]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - drivers/net/ethernet/intel/igc/igc_main.c
igc: Fix parameter descriptions for a several functions
[mirror_ubuntu-hirsute-kernel.git] / drivers / net / ethernet / intel / igc / igc_main.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018 Intel Corporation */
3
4 #include <linux/module.h>
5 #include <linux/types.h>
6 #include <linux/if_vlan.h>
7 #include <linux/aer.h>
8 #include <linux/tcp.h>
9 #include <linux/udp.h>
10 #include <linux/ip.h>
11
12 #include <net/ipv6.h>
13
14 #include "igc.h"
15 #include "igc_hw.h"
16
17 #define DRV_VERSION "0.0.1-k"
18 #define DRV_SUMMARY "Intel(R) 2.5G Ethernet Linux Driver"
19
20 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
21
22 static int debug = -1;
23
24 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
25 MODULE_DESCRIPTION(DRV_SUMMARY);
26 MODULE_LICENSE("GPL v2");
27 MODULE_VERSION(DRV_VERSION);
28 module_param(debug, int, 0);
29 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
30
31 char igc_driver_name[] = "igc";
32 char igc_driver_version[] = DRV_VERSION;
33 static const char igc_driver_string[] = DRV_SUMMARY;
34 static const char igc_copyright[] =
35 "Copyright(c) 2018 Intel Corporation.";
36
37 static const struct igc_info *igc_info_tbl[] = {
38 [board_base] = &igc_base_info,
39 };
40
41 static const struct pci_device_id igc_pci_tbl[] = {
42 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
43 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
44 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
45 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
46 { PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
47 /* required last entry */
48 {0, }
49 };
50
51 MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
52
53 /* forward declaration */
54 static void igc_clean_tx_ring(struct igc_ring *tx_ring);
55 static int igc_sw_init(struct igc_adapter *);
56 static void igc_configure(struct igc_adapter *adapter);
57 static void igc_power_down_link(struct igc_adapter *adapter);
58 static void igc_set_default_mac_filter(struct igc_adapter *adapter);
59 static void igc_set_rx_mode(struct net_device *netdev);
60 static void igc_write_itr(struct igc_q_vector *q_vector);
61 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
62 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
63 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
64 bool msix);
65 static void igc_free_q_vectors(struct igc_adapter *adapter);
66 static void igc_irq_disable(struct igc_adapter *adapter);
67 static void igc_irq_enable(struct igc_adapter *adapter);
68 static void igc_configure_msix(struct igc_adapter *adapter);
69 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
70 struct igc_rx_buffer *bi);
71
72 enum latency_range {
73 lowest_latency = 0,
74 low_latency = 1,
75 bulk_latency = 2,
76 latency_invalid = 255
77 };
78
79 void igc_reset(struct igc_adapter *adapter)
80 {
81 struct pci_dev *pdev = adapter->pdev;
82 struct igc_hw *hw = &adapter->hw;
83 struct igc_fc_info *fc = &hw->fc;
84 u32 pba, hwm;
85
86 /* Repartition PBA for greater than 9k MTU if required */
87 pba = IGC_PBA_34K;
88
89 /* flow control settings
90 * The high water mark must be low enough to fit one full frame
91 * after transmitting the pause frame. As such we must have enough
92 * space to allow for us to complete our current transmit and then
93 * receive the frame that is in progress from the link partner.
94 * Set it to:
95 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
96 */
97 hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
98
99 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
100 fc->low_water = fc->high_water - 16;
101 fc->pause_time = 0xFFFF;
102 fc->send_xon = 1;
103 fc->current_mode = fc->requested_mode;
104
105 hw->mac.ops.reset_hw(hw);
106
107 if (hw->mac.ops.init_hw(hw))
108 dev_err(&pdev->dev, "Hardware Error\n");
109
110 if (!netif_running(adapter->netdev))
111 igc_power_down_link(adapter);
112
113 igc_get_phy_info(hw);
114 }
115
116 /**
117 * igc_power_up_link - Power up the phy/serdes link
118 * @adapter: address of board private structure
119 */
120 static void igc_power_up_link(struct igc_adapter *adapter)
121 {
122 igc_reset_phy(&adapter->hw);
123
124 if (adapter->hw.phy.media_type == igc_media_type_copper)
125 igc_power_up_phy_copper(&adapter->hw);
126
127 igc_setup_link(&adapter->hw);
128 }
129
130 /**
131 * igc_power_down_link - Power down the phy/serdes link
132 * @adapter: address of board private structure
133 */
134 static void igc_power_down_link(struct igc_adapter *adapter)
135 {
136 if (adapter->hw.phy.media_type == igc_media_type_copper)
137 igc_power_down_phy_copper_base(&adapter->hw);
138 }
139
140 /**
141 * igc_release_hw_control - release control of the h/w to f/w
142 * @adapter: address of board private structure
143 *
144 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
145 * For ASF and Pass Through versions of f/w this means that the
146 * driver is no longer loaded.
147 */
148 static void igc_release_hw_control(struct igc_adapter *adapter)
149 {
150 struct igc_hw *hw = &adapter->hw;
151 u32 ctrl_ext;
152
153 /* Let firmware take over control of h/w */
154 ctrl_ext = rd32(IGC_CTRL_EXT);
155 wr32(IGC_CTRL_EXT,
156 ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
157 }
158
159 /**
160 * igc_get_hw_control - get control of the h/w from f/w
161 * @adapter: address of board private structure
162 *
163 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
164 * For ASF and Pass Through versions of f/w this means that
165 * the driver is loaded.
166 */
167 static void igc_get_hw_control(struct igc_adapter *adapter)
168 {
169 struct igc_hw *hw = &adapter->hw;
170 u32 ctrl_ext;
171
172 /* Let firmware know the driver has taken over */
173 ctrl_ext = rd32(IGC_CTRL_EXT);
174 wr32(IGC_CTRL_EXT,
175 ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
176 }
177
178 /**
179 * igc_free_tx_resources - Free Tx Resources per Queue
180 * @tx_ring: Tx descriptor ring for a specific queue
181 *
182 * Free all transmit software resources
183 */
184 void igc_free_tx_resources(struct igc_ring *tx_ring)
185 {
186 igc_clean_tx_ring(tx_ring);
187
188 vfree(tx_ring->tx_buffer_info);
189 tx_ring->tx_buffer_info = NULL;
190
191 /* if not set, then don't free */
192 if (!tx_ring->desc)
193 return;
194
195 dma_free_coherent(tx_ring->dev, tx_ring->size,
196 tx_ring->desc, tx_ring->dma);
197
198 tx_ring->desc = NULL;
199 }
200
201 /**
202 * igc_free_all_tx_resources - Free Tx Resources for All Queues
203 * @adapter: board private structure
204 *
205 * Free all transmit software resources
206 */
207 static void igc_free_all_tx_resources(struct igc_adapter *adapter)
208 {
209 int i;
210
211 for (i = 0; i < adapter->num_tx_queues; i++)
212 igc_free_tx_resources(adapter->tx_ring[i]);
213 }
214
215 /**
216 * igc_clean_tx_ring - Free Tx Buffers
217 * @tx_ring: ring to be cleaned
218 */
219 static void igc_clean_tx_ring(struct igc_ring *tx_ring)
220 {
221 u16 i = tx_ring->next_to_clean;
222 struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
223
224 while (i != tx_ring->next_to_use) {
225 union igc_adv_tx_desc *eop_desc, *tx_desc;
226
227 /* Free all the Tx ring sk_buffs */
228 dev_kfree_skb_any(tx_buffer->skb);
229
230 /* unmap skb header data */
231 dma_unmap_single(tx_ring->dev,
232 dma_unmap_addr(tx_buffer, dma),
233 dma_unmap_len(tx_buffer, len),
234 DMA_TO_DEVICE);
235
236 /* check for eop_desc to determine the end of the packet */
237 eop_desc = tx_buffer->next_to_watch;
238 tx_desc = IGC_TX_DESC(tx_ring, i);
239
240 /* unmap remaining buffers */
241 while (tx_desc != eop_desc) {
242 tx_buffer++;
243 tx_desc++;
244 i++;
245 if (unlikely(i == tx_ring->count)) {
246 i = 0;
247 tx_buffer = tx_ring->tx_buffer_info;
248 tx_desc = IGC_TX_DESC(tx_ring, 0);
249 }
250
251 /* unmap any remaining paged data */
252 if (dma_unmap_len(tx_buffer, len))
253 dma_unmap_page(tx_ring->dev,
254 dma_unmap_addr(tx_buffer, dma),
255 dma_unmap_len(tx_buffer, len),
256 DMA_TO_DEVICE);
257 }
258
259 /* move us one more past the eop_desc for start of next pkt */
260 tx_buffer++;
261 i++;
262 if (unlikely(i == tx_ring->count)) {
263 i = 0;
264 tx_buffer = tx_ring->tx_buffer_info;
265 }
266 }
267
268 /* reset BQL for queue */
269 netdev_tx_reset_queue(txring_txq(tx_ring));
270
271 /* reset next_to_use and next_to_clean */
272 tx_ring->next_to_use = 0;
273 tx_ring->next_to_clean = 0;
274 }
275
276 /**
277 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
278 * @adapter: board private structure
279 */
280 static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
281 {
282 int i;
283
284 for (i = 0; i < adapter->num_tx_queues; i++)
285 if (adapter->tx_ring[i])
286 igc_clean_tx_ring(adapter->tx_ring[i]);
287 }
288
289 /**
290 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
291 * @tx_ring: tx descriptor ring (for a specific queue) to setup
292 *
293 * Return 0 on success, negative on failure
294 */
295 int igc_setup_tx_resources(struct igc_ring *tx_ring)
296 {
297 struct device *dev = tx_ring->dev;
298 int size = 0;
299
300 size = sizeof(struct igc_tx_buffer) * tx_ring->count;
301 tx_ring->tx_buffer_info = vzalloc(size);
302 if (!tx_ring->tx_buffer_info)
303 goto err;
304
305 /* round up to nearest 4K */
306 tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
307 tx_ring->size = ALIGN(tx_ring->size, 4096);
308
309 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
310 &tx_ring->dma, GFP_KERNEL);
311
312 if (!tx_ring->desc)
313 goto err;
314
315 tx_ring->next_to_use = 0;
316 tx_ring->next_to_clean = 0;
317
318 return 0;
319
320 err:
321 vfree(tx_ring->tx_buffer_info);
322 dev_err(dev,
323 "Unable to allocate memory for the transmit descriptor ring\n");
324 return -ENOMEM;
325 }
326
327 /**
328 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
329 * @adapter: board private structure
330 *
331 * Return 0 on success, negative on failure
332 */
333 static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
334 {
335 struct pci_dev *pdev = adapter->pdev;
336 int i, err = 0;
337
338 for (i = 0; i < adapter->num_tx_queues; i++) {
339 err = igc_setup_tx_resources(adapter->tx_ring[i]);
340 if (err) {
341 dev_err(&pdev->dev,
342 "Allocation for Tx Queue %u failed\n", i);
343 for (i--; i >= 0; i--)
344 igc_free_tx_resources(adapter->tx_ring[i]);
345 break;
346 }
347 }
348
349 return err;
350 }
351
352 /**
353 * igc_clean_rx_ring - Free Rx Buffers per Queue
354 * @rx_ring: ring to free buffers from
355 */
356 static void igc_clean_rx_ring(struct igc_ring *rx_ring)
357 {
358 u16 i = rx_ring->next_to_clean;
359
360 dev_kfree_skb(rx_ring->skb);
361 rx_ring->skb = NULL;
362
363 /* Free all the Rx ring sk_buffs */
364 while (i != rx_ring->next_to_alloc) {
365 struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
366
367 /* Invalidate cache lines that may have been written to by
368 * device so that we avoid corrupting memory.
369 */
370 dma_sync_single_range_for_cpu(rx_ring->dev,
371 buffer_info->dma,
372 buffer_info->page_offset,
373 igc_rx_bufsz(rx_ring),
374 DMA_FROM_DEVICE);
375
376 /* free resources associated with mapping */
377 dma_unmap_page_attrs(rx_ring->dev,
378 buffer_info->dma,
379 igc_rx_pg_size(rx_ring),
380 DMA_FROM_DEVICE,
381 IGC_RX_DMA_ATTR);
382 __page_frag_cache_drain(buffer_info->page,
383 buffer_info->pagecnt_bias);
384
385 i++;
386 if (i == rx_ring->count)
387 i = 0;
388 }
389
390 rx_ring->next_to_alloc = 0;
391 rx_ring->next_to_clean = 0;
392 rx_ring->next_to_use = 0;
393 }
394
395 /**
396 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
397 * @adapter: board private structure
398 */
399 static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
400 {
401 int i;
402
403 for (i = 0; i < adapter->num_rx_queues; i++)
404 if (adapter->rx_ring[i])
405 igc_clean_rx_ring(adapter->rx_ring[i]);
406 }
407
408 /**
409 * igc_free_rx_resources - Free Rx Resources
410 * @rx_ring: ring to clean the resources from
411 *
412 * Free all receive software resources
413 */
414 void igc_free_rx_resources(struct igc_ring *rx_ring)
415 {
416 igc_clean_rx_ring(rx_ring);
417
418 vfree(rx_ring->rx_buffer_info);
419 rx_ring->rx_buffer_info = NULL;
420
421 /* if not set, then don't free */
422 if (!rx_ring->desc)
423 return;
424
425 dma_free_coherent(rx_ring->dev, rx_ring->size,
426 rx_ring->desc, rx_ring->dma);
427
428 rx_ring->desc = NULL;
429 }
430
431 /**
432 * igc_free_all_rx_resources - Free Rx Resources for All Queues
433 * @adapter: board private structure
434 *
435 * Free all receive software resources
436 */
437 static void igc_free_all_rx_resources(struct igc_adapter *adapter)
438 {
439 int i;
440
441 for (i = 0; i < adapter->num_rx_queues; i++)
442 igc_free_rx_resources(adapter->rx_ring[i]);
443 }
444
445 /**
446 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
447 * @rx_ring: rx descriptor ring (for a specific queue) to setup
448 *
449 * Returns 0 on success, negative on failure
450 */
451 int igc_setup_rx_resources(struct igc_ring *rx_ring)
452 {
453 struct device *dev = rx_ring->dev;
454 int size, desc_len;
455
456 size = sizeof(struct igc_rx_buffer) * rx_ring->count;
457 rx_ring->rx_buffer_info = vzalloc(size);
458 if (!rx_ring->rx_buffer_info)
459 goto err;
460
461 desc_len = sizeof(union igc_adv_rx_desc);
462
463 /* Round up to nearest 4K */
464 rx_ring->size = rx_ring->count * desc_len;
465 rx_ring->size = ALIGN(rx_ring->size, 4096);
466
467 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
468 &rx_ring->dma, GFP_KERNEL);
469
470 if (!rx_ring->desc)
471 goto err;
472
473 rx_ring->next_to_alloc = 0;
474 rx_ring->next_to_clean = 0;
475 rx_ring->next_to_use = 0;
476
477 return 0;
478
479 err:
480 vfree(rx_ring->rx_buffer_info);
481 rx_ring->rx_buffer_info = NULL;
482 dev_err(dev,
483 "Unable to allocate memory for the receive descriptor ring\n");
484 return -ENOMEM;
485 }
486
487 /**
488 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
489 * (Descriptors) for all queues
490 * @adapter: board private structure
491 *
492 * Return 0 on success, negative on failure
493 */
494 static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
495 {
496 struct pci_dev *pdev = adapter->pdev;
497 int i, err = 0;
498
499 for (i = 0; i < adapter->num_rx_queues; i++) {
500 err = igc_setup_rx_resources(adapter->rx_ring[i]);
501 if (err) {
502 dev_err(&pdev->dev,
503 "Allocation for Rx Queue %u failed\n", i);
504 for (i--; i >= 0; i--)
505 igc_free_rx_resources(adapter->rx_ring[i]);
506 break;
507 }
508 }
509
510 return err;
511 }
512
513 /**
514 * igc_configure_rx_ring - Configure a receive ring after Reset
515 * @adapter: board private structure
516 * @ring: receive ring to be configured
517 *
518 * Configure the Rx unit of the MAC after a reset.
519 */
520 static void igc_configure_rx_ring(struct igc_adapter *adapter,
521 struct igc_ring *ring)
522 {
523 struct igc_hw *hw = &adapter->hw;
524 union igc_adv_rx_desc *rx_desc;
525 int reg_idx = ring->reg_idx;
526 u32 srrctl = 0, rxdctl = 0;
527 u64 rdba = ring->dma;
528
529 /* disable the queue */
530 wr32(IGC_RXDCTL(reg_idx), 0);
531
532 /* Set DMA base address registers */
533 wr32(IGC_RDBAL(reg_idx),
534 rdba & 0x00000000ffffffffULL);
535 wr32(IGC_RDBAH(reg_idx), rdba >> 32);
536 wr32(IGC_RDLEN(reg_idx),
537 ring->count * sizeof(union igc_adv_rx_desc));
538
539 /* initialize head and tail */
540 ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
541 wr32(IGC_RDH(reg_idx), 0);
542 writel(0, ring->tail);
543
544 /* reset next-to- use/clean to place SW in sync with hardware */
545 ring->next_to_clean = 0;
546 ring->next_to_use = 0;
547
548 /* set descriptor configuration */
549 srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
550 if (ring_uses_large_buffer(ring))
551 srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
552 else
553 srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
554 srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
555
556 wr32(IGC_SRRCTL(reg_idx), srrctl);
557
558 rxdctl |= IGC_RX_PTHRESH;
559 rxdctl |= IGC_RX_HTHRESH << 8;
560 rxdctl |= IGC_RX_WTHRESH << 16;
561
562 /* initialize rx_buffer_info */
563 memset(ring->rx_buffer_info, 0,
564 sizeof(struct igc_rx_buffer) * ring->count);
565
566 /* initialize Rx descriptor 0 */
567 rx_desc = IGC_RX_DESC(ring, 0);
568 rx_desc->wb.upper.length = 0;
569
570 /* enable receive descriptor fetching */
571 rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
572
573 wr32(IGC_RXDCTL(reg_idx), rxdctl);
574 }
575
576 /**
577 * igc_configure_rx - Configure receive Unit after Reset
578 * @adapter: board private structure
579 *
580 * Configure the Rx unit of the MAC after a reset.
581 */
582 static void igc_configure_rx(struct igc_adapter *adapter)
583 {
584 int i;
585
586 /* Setup the HW Rx Head and Tail Descriptor Pointers and
587 * the Base and Length of the Rx Descriptor Ring
588 */
589 for (i = 0; i < adapter->num_rx_queues; i++)
590 igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
591 }
592
593 /**
594 * igc_configure_tx_ring - Configure transmit ring after Reset
595 * @adapter: board private structure
596 * @ring: tx ring to configure
597 *
598 * Configure a transmit ring after a reset.
599 */
600 static void igc_configure_tx_ring(struct igc_adapter *adapter,
601 struct igc_ring *ring)
602 {
603 struct igc_hw *hw = &adapter->hw;
604 int reg_idx = ring->reg_idx;
605 u64 tdba = ring->dma;
606 u32 txdctl = 0;
607
608 /* disable the queue */
609 wr32(IGC_TXDCTL(reg_idx), 0);
610 wrfl();
611 mdelay(10);
612
613 wr32(IGC_TDLEN(reg_idx),
614 ring->count * sizeof(union igc_adv_tx_desc));
615 wr32(IGC_TDBAL(reg_idx),
616 tdba & 0x00000000ffffffffULL);
617 wr32(IGC_TDBAH(reg_idx), tdba >> 32);
618
619 ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
620 wr32(IGC_TDH(reg_idx), 0);
621 writel(0, ring->tail);
622
623 txdctl |= IGC_TX_PTHRESH;
624 txdctl |= IGC_TX_HTHRESH << 8;
625 txdctl |= IGC_TX_WTHRESH << 16;
626
627 txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
628 wr32(IGC_TXDCTL(reg_idx), txdctl);
629 }
630
631 /**
632 * igc_configure_tx - Configure transmit Unit after Reset
633 * @adapter: board private structure
634 *
635 * Configure the Tx unit of the MAC after a reset.
636 */
637 static void igc_configure_tx(struct igc_adapter *adapter)
638 {
639 int i;
640
641 for (i = 0; i < adapter->num_tx_queues; i++)
642 igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
643 }
644
645 /**
646 * igc_setup_mrqc - configure the multiple receive queue control registers
647 * @adapter: Board private structure
648 */
649 static void igc_setup_mrqc(struct igc_adapter *adapter)
650 {
651 struct igc_hw *hw = &adapter->hw;
652 u32 j, num_rx_queues;
653 u32 mrqc, rxcsum;
654 u32 rss_key[10];
655
656 netdev_rss_key_fill(rss_key, sizeof(rss_key));
657 for (j = 0; j < 10; j++)
658 wr32(IGC_RSSRK(j), rss_key[j]);
659
660 num_rx_queues = adapter->rss_queues;
661
662 if (adapter->rss_indir_tbl_init != num_rx_queues) {
663 for (j = 0; j < IGC_RETA_SIZE; j++)
664 adapter->rss_indir_tbl[j] =
665 (j * num_rx_queues) / IGC_RETA_SIZE;
666 adapter->rss_indir_tbl_init = num_rx_queues;
667 }
668 igc_write_rss_indir_tbl(adapter);
669
670 /* Disable raw packet checksumming so that RSS hash is placed in
671 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
672 * offloads as they are enabled by default
673 */
674 rxcsum = rd32(IGC_RXCSUM);
675 rxcsum |= IGC_RXCSUM_PCSD;
676
677 /* Enable Receive Checksum Offload for SCTP */
678 rxcsum |= IGC_RXCSUM_CRCOFL;
679
680 /* Don't need to set TUOFL or IPOFL, they default to 1 */
681 wr32(IGC_RXCSUM, rxcsum);
682
683 /* Generate RSS hash based on packet types, TCP/UDP
684 * port numbers and/or IPv4/v6 src and dst addresses
685 */
686 mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
687 IGC_MRQC_RSS_FIELD_IPV4_TCP |
688 IGC_MRQC_RSS_FIELD_IPV6 |
689 IGC_MRQC_RSS_FIELD_IPV6_TCP |
690 IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
691
692 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
693 mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
694 if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
695 mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
696
697 mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
698
699 wr32(IGC_MRQC, mrqc);
700 }
701
702 /**
703 * igc_setup_rctl - configure the receive control registers
704 * @adapter: Board private structure
705 */
706 static void igc_setup_rctl(struct igc_adapter *adapter)
707 {
708 struct igc_hw *hw = &adapter->hw;
709 u32 rctl;
710
711 rctl = rd32(IGC_RCTL);
712
713 rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
714 rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
715
716 rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
717 (hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
718
719 /* enable stripping of CRC. Newer features require
720 * that the HW strips the CRC.
721 */
722 rctl |= IGC_RCTL_SECRC;
723
724 /* disable store bad packets and clear size bits. */
725 rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
726
727 /* enable LPE to allow for reception of jumbo frames */
728 rctl |= IGC_RCTL_LPE;
729
730 /* disable queue 0 to prevent tail write w/o re-config */
731 wr32(IGC_RXDCTL(0), 0);
732
733 /* This is useful for sniffing bad packets. */
734 if (adapter->netdev->features & NETIF_F_RXALL) {
735 /* UPE and MPE will be handled by normal PROMISC logic
736 * in set_rx_mode
737 */
738 rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
739 IGC_RCTL_BAM | /* RX All Bcast Pkts */
740 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
741
742 rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
743 IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
744 }
745
746 wr32(IGC_RCTL, rctl);
747 }
748
749 /**
750 * igc_setup_tctl - configure the transmit control registers
751 * @adapter: Board private structure
752 */
753 static void igc_setup_tctl(struct igc_adapter *adapter)
754 {
755 struct igc_hw *hw = &adapter->hw;
756 u32 tctl;
757
758 /* disable queue 0 which icould be enabled by default */
759 wr32(IGC_TXDCTL(0), 0);
760
761 /* Program the Transmit Control Register */
762 tctl = rd32(IGC_TCTL);
763 tctl &= ~IGC_TCTL_CT;
764 tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
765 (IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
766
767 /* Enable transmits */
768 tctl |= IGC_TCTL_EN;
769
770 wr32(IGC_TCTL, tctl);
771 }
772
773 /**
774 * igc_set_mac - Change the Ethernet Address of the NIC
775 * @netdev: network interface device structure
776 * @p: pointer to an address structure
777 *
778 * Returns 0 on success, negative on failure
779 */
780 static int igc_set_mac(struct net_device *netdev, void *p)
781 {
782 struct igc_adapter *adapter = netdev_priv(netdev);
783 struct igc_hw *hw = &adapter->hw;
784 struct sockaddr *addr = p;
785
786 if (!is_valid_ether_addr(addr->sa_data))
787 return -EADDRNOTAVAIL;
788
789 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
790 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
791
792 /* set the correct pool for the new PF MAC address in entry 0 */
793 igc_set_default_mac_filter(adapter);
794
795 return 0;
796 }
797
798 /**
799 * igc_write_mc_addr_list - write multicast addresses to MTA
800 * @netdev: network interface device structure
801 *
802 * Writes multicast address list to the MTA hash table.
803 * Returns: -ENOMEM on failure
804 * 0 on no addresses written
805 * X on writing X addresses to MTA
806 **/
807 static int igc_write_mc_addr_list(struct net_device *netdev)
808 {
809 struct igc_adapter *adapter = netdev_priv(netdev);
810 struct igc_hw *hw = &adapter->hw;
811 struct netdev_hw_addr *ha;
812 u8 *mta_list;
813 int i;
814
815 if (netdev_mc_empty(netdev)) {
816 /* nothing to program, so clear mc list */
817 igc_update_mc_addr_list(hw, NULL, 0);
818 return 0;
819 }
820
821 mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
822 if (!mta_list)
823 return -ENOMEM;
824
825 /* The shared function expects a packed array of only addresses. */
826 i = 0;
827 netdev_for_each_mc_addr(ha, netdev)
828 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
829
830 igc_update_mc_addr_list(hw, mta_list, i);
831 kfree(mta_list);
832
833 return netdev_mc_count(netdev);
834 }
835
836 static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
837 struct igc_tx_buffer *first,
838 u32 vlan_macip_lens, u32 type_tucmd,
839 u32 mss_l4len_idx)
840 {
841 struct igc_adv_tx_context_desc *context_desc;
842 u16 i = tx_ring->next_to_use;
843 struct timespec64 ts;
844
845 context_desc = IGC_TX_CTXTDESC(tx_ring, i);
846
847 i++;
848 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
849
850 /* set bits to identify this as an advanced context descriptor */
851 type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
852
853 /* For 82575, context index must be unique per ring. */
854 if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
855 mss_l4len_idx |= tx_ring->reg_idx << 4;
856
857 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
858 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
859 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
860
861 /* We assume there is always a valid Tx time available. Invalid times
862 * should have been handled by the upper layers.
863 */
864 if (tx_ring->launchtime_enable) {
865 ts = ktime_to_timespec64(first->skb->tstamp);
866 first->skb->tstamp = ktime_set(0, 0);
867 context_desc->launch_time = cpu_to_le32(ts.tv_nsec / 32);
868 } else {
869 context_desc->launch_time = 0;
870 }
871 }
872
873 static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
874 {
875 unsigned int offset = 0;
876
877 ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
878
879 return offset == skb_checksum_start_offset(skb);
880 }
881
882 static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
883 {
884 struct sk_buff *skb = first->skb;
885 u32 vlan_macip_lens = 0;
886 u32 type_tucmd = 0;
887
888 if (skb->ip_summed != CHECKSUM_PARTIAL) {
889 csum_failed:
890 if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
891 !tx_ring->launchtime_enable)
892 return;
893 goto no_csum;
894 }
895
896 switch (skb->csum_offset) {
897 case offsetof(struct tcphdr, check):
898 type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
899 /* fall through */
900 case offsetof(struct udphdr, check):
901 break;
902 case offsetof(struct sctphdr, checksum):
903 /* validate that this is actually an SCTP request */
904 if ((first->protocol == htons(ETH_P_IP) &&
905 (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
906 (first->protocol == htons(ETH_P_IPV6) &&
907 igc_ipv6_csum_is_sctp(skb))) {
908 type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
909 break;
910 }
911 /* fall through */
912 default:
913 skb_checksum_help(skb);
914 goto csum_failed;
915 }
916
917 /* update TX checksum flag */
918 first->tx_flags |= IGC_TX_FLAGS_CSUM;
919 vlan_macip_lens = skb_checksum_start_offset(skb) -
920 skb_network_offset(skb);
921 no_csum:
922 vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
923 vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
924
925 igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
926 }
927
928 static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
929 {
930 struct net_device *netdev = tx_ring->netdev;
931
932 netif_stop_subqueue(netdev, tx_ring->queue_index);
933
934 /* memory barriier comment */
935 smp_mb();
936
937 /* We need to check again in a case another CPU has just
938 * made room available.
939 */
940 if (igc_desc_unused(tx_ring) < size)
941 return -EBUSY;
942
943 /* A reprieve! */
944 netif_wake_subqueue(netdev, tx_ring->queue_index);
945
946 u64_stats_update_begin(&tx_ring->tx_syncp2);
947 tx_ring->tx_stats.restart_queue2++;
948 u64_stats_update_end(&tx_ring->tx_syncp2);
949
950 return 0;
951 }
952
953 static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
954 {
955 if (igc_desc_unused(tx_ring) >= size)
956 return 0;
957 return __igc_maybe_stop_tx(tx_ring, size);
958 }
959
960 static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
961 {
962 /* set type for advanced descriptor with frame checksum insertion */
963 u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
964 IGC_ADVTXD_DCMD_DEXT |
965 IGC_ADVTXD_DCMD_IFCS;
966
967 return cmd_type;
968 }
969
970 static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
971 union igc_adv_tx_desc *tx_desc,
972 u32 tx_flags, unsigned int paylen)
973 {
974 u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
975
976 /* insert L4 checksum */
977 olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
978 ((IGC_TXD_POPTS_TXSM << 8) /
979 IGC_TX_FLAGS_CSUM);
980
981 /* insert IPv4 checksum */
982 olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
983 (((IGC_TXD_POPTS_IXSM << 8)) /
984 IGC_TX_FLAGS_IPV4);
985
986 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
987 }
988
989 static int igc_tx_map(struct igc_ring *tx_ring,
990 struct igc_tx_buffer *first,
991 const u8 hdr_len)
992 {
993 struct sk_buff *skb = first->skb;
994 struct igc_tx_buffer *tx_buffer;
995 union igc_adv_tx_desc *tx_desc;
996 u32 tx_flags = first->tx_flags;
997 skb_frag_t *frag;
998 u16 i = tx_ring->next_to_use;
999 unsigned int data_len, size;
1000 dma_addr_t dma;
1001 u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
1002
1003 tx_desc = IGC_TX_DESC(tx_ring, i);
1004
1005 igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1006
1007 size = skb_headlen(skb);
1008 data_len = skb->data_len;
1009
1010 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1011
1012 tx_buffer = first;
1013
1014 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1015 if (dma_mapping_error(tx_ring->dev, dma))
1016 goto dma_error;
1017
1018 /* record length, and DMA address */
1019 dma_unmap_len_set(tx_buffer, len, size);
1020 dma_unmap_addr_set(tx_buffer, dma, dma);
1021
1022 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1023
1024 while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1025 tx_desc->read.cmd_type_len =
1026 cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1027
1028 i++;
1029 tx_desc++;
1030 if (i == tx_ring->count) {
1031 tx_desc = IGC_TX_DESC(tx_ring, 0);
1032 i = 0;
1033 }
1034 tx_desc->read.olinfo_status = 0;
1035
1036 dma += IGC_MAX_DATA_PER_TXD;
1037 size -= IGC_MAX_DATA_PER_TXD;
1038
1039 tx_desc->read.buffer_addr = cpu_to_le64(dma);
1040 }
1041
1042 if (likely(!data_len))
1043 break;
1044
1045 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1046
1047 i++;
1048 tx_desc++;
1049 if (i == tx_ring->count) {
1050 tx_desc = IGC_TX_DESC(tx_ring, 0);
1051 i = 0;
1052 }
1053 tx_desc->read.olinfo_status = 0;
1054
1055 size = skb_frag_size(frag);
1056 data_len -= size;
1057
1058 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1059 size, DMA_TO_DEVICE);
1060
1061 tx_buffer = &tx_ring->tx_buffer_info[i];
1062 }
1063
1064 /* write last descriptor with RS and EOP bits */
1065 cmd_type |= size | IGC_TXD_DCMD;
1066 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1067
1068 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1069
1070 /* set the timestamp */
1071 first->time_stamp = jiffies;
1072
1073 skb_tx_timestamp(skb);
1074
1075 /* Force memory writes to complete before letting h/w know there
1076 * are new descriptors to fetch. (Only applicable for weak-ordered
1077 * memory model archs, such as IA-64).
1078 *
1079 * We also need this memory barrier to make certain all of the
1080 * status bits have been updated before next_to_watch is written.
1081 */
1082 wmb();
1083
1084 /* set next_to_watch value indicating a packet is present */
1085 first->next_to_watch = tx_desc;
1086
1087 i++;
1088 if (i == tx_ring->count)
1089 i = 0;
1090
1091 tx_ring->next_to_use = i;
1092
1093 /* Make sure there is space in the ring for the next send. */
1094 igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1095
1096 if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1097 writel(i, tx_ring->tail);
1098 }
1099
1100 return 0;
1101 dma_error:
1102 dev_err(tx_ring->dev, "TX DMA map failed\n");
1103 tx_buffer = &tx_ring->tx_buffer_info[i];
1104
1105 /* clear dma mappings for failed tx_buffer_info map */
1106 while (tx_buffer != first) {
1107 if (dma_unmap_len(tx_buffer, len))
1108 dma_unmap_page(tx_ring->dev,
1109 dma_unmap_addr(tx_buffer, dma),
1110 dma_unmap_len(tx_buffer, len),
1111 DMA_TO_DEVICE);
1112 dma_unmap_len_set(tx_buffer, len, 0);
1113
1114 if (i-- == 0)
1115 i += tx_ring->count;
1116 tx_buffer = &tx_ring->tx_buffer_info[i];
1117 }
1118
1119 if (dma_unmap_len(tx_buffer, len))
1120 dma_unmap_single(tx_ring->dev,
1121 dma_unmap_addr(tx_buffer, dma),
1122 dma_unmap_len(tx_buffer, len),
1123 DMA_TO_DEVICE);
1124 dma_unmap_len_set(tx_buffer, len, 0);
1125
1126 dev_kfree_skb_any(tx_buffer->skb);
1127 tx_buffer->skb = NULL;
1128
1129 tx_ring->next_to_use = i;
1130
1131 return -1;
1132 }
1133
1134 static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1135 struct igc_ring *tx_ring)
1136 {
1137 u16 count = TXD_USE_COUNT(skb_headlen(skb));
1138 __be16 protocol = vlan_get_protocol(skb);
1139 struct igc_tx_buffer *first;
1140 u32 tx_flags = 0;
1141 unsigned short f;
1142 u8 hdr_len = 0;
1143
1144 /* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1145 * + 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1146 * + 2 desc gap to keep tail from touching head,
1147 * + 1 desc for context descriptor,
1148 * otherwise try next time
1149 */
1150 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1151 count += TXD_USE_COUNT(skb_frag_size(
1152 &skb_shinfo(skb)->frags[f]));
1153
1154 if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1155 /* this is a hard error */
1156 return NETDEV_TX_BUSY;
1157 }
1158
1159 /* record the location of the first descriptor for this packet */
1160 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1161 first->skb = skb;
1162 first->bytecount = skb->len;
1163 first->gso_segs = 1;
1164
1165 /* record initial flags and protocol */
1166 first->tx_flags = tx_flags;
1167 first->protocol = protocol;
1168
1169 igc_tx_csum(tx_ring, first);
1170
1171 igc_tx_map(tx_ring, first, hdr_len);
1172
1173 return NETDEV_TX_OK;
1174 }
1175
1176 static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1177 struct sk_buff *skb)
1178 {
1179 unsigned int r_idx = skb->queue_mapping;
1180
1181 if (r_idx >= adapter->num_tx_queues)
1182 r_idx = r_idx % adapter->num_tx_queues;
1183
1184 return adapter->tx_ring[r_idx];
1185 }
1186
1187 static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1188 struct net_device *netdev)
1189 {
1190 struct igc_adapter *adapter = netdev_priv(netdev);
1191
1192 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1193 * in order to meet this minimum size requirement.
1194 */
1195 if (skb->len < 17) {
1196 if (skb_padto(skb, 17))
1197 return NETDEV_TX_OK;
1198 skb->len = 17;
1199 }
1200
1201 return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1202 }
1203
1204 static void igc_rx_checksum(struct igc_ring *ring,
1205 union igc_adv_rx_desc *rx_desc,
1206 struct sk_buff *skb)
1207 {
1208 skb_checksum_none_assert(skb);
1209
1210 /* Ignore Checksum bit is set */
1211 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1212 return;
1213
1214 /* Rx checksum disabled via ethtool */
1215 if (!(ring->netdev->features & NETIF_F_RXCSUM))
1216 return;
1217
1218 /* TCP/UDP checksum error bit is set */
1219 if (igc_test_staterr(rx_desc,
1220 IGC_RXDEXT_STATERR_TCPE |
1221 IGC_RXDEXT_STATERR_IPE)) {
1222 /* work around errata with sctp packets where the TCPE aka
1223 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1224 * packets (aka let the stack check the crc32c)
1225 */
1226 if (!(skb->len == 60 &&
1227 test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1228 u64_stats_update_begin(&ring->rx_syncp);
1229 ring->rx_stats.csum_err++;
1230 u64_stats_update_end(&ring->rx_syncp);
1231 }
1232 /* let the stack verify checksum errors */
1233 return;
1234 }
1235 /* It must be a TCP or UDP packet with a valid checksum */
1236 if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1237 IGC_RXD_STAT_UDPCS))
1238 skb->ip_summed = CHECKSUM_UNNECESSARY;
1239
1240 dev_dbg(ring->dev, "cksum success: bits %08X\n",
1241 le32_to_cpu(rx_desc->wb.upper.status_error));
1242 }
1243
1244 static inline void igc_rx_hash(struct igc_ring *ring,
1245 union igc_adv_rx_desc *rx_desc,
1246 struct sk_buff *skb)
1247 {
1248 if (ring->netdev->features & NETIF_F_RXHASH)
1249 skb_set_hash(skb,
1250 le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1251 PKT_HASH_TYPE_L3);
1252 }
1253
1254 /**
1255 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1256 * @rx_ring: rx descriptor ring packet is being transacted on
1257 * @rx_desc: pointer to the EOP Rx descriptor
1258 * @skb: pointer to current skb being populated
1259 *
1260 * This function checks the ring, descriptor, and packet information in
1261 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1262 * other fields within the skb.
1263 */
1264 static void igc_process_skb_fields(struct igc_ring *rx_ring,
1265 union igc_adv_rx_desc *rx_desc,
1266 struct sk_buff *skb)
1267 {
1268 igc_rx_hash(rx_ring, rx_desc, skb);
1269
1270 igc_rx_checksum(rx_ring, rx_desc, skb);
1271
1272 skb_record_rx_queue(skb, rx_ring->queue_index);
1273
1274 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1275 }
1276
1277 static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1278 const unsigned int size)
1279 {
1280 struct igc_rx_buffer *rx_buffer;
1281
1282 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1283 prefetchw(rx_buffer->page);
1284
1285 /* we are reusing so sync this buffer for CPU use */
1286 dma_sync_single_range_for_cpu(rx_ring->dev,
1287 rx_buffer->dma,
1288 rx_buffer->page_offset,
1289 size,
1290 DMA_FROM_DEVICE);
1291
1292 rx_buffer->pagecnt_bias--;
1293
1294 return rx_buffer;
1295 }
1296
1297 /**
1298 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1299 * @rx_ring: rx descriptor ring to transact packets on
1300 * @rx_buffer: buffer containing page to add
1301 * @skb: sk_buff to place the data into
1302 * @size: size of buffer to be added
1303 *
1304 * This function will add the data contained in rx_buffer->page to the skb.
1305 */
1306 static void igc_add_rx_frag(struct igc_ring *rx_ring,
1307 struct igc_rx_buffer *rx_buffer,
1308 struct sk_buff *skb,
1309 unsigned int size)
1310 {
1311 #if (PAGE_SIZE < 8192)
1312 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1313
1314 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1315 rx_buffer->page_offset, size, truesize);
1316 rx_buffer->page_offset ^= truesize;
1317 #else
1318 unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1319 SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1320 SKB_DATA_ALIGN(size);
1321 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1322 rx_buffer->page_offset, size, truesize);
1323 rx_buffer->page_offset += truesize;
1324 #endif
1325 }
1326
1327 static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1328 struct igc_rx_buffer *rx_buffer,
1329 union igc_adv_rx_desc *rx_desc,
1330 unsigned int size)
1331 {
1332 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1333 #if (PAGE_SIZE < 8192)
1334 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1335 #else
1336 unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1337 SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1338 #endif
1339 struct sk_buff *skb;
1340
1341 /* prefetch first cache line of first page */
1342 prefetch(va);
1343 #if L1_CACHE_BYTES < 128
1344 prefetch(va + L1_CACHE_BYTES);
1345 #endif
1346
1347 /* build an skb around the page buffer */
1348 skb = build_skb(va - IGC_SKB_PAD, truesize);
1349 if (unlikely(!skb))
1350 return NULL;
1351
1352 /* update pointers within the skb to store the data */
1353 skb_reserve(skb, IGC_SKB_PAD);
1354 __skb_put(skb, size);
1355
1356 /* update buffer offset */
1357 #if (PAGE_SIZE < 8192)
1358 rx_buffer->page_offset ^= truesize;
1359 #else
1360 rx_buffer->page_offset += truesize;
1361 #endif
1362
1363 return skb;
1364 }
1365
1366 static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1367 struct igc_rx_buffer *rx_buffer,
1368 union igc_adv_rx_desc *rx_desc,
1369 unsigned int size)
1370 {
1371 void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1372 #if (PAGE_SIZE < 8192)
1373 unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1374 #else
1375 unsigned int truesize = SKB_DATA_ALIGN(size);
1376 #endif
1377 unsigned int headlen;
1378 struct sk_buff *skb;
1379
1380 /* prefetch first cache line of first page */
1381 prefetch(va);
1382 #if L1_CACHE_BYTES < 128
1383 prefetch(va + L1_CACHE_BYTES);
1384 #endif
1385
1386 /* allocate a skb to store the frags */
1387 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1388 if (unlikely(!skb))
1389 return NULL;
1390
1391 /* Determine available headroom for copy */
1392 headlen = size;
1393 if (headlen > IGC_RX_HDR_LEN)
1394 headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1395
1396 /* align pull length to size of long to optimize memcpy performance */
1397 memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1398
1399 /* update all of the pointers */
1400 size -= headlen;
1401 if (size) {
1402 skb_add_rx_frag(skb, 0, rx_buffer->page,
1403 (va + headlen) - page_address(rx_buffer->page),
1404 size, truesize);
1405 #if (PAGE_SIZE < 8192)
1406 rx_buffer->page_offset ^= truesize;
1407 #else
1408 rx_buffer->page_offset += truesize;
1409 #endif
1410 } else {
1411 rx_buffer->pagecnt_bias++;
1412 }
1413
1414 return skb;
1415 }
1416
1417 /**
1418 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1419 * @rx_ring: rx descriptor ring to store buffers on
1420 * @old_buff: donor buffer to have page reused
1421 *
1422 * Synchronizes page for reuse by the adapter
1423 */
1424 static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1425 struct igc_rx_buffer *old_buff)
1426 {
1427 u16 nta = rx_ring->next_to_alloc;
1428 struct igc_rx_buffer *new_buff;
1429
1430 new_buff = &rx_ring->rx_buffer_info[nta];
1431
1432 /* update, and store next to alloc */
1433 nta++;
1434 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1435
1436 /* Transfer page from old buffer to new buffer.
1437 * Move each member individually to avoid possible store
1438 * forwarding stalls.
1439 */
1440 new_buff->dma = old_buff->dma;
1441 new_buff->page = old_buff->page;
1442 new_buff->page_offset = old_buff->page_offset;
1443 new_buff->pagecnt_bias = old_buff->pagecnt_bias;
1444 }
1445
1446 static inline bool igc_page_is_reserved(struct page *page)
1447 {
1448 return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1449 }
1450
1451 static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1452 {
1453 unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1454 struct page *page = rx_buffer->page;
1455
1456 /* avoid re-using remote pages */
1457 if (unlikely(igc_page_is_reserved(page)))
1458 return false;
1459
1460 #if (PAGE_SIZE < 8192)
1461 /* if we are only owner of page we can reuse it */
1462 if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1463 return false;
1464 #else
1465 #define IGC_LAST_OFFSET \
1466 (SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1467
1468 if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1469 return false;
1470 #endif
1471
1472 /* If we have drained the page fragment pool we need to update
1473 * the pagecnt_bias and page count so that we fully restock the
1474 * number of references the driver holds.
1475 */
1476 if (unlikely(!pagecnt_bias)) {
1477 page_ref_add(page, USHRT_MAX);
1478 rx_buffer->pagecnt_bias = USHRT_MAX;
1479 }
1480
1481 return true;
1482 }
1483
1484 /**
1485 * igc_is_non_eop - process handling of non-EOP buffers
1486 * @rx_ring: Rx ring being processed
1487 * @rx_desc: Rx descriptor for current buffer
1488 *
1489 * This function updates next to clean. If the buffer is an EOP buffer
1490 * this function exits returning false, otherwise it will place the
1491 * sk_buff in the next buffer to be chained and return true indicating
1492 * that this is in fact a non-EOP buffer.
1493 */
1494 static bool igc_is_non_eop(struct igc_ring *rx_ring,
1495 union igc_adv_rx_desc *rx_desc)
1496 {
1497 u32 ntc = rx_ring->next_to_clean + 1;
1498
1499 /* fetch, update, and store next to clean */
1500 ntc = (ntc < rx_ring->count) ? ntc : 0;
1501 rx_ring->next_to_clean = ntc;
1502
1503 prefetch(IGC_RX_DESC(rx_ring, ntc));
1504
1505 if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1506 return false;
1507
1508 return true;
1509 }
1510
1511 /**
1512 * igc_cleanup_headers - Correct corrupted or empty headers
1513 * @rx_ring: rx descriptor ring packet is being transacted on
1514 * @rx_desc: pointer to the EOP Rx descriptor
1515 * @skb: pointer to current skb being fixed
1516 *
1517 * Address the case where we are pulling data in on pages only
1518 * and as such no data is present in the skb header.
1519 *
1520 * In addition if skb is not at least 60 bytes we need to pad it so that
1521 * it is large enough to qualify as a valid Ethernet frame.
1522 *
1523 * Returns true if an error was encountered and skb was freed.
1524 */
1525 static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1526 union igc_adv_rx_desc *rx_desc,
1527 struct sk_buff *skb)
1528 {
1529 if (unlikely((igc_test_staterr(rx_desc,
1530 IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1531 struct net_device *netdev = rx_ring->netdev;
1532
1533 if (!(netdev->features & NETIF_F_RXALL)) {
1534 dev_kfree_skb_any(skb);
1535 return true;
1536 }
1537 }
1538
1539 /* if eth_skb_pad returns an error the skb was freed */
1540 if (eth_skb_pad(skb))
1541 return true;
1542
1543 return false;
1544 }
1545
1546 static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1547 struct igc_rx_buffer *rx_buffer)
1548 {
1549 if (igc_can_reuse_rx_page(rx_buffer)) {
1550 /* hand second half of page back to the ring */
1551 igc_reuse_rx_page(rx_ring, rx_buffer);
1552 } else {
1553 /* We are not reusing the buffer so unmap it and free
1554 * any references we are holding to it
1555 */
1556 dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1557 igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1558 IGC_RX_DMA_ATTR);
1559 __page_frag_cache_drain(rx_buffer->page,
1560 rx_buffer->pagecnt_bias);
1561 }
1562
1563 /* clear contents of rx_buffer */
1564 rx_buffer->page = NULL;
1565 }
1566
1567 /**
1568 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1569 * @rx_ring: rx descriptor ring
1570 * @cleaned_count: number of buffers to clean
1571 */
1572 static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1573 {
1574 union igc_adv_rx_desc *rx_desc;
1575 u16 i = rx_ring->next_to_use;
1576 struct igc_rx_buffer *bi;
1577 u16 bufsz;
1578
1579 /* nothing to do */
1580 if (!cleaned_count)
1581 return;
1582
1583 rx_desc = IGC_RX_DESC(rx_ring, i);
1584 bi = &rx_ring->rx_buffer_info[i];
1585 i -= rx_ring->count;
1586
1587 bufsz = igc_rx_bufsz(rx_ring);
1588
1589 do {
1590 if (!igc_alloc_mapped_page(rx_ring, bi))
1591 break;
1592
1593 /* sync the buffer for use by the device */
1594 dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1595 bi->page_offset, bufsz,
1596 DMA_FROM_DEVICE);
1597
1598 /* Refresh the desc even if buffer_addrs didn't change
1599 * because each write-back erases this info.
1600 */
1601 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1602
1603 rx_desc++;
1604 bi++;
1605 i++;
1606 if (unlikely(!i)) {
1607 rx_desc = IGC_RX_DESC(rx_ring, 0);
1608 bi = rx_ring->rx_buffer_info;
1609 i -= rx_ring->count;
1610 }
1611
1612 /* clear the length for the next_to_use descriptor */
1613 rx_desc->wb.upper.length = 0;
1614
1615 cleaned_count--;
1616 } while (cleaned_count);
1617
1618 i += rx_ring->count;
1619
1620 if (rx_ring->next_to_use != i) {
1621 /* record the next descriptor to use */
1622 rx_ring->next_to_use = i;
1623
1624 /* update next to alloc since we have filled the ring */
1625 rx_ring->next_to_alloc = i;
1626
1627 /* Force memory writes to complete before letting h/w
1628 * know there are new descriptors to fetch. (Only
1629 * applicable for weak-ordered memory model archs,
1630 * such as IA-64).
1631 */
1632 wmb();
1633 writel(i, rx_ring->tail);
1634 }
1635 }
1636
1637 static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1638 {
1639 unsigned int total_bytes = 0, total_packets = 0;
1640 struct igc_ring *rx_ring = q_vector->rx.ring;
1641 struct sk_buff *skb = rx_ring->skb;
1642 u16 cleaned_count = igc_desc_unused(rx_ring);
1643
1644 while (likely(total_packets < budget)) {
1645 union igc_adv_rx_desc *rx_desc;
1646 struct igc_rx_buffer *rx_buffer;
1647 unsigned int size;
1648
1649 /* return some buffers to hardware, one at a time is too slow */
1650 if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1651 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1652 cleaned_count = 0;
1653 }
1654
1655 rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1656 size = le16_to_cpu(rx_desc->wb.upper.length);
1657 if (!size)
1658 break;
1659
1660 /* This memory barrier is needed to keep us from reading
1661 * any other fields out of the rx_desc until we know the
1662 * descriptor has been written back
1663 */
1664 dma_rmb();
1665
1666 rx_buffer = igc_get_rx_buffer(rx_ring, size);
1667
1668 /* retrieve a buffer from the ring */
1669 if (skb)
1670 igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1671 else if (ring_uses_build_skb(rx_ring))
1672 skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1673 else
1674 skb = igc_construct_skb(rx_ring, rx_buffer,
1675 rx_desc, size);
1676
1677 /* exit if we failed to retrieve a buffer */
1678 if (!skb) {
1679 rx_ring->rx_stats.alloc_failed++;
1680 rx_buffer->pagecnt_bias++;
1681 break;
1682 }
1683
1684 igc_put_rx_buffer(rx_ring, rx_buffer);
1685 cleaned_count++;
1686
1687 /* fetch next buffer in frame if non-eop */
1688 if (igc_is_non_eop(rx_ring, rx_desc))
1689 continue;
1690
1691 /* verify the packet layout is correct */
1692 if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1693 skb = NULL;
1694 continue;
1695 }
1696
1697 /* probably a little skewed due to removing CRC */
1698 total_bytes += skb->len;
1699
1700 /* populate checksum, timestamp, VLAN, and protocol */
1701 igc_process_skb_fields(rx_ring, rx_desc, skb);
1702
1703 napi_gro_receive(&q_vector->napi, skb);
1704
1705 /* reset skb pointer */
1706 skb = NULL;
1707
1708 /* update budget accounting */
1709 total_packets++;
1710 }
1711
1712 /* place incomplete frames back on ring for completion */
1713 rx_ring->skb = skb;
1714
1715 u64_stats_update_begin(&rx_ring->rx_syncp);
1716 rx_ring->rx_stats.packets += total_packets;
1717 rx_ring->rx_stats.bytes += total_bytes;
1718 u64_stats_update_end(&rx_ring->rx_syncp);
1719 q_vector->rx.total_packets += total_packets;
1720 q_vector->rx.total_bytes += total_bytes;
1721
1722 if (cleaned_count)
1723 igc_alloc_rx_buffers(rx_ring, cleaned_count);
1724
1725 return total_packets;
1726 }
1727
1728 static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1729 {
1730 return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1731 }
1732
1733 static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1734 struct igc_rx_buffer *bi)
1735 {
1736 struct page *page = bi->page;
1737 dma_addr_t dma;
1738
1739 /* since we are recycling buffers we should seldom need to alloc */
1740 if (likely(page))
1741 return true;
1742
1743 /* alloc new page for storage */
1744 page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1745 if (unlikely(!page)) {
1746 rx_ring->rx_stats.alloc_failed++;
1747 return false;
1748 }
1749
1750 /* map page for use */
1751 dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1752 igc_rx_pg_size(rx_ring),
1753 DMA_FROM_DEVICE,
1754 IGC_RX_DMA_ATTR);
1755
1756 /* if mapping failed free memory back to system since
1757 * there isn't much point in holding memory we can't use
1758 */
1759 if (dma_mapping_error(rx_ring->dev, dma)) {
1760 __free_page(page);
1761
1762 rx_ring->rx_stats.alloc_failed++;
1763 return false;
1764 }
1765
1766 bi->dma = dma;
1767 bi->page = page;
1768 bi->page_offset = igc_rx_offset(rx_ring);
1769 bi->pagecnt_bias = 1;
1770
1771 return true;
1772 }
1773
1774 /**
1775 * igc_clean_tx_irq - Reclaim resources after transmit completes
1776 * @q_vector: pointer to q_vector containing needed info
1777 * @napi_budget: Used to determine if we are in netpoll
1778 *
1779 * returns true if ring is completely cleaned
1780 */
1781 static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1782 {
1783 struct igc_adapter *adapter = q_vector->adapter;
1784 unsigned int total_bytes = 0, total_packets = 0;
1785 unsigned int budget = q_vector->tx.work_limit;
1786 struct igc_ring *tx_ring = q_vector->tx.ring;
1787 unsigned int i = tx_ring->next_to_clean;
1788 struct igc_tx_buffer *tx_buffer;
1789 union igc_adv_tx_desc *tx_desc;
1790
1791 if (test_bit(__IGC_DOWN, &adapter->state))
1792 return true;
1793
1794 tx_buffer = &tx_ring->tx_buffer_info[i];
1795 tx_desc = IGC_TX_DESC(tx_ring, i);
1796 i -= tx_ring->count;
1797
1798 do {
1799 union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1800
1801 /* if next_to_watch is not set then there is no work pending */
1802 if (!eop_desc)
1803 break;
1804
1805 /* prevent any other reads prior to eop_desc */
1806 smp_rmb();
1807
1808 /* if DD is not set pending work has not been completed */
1809 if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1810 break;
1811
1812 /* clear next_to_watch to prevent false hangs */
1813 tx_buffer->next_to_watch = NULL;
1814
1815 /* update the statistics for this packet */
1816 total_bytes += tx_buffer->bytecount;
1817 total_packets += tx_buffer->gso_segs;
1818
1819 /* free the skb */
1820 napi_consume_skb(tx_buffer->skb, napi_budget);
1821
1822 /* unmap skb header data */
1823 dma_unmap_single(tx_ring->dev,
1824 dma_unmap_addr(tx_buffer, dma),
1825 dma_unmap_len(tx_buffer, len),
1826 DMA_TO_DEVICE);
1827
1828 /* clear tx_buffer data */
1829 dma_unmap_len_set(tx_buffer, len, 0);
1830
1831 /* clear last DMA location and unmap remaining buffers */
1832 while (tx_desc != eop_desc) {
1833 tx_buffer++;
1834 tx_desc++;
1835 i++;
1836 if (unlikely(!i)) {
1837 i -= tx_ring->count;
1838 tx_buffer = tx_ring->tx_buffer_info;
1839 tx_desc = IGC_TX_DESC(tx_ring, 0);
1840 }
1841
1842 /* unmap any remaining paged data */
1843 if (dma_unmap_len(tx_buffer, len)) {
1844 dma_unmap_page(tx_ring->dev,
1845 dma_unmap_addr(tx_buffer, dma),
1846 dma_unmap_len(tx_buffer, len),
1847 DMA_TO_DEVICE);
1848 dma_unmap_len_set(tx_buffer, len, 0);
1849 }
1850 }
1851
1852 /* move us one more past the eop_desc for start of next pkt */
1853 tx_buffer++;
1854 tx_desc++;
1855 i++;
1856 if (unlikely(!i)) {
1857 i -= tx_ring->count;
1858 tx_buffer = tx_ring->tx_buffer_info;
1859 tx_desc = IGC_TX_DESC(tx_ring, 0);
1860 }
1861
1862 /* issue prefetch for next Tx descriptor */
1863 prefetch(tx_desc);
1864
1865 /* update budget accounting */
1866 budget--;
1867 } while (likely(budget));
1868
1869 netdev_tx_completed_queue(txring_txq(tx_ring),
1870 total_packets, total_bytes);
1871
1872 i += tx_ring->count;
1873 tx_ring->next_to_clean = i;
1874 u64_stats_update_begin(&tx_ring->tx_syncp);
1875 tx_ring->tx_stats.bytes += total_bytes;
1876 tx_ring->tx_stats.packets += total_packets;
1877 u64_stats_update_end(&tx_ring->tx_syncp);
1878 q_vector->tx.total_bytes += total_bytes;
1879 q_vector->tx.total_packets += total_packets;
1880
1881 if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1882 struct igc_hw *hw = &adapter->hw;
1883
1884 /* Detect a transmit hang in hardware, this serializes the
1885 * check with the clearing of time_stamp and movement of i
1886 */
1887 clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1888 if (tx_buffer->next_to_watch &&
1889 time_after(jiffies, tx_buffer->time_stamp +
1890 (adapter->tx_timeout_factor * HZ)) &&
1891 !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1892 /* detected Tx unit hang */
1893 dev_err(tx_ring->dev,
1894 "Detected Tx Unit Hang\n"
1895 " Tx Queue <%d>\n"
1896 " TDH <%x>\n"
1897 " TDT <%x>\n"
1898 " next_to_use <%x>\n"
1899 " next_to_clean <%x>\n"
1900 "buffer_info[next_to_clean]\n"
1901 " time_stamp <%lx>\n"
1902 " next_to_watch <%p>\n"
1903 " jiffies <%lx>\n"
1904 " desc.status <%x>\n",
1905 tx_ring->queue_index,
1906 rd32(IGC_TDH(tx_ring->reg_idx)),
1907 readl(tx_ring->tail),
1908 tx_ring->next_to_use,
1909 tx_ring->next_to_clean,
1910 tx_buffer->time_stamp,
1911 tx_buffer->next_to_watch,
1912 jiffies,
1913 tx_buffer->next_to_watch->wb.status);
1914 netif_stop_subqueue(tx_ring->netdev,
1915 tx_ring->queue_index);
1916
1917 /* we are about to reset, no point in enabling stuff */
1918 return true;
1919 }
1920 }
1921
1922 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1923 if (unlikely(total_packets &&
1924 netif_carrier_ok(tx_ring->netdev) &&
1925 igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1926 /* Make sure that anybody stopping the queue after this
1927 * sees the new next_to_clean.
1928 */
1929 smp_mb();
1930 if (__netif_subqueue_stopped(tx_ring->netdev,
1931 tx_ring->queue_index) &&
1932 !(test_bit(__IGC_DOWN, &adapter->state))) {
1933 netif_wake_subqueue(tx_ring->netdev,
1934 tx_ring->queue_index);
1935
1936 u64_stats_update_begin(&tx_ring->tx_syncp);
1937 tx_ring->tx_stats.restart_queue++;
1938 u64_stats_update_end(&tx_ring->tx_syncp);
1939 }
1940 }
1941
1942 return !!budget;
1943 }
1944
1945 /**
1946 * igc_up - Open the interface and prepare it to handle traffic
1947 * @adapter: board private structure
1948 */
1949 void igc_up(struct igc_adapter *adapter)
1950 {
1951 struct igc_hw *hw = &adapter->hw;
1952 int i = 0;
1953
1954 /* hardware has been reset, we need to reload some things */
1955 igc_configure(adapter);
1956
1957 clear_bit(__IGC_DOWN, &adapter->state);
1958
1959 for (i = 0; i < adapter->num_q_vectors; i++)
1960 napi_enable(&adapter->q_vector[i]->napi);
1961
1962 if (adapter->msix_entries)
1963 igc_configure_msix(adapter);
1964 else
1965 igc_assign_vector(adapter->q_vector[0], 0);
1966
1967 /* Clear any pending interrupts. */
1968 rd32(IGC_ICR);
1969 igc_irq_enable(adapter);
1970
1971 netif_tx_start_all_queues(adapter->netdev);
1972
1973 /* start the watchdog. */
1974 hw->mac.get_link_status = 1;
1975 schedule_work(&adapter->watchdog_task);
1976 }
1977
1978 /**
1979 * igc_update_stats - Update the board statistics counters
1980 * @adapter: board private structure
1981 */
1982 void igc_update_stats(struct igc_adapter *adapter)
1983 {
1984 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1985 struct pci_dev *pdev = adapter->pdev;
1986 struct igc_hw *hw = &adapter->hw;
1987 u64 _bytes, _packets;
1988 u64 bytes, packets;
1989 unsigned int start;
1990 u32 mpc;
1991 int i;
1992
1993 /* Prevent stats update while adapter is being reset, or if the pci
1994 * connection is down.
1995 */
1996 if (adapter->link_speed == 0)
1997 return;
1998 if (pci_channel_offline(pdev))
1999 return;
2000
2001 packets = 0;
2002 bytes = 0;
2003
2004 rcu_read_lock();
2005 for (i = 0; i < adapter->num_rx_queues; i++) {
2006 struct igc_ring *ring = adapter->rx_ring[i];
2007 u32 rqdpc = rd32(IGC_RQDPC(i));
2008
2009 if (hw->mac.type >= igc_i225)
2010 wr32(IGC_RQDPC(i), 0);
2011
2012 if (rqdpc) {
2013 ring->rx_stats.drops += rqdpc;
2014 net_stats->rx_fifo_errors += rqdpc;
2015 }
2016
2017 do {
2018 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2019 _bytes = ring->rx_stats.bytes;
2020 _packets = ring->rx_stats.packets;
2021 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2022 bytes += _bytes;
2023 packets += _packets;
2024 }
2025
2026 net_stats->rx_bytes = bytes;
2027 net_stats->rx_packets = packets;
2028
2029 packets = 0;
2030 bytes = 0;
2031 for (i = 0; i < adapter->num_tx_queues; i++) {
2032 struct igc_ring *ring = adapter->tx_ring[i];
2033
2034 do {
2035 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2036 _bytes = ring->tx_stats.bytes;
2037 _packets = ring->tx_stats.packets;
2038 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2039 bytes += _bytes;
2040 packets += _packets;
2041 }
2042 net_stats->tx_bytes = bytes;
2043 net_stats->tx_packets = packets;
2044 rcu_read_unlock();
2045
2046 /* read stats registers */
2047 adapter->stats.crcerrs += rd32(IGC_CRCERRS);
2048 adapter->stats.gprc += rd32(IGC_GPRC);
2049 adapter->stats.gorc += rd32(IGC_GORCL);
2050 rd32(IGC_GORCH); /* clear GORCL */
2051 adapter->stats.bprc += rd32(IGC_BPRC);
2052 adapter->stats.mprc += rd32(IGC_MPRC);
2053 adapter->stats.roc += rd32(IGC_ROC);
2054
2055 adapter->stats.prc64 += rd32(IGC_PRC64);
2056 adapter->stats.prc127 += rd32(IGC_PRC127);
2057 adapter->stats.prc255 += rd32(IGC_PRC255);
2058 adapter->stats.prc511 += rd32(IGC_PRC511);
2059 adapter->stats.prc1023 += rd32(IGC_PRC1023);
2060 adapter->stats.prc1522 += rd32(IGC_PRC1522);
2061 adapter->stats.symerrs += rd32(IGC_SYMERRS);
2062 adapter->stats.sec += rd32(IGC_SEC);
2063
2064 mpc = rd32(IGC_MPC);
2065 adapter->stats.mpc += mpc;
2066 net_stats->rx_fifo_errors += mpc;
2067 adapter->stats.scc += rd32(IGC_SCC);
2068 adapter->stats.ecol += rd32(IGC_ECOL);
2069 adapter->stats.mcc += rd32(IGC_MCC);
2070 adapter->stats.latecol += rd32(IGC_LATECOL);
2071 adapter->stats.dc += rd32(IGC_DC);
2072 adapter->stats.rlec += rd32(IGC_RLEC);
2073 adapter->stats.xonrxc += rd32(IGC_XONRXC);
2074 adapter->stats.xontxc += rd32(IGC_XONTXC);
2075 adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
2076 adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
2077 adapter->stats.fcruc += rd32(IGC_FCRUC);
2078 adapter->stats.gptc += rd32(IGC_GPTC);
2079 adapter->stats.gotc += rd32(IGC_GOTCL);
2080 rd32(IGC_GOTCH); /* clear GOTCL */
2081 adapter->stats.rnbc += rd32(IGC_RNBC);
2082 adapter->stats.ruc += rd32(IGC_RUC);
2083 adapter->stats.rfc += rd32(IGC_RFC);
2084 adapter->stats.rjc += rd32(IGC_RJC);
2085 adapter->stats.tor += rd32(IGC_TORH);
2086 adapter->stats.tot += rd32(IGC_TOTH);
2087 adapter->stats.tpr += rd32(IGC_TPR);
2088
2089 adapter->stats.ptc64 += rd32(IGC_PTC64);
2090 adapter->stats.ptc127 += rd32(IGC_PTC127);
2091 adapter->stats.ptc255 += rd32(IGC_PTC255);
2092 adapter->stats.ptc511 += rd32(IGC_PTC511);
2093 adapter->stats.ptc1023 += rd32(IGC_PTC1023);
2094 adapter->stats.ptc1522 += rd32(IGC_PTC1522);
2095
2096 adapter->stats.mptc += rd32(IGC_MPTC);
2097 adapter->stats.bptc += rd32(IGC_BPTC);
2098
2099 adapter->stats.tpt += rd32(IGC_TPT);
2100 adapter->stats.colc += rd32(IGC_COLC);
2101
2102 adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
2103
2104 adapter->stats.tsctc += rd32(IGC_TSCTC);
2105 adapter->stats.tsctfc += rd32(IGC_TSCTFC);
2106
2107 adapter->stats.iac += rd32(IGC_IAC);
2108 adapter->stats.icrxoc += rd32(IGC_ICRXOC);
2109 adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
2110 adapter->stats.icrxatc += rd32(IGC_ICRXATC);
2111 adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
2112 adapter->stats.ictxatc += rd32(IGC_ICTXATC);
2113 adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
2114 adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
2115 adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
2116
2117 /* Fill out the OS statistics structure */
2118 net_stats->multicast = adapter->stats.mprc;
2119 net_stats->collisions = adapter->stats.colc;
2120
2121 /* Rx Errors */
2122
2123 /* RLEC on some newer hardware can be incorrect so build
2124 * our own version based on RUC and ROC
2125 */
2126 net_stats->rx_errors = adapter->stats.rxerrc +
2127 adapter->stats.crcerrs + adapter->stats.algnerrc +
2128 adapter->stats.ruc + adapter->stats.roc +
2129 adapter->stats.cexterr;
2130 net_stats->rx_length_errors = adapter->stats.ruc +
2131 adapter->stats.roc;
2132 net_stats->rx_crc_errors = adapter->stats.crcerrs;
2133 net_stats->rx_frame_errors = adapter->stats.algnerrc;
2134 net_stats->rx_missed_errors = adapter->stats.mpc;
2135
2136 /* Tx Errors */
2137 net_stats->tx_errors = adapter->stats.ecol +
2138 adapter->stats.latecol;
2139 net_stats->tx_aborted_errors = adapter->stats.ecol;
2140 net_stats->tx_window_errors = adapter->stats.latecol;
2141 net_stats->tx_carrier_errors = adapter->stats.tncrs;
2142
2143 /* Tx Dropped needs to be maintained elsewhere */
2144
2145 /* Management Stats */
2146 adapter->stats.mgptc += rd32(IGC_MGTPTC);
2147 adapter->stats.mgprc += rd32(IGC_MGTPRC);
2148 adapter->stats.mgpdc += rd32(IGC_MGTPDC);
2149 }
2150
2151 static void igc_nfc_filter_exit(struct igc_adapter *adapter)
2152 {
2153 struct igc_nfc_filter *rule;
2154
2155 spin_lock(&adapter->nfc_lock);
2156
2157 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2158 igc_erase_filter(adapter, rule);
2159
2160 hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
2161 igc_erase_filter(adapter, rule);
2162
2163 spin_unlock(&adapter->nfc_lock);
2164 }
2165
2166 static void igc_nfc_filter_restore(struct igc_adapter *adapter)
2167 {
2168 struct igc_nfc_filter *rule;
2169
2170 spin_lock(&adapter->nfc_lock);
2171
2172 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2173 igc_add_filter(adapter, rule);
2174
2175 spin_unlock(&adapter->nfc_lock);
2176 }
2177
2178 /**
2179 * igc_down - Close the interface
2180 * @adapter: board private structure
2181 */
2182 void igc_down(struct igc_adapter *adapter)
2183 {
2184 struct net_device *netdev = adapter->netdev;
2185 struct igc_hw *hw = &adapter->hw;
2186 u32 tctl, rctl;
2187 int i = 0;
2188
2189 set_bit(__IGC_DOWN, &adapter->state);
2190
2191 /* disable receives in the hardware */
2192 rctl = rd32(IGC_RCTL);
2193 wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2194 /* flush and sleep below */
2195
2196 igc_nfc_filter_exit(adapter);
2197
2198 /* set trans_start so we don't get spurious watchdogs during reset */
2199 netif_trans_update(netdev);
2200
2201 netif_carrier_off(netdev);
2202 netif_tx_stop_all_queues(netdev);
2203
2204 /* disable transmits in the hardware */
2205 tctl = rd32(IGC_TCTL);
2206 tctl &= ~IGC_TCTL_EN;
2207 wr32(IGC_TCTL, tctl);
2208 /* flush both disables and wait for them to finish */
2209 wrfl();
2210 usleep_range(10000, 20000);
2211
2212 igc_irq_disable(adapter);
2213
2214 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2215
2216 for (i = 0; i < adapter->num_q_vectors; i++) {
2217 if (adapter->q_vector[i]) {
2218 napi_synchronize(&adapter->q_vector[i]->napi);
2219 napi_disable(&adapter->q_vector[i]->napi);
2220 }
2221 }
2222
2223 del_timer_sync(&adapter->watchdog_timer);
2224 del_timer_sync(&adapter->phy_info_timer);
2225
2226 /* record the stats before reset*/
2227 spin_lock(&adapter->stats64_lock);
2228 igc_update_stats(adapter);
2229 spin_unlock(&adapter->stats64_lock);
2230
2231 adapter->link_speed = 0;
2232 adapter->link_duplex = 0;
2233
2234 if (!pci_channel_offline(adapter->pdev))
2235 igc_reset(adapter);
2236
2237 /* clear VLAN promisc flag so VFTA will be updated if necessary */
2238 adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2239
2240 igc_clean_all_tx_rings(adapter);
2241 igc_clean_all_rx_rings(adapter);
2242 }
2243
2244 void igc_reinit_locked(struct igc_adapter *adapter)
2245 {
2246 WARN_ON(in_interrupt());
2247 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2248 usleep_range(1000, 2000);
2249 igc_down(adapter);
2250 igc_up(adapter);
2251 clear_bit(__IGC_RESETTING, &adapter->state);
2252 }
2253
2254 static void igc_reset_task(struct work_struct *work)
2255 {
2256 struct igc_adapter *adapter;
2257
2258 adapter = container_of(work, struct igc_adapter, reset_task);
2259
2260 netdev_err(adapter->netdev, "Reset adapter\n");
2261 igc_reinit_locked(adapter);
2262 }
2263
2264 /**
2265 * igc_change_mtu - Change the Maximum Transfer Unit
2266 * @netdev: network interface device structure
2267 * @new_mtu: new value for maximum frame size
2268 *
2269 * Returns 0 on success, negative on failure
2270 */
2271 static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2272 {
2273 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2274 struct igc_adapter *adapter = netdev_priv(netdev);
2275
2276 /* adjust max frame to be at least the size of a standard frame */
2277 if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2278 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2279
2280 while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2281 usleep_range(1000, 2000);
2282
2283 /* igc_down has a dependency on max_frame_size */
2284 adapter->max_frame_size = max_frame;
2285
2286 if (netif_running(netdev))
2287 igc_down(adapter);
2288
2289 netdev_dbg(netdev, "changing MTU from %d to %d\n",
2290 netdev->mtu, new_mtu);
2291 netdev->mtu = new_mtu;
2292
2293 if (netif_running(netdev))
2294 igc_up(adapter);
2295 else
2296 igc_reset(adapter);
2297
2298 clear_bit(__IGC_RESETTING, &adapter->state);
2299
2300 return 0;
2301 }
2302
2303 /**
2304 * igc_get_stats - Get System Network Statistics
2305 * @netdev: network interface device structure
2306 *
2307 * Returns the address of the device statistics structure.
2308 * The statistics are updated here and also from the timer callback.
2309 */
2310 static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2311 {
2312 struct igc_adapter *adapter = netdev_priv(netdev);
2313
2314 if (!test_bit(__IGC_RESETTING, &adapter->state))
2315 igc_update_stats(adapter);
2316
2317 /* only return the current stats */
2318 return &netdev->stats;
2319 }
2320
2321 static netdev_features_t igc_fix_features(struct net_device *netdev,
2322 netdev_features_t features)
2323 {
2324 /* Since there is no support for separate Rx/Tx vlan accel
2325 * enable/disable make sure Tx flag is always in same state as Rx.
2326 */
2327 if (features & NETIF_F_HW_VLAN_CTAG_RX)
2328 features |= NETIF_F_HW_VLAN_CTAG_TX;
2329 else
2330 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2331
2332 return features;
2333 }
2334
2335 static int igc_set_features(struct net_device *netdev,
2336 netdev_features_t features)
2337 {
2338 netdev_features_t changed = netdev->features ^ features;
2339 struct igc_adapter *adapter = netdev_priv(netdev);
2340
2341 /* Add VLAN support */
2342 if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2343 return 0;
2344
2345 if (!(features & NETIF_F_NTUPLE)) {
2346 struct hlist_node *node2;
2347 struct igc_nfc_filter *rule;
2348
2349 spin_lock(&adapter->nfc_lock);
2350 hlist_for_each_entry_safe(rule, node2,
2351 &adapter->nfc_filter_list, nfc_node) {
2352 igc_erase_filter(adapter, rule);
2353 hlist_del(&rule->nfc_node);
2354 kfree(rule);
2355 }
2356 spin_unlock(&adapter->nfc_lock);
2357 adapter->nfc_filter_count = 0;
2358 }
2359
2360 netdev->features = features;
2361
2362 if (netif_running(netdev))
2363 igc_reinit_locked(adapter);
2364 else
2365 igc_reset(adapter);
2366
2367 return 1;
2368 }
2369
2370 static netdev_features_t
2371 igc_features_check(struct sk_buff *skb, struct net_device *dev,
2372 netdev_features_t features)
2373 {
2374 unsigned int network_hdr_len, mac_hdr_len;
2375
2376 /* Make certain the headers can be described by a context descriptor */
2377 mac_hdr_len = skb_network_header(skb) - skb->data;
2378 if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2379 return features & ~(NETIF_F_HW_CSUM |
2380 NETIF_F_SCTP_CRC |
2381 NETIF_F_HW_VLAN_CTAG_TX |
2382 NETIF_F_TSO |
2383 NETIF_F_TSO6);
2384
2385 network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2386 if (unlikely(network_hdr_len > IGC_MAX_NETWORK_HDR_LEN))
2387 return features & ~(NETIF_F_HW_CSUM |
2388 NETIF_F_SCTP_CRC |
2389 NETIF_F_TSO |
2390 NETIF_F_TSO6);
2391
2392 /* We can only support IPv4 TSO in tunnels if we can mangle the
2393 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2394 */
2395 if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2396 features &= ~NETIF_F_TSO;
2397
2398 return features;
2399 }
2400
2401 /**
2402 * igc_configure - configure the hardware for RX and TX
2403 * @adapter: private board structure
2404 */
2405 static void igc_configure(struct igc_adapter *adapter)
2406 {
2407 struct net_device *netdev = adapter->netdev;
2408 int i = 0;
2409
2410 igc_get_hw_control(adapter);
2411 igc_set_rx_mode(netdev);
2412
2413 igc_setup_tctl(adapter);
2414 igc_setup_mrqc(adapter);
2415 igc_setup_rctl(adapter);
2416
2417 igc_nfc_filter_restore(adapter);
2418 igc_configure_tx(adapter);
2419 igc_configure_rx(adapter);
2420
2421 igc_rx_fifo_flush_base(&adapter->hw);
2422
2423 /* call igc_desc_unused which always leaves
2424 * at least 1 descriptor unused to make sure
2425 * next_to_use != next_to_clean
2426 */
2427 for (i = 0; i < adapter->num_rx_queues; i++) {
2428 struct igc_ring *ring = adapter->rx_ring[i];
2429
2430 igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2431 }
2432 }
2433
2434 /**
2435 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2436 * @adapter: address of board private structure
2437 * @index: Index of the RAR entry which need to be synced with MAC table
2438 */
2439 static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2440 {
2441 u8 *addr = adapter->mac_table[index].addr;
2442 struct igc_hw *hw = &adapter->hw;
2443 u32 rar_low, rar_high;
2444
2445 /* HW expects these to be in network order when they are plugged
2446 * into the registers which are little endian. In order to guarantee
2447 * that ordering we need to do an leXX_to_cpup here in order to be
2448 * ready for the byteswap that occurs with writel
2449 */
2450 rar_low = le32_to_cpup((__le32 *)(addr));
2451 rar_high = le16_to_cpup((__le16 *)(addr + 4));
2452
2453 /* Indicate to hardware the Address is Valid. */
2454 if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2455 if (is_valid_ether_addr(addr))
2456 rar_high |= IGC_RAH_AV;
2457
2458 rar_high |= IGC_RAH_POOL_1 <<
2459 adapter->mac_table[index].queue;
2460 }
2461
2462 wr32(IGC_RAL(index), rar_low);
2463 wrfl();
2464 wr32(IGC_RAH(index), rar_high);
2465 wrfl();
2466 }
2467
2468 /* Set default MAC address for the PF in the first RAR entry */
2469 static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2470 {
2471 struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2472
2473 ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2474 mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2475
2476 igc_rar_set_index(adapter, 0);
2477 }
2478
2479 /* If the filter to be added and an already existing filter express
2480 * the same address and address type, it should be possible to only
2481 * override the other configurations, for example the queue to steer
2482 * traffic.
2483 */
2484 static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2485 const u8 *addr, const u8 flags)
2486 {
2487 if (!(entry->state & IGC_MAC_STATE_IN_USE))
2488 return true;
2489
2490 if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2491 (flags & IGC_MAC_STATE_SRC_ADDR))
2492 return false;
2493
2494 if (!ether_addr_equal(addr, entry->addr))
2495 return false;
2496
2497 return true;
2498 }
2499
2500 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2501 * 'flags' is used to indicate what kind of match is made, match is by
2502 * default for the destination address, if matching by source address
2503 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2504 */
2505 static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2506 const u8 *addr, const u8 queue,
2507 const u8 flags)
2508 {
2509 struct igc_hw *hw = &adapter->hw;
2510 int rar_entries = hw->mac.rar_entry_count;
2511 int i;
2512
2513 if (is_zero_ether_addr(addr))
2514 return -EINVAL;
2515
2516 /* Search for the first empty entry in the MAC table.
2517 * Do not touch entries at the end of the table reserved for the VF MAC
2518 * addresses.
2519 */
2520 for (i = 0; i < rar_entries; i++) {
2521 if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2522 addr, flags))
2523 continue;
2524
2525 ether_addr_copy(adapter->mac_table[i].addr, addr);
2526 adapter->mac_table[i].queue = queue;
2527 adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2528
2529 igc_rar_set_index(adapter, i);
2530 return i;
2531 }
2532
2533 return -ENOSPC;
2534 }
2535
2536 int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2537 const u8 *addr, u8 queue, u8 flags)
2538 {
2539 return igc_add_mac_filter_flags(adapter, addr, queue,
2540 IGC_MAC_STATE_QUEUE_STEERING | flags);
2541 }
2542
2543 /* Remove a MAC filter for 'addr' directing matching traffic to
2544 * 'queue', 'flags' is used to indicate what kind of match need to be
2545 * removed, match is by default for the destination address, if
2546 * matching by source address is to be removed the flag
2547 * IGC_MAC_STATE_SRC_ADDR can be used.
2548 */
2549 static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2550 const u8 *addr, const u8 queue,
2551 const u8 flags)
2552 {
2553 struct igc_hw *hw = &adapter->hw;
2554 int rar_entries = hw->mac.rar_entry_count;
2555 int i;
2556
2557 if (is_zero_ether_addr(addr))
2558 return -EINVAL;
2559
2560 /* Search for matching entry in the MAC table based on given address
2561 * and queue. Do not touch entries at the end of the table reserved
2562 * for the VF MAC addresses.
2563 */
2564 for (i = 0; i < rar_entries; i++) {
2565 if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2566 continue;
2567 if ((adapter->mac_table[i].state & flags) != flags)
2568 continue;
2569 if (adapter->mac_table[i].queue != queue)
2570 continue;
2571 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2572 continue;
2573
2574 /* When a filter for the default address is "deleted",
2575 * we return it to its initial configuration
2576 */
2577 if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2578 adapter->mac_table[i].state =
2579 IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2580 } else {
2581 adapter->mac_table[i].state = 0;
2582 adapter->mac_table[i].queue = 0;
2583 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2584 }
2585
2586 igc_rar_set_index(adapter, i);
2587 return 0;
2588 }
2589
2590 return -ENOENT;
2591 }
2592
2593 int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2594 const u8 *addr, u8 queue, u8 flags)
2595 {
2596 return igc_del_mac_filter_flags(adapter, addr, queue,
2597 IGC_MAC_STATE_QUEUE_STEERING | flags);
2598 }
2599
2600 /* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2601 * 'flags' is used to indicate what kind of match is made, match is by
2602 * default for the destination address, if matching by source address
2603 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2604 */
2605 static int igc_add_mac_filter(struct igc_adapter *adapter,
2606 const u8 *addr, const u8 queue)
2607 {
2608 struct igc_hw *hw = &adapter->hw;
2609 int rar_entries = hw->mac.rar_entry_count;
2610 int i;
2611
2612 if (is_zero_ether_addr(addr))
2613 return -EINVAL;
2614
2615 /* Search for the first empty entry in the MAC table.
2616 * Do not touch entries at the end of the table reserved for the VF MAC
2617 * addresses.
2618 */
2619 for (i = 0; i < rar_entries; i++) {
2620 if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2621 addr, 0))
2622 continue;
2623
2624 ether_addr_copy(adapter->mac_table[i].addr, addr);
2625 adapter->mac_table[i].queue = queue;
2626 adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE;
2627
2628 igc_rar_set_index(adapter, i);
2629 return i;
2630 }
2631
2632 return -ENOSPC;
2633 }
2634
2635 /* Remove a MAC filter for 'addr' directing matching traffic to
2636 * 'queue', 'flags' is used to indicate what kind of match need to be
2637 * removed, match is by default for the destination address, if
2638 * matching by source address is to be removed the flag
2639 * IGC_MAC_STATE_SRC_ADDR can be used.
2640 */
2641 static int igc_del_mac_filter(struct igc_adapter *adapter,
2642 const u8 *addr, const u8 queue)
2643 {
2644 struct igc_hw *hw = &adapter->hw;
2645 int rar_entries = hw->mac.rar_entry_count;
2646 int i;
2647
2648 if (is_zero_ether_addr(addr))
2649 return -EINVAL;
2650
2651 /* Search for matching entry in the MAC table based on given address
2652 * and queue. Do not touch entries at the end of the table reserved
2653 * for the VF MAC addresses.
2654 */
2655 for (i = 0; i < rar_entries; i++) {
2656 if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2657 continue;
2658 if (adapter->mac_table[i].state != 0)
2659 continue;
2660 if (adapter->mac_table[i].queue != queue)
2661 continue;
2662 if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2663 continue;
2664
2665 /* When a filter for the default address is "deleted",
2666 * we return it to its initial configuration
2667 */
2668 if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2669 adapter->mac_table[i].state =
2670 IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2671 adapter->mac_table[i].queue = 0;
2672 } else {
2673 adapter->mac_table[i].state = 0;
2674 adapter->mac_table[i].queue = 0;
2675 memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2676 }
2677
2678 igc_rar_set_index(adapter, i);
2679 return 0;
2680 }
2681
2682 return -ENOENT;
2683 }
2684
2685 static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
2686 {
2687 struct igc_adapter *adapter = netdev_priv(netdev);
2688 int ret;
2689
2690 ret = igc_add_mac_filter(adapter, addr, adapter->num_rx_queues);
2691
2692 return min_t(int, ret, 0);
2693 }
2694
2695 static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
2696 {
2697 struct igc_adapter *adapter = netdev_priv(netdev);
2698
2699 igc_del_mac_filter(adapter, addr, adapter->num_rx_queues);
2700
2701 return 0;
2702 }
2703
2704 /**
2705 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2706 * @netdev: network interface device structure
2707 *
2708 * The set_rx_mode entry point is called whenever the unicast or multicast
2709 * address lists or the network interface flags are updated. This routine is
2710 * responsible for configuring the hardware for proper unicast, multicast,
2711 * promiscuous mode, and all-multi behavior.
2712 */
2713 static void igc_set_rx_mode(struct net_device *netdev)
2714 {
2715 struct igc_adapter *adapter = netdev_priv(netdev);
2716 struct igc_hw *hw = &adapter->hw;
2717 u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
2718 int count;
2719
2720 /* Check for Promiscuous and All Multicast modes */
2721 if (netdev->flags & IFF_PROMISC) {
2722 rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
2723 } else {
2724 if (netdev->flags & IFF_ALLMULTI) {
2725 rctl |= IGC_RCTL_MPE;
2726 } else {
2727 /* Write addresses to the MTA, if the attempt fails
2728 * then we should just turn on promiscuous mode so
2729 * that we can at least receive multicast traffic
2730 */
2731 count = igc_write_mc_addr_list(netdev);
2732 if (count < 0)
2733 rctl |= IGC_RCTL_MPE;
2734 }
2735 }
2736
2737 /* Write addresses to available RAR registers, if there is not
2738 * sufficient space to store all the addresses then enable
2739 * unicast promiscuous mode
2740 */
2741 if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
2742 rctl |= IGC_RCTL_UPE;
2743
2744 /* update state of unicast and multicast */
2745 rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
2746 wr32(IGC_RCTL, rctl);
2747
2748 #if (PAGE_SIZE < 8192)
2749 if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
2750 rlpml = IGC_MAX_FRAME_BUILD_SKB;
2751 #endif
2752 wr32(IGC_RLPML, rlpml);
2753 }
2754
2755 /**
2756 * igc_msix_other - msix other interrupt handler
2757 * @irq: interrupt number
2758 * @data: pointer to a q_vector
2759 */
2760 static irqreturn_t igc_msix_other(int irq, void *data)
2761 {
2762 struct igc_adapter *adapter = data;
2763 struct igc_hw *hw = &adapter->hw;
2764 u32 icr = rd32(IGC_ICR);
2765
2766 /* reading ICR causes bit 31 of EICR to be cleared */
2767 if (icr & IGC_ICR_DRSTA)
2768 schedule_work(&adapter->reset_task);
2769
2770 if (icr & IGC_ICR_DOUTSYNC) {
2771 /* HW is reporting DMA is out of sync */
2772 adapter->stats.doosync++;
2773 }
2774
2775 if (icr & IGC_ICR_LSC) {
2776 hw->mac.get_link_status = 1;
2777 /* guard against interrupt when we're going down */
2778 if (!test_bit(__IGC_DOWN, &adapter->state))
2779 mod_timer(&adapter->watchdog_timer, jiffies + 1);
2780 }
2781
2782 wr32(IGC_EIMS, adapter->eims_other);
2783
2784 return IRQ_HANDLED;
2785 }
2786
2787 /**
2788 * igc_write_ivar - configure ivar for given MSI-X vector
2789 * @hw: pointer to the HW structure
2790 * @msix_vector: vector number we are allocating to a given ring
2791 * @index: row index of IVAR register to write within IVAR table
2792 * @offset: column offset of in IVAR, should be multiple of 8
2793 *
2794 * The IVAR table consists of 2 columns,
2795 * each containing an cause allocation for an Rx and Tx ring, and a
2796 * variable number of rows depending on the number of queues supported.
2797 */
2798 static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2799 int index, int offset)
2800 {
2801 u32 ivar = array_rd32(IGC_IVAR0, index);
2802
2803 /* clear any bits that are currently set */
2804 ivar &= ~((u32)0xFF << offset);
2805
2806 /* write vector and valid bit */
2807 ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2808
2809 array_wr32(IGC_IVAR0, index, ivar);
2810 }
2811
2812 static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2813 {
2814 struct igc_adapter *adapter = q_vector->adapter;
2815 struct igc_hw *hw = &adapter->hw;
2816 int rx_queue = IGC_N0_QUEUE;
2817 int tx_queue = IGC_N0_QUEUE;
2818
2819 if (q_vector->rx.ring)
2820 rx_queue = q_vector->rx.ring->reg_idx;
2821 if (q_vector->tx.ring)
2822 tx_queue = q_vector->tx.ring->reg_idx;
2823
2824 switch (hw->mac.type) {
2825 case igc_i225:
2826 if (rx_queue > IGC_N0_QUEUE)
2827 igc_write_ivar(hw, msix_vector,
2828 rx_queue >> 1,
2829 (rx_queue & 0x1) << 4);
2830 if (tx_queue > IGC_N0_QUEUE)
2831 igc_write_ivar(hw, msix_vector,
2832 tx_queue >> 1,
2833 ((tx_queue & 0x1) << 4) + 8);
2834 q_vector->eims_value = BIT(msix_vector);
2835 break;
2836 default:
2837 WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2838 break;
2839 }
2840
2841 /* add q_vector eims value to global eims_enable_mask */
2842 adapter->eims_enable_mask |= q_vector->eims_value;
2843
2844 /* configure q_vector to set itr on first interrupt */
2845 q_vector->set_itr = 1;
2846 }
2847
2848 /**
2849 * igc_configure_msix - Configure MSI-X hardware
2850 * @adapter: Pointer to adapter structure
2851 *
2852 * igc_configure_msix sets up the hardware to properly
2853 * generate MSI-X interrupts.
2854 */
2855 static void igc_configure_msix(struct igc_adapter *adapter)
2856 {
2857 struct igc_hw *hw = &adapter->hw;
2858 int i, vector = 0;
2859 u32 tmp;
2860
2861 adapter->eims_enable_mask = 0;
2862
2863 /* set vector for other causes, i.e. link changes */
2864 switch (hw->mac.type) {
2865 case igc_i225:
2866 /* Turn on MSI-X capability first, or our settings
2867 * won't stick. And it will take days to debug.
2868 */
2869 wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2870 IGC_GPIE_PBA | IGC_GPIE_EIAME |
2871 IGC_GPIE_NSICR);
2872
2873 /* enable msix_other interrupt */
2874 adapter->eims_other = BIT(vector);
2875 tmp = (vector++ | IGC_IVAR_VALID) << 8;
2876
2877 wr32(IGC_IVAR_MISC, tmp);
2878 break;
2879 default:
2880 /* do nothing, since nothing else supports MSI-X */
2881 break;
2882 } /* switch (hw->mac.type) */
2883
2884 adapter->eims_enable_mask |= adapter->eims_other;
2885
2886 for (i = 0; i < adapter->num_q_vectors; i++)
2887 igc_assign_vector(adapter->q_vector[i], vector++);
2888
2889 wrfl();
2890 }
2891
2892 static irqreturn_t igc_msix_ring(int irq, void *data)
2893 {
2894 struct igc_q_vector *q_vector = data;
2895
2896 /* Write the ITR value calculated from the previous interrupt. */
2897 igc_write_itr(q_vector);
2898
2899 napi_schedule(&q_vector->napi);
2900
2901 return IRQ_HANDLED;
2902 }
2903
2904 /**
2905 * igc_request_msix - Initialize MSI-X interrupts
2906 * @adapter: Pointer to adapter structure
2907 *
2908 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2909 * kernel.
2910 */
2911 static int igc_request_msix(struct igc_adapter *adapter)
2912 {
2913 int i = 0, err = 0, vector = 0, free_vector = 0;
2914 struct net_device *netdev = adapter->netdev;
2915
2916 err = request_irq(adapter->msix_entries[vector].vector,
2917 &igc_msix_other, 0, netdev->name, adapter);
2918 if (err)
2919 goto err_out;
2920
2921 for (i = 0; i < adapter->num_q_vectors; i++) {
2922 struct igc_q_vector *q_vector = adapter->q_vector[i];
2923
2924 vector++;
2925
2926 q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2927
2928 if (q_vector->rx.ring && q_vector->tx.ring)
2929 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2930 q_vector->rx.ring->queue_index);
2931 else if (q_vector->tx.ring)
2932 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2933 q_vector->tx.ring->queue_index);
2934 else if (q_vector->rx.ring)
2935 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2936 q_vector->rx.ring->queue_index);
2937 else
2938 sprintf(q_vector->name, "%s-unused", netdev->name);
2939
2940 err = request_irq(adapter->msix_entries[vector].vector,
2941 igc_msix_ring, 0, q_vector->name,
2942 q_vector);
2943 if (err)
2944 goto err_free;
2945 }
2946
2947 igc_configure_msix(adapter);
2948 return 0;
2949
2950 err_free:
2951 /* free already assigned IRQs */
2952 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2953
2954 vector--;
2955 for (i = 0; i < vector; i++) {
2956 free_irq(adapter->msix_entries[free_vector++].vector,
2957 adapter->q_vector[i]);
2958 }
2959 err_out:
2960 return err;
2961 }
2962
2963 /**
2964 * igc_reset_q_vector - Reset config for interrupt vector
2965 * @adapter: board private structure to initialize
2966 * @v_idx: Index of vector to be reset
2967 *
2968 * If NAPI is enabled it will delete any references to the
2969 * NAPI struct. This is preparation for igc_free_q_vector.
2970 */
2971 static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2972 {
2973 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2974
2975 /* if we're coming from igc_set_interrupt_capability, the vectors are
2976 * not yet allocated
2977 */
2978 if (!q_vector)
2979 return;
2980
2981 if (q_vector->tx.ring)
2982 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2983
2984 if (q_vector->rx.ring)
2985 adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2986
2987 netif_napi_del(&q_vector->napi);
2988 }
2989
2990 static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2991 {
2992 int v_idx = adapter->num_q_vectors;
2993
2994 if (adapter->msix_entries) {
2995 pci_disable_msix(adapter->pdev);
2996 kfree(adapter->msix_entries);
2997 adapter->msix_entries = NULL;
2998 } else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2999 pci_disable_msi(adapter->pdev);
3000 }
3001
3002 while (v_idx--)
3003 igc_reset_q_vector(adapter, v_idx);
3004 }
3005
3006 /**
3007 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
3008 * @adapter: Pointer to adapter structure
3009 *
3010 * This function resets the device so that it has 0 rx queues, tx queues, and
3011 * MSI-X interrupts allocated.
3012 */
3013 static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
3014 {
3015 igc_free_q_vectors(adapter);
3016 igc_reset_interrupt_capability(adapter);
3017 }
3018
3019 /**
3020 * igc_free_q_vectors - Free memory allocated for interrupt vectors
3021 * @adapter: board private structure to initialize
3022 *
3023 * This function frees the memory allocated to the q_vectors. In addition if
3024 * NAPI is enabled it will delete any references to the NAPI struct prior
3025 * to freeing the q_vector.
3026 */
3027 static void igc_free_q_vectors(struct igc_adapter *adapter)
3028 {
3029 int v_idx = adapter->num_q_vectors;
3030
3031 adapter->num_tx_queues = 0;
3032 adapter->num_rx_queues = 0;
3033 adapter->num_q_vectors = 0;
3034
3035 while (v_idx--) {
3036 igc_reset_q_vector(adapter, v_idx);
3037 igc_free_q_vector(adapter, v_idx);
3038 }
3039 }
3040
3041 /**
3042 * igc_free_q_vector - Free memory allocated for specific interrupt vector
3043 * @adapter: board private structure to initialize
3044 * @v_idx: Index of vector to be freed
3045 *
3046 * This function frees the memory allocated to the q_vector.
3047 */
3048 static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3049 {
3050 struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3051
3052 adapter->q_vector[v_idx] = NULL;
3053
3054 /* igc_get_stats64() might access the rings on this vector,
3055 * we must wait a grace period before freeing it.
3056 */
3057 if (q_vector)
3058 kfree_rcu(q_vector, rcu);
3059 }
3060
3061 /* Need to wait a few seconds after link up to get diagnostic information from
3062 * the phy
3063 */
3064 static void igc_update_phy_info(struct timer_list *t)
3065 {
3066 struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
3067
3068 igc_get_phy_info(&adapter->hw);
3069 }
3070
3071 /**
3072 * igc_has_link - check shared code for link and determine up/down
3073 * @adapter: pointer to driver private info
3074 */
3075 bool igc_has_link(struct igc_adapter *adapter)
3076 {
3077 struct igc_hw *hw = &adapter->hw;
3078 bool link_active = false;
3079
3080 /* get_link_status is set on LSC (link status) interrupt or
3081 * rx sequence error interrupt. get_link_status will stay
3082 * false until the igc_check_for_link establishes link
3083 * for copper adapters ONLY
3084 */
3085 switch (hw->phy.media_type) {
3086 case igc_media_type_copper:
3087 if (!hw->mac.get_link_status)
3088 return true;
3089 hw->mac.ops.check_for_link(hw);
3090 link_active = !hw->mac.get_link_status;
3091 break;
3092 default:
3093 case igc_media_type_unknown:
3094 break;
3095 }
3096
3097 if (hw->mac.type == igc_i225 &&
3098 hw->phy.id == I225_I_PHY_ID) {
3099 if (!netif_carrier_ok(adapter->netdev)) {
3100 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3101 } else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
3102 adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
3103 adapter->link_check_timeout = jiffies;
3104 }
3105 }
3106
3107 return link_active;
3108 }
3109
3110 /**
3111 * igc_watchdog - Timer Call-back
3112 * @t: timer for the watchdog
3113 */
3114 static void igc_watchdog(struct timer_list *t)
3115 {
3116 struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
3117 /* Do the rest outside of interrupt context */
3118 schedule_work(&adapter->watchdog_task);
3119 }
3120
3121 static void igc_watchdog_task(struct work_struct *work)
3122 {
3123 struct igc_adapter *adapter = container_of(work,
3124 struct igc_adapter,
3125 watchdog_task);
3126 struct net_device *netdev = adapter->netdev;
3127 struct igc_hw *hw = &adapter->hw;
3128 struct igc_phy_info *phy = &hw->phy;
3129 u16 phy_data, retry_count = 20;
3130 u32 connsw;
3131 u32 link;
3132 int i;
3133
3134 link = igc_has_link(adapter);
3135
3136 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
3137 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
3138 adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
3139 else
3140 link = false;
3141 }
3142
3143 /* Force link down if we have fiber to swap to */
3144 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
3145 if (hw->phy.media_type == igc_media_type_copper) {
3146 connsw = rd32(IGC_CONNSW);
3147 if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
3148 link = 0;
3149 }
3150 }
3151 if (link) {
3152 if (!netif_carrier_ok(netdev)) {
3153 u32 ctrl;
3154
3155 hw->mac.ops.get_speed_and_duplex(hw,
3156 &adapter->link_speed,
3157 &adapter->link_duplex);
3158
3159 ctrl = rd32(IGC_CTRL);
3160 /* Link status message must follow this format */
3161 netdev_info(netdev,
3162 "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
3163 netdev->name,
3164 adapter->link_speed,
3165 adapter->link_duplex == FULL_DUPLEX ?
3166 "Full" : "Half",
3167 (ctrl & IGC_CTRL_TFCE) &&
3168 (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
3169 (ctrl & IGC_CTRL_RFCE) ? "RX" :
3170 (ctrl & IGC_CTRL_TFCE) ? "TX" : "None");
3171
3172 /* check if SmartSpeed worked */
3173 igc_check_downshift(hw);
3174 if (phy->speed_downgraded)
3175 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
3176
3177 /* adjust timeout factor according to speed/duplex */
3178 adapter->tx_timeout_factor = 1;
3179 switch (adapter->link_speed) {
3180 case SPEED_10:
3181 adapter->tx_timeout_factor = 14;
3182 break;
3183 case SPEED_100:
3184 /* maybe add some timeout factor ? */
3185 break;
3186 }
3187
3188 if (adapter->link_speed != SPEED_1000)
3189 goto no_wait;
3190
3191 /* wait for Remote receiver status OK */
3192 retry_read_status:
3193 if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
3194 &phy_data)) {
3195 if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
3196 retry_count) {
3197 msleep(100);
3198 retry_count--;
3199 goto retry_read_status;
3200 } else if (!retry_count) {
3201 dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
3202 }
3203 } else {
3204 dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
3205 }
3206 no_wait:
3207 netif_carrier_on(netdev);
3208
3209 /* link state has changed, schedule phy info update */
3210 if (!test_bit(__IGC_DOWN, &adapter->state))
3211 mod_timer(&adapter->phy_info_timer,
3212 round_jiffies(jiffies + 2 * HZ));
3213 }
3214 } else {
3215 if (netif_carrier_ok(netdev)) {
3216 adapter->link_speed = 0;
3217 adapter->link_duplex = 0;
3218
3219 /* Links status message must follow this format */
3220 netdev_info(netdev, "igc: %s NIC Link is Down\n",
3221 netdev->name);
3222 netif_carrier_off(netdev);
3223
3224 /* link state has changed, schedule phy info update */
3225 if (!test_bit(__IGC_DOWN, &adapter->state))
3226 mod_timer(&adapter->phy_info_timer,
3227 round_jiffies(jiffies + 2 * HZ));
3228
3229 /* link is down, time to check for alternate media */
3230 if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
3231 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3232 schedule_work(&adapter->reset_task);
3233 /* return immediately */
3234 return;
3235 }
3236 }
3237
3238 /* also check for alternate media here */
3239 } else if (!netif_carrier_ok(netdev) &&
3240 (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
3241 if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3242 schedule_work(&adapter->reset_task);
3243 /* return immediately */
3244 return;
3245 }
3246 }
3247 }
3248
3249 spin_lock(&adapter->stats64_lock);
3250 igc_update_stats(adapter);
3251 spin_unlock(&adapter->stats64_lock);
3252
3253 for (i = 0; i < adapter->num_tx_queues; i++) {
3254 struct igc_ring *tx_ring = adapter->tx_ring[i];
3255
3256 if (!netif_carrier_ok(netdev)) {
3257 /* We've lost link, so the controller stops DMA,
3258 * but we've got queued Tx work that's never going
3259 * to get done, so reset controller to flush Tx.
3260 * (Do the reset outside of interrupt context).
3261 */
3262 if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
3263 adapter->tx_timeout_count++;
3264 schedule_work(&adapter->reset_task);
3265 /* return immediately since reset is imminent */
3266 return;
3267 }
3268 }
3269
3270 /* Force detection of hung controller every watchdog period */
3271 set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3272 }
3273
3274 /* Cause software interrupt to ensure Rx ring is cleaned */
3275 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3276 u32 eics = 0;
3277
3278 for (i = 0; i < adapter->num_q_vectors; i++)
3279 eics |= adapter->q_vector[i]->eims_value;
3280 wr32(IGC_EICS, eics);
3281 } else {
3282 wr32(IGC_ICS, IGC_ICS_RXDMT0);
3283 }
3284
3285 /* Reset the timer */
3286 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3287 if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
3288 mod_timer(&adapter->watchdog_timer,
3289 round_jiffies(jiffies + HZ));
3290 else
3291 mod_timer(&adapter->watchdog_timer,
3292 round_jiffies(jiffies + 2 * HZ));
3293 }
3294 }
3295
3296 /**
3297 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3298 * @q_vector: pointer to q_vector
3299 *
3300 * Stores a new ITR value based on strictly on packet size. This
3301 * algorithm is less sophisticated than that used in igc_update_itr,
3302 * due to the difficulty of synchronizing statistics across multiple
3303 * receive rings. The divisors and thresholds used by this function
3304 * were determined based on theoretical maximum wire speed and testing
3305 * data, in order to minimize response time while increasing bulk
3306 * throughput.
3307 * NOTE: This function is called only when operating in a multiqueue
3308 * receive environment.
3309 */
3310 static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3311 {
3312 struct igc_adapter *adapter = q_vector->adapter;
3313 int new_val = q_vector->itr_val;
3314 int avg_wire_size = 0;
3315 unsigned int packets;
3316
3317 /* For non-gigabit speeds, just fix the interrupt rate at 4000
3318 * ints/sec - ITR timer value of 120 ticks.
3319 */
3320 switch (adapter->link_speed) {
3321 case SPEED_10:
3322 case SPEED_100:
3323 new_val = IGC_4K_ITR;
3324 goto set_itr_val;
3325 default:
3326 break;
3327 }
3328
3329 packets = q_vector->rx.total_packets;
3330 if (packets)
3331 avg_wire_size = q_vector->rx.total_bytes / packets;
3332
3333 packets = q_vector->tx.total_packets;
3334 if (packets)
3335 avg_wire_size = max_t(u32, avg_wire_size,
3336 q_vector->tx.total_bytes / packets);
3337
3338 /* if avg_wire_size isn't set no work was done */
3339 if (!avg_wire_size)
3340 goto clear_counts;
3341
3342 /* Add 24 bytes to size to account for CRC, preamble, and gap */
3343 avg_wire_size += 24;
3344
3345 /* Don't starve jumbo frames */
3346 avg_wire_size = min(avg_wire_size, 3000);
3347
3348 /* Give a little boost to mid-size frames */
3349 if (avg_wire_size > 300 && avg_wire_size < 1200)
3350 new_val = avg_wire_size / 3;
3351 else
3352 new_val = avg_wire_size / 2;
3353
3354 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3355 if (new_val < IGC_20K_ITR &&
3356 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3357 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3358 new_val = IGC_20K_ITR;
3359
3360 set_itr_val:
3361 if (new_val != q_vector->itr_val) {
3362 q_vector->itr_val = new_val;
3363 q_vector->set_itr = 1;
3364 }
3365 clear_counts:
3366 q_vector->rx.total_bytes = 0;
3367 q_vector->rx.total_packets = 0;
3368 q_vector->tx.total_bytes = 0;
3369 q_vector->tx.total_packets = 0;
3370 }
3371
3372 /**
3373 * igc_update_itr - update the dynamic ITR value based on statistics
3374 * @q_vector: pointer to q_vector
3375 * @ring_container: ring info to update the itr for
3376 *
3377 * Stores a new ITR value based on packets and byte
3378 * counts during the last interrupt. The advantage of per interrupt
3379 * computation is faster updates and more accurate ITR for the current
3380 * traffic pattern. Constants in this function were computed
3381 * based on theoretical maximum wire speed and thresholds were set based
3382 * on testing data as well as attempting to minimize response time
3383 * while increasing bulk throughput.
3384 * NOTE: These calculations are only valid when operating in a single-
3385 * queue environment.
3386 */
3387 static void igc_update_itr(struct igc_q_vector *q_vector,
3388 struct igc_ring_container *ring_container)
3389 {
3390 unsigned int packets = ring_container->total_packets;
3391 unsigned int bytes = ring_container->total_bytes;
3392 u8 itrval = ring_container->itr;
3393
3394 /* no packets, exit with status unchanged */
3395 if (packets == 0)
3396 return;
3397
3398 switch (itrval) {
3399 case lowest_latency:
3400 /* handle TSO and jumbo frames */
3401 if (bytes / packets > 8000)
3402 itrval = bulk_latency;
3403 else if ((packets < 5) && (bytes > 512))
3404 itrval = low_latency;
3405 break;
3406 case low_latency: /* 50 usec aka 20000 ints/s */
3407 if (bytes > 10000) {
3408 /* this if handles the TSO accounting */
3409 if (bytes / packets > 8000)
3410 itrval = bulk_latency;
3411 else if ((packets < 10) || ((bytes / packets) > 1200))
3412 itrval = bulk_latency;
3413 else if ((packets > 35))
3414 itrval = lowest_latency;
3415 } else if (bytes / packets > 2000) {
3416 itrval = bulk_latency;
3417 } else if (packets <= 2 && bytes < 512) {
3418 itrval = lowest_latency;
3419 }
3420 break;
3421 case bulk_latency: /* 250 usec aka 4000 ints/s */
3422 if (bytes > 25000) {
3423 if (packets > 35)
3424 itrval = low_latency;
3425 } else if (bytes < 1500) {
3426 itrval = low_latency;
3427 }
3428 break;
3429 }
3430
3431 /* clear work counters since we have the values we need */
3432 ring_container->total_bytes = 0;
3433 ring_container->total_packets = 0;
3434
3435 /* write updated itr to ring container */
3436 ring_container->itr = itrval;
3437 }
3438
3439 /**
3440 * igc_intr_msi - Interrupt Handler
3441 * @irq: interrupt number
3442 * @data: pointer to a network interface device structure
3443 */
3444 static irqreturn_t igc_intr_msi(int irq, void *data)
3445 {
3446 struct igc_adapter *adapter = data;
3447 struct igc_q_vector *q_vector = adapter->q_vector[0];
3448 struct igc_hw *hw = &adapter->hw;
3449 /* read ICR disables interrupts using IAM */
3450 u32 icr = rd32(IGC_ICR);
3451
3452 igc_write_itr(q_vector);
3453
3454 if (icr & IGC_ICR_DRSTA)
3455 schedule_work(&adapter->reset_task);
3456
3457 if (icr & IGC_ICR_DOUTSYNC) {
3458 /* HW is reporting DMA is out of sync */
3459 adapter->stats.doosync++;
3460 }
3461
3462 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3463 hw->mac.get_link_status = 1;
3464 if (!test_bit(__IGC_DOWN, &adapter->state))
3465 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3466 }
3467
3468 napi_schedule(&q_vector->napi);
3469
3470 return IRQ_HANDLED;
3471 }
3472
3473 /**
3474 * igc_intr - Legacy Interrupt Handler
3475 * @irq: interrupt number
3476 * @data: pointer to a network interface device structure
3477 */
3478 static irqreturn_t igc_intr(int irq, void *data)
3479 {
3480 struct igc_adapter *adapter = data;
3481 struct igc_q_vector *q_vector = adapter->q_vector[0];
3482 struct igc_hw *hw = &adapter->hw;
3483 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
3484 * need for the IMC write
3485 */
3486 u32 icr = rd32(IGC_ICR);
3487
3488 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3489 * not set, then the adapter didn't send an interrupt
3490 */
3491 if (!(icr & IGC_ICR_INT_ASSERTED))
3492 return IRQ_NONE;
3493
3494 igc_write_itr(q_vector);
3495
3496 if (icr & IGC_ICR_DRSTA)
3497 schedule_work(&adapter->reset_task);
3498
3499 if (icr & IGC_ICR_DOUTSYNC) {
3500 /* HW is reporting DMA is out of sync */
3501 adapter->stats.doosync++;
3502 }
3503
3504 if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3505 hw->mac.get_link_status = 1;
3506 /* guard against interrupt when we're going down */
3507 if (!test_bit(__IGC_DOWN, &adapter->state))
3508 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3509 }
3510
3511 napi_schedule(&q_vector->napi);
3512
3513 return IRQ_HANDLED;
3514 }
3515
3516 static void igc_set_itr(struct igc_q_vector *q_vector)
3517 {
3518 struct igc_adapter *adapter = q_vector->adapter;
3519 u32 new_itr = q_vector->itr_val;
3520 u8 current_itr = 0;
3521
3522 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3523 switch (adapter->link_speed) {
3524 case SPEED_10:
3525 case SPEED_100:
3526 current_itr = 0;
3527 new_itr = IGC_4K_ITR;
3528 goto set_itr_now;
3529 default:
3530 break;
3531 }
3532
3533 igc_update_itr(q_vector, &q_vector->tx);
3534 igc_update_itr(q_vector, &q_vector->rx);
3535
3536 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3537
3538 /* conservative mode (itr 3) eliminates the lowest_latency setting */
3539 if (current_itr == lowest_latency &&
3540 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3541 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3542 current_itr = low_latency;
3543
3544 switch (current_itr) {
3545 /* counts and packets in update_itr are dependent on these numbers */
3546 case lowest_latency:
3547 new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3548 break;
3549 case low_latency:
3550 new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3551 break;
3552 case bulk_latency:
3553 new_itr = IGC_4K_ITR; /* 4,000 ints/sec */
3554 break;
3555 default:
3556 break;
3557 }
3558
3559 set_itr_now:
3560 if (new_itr != q_vector->itr_val) {
3561 /* this attempts to bias the interrupt rate towards Bulk
3562 * by adding intermediate steps when interrupt rate is
3563 * increasing
3564 */
3565 new_itr = new_itr > q_vector->itr_val ?
3566 max((new_itr * q_vector->itr_val) /
3567 (new_itr + (q_vector->itr_val >> 2)),
3568 new_itr) : new_itr;
3569 /* Don't write the value here; it resets the adapter's
3570 * internal timer, and causes us to delay far longer than
3571 * we should between interrupts. Instead, we write the ITR
3572 * value at the beginning of the next interrupt so the timing
3573 * ends up being correct.
3574 */
3575 q_vector->itr_val = new_itr;
3576 q_vector->set_itr = 1;
3577 }
3578 }
3579
3580 static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3581 {
3582 struct igc_adapter *adapter = q_vector->adapter;
3583 struct igc_hw *hw = &adapter->hw;
3584
3585 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3586 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3587 if (adapter->num_q_vectors == 1)
3588 igc_set_itr(q_vector);
3589 else
3590 igc_update_ring_itr(q_vector);
3591 }
3592
3593 if (!test_bit(__IGC_DOWN, &adapter->state)) {
3594 if (adapter->msix_entries)
3595 wr32(IGC_EIMS, q_vector->eims_value);
3596 else
3597 igc_irq_enable(adapter);
3598 }
3599 }
3600
3601 /**
3602 * igc_poll - NAPI Rx polling callback
3603 * @napi: napi polling structure
3604 * @budget: count of how many packets we should handle
3605 */
3606 static int igc_poll(struct napi_struct *napi, int budget)
3607 {
3608 struct igc_q_vector *q_vector = container_of(napi,
3609 struct igc_q_vector,
3610 napi);
3611 bool clean_complete = true;
3612 int work_done = 0;
3613
3614 if (q_vector->tx.ring)
3615 clean_complete = igc_clean_tx_irq(q_vector, budget);
3616
3617 if (q_vector->rx.ring) {
3618 int cleaned = igc_clean_rx_irq(q_vector, budget);
3619
3620 work_done += cleaned;
3621 if (cleaned >= budget)
3622 clean_complete = false;
3623 }
3624
3625 /* If all work not completed, return budget and keep polling */
3626 if (!clean_complete)
3627 return budget;
3628
3629 /* Exit the polling mode, but don't re-enable interrupts if stack might
3630 * poll us due to busy-polling
3631 */
3632 if (likely(napi_complete_done(napi, work_done)))
3633 igc_ring_irq_enable(q_vector);
3634
3635 return min(work_done, budget - 1);
3636 }
3637
3638 /**
3639 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3640 * @adapter: Pointer to adapter structure
3641 * @msix: boolean value for MSI-X capability
3642 *
3643 * Attempt to configure interrupts using the best available
3644 * capabilities of the hardware and kernel.
3645 */
3646 static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3647 bool msix)
3648 {
3649 int numvecs, i;
3650 int err;
3651
3652 if (!msix)
3653 goto msi_only;
3654 adapter->flags |= IGC_FLAG_HAS_MSIX;
3655
3656 /* Number of supported queues. */
3657 adapter->num_rx_queues = adapter->rss_queues;
3658
3659 adapter->num_tx_queues = adapter->rss_queues;
3660
3661 /* start with one vector for every Rx queue */
3662 numvecs = adapter->num_rx_queues;
3663
3664 /* if Tx handler is separate add 1 for every Tx queue */
3665 if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3666 numvecs += adapter->num_tx_queues;
3667
3668 /* store the number of vectors reserved for queues */
3669 adapter->num_q_vectors = numvecs;
3670
3671 /* add 1 vector for link status interrupts */
3672 numvecs++;
3673
3674 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3675 GFP_KERNEL);
3676
3677 if (!adapter->msix_entries)
3678 return;
3679
3680 /* populate entry values */
3681 for (i = 0; i < numvecs; i++)
3682 adapter->msix_entries[i].entry = i;
3683
3684 err = pci_enable_msix_range(adapter->pdev,
3685 adapter->msix_entries,
3686 numvecs,
3687 numvecs);
3688 if (err > 0)
3689 return;
3690
3691 kfree(adapter->msix_entries);
3692 adapter->msix_entries = NULL;
3693
3694 igc_reset_interrupt_capability(adapter);
3695
3696 msi_only:
3697 adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3698
3699 adapter->rss_queues = 1;
3700 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3701 adapter->num_rx_queues = 1;
3702 adapter->num_tx_queues = 1;
3703 adapter->num_q_vectors = 1;
3704 if (!pci_enable_msi(adapter->pdev))
3705 adapter->flags |= IGC_FLAG_HAS_MSI;
3706 }
3707
3708 static void igc_add_ring(struct igc_ring *ring,
3709 struct igc_ring_container *head)
3710 {
3711 head->ring = ring;
3712 head->count++;
3713 }
3714
3715 /**
3716 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3717 * @adapter: board private structure to initialize
3718 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3719 * @v_idx: index of vector in adapter struct
3720 * @txr_count: total number of Tx rings to allocate
3721 * @txr_idx: index of first Tx ring to allocate
3722 * @rxr_count: total number of Rx rings to allocate
3723 * @rxr_idx: index of first Rx ring to allocate
3724 *
3725 * We allocate one q_vector. If allocation fails we return -ENOMEM.
3726 */
3727 static int igc_alloc_q_vector(struct igc_adapter *adapter,
3728 unsigned int v_count, unsigned int v_idx,
3729 unsigned int txr_count, unsigned int txr_idx,
3730 unsigned int rxr_count, unsigned int rxr_idx)
3731 {
3732 struct igc_q_vector *q_vector;
3733 struct igc_ring *ring;
3734 int ring_count;
3735
3736 /* igc only supports 1 Tx and/or 1 Rx queue per vector */
3737 if (txr_count > 1 || rxr_count > 1)
3738 return -ENOMEM;
3739
3740 ring_count = txr_count + rxr_count;
3741
3742 /* allocate q_vector and rings */
3743 q_vector = adapter->q_vector[v_idx];
3744 if (!q_vector)
3745 q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3746 GFP_KERNEL);
3747 else
3748 memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3749 if (!q_vector)
3750 return -ENOMEM;
3751
3752 /* initialize NAPI */
3753 netif_napi_add(adapter->netdev, &q_vector->napi,
3754 igc_poll, 64);
3755
3756 /* tie q_vector and adapter together */
3757 adapter->q_vector[v_idx] = q_vector;
3758 q_vector->adapter = adapter;
3759
3760 /* initialize work limits */
3761 q_vector->tx.work_limit = adapter->tx_work_limit;
3762
3763 /* initialize ITR configuration */
3764 q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3765 q_vector->itr_val = IGC_START_ITR;
3766
3767 /* initialize pointer to rings */
3768 ring = q_vector->ring;
3769
3770 /* initialize ITR */
3771 if (rxr_count) {
3772 /* rx or rx/tx vector */
3773 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3774 q_vector->itr_val = adapter->rx_itr_setting;
3775 } else {
3776 /* tx only vector */
3777 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3778 q_vector->itr_val = adapter->tx_itr_setting;
3779 }
3780
3781 if (txr_count) {
3782 /* assign generic ring traits */
3783 ring->dev = &adapter->pdev->dev;
3784 ring->netdev = adapter->netdev;
3785
3786 /* configure backlink on ring */
3787 ring->q_vector = q_vector;
3788
3789 /* update q_vector Tx values */
3790 igc_add_ring(ring, &q_vector->tx);
3791
3792 /* apply Tx specific ring traits */
3793 ring->count = adapter->tx_ring_count;
3794 ring->queue_index = txr_idx;
3795
3796 /* assign ring to adapter */
3797 adapter->tx_ring[txr_idx] = ring;
3798
3799 /* push pointer to next ring */
3800 ring++;
3801 }
3802
3803 if (rxr_count) {
3804 /* assign generic ring traits */
3805 ring->dev = &adapter->pdev->dev;
3806 ring->netdev = adapter->netdev;
3807
3808 /* configure backlink on ring */
3809 ring->q_vector = q_vector;
3810
3811 /* update q_vector Rx values */
3812 igc_add_ring(ring, &q_vector->rx);
3813
3814 /* apply Rx specific ring traits */
3815 ring->count = adapter->rx_ring_count;
3816 ring->queue_index = rxr_idx;
3817
3818 /* assign ring to adapter */
3819 adapter->rx_ring[rxr_idx] = ring;
3820 }
3821
3822 return 0;
3823 }
3824
3825 /**
3826 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3827 * @adapter: board private structure to initialize
3828 *
3829 * We allocate one q_vector per queue interrupt. If allocation fails we
3830 * return -ENOMEM.
3831 */
3832 static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3833 {
3834 int rxr_remaining = adapter->num_rx_queues;
3835 int txr_remaining = adapter->num_tx_queues;
3836 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3837 int q_vectors = adapter->num_q_vectors;
3838 int err;
3839
3840 if (q_vectors >= (rxr_remaining + txr_remaining)) {
3841 for (; rxr_remaining; v_idx++) {
3842 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3843 0, 0, 1, rxr_idx);
3844
3845 if (err)
3846 goto err_out;
3847
3848 /* update counts and index */
3849 rxr_remaining--;
3850 rxr_idx++;
3851 }
3852 }
3853
3854 for (; v_idx < q_vectors; v_idx++) {
3855 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3856 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3857
3858 err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3859 tqpv, txr_idx, rqpv, rxr_idx);
3860
3861 if (err)
3862 goto err_out;
3863
3864 /* update counts and index */
3865 rxr_remaining -= rqpv;
3866 txr_remaining -= tqpv;
3867 rxr_idx++;
3868 txr_idx++;
3869 }
3870
3871 return 0;
3872
3873 err_out:
3874 adapter->num_tx_queues = 0;
3875 adapter->num_rx_queues = 0;
3876 adapter->num_q_vectors = 0;
3877
3878 while (v_idx--)
3879 igc_free_q_vector(adapter, v_idx);
3880
3881 return -ENOMEM;
3882 }
3883
3884 /**
3885 * igc_cache_ring_register - Descriptor ring to register mapping
3886 * @adapter: board private structure to initialize
3887 *
3888 * Once we know the feature-set enabled for the device, we'll cache
3889 * the register offset the descriptor ring is assigned to.
3890 */
3891 static void igc_cache_ring_register(struct igc_adapter *adapter)
3892 {
3893 int i = 0, j = 0;
3894
3895 switch (adapter->hw.mac.type) {
3896 case igc_i225:
3897 /* Fall through */
3898 default:
3899 for (; i < adapter->num_rx_queues; i++)
3900 adapter->rx_ring[i]->reg_idx = i;
3901 for (; j < adapter->num_tx_queues; j++)
3902 adapter->tx_ring[j]->reg_idx = j;
3903 break;
3904 }
3905 }
3906
3907 /**
3908 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3909 * @adapter: Pointer to adapter structure
3910 * @msix: boolean for MSI-X capability
3911 *
3912 * This function initializes the interrupts and allocates all of the queues.
3913 */
3914 static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3915 {
3916 struct pci_dev *pdev = adapter->pdev;
3917 int err = 0;
3918
3919 igc_set_interrupt_capability(adapter, msix);
3920
3921 err = igc_alloc_q_vectors(adapter);
3922 if (err) {
3923 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3924 goto err_alloc_q_vectors;
3925 }
3926
3927 igc_cache_ring_register(adapter);
3928
3929 return 0;
3930
3931 err_alloc_q_vectors:
3932 igc_reset_interrupt_capability(adapter);
3933 return err;
3934 }
3935
3936 static void igc_free_irq(struct igc_adapter *adapter)
3937 {
3938 if (adapter->msix_entries) {
3939 int vector = 0, i;
3940
3941 free_irq(adapter->msix_entries[vector++].vector, adapter);
3942
3943 for (i = 0; i < adapter->num_q_vectors; i++)
3944 free_irq(adapter->msix_entries[vector++].vector,
3945 adapter->q_vector[i]);
3946 } else {
3947 free_irq(adapter->pdev->irq, adapter);
3948 }
3949 }
3950
3951 /**
3952 * igc_irq_disable - Mask off interrupt generation on the NIC
3953 * @adapter: board private structure
3954 */
3955 static void igc_irq_disable(struct igc_adapter *adapter)
3956 {
3957 struct igc_hw *hw = &adapter->hw;
3958
3959 if (adapter->msix_entries) {
3960 u32 regval = rd32(IGC_EIAM);
3961
3962 wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3963 wr32(IGC_EIMC, adapter->eims_enable_mask);
3964 regval = rd32(IGC_EIAC);
3965 wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3966 }
3967
3968 wr32(IGC_IAM, 0);
3969 wr32(IGC_IMC, ~0);
3970 wrfl();
3971
3972 if (adapter->msix_entries) {
3973 int vector = 0, i;
3974
3975 synchronize_irq(adapter->msix_entries[vector++].vector);
3976
3977 for (i = 0; i < adapter->num_q_vectors; i++)
3978 synchronize_irq(adapter->msix_entries[vector++].vector);
3979 } else {
3980 synchronize_irq(adapter->pdev->irq);
3981 }
3982 }
3983
3984 /**
3985 * igc_irq_enable - Enable default interrupt generation settings
3986 * @adapter: board private structure
3987 */
3988 static void igc_irq_enable(struct igc_adapter *adapter)
3989 {
3990 struct igc_hw *hw = &adapter->hw;
3991
3992 if (adapter->msix_entries) {
3993 u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3994 u32 regval = rd32(IGC_EIAC);
3995
3996 wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3997 regval = rd32(IGC_EIAM);
3998 wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3999 wr32(IGC_EIMS, adapter->eims_enable_mask);
4000 wr32(IGC_IMS, ims);
4001 } else {
4002 wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4003 wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
4004 }
4005 }
4006
4007 /**
4008 * igc_request_irq - initialize interrupts
4009 * @adapter: Pointer to adapter structure
4010 *
4011 * Attempts to configure interrupts using the best available
4012 * capabilities of the hardware and kernel.
4013 */
4014 static int igc_request_irq(struct igc_adapter *adapter)
4015 {
4016 struct net_device *netdev = adapter->netdev;
4017 struct pci_dev *pdev = adapter->pdev;
4018 int err = 0;
4019
4020 if (adapter->flags & IGC_FLAG_HAS_MSIX) {
4021 err = igc_request_msix(adapter);
4022 if (!err)
4023 goto request_done;
4024 /* fall back to MSI */
4025 igc_free_all_tx_resources(adapter);
4026 igc_free_all_rx_resources(adapter);
4027
4028 igc_clear_interrupt_scheme(adapter);
4029 err = igc_init_interrupt_scheme(adapter, false);
4030 if (err)
4031 goto request_done;
4032 igc_setup_all_tx_resources(adapter);
4033 igc_setup_all_rx_resources(adapter);
4034 igc_configure(adapter);
4035 }
4036
4037 igc_assign_vector(adapter->q_vector[0], 0);
4038
4039 if (adapter->flags & IGC_FLAG_HAS_MSI) {
4040 err = request_irq(pdev->irq, &igc_intr_msi, 0,
4041 netdev->name, adapter);
4042 if (!err)
4043 goto request_done;
4044
4045 /* fall back to legacy interrupts */
4046 igc_reset_interrupt_capability(adapter);
4047 adapter->flags &= ~IGC_FLAG_HAS_MSI;
4048 }
4049
4050 err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
4051 netdev->name, adapter);
4052
4053 if (err)
4054 dev_err(&pdev->dev, "Error %d getting interrupt\n",
4055 err);
4056
4057 request_done:
4058 return err;
4059 }
4060
4061 static void igc_write_itr(struct igc_q_vector *q_vector)
4062 {
4063 u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4064
4065 if (!q_vector->set_itr)
4066 return;
4067
4068 if (!itr_val)
4069 itr_val = IGC_ITR_VAL_MASK;
4070
4071 itr_val |= IGC_EITR_CNT_IGNR;
4072
4073 writel(itr_val, q_vector->itr_register);
4074 q_vector->set_itr = 0;
4075 }
4076
4077 /**
4078 * __igc_open - Called when a network interface is made active
4079 * @netdev: network interface device structure
4080 * @resuming: boolean indicating if the device is resuming
4081 *
4082 * Returns 0 on success, negative value on failure
4083 *
4084 * The open entry point is called when a network interface is made
4085 * active by the system (IFF_UP). At this point all resources needed
4086 * for transmit and receive operations are allocated, the interrupt
4087 * handler is registered with the OS, the watchdog timer is started,
4088 * and the stack is notified that the interface is ready.
4089 */
4090 static int __igc_open(struct net_device *netdev, bool resuming)
4091 {
4092 struct igc_adapter *adapter = netdev_priv(netdev);
4093 struct igc_hw *hw = &adapter->hw;
4094 int err = 0;
4095 int i = 0;
4096
4097 /* disallow open during test */
4098
4099 if (test_bit(__IGC_TESTING, &adapter->state)) {
4100 WARN_ON(resuming);
4101 return -EBUSY;
4102 }
4103
4104 netif_carrier_off(netdev);
4105
4106 /* allocate transmit descriptors */
4107 err = igc_setup_all_tx_resources(adapter);
4108 if (err)
4109 goto err_setup_tx;
4110
4111 /* allocate receive descriptors */
4112 err = igc_setup_all_rx_resources(adapter);
4113 if (err)
4114 goto err_setup_rx;
4115
4116 igc_power_up_link(adapter);
4117
4118 igc_configure(adapter);
4119
4120 err = igc_request_irq(adapter);
4121 if (err)
4122 goto err_req_irq;
4123
4124 /* Notify the stack of the actual queue counts. */
4125 err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
4126 if (err)
4127 goto err_set_queues;
4128
4129 err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
4130 if (err)
4131 goto err_set_queues;
4132
4133 clear_bit(__IGC_DOWN, &adapter->state);
4134
4135 for (i = 0; i < adapter->num_q_vectors; i++)
4136 napi_enable(&adapter->q_vector[i]->napi);
4137
4138 /* Clear any pending interrupts. */
4139 rd32(IGC_ICR);
4140 igc_irq_enable(adapter);
4141
4142 netif_tx_start_all_queues(netdev);
4143
4144 /* start the watchdog. */
4145 hw->mac.get_link_status = 1;
4146 schedule_work(&adapter->watchdog_task);
4147
4148 return IGC_SUCCESS;
4149
4150 err_set_queues:
4151 igc_free_irq(adapter);
4152 err_req_irq:
4153 igc_release_hw_control(adapter);
4154 igc_power_down_link(adapter);
4155 igc_free_all_rx_resources(adapter);
4156 err_setup_rx:
4157 igc_free_all_tx_resources(adapter);
4158 err_setup_tx:
4159 igc_reset(adapter);
4160
4161 return err;
4162 }
4163
4164 static int igc_open(struct net_device *netdev)
4165 {
4166 return __igc_open(netdev, false);
4167 }
4168
4169 /**
4170 * __igc_close - Disables a network interface
4171 * @netdev: network interface device structure
4172 * @suspending: boolean indicating the device is suspending
4173 *
4174 * Returns 0, this is not allowed to fail
4175 *
4176 * The close entry point is called when an interface is de-activated
4177 * by the OS. The hardware is still under the driver's control, but
4178 * needs to be disabled. A global MAC reset is issued to stop the
4179 * hardware, and all transmit and receive resources are freed.
4180 */
4181 static int __igc_close(struct net_device *netdev, bool suspending)
4182 {
4183 struct igc_adapter *adapter = netdev_priv(netdev);
4184
4185 WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
4186
4187 igc_down(adapter);
4188
4189 igc_release_hw_control(adapter);
4190
4191 igc_free_irq(adapter);
4192
4193 igc_free_all_tx_resources(adapter);
4194 igc_free_all_rx_resources(adapter);
4195
4196 return 0;
4197 }
4198
4199 static int igc_close(struct net_device *netdev)
4200 {
4201 if (netif_device_present(netdev) || netdev->dismantle)
4202 return __igc_close(netdev, false);
4203 return 0;
4204 }
4205
4206 static const struct net_device_ops igc_netdev_ops = {
4207 .ndo_open = igc_open,
4208 .ndo_stop = igc_close,
4209 .ndo_start_xmit = igc_xmit_frame,
4210 .ndo_set_rx_mode = igc_set_rx_mode,
4211 .ndo_set_mac_address = igc_set_mac,
4212 .ndo_change_mtu = igc_change_mtu,
4213 .ndo_get_stats = igc_get_stats,
4214 .ndo_fix_features = igc_fix_features,
4215 .ndo_set_features = igc_set_features,
4216 .ndo_features_check = igc_features_check,
4217 };
4218
4219 /* PCIe configuration access */
4220 void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4221 {
4222 struct igc_adapter *adapter = hw->back;
4223
4224 pci_read_config_word(adapter->pdev, reg, value);
4225 }
4226
4227 void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4228 {
4229 struct igc_adapter *adapter = hw->back;
4230
4231 pci_write_config_word(adapter->pdev, reg, *value);
4232 }
4233
4234 s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4235 {
4236 struct igc_adapter *adapter = hw->back;
4237
4238 if (!pci_is_pcie(adapter->pdev))
4239 return -IGC_ERR_CONFIG;
4240
4241 pcie_capability_read_word(adapter->pdev, reg, value);
4242
4243 return IGC_SUCCESS;
4244 }
4245
4246 s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4247 {
4248 struct igc_adapter *adapter = hw->back;
4249
4250 if (!pci_is_pcie(adapter->pdev))
4251 return -IGC_ERR_CONFIG;
4252
4253 pcie_capability_write_word(adapter->pdev, reg, *value);
4254
4255 return IGC_SUCCESS;
4256 }
4257
4258 u32 igc_rd32(struct igc_hw *hw, u32 reg)
4259 {
4260 struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4261 u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4262 u32 value = 0;
4263
4264 if (IGC_REMOVED(hw_addr))
4265 return ~value;
4266
4267 value = readl(&hw_addr[reg]);
4268
4269 /* reads should not return all F's */
4270 if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4271 struct net_device *netdev = igc->netdev;
4272
4273 hw->hw_addr = NULL;
4274 netif_device_detach(netdev);
4275 netdev_err(netdev, "PCIe link lost, device now detached\n");
4276 WARN(pci_device_is_present(igc->pdev),
4277 "igc: Failed to read reg 0x%x!\n", reg);
4278 }
4279
4280 return value;
4281 }
4282
4283 int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4284 {
4285 struct pci_dev *pdev = adapter->pdev;
4286 struct igc_mac_info *mac = &adapter->hw.mac;
4287
4288 mac->autoneg = 0;
4289
4290 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4291 * for the switch() below to work
4292 */
4293 if ((spd & 1) || (dplx & ~1))
4294 goto err_inval;
4295
4296 switch (spd + dplx) {
4297 case SPEED_10 + DUPLEX_HALF:
4298 mac->forced_speed_duplex = ADVERTISE_10_HALF;
4299 break;
4300 case SPEED_10 + DUPLEX_FULL:
4301 mac->forced_speed_duplex = ADVERTISE_10_FULL;
4302 break;
4303 case SPEED_100 + DUPLEX_HALF:
4304 mac->forced_speed_duplex = ADVERTISE_100_HALF;
4305 break;
4306 case SPEED_100 + DUPLEX_FULL:
4307 mac->forced_speed_duplex = ADVERTISE_100_FULL;
4308 break;
4309 case SPEED_1000 + DUPLEX_FULL:
4310 mac->autoneg = 1;
4311 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4312 break;
4313 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4314 goto err_inval;
4315 case SPEED_2500 + DUPLEX_FULL:
4316 mac->autoneg = 1;
4317 adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4318 break;
4319 case SPEED_2500 + DUPLEX_HALF: /* not supported */
4320 default:
4321 goto err_inval;
4322 }
4323
4324 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4325 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4326
4327 return 0;
4328
4329 err_inval:
4330 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
4331 return -EINVAL;
4332 }
4333
4334 /**
4335 * igc_probe - Device Initialization Routine
4336 * @pdev: PCI device information struct
4337 * @ent: entry in igc_pci_tbl
4338 *
4339 * Returns 0 on success, negative on failure
4340 *
4341 * igc_probe initializes an adapter identified by a pci_dev structure.
4342 * The OS initialization, configuring the adapter private structure,
4343 * and a hardware reset occur.
4344 */
4345 static int igc_probe(struct pci_dev *pdev,
4346 const struct pci_device_id *ent)
4347 {
4348 struct igc_adapter *adapter;
4349 struct net_device *netdev;
4350 struct igc_hw *hw;
4351 const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4352 int err, pci_using_dac;
4353
4354 err = pci_enable_device_mem(pdev);
4355 if (err)
4356 return err;
4357
4358 pci_using_dac = 0;
4359 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
4360 if (!err) {
4361 pci_using_dac = 1;
4362 } else {
4363 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
4364 if (err) {
4365 dev_err(&pdev->dev,
4366 "No usable DMA configuration, aborting\n");
4367 goto err_dma;
4368 }
4369 }
4370
4371 err = pci_request_mem_regions(pdev, igc_driver_name);
4372 if (err)
4373 goto err_pci_reg;
4374
4375 pci_enable_pcie_error_reporting(pdev);
4376
4377 pci_set_master(pdev);
4378
4379 err = -ENOMEM;
4380 netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4381 IGC_MAX_TX_QUEUES);
4382
4383 if (!netdev)
4384 goto err_alloc_etherdev;
4385
4386 SET_NETDEV_DEV(netdev, &pdev->dev);
4387
4388 pci_set_drvdata(pdev, netdev);
4389 adapter = netdev_priv(netdev);
4390 adapter->netdev = netdev;
4391 adapter->pdev = pdev;
4392 hw = &adapter->hw;
4393 hw->back = adapter;
4394 adapter->port_num = hw->bus.func;
4395 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4396
4397 err = pci_save_state(pdev);
4398 if (err)
4399 goto err_ioremap;
4400
4401 err = -EIO;
4402 adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4403 pci_resource_len(pdev, 0));
4404 if (!adapter->io_addr)
4405 goto err_ioremap;
4406
4407 /* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4408 hw->hw_addr = adapter->io_addr;
4409
4410 netdev->netdev_ops = &igc_netdev_ops;
4411 igc_set_ethtool_ops(netdev);
4412 netdev->watchdog_timeo = 5 * HZ;
4413
4414 netdev->mem_start = pci_resource_start(pdev, 0);
4415 netdev->mem_end = pci_resource_end(pdev, 0);
4416
4417 /* PCI config space info */
4418 hw->vendor_id = pdev->vendor;
4419 hw->device_id = pdev->device;
4420 hw->revision_id = pdev->revision;
4421 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4422 hw->subsystem_device_id = pdev->subsystem_device;
4423
4424 /* Copy the default MAC and PHY function pointers */
4425 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4426 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4427
4428 /* Initialize skew-specific constants */
4429 err = ei->get_invariants(hw);
4430 if (err)
4431 goto err_sw_init;
4432
4433 /* Add supported features to the features list*/
4434 netdev->features |= NETIF_F_SG;
4435 netdev->features |= NETIF_F_RXCSUM;
4436 netdev->features |= NETIF_F_HW_CSUM;
4437 netdev->features |= NETIF_F_SCTP_CRC;
4438
4439 /* setup the private structure */
4440 err = igc_sw_init(adapter);
4441 if (err)
4442 goto err_sw_init;
4443
4444 /* copy netdev features into list of user selectable features */
4445 netdev->hw_features |= NETIF_F_NTUPLE;
4446 netdev->hw_features |= netdev->features;
4447
4448 /* MTU range: 68 - 9216 */
4449 netdev->min_mtu = ETH_MIN_MTU;
4450 netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4451
4452 /* before reading the NVM, reset the controller to put the device in a
4453 * known good starting state
4454 */
4455 hw->mac.ops.reset_hw(hw);
4456
4457 if (igc_get_flash_presence_i225(hw)) {
4458 if (hw->nvm.ops.validate(hw) < 0) {
4459 dev_err(&pdev->dev,
4460 "The NVM Checksum Is Not Valid\n");
4461 err = -EIO;
4462 goto err_eeprom;
4463 }
4464 }
4465
4466 if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4467 /* copy the MAC address out of the NVM */
4468 if (hw->mac.ops.read_mac_addr(hw))
4469 dev_err(&pdev->dev, "NVM Read Error\n");
4470 }
4471
4472 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4473
4474 if (!is_valid_ether_addr(netdev->dev_addr)) {
4475 dev_err(&pdev->dev, "Invalid MAC Address\n");
4476 err = -EIO;
4477 goto err_eeprom;
4478 }
4479
4480 /* configure RXPBSIZE and TXPBSIZE */
4481 wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4482 wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4483
4484 timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4485 timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4486
4487 INIT_WORK(&adapter->reset_task, igc_reset_task);
4488 INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4489
4490 /* Initialize link properties that are user-changeable */
4491 adapter->fc_autoneg = true;
4492 hw->mac.autoneg = true;
4493 hw->phy.autoneg_advertised = 0xaf;
4494
4495 hw->fc.requested_mode = igc_fc_default;
4496 hw->fc.current_mode = igc_fc_default;
4497
4498 /* reset the hardware with the new settings */
4499 igc_reset(adapter);
4500
4501 /* let the f/w know that the h/w is now under the control of the
4502 * driver.
4503 */
4504 igc_get_hw_control(adapter);
4505
4506 strncpy(netdev->name, "eth%d", IFNAMSIZ);
4507 err = register_netdev(netdev);
4508 if (err)
4509 goto err_register;
4510
4511 /* carrier off reporting is important to ethtool even BEFORE open */
4512 netif_carrier_off(netdev);
4513
4514 /* Check if Media Autosense is enabled */
4515 adapter->ei = *ei;
4516
4517 /* print pcie link status and MAC address */
4518 pcie_print_link_status(pdev);
4519 netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4520
4521 return 0;
4522
4523 err_register:
4524 igc_release_hw_control(adapter);
4525 err_eeprom:
4526 if (!igc_check_reset_block(hw))
4527 igc_reset_phy(hw);
4528 err_sw_init:
4529 igc_clear_interrupt_scheme(adapter);
4530 iounmap(adapter->io_addr);
4531 err_ioremap:
4532 free_netdev(netdev);
4533 err_alloc_etherdev:
4534 pci_release_mem_regions(pdev);
4535 err_pci_reg:
4536 err_dma:
4537 pci_disable_device(pdev);
4538 return err;
4539 }
4540
4541 /**
4542 * igc_remove - Device Removal Routine
4543 * @pdev: PCI device information struct
4544 *
4545 * igc_remove is called by the PCI subsystem to alert the driver
4546 * that it should release a PCI device. This could be caused by a
4547 * Hot-Plug event, or because the driver is going to be removed from
4548 * memory.
4549 */
4550 static void igc_remove(struct pci_dev *pdev)
4551 {
4552 struct net_device *netdev = pci_get_drvdata(pdev);
4553 struct igc_adapter *adapter = netdev_priv(netdev);
4554
4555 set_bit(__IGC_DOWN, &adapter->state);
4556
4557 del_timer_sync(&adapter->watchdog_timer);
4558 del_timer_sync(&adapter->phy_info_timer);
4559
4560 cancel_work_sync(&adapter->reset_task);
4561 cancel_work_sync(&adapter->watchdog_task);
4562
4563 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4564 * would have already happened in close and is redundant.
4565 */
4566 igc_release_hw_control(adapter);
4567 unregister_netdev(netdev);
4568
4569 igc_clear_interrupt_scheme(adapter);
4570 pci_iounmap(pdev, adapter->io_addr);
4571 pci_release_mem_regions(pdev);
4572
4573 kfree(adapter->mac_table);
4574 free_netdev(netdev);
4575
4576 pci_disable_pcie_error_reporting(pdev);
4577
4578 pci_disable_device(pdev);
4579 }
4580
4581 static struct pci_driver igc_driver = {
4582 .name = igc_driver_name,
4583 .id_table = igc_pci_tbl,
4584 .probe = igc_probe,
4585 .remove = igc_remove,
4586 };
4587
4588 void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4589 const u32 max_rss_queues)
4590 {
4591 /* Determine if we need to pair queues. */
4592 /* If rss_queues > half of max_rss_queues, pair the queues in
4593 * order to conserve interrupts due to limited supply.
4594 */
4595 if (adapter->rss_queues > (max_rss_queues / 2))
4596 adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4597 else
4598 adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4599 }
4600
4601 unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4602 {
4603 unsigned int max_rss_queues;
4604
4605 /* Determine the maximum number of RSS queues supported. */
4606 max_rss_queues = IGC_MAX_RX_QUEUES;
4607
4608 return max_rss_queues;
4609 }
4610
4611 static void igc_init_queue_configuration(struct igc_adapter *adapter)
4612 {
4613 u32 max_rss_queues;
4614
4615 max_rss_queues = igc_get_max_rss_queues(adapter);
4616 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4617
4618 igc_set_flag_queue_pairs(adapter, max_rss_queues);
4619 }
4620
4621 /**
4622 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4623 * @adapter: board private structure to initialize
4624 *
4625 * igc_sw_init initializes the Adapter private data structure.
4626 * Fields are initialized based on PCI device information and
4627 * OS network device settings (MTU size).
4628 */
4629 static int igc_sw_init(struct igc_adapter *adapter)
4630 {
4631 struct net_device *netdev = adapter->netdev;
4632 struct pci_dev *pdev = adapter->pdev;
4633 struct igc_hw *hw = &adapter->hw;
4634
4635 int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4636
4637 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4638
4639 /* set default ring sizes */
4640 adapter->tx_ring_count = IGC_DEFAULT_TXD;
4641 adapter->rx_ring_count = IGC_DEFAULT_RXD;
4642
4643 /* set default ITR values */
4644 adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4645 adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4646
4647 /* set default work limits */
4648 adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4649
4650 /* adjust max frame to be at least the size of a standard frame */
4651 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4652 VLAN_HLEN;
4653 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4654
4655 spin_lock_init(&adapter->nfc_lock);
4656 spin_lock_init(&adapter->stats64_lock);
4657 /* Assume MSI-X interrupts, will be checked during IRQ allocation */
4658 adapter->flags |= IGC_FLAG_HAS_MSIX;
4659
4660 adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4661 if (!adapter->mac_table)
4662 return -ENOMEM;
4663
4664 igc_init_queue_configuration(adapter);
4665
4666 /* This call may decrease the number of queues */
4667 if (igc_init_interrupt_scheme(adapter, true)) {
4668 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4669 return -ENOMEM;
4670 }
4671
4672 /* Explicitly disable IRQ since the NIC can be in any state. */
4673 igc_irq_disable(adapter);
4674
4675 set_bit(__IGC_DOWN, &adapter->state);
4676
4677 return 0;
4678 }
4679
4680 /**
4681 * igc_reinit_queues - return error
4682 * @adapter: pointer to adapter structure
4683 */
4684 int igc_reinit_queues(struct igc_adapter *adapter)
4685 {
4686 struct net_device *netdev = adapter->netdev;
4687 struct pci_dev *pdev = adapter->pdev;
4688 int err = 0;
4689
4690 if (netif_running(netdev))
4691 igc_close(netdev);
4692
4693 igc_reset_interrupt_capability(adapter);
4694
4695 if (igc_init_interrupt_scheme(adapter, true)) {
4696 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4697 return -ENOMEM;
4698 }
4699
4700 if (netif_running(netdev))
4701 err = igc_open(netdev);
4702
4703 return err;
4704 }
4705
4706 /**
4707 * igc_get_hw_dev - return device
4708 * @hw: pointer to hardware structure
4709 *
4710 * used by hardware layer to print debugging information
4711 */
4712 struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4713 {
4714 struct igc_adapter *adapter = hw->back;
4715
4716 return adapter->netdev;
4717 }
4718
4719 /**
4720 * igc_init_module - Driver Registration Routine
4721 *
4722 * igc_init_module is the first routine called when the driver is
4723 * loaded. All it does is register with the PCI subsystem.
4724 */
4725 static int __init igc_init_module(void)
4726 {
4727 int ret;
4728
4729 pr_info("%s - version %s\n",
4730 igc_driver_string, igc_driver_version);
4731
4732 pr_info("%s\n", igc_copyright);
4733
4734 ret = pci_register_driver(&igc_driver);
4735 return ret;
4736 }
4737
4738 module_init(igc_init_module);
4739
4740 /**
4741 * igc_exit_module - Driver Exit Cleanup Routine
4742 *
4743 * igc_exit_module is called just before the driver is removed
4744 * from memory.
4745 */
4746 static void __exit igc_exit_module(void)
4747 {
4748 pci_unregister_driver(&igc_driver);
4749 }
4750
4751 module_exit(igc_exit_module);
4752 /* igc_main.c */