch = i;
2104 buffer_info->mapped_as_page = true;
2105 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 0, len,
2106 DMA_TO_DEVICE);
2107 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2108 goto dma_error;
2109 }
2110
2111 tx_ring->buffer_info[i].skb = skb;
2112 tx_ring->buffer_info[first].next_to_watch = i;
2113
2114 return ++count;
2115
2116 dma_error:
2117 dev_err(&pdev->dev, "TX DMA map failed\n");
2118
2119 /* clear timestamp and dma mappings for failed buffer_info mapping */
2120 buffer_info->dma = 0;
2121 buffer_info->time_stamp = 0;
2122 buffer_info->length = 0;
2123 buffer_info->next_to_watch = 0;
2124 buffer_info->mapped_as_page = false;
2125 if (count)
2126 count--;
2127
2128 /* clear timestamp and dma mappings for remaining portion of packet */
2129 while (count--) {
2130 if (i==0)
2131 i += tx_ring->count;
2132 i--;
2133 buffer_info = &tx_ring->buffer_info[i];
2134 igbvf_put_txbuf(adapter, buffer_info);
2135 }
2136
2137 return 0;
2138 }
2139
2140 static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2141 struct igbvf_ring *tx_ring,
2142 int tx_flags, int count, u32 paylen,
2143 u8 hdr_len)
2144 {
2145 union e1000_adv_tx_desc *tx_desc = NULL;
2146 struct igbvf_buffer *buffer_info;
2147 u32 olinfo_status = 0, cmd_type_len;
2148 unsigned int i;
2149
2150 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2151 E1000_ADVTXD_DCMD_DEXT);
2152
2153 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2154 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2155
2156 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2157 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2158
2159 /* insert tcp checksum */
2160 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2161
2162 /* insert ip checksum */
2163 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2164 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2165
2166 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2167 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2168 }
2169
2170 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2171
2172 i = tx_ring->next_to_use;
2173 while (count--) {
2174 buffer_info = &tx_ring->buffer_info[i];
2175 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2176 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2177 tx_desc->read.cmd_type_len =
2178 cpu_to_le32(cmd_type_len | buffer_info->length);
2179 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2180 i++;
2181 if (i == tx_ring->count)
2182 i = 0;
2183 }
2184
2185 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2186 /* Force memory writes to complete before letting h/w
2187 * know there are new descriptors to fetch. (Only
2188 * applicable for weak-ordered memory model archs,
2189 * such as IA-64). */
2190 wmb();
2191
2192 tx_ring->next_to_use = i;
2193 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2194 /* we need this if more than one processor can write to our tail
2195 * at a time, it syncronizes IO on IA64/Altix systems */
2196 mmiowb();
2197 }
2198
2199 static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2200 struct net_device *netdev,
2201 struct igbvf_ring *tx_ring)
2202 {
2203 struct igbvf_adapter *adapter = netdev_priv(netdev);
2204 unsigned int first, tx_flags = 0;
2205 u8 hdr_len = 0;
2206 int count = 0;
2207 int tso = 0;
2208
2209 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2210 dev_kfree_skb_any(skb);
2211 return NETDEV_TX_OK;
2212 }
2213
2214 if (skb->len <= 0) {
2215 dev_kfree_skb_any(skb);
2216 return NETDEV_TX_OK;
2217 }
2218
2219 /*
2220 * need: count + 4 desc gap to keep tail from touching
2221 * + 2 desc gap to keep tail from touching head,
2222 * + 1 desc for skb->data,
2223 * + 1 desc for context descriptor,
2224 * head, otherwise try next time
2225 */
2226 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2227 /* this is a hard error */
2228 return NETDEV_TX_BUSY;
2229 }
2230
2231 if (vlan_tx_tag_present(skb)) {
2232 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2233 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2234 }
2235
2236 if (skb->protocol == htons(ETH_P_IP))
2237 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2238
2239 first = tx_ring->next_to_use;
2240
2241 tso = skb_is_gso(skb) ?
2242 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2243 if (unlikely(tso < 0)) {
2244 dev_kfree_skb_any(skb);
2245 return NETDEV_TX_OK;
2246 }
2247
2248 if (tso)
2249 tx_flags |= IGBVF_TX_FLAGS_TSO;
2250 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2251 (skb->ip_summed == CHECKSUM_PARTIAL))
2252 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2253
2254 /*
2255 * count reflects descriptors mapped, if 0 then mapping error
2256 * has occurred and we need to rewind the descriptor queue
2257 */
2258 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2259
2260 if (count) {
2261 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2262 skb->len, hdr_len);
2263 /* Make sure there is space in the ring for the next send. */
2264 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2265 } else {
2266 dev_kfree_skb_any(skb);
2267 tx_ring->buffer_info[first].time_stamp = 0;
2268 tx_ring->next_to_use = first;
2269 }
2270
2271 return NETDEV_TX_OK;
2272 }
2273
2274 static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2275 struct net_device *netdev)
2276 {
2277 struct igbvf_adapter *adapter = netdev_priv(netdev);
2278 struct igbvf_ring *tx_ring;
2279
2280 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2281 dev_kfree_skb_any(skb);
2282 return NETDEV_TX_OK;
2283 }
2284
2285 tx_ring = &adapter->tx_ring[0];
2286
2287 return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2288 }
2289
2290 /**
2291 * igbvf_tx_timeout - Respond to a Tx Hang
2292 * @netdev: network interface device structure
2293 **/
2294 static void igbvf_tx_timeout(struct net_device *netdev)
2295 {
2296 struct igbvf_adapter *adapter = netdev_priv(netdev);
2297
2298 /* Do the reset outside of interrupt context */
2299 adapter->tx_timeout_count++;
2300 schedule_work(&adapter->reset_task);
2301 }
2302
2303 static void igbvf_reset_task(struct work_struct *work)
2304 {
2305 struct igbvf_adapter *adapter;
2306 adapter = container_of(work, struct igbvf_adapter, reset_task);
2307
2308 igbvf_reinit_locked(adapter);
2309 }
2310
2311 /**
2312 * igbvf_get_stats - Get System Network Statistics
2313 * @netdev: network interface device structure
2314 *
2315 * Returns the address of the device statistics structure.
2316 * The statistics are actually updated from the timer callback.
2317 **/
2318 static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2319 {
2320 struct igbvf_adapter *adapter = netdev_priv(netdev);
2321
2322 /* only return the current stats */
2323 return &adapter->net_stats;
2324 }
2325
2326 /**
2327 * igbvf_change_mtu - Change the Maximum Transfer Unit
2328 * @netdev: network interface device structure
2329 * @new_mtu: new value for maximum frame size
2330 *
2331 * Returns 0 on success, negative on failure
2332 **/
2333 static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2334 {
2335 struct igbvf_adapter *adapter = netdev_priv(netdev);
2336 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2337
2338 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2339 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2340 return -EINVAL;
2341 }
2342
2343 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2344 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2345 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2346 return -EINVAL;
2347 }
2348
2349 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2350 msleep(1);
2351 /* igbvf_down has a dependency on max_frame_size */
2352 adapter->max_frame_size = max_frame;
2353 if (netif_running(netdev))
2354 igbvf_down(adapter);
2355
2356 /*
2357 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2358 * means we reserve 2 more, this pushes us to allocate from the next
2359 * larger slab size.
2360 * i.e. RXBUFFER_2048 --> size-4096 slab
2361 * However with the new *_jumbo_rx* routines, jumbo receives will use
2362 * fragmented skbs
2363 */
2364
2365 if (max_frame <= 1024)
2366 adapter->rx_buffer_len = 1024;
2367 else if (max_frame <= 2048)
2368 adapter->rx_buffer_len = 2048;
2369 else
2370 #if (PAGE_SIZE / 2) > 16384
2371 adapter->rx_buffer_len = 16384;
2372 #else
2373 adapter->rx_buffer_len = PAGE_SIZE / 2;
2374 #endif
2375
2376
2377 /* adjust allocation if LPE protects us, and we aren't using SBP */
2378 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2379 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2380 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2381 ETH_FCS_LEN;
2382
2383 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2384 netdev->mtu, new_mtu);
2385 netdev->mtu = new_mtu;
2386
2387 if (netif_running(netdev))
2388 igbvf_up(adapter);
2389 else
2390 igbvf_reset(adapter);
2391
2392 clear_bit(__IGBVF_RESETTING, &adapter->state);
2393
2394 return 0;
2395 }
2396
2397 static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2398 {
2399 switch (cmd) {
2400 default:
2401 return -EOPNOTSUPP;
2402 }
2403 }
2404
2405 static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2406 {
2407 struct net_device *netdev = pci_get_drvdata(pdev);
2408 struct igbvf_adapter *adapter = netdev_priv(netdev);
2409 #ifdef CONFIG_PM
2410 int retval = 0;
2411 #endif
2412
2413 netif_device_detach(netdev);
2414
2415 if (netif_running(netdev)) {
2416 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2417 igbvf_down(adapter);
2418 igbvf_free_irq(adapter);
2419 }
2420
2421 #ifdef CONFIG_PM
2422 retval = pci_save_state(pdev);
2423 if (retval)
2424 return retval;
2425 #endif
2426
2427 pci_disable_device(pdev);
2428
2429 return 0;
2430 }
2431
2432 #ifdef CONFIG_PM
2433 static int igbvf_resume(struct pci_dev *pdev)
2434 {
2435 struct net_device *netdev = pci_get_drvdata(pdev);
2436 struct igbvf_adapter *adapter = netdev_priv(netdev);
2437 u32 err;
2438
2439 pci_restore_state(pdev);
2440 err = pci_enable_device_mem(pdev);
2441 if (err) {
2442 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2443 return err;
2444 }
2445
2446 pci_set_master(pdev);
2447
2448 if (netif_running(netdev)) {
2449 err = igbvf_request_irq(adapter);
2450 if (err)
2451 return err;
2452 }
2453
2454 igbvf_reset(adapter);
2455
2456 if (netif_running(netdev))
2457 igbvf_up(adapter);
2458
2459 netif_device_attach(netdev);
2460
2461 return 0;
2462 }
2463 #endif
2464
2465 static void igbvf_shutdown(struct pci_dev *pdev)
2466 {
2467 igbvf_suspend(pdev, PMSG_SUSPEND);
2468 }
2469
2470 #ifdef CONFIG_NET_POLL_CONTROLLER
2471 /*
2472 * Polling 'interrupt' - used by things like netconsole to send skbs
2473 * without having to re-enable interrupts. It's not called while
2474 * the interrupt routine is executing.
2475 */
2476 static void igbvf_netpoll(struct net_device *netdev)
2477 {
2478 struct igbvf_adapter *adapter = netdev_priv(netdev);
2479
2480 disable_irq(adapter->pdev->irq);
2481
2482 igbvf_clean_tx_irq(adapter->tx_ring);
2483
2484 enable_irq(adapter->pdev->irq);
2485 }
2486 #endif
2487
2488 /**
2489 * igbvf_io_error_detected - called when PCI error is detected
2490 * @pdev: Pointer to PCI device
2491 * @state: The current pci connection state
2492 *
2493 * This function is called after a PCI bus error affecting
2494 * this device has been detected.
2495 */
2496 static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2497 pci_channel_state_t state)
2498 {
2499 struct net_device *netdev = pci_get_drvdata(pdev);
2500 struct igbvf_adapter *adapter = netdev_priv(netdev);
2501
2502 netif_device_detach(netdev);
2503
2504 if (state == pci_channel_io_perm_failure)
2505 return PCI_ERS_RESULT_DISCONNECT;
2506
2507 if (netif_running(netdev))
2508 igbvf_down(adapter);
2509 pci_disable_device(pdev);
2510
2511 /* Request a slot slot reset. */
2512 return PCI_ERS_RESULT_NEED_RESET;
2513 }
2514
2515 /**
2516 * igbvf_io_slot_reset - called after the pci bus has been reset.
2517 * @pdev: Pointer to PCI device
2518 *
2519 * Restart the card from scratch, as if from a cold-boot. Implementation
2520 * resembles the first-half of the igbvf_resume routine.
2521 */
2522 static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2523 {
2524 struct net_device *netdev = pci_get_drvdata(pdev);
2525 struct igbvf_adapter *adapter = netdev_priv(netdev);
2526
2527 if (pci_enable_device_mem(pdev)) {
2528 dev_err(&pdev->dev,
2529 "Cannot re-enable PCI device after reset.\n");
2530 return PCI_ERS_RESULT_DISCONNECT;
2531 }
2532 pci_set_master(pdev);
2533
2534 igbvf_reset(adapter);
2535
2536 return PCI_ERS_RESULT_RECOVERED;
2537 }
2538
2539 /**
2540 * igbvf_io_resume - called when traffic can start flowing again.
2541 * @pdev: Pointer to PCI device
2542 *
2543 * This callback is called when the error recovery driver tells us that
2544 * its OK to resume normal operation. Implementation resembles the
2545 * second-half of the igbvf_resume routine.
2546 */
2547 static void igbvf_io_resume(struct pci_dev *pdev)
2548 {
2549 struct net_device *netdev = pci_get_drvdata(pdev);
2550 struct igbvf_adapter *adapter = netdev_priv(netdev);
2551
2552 if (netif_running(netdev)) {
2553 if (igbvf_up(adapter)) {
2554 dev_err(&pdev->dev,
2555 "can't bring device back up after reset\n");
2556 return;
2557 }
2558 }
2559
2560 netif_device_attach(netdev);
2561 }
2562
2563 static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2564 {
2565 struct e1000_hw *hw = &adapter->hw;
2566 struct net_device *netdev = adapter->netdev;
2567 struct pci_dev *pdev = adapter->pdev;
2568
2569 if (hw->mac.type == e1000_vfadapt_i350)
2570 dev_info(&pdev->dev, "Intel(R) I350 Virtual Function\n");
2571 else
2572 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2573 dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2574 }
2575
2576 static int igbvf_set_features(struct net_device *netdev,
2577 netdev_features_t features)
2578 {
2579 struct igbvf_adapter *adapter = netdev_priv(netdev);
2580
2581 if (features & NETIF_F_RXCSUM)
2582 adapter->flags &= ~IGBVF_FLAG_RX_CSUM_DISABLED;
2583 else
2584 adapter->flags |= IGBVF_FLAG_RX_CSUM_DISABLED;
2585
2586 return 0;
2587 }
2588
2589 static const struct net_device_ops igbvf_netdev_ops = {
2590 .ndo_open = igbvf_open,
2591 .ndo_stop = igbvf_close,
2592 .ndo_start_xmit = igbvf_xmit_frame,
2593 .ndo_get_stats = igbvf_get_stats,
2594 .ndo_set_rx_mode = igbvf_set_multi,
2595 .ndo_set_mac_address = igbvf_set_mac,
2596 .ndo_change_mtu = igbvf_change_mtu,
2597 .ndo_do_ioctl = igbvf_ioctl,
2598 .ndo_tx_timeout = igbvf_tx_timeout,
2599 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2600 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2601 #ifdef CONFIG_NET_POLL_CONTROLLER
2602 .ndo_poll_controller = igbvf_netpoll,
2603 #endif
2604 .ndo_set_features = igbvf_set_features,
2605 };
2606
2607 /**
2608 * igbvf_probe - Device Initialization Routine
2609 * @pdev: PCI device information struct
2610 * @ent: entry in igbvf_pci_tbl
2611 *
2612 * Returns 0 on success, negative on failure
2613 *
2614 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2615 * The OS initialization, configuring of the adapter private structure,
2616 * and a hardware reset occur.
2617 **/
2618 static int igbvf_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2619 {
2620 struct net_device *netdev;
2621 struct igbvf_adapter *adapter;
2622 struct e1000_hw *hw;
2623 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2624
2625 static int cards_found;
2626 int err, pci_using_dac;
2627
2628 err = pci_enable_device_mem(pdev);
2629 if (err)
2630 return err;
2631
2632 pci_using_dac = 0;
2633 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2634 if (!err) {
2635 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2636 if (!err)
2637 pci_using_dac = 1;
2638 } else {
2639 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2640 if (err) {
2641 err = dma_set_coherent_mask(&pdev->dev,
2642 DMA_BIT_MASK(32));
2643 if (err) {
2644 dev_err(&pdev->dev, "No usable DMA "
2645 "configuration, aborting\n");
2646 goto err_dma;
2647 }
2648 }
2649 }
2650
2651 err = pci_request_regions(pdev, igbvf_driver_name);
2652 if (err)
2653 goto err_pci_reg;
2654
2655 pci_set_master(pdev);
2656
2657 err = -ENOMEM;
2658 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2659 if (!netdev)
2660 goto err_alloc_etherdev;
2661
2662 SET_NETDEV_DEV(netdev, &pdev->dev);
2663
2664 pci_set_drvdata(pdev, netdev);
2665 adapter = netdev_priv(netdev);
2666 hw = &adapter->hw;
2667 adapter->netdev = netdev;
2668 adapter->pdev = pdev;
2669 adapter->ei = ei;
2670 adapter->pba = ei->pba;
2671 adapter->flags = ei->flags;
2672 adapter->hw.back = adapter;
2673 adapter->hw.mac.type = ei->mac;
2674 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2675
2676 /* PCI config space info */
2677
2678 hw->vendor_id = pdev->vendor;
2679 hw->device_id = pdev->device;
2680 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2681 hw->subsystem_device_id = pdev->subsystem_device;
2682 hw->revision_id = pdev->revision;
2683
2684 err = -EIO;
2685 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2686 pci_resource_len(pdev, 0));
2687
2688 if (!adapter->hw.hw_addr)
2689 goto err_ioremap;
2690
2691 if (ei->get_variants) {
2692 err = ei->get_variants(adapter);
2693 if (err)
2694 goto err_ioremap;
2695 }
2696
2697 /* setup adapter struct */
2698 err = igbvf_sw_init(adapter);
2699 if (err)
2700 goto err_sw_init;
2701
2702 /* construct the net_device struct */
2703 netdev->netdev_ops = &igbvf_netdev_ops;
2704
2705 igbvf_set_ethtool_ops(netdev);
2706 netdev->watchdog_timeo = 5 * HZ;
2707 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2708
2709 adapter->bd_number = cards_found++;
2710
2711 netdev->hw_features = NETIF_F_SG |
2712 NETIF_F_IP_CSUM |
2713 NETIF_F_IPV6_CSUM |
2714 NETIF_F_TSO |
2715 NETIF_F_TSO6 |
2716 NETIF_F_RXCSUM;
2717
2718 netdev->features = netdev->hw_features |
2719 NETIF_F_HW_VLAN_TX |
2720 NETIF_F_HW_VLAN_RX |
2721 NETIF_F_HW_VLAN_FILTER;
2722
2723 if (pci_using_dac)
2724 netdev->features |= NETIF_F_HIGHDMA;
2725
2726 netdev->vlan_features |= NETIF_F_TSO;
2727 netdev->vlan_features |= NETIF_F_TSO6;
2728 netdev->vlan_features |= NETIF_F_IP_CSUM;
2729 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2730 netdev->vlan_features |= NETIF_F_SG;
2731
2732 /*reset the controller to put the device in a known good state */
2733 err = hw->mac.ops.reset_hw(hw);
2734 if (err) {
2735 dev_info(&pdev->dev,
2736 "PF still in reset state. Is the PF interface up?\n");
2737 } else {
2738 err = hw->mac.ops.read_mac_addr(hw);
2739 if (err)
2740 dev_info(&pdev->dev, "Error reading MAC address.\n");
2741 else if (is_zero_ether_addr(adapter->hw.mac.addr))
2742 dev_info(&pdev->dev, "MAC address not assigned by administrator.\n");
2743 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
2744 netdev->addr_len);
2745 }
2746
2747 if (!is_valid_ether_addr(netdev->dev_addr)) {
2748 dev_info(&pdev->dev, "Assigning random MAC address.\n");
2749 eth_hw_addr_random(netdev);
2750 memcpy(adapter->hw.mac.addr, netdev->dev_addr,
2751 netdev->addr_len);
2752 }
2753
2754 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2755 (unsigned long) adapter);
2756
2757 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2758 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2759
2760 /* ring size defaults */
2761 adapter->rx_ring->count = 1024;
2762 adapter->tx_ring->count = 1024;
2763
2764 /* reset the hardware with the new settings */
2765 igbvf_reset(adapter);
2766
2767 /* set hardware-specific flags */
2768 if (adapter->hw.mac.type == e1000_vfadapt_i350)
2769 adapter->flags |= IGBVF_FLAG_RX_LB_VLAN_BSWAP;
2770
2771 strcpy(netdev->name, "eth%d");
2772 err = register_netdev(netdev);
2773 if (err)
2774 goto err_hw_init;
2775
2776 /* tell the stack to leave us alone until igbvf_open() is called */
2777 netif_carrier_off(netdev);
2778 netif_stop_queue(netdev);
2779
2780 igbvf_print_device_info(adapter);
2781
2782 igbvf_initialize_last_counter_stats(adapter);
2783
2784 return 0;
2785
2786 err_hw_init:
2787 kfree(adapter->tx_ring);
2788 kfree(adapter->rx_ring);
2789 err_sw_init:
2790 igbvf_reset_interrupt_capability(adapter);
2791 iounmap(adapter->hw.hw_addr);
2792 err_ioremap:
2793 free_netdev(netdev);
2794 err_alloc_etherdev:
2795 pci_release_regions(pdev);
2796 err_pci_reg:
2797 err_dma:
2798 pci_disable_device(pdev);
2799 return err;
2800 }
2801
2802 /**
2803 * igbvf_remove - Device Removal Routine
2804 * @pdev: PCI device information struct
2805 *
2806 * igbvf_remove is called by the PCI subsystem to alert the driver
2807 * that it should release a PCI device. The could be caused by a
2808 * Hot-Plug event, or because the driver is going to be removed from
2809 * memory.
2810 **/
2811 static void igbvf_remove(struct pci_dev *pdev)
2812 {
2813 struct net_device *netdev = pci_get_drvdata(pdev);
2814 struct igbvf_adapter *adapter = netdev_priv(netdev);
2815 struct e1000_hw *hw = &adapter->hw;
2816
2817 /*
2818 * The watchdog timer may be rescheduled, so explicitly
2819 * disable it from being rescheduled.
2820 */
2821 set_bit(__IGBVF_DOWN, &adapter->state);
2822 del_timer_sync(&adapter->watchdog_timer);
2823
2824 cancel_work_sync(&adapter->reset_task);
2825 cancel_work_sync(&adapter->watchdog_task);
2826
2827 unregister_netdev(netdev);
2828
2829 igbvf_reset_interrupt_capability(adapter);
2830
2831 /*
2832 * it is important to delete the napi struct prior to freeing the
2833 * rx ring so that you do not end up with null pointer refs
2834 */
2835 netif_napi_del(&adapter->rx_ring->napi);
2836 kfree(adapter->tx_ring);
2837 kfree(adapter->rx_ring);
2838
2839 iounmap(hw->hw_addr);
2840 if (hw->flash_address)
2841 iounmap(hw->flash_address);
2842 pci_release_regions(pdev);
2843
2844 free_netdev(netdev);
2845
2846 pci_disable_device(pdev);
2847 }
2848
2849 /* PCI Error Recovery (ERS) */
2850 static const struct pci_error_handlers igbvf_err_handler = {
2851 .error_detected = igbvf_io_error_detected,
2852 .slot_reset = igbvf_io_slot_reset,
2853 .resume = igbvf_io_resume,
2854 };
2855
2856 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2859 { } /* terminate list */
2860 };
2861 MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2862
2863 /* PCI Device API Driver */
2864 static struct pci_driver igbvf_driver = {
2865 .name = igbvf_driver_name,
2866 .id_table = igbvf_pci_tbl,
2867 .probe = igbvf_probe,
2868 .remove = igbvf_remove,
2869 #ifdef CONFIG_PM
2870 /* Power Management Hooks */
2871 .suspend = igbvf_suspend,
2872 .resume = igbvf_resume,
2873 #endif
2874 .shutdown = igbvf_shutdown,
2875 .err_handler = &igbvf_err_handler
2876 };
2877
2878 /**
2879 * igbvf_init_module - Driver Registration Routine
2880 *
2881 * igbvf_init_module is the first routine called when the driver is
2882 * loaded. All it does is register with the PCI subsystem.
2883 **/
2884 static int __init igbvf_init_module(void)
2885 {
2886 int ret;
2887 pr_info("%s - version %s\n", igbvf_driver_string, igbvf_driver_version);
2888 pr_info("%s\n", igbvf_copyright);
2889
2890 ret = pci_register_driver(&igbvf_driver);
2891
2892 return ret;
2893 }
2894 module_init(igbvf_init_module);
2895
2896 /**
2897 * igbvf_exit_module - Driver Exit Cleanup Routine
2898 *
2899 * igbvf_exit_module is called just before the driver is removed
2900 * from memory.
2901 **/
2902 static void __exit igbvf_exit_module(void)
2903 {
2904 pci_unregister_driver(&igbvf_driver);
2905 }
2906 module_exit(igbvf_exit_module);
2907
2908
2909 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2910 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2911 MODULE_LICENSE("GPL");
2912 MODULE_VERSION(DRV_VERSION);
2913
2914 /* netdev.c */