]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
ipmi: remove trydefaults parameter and default init
[mirror_ubuntu-artful-kernel.git] / drivers / net / ethernet / intel / ixgbe / ixgbe_common.c
1 /*******************************************************************************
2
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2016 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include <linux/pci.h>
30 #include <linux/delay.h>
31 #include <linux/sched.h>
32 #include <linux/netdevice.h>
33
34 #include "ixgbe.h"
35 #include "ixgbe_common.h"
36 #include "ixgbe_phy.h"
37
38 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
39 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
40 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
41 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
42 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
43 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
44 u16 count);
45 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
46 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
47 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
48 static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
49
50 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
51 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
52 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
53 u16 words, u16 *data);
54 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
55 u16 words, u16 *data);
56 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
57 u16 offset);
58 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
59
60 /* Base table for registers values that change by MAC */
61 const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
62 IXGBE_MVALS_INIT(8259X)
63 };
64
65 /**
66 * ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
67 * control
68 * @hw: pointer to hardware structure
69 *
70 * There are several phys that do not support autoneg flow control. This
71 * function check the device id to see if the associated phy supports
72 * autoneg flow control.
73 **/
74 bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
75 {
76 bool supported = false;
77 ixgbe_link_speed speed;
78 bool link_up;
79
80 switch (hw->phy.media_type) {
81 case ixgbe_media_type_fiber:
82 hw->mac.ops.check_link(hw, &speed, &link_up, false);
83 /* if link is down, assume supported */
84 if (link_up)
85 supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
86 true : false;
87 else
88 supported = true;
89 break;
90 case ixgbe_media_type_backplane:
91 supported = true;
92 break;
93 case ixgbe_media_type_copper:
94 /* only some copper devices support flow control autoneg */
95 switch (hw->device_id) {
96 case IXGBE_DEV_ID_82599_T3_LOM:
97 case IXGBE_DEV_ID_X540T:
98 case IXGBE_DEV_ID_X540T1:
99 case IXGBE_DEV_ID_X550T:
100 case IXGBE_DEV_ID_X550T1:
101 case IXGBE_DEV_ID_X550EM_X_10G_T:
102 supported = true;
103 break;
104 default:
105 break;
106 }
107 default:
108 break;
109 }
110
111 return supported;
112 }
113
114 /**
115 * ixgbe_setup_fc_generic - Set up flow control
116 * @hw: pointer to hardware structure
117 *
118 * Called at init time to set up flow control.
119 **/
120 s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
121 {
122 s32 ret_val = 0;
123 u32 reg = 0, reg_bp = 0;
124 u16 reg_cu = 0;
125 bool locked = false;
126
127 /*
128 * Validate the requested mode. Strict IEEE mode does not allow
129 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
130 */
131 if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
132 hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
133 return IXGBE_ERR_INVALID_LINK_SETTINGS;
134 }
135
136 /*
137 * 10gig parts do not have a word in the EEPROM to determine the
138 * default flow control setting, so we explicitly set it to full.
139 */
140 if (hw->fc.requested_mode == ixgbe_fc_default)
141 hw->fc.requested_mode = ixgbe_fc_full;
142
143 /*
144 * Set up the 1G and 10G flow control advertisement registers so the
145 * HW will be able to do fc autoneg once the cable is plugged in. If
146 * we link at 10G, the 1G advertisement is harmless and vice versa.
147 */
148 switch (hw->phy.media_type) {
149 case ixgbe_media_type_backplane:
150 /* some MAC's need RMW protection on AUTOC */
151 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
152 if (ret_val)
153 return ret_val;
154
155 /* only backplane uses autoc so fall though */
156 case ixgbe_media_type_fiber:
157 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
158
159 break;
160 case ixgbe_media_type_copper:
161 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
162 MDIO_MMD_AN, &reg_cu);
163 break;
164 default:
165 break;
166 }
167
168 /*
169 * The possible values of fc.requested_mode are:
170 * 0: Flow control is completely disabled
171 * 1: Rx flow control is enabled (we can receive pause frames,
172 * but not send pause frames).
173 * 2: Tx flow control is enabled (we can send pause frames but
174 * we do not support receiving pause frames).
175 * 3: Both Rx and Tx flow control (symmetric) are enabled.
176 * other: Invalid.
177 */
178 switch (hw->fc.requested_mode) {
179 case ixgbe_fc_none:
180 /* Flow control completely disabled by software override. */
181 reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
182 if (hw->phy.media_type == ixgbe_media_type_backplane)
183 reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
184 IXGBE_AUTOC_ASM_PAUSE);
185 else if (hw->phy.media_type == ixgbe_media_type_copper)
186 reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
187 break;
188 case ixgbe_fc_tx_pause:
189 /*
190 * Tx Flow control is enabled, and Rx Flow control is
191 * disabled by software override.
192 */
193 reg |= IXGBE_PCS1GANA_ASM_PAUSE;
194 reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
195 if (hw->phy.media_type == ixgbe_media_type_backplane) {
196 reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
197 reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
198 } else if (hw->phy.media_type == ixgbe_media_type_copper) {
199 reg_cu |= IXGBE_TAF_ASM_PAUSE;
200 reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
201 }
202 break;
203 case ixgbe_fc_rx_pause:
204 /*
205 * Rx Flow control is enabled and Tx Flow control is
206 * disabled by software override. Since there really
207 * isn't a way to advertise that we are capable of RX
208 * Pause ONLY, we will advertise that we support both
209 * symmetric and asymmetric Rx PAUSE, as such we fall
210 * through to the fc_full statement. Later, we will
211 * disable the adapter's ability to send PAUSE frames.
212 */
213 case ixgbe_fc_full:
214 /* Flow control (both Rx and Tx) is enabled by SW override. */
215 reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
216 if (hw->phy.media_type == ixgbe_media_type_backplane)
217 reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
218 IXGBE_AUTOC_ASM_PAUSE;
219 else if (hw->phy.media_type == ixgbe_media_type_copper)
220 reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
221 break;
222 default:
223 hw_dbg(hw, "Flow control param set incorrectly\n");
224 return IXGBE_ERR_CONFIG;
225 }
226
227 if (hw->mac.type != ixgbe_mac_X540) {
228 /*
229 * Enable auto-negotiation between the MAC & PHY;
230 * the MAC will advertise clause 37 flow control.
231 */
232 IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
233 reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
234
235 /* Disable AN timeout */
236 if (hw->fc.strict_ieee)
237 reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
238
239 IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
240 hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
241 }
242
243 /*
244 * AUTOC restart handles negotiation of 1G and 10G on backplane
245 * and copper. There is no need to set the PCS1GCTL register.
246 *
247 */
248 if (hw->phy.media_type == ixgbe_media_type_backplane) {
249 /* Need the SW/FW semaphore around AUTOC writes if 82599 and
250 * LESM is on, likewise reset_pipeline requries the lock as
251 * it also writes AUTOC.
252 */
253 ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
254 if (ret_val)
255 return ret_val;
256
257 } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
258 ixgbe_device_supports_autoneg_fc(hw)) {
259 hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
260 MDIO_MMD_AN, reg_cu);
261 }
262
263 hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
264 return ret_val;
265 }
266
267 /**
268 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
269 * @hw: pointer to hardware structure
270 *
271 * Starts the hardware by filling the bus info structure and media type, clears
272 * all on chip counters, initializes receive address registers, multicast
273 * table, VLAN filter table, calls routine to set up link and flow control
274 * settings, and leaves transmit and receive units disabled and uninitialized
275 **/
276 s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
277 {
278 s32 ret_val;
279 u32 ctrl_ext;
280
281 /* Set the media type */
282 hw->phy.media_type = hw->mac.ops.get_media_type(hw);
283
284 /* Identify the PHY */
285 hw->phy.ops.identify(hw);
286
287 /* Clear the VLAN filter table */
288 hw->mac.ops.clear_vfta(hw);
289
290 /* Clear statistics registers */
291 hw->mac.ops.clear_hw_cntrs(hw);
292
293 /* Set No Snoop Disable */
294 ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
295 ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
296 IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
297 IXGBE_WRITE_FLUSH(hw);
298
299 /* Setup flow control */
300 ret_val = hw->mac.ops.setup_fc(hw);
301 if (ret_val)
302 return ret_val;
303
304 /* Clear adapter stopped flag */
305 hw->adapter_stopped = false;
306
307 return 0;
308 }
309
310 /**
311 * ixgbe_start_hw_gen2 - Init sequence for common device family
312 * @hw: pointer to hw structure
313 *
314 * Performs the init sequence common to the second generation
315 * of 10 GbE devices.
316 * Devices in the second generation:
317 * 82599
318 * X540
319 **/
320 s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
321 {
322 u32 i;
323
324 /* Clear the rate limiters */
325 for (i = 0; i < hw->mac.max_tx_queues; i++) {
326 IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
327 IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
328 }
329 IXGBE_WRITE_FLUSH(hw);
330
331 #ifndef CONFIG_SPARC
332 /* Disable relaxed ordering */
333 for (i = 0; i < hw->mac.max_tx_queues; i++) {
334 u32 regval;
335
336 regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
337 regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
338 IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
339 }
340
341 for (i = 0; i < hw->mac.max_rx_queues; i++) {
342 u32 regval;
343
344 regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
345 regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
346 IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
347 IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
348 }
349 #endif
350 return 0;
351 }
352
353 /**
354 * ixgbe_init_hw_generic - Generic hardware initialization
355 * @hw: pointer to hardware structure
356 *
357 * Initialize the hardware by resetting the hardware, filling the bus info
358 * structure and media type, clears all on chip counters, initializes receive
359 * address registers, multicast table, VLAN filter table, calls routine to set
360 * up link and flow control settings, and leaves transmit and receive units
361 * disabled and uninitialized
362 **/
363 s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
364 {
365 s32 status;
366
367 /* Reset the hardware */
368 status = hw->mac.ops.reset_hw(hw);
369
370 if (status == 0) {
371 /* Start the HW */
372 status = hw->mac.ops.start_hw(hw);
373 }
374
375 return status;
376 }
377
378 /**
379 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
380 * @hw: pointer to hardware structure
381 *
382 * Clears all hardware statistics counters by reading them from the hardware
383 * Statistics counters are clear on read.
384 **/
385 s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
386 {
387 u16 i = 0;
388
389 IXGBE_READ_REG(hw, IXGBE_CRCERRS);
390 IXGBE_READ_REG(hw, IXGBE_ILLERRC);
391 IXGBE_READ_REG(hw, IXGBE_ERRBC);
392 IXGBE_READ_REG(hw, IXGBE_MSPDC);
393 for (i = 0; i < 8; i++)
394 IXGBE_READ_REG(hw, IXGBE_MPC(i));
395
396 IXGBE_READ_REG(hw, IXGBE_MLFC);
397 IXGBE_READ_REG(hw, IXGBE_MRFC);
398 IXGBE_READ_REG(hw, IXGBE_RLEC);
399 IXGBE_READ_REG(hw, IXGBE_LXONTXC);
400 IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
401 if (hw->mac.type >= ixgbe_mac_82599EB) {
402 IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
403 IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
404 } else {
405 IXGBE_READ_REG(hw, IXGBE_LXONRXC);
406 IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
407 }
408
409 for (i = 0; i < 8; i++) {
410 IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
411 IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
412 if (hw->mac.type >= ixgbe_mac_82599EB) {
413 IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
414 IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
415 } else {
416 IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
417 IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
418 }
419 }
420 if (hw->mac.type >= ixgbe_mac_82599EB)
421 for (i = 0; i < 8; i++)
422 IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
423 IXGBE_READ_REG(hw, IXGBE_PRC64);
424 IXGBE_READ_REG(hw, IXGBE_PRC127);
425 IXGBE_READ_REG(hw, IXGBE_PRC255);
426 IXGBE_READ_REG(hw, IXGBE_PRC511);
427 IXGBE_READ_REG(hw, IXGBE_PRC1023);
428 IXGBE_READ_REG(hw, IXGBE_PRC1522);
429 IXGBE_READ_REG(hw, IXGBE_GPRC);
430 IXGBE_READ_REG(hw, IXGBE_BPRC);
431 IXGBE_READ_REG(hw, IXGBE_MPRC);
432 IXGBE_READ_REG(hw, IXGBE_GPTC);
433 IXGBE_READ_REG(hw, IXGBE_GORCL);
434 IXGBE_READ_REG(hw, IXGBE_GORCH);
435 IXGBE_READ_REG(hw, IXGBE_GOTCL);
436 IXGBE_READ_REG(hw, IXGBE_GOTCH);
437 if (hw->mac.type == ixgbe_mac_82598EB)
438 for (i = 0; i < 8; i++)
439 IXGBE_READ_REG(hw, IXGBE_RNBC(i));
440 IXGBE_READ_REG(hw, IXGBE_RUC);
441 IXGBE_READ_REG(hw, IXGBE_RFC);
442 IXGBE_READ_REG(hw, IXGBE_ROC);
443 IXGBE_READ_REG(hw, IXGBE_RJC);
444 IXGBE_READ_REG(hw, IXGBE_MNGPRC);
445 IXGBE_READ_REG(hw, IXGBE_MNGPDC);
446 IXGBE_READ_REG(hw, IXGBE_MNGPTC);
447 IXGBE_READ_REG(hw, IXGBE_TORL);
448 IXGBE_READ_REG(hw, IXGBE_TORH);
449 IXGBE_READ_REG(hw, IXGBE_TPR);
450 IXGBE_READ_REG(hw, IXGBE_TPT);
451 IXGBE_READ_REG(hw, IXGBE_PTC64);
452 IXGBE_READ_REG(hw, IXGBE_PTC127);
453 IXGBE_READ_REG(hw, IXGBE_PTC255);
454 IXGBE_READ_REG(hw, IXGBE_PTC511);
455 IXGBE_READ_REG(hw, IXGBE_PTC1023);
456 IXGBE_READ_REG(hw, IXGBE_PTC1522);
457 IXGBE_READ_REG(hw, IXGBE_MPTC);
458 IXGBE_READ_REG(hw, IXGBE_BPTC);
459 for (i = 0; i < 16; i++) {
460 IXGBE_READ_REG(hw, IXGBE_QPRC(i));
461 IXGBE_READ_REG(hw, IXGBE_QPTC(i));
462 if (hw->mac.type >= ixgbe_mac_82599EB) {
463 IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
464 IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
465 IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
466 IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
467 IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
468 } else {
469 IXGBE_READ_REG(hw, IXGBE_QBRC(i));
470 IXGBE_READ_REG(hw, IXGBE_QBTC(i));
471 }
472 }
473
474 if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
475 if (hw->phy.id == 0)
476 hw->phy.ops.identify(hw);
477 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
478 hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
479 hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
480 hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
481 }
482
483 return 0;
484 }
485
486 /**
487 * ixgbe_read_pba_string_generic - Reads part number string from EEPROM
488 * @hw: pointer to hardware structure
489 * @pba_num: stores the part number string from the EEPROM
490 * @pba_num_size: part number string buffer length
491 *
492 * Reads the part number string from the EEPROM.
493 **/
494 s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
495 u32 pba_num_size)
496 {
497 s32 ret_val;
498 u16 data;
499 u16 pba_ptr;
500 u16 offset;
501 u16 length;
502
503 if (pba_num == NULL) {
504 hw_dbg(hw, "PBA string buffer was null\n");
505 return IXGBE_ERR_INVALID_ARGUMENT;
506 }
507
508 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
509 if (ret_val) {
510 hw_dbg(hw, "NVM Read Error\n");
511 return ret_val;
512 }
513
514 ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
515 if (ret_val) {
516 hw_dbg(hw, "NVM Read Error\n");
517 return ret_val;
518 }
519
520 /*
521 * if data is not ptr guard the PBA must be in legacy format which
522 * means pba_ptr is actually our second data word for the PBA number
523 * and we can decode it into an ascii string
524 */
525 if (data != IXGBE_PBANUM_PTR_GUARD) {
526 hw_dbg(hw, "NVM PBA number is not stored as string\n");
527
528 /* we will need 11 characters to store the PBA */
529 if (pba_num_size < 11) {
530 hw_dbg(hw, "PBA string buffer too small\n");
531 return IXGBE_ERR_NO_SPACE;
532 }
533
534 /* extract hex string from data and pba_ptr */
535 pba_num[0] = (data >> 12) & 0xF;
536 pba_num[1] = (data >> 8) & 0xF;
537 pba_num[2] = (data >> 4) & 0xF;
538 pba_num[3] = data & 0xF;
539 pba_num[4] = (pba_ptr >> 12) & 0xF;
540 pba_num[5] = (pba_ptr >> 8) & 0xF;
541 pba_num[6] = '-';
542 pba_num[7] = 0;
543 pba_num[8] = (pba_ptr >> 4) & 0xF;
544 pba_num[9] = pba_ptr & 0xF;
545
546 /* put a null character on the end of our string */
547 pba_num[10] = '\0';
548
549 /* switch all the data but the '-' to hex char */
550 for (offset = 0; offset < 10; offset++) {
551 if (pba_num[offset] < 0xA)
552 pba_num[offset] += '0';
553 else if (pba_num[offset] < 0x10)
554 pba_num[offset] += 'A' - 0xA;
555 }
556
557 return 0;
558 }
559
560 ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
561 if (ret_val) {
562 hw_dbg(hw, "NVM Read Error\n");
563 return ret_val;
564 }
565
566 if (length == 0xFFFF || length == 0) {
567 hw_dbg(hw, "NVM PBA number section invalid length\n");
568 return IXGBE_ERR_PBA_SECTION;
569 }
570
571 /* check if pba_num buffer is big enough */
572 if (pba_num_size < (((u32)length * 2) - 1)) {
573 hw_dbg(hw, "PBA string buffer too small\n");
574 return IXGBE_ERR_NO_SPACE;
575 }
576
577 /* trim pba length from start of string */
578 pba_ptr++;
579 length--;
580
581 for (offset = 0; offset < length; offset++) {
582 ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
583 if (ret_val) {
584 hw_dbg(hw, "NVM Read Error\n");
585 return ret_val;
586 }
587 pba_num[offset * 2] = (u8)(data >> 8);
588 pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
589 }
590 pba_num[offset * 2] = '\0';
591
592 return 0;
593 }
594
595 /**
596 * ixgbe_get_mac_addr_generic - Generic get MAC address
597 * @hw: pointer to hardware structure
598 * @mac_addr: Adapter MAC address
599 *
600 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
601 * A reset of the adapter must be performed prior to calling this function
602 * in order for the MAC address to have been loaded from the EEPROM into RAR0
603 **/
604 s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
605 {
606 u32 rar_high;
607 u32 rar_low;
608 u16 i;
609
610 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
611 rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
612
613 for (i = 0; i < 4; i++)
614 mac_addr[i] = (u8)(rar_low >> (i*8));
615
616 for (i = 0; i < 2; i++)
617 mac_addr[i+4] = (u8)(rar_high >> (i*8));
618
619 return 0;
620 }
621
622 enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
623 {
624 switch (link_status & IXGBE_PCI_LINK_WIDTH) {
625 case IXGBE_PCI_LINK_WIDTH_1:
626 return ixgbe_bus_width_pcie_x1;
627 case IXGBE_PCI_LINK_WIDTH_2:
628 return ixgbe_bus_width_pcie_x2;
629 case IXGBE_PCI_LINK_WIDTH_4:
630 return ixgbe_bus_width_pcie_x4;
631 case IXGBE_PCI_LINK_WIDTH_8:
632 return ixgbe_bus_width_pcie_x8;
633 default:
634 return ixgbe_bus_width_unknown;
635 }
636 }
637
638 enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
639 {
640 switch (link_status & IXGBE_PCI_LINK_SPEED) {
641 case IXGBE_PCI_LINK_SPEED_2500:
642 return ixgbe_bus_speed_2500;
643 case IXGBE_PCI_LINK_SPEED_5000:
644 return ixgbe_bus_speed_5000;
645 case IXGBE_PCI_LINK_SPEED_8000:
646 return ixgbe_bus_speed_8000;
647 default:
648 return ixgbe_bus_speed_unknown;
649 }
650 }
651
652 /**
653 * ixgbe_get_bus_info_generic - Generic set PCI bus info
654 * @hw: pointer to hardware structure
655 *
656 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
657 **/
658 s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
659 {
660 u16 link_status;
661
662 hw->bus.type = ixgbe_bus_type_pci_express;
663
664 /* Get the negotiated link width and speed from PCI config space */
665 link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
666
667 hw->bus.width = ixgbe_convert_bus_width(link_status);
668 hw->bus.speed = ixgbe_convert_bus_speed(link_status);
669
670 hw->mac.ops.set_lan_id(hw);
671
672 return 0;
673 }
674
675 /**
676 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
677 * @hw: pointer to the HW structure
678 *
679 * Determines the LAN function id by reading memory-mapped registers
680 * and swaps the port value if requested.
681 **/
682 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
683 {
684 struct ixgbe_bus_info *bus = &hw->bus;
685 u16 ee_ctrl_4;
686 u32 reg;
687
688 reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
689 bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
690 bus->lan_id = bus->func;
691
692 /* check for a port swap */
693 reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
694 if (reg & IXGBE_FACTPS_LFS)
695 bus->func ^= 0x1;
696
697 /* Get MAC instance from EEPROM for configuring CS4227 */
698 if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
699 hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
700 bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
701 IXGBE_EE_CTRL_4_INST_ID_SHIFT;
702 }
703 }
704
705 /**
706 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
707 * @hw: pointer to hardware structure
708 *
709 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
710 * disables transmit and receive units. The adapter_stopped flag is used by
711 * the shared code and drivers to determine if the adapter is in a stopped
712 * state and should not touch the hardware.
713 **/
714 s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
715 {
716 u32 reg_val;
717 u16 i;
718
719 /*
720 * Set the adapter_stopped flag so other driver functions stop touching
721 * the hardware
722 */
723 hw->adapter_stopped = true;
724
725 /* Disable the receive unit */
726 hw->mac.ops.disable_rx(hw);
727
728 /* Clear interrupt mask to stop interrupts from being generated */
729 IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
730
731 /* Clear any pending interrupts, flush previous writes */
732 IXGBE_READ_REG(hw, IXGBE_EICR);
733
734 /* Disable the transmit unit. Each queue must be disabled. */
735 for (i = 0; i < hw->mac.max_tx_queues; i++)
736 IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
737
738 /* Disable the receive unit by stopping each queue */
739 for (i = 0; i < hw->mac.max_rx_queues; i++) {
740 reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
741 reg_val &= ~IXGBE_RXDCTL_ENABLE;
742 reg_val |= IXGBE_RXDCTL_SWFLSH;
743 IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
744 }
745
746 /* flush all queues disables */
747 IXGBE_WRITE_FLUSH(hw);
748 usleep_range(1000, 2000);
749
750 /*
751 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
752 * access and verify no pending requests
753 */
754 return ixgbe_disable_pcie_master(hw);
755 }
756
757 /**
758 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
759 * @hw: pointer to hardware structure
760 * @index: led number to turn on
761 **/
762 s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
763 {
764 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
765
766 /* To turn on the LED, set mode to ON. */
767 led_reg &= ~IXGBE_LED_MODE_MASK(index);
768 led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
769 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
770 IXGBE_WRITE_FLUSH(hw);
771
772 return 0;
773 }
774
775 /**
776 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
777 * @hw: pointer to hardware structure
778 * @index: led number to turn off
779 **/
780 s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
781 {
782 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
783
784 /* To turn off the LED, set mode to OFF. */
785 led_reg &= ~IXGBE_LED_MODE_MASK(index);
786 led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
787 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
788 IXGBE_WRITE_FLUSH(hw);
789
790 return 0;
791 }
792
793 /**
794 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
795 * @hw: pointer to hardware structure
796 *
797 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
798 * ixgbe_hw struct in order to set up EEPROM access.
799 **/
800 s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
801 {
802 struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
803 u32 eec;
804 u16 eeprom_size;
805
806 if (eeprom->type == ixgbe_eeprom_uninitialized) {
807 eeprom->type = ixgbe_eeprom_none;
808 /* Set default semaphore delay to 10ms which is a well
809 * tested value */
810 eeprom->semaphore_delay = 10;
811 /* Clear EEPROM page size, it will be initialized as needed */
812 eeprom->word_page_size = 0;
813
814 /*
815 * Check for EEPROM present first.
816 * If not present leave as none
817 */
818 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
819 if (eec & IXGBE_EEC_PRES) {
820 eeprom->type = ixgbe_eeprom_spi;
821
822 /*
823 * SPI EEPROM is assumed here. This code would need to
824 * change if a future EEPROM is not SPI.
825 */
826 eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
827 IXGBE_EEC_SIZE_SHIFT);
828 eeprom->word_size = BIT(eeprom_size +
829 IXGBE_EEPROM_WORD_SIZE_SHIFT);
830 }
831
832 if (eec & IXGBE_EEC_ADDR_SIZE)
833 eeprom->address_bits = 16;
834 else
835 eeprom->address_bits = 8;
836 hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
837 eeprom->type, eeprom->word_size, eeprom->address_bits);
838 }
839
840 return 0;
841 }
842
843 /**
844 * ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
845 * @hw: pointer to hardware structure
846 * @offset: offset within the EEPROM to write
847 * @words: number of words
848 * @data: 16 bit word(s) to write to EEPROM
849 *
850 * Reads 16 bit word(s) from EEPROM through bit-bang method
851 **/
852 s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
853 u16 words, u16 *data)
854 {
855 s32 status;
856 u16 i, count;
857
858 hw->eeprom.ops.init_params(hw);
859
860 if (words == 0)
861 return IXGBE_ERR_INVALID_ARGUMENT;
862
863 if (offset + words > hw->eeprom.word_size)
864 return IXGBE_ERR_EEPROM;
865
866 /*
867 * The EEPROM page size cannot be queried from the chip. We do lazy
868 * initialization. It is worth to do that when we write large buffer.
869 */
870 if ((hw->eeprom.word_page_size == 0) &&
871 (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
872 ixgbe_detect_eeprom_page_size_generic(hw, offset);
873
874 /*
875 * We cannot hold synchronization semaphores for too long
876 * to avoid other entity starvation. However it is more efficient
877 * to read in bursts than synchronizing access for each word.
878 */
879 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
880 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
881 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
882 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
883 count, &data[i]);
884
885 if (status != 0)
886 break;
887 }
888
889 return status;
890 }
891
892 /**
893 * ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
894 * @hw: pointer to hardware structure
895 * @offset: offset within the EEPROM to be written to
896 * @words: number of word(s)
897 * @data: 16 bit word(s) to be written to the EEPROM
898 *
899 * If ixgbe_eeprom_update_checksum is not called after this function, the
900 * EEPROM will most likely contain an invalid checksum.
901 **/
902 static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
903 u16 words, u16 *data)
904 {
905 s32 status;
906 u16 word;
907 u16 page_size;
908 u16 i;
909 u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
910
911 /* Prepare the EEPROM for writing */
912 status = ixgbe_acquire_eeprom(hw);
913 if (status)
914 return status;
915
916 if (ixgbe_ready_eeprom(hw) != 0) {
917 ixgbe_release_eeprom(hw);
918 return IXGBE_ERR_EEPROM;
919 }
920
921 for (i = 0; i < words; i++) {
922 ixgbe_standby_eeprom(hw);
923
924 /* Send the WRITE ENABLE command (8 bit opcode) */
925 ixgbe_shift_out_eeprom_bits(hw,
926 IXGBE_EEPROM_WREN_OPCODE_SPI,
927 IXGBE_EEPROM_OPCODE_BITS);
928
929 ixgbe_standby_eeprom(hw);
930
931 /* Some SPI eeproms use the 8th address bit embedded
932 * in the opcode
933 */
934 if ((hw->eeprom.address_bits == 8) &&
935 ((offset + i) >= 128))
936 write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
937
938 /* Send the Write command (8-bit opcode + addr) */
939 ixgbe_shift_out_eeprom_bits(hw, write_opcode,
940 IXGBE_EEPROM_OPCODE_BITS);
941 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
942 hw->eeprom.address_bits);
943
944 page_size = hw->eeprom.word_page_size;
945
946 /* Send the data in burst via SPI */
947 do {
948 word = data[i];
949 word = (word >> 8) | (word << 8);
950 ixgbe_shift_out_eeprom_bits(hw, word, 16);
951
952 if (page_size == 0)
953 break;
954
955 /* do not wrap around page */
956 if (((offset + i) & (page_size - 1)) ==
957 (page_size - 1))
958 break;
959 } while (++i < words);
960
961 ixgbe_standby_eeprom(hw);
962 usleep_range(10000, 20000);
963 }
964 /* Done with writing - release the EEPROM */
965 ixgbe_release_eeprom(hw);
966
967 return 0;
968 }
969
970 /**
971 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
972 * @hw: pointer to hardware structure
973 * @offset: offset within the EEPROM to be written to
974 * @data: 16 bit word to be written to the EEPROM
975 *
976 * If ixgbe_eeprom_update_checksum is not called after this function, the
977 * EEPROM will most likely contain an invalid checksum.
978 **/
979 s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
980 {
981 hw->eeprom.ops.init_params(hw);
982
983 if (offset >= hw->eeprom.word_size)
984 return IXGBE_ERR_EEPROM;
985
986 return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
987 }
988
989 /**
990 * ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
991 * @hw: pointer to hardware structure
992 * @offset: offset within the EEPROM to be read
993 * @words: number of word(s)
994 * @data: read 16 bit words(s) from EEPROM
995 *
996 * Reads 16 bit word(s) from EEPROM through bit-bang method
997 **/
998 s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
999 u16 words, u16 *data)
1000 {
1001 s32 status;
1002 u16 i, count;
1003
1004 hw->eeprom.ops.init_params(hw);
1005
1006 if (words == 0)
1007 return IXGBE_ERR_INVALID_ARGUMENT;
1008
1009 if (offset + words > hw->eeprom.word_size)
1010 return IXGBE_ERR_EEPROM;
1011
1012 /*
1013 * We cannot hold synchronization semaphores for too long
1014 * to avoid other entity starvation. However it is more efficient
1015 * to read in bursts than synchronizing access for each word.
1016 */
1017 for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1018 count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1019 IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1020
1021 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1022 count, &data[i]);
1023
1024 if (status)
1025 return status;
1026 }
1027
1028 return 0;
1029 }
1030
1031 /**
1032 * ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1033 * @hw: pointer to hardware structure
1034 * @offset: offset within the EEPROM to be read
1035 * @words: number of word(s)
1036 * @data: read 16 bit word(s) from EEPROM
1037 *
1038 * Reads 16 bit word(s) from EEPROM through bit-bang method
1039 **/
1040 static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1041 u16 words, u16 *data)
1042 {
1043 s32 status;
1044 u16 word_in;
1045 u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1046 u16 i;
1047
1048 /* Prepare the EEPROM for reading */
1049 status = ixgbe_acquire_eeprom(hw);
1050 if (status)
1051 return status;
1052
1053 if (ixgbe_ready_eeprom(hw) != 0) {
1054 ixgbe_release_eeprom(hw);
1055 return IXGBE_ERR_EEPROM;
1056 }
1057
1058 for (i = 0; i < words; i++) {
1059 ixgbe_standby_eeprom(hw);
1060 /* Some SPI eeproms use the 8th address bit embedded
1061 * in the opcode
1062 */
1063 if ((hw->eeprom.address_bits == 8) &&
1064 ((offset + i) >= 128))
1065 read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1066
1067 /* Send the READ command (opcode + addr) */
1068 ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1069 IXGBE_EEPROM_OPCODE_BITS);
1070 ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1071 hw->eeprom.address_bits);
1072
1073 /* Read the data. */
1074 word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1075 data[i] = (word_in >> 8) | (word_in << 8);
1076 }
1077
1078 /* End this read operation */
1079 ixgbe_release_eeprom(hw);
1080
1081 return 0;
1082 }
1083
1084 /**
1085 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1086 * @hw: pointer to hardware structure
1087 * @offset: offset within the EEPROM to be read
1088 * @data: read 16 bit value from EEPROM
1089 *
1090 * Reads 16 bit value from EEPROM through bit-bang method
1091 **/
1092 s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1093 u16 *data)
1094 {
1095 hw->eeprom.ops.init_params(hw);
1096
1097 if (offset >= hw->eeprom.word_size)
1098 return IXGBE_ERR_EEPROM;
1099
1100 return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1101 }
1102
1103 /**
1104 * ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1105 * @hw: pointer to hardware structure
1106 * @offset: offset of word in the EEPROM to read
1107 * @words: number of word(s)
1108 * @data: 16 bit word(s) from the EEPROM
1109 *
1110 * Reads a 16 bit word(s) from the EEPROM using the EERD register.
1111 **/
1112 s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1113 u16 words, u16 *data)
1114 {
1115 u32 eerd;
1116 s32 status;
1117 u32 i;
1118
1119 hw->eeprom.ops.init_params(hw);
1120
1121 if (words == 0)
1122 return IXGBE_ERR_INVALID_ARGUMENT;
1123
1124 if (offset >= hw->eeprom.word_size)
1125 return IXGBE_ERR_EEPROM;
1126
1127 for (i = 0; i < words; i++) {
1128 eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1129 IXGBE_EEPROM_RW_REG_START;
1130
1131 IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1132 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1133
1134 if (status == 0) {
1135 data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1136 IXGBE_EEPROM_RW_REG_DATA);
1137 } else {
1138 hw_dbg(hw, "Eeprom read timed out\n");
1139 return status;
1140 }
1141 }
1142
1143 return 0;
1144 }
1145
1146 /**
1147 * ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1148 * @hw: pointer to hardware structure
1149 * @offset: offset within the EEPROM to be used as a scratch pad
1150 *
1151 * Discover EEPROM page size by writing marching data at given offset.
1152 * This function is called only when we are writing a new large buffer
1153 * at given offset so the data would be overwritten anyway.
1154 **/
1155 static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1156 u16 offset)
1157 {
1158 u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1159 s32 status;
1160 u16 i;
1161
1162 for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1163 data[i] = i;
1164
1165 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1166 status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1167 IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1168 hw->eeprom.word_page_size = 0;
1169 if (status)
1170 return status;
1171
1172 status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1173 if (status)
1174 return status;
1175
1176 /*
1177 * When writing in burst more than the actual page size
1178 * EEPROM address wraps around current page.
1179 */
1180 hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1181
1182 hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1183 hw->eeprom.word_page_size);
1184 return 0;
1185 }
1186
1187 /**
1188 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
1189 * @hw: pointer to hardware structure
1190 * @offset: offset of word in the EEPROM to read
1191 * @data: word read from the EEPROM
1192 *
1193 * Reads a 16 bit word from the EEPROM using the EERD register.
1194 **/
1195 s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1196 {
1197 return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1198 }
1199
1200 /**
1201 * ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1202 * @hw: pointer to hardware structure
1203 * @offset: offset of word in the EEPROM to write
1204 * @words: number of words
1205 * @data: word(s) write to the EEPROM
1206 *
1207 * Write a 16 bit word(s) to the EEPROM using the EEWR register.
1208 **/
1209 s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1210 u16 words, u16 *data)
1211 {
1212 u32 eewr;
1213 s32 status;
1214 u16 i;
1215
1216 hw->eeprom.ops.init_params(hw);
1217
1218 if (words == 0)
1219 return IXGBE_ERR_INVALID_ARGUMENT;
1220
1221 if (offset >= hw->eeprom.word_size)
1222 return IXGBE_ERR_EEPROM;
1223
1224 for (i = 0; i < words; i++) {
1225 eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1226 (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1227 IXGBE_EEPROM_RW_REG_START;
1228
1229 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1230 if (status) {
1231 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1232 return status;
1233 }
1234
1235 IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1236
1237 status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1238 if (status) {
1239 hw_dbg(hw, "Eeprom write EEWR timed out\n");
1240 return status;
1241 }
1242 }
1243
1244 return 0;
1245 }
1246
1247 /**
1248 * ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1249 * @hw: pointer to hardware structure
1250 * @offset: offset of word in the EEPROM to write
1251 * @data: word write to the EEPROM
1252 *
1253 * Write a 16 bit word to the EEPROM using the EEWR register.
1254 **/
1255 s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1256 {
1257 return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1258 }
1259
1260 /**
1261 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1262 * @hw: pointer to hardware structure
1263 * @ee_reg: EEPROM flag for polling
1264 *
1265 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1266 * read or write is done respectively.
1267 **/
1268 static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1269 {
1270 u32 i;
1271 u32 reg;
1272
1273 for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1274 if (ee_reg == IXGBE_NVM_POLL_READ)
1275 reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1276 else
1277 reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1278
1279 if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1280 return 0;
1281 }
1282 udelay(5);
1283 }
1284 return IXGBE_ERR_EEPROM;
1285 }
1286
1287 /**
1288 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1289 * @hw: pointer to hardware structure
1290 *
1291 * Prepares EEPROM for access using bit-bang method. This function should
1292 * be called before issuing a command to the EEPROM.
1293 **/
1294 static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1295 {
1296 u32 eec;
1297 u32 i;
1298
1299 if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1300 return IXGBE_ERR_SWFW_SYNC;
1301
1302 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1303
1304 /* Request EEPROM Access */
1305 eec |= IXGBE_EEC_REQ;
1306 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1307
1308 for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1309 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1310 if (eec & IXGBE_EEC_GNT)
1311 break;
1312 udelay(5);
1313 }
1314
1315 /* Release if grant not acquired */
1316 if (!(eec & IXGBE_EEC_GNT)) {
1317 eec &= ~IXGBE_EEC_REQ;
1318 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1319 hw_dbg(hw, "Could not acquire EEPROM grant\n");
1320
1321 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1322 return IXGBE_ERR_EEPROM;
1323 }
1324
1325 /* Setup EEPROM for Read/Write */
1326 /* Clear CS and SK */
1327 eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1328 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1329 IXGBE_WRITE_FLUSH(hw);
1330 udelay(1);
1331 return 0;
1332 }
1333
1334 /**
1335 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
1336 * @hw: pointer to hardware structure
1337 *
1338 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1339 **/
1340 static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1341 {
1342 u32 timeout = 2000;
1343 u32 i;
1344 u32 swsm;
1345
1346 /* Get SMBI software semaphore between device drivers first */
1347 for (i = 0; i < timeout; i++) {
1348 /*
1349 * If the SMBI bit is 0 when we read it, then the bit will be
1350 * set and we have the semaphore
1351 */
1352 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1353 if (!(swsm & IXGBE_SWSM_SMBI))
1354 break;
1355 usleep_range(50, 100);
1356 }
1357
1358 if (i == timeout) {
1359 hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1360 /* this release is particularly important because our attempts
1361 * above to get the semaphore may have succeeded, and if there
1362 * was a timeout, we should unconditionally clear the semaphore
1363 * bits to free the driver to make progress
1364 */
1365 ixgbe_release_eeprom_semaphore(hw);
1366
1367 usleep_range(50, 100);
1368 /* one last try
1369 * If the SMBI bit is 0 when we read it, then the bit will be
1370 * set and we have the semaphore
1371 */
1372 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1373 if (swsm & IXGBE_SWSM_SMBI) {
1374 hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1375 return IXGBE_ERR_EEPROM;
1376 }
1377 }
1378
1379 /* Now get the semaphore between SW/FW through the SWESMBI bit */
1380 for (i = 0; i < timeout; i++) {
1381 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1382
1383 /* Set the SW EEPROM semaphore bit to request access */
1384 swsm |= IXGBE_SWSM_SWESMBI;
1385 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1386
1387 /* If we set the bit successfully then we got the
1388 * semaphore.
1389 */
1390 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1391 if (swsm & IXGBE_SWSM_SWESMBI)
1392 break;
1393
1394 usleep_range(50, 100);
1395 }
1396
1397 /* Release semaphores and return error if SW EEPROM semaphore
1398 * was not granted because we don't have access to the EEPROM
1399 */
1400 if (i >= timeout) {
1401 hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1402 ixgbe_release_eeprom_semaphore(hw);
1403 return IXGBE_ERR_EEPROM;
1404 }
1405
1406 return 0;
1407 }
1408
1409 /**
1410 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
1411 * @hw: pointer to hardware structure
1412 *
1413 * This function clears hardware semaphore bits.
1414 **/
1415 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1416 {
1417 u32 swsm;
1418
1419 swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1420
1421 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1422 swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1423 IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1424 IXGBE_WRITE_FLUSH(hw);
1425 }
1426
1427 /**
1428 * ixgbe_ready_eeprom - Polls for EEPROM ready
1429 * @hw: pointer to hardware structure
1430 **/
1431 static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1432 {
1433 u16 i;
1434 u8 spi_stat_reg;
1435
1436 /*
1437 * Read "Status Register" repeatedly until the LSB is cleared. The
1438 * EEPROM will signal that the command has been completed by clearing
1439 * bit 0 of the internal status register. If it's not cleared within
1440 * 5 milliseconds, then error out.
1441 */
1442 for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1443 ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1444 IXGBE_EEPROM_OPCODE_BITS);
1445 spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1446 if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1447 break;
1448
1449 udelay(5);
1450 ixgbe_standby_eeprom(hw);
1451 }
1452
1453 /*
1454 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1455 * devices (and only 0-5mSec on 5V devices)
1456 */
1457 if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1458 hw_dbg(hw, "SPI EEPROM Status error\n");
1459 return IXGBE_ERR_EEPROM;
1460 }
1461
1462 return 0;
1463 }
1464
1465 /**
1466 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1467 * @hw: pointer to hardware structure
1468 **/
1469 static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1470 {
1471 u32 eec;
1472
1473 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1474
1475 /* Toggle CS to flush commands */
1476 eec |= IXGBE_EEC_CS;
1477 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1478 IXGBE_WRITE_FLUSH(hw);
1479 udelay(1);
1480 eec &= ~IXGBE_EEC_CS;
1481 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1482 IXGBE_WRITE_FLUSH(hw);
1483 udelay(1);
1484 }
1485
1486 /**
1487 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1488 * @hw: pointer to hardware structure
1489 * @data: data to send to the EEPROM
1490 * @count: number of bits to shift out
1491 **/
1492 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1493 u16 count)
1494 {
1495 u32 eec;
1496 u32 mask;
1497 u32 i;
1498
1499 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1500
1501 /*
1502 * Mask is used to shift "count" bits of "data" out to the EEPROM
1503 * one bit at a time. Determine the starting bit based on count
1504 */
1505 mask = BIT(count - 1);
1506
1507 for (i = 0; i < count; i++) {
1508 /*
1509 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1510 * "1", and then raising and then lowering the clock (the SK
1511 * bit controls the clock input to the EEPROM). A "0" is
1512 * shifted out to the EEPROM by setting "DI" to "0" and then
1513 * raising and then lowering the clock.
1514 */
1515 if (data & mask)
1516 eec |= IXGBE_EEC_DI;
1517 else
1518 eec &= ~IXGBE_EEC_DI;
1519
1520 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1521 IXGBE_WRITE_FLUSH(hw);
1522
1523 udelay(1);
1524
1525 ixgbe_raise_eeprom_clk(hw, &eec);
1526 ixgbe_lower_eeprom_clk(hw, &eec);
1527
1528 /*
1529 * Shift mask to signify next bit of data to shift in to the
1530 * EEPROM
1531 */
1532 mask = mask >> 1;
1533 }
1534
1535 /* We leave the "DI" bit set to "0" when we leave this routine. */
1536 eec &= ~IXGBE_EEC_DI;
1537 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1538 IXGBE_WRITE_FLUSH(hw);
1539 }
1540
1541 /**
1542 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1543 * @hw: pointer to hardware structure
1544 **/
1545 static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1546 {
1547 u32 eec;
1548 u32 i;
1549 u16 data = 0;
1550
1551 /*
1552 * In order to read a register from the EEPROM, we need to shift
1553 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1554 * the clock input to the EEPROM (setting the SK bit), and then reading
1555 * the value of the "DO" bit. During this "shifting in" process the
1556 * "DI" bit should always be clear.
1557 */
1558 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1559
1560 eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1561
1562 for (i = 0; i < count; i++) {
1563 data = data << 1;
1564 ixgbe_raise_eeprom_clk(hw, &eec);
1565
1566 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1567
1568 eec &= ~(IXGBE_EEC_DI);
1569 if (eec & IXGBE_EEC_DO)
1570 data |= 1;
1571
1572 ixgbe_lower_eeprom_clk(hw, &eec);
1573 }
1574
1575 return data;
1576 }
1577
1578 /**
1579 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1580 * @hw: pointer to hardware structure
1581 * @eec: EEC register's current value
1582 **/
1583 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1584 {
1585 /*
1586 * Raise the clock input to the EEPROM
1587 * (setting the SK bit), then delay
1588 */
1589 *eec = *eec | IXGBE_EEC_SK;
1590 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1591 IXGBE_WRITE_FLUSH(hw);
1592 udelay(1);
1593 }
1594
1595 /**
1596 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1597 * @hw: pointer to hardware structure
1598 * @eecd: EECD's current value
1599 **/
1600 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1601 {
1602 /*
1603 * Lower the clock input to the EEPROM (clearing the SK bit), then
1604 * delay
1605 */
1606 *eec = *eec & ~IXGBE_EEC_SK;
1607 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1608 IXGBE_WRITE_FLUSH(hw);
1609 udelay(1);
1610 }
1611
1612 /**
1613 * ixgbe_release_eeprom - Release EEPROM, release semaphores
1614 * @hw: pointer to hardware structure
1615 **/
1616 static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1617 {
1618 u32 eec;
1619
1620 eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1621
1622 eec |= IXGBE_EEC_CS; /* Pull CS high */
1623 eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1624
1625 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1626 IXGBE_WRITE_FLUSH(hw);
1627
1628 udelay(1);
1629
1630 /* Stop requesting EEPROM access */
1631 eec &= ~IXGBE_EEC_REQ;
1632 IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1633
1634 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1635
1636 /*
1637 * Delay before attempt to obtain semaphore again to allow FW
1638 * access. semaphore_delay is in ms we need us for usleep_range
1639 */
1640 usleep_range(hw->eeprom.semaphore_delay * 1000,
1641 hw->eeprom.semaphore_delay * 2000);
1642 }
1643
1644 /**
1645 * ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1646 * @hw: pointer to hardware structure
1647 **/
1648 s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1649 {
1650 u16 i;
1651 u16 j;
1652 u16 checksum = 0;
1653 u16 length = 0;
1654 u16 pointer = 0;
1655 u16 word = 0;
1656
1657 /* Include 0x0-0x3F in the checksum */
1658 for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1659 if (hw->eeprom.ops.read(hw, i, &word)) {
1660 hw_dbg(hw, "EEPROM read failed\n");
1661 break;
1662 }
1663 checksum += word;
1664 }
1665
1666 /* Include all data from pointers except for the fw pointer */
1667 for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1668 if (hw->eeprom.ops.read(hw, i, &pointer)) {
1669 hw_dbg(hw, "EEPROM read failed\n");
1670 return IXGBE_ERR_EEPROM;
1671 }
1672
1673 /* If the pointer seems invalid */
1674 if (pointer == 0xFFFF || pointer == 0)
1675 continue;
1676
1677 if (hw->eeprom.ops.read(hw, pointer, &length)) {
1678 hw_dbg(hw, "EEPROM read failed\n");
1679 return IXGBE_ERR_EEPROM;
1680 }
1681
1682 if (length == 0xFFFF || length == 0)
1683 continue;
1684
1685 for (j = pointer + 1; j <= pointer + length; j++) {
1686 if (hw->eeprom.ops.read(hw, j, &word)) {
1687 hw_dbg(hw, "EEPROM read failed\n");
1688 return IXGBE_ERR_EEPROM;
1689 }
1690 checksum += word;
1691 }
1692 }
1693
1694 checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1695
1696 return (s32)checksum;
1697 }
1698
1699 /**
1700 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1701 * @hw: pointer to hardware structure
1702 * @checksum_val: calculated checksum
1703 *
1704 * Performs checksum calculation and validates the EEPROM checksum. If the
1705 * caller does not need checksum_val, the value can be NULL.
1706 **/
1707 s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1708 u16 *checksum_val)
1709 {
1710 s32 status;
1711 u16 checksum;
1712 u16 read_checksum = 0;
1713
1714 /*
1715 * Read the first word from the EEPROM. If this times out or fails, do
1716 * not continue or we could be in for a very long wait while every
1717 * EEPROM read fails
1718 */
1719 status = hw->eeprom.ops.read(hw, 0, &checksum);
1720 if (status) {
1721 hw_dbg(hw, "EEPROM read failed\n");
1722 return status;
1723 }
1724
1725 status = hw->eeprom.ops.calc_checksum(hw);
1726 if (status < 0)
1727 return status;
1728
1729 checksum = (u16)(status & 0xffff);
1730
1731 status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1732 if (status) {
1733 hw_dbg(hw, "EEPROM read failed\n");
1734 return status;
1735 }
1736
1737 /* Verify read checksum from EEPROM is the same as
1738 * calculated checksum
1739 */
1740 if (read_checksum != checksum)
1741 status = IXGBE_ERR_EEPROM_CHECKSUM;
1742
1743 /* If the user cares, return the calculated checksum */
1744 if (checksum_val)
1745 *checksum_val = checksum;
1746
1747 return status;
1748 }
1749
1750 /**
1751 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1752 * @hw: pointer to hardware structure
1753 **/
1754 s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1755 {
1756 s32 status;
1757 u16 checksum;
1758
1759 /*
1760 * Read the first word from the EEPROM. If this times out or fails, do
1761 * not continue or we could be in for a very long wait while every
1762 * EEPROM read fails
1763 */
1764 status = hw->eeprom.ops.read(hw, 0, &checksum);
1765 if (status) {
1766 hw_dbg(hw, "EEPROM read failed\n");
1767 return status;
1768 }
1769
1770 status = hw->eeprom.ops.calc_checksum(hw);
1771 if (status < 0)
1772 return status;
1773
1774 checksum = (u16)(status & 0xffff);
1775
1776 status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1777
1778 return status;
1779 }
1780
1781 /**
1782 * ixgbe_set_rar_generic - Set Rx address register
1783 * @hw: pointer to hardware structure
1784 * @index: Receive address register to write
1785 * @addr: Address to put into receive address register
1786 * @vmdq: VMDq "set" or "pool" index
1787 * @enable_addr: set flag that address is active
1788 *
1789 * Puts an ethernet address into a receive address register.
1790 **/
1791 s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1792 u32 enable_addr)
1793 {
1794 u32 rar_low, rar_high;
1795 u32 rar_entries = hw->mac.num_rar_entries;
1796
1797 /* Make sure we are using a valid rar index range */
1798 if (index >= rar_entries) {
1799 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1800 return IXGBE_ERR_INVALID_ARGUMENT;
1801 }
1802
1803 /* setup VMDq pool selection before this RAR gets enabled */
1804 hw->mac.ops.set_vmdq(hw, index, vmdq);
1805
1806 /*
1807 * HW expects these in little endian so we reverse the byte
1808 * order from network order (big endian) to little endian
1809 */
1810 rar_low = ((u32)addr[0] |
1811 ((u32)addr[1] << 8) |
1812 ((u32)addr[2] << 16) |
1813 ((u32)addr[3] << 24));
1814 /*
1815 * Some parts put the VMDq setting in the extra RAH bits,
1816 * so save everything except the lower 16 bits that hold part
1817 * of the address and the address valid bit.
1818 */
1819 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1820 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1821 rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1822
1823 if (enable_addr != 0)
1824 rar_high |= IXGBE_RAH_AV;
1825
1826 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1827 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1828
1829 return 0;
1830 }
1831
1832 /**
1833 * ixgbe_clear_rar_generic - Remove Rx address register
1834 * @hw: pointer to hardware structure
1835 * @index: Receive address register to write
1836 *
1837 * Clears an ethernet address from a receive address register.
1838 **/
1839 s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1840 {
1841 u32 rar_high;
1842 u32 rar_entries = hw->mac.num_rar_entries;
1843
1844 /* Make sure we are using a valid rar index range */
1845 if (index >= rar_entries) {
1846 hw_dbg(hw, "RAR index %d is out of range.\n", index);
1847 return IXGBE_ERR_INVALID_ARGUMENT;
1848 }
1849
1850 /*
1851 * Some parts put the VMDq setting in the extra RAH bits,
1852 * so save everything except the lower 16 bits that hold part
1853 * of the address and the address valid bit.
1854 */
1855 rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1856 rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1857
1858 IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1859 IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1860
1861 /* clear VMDq pool/queue selection for this RAR */
1862 hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1863
1864 return 0;
1865 }
1866
1867 /**
1868 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1869 * @hw: pointer to hardware structure
1870 *
1871 * Places the MAC address in receive address register 0 and clears the rest
1872 * of the receive address registers. Clears the multicast table. Assumes
1873 * the receiver is in reset when the routine is called.
1874 **/
1875 s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1876 {
1877 u32 i;
1878 u32 rar_entries = hw->mac.num_rar_entries;
1879
1880 /*
1881 * If the current mac address is valid, assume it is a software override
1882 * to the permanent address.
1883 * Otherwise, use the permanent address from the eeprom.
1884 */
1885 if (!is_valid_ether_addr(hw->mac.addr)) {
1886 /* Get the MAC address from the RAR0 for later reference */
1887 hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1888
1889 hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1890 } else {
1891 /* Setup the receive address. */
1892 hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1893 hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1894
1895 hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1896 }
1897
1898 /* clear VMDq pool/queue selection for RAR 0 */
1899 hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1900
1901 hw->addr_ctrl.overflow_promisc = 0;
1902
1903 hw->addr_ctrl.rar_used_count = 1;
1904
1905 /* Zero out the other receive addresses. */
1906 hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1907 for (i = 1; i < rar_entries; i++) {
1908 IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1909 IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1910 }
1911
1912 /* Clear the MTA */
1913 hw->addr_ctrl.mta_in_use = 0;
1914 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1915
1916 hw_dbg(hw, " Clearing MTA\n");
1917 for (i = 0; i < hw->mac.mcft_size; i++)
1918 IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1919
1920 if (hw->mac.ops.init_uta_tables)
1921 hw->mac.ops.init_uta_tables(hw);
1922
1923 return 0;
1924 }
1925
1926 /**
1927 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1928 * @hw: pointer to hardware structure
1929 * @mc_addr: the multicast address
1930 *
1931 * Extracts the 12 bits, from a multicast address, to determine which
1932 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1933 * incoming rx multicast addresses, to determine the bit-vector to check in
1934 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1935 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1936 * to mc_filter_type.
1937 **/
1938 static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1939 {
1940 u32 vector = 0;
1941
1942 switch (hw->mac.mc_filter_type) {
1943 case 0: /* use bits [47:36] of the address */
1944 vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1945 break;
1946 case 1: /* use bits [46:35] of the address */
1947 vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1948 break;
1949 case 2: /* use bits [45:34] of the address */
1950 vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1951 break;
1952 case 3: /* use bits [43:32] of the address */
1953 vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1954 break;
1955 default: /* Invalid mc_filter_type */
1956 hw_dbg(hw, "MC filter type param set incorrectly\n");
1957 break;
1958 }
1959
1960 /* vector can only be 12-bits or boundary will be exceeded */
1961 vector &= 0xFFF;
1962 return vector;
1963 }
1964
1965 /**
1966 * ixgbe_set_mta - Set bit-vector in multicast table
1967 * @hw: pointer to hardware structure
1968 * @hash_value: Multicast address hash value
1969 *
1970 * Sets the bit-vector in the multicast table.
1971 **/
1972 static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1973 {
1974 u32 vector;
1975 u32 vector_bit;
1976 u32 vector_reg;
1977
1978 hw->addr_ctrl.mta_in_use++;
1979
1980 vector = ixgbe_mta_vector(hw, mc_addr);
1981 hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1982
1983 /*
1984 * The MTA is a register array of 128 32-bit registers. It is treated
1985 * like an array of 4096 bits. We want to set bit
1986 * BitArray[vector_value]. So we figure out what register the bit is
1987 * in, read it, OR in the new bit, then write back the new value. The
1988 * register is determined by the upper 7 bits of the vector value and
1989 * the bit within that register are determined by the lower 5 bits of
1990 * the value.
1991 */
1992 vector_reg = (vector >> 5) & 0x7F;
1993 vector_bit = vector & 0x1F;
1994 hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
1995 }
1996
1997 /**
1998 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1999 * @hw: pointer to hardware structure
2000 * @netdev: pointer to net device structure
2001 *
2002 * The given list replaces any existing list. Clears the MC addrs from receive
2003 * address registers and the multicast table. Uses unused receive address
2004 * registers for the first multicast addresses, and hashes the rest into the
2005 * multicast table.
2006 **/
2007 s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2008 struct net_device *netdev)
2009 {
2010 struct netdev_hw_addr *ha;
2011 u32 i;
2012
2013 /*
2014 * Set the new number of MC addresses that we are being requested to
2015 * use.
2016 */
2017 hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2018 hw->addr_ctrl.mta_in_use = 0;
2019
2020 /* Clear mta_shadow */
2021 hw_dbg(hw, " Clearing MTA\n");
2022 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2023
2024 /* Update mta shadow */
2025 netdev_for_each_mc_addr(ha, netdev) {
2026 hw_dbg(hw, " Adding the multicast addresses:\n");
2027 ixgbe_set_mta(hw, ha->addr);
2028 }
2029
2030 /* Enable mta */
2031 for (i = 0; i < hw->mac.mcft_size; i++)
2032 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2033 hw->mac.mta_shadow[i]);
2034
2035 if (hw->addr_ctrl.mta_in_use > 0)
2036 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2037 IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2038
2039 hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2040 return 0;
2041 }
2042
2043 /**
2044 * ixgbe_enable_mc_generic - Enable multicast address in RAR
2045 * @hw: pointer to hardware structure
2046 *
2047 * Enables multicast address in RAR and the use of the multicast hash table.
2048 **/
2049 s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2050 {
2051 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2052
2053 if (a->mta_in_use > 0)
2054 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2055 hw->mac.mc_filter_type);
2056
2057 return 0;
2058 }
2059
2060 /**
2061 * ixgbe_disable_mc_generic - Disable multicast address in RAR
2062 * @hw: pointer to hardware structure
2063 *
2064 * Disables multicast address in RAR and the use of the multicast hash table.
2065 **/
2066 s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2067 {
2068 struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2069
2070 if (a->mta_in_use > 0)
2071 IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2072
2073 return 0;
2074 }
2075
2076 /**
2077 * ixgbe_fc_enable_generic - Enable flow control
2078 * @hw: pointer to hardware structure
2079 *
2080 * Enable flow control according to the current settings.
2081 **/
2082 s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2083 {
2084 u32 mflcn_reg, fccfg_reg;
2085 u32 reg;
2086 u32 fcrtl, fcrth;
2087 int i;
2088
2089 /* Validate the water mark configuration. */
2090 if (!hw->fc.pause_time)
2091 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2092
2093 /* Low water mark of zero causes XOFF floods */
2094 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2095 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2096 hw->fc.high_water[i]) {
2097 if (!hw->fc.low_water[i] ||
2098 hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2099 hw_dbg(hw, "Invalid water mark configuration\n");
2100 return IXGBE_ERR_INVALID_LINK_SETTINGS;
2101 }
2102 }
2103 }
2104
2105 /* Negotiate the fc mode to use */
2106 ixgbe_fc_autoneg(hw);
2107
2108 /* Disable any previous flow control settings */
2109 mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2110 mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2111
2112 fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2113 fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2114
2115 /*
2116 * The possible values of fc.current_mode are:
2117 * 0: Flow control is completely disabled
2118 * 1: Rx flow control is enabled (we can receive pause frames,
2119 * but not send pause frames).
2120 * 2: Tx flow control is enabled (we can send pause frames but
2121 * we do not support receiving pause frames).
2122 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2123 * other: Invalid.
2124 */
2125 switch (hw->fc.current_mode) {
2126 case ixgbe_fc_none:
2127 /*
2128 * Flow control is disabled by software override or autoneg.
2129 * The code below will actually disable it in the HW.
2130 */
2131 break;
2132 case ixgbe_fc_rx_pause:
2133 /*
2134 * Rx Flow control is enabled and Tx Flow control is
2135 * disabled by software override. Since there really
2136 * isn't a way to advertise that we are capable of RX
2137 * Pause ONLY, we will advertise that we support both
2138 * symmetric and asymmetric Rx PAUSE. Later, we will
2139 * disable the adapter's ability to send PAUSE frames.
2140 */
2141 mflcn_reg |= IXGBE_MFLCN_RFCE;
2142 break;
2143 case ixgbe_fc_tx_pause:
2144 /*
2145 * Tx Flow control is enabled, and Rx Flow control is
2146 * disabled by software override.
2147 */
2148 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2149 break;
2150 case ixgbe_fc_full:
2151 /* Flow control (both Rx and Tx) is enabled by SW override. */
2152 mflcn_reg |= IXGBE_MFLCN_RFCE;
2153 fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2154 break;
2155 default:
2156 hw_dbg(hw, "Flow control param set incorrectly\n");
2157 return IXGBE_ERR_CONFIG;
2158 }
2159
2160 /* Set 802.3x based flow control settings. */
2161 mflcn_reg |= IXGBE_MFLCN_DPF;
2162 IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2163 IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2164
2165 /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2166 for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2167 if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2168 hw->fc.high_water[i]) {
2169 fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2170 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2171 fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2172 } else {
2173 IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2174 /*
2175 * In order to prevent Tx hangs when the internal Tx
2176 * switch is enabled we must set the high water mark
2177 * to the Rx packet buffer size - 24KB. This allows
2178 * the Tx switch to function even under heavy Rx
2179 * workloads.
2180 */
2181 fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2182 }
2183
2184 IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2185 }
2186
2187 /* Configure pause time (2 TCs per register) */
2188 reg = hw->fc.pause_time * 0x00010001;
2189 for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2190 IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2191
2192 IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2193
2194 return 0;
2195 }
2196
2197 /**
2198 * ixgbe_negotiate_fc - Negotiate flow control
2199 * @hw: pointer to hardware structure
2200 * @adv_reg: flow control advertised settings
2201 * @lp_reg: link partner's flow control settings
2202 * @adv_sym: symmetric pause bit in advertisement
2203 * @adv_asm: asymmetric pause bit in advertisement
2204 * @lp_sym: symmetric pause bit in link partner advertisement
2205 * @lp_asm: asymmetric pause bit in link partner advertisement
2206 *
2207 * Find the intersection between advertised settings and link partner's
2208 * advertised settings
2209 **/
2210 static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2211 u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2212 {
2213 if ((!(adv_reg)) || (!(lp_reg)))
2214 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2215
2216 if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2217 /*
2218 * Now we need to check if the user selected Rx ONLY
2219 * of pause frames. In this case, we had to advertise
2220 * FULL flow control because we could not advertise RX
2221 * ONLY. Hence, we must now check to see if we need to
2222 * turn OFF the TRANSMISSION of PAUSE frames.
2223 */
2224 if (hw->fc.requested_mode == ixgbe_fc_full) {
2225 hw->fc.current_mode = ixgbe_fc_full;
2226 hw_dbg(hw, "Flow Control = FULL.\n");
2227 } else {
2228 hw->fc.current_mode = ixgbe_fc_rx_pause;
2229 hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2230 }
2231 } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2232 (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2233 hw->fc.current_mode = ixgbe_fc_tx_pause;
2234 hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2235 } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2236 !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2237 hw->fc.current_mode = ixgbe_fc_rx_pause;
2238 hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2239 } else {
2240 hw->fc.current_mode = ixgbe_fc_none;
2241 hw_dbg(hw, "Flow Control = NONE.\n");
2242 }
2243 return 0;
2244 }
2245
2246 /**
2247 * ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2248 * @hw: pointer to hardware structure
2249 *
2250 * Enable flow control according on 1 gig fiber.
2251 **/
2252 static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2253 {
2254 u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2255 s32 ret_val;
2256
2257 /*
2258 * On multispeed fiber at 1g, bail out if
2259 * - link is up but AN did not complete, or if
2260 * - link is up and AN completed but timed out
2261 */
2262
2263 linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2264 if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2265 (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2266 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2267
2268 pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2269 pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2270
2271 ret_val = ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2272 pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2273 IXGBE_PCS1GANA_ASM_PAUSE,
2274 IXGBE_PCS1GANA_SYM_PAUSE,
2275 IXGBE_PCS1GANA_ASM_PAUSE);
2276
2277 return ret_val;
2278 }
2279
2280 /**
2281 * ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2282 * @hw: pointer to hardware structure
2283 *
2284 * Enable flow control according to IEEE clause 37.
2285 **/
2286 static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2287 {
2288 u32 links2, anlp1_reg, autoc_reg, links;
2289 s32 ret_val;
2290
2291 /*
2292 * On backplane, bail out if
2293 * - backplane autoneg was not completed, or if
2294 * - we are 82599 and link partner is not AN enabled
2295 */
2296 links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2297 if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2298 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2299
2300 if (hw->mac.type == ixgbe_mac_82599EB) {
2301 links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2302 if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2303 return IXGBE_ERR_FC_NOT_NEGOTIATED;
2304 }
2305 /*
2306 * Read the 10g AN autoc and LP ability registers and resolve
2307 * local flow control settings accordingly
2308 */
2309 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2310 anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2311
2312 ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2313 anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2314 IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2315
2316 return ret_val;
2317 }
2318
2319 /**
2320 * ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2321 * @hw: pointer to hardware structure
2322 *
2323 * Enable flow control according to IEEE clause 37.
2324 **/
2325 static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2326 {
2327 u16 technology_ability_reg = 0;
2328 u16 lp_technology_ability_reg = 0;
2329
2330 hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2331 MDIO_MMD_AN,
2332 &technology_ability_reg);
2333 hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2334 MDIO_MMD_AN,
2335 &lp_technology_ability_reg);
2336
2337 return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2338 (u32)lp_technology_ability_reg,
2339 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2340 IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2341 }
2342
2343 /**
2344 * ixgbe_fc_autoneg - Configure flow control
2345 * @hw: pointer to hardware structure
2346 *
2347 * Compares our advertised flow control capabilities to those advertised by
2348 * our link partner, and determines the proper flow control mode to use.
2349 **/
2350 void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2351 {
2352 s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2353 ixgbe_link_speed speed;
2354 bool link_up;
2355
2356 /*
2357 * AN should have completed when the cable was plugged in.
2358 * Look for reasons to bail out. Bail out if:
2359 * - FC autoneg is disabled, or if
2360 * - link is not up.
2361 *
2362 * Since we're being called from an LSC, link is already known to be up.
2363 * So use link_up_wait_to_complete=false.
2364 */
2365 if (hw->fc.disable_fc_autoneg)
2366 goto out;
2367
2368 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2369 if (!link_up)
2370 goto out;
2371
2372 switch (hw->phy.media_type) {
2373 /* Autoneg flow control on fiber adapters */
2374 case ixgbe_media_type_fiber:
2375 if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2376 ret_val = ixgbe_fc_autoneg_fiber(hw);
2377 break;
2378
2379 /* Autoneg flow control on backplane adapters */
2380 case ixgbe_media_type_backplane:
2381 ret_val = ixgbe_fc_autoneg_backplane(hw);
2382 break;
2383
2384 /* Autoneg flow control on copper adapters */
2385 case ixgbe_media_type_copper:
2386 if (ixgbe_device_supports_autoneg_fc(hw))
2387 ret_val = ixgbe_fc_autoneg_copper(hw);
2388 break;
2389
2390 default:
2391 break;
2392 }
2393
2394 out:
2395 if (ret_val == 0) {
2396 hw->fc.fc_was_autonegged = true;
2397 } else {
2398 hw->fc.fc_was_autonegged = false;
2399 hw->fc.current_mode = hw->fc.requested_mode;
2400 }
2401 }
2402
2403 /**
2404 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2405 * @hw: pointer to hardware structure
2406 *
2407 * System-wide timeout range is encoded in PCIe Device Control2 register.
2408 *
2409 * Add 10% to specified maximum and return the number of times to poll for
2410 * completion timeout, in units of 100 microsec. Never return less than
2411 * 800 = 80 millisec.
2412 **/
2413 static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2414 {
2415 s16 devctl2;
2416 u32 pollcnt;
2417
2418 devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2419 devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2420
2421 switch (devctl2) {
2422 case IXGBE_PCIDEVCTRL2_65_130ms:
2423 pollcnt = 1300; /* 130 millisec */
2424 break;
2425 case IXGBE_PCIDEVCTRL2_260_520ms:
2426 pollcnt = 5200; /* 520 millisec */
2427 break;
2428 case IXGBE_PCIDEVCTRL2_1_2s:
2429 pollcnt = 20000; /* 2 sec */
2430 break;
2431 case IXGBE_PCIDEVCTRL2_4_8s:
2432 pollcnt = 80000; /* 8 sec */
2433 break;
2434 case IXGBE_PCIDEVCTRL2_17_34s:
2435 pollcnt = 34000; /* 34 sec */
2436 break;
2437 case IXGBE_PCIDEVCTRL2_50_100us: /* 100 microsecs */
2438 case IXGBE_PCIDEVCTRL2_1_2ms: /* 2 millisecs */
2439 case IXGBE_PCIDEVCTRL2_16_32ms: /* 32 millisec */
2440 case IXGBE_PCIDEVCTRL2_16_32ms_def: /* 32 millisec default */
2441 default:
2442 pollcnt = 800; /* 80 millisec minimum */
2443 break;
2444 }
2445
2446 /* add 10% to spec maximum */
2447 return (pollcnt * 11) / 10;
2448 }
2449
2450 /**
2451 * ixgbe_disable_pcie_master - Disable PCI-express master access
2452 * @hw: pointer to hardware structure
2453 *
2454 * Disables PCI-Express master access and verifies there are no pending
2455 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2456 * bit hasn't caused the master requests to be disabled, else 0
2457 * is returned signifying master requests disabled.
2458 **/
2459 static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2460 {
2461 u32 i, poll;
2462 u16 value;
2463
2464 /* Always set this bit to ensure any future transactions are blocked */
2465 IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2466
2467 /* Poll for bit to read as set */
2468 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2469 if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2470 break;
2471 usleep_range(100, 120);
2472 }
2473 if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2474 hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2475 goto gio_disable_fail;
2476 }
2477
2478 /* Exit if master requests are blocked */
2479 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2480 ixgbe_removed(hw->hw_addr))
2481 return 0;
2482
2483 /* Poll for master request bit to clear */
2484 for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2485 udelay(100);
2486 if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2487 return 0;
2488 }
2489
2490 /*
2491 * Two consecutive resets are required via CTRL.RST per datasheet
2492 * 5.2.5.3.2 Master Disable. We set a flag to inform the reset routine
2493 * of this need. The first reset prevents new master requests from
2494 * being issued by our device. We then must wait 1usec or more for any
2495 * remaining completions from the PCIe bus to trickle in, and then reset
2496 * again to clear out any effects they may have had on our device.
2497 */
2498 hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2499 gio_disable_fail:
2500 hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2501
2502 if (hw->mac.type >= ixgbe_mac_X550)
2503 return 0;
2504
2505 /*
2506 * Before proceeding, make sure that the PCIe block does not have
2507 * transactions pending.
2508 */
2509 poll = ixgbe_pcie_timeout_poll(hw);
2510 for (i = 0; i < poll; i++) {
2511 udelay(100);
2512 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2513 if (ixgbe_removed(hw->hw_addr))
2514 return 0;
2515 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2516 return 0;
2517 }
2518
2519 hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2520 return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2521 }
2522
2523 /**
2524 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2525 * @hw: pointer to hardware structure
2526 * @mask: Mask to specify which semaphore to acquire
2527 *
2528 * Acquires the SWFW semaphore through the GSSR register for the specified
2529 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2530 **/
2531 s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2532 {
2533 u32 gssr = 0;
2534 u32 swmask = mask;
2535 u32 fwmask = mask << 5;
2536 u32 timeout = 200;
2537 u32 i;
2538
2539 for (i = 0; i < timeout; i++) {
2540 /*
2541 * SW NVM semaphore bit is used for access to all
2542 * SW_FW_SYNC bits (not just NVM)
2543 */
2544 if (ixgbe_get_eeprom_semaphore(hw))
2545 return IXGBE_ERR_SWFW_SYNC;
2546
2547 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2548 if (!(gssr & (fwmask | swmask))) {
2549 gssr |= swmask;
2550 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2551 ixgbe_release_eeprom_semaphore(hw);
2552 return 0;
2553 } else {
2554 /* Resource is currently in use by FW or SW */
2555 ixgbe_release_eeprom_semaphore(hw);
2556 usleep_range(5000, 10000);
2557 }
2558 }
2559
2560 /* If time expired clear the bits holding the lock and retry */
2561 if (gssr & (fwmask | swmask))
2562 ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2563
2564 usleep_range(5000, 10000);
2565 return IXGBE_ERR_SWFW_SYNC;
2566 }
2567
2568 /**
2569 * ixgbe_release_swfw_sync - Release SWFW semaphore
2570 * @hw: pointer to hardware structure
2571 * @mask: Mask to specify which semaphore to release
2572 *
2573 * Releases the SWFW semaphore through the GSSR register for the specified
2574 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2575 **/
2576 void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2577 {
2578 u32 gssr;
2579 u32 swmask = mask;
2580
2581 ixgbe_get_eeprom_semaphore(hw);
2582
2583 gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2584 gssr &= ~swmask;
2585 IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2586
2587 ixgbe_release_eeprom_semaphore(hw);
2588 }
2589
2590 /**
2591 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2592 * @hw: pointer to hardware structure
2593 * @reg_val: Value we read from AUTOC
2594 * @locked: bool to indicate whether the SW/FW lock should be taken. Never
2595 * true in this the generic case.
2596 *
2597 * The default case requires no protection so just to the register read.
2598 **/
2599 s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2600 {
2601 *locked = false;
2602 *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2603 return 0;
2604 }
2605
2606 /**
2607 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2608 * @hw: pointer to hardware structure
2609 * @reg_val: value to write to AUTOC
2610 * @locked: bool to indicate whether the SW/FW lock was already taken by
2611 * previous read.
2612 **/
2613 s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2614 {
2615 IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2616 return 0;
2617 }
2618
2619 /**
2620 * ixgbe_disable_rx_buff_generic - Stops the receive data path
2621 * @hw: pointer to hardware structure
2622 *
2623 * Stops the receive data path and waits for the HW to internally
2624 * empty the Rx security block.
2625 **/
2626 s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2627 {
2628 #define IXGBE_MAX_SECRX_POLL 40
2629 int i;
2630 int secrxreg;
2631
2632 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2633 secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2634 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2635 for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2636 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2637 if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2638 break;
2639 else
2640 /* Use interrupt-safe sleep just in case */
2641 udelay(1000);
2642 }
2643
2644 /* For informational purposes only */
2645 if (i >= IXGBE_MAX_SECRX_POLL)
2646 hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2647
2648 return 0;
2649
2650 }
2651
2652 /**
2653 * ixgbe_enable_rx_buff - Enables the receive data path
2654 * @hw: pointer to hardware structure
2655 *
2656 * Enables the receive data path
2657 **/
2658 s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2659 {
2660 int secrxreg;
2661
2662 secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2663 secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2664 IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2665 IXGBE_WRITE_FLUSH(hw);
2666
2667 return 0;
2668 }
2669
2670 /**
2671 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2672 * @hw: pointer to hardware structure
2673 * @regval: register value to write to RXCTRL
2674 *
2675 * Enables the Rx DMA unit
2676 **/
2677 s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2678 {
2679 if (regval & IXGBE_RXCTRL_RXEN)
2680 hw->mac.ops.enable_rx(hw);
2681 else
2682 hw->mac.ops.disable_rx(hw);
2683
2684 return 0;
2685 }
2686
2687 /**
2688 * ixgbe_blink_led_start_generic - Blink LED based on index.
2689 * @hw: pointer to hardware structure
2690 * @index: led number to blink
2691 **/
2692 s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2693 {
2694 ixgbe_link_speed speed = 0;
2695 bool link_up = false;
2696 u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2697 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2698 bool locked = false;
2699 s32 ret_val;
2700
2701 /*
2702 * Link must be up to auto-blink the LEDs;
2703 * Force it if link is down.
2704 */
2705 hw->mac.ops.check_link(hw, &speed, &link_up, false);
2706
2707 if (!link_up) {
2708 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2709 if (ret_val)
2710 return ret_val;
2711
2712 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2713 autoc_reg |= IXGBE_AUTOC_FLU;
2714
2715 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2716 if (ret_val)
2717 return ret_val;
2718
2719 IXGBE_WRITE_FLUSH(hw);
2720
2721 usleep_range(10000, 20000);
2722 }
2723
2724 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2725 led_reg |= IXGBE_LED_BLINK(index);
2726 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2727 IXGBE_WRITE_FLUSH(hw);
2728
2729 return 0;
2730 }
2731
2732 /**
2733 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2734 * @hw: pointer to hardware structure
2735 * @index: led number to stop blinking
2736 **/
2737 s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2738 {
2739 u32 autoc_reg = 0;
2740 u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2741 bool locked = false;
2742 s32 ret_val;
2743
2744 ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2745 if (ret_val)
2746 return ret_val;
2747
2748 autoc_reg &= ~IXGBE_AUTOC_FLU;
2749 autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2750
2751 ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2752 if (ret_val)
2753 return ret_val;
2754
2755 led_reg &= ~IXGBE_LED_MODE_MASK(index);
2756 led_reg &= ~IXGBE_LED_BLINK(index);
2757 led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2758 IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2759 IXGBE_WRITE_FLUSH(hw);
2760
2761 return 0;
2762 }
2763
2764 /**
2765 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2766 * @hw: pointer to hardware structure
2767 * @san_mac_offset: SAN MAC address offset
2768 *
2769 * This function will read the EEPROM location for the SAN MAC address
2770 * pointer, and returns the value at that location. This is used in both
2771 * get and set mac_addr routines.
2772 **/
2773 static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2774 u16 *san_mac_offset)
2775 {
2776 s32 ret_val;
2777
2778 /*
2779 * First read the EEPROM pointer to see if the MAC addresses are
2780 * available.
2781 */
2782 ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2783 san_mac_offset);
2784 if (ret_val)
2785 hw_err(hw, "eeprom read at offset %d failed\n",
2786 IXGBE_SAN_MAC_ADDR_PTR);
2787
2788 return ret_val;
2789 }
2790
2791 /**
2792 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2793 * @hw: pointer to hardware structure
2794 * @san_mac_addr: SAN MAC address
2795 *
2796 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2797 * per-port, so set_lan_id() must be called before reading the addresses.
2798 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2799 * upon for non-SFP connections, so we must call it here.
2800 **/
2801 s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2802 {
2803 u16 san_mac_data, san_mac_offset;
2804 u8 i;
2805 s32 ret_val;
2806
2807 /*
2808 * First read the EEPROM pointer to see if the MAC addresses are
2809 * available. If they're not, no point in calling set_lan_id() here.
2810 */
2811 ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2812 if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2813
2814 goto san_mac_addr_clr;
2815
2816 /* make sure we know which port we need to program */
2817 hw->mac.ops.set_lan_id(hw);
2818 /* apply the port offset to the address offset */
2819 (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2820 (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2821 for (i = 0; i < 3; i++) {
2822 ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2823 &san_mac_data);
2824 if (ret_val) {
2825 hw_err(hw, "eeprom read at offset %d failed\n",
2826 san_mac_offset);
2827 goto san_mac_addr_clr;
2828 }
2829 san_mac_addr[i * 2] = (u8)(san_mac_data);
2830 san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2831 san_mac_offset++;
2832 }
2833 return 0;
2834
2835 san_mac_addr_clr:
2836 /* No addresses available in this EEPROM. It's not necessarily an
2837 * error though, so just wipe the local address and return.
2838 */
2839 for (i = 0; i < 6; i++)
2840 san_mac_addr[i] = 0xFF;
2841 return ret_val;
2842 }
2843
2844 /**
2845 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2846 * @hw: pointer to hardware structure
2847 *
2848 * Read PCIe configuration space, and get the MSI-X vector count from
2849 * the capabilities table.
2850 **/
2851 u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2852 {
2853 u16 msix_count;
2854 u16 max_msix_count;
2855 u16 pcie_offset;
2856
2857 switch (hw->mac.type) {
2858 case ixgbe_mac_82598EB:
2859 pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2860 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2861 break;
2862 case ixgbe_mac_82599EB:
2863 case ixgbe_mac_X540:
2864 case ixgbe_mac_X550:
2865 case ixgbe_mac_X550EM_x:
2866 case ixgbe_mac_x550em_a:
2867 pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2868 max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2869 break;
2870 default:
2871 return 1;
2872 }
2873
2874 msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2875 if (ixgbe_removed(hw->hw_addr))
2876 msix_count = 0;
2877 msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2878
2879 /* MSI-X count is zero-based in HW */
2880 msix_count++;
2881
2882 if (msix_count > max_msix_count)
2883 msix_count = max_msix_count;
2884
2885 return msix_count;
2886 }
2887
2888 /**
2889 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2890 * @hw: pointer to hardware struct
2891 * @rar: receive address register index to disassociate
2892 * @vmdq: VMDq pool index to remove from the rar
2893 **/
2894 s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2895 {
2896 u32 mpsar_lo, mpsar_hi;
2897 u32 rar_entries = hw->mac.num_rar_entries;
2898
2899 /* Make sure we are using a valid rar index range */
2900 if (rar >= rar_entries) {
2901 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2902 return IXGBE_ERR_INVALID_ARGUMENT;
2903 }
2904
2905 mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2906 mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2907
2908 if (ixgbe_removed(hw->hw_addr))
2909 return 0;
2910
2911 if (!mpsar_lo && !mpsar_hi)
2912 return 0;
2913
2914 if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2915 if (mpsar_lo) {
2916 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2917 mpsar_lo = 0;
2918 }
2919 if (mpsar_hi) {
2920 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2921 mpsar_hi = 0;
2922 }
2923 } else if (vmdq < 32) {
2924 mpsar_lo &= ~BIT(vmdq);
2925 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2926 } else {
2927 mpsar_hi &= ~BIT(vmdq - 32);
2928 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2929 }
2930
2931 /* was that the last pool using this rar? */
2932 if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2933 hw->mac.ops.clear_rar(hw, rar);
2934 return 0;
2935 }
2936
2937 /**
2938 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2939 * @hw: pointer to hardware struct
2940 * @rar: receive address register index to associate with a VMDq index
2941 * @vmdq: VMDq pool index
2942 **/
2943 s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2944 {
2945 u32 mpsar;
2946 u32 rar_entries = hw->mac.num_rar_entries;
2947
2948 /* Make sure we are using a valid rar index range */
2949 if (rar >= rar_entries) {
2950 hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2951 return IXGBE_ERR_INVALID_ARGUMENT;
2952 }
2953
2954 if (vmdq < 32) {
2955 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2956 mpsar |= BIT(vmdq);
2957 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2958 } else {
2959 mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2960 mpsar |= BIT(vmdq - 32);
2961 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2962 }
2963 return 0;
2964 }
2965
2966 /**
2967 * This function should only be involved in the IOV mode.
2968 * In IOV mode, Default pool is next pool after the number of
2969 * VFs advertized and not 0.
2970 * MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
2971 *
2972 * ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
2973 * @hw: pointer to hardware struct
2974 * @vmdq: VMDq pool index
2975 **/
2976 s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
2977 {
2978 u32 rar = hw->mac.san_mac_rar_index;
2979
2980 if (vmdq < 32) {
2981 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
2982 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2983 } else {
2984 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2985 IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
2986 }
2987
2988 return 0;
2989 }
2990
2991 /**
2992 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2993 * @hw: pointer to hardware structure
2994 **/
2995 s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2996 {
2997 int i;
2998
2999 for (i = 0; i < 128; i++)
3000 IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3001
3002 return 0;
3003 }
3004
3005 /**
3006 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3007 * @hw: pointer to hardware structure
3008 * @vlan: VLAN id to write to VLAN filter
3009 *
3010 * return the VLVF index where this VLAN id should be placed
3011 *
3012 **/
3013 static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3014 {
3015 s32 regindex, first_empty_slot;
3016 u32 bits;
3017
3018 /* short cut the special case */
3019 if (vlan == 0)
3020 return 0;
3021
3022 /* if vlvf_bypass is set we don't want to use an empty slot, we
3023 * will simply bypass the VLVF if there are no entries present in the
3024 * VLVF that contain our VLAN
3025 */
3026 first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3027
3028 /* add VLAN enable bit for comparison */
3029 vlan |= IXGBE_VLVF_VIEN;
3030
3031 /* Search for the vlan id in the VLVF entries. Save off the first empty
3032 * slot found along the way.
3033 *
3034 * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3035 */
3036 for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3037 bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3038 if (bits == vlan)
3039 return regindex;
3040 if (!first_empty_slot && !bits)
3041 first_empty_slot = regindex;
3042 }
3043
3044 /* If we are here then we didn't find the VLAN. Return first empty
3045 * slot we found during our search, else error.
3046 */
3047 if (!first_empty_slot)
3048 hw_dbg(hw, "No space in VLVF.\n");
3049
3050 return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3051 }
3052
3053 /**
3054 * ixgbe_set_vfta_generic - Set VLAN filter table
3055 * @hw: pointer to hardware structure
3056 * @vlan: VLAN id to write to VLAN filter
3057 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
3058 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
3059 * @vlvf_bypass: boolean flag indicating updating default pool is okay
3060 *
3061 * Turn on/off specified VLAN in the VLAN filter table.
3062 **/
3063 s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3064 bool vlan_on, bool vlvf_bypass)
3065 {
3066 u32 regidx, vfta_delta, vfta, bits;
3067 s32 vlvf_index;
3068
3069 if ((vlan > 4095) || (vind > 63))
3070 return IXGBE_ERR_PARAM;
3071
3072 /*
3073 * this is a 2 part operation - first the VFTA, then the
3074 * VLVF and VLVFB if VT Mode is set
3075 * We don't write the VFTA until we know the VLVF part succeeded.
3076 */
3077
3078 /* Part 1
3079 * The VFTA is a bitstring made up of 128 32-bit registers
3080 * that enable the particular VLAN id, much like the MTA:
3081 * bits[11-5]: which register
3082 * bits[4-0]: which bit in the register
3083 */
3084 regidx = vlan / 32;
3085 vfta_delta = BIT(vlan % 32);
3086 vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3087
3088 /* vfta_delta represents the difference between the current value
3089 * of vfta and the value we want in the register. Since the diff
3090 * is an XOR mask we can just update vfta using an XOR.
3091 */
3092 vfta_delta &= vlan_on ? ~vfta : vfta;
3093 vfta ^= vfta_delta;
3094
3095 /* Part 2
3096 * If VT Mode is set
3097 * Either vlan_on
3098 * make sure the vlan is in VLVF
3099 * set the vind bit in the matching VLVFB
3100 * Or !vlan_on
3101 * clear the pool bit and possibly the vind
3102 */
3103 if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3104 goto vfta_update;
3105
3106 vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3107 if (vlvf_index < 0) {
3108 if (vlvf_bypass)
3109 goto vfta_update;
3110 return vlvf_index;
3111 }
3112
3113 bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3114
3115 /* set the pool bit */
3116 bits |= BIT(vind % 32);
3117 if (vlan_on)
3118 goto vlvf_update;
3119
3120 /* clear the pool bit */
3121 bits ^= BIT(vind % 32);
3122
3123 if (!bits &&
3124 !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3125 /* Clear VFTA first, then disable VLVF. Otherwise
3126 * we run the risk of stray packets leaking into
3127 * the PF via the default pool
3128 */
3129 if (vfta_delta)
3130 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3131
3132 /* disable VLVF and clear remaining bit from pool */
3133 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3134 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3135
3136 return 0;
3137 }
3138
3139 /* If there are still bits set in the VLVFB registers
3140 * for the VLAN ID indicated we need to see if the
3141 * caller is requesting that we clear the VFTA entry bit.
3142 * If the caller has requested that we clear the VFTA
3143 * entry bit but there are still pools/VFs using this VLAN
3144 * ID entry then ignore the request. We're not worried
3145 * about the case where we're turning the VFTA VLAN ID
3146 * entry bit on, only when requested to turn it off as
3147 * there may be multiple pools and/or VFs using the
3148 * VLAN ID entry. In that case we cannot clear the
3149 * VFTA bit until all pools/VFs using that VLAN ID have also
3150 * been cleared. This will be indicated by "bits" being
3151 * zero.
3152 */
3153 vfta_delta = 0;
3154
3155 vlvf_update:
3156 /* record pool change and enable VLAN ID if not already enabled */
3157 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3158 IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3159
3160 vfta_update:
3161 /* Update VFTA now that we are ready for traffic */
3162 if (vfta_delta)
3163 IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3164
3165 return 0;
3166 }
3167
3168 /**
3169 * ixgbe_clear_vfta_generic - Clear VLAN filter table
3170 * @hw: pointer to hardware structure
3171 *
3172 * Clears the VLAN filer table, and the VMDq index associated with the filter
3173 **/
3174 s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3175 {
3176 u32 offset;
3177
3178 for (offset = 0; offset < hw->mac.vft_size; offset++)
3179 IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3180
3181 for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3182 IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3183 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3184 IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3185 }
3186
3187 return 0;
3188 }
3189
3190 /**
3191 * ixgbe_check_mac_link_generic - Determine link and speed status
3192 * @hw: pointer to hardware structure
3193 * @speed: pointer to link speed
3194 * @link_up: true when link is up
3195 * @link_up_wait_to_complete: bool used to wait for link up or not
3196 *
3197 * Reads the links register to determine if link is up and the current speed
3198 **/
3199 s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3200 bool *link_up, bool link_up_wait_to_complete)
3201 {
3202 u32 links_reg, links_orig;
3203 u32 i;
3204
3205 /* clear the old state */
3206 links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3207
3208 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3209
3210 if (links_orig != links_reg) {
3211 hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3212 links_orig, links_reg);
3213 }
3214
3215 if (link_up_wait_to_complete) {
3216 for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3217 if (links_reg & IXGBE_LINKS_UP) {
3218 *link_up = true;
3219 break;
3220 } else {
3221 *link_up = false;
3222 }
3223 msleep(100);
3224 links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3225 }
3226 } else {
3227 if (links_reg & IXGBE_LINKS_UP)
3228 *link_up = true;
3229 else
3230 *link_up = false;
3231 }
3232
3233 switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3234 case IXGBE_LINKS_SPEED_10G_82599:
3235 if ((hw->mac.type >= ixgbe_mac_X550) &&
3236 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3237 *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3238 else
3239 *speed = IXGBE_LINK_SPEED_10GB_FULL;
3240 break;
3241 case IXGBE_LINKS_SPEED_1G_82599:
3242 *speed = IXGBE_LINK_SPEED_1GB_FULL;
3243 break;
3244 case IXGBE_LINKS_SPEED_100_82599:
3245 if ((hw->mac.type >= ixgbe_mac_X550) &&
3246 (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3247 *speed = IXGBE_LINK_SPEED_5GB_FULL;
3248 else
3249 *speed = IXGBE_LINK_SPEED_100_FULL;
3250 break;
3251 default:
3252 *speed = IXGBE_LINK_SPEED_UNKNOWN;
3253 }
3254
3255 return 0;
3256 }
3257
3258 /**
3259 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3260 * the EEPROM
3261 * @hw: pointer to hardware structure
3262 * @wwnn_prefix: the alternative WWNN prefix
3263 * @wwpn_prefix: the alternative WWPN prefix
3264 *
3265 * This function will read the EEPROM from the alternative SAN MAC address
3266 * block to check the support for the alternative WWNN/WWPN prefix support.
3267 **/
3268 s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3269 u16 *wwpn_prefix)
3270 {
3271 u16 offset, caps;
3272 u16 alt_san_mac_blk_offset;
3273
3274 /* clear output first */
3275 *wwnn_prefix = 0xFFFF;
3276 *wwpn_prefix = 0xFFFF;
3277
3278 /* check if alternative SAN MAC is supported */
3279 offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3280 if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3281 goto wwn_prefix_err;
3282
3283 if ((alt_san_mac_blk_offset == 0) ||
3284 (alt_san_mac_blk_offset == 0xFFFF))
3285 return 0;
3286
3287 /* check capability in alternative san mac address block */
3288 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3289 if (hw->eeprom.ops.read(hw, offset, &caps))
3290 goto wwn_prefix_err;
3291 if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3292 return 0;
3293
3294 /* get the corresponding prefix for WWNN/WWPN */
3295 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3296 if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3297 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3298
3299 offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3300 if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3301 goto wwn_prefix_err;
3302
3303 return 0;
3304
3305 wwn_prefix_err:
3306 hw_err(hw, "eeprom read at offset %d failed\n", offset);
3307 return 0;
3308 }
3309
3310 /**
3311 * ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3312 * @hw: pointer to hardware structure
3313 * @enable: enable or disable switch for MAC anti-spoofing
3314 * @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3315 *
3316 **/
3317 void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3318 {
3319 int vf_target_reg = vf >> 3;
3320 int vf_target_shift = vf % 8;
3321 u32 pfvfspoof;
3322
3323 if (hw->mac.type == ixgbe_mac_82598EB)
3324 return;
3325
3326 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3327 if (enable)
3328 pfvfspoof |= BIT(vf_target_shift);
3329 else
3330 pfvfspoof &= ~BIT(vf_target_shift);
3331 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3332 }
3333
3334 /**
3335 * ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3336 * @hw: pointer to hardware structure
3337 * @enable: enable or disable switch for VLAN anti-spoofing
3338 * @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3339 *
3340 **/
3341 void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3342 {
3343 int vf_target_reg = vf >> 3;
3344 int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3345 u32 pfvfspoof;
3346
3347 if (hw->mac.type == ixgbe_mac_82598EB)
3348 return;
3349
3350 pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3351 if (enable)
3352 pfvfspoof |= BIT(vf_target_shift);
3353 else
3354 pfvfspoof &= ~BIT(vf_target_shift);
3355 IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3356 }
3357
3358 /**
3359 * ixgbe_get_device_caps_generic - Get additional device capabilities
3360 * @hw: pointer to hardware structure
3361 * @device_caps: the EEPROM word with the extra device capabilities
3362 *
3363 * This function will read the EEPROM location for the device capabilities,
3364 * and return the word through device_caps.
3365 **/
3366 s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3367 {
3368 hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3369
3370 return 0;
3371 }
3372
3373 /**
3374 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3375 * @hw: pointer to hardware structure
3376 * @num_pb: number of packet buffers to allocate
3377 * @headroom: reserve n KB of headroom
3378 * @strategy: packet buffer allocation strategy
3379 **/
3380 void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3381 int num_pb,
3382 u32 headroom,
3383 int strategy)
3384 {
3385 u32 pbsize = hw->mac.rx_pb_size;
3386 int i = 0;
3387 u32 rxpktsize, txpktsize, txpbthresh;
3388
3389 /* Reserve headroom */
3390 pbsize -= headroom;
3391
3392 if (!num_pb)
3393 num_pb = 1;
3394
3395 /* Divide remaining packet buffer space amongst the number
3396 * of packet buffers requested using supplied strategy.
3397 */
3398 switch (strategy) {
3399 case (PBA_STRATEGY_WEIGHTED):
3400 /* pba_80_48 strategy weight first half of packet buffer with
3401 * 5/8 of the packet buffer space.
3402 */
3403 rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3404 pbsize -= rxpktsize * (num_pb / 2);
3405 rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3406 for (; i < (num_pb / 2); i++)
3407 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3408 /* Fall through to configure remaining packet buffers */
3409 case (PBA_STRATEGY_EQUAL):
3410 /* Divide the remaining Rx packet buffer evenly among the TCs */
3411 rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3412 for (; i < num_pb; i++)
3413 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3414 break;
3415 default:
3416 break;
3417 }
3418
3419 /*
3420 * Setup Tx packet buffer and threshold equally for all TCs
3421 * TXPBTHRESH register is set in K so divide by 1024 and subtract
3422 * 10 since the largest packet we support is just over 9K.
3423 */
3424 txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3425 txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3426 for (i = 0; i < num_pb; i++) {
3427 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3428 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3429 }
3430
3431 /* Clear unused TCs, if any, to zero buffer size*/
3432 for (; i < IXGBE_MAX_PB; i++) {
3433 IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3434 IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3435 IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3436 }
3437 }
3438
3439 /**
3440 * ixgbe_calculate_checksum - Calculate checksum for buffer
3441 * @buffer: pointer to EEPROM
3442 * @length: size of EEPROM to calculate a checksum for
3443 *
3444 * Calculates the checksum for some buffer on a specified length. The
3445 * checksum calculated is returned.
3446 **/
3447 static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3448 {
3449 u32 i;
3450 u8 sum = 0;
3451
3452 if (!buffer)
3453 return 0;
3454
3455 for (i = 0; i < length; i++)
3456 sum += buffer[i];
3457
3458 return (u8) (0 - sum);
3459 }
3460
3461 /**
3462 * ixgbe_host_interface_command - Issue command to manageability block
3463 * @hw: pointer to the HW structure
3464 * @buffer: contains the command to write and where the return status will
3465 * be placed
3466 * @length: length of buffer, must be multiple of 4 bytes
3467 * @timeout: time in ms to wait for command completion
3468 * @return_data: read and return data from the buffer (true) or not (false)
3469 * Needed because FW structures are big endian and decoding of
3470 * these fields can be 8 bit or 16 bit based on command. Decoding
3471 * is not easily understood without making a table of commands.
3472 * So we will leave this up to the caller to read back the data
3473 * in these cases.
3474 *
3475 * Communicates with the manageability block. On success return 0
3476 * else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3477 **/
3478 s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3479 u32 length, u32 timeout,
3480 bool return_data)
3481 {
3482 u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3483 u32 hicr, i, bi, fwsts;
3484 u16 buf_len, dword_len;
3485 union {
3486 struct ixgbe_hic_hdr hdr;
3487 u32 u32arr[1];
3488 } *bp = buffer;
3489 s32 status;
3490
3491 if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3492 hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3493 return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3494 }
3495 /* Take management host interface semaphore */
3496 status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3497 if (status)
3498 return status;
3499
3500 /* Set bit 9 of FWSTS clearing FW reset indication */
3501 fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3502 IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3503
3504 /* Check that the host interface is enabled. */
3505 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3506 if (!(hicr & IXGBE_HICR_EN)) {
3507 hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3508 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3509 goto rel_out;
3510 }
3511
3512 /* Calculate length in DWORDs. We must be DWORD aligned */
3513 if (length % sizeof(u32)) {
3514 hw_dbg(hw, "Buffer length failure, not aligned to dword");
3515 status = IXGBE_ERR_INVALID_ARGUMENT;
3516 goto rel_out;
3517 }
3518
3519 dword_len = length >> 2;
3520
3521 /* The device driver writes the relevant command block
3522 * into the ram area.
3523 */
3524 for (i = 0; i < dword_len; i++)
3525 IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3526 i, cpu_to_le32(bp->u32arr[i]));
3527
3528 /* Setting this bit tells the ARC that a new command is pending. */
3529 IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3530
3531 for (i = 0; i < timeout; i++) {
3532 hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3533 if (!(hicr & IXGBE_HICR_C))
3534 break;
3535 usleep_range(1000, 2000);
3536 }
3537
3538 /* Check command successful completion. */
3539 if ((timeout && i == timeout) ||
3540 !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
3541 hw_dbg(hw, "Command has failed with no status valid.\n");
3542 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3543 goto rel_out;
3544 }
3545
3546 if (!return_data)
3547 goto rel_out;
3548
3549 /* Calculate length in DWORDs */
3550 dword_len = hdr_size >> 2;
3551
3552 /* first pull in the header so we know the buffer length */
3553 for (bi = 0; bi < dword_len; bi++) {
3554 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3555 le32_to_cpus(&bp->u32arr[bi]);
3556 }
3557
3558 /* If there is any thing in data position pull it in */
3559 buf_len = bp->hdr.buf_len;
3560 if (!buf_len)
3561 goto rel_out;
3562
3563 if (length < round_up(buf_len, 4) + hdr_size) {
3564 hw_dbg(hw, "Buffer not large enough for reply message.\n");
3565 status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3566 goto rel_out;
3567 }
3568
3569 /* Calculate length in DWORDs, add 3 for odd lengths */
3570 dword_len = (buf_len + 3) >> 2;
3571
3572 /* Pull in the rest of the buffer (bi is where we left off) */
3573 for (; bi <= dword_len; bi++) {
3574 bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3575 le32_to_cpus(&bp->u32arr[bi]);
3576 }
3577
3578 rel_out:
3579 hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3580
3581 return status;
3582 }
3583
3584 /**
3585 * ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3586 * @hw: pointer to the HW structure
3587 * @maj: driver version major number
3588 * @min: driver version minor number
3589 * @build: driver version build number
3590 * @sub: driver version sub build number
3591 *
3592 * Sends driver version number to firmware through the manageability
3593 * block. On success return 0
3594 * else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3595 * semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3596 **/
3597 s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3598 u8 build, u8 sub)
3599 {
3600 struct ixgbe_hic_drv_info fw_cmd;
3601 int i;
3602 s32 ret_val;
3603
3604 fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3605 fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3606 fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3607 fw_cmd.port_num = hw->bus.func;
3608 fw_cmd.ver_maj = maj;
3609 fw_cmd.ver_min = min;
3610 fw_cmd.ver_build = build;
3611 fw_cmd.ver_sub = sub;
3612 fw_cmd.hdr.checksum = 0;
3613 fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3614 (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3615 fw_cmd.pad = 0;
3616 fw_cmd.pad2 = 0;
3617
3618 for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3619 ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3620 sizeof(fw_cmd),
3621 IXGBE_HI_COMMAND_TIMEOUT,
3622 true);
3623 if (ret_val != 0)
3624 continue;
3625
3626 if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3627 FW_CEM_RESP_STATUS_SUCCESS)
3628 ret_val = 0;
3629 else
3630 ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3631
3632 break;
3633 }
3634
3635 return ret_val;
3636 }
3637
3638 /**
3639 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3640 * @hw: pointer to the hardware structure
3641 *
3642 * The 82599 and x540 MACs can experience issues if TX work is still pending
3643 * when a reset occurs. This function prevents this by flushing the PCIe
3644 * buffers on the system.
3645 **/
3646 void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3647 {
3648 u32 gcr_ext, hlreg0, i, poll;
3649 u16 value;
3650
3651 /*
3652 * If double reset is not requested then all transactions should
3653 * already be clear and as such there is no work to do
3654 */
3655 if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3656 return;
3657
3658 /*
3659 * Set loopback enable to prevent any transmits from being sent
3660 * should the link come up. This assumes that the RXCTRL.RXEN bit
3661 * has already been cleared.
3662 */
3663 hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3664 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3665
3666 /* wait for a last completion before clearing buffers */
3667 IXGBE_WRITE_FLUSH(hw);
3668 usleep_range(3000, 6000);
3669
3670 /* Before proceeding, make sure that the PCIe block does not have
3671 * transactions pending.
3672 */
3673 poll = ixgbe_pcie_timeout_poll(hw);
3674 for (i = 0; i < poll; i++) {
3675 usleep_range(100, 200);
3676 value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3677 if (ixgbe_removed(hw->hw_addr))
3678 break;
3679 if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3680 break;
3681 }
3682
3683 /* initiate cleaning flow for buffers in the PCIe transaction layer */
3684 gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3685 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3686 gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3687
3688 /* Flush all writes and allow 20usec for all transactions to clear */
3689 IXGBE_WRITE_FLUSH(hw);
3690 udelay(20);
3691
3692 /* restore previous register values */
3693 IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3694 IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3695 }
3696
3697 static const u8 ixgbe_emc_temp_data[4] = {
3698 IXGBE_EMC_INTERNAL_DATA,
3699 IXGBE_EMC_DIODE1_DATA,
3700 IXGBE_EMC_DIODE2_DATA,
3701 IXGBE_EMC_DIODE3_DATA
3702 };
3703 static const u8 ixgbe_emc_therm_limit[4] = {
3704 IXGBE_EMC_INTERNAL_THERM_LIMIT,
3705 IXGBE_EMC_DIODE1_THERM_LIMIT,
3706 IXGBE_EMC_DIODE2_THERM_LIMIT,
3707 IXGBE_EMC_DIODE3_THERM_LIMIT
3708 };
3709
3710 /**
3711 * ixgbe_get_ets_data - Extracts the ETS bit data
3712 * @hw: pointer to hardware structure
3713 * @ets_cfg: extected ETS data
3714 * @ets_offset: offset of ETS data
3715 *
3716 * Returns error code.
3717 **/
3718 static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3719 u16 *ets_offset)
3720 {
3721 s32 status;
3722
3723 status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3724 if (status)
3725 return status;
3726
3727 if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3728 return IXGBE_NOT_IMPLEMENTED;
3729
3730 status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3731 if (status)
3732 return status;
3733
3734 if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3735 return IXGBE_NOT_IMPLEMENTED;
3736
3737 return 0;
3738 }
3739
3740 /**
3741 * ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3742 * @hw: pointer to hardware structure
3743 *
3744 * Returns the thermal sensor data structure
3745 **/
3746 s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3747 {
3748 s32 status;
3749 u16 ets_offset;
3750 u16 ets_cfg;
3751 u16 ets_sensor;
3752 u8 num_sensors;
3753 u8 i;
3754 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3755
3756 /* Only support thermal sensors attached to physical port 0 */
3757 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3758 return IXGBE_NOT_IMPLEMENTED;
3759
3760 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3761 if (status)
3762 return status;
3763
3764 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3765 if (num_sensors > IXGBE_MAX_SENSORS)
3766 num_sensors = IXGBE_MAX_SENSORS;
3767
3768 for (i = 0; i < num_sensors; i++) {
3769 u8 sensor_index;
3770 u8 sensor_location;
3771
3772 status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3773 &ets_sensor);
3774 if (status)
3775 return status;
3776
3777 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3778 IXGBE_ETS_DATA_INDEX_SHIFT);
3779 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3780 IXGBE_ETS_DATA_LOC_SHIFT);
3781
3782 if (sensor_location != 0) {
3783 status = hw->phy.ops.read_i2c_byte(hw,
3784 ixgbe_emc_temp_data[sensor_index],
3785 IXGBE_I2C_THERMAL_SENSOR_ADDR,
3786 &data->sensor[i].temp);
3787 if (status)
3788 return status;
3789 }
3790 }
3791
3792 return 0;
3793 }
3794
3795 /**
3796 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3797 * @hw: pointer to hardware structure
3798 *
3799 * Inits the thermal sensor thresholds according to the NVM map
3800 * and save off the threshold and location values into mac.thermal_sensor_data
3801 **/
3802 s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3803 {
3804 s32 status;
3805 u16 ets_offset;
3806 u16 ets_cfg;
3807 u16 ets_sensor;
3808 u8 low_thresh_delta;
3809 u8 num_sensors;
3810 u8 therm_limit;
3811 u8 i;
3812 struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3813
3814 memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3815
3816 /* Only support thermal sensors attached to physical port 0 */
3817 if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3818 return IXGBE_NOT_IMPLEMENTED;
3819
3820 status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3821 if (status)
3822 return status;
3823
3824 low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3825 IXGBE_ETS_LTHRES_DELTA_SHIFT);
3826 num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3827 if (num_sensors > IXGBE_MAX_SENSORS)
3828 num_sensors = IXGBE_MAX_SENSORS;
3829
3830 for (i = 0; i < num_sensors; i++) {
3831 u8 sensor_index;
3832 u8 sensor_location;
3833
3834 if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3835 hw_err(hw, "eeprom read at offset %d failed\n",
3836 ets_offset + 1 + i);
3837 continue;
3838 }
3839 sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3840 IXGBE_ETS_DATA_INDEX_SHIFT);
3841 sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3842 IXGBE_ETS_DATA_LOC_SHIFT);
3843 therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3844
3845 hw->phy.ops.write_i2c_byte(hw,
3846 ixgbe_emc_therm_limit[sensor_index],
3847 IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3848
3849 if (sensor_location == 0)
3850 continue;
3851
3852 data->sensor[i].location = sensor_location;
3853 data->sensor[i].caution_thresh = therm_limit;
3854 data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3855 }
3856
3857 return 0;
3858 }
3859
3860 void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3861 {
3862 u32 rxctrl;
3863
3864 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3865 if (rxctrl & IXGBE_RXCTRL_RXEN) {
3866 if (hw->mac.type != ixgbe_mac_82598EB) {
3867 u32 pfdtxgswc;
3868
3869 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3870 if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3871 pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3872 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3873 hw->mac.set_lben = true;
3874 } else {
3875 hw->mac.set_lben = false;
3876 }
3877 }
3878 rxctrl &= ~IXGBE_RXCTRL_RXEN;
3879 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3880 }
3881 }
3882
3883 void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3884 {
3885 u32 rxctrl;
3886
3887 rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3888 IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3889
3890 if (hw->mac.type != ixgbe_mac_82598EB) {
3891 if (hw->mac.set_lben) {
3892 u32 pfdtxgswc;
3893
3894 pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3895 pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3896 IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3897 hw->mac.set_lben = false;
3898 }
3899 }
3900 }
3901
3902 /** ixgbe_mng_present - returns true when management capability is present
3903 * @hw: pointer to hardware structure
3904 **/
3905 bool ixgbe_mng_present(struct ixgbe_hw *hw)
3906 {
3907 u32 fwsm;
3908
3909 if (hw->mac.type < ixgbe_mac_82599EB)
3910 return false;
3911
3912 fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3913 fwsm &= IXGBE_FWSM_MODE_MASK;
3914 return fwsm == IXGBE_FWSM_FW_MODE_PT;
3915 }
3916
3917 /**
3918 * ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
3919 * @hw: pointer to hardware structure
3920 * @speed: new link speed
3921 * @autoneg_wait_to_complete: true when waiting for completion is needed
3922 *
3923 * Set the link speed in the MAC and/or PHY register and restarts link.
3924 */
3925 s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
3926 ixgbe_link_speed speed,
3927 bool autoneg_wait_to_complete)
3928 {
3929 ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3930 ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
3931 s32 status = 0;
3932 u32 speedcnt = 0;
3933 u32 i = 0;
3934 bool autoneg, link_up = false;
3935
3936 /* Mask off requested but non-supported speeds */
3937 status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
3938 if (status)
3939 return status;
3940
3941 speed &= link_speed;
3942
3943 /* Try each speed one by one, highest priority first. We do this in
3944 * software because 10Gb fiber doesn't support speed autonegotiation.
3945 */
3946 if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
3947 speedcnt++;
3948 highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
3949
3950 /* If we already have link at this speed, just jump out */
3951 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
3952 false);
3953 if (status)
3954 return status;
3955
3956 if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
3957 goto out;
3958
3959 /* Set the module link speed */
3960 switch (hw->phy.media_type) {
3961 case ixgbe_media_type_fiber:
3962 hw->mac.ops.set_rate_select_speed(hw,
3963 IXGBE_LINK_SPEED_10GB_FULL);
3964 break;
3965 case ixgbe_media_type_fiber_qsfp:
3966 /* QSFP module automatically detects MAC link speed */
3967 break;
3968 default:
3969 hw_dbg(hw, "Unexpected media type\n");
3970 break;
3971 }
3972
3973 /* Allow module to change analog characteristics (1G->10G) */
3974 msleep(40);
3975
3976 status = hw->mac.ops.setup_mac_link(hw,
3977 IXGBE_LINK_SPEED_10GB_FULL,
3978 autoneg_wait_to_complete);
3979 if (status)
3980 return status;
3981
3982 /* Flap the Tx laser if it has not already been done */
3983 if (hw->mac.ops.flap_tx_laser)
3984 hw->mac.ops.flap_tx_laser(hw);
3985
3986 /* Wait for the controller to acquire link. Per IEEE 802.3ap,
3987 * Section 73.10.2, we may have to wait up to 500ms if KR is
3988 * attempted. 82599 uses the same timing for 10g SFI.
3989 */
3990 for (i = 0; i < 5; i++) {
3991 /* Wait for the link partner to also set speed */
3992 msleep(100);
3993
3994 /* If we have link, just jump out */
3995 status = hw->mac.ops.check_link(hw, &link_speed,
3996 &link_up, false);
3997 if (status)
3998 return status;
3999
4000 if (link_up)
4001 goto out;
4002 }
4003 }
4004
4005 if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4006 speedcnt++;
4007 if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4008 highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4009
4010 /* If we already have link at this speed, just jump out */
4011 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4012 false);
4013 if (status)
4014 return status;
4015
4016 if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4017 goto out;
4018
4019 /* Set the module link speed */
4020 switch (hw->phy.media_type) {
4021 case ixgbe_media_type_fiber:
4022 hw->mac.ops.set_rate_select_speed(hw,
4023 IXGBE_LINK_SPEED_1GB_FULL);
4024 break;
4025 case ixgbe_media_type_fiber_qsfp:
4026 /* QSFP module automatically detects link speed */
4027 break;
4028 default:
4029 hw_dbg(hw, "Unexpected media type\n");
4030 break;
4031 }
4032
4033 /* Allow module to change analog characteristics (10G->1G) */
4034 msleep(40);
4035
4036 status = hw->mac.ops.setup_mac_link(hw,
4037 IXGBE_LINK_SPEED_1GB_FULL,
4038 autoneg_wait_to_complete);
4039 if (status)
4040 return status;
4041
4042 /* Flap the Tx laser if it has not already been done */
4043 if (hw->mac.ops.flap_tx_laser)
4044 hw->mac.ops.flap_tx_laser(hw);
4045
4046 /* Wait for the link partner to also set speed */
4047 msleep(100);
4048
4049 /* If we have link, just jump out */
4050 status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4051 false);
4052 if (status)
4053 return status;
4054
4055 if (link_up)
4056 goto out;
4057 }
4058
4059 /* We didn't get link. Configure back to the highest speed we tried,
4060 * (if there was more than one). We call ourselves back with just the
4061 * single highest speed that the user requested.
4062 */
4063 if (speedcnt > 1)
4064 status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4065 highest_link_speed,
4066 autoneg_wait_to_complete);
4067
4068 out:
4069 /* Set autoneg_advertised value based on input link speed */
4070 hw->phy.autoneg_advertised = 0;
4071
4072 if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4073 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4074
4075 if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4076 hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4077
4078 return status;
4079 }
4080
4081 /**
4082 * ixgbe_set_soft_rate_select_speed - Set module link speed
4083 * @hw: pointer to hardware structure
4084 * @speed: link speed to set
4085 *
4086 * Set module link speed via the soft rate select.
4087 */
4088 void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4089 ixgbe_link_speed speed)
4090 {
4091 s32 status;
4092 u8 rs, eeprom_data;
4093
4094 switch (speed) {
4095 case IXGBE_LINK_SPEED_10GB_FULL:
4096 /* one bit mask same as setting on */
4097 rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4098 break;
4099 case IXGBE_LINK_SPEED_1GB_FULL:
4100 rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4101 break;
4102 default:
4103 hw_dbg(hw, "Invalid fixed module speed\n");
4104 return;
4105 }
4106
4107 /* Set RS0 */
4108 status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4109 IXGBE_I2C_EEPROM_DEV_ADDR2,
4110 &eeprom_data);
4111 if (status) {
4112 hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4113 return;
4114 }
4115
4116 eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4117
4118 status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4119 IXGBE_I2C_EEPROM_DEV_ADDR2,
4120 eeprom_data);
4121 if (status) {
4122 hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4123 return;
4124 }
4125 }